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1 Introduction

North America, Europe and Australasia have amongst the highest incidences of
chronic gastrointestinal and metabolic diseases including inflammatory bowel dis-
eases (IBD), colorectal cancer (CRC) and obesity (Molodecky et al. 2012; Stevens
et al. 2012; Bray et al. 2013). Although once considered rare in large parts of the
world the incidences of IBD and obesity in particular have also been steadily
increasing in Asia, South America and the Middle East (Ng et al. 2014; Kaplan
2015). These diseases are associated with considerable socioeconomic costs; for
example, the estimated costs to the global economy from obesity approaches US$2
trillion per annum, which equates to 2.8 % of global gross domestic product (Dobbs
et al. 2014). Thus, there is an urgent need to develop more effective preventative
and therapeutic strategies to ameliorate the impacts of these diseases.

Genomic studies have revealed that IBD, CRC and obesity are underpinned by
specific host genetic susceptibilities that are considered to be necessary but often
not sufficient for disease to develop (Jostins et al. 2012; Peters et al. 2015; Locke
et al. 2015), and it is now recognised that environmental factors and lifestyle
choices also affect disease risk. Epidemiological studies also suggest that host
genetic, environmental factors and lifestyle choices either alone or in combination
does not fully explain disease risk implying that other risk factors remain to be
identified. With that context, the human gastrointestinal tract harbours a diverse
microbial community (gut microbiota) that provides a range of ecological and
metabolic functions relevant to host health and well-being (reviewed by Backhed
et al. 2005). Human- and animal-based studies have now also identified the gut
microbiota as an important risk factor in the aetiology of chronic gut diseases. First,
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human studies have revealed that the microbiota varies between healthy and dis-
eased individuals (e.g. Turnbaugh et al. 2009; Qin et al. 2010; Nakatsu et al. 2015)
and these variations are associated with changes in the disease state (Cotillard et al.
2013; Nakatsu et al. 2015; De Cruz et al. 2015). Second, germ-free animals are
protected from disease but become susceptible following microbiota transfer
(Turnbaugh et al. 2006; Zackular et al. 2013; Schaubeck et al. 2016). Third, both
human- and animal-based studies have revealed these diseases are responsive to
interventions that modulate the activity of the gut microbiota including antibiotics
(Zackular et al. 2013; Murphy et al. 2013; Schaubeck et al. 2016), diet (Donohoe
et al. 2014; Quince et al. 2015), probiotics (Kadooka et al. 2010; Bassaganya-Riera
et al. 2012) and faecal microbiota transfers (Suskind et al. 2015).

Even though IBD, CRC and obesity are a heterogeneous group of diseases, they
are all characterised by an activated inflammatory response. Nuclear factor-kappa
B (NF-κB) is a master regulator of gut epithelial integrity and inflammation, and
activation of the NF-κB signalling pathway plays a key role in driving the
inflammatory response during the onset and progression of these diseases.
Consistent with this, the NF-κB signalling pathway is a validated therapeutic target
for the treatment of IBD (Atreya et al. 2008) (Fig. 1), and it is also a recognised
therapeutic target for CRC (Sakamoto and Maeda 2010), and for obesity and its
co-morbidities (Donath 2014; Esser et al. 2015). The NF-κB pathway is particularly
well recognised as a therapeutic target for IBD, however, many of the current
therapeutics are only partially effective and/or have significant side effects. For
instance, glucocorticosteroids can affect linear growth and bone health in paediatric
subjects; methotrexate can cause hepatotoxicity, and as a teratogen, the treatment of
female subjects is complicated; salicylates are associated with an increased risk of
bleeding. Similarly, the newer biologics (e.g. anti-TNFα factors) are expensive,
increase the risk of infection and suffer from a loss of response. Interestingly, the
gut microbiota plays a central role in modulating the host immune response and
specific gut microbes have been shown to possess potent NF-κB suppressive
capabilities that can ameliorate the inflammatory response (Ménard et al. 2004;
Sokol et al. 2008; Heuvelin et al. 2009; Petrof et al. 2009; Eeckhaut et al. 2012;
Khokhlova et al. 2012; Kaci et al. 2013). This suggests that exploiting gut
microbe-derived NF-κB suppressive bioactives may provide new opportunities to
maintain host health. In this Chapter, we examine our current understanding of the
host-microbiota interaction and outline strategies to identify and characterise the
NF-κB suppressive capabilities of the gut microbiota. In particular, we propose that
an integrated approach combining culture-dependent and independent approaches
with a more mechanistic dissection of the microbiota provided by improved cul-
tivation techniques, high-throughput functional screens and metabolomic and
genetic dissections is necessary to transform our understanding of gut health and
support the development of new preventative and therapeutic strategies.
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2 The Human Holobiont: An Emergent Paradigm
of Human Health

The publication of the human genome sequence was a seminal milestone in our
history. Published with much excitement in 2001, it promised new insights and
understanding of what it means to be human (Venter et al. 2001; Lander et al.
2001). Initial estimates of the number of protein-coding genes deemed necessary to
explain the biological and phenotypic complexity characteristic of humans varied
widely, however, there was considerable surprise when it was revealed that the
human genome is comprised of as few as 25,000 genes (International Human
Genome Sequencing Consortium 2004). Humans are not autonomous and fol-
lowing a period of introspection it was increasingly recognised that our associated
microbiota provides a range of functions relevant to health and disease. Thus, in its
aftermath, there was an increasing call to sequence our second genome—that of the
human microbiota (Davies 2001; Relman and Falkow 2001). This international
effort to sequence the human microbiome has principally been led by the Human
Microbiome Project (HMP) funded by the US National Institutes of Health
(Peterson et al. 2009) and the MetaHIT Project (Ehrlich 2010) funded by the
European Union, with additional coordination of other global efforts mediated
through the International Human Microbiome Consortium.

Humans and their associated microbiota co-exist as a symbiotic multispecies
assemblage termed a “holobiont” that is defined as a physical association between a

Fig. 1 The NF-κB pathway as a validated drug target for the treatment of chronic gut diseases.
The NF-κB pathway can be activated by several mechanisms including microbe-associated
molecular patterns (MAMP; e.g. via lipopolysaccharide, flagellin from the gut microbiota),
damage associated molecular patterns (DAMP; e.g. via extracellular detection of normally
intracellular proteins) or cytokines. Targeting of the NF-κB pathway for the treatment of chronic
gut diseases is best recognised for IBD with glucocorticosteroids (corticosteroids), methotrexate,
salicylates (e.g. mesalazine, sulfasalazine) and anti-TNFα biologics interfering with pathway
signalling. However, this pathway is also increasingly targeted for CRC, and obesity and its
co-morbidities
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host and its associated microbiota for signifıcant portions of their life history
(Bordenstein and Theis 2015). The emergence of the holobiont concept has dra-
matically altered our perception of human health—where the role of microbes was
traditionally viewed from the perspective of infectious diseases—to one where the
microbiota is viewed as an integral component that contributes essential function-
alities relevant to the fitness of the holobiont. The assembly of a holobiont is a
dynamic process that impacts both the host and microbiota (Gilbert 2014). For
instance, the human gut provides a wide variety of ecological niches that are
characterised by a constant temperature, oxygen tension, humidity and nutrient
supply. This supports colonisation by a numerically abundant and diverse micro-
biota that in return helps prevent colonisation by potential pathogens, detoxifies
harmful compounds, produces essential nutrients and catalyses the biotransforma-
tion of dietary substrate so they can be utilised by the host (Fig. 2). The “holo-
genome” then is comprised of the genetic potential encoded by the host’s genome
and their associated microbiota (microbiome) and can thus be considered as an
extension of the host genotype itself. Notably, the hologenome is dynamic in terms
of its composition with the potential to change more rapidly than the host genome
alone via gene acquisition or loss which also confers a greater adaptive potential to
the holobiont (Quercia et al. 2014).

The holobiont concept provides a new paradigm for a more holistic under-
standing of the aetiology of chronic gut diseases. For instance, some of the genetic

Fig. 2 The emergent holobiont model of human health. The holobiont assembly impacts the
fitness of the host and its associated microbiota and is characterised by specific host–microbiota
interdependencies. The hologenome is comprised of the genetic capacity of both the human
genome and microbiome. The holobiont provides a new model to examine the impact of
environmental factors and lifestyle choices on host health and disease risk
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susceptibility loci for these diseases also affect the ability of specific microbes to
colonise the gut (reviewed by Spor et al. 2011) suggesting that the contribution of
genetic susceptibility and microbiota composition to disease risk may be intrinsi-
cally linked. In addition, the holobiont has provided a framework on which the
impact of environmental factors and lifestyle choices on health and disease risk can
be dissected and this has informed the development of new strategies to rationally
modulate the holobiont phenotype to improve host health (Zeevi et al. 2015). The
holobiont may also represent an optimum biological system to bioprospect for
novel NF-κB suppressive bioactives as the gut microbiota has co-evolved with the
development of the host mucosal immune system. In particular, we hypothesise that
select microbes produce bioactives that actively suppress the NF-κB-mediated
immune response perhaps as an essential capability to allow for successful
colonisation and persistence. These NF-κB suppressive bioactives may have
specific attributes that are relevant to the development of new therapeutics including
high bioactivity, bioavailability and target site specificity, as well as stability in the
gut environment. Thus, these bioactives could potentially be used directly or serve
as lead molecules for the development of novel NF-κB suppressive therapeutics.
Alternatively, determining the mechanism by which they exert their suppressive
effects could help to identify new cellular targets that could be drugged by existing
or new therapeutics. Taken together the identification and characterisation of these
bioactives may help realise new opportunities to prevent or treat chronic gut
diseases.

3 Insights into the Structure: Function Capacity
of the Human Gut Microbiota

Our understanding and appreciation of the diversity and functional capacity of the
gut microbiota are largely based on distinct yet complementary culture-dependent
and culture-independent analyses of the gut environment (Fig. 3). Many of the
current reference strains used in gut microbiota research were first isolated in the
mid-twentieth century following the advent of techniques in anaerobic microbiol-
ogy (for a historical perspective see Rajilić-Stojanović and de Vos 2014). However,
it has long been recognised that the vast majority of gut microbes are resistant to
cultivation as revealed by the discordance between microscopic counts of microbial
cells and those recovered using traditional laboratory based cultivation. This phe-
nomenon was first described in aquatic environments and termed “the great plate
count anomaly” (reviewed by Staley and Konopka 1985). Instead, advances in
molecular biology and DNA sequencing technology culminated in the establish-
ment of culture-independent approaches to study the microbiota, based largely on
16S rRNA gene community profiling and metagenomics. A crucial discovery was
that the microbial 16S rRNA gene could be used as a molecular clock to infer
phylogeny and provide an estimate of microbial diversity (Woese and Fox 1977).
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The 16S rRNA gene is approximately 1550 bp in length and has a divergence rate
of 1–2 % per 50 million years (Ochman et al. 1999). The gene is comprised of
conserved and (hyper)variable regions and this architecture has been exploited in
culture-independent studies to assess microbial diversity. Here, near full-length or
subsections of the 16S rRNA gene are amplified by polymerase chain reaction
(PCR) using primers targeting the conserved regions and the intervening variable
regions are used to infer phylogeny (Klindworth et al. 2013). The length of the 16S
rRNA gene sequence can affect phylogenetic assignment (Kim et al. 2011; Franzén
et al. 2015) and it does not provide any information on the functional potential of
the taxa identified. However, the development of metagenomic approaches, facil-
itating the sequencing of bulk DNA recovered from microbial communities has
now provided new opportunities to both assess microbial diversity through
sequencing of defined phylogenetic marker genes (Sunagawa et al. 2013) and the
functional capacity of the microbiome (Qin et al. 2010; Li et al. 2014a). In a
landmark study Qin et al. (2010) examined the microbiome of 124 subjects and
determined that it is comprised of a genetic pool of up to 3.3 million non-redundant
genes that is as much as 150× that of the human genome. In practical terms the

Fig. 3 The analysis of the gut microbiota by culture-dependent and culture-independent
approaches. For culture-dependent approaches gut microbes are ideally recovered from gut
samples (e.g. faeces, biopsy tissue) as axenic cultures. The phylogeny and functional potential of
the isolates can then be assessed by 16S rRNA gene and/or genome sequencing. The functional
characteristics of the isolates can be assessed by phenotypic profiling. For culture-independent
approaches bulk DNA is typically recovered directly from gut samples and the DNA is then used
for 16S rRNA gene profiling and/or metagenomic sequencing. The diversity and functional
capacity of the microbiota can be assessed from the resultant sequence data
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functional activity of an individual’s gut microbiome is supported by *500,000
non-redundant genes. In line with an earlier estimate (Yang et al. 2009), a subse-
quent study by Li et al. (2014a) identified over 9.8 million non-redundant genes in
the human gut microbiome. It is likely that the number of non-redundant genes
remains underestimated, however, metagenomics may have reached a point of
diminishing returns where a greater effort has to be expended to provide an even
deeper insight into the gene repertoire of the gut microbiota. Together, both 16S
rRNA-based profiling and metagenomic sequencing have provided a unique insight
into the gut microbiome and revealed that the vast majority of gut microbes remain
uncultured (reviewed by Rajilic-Stojanovic et al. 2007; Rajilić-Stojanović and de
Vos 2014).

The adult human gut microbiota is comprised of viruses, bacteria, archaea and
eukaryotes with the number of microbial cells inhabiting the adult human gut
outnumbering host cells by an order of magnitude (Savage 1977). The gut envi-
ronment is characterised by a host driven top-down pressure on the microbiota that
selects for a community of distantly related microbes with similar functional
capabilities ensuring redundancy of microbial processes essential for the host. In
contrast, intra-microbiota competition results in a bottom-up pressure that selects
for functional specialisation. Consequently, the structure of the gut microbiota is
characterised by distinct inter-subject variability although the core functional
capabilities of the microbiota (e.g. short chain fatty acid (SCFA) production,
vitamin biosynthesis) are largely conserved (Turnbaugh et al. 2009; Lozupone
et al.2012). The diversity and functional attributes of the bacterial and archaeal
communities in the human gut is best understood. The human gut microbiota is
dominated by bacteria affiliated with the phyla Firmicutes and Bacteroidetes with
smaller numbers of other phyla including Actinobacteria, Fusobacteria,
Proteobacteria and Verrucomicrobia also present (Rajilic-Stojanovic et al. 2007;
Lozupone et al. 2012). The diversity of the microbiota becomes increasingly
complex at deeper phylogenetic levels and the human gut can harbour up to several
hundred individual strains that vary substantially between individuals (Greenblum
et al. 2015; Yassour et al. 2016). The gut archaea have a low abundance and are
comprised of methanogenic and non-methanogenic archaea (Rieu-Lesme et al.
2005; Gill et al. 2006; Nam et al. 2008; Oxley et al. 2010; Ó Cuív et al. 2011a). The
methanogenic gut archaea are dominated by strains affiliated with
Methanobrevibacter and Methanosphaera spp. although the diversity of human gut
methanogenic archaea may be underestimated (Gill et al. 2006; Nam et al. 2008;
Scanlan et al. 2008; Mihajlovski et al. 2008; Ó Cuív et al. 2011a). Despite the
substantial inter-subject variability, the healthy gut microbiota has been shown to be
comprised of a core microbiota that is widely shared between individuals and that
includes some of the most abundant members of the microbiota (Tap et al. 2009;
Qin et al. 2010; Jalanka-Tuovinen et al. 2011; Sekelja et al. 2011;
Rajilic-Stojanovic et al. 2012; Martínez et al. 2013; Li et al. 2013), and an accessory
microbiota that is less widely shared and typically comprised of low abundance taxa
that are nonetheless metabolically active (Peris-Bondia et al. 2011).
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Both culture-dependent and culture-independent approaches have helped to
identify important differences to the structure-function activity between the gut
microbiota of healthy individuals and those with chronic gut diseases. For instance,
perturbations of signature bacterial species from the core microbiota have been
associated with chronic gut diseases (Qin et al. 2010; Nakatsu et al. 2015). In CD,
the abundance of specific core bacteria differs from the healthy gut (Kang et al.
2010; Mondot et al. 2011; Prideaux et al. 2013; De Cruz et al. 2015), these dif-
ferences are coincident with the onset of active disease (De Cruz et al. 2015) and a
restoration of their abundance may support remission (Dey et al. 2013; De Cruz
et al. 2015). Furthermore, in vivo and in vitro-based experiments have demon-
strated that structure-function differences between the healthy and diseased gut
microbiota are associated with variations in biological activities that are relevant to
gut health. While the immunoregulatory capacity of the microbiota remains largely
unknown several representative isolates from the core microbiota produce bioactive
factors that can suppress NF-κB activation (Ménard et al. 2004; Sokol et al. 2008;
Heuvelin et al. 2009; Khokhlova et al. 2012; Quevrain et al. 2016), modulate the
balance and/or activity of regulatory and effector T-cell populations (Atarashi et al.
2011; Atarashi et al. 2013; Qiu et al. 2013; Li et al. 2014b) and restore barrier
function (Martin et al. 2015), thus attenuating the host inflammatory response and
helping to maintain gut homeostasis. Based on these observations, members of the
core gut microbiota have been proposed as “next-generation” probiotics for the
treatment of chronic gut diseases (Neef and Sanz 2013). There continues to be a
growing appreciation of the NF-κB suppressive capabilities of individual members
of the core microbiota and other gut bacteria. However, while some of the NF-κB
suppressive factors produced by gut bacteria have been identified, in many
instances they remain to be determined (Kelly et al. 2004; Lakhdari et al. 2011;
Kaci et al. 2011; Santos Rocha et al. 2012; Kaci et al. 2013).

Advancements in DNA sequencing technologies continue apace and the cost and
speed at which sequence data can be produced and annotated continues to dra-
matically improve (Loman et al. 2012; Land et al. 2015). However, despite the
wealth of gut microbiome associated sequence data now available in the public
databases, the overwhelming majority of gene products have not been functionally
characterised. Indeed, it is estimated that up to 75 % of protein families are assigned
to uncharacterised orthologous groups and novel families (Qin et al. 2010; Ellrott
et al. 2010; The Human Microbiome Project Consortium 2012). This challenge is
further compounded by the fact that DNA sequence data are typically annotated
using automated pipelines with little manual curation resulting in the introduction
and propagation of annotation errors, and ultimately spurious function prediction
(Schnoes et al. 2009; Promponas et al. 2015). It is widely acknowledged that the
ability to functionally dissect the gut microbiome has not kept pace with DNA
sequencing technology and it is notable that the functions of over one-third of the
gene complement of the model organism and best characterised gut bacterium
Escherichia coli (E. coli) K-12 remain undetermined (Hu et al. 2009). This
shortcoming is increasingly being addressed (Nichols et al. 2011; Meng et al. 2012;
Paradis-Bleau et al. 2014; Rajagopala et al. 2014) supported largely by E. coli’s
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ease of propagation and its amenability to genetic dissection. In contrast, the vast
majority of gut microbes are fastidious anaerobes that are not known to be
amenable to genetic dissection and hence their genetic potential remains cryptic.
This has led to suggestions that an increased effort must be expended to functionally
characterise existing gene sets as this will provide new insights into the microbial
factors supporting gut health or driving disease (Roberts 2004; Galperin and
Koonin 2010; Anton et al. 2014; Joice et al. 2014).

Based on these collective observations, we contend that new advances in
microbial isolation coupled with parallel developments in functional characterisa-
tion and dissection approaches will provide the best opportunities to develop
streamlined strategies to identify NF-κB suppressive and other types of bioactives
produced by gut microbes. In particular, considering the complexity of the gut
microbiota these strategies must be cost-effective, scalable and amenable to
automation, and the following sections provide an overview of each of these
aspects.

4 Bringing the Microbiome to Life: Culture-Dependent
Analysis of the Gut Microbiota

It is indisputable that the development of new approaches to isolate and propagate
fastidious gut microbes has not kept pace with those of culture-independent
approaches. In particular, microbial culturing is widely perceived to be a time and
labour intensive process and much information can now be provided without
having to isolate individual microbes (Table 1). Nonetheless, both approaches are
complementary and in some instances culture-dependent approaches provide the
best opportunity to dissect the functional capacity of the microbiota. For instance,
culture-dependent approaches allow specific axenic isolates to be directly linked
with NF-κB suppressive capabilities and, moreover, they provide a valuable
resource to test experimental hypotheses (e.g. Koch’s postulates).

The vast majority of gut microbes are strict anaerobes and require an environ-
ment with a low redox potential in which to grow. The history of isolating and
cultivating fastidious gut microbes extends from the late-nineteenth century
(Rajilić-Stojanović and de Vos 2014). Many of the techniques used in contempo-
rary laboratories were developed and adapted by Hungate (1969) and colleagues
(Eller et al. 1971; Macy et al. 1972; Bryant 1972; Balch et al. 1979) and have been
used to isolate and propagate facultative anaerobic microbes (e.g. E. coli), micro-
aerophilic microbes (e.g. Lactobacillus spp.), aerotolerant anaerobic microbes (e.g.
Bacteroides spp.) and obligate anaerobic microbes (e.g. Clostridium spp.) (Virginia
Polytechnic Institute and State University Anaerobe Laboratory 1975; Dowell et al.
1981). These techniques can be readily established and remain relevant today
although the ability to isolate and propagate fastidious anaerobic microbes has been
advanced by the development of anaerobic chambers for microbiological culturing
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which further reduce the risk of inadvertent oxygen contamination and allow many
standard techniques (e.g. spread plates, streak plates) to be used to isolate target
microbes.

The distinct ecological niches present along the human gut can be challenging to
replicate in a laboratory environment particularly as the nutritional requirements of
many target microbes are unknown. The use of “habitat simulating” media has been
widely used to circumvent this challenge and typically includes sterile aqueous
extracts of faecal or rumen digesta, in addition to sources of amino acids, carbo-
hydrates and other nutrients (Eller et al. 1971; Barcenilla et al. 2000; McSweeney
et al. 2005; Lagier et al. 2012), leading to the isolation of phylogenetically diverse
gut microbes including bacteria that have specific host dependencies such as
Akkermansia muciniphila (Derrien et al. 2004) and the obligate symbiont seg-
mented filamentous bacterium (Schnupf et al. 2015). Although habitat simulating
media often support the growth of subdominant populations, their enrichment and
isolation is often complicated because of rapid overgrowth by fast growing,
numerically abundant microbes. More selective media have been developed for the
isolation of specific gut taxa including Bacteroides spp. (Livingston et al. 1978),
Bifidobacterium spp. (Ferraris et al. 2010) and Enterococcus spp. (Isenberg et al.
1970) by identifying specific nutritional dependencies, and promoters/inhibitors of
growth (e.g. antibiotics, bile salts, sodium azide). Alternatively, subdominant
populations can be enriched by selecting for a specific phenotype (e.g. spore for-
mation) and this has enabled taxonomically novel microbes to be directly recovered
on nutrient-rich habitat simulating media (Atarashi et al. 2013; Browne et al. 2016).

Table 1 Culture-dependent analysis of the gut microbiota—opportunities and challenges

Culture-dependent
approach

Advantage Disadvantage

Microbial isolation • Enables experimental hypotheses
to be evaluated (e.g. Koch’s
postulates)

• Provides a resource for further
experimentation

• Time-consuming and labour
intensive

Genomic
characterisation

• Enables the functional potential
of an isolate to be assessed

• The 16S rRNA gene sequence
can be associated with specific
functional genes

• Intraspecies genetic variability
can be assessed where multiple
isolates are available

• Genomic data can be provided
by culture-independent means

• Genome annotations can result
in a high number of genes of
unknown function

Functional
characterisation

• Facilitates phenotypic profiling
(e.g. metabolic, physiological
characteristics)

• Functional attributes can be
linked with the 16S rRNA gene
and/or genomic content

• Limited ability to genetically
dissect microbial isolates
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Accordingly, based on these, our own (Ó Cuív et al. 2011b, 2015) and other
(Rettedal et al. 2014; Ma et al. 2014) observations, many “uncultured” microbes
grow reproducibly well in vitro when isolated as axenic cultures. Thus, many more
novel gut microbes could be recovered if the practical considerations involved with
screening large numbers of microbial isolates under strict anaerobic conditions
could be overcome.

To improve the throughput of microbial isolation, Stevenson et al. (2004)
developed an approach called “Plate wash PCR” to recover axenic isolates of
previously uncultured bacteria from agricultural soil and the guts of wood-feeding
termites. Briefly, an inoculum is plated in duplicate on solid medium and following
growth the colonies are re-suspended en masse from one of the replicate plates and
the sample extracted DNA is screened using specific PCR primers. By this
approach, a broad range of growth parameters can be rapidly screened to determine
conditions supporting the growth of target taxa. Once identified, colonies from the
matching replica plate are grown in multiwell plates and screened with specific
primers to identify the target isolate. Plate wash PCR was successfully used to
isolate a Lachnospiraceae affiliated bacterium that inhibits colonisation of the
murine gut by Clostridium difficile VPI 10463 (Reeves et al. 2012), and it has been
adapted to support the isolation of human gut bacteria affiliated with the HMP’s
most-wanted taxa using a microfluidic platform (Ma et al. 2014). Goodman et al.
(2011) described a similar approach but determined the diversity of microbial
isolates recovered on the replica culture plate by 16S rRNA-based microbial pro-
filing. In addition, to further improve the throughput of the isolation process, a most
probable number (MPN) approach was used to create, in 384 well plates, person-
alised archived culture collections of axenic isolates directly from faecal samples
without picking individual colonies. The MPN approach is based on extinction
culturing, whereby diluting microbial cells so that ≤1 culturable cell is used as an
inoculum supports the production of axenic cultures (Button et al. 1993). This
favours the isolation of the most abundant rather than the fastest growing or most
culturable microbes and the MPN method has also been used to produce axenic
cultures of previously uncultured rumen bacteria (Kenters et al. 2011). Rettedal
et al. (2014) also used 16S rRNA profiling to profile gut bacteria recovered on a
broad range of solid growth media. Then, by a process termed cultivation-based
multiplex phenotyping, they combined growth on solid medium with antibiotic
selection and 16S rRNA profiling to selectively target and recover target bacteria
including members of the HMP’s most-wanted taxa (Fodor et al. 2012). Recently,
Browne et al. (2016) applied a similar approach to isolate spore forming bacteria
from the human gut.

Separately, Raoult and colleagues (Lagier et al. 2012) coined the term “cultur-
omics” and demonstrated that increasing the throughput of microbial isolation
greatly extended the number of cultured isolates from the human gut. By this
approach, 32,500 colonies representing 340 bacterial species and including 31
previously unidentified species were obtained using 212 culture conditions and
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three human faecal samples. Culturomics was also shown to be superior to
culture-independent approaches in its ability to detect bacteria that were below the
detection threshold of 16S rRNA profiling approaches (Lagier et al. 2012; Dubourg
et al. 2013). It is notable that these studies were performed using methodologies that
could be readily established in a standard microbiological laboratory (e.g. the use of
anaerobic jars to produce microaerobic or anaerobic conditions). It is likely that the
use of an anaerobic chamber could have further increased the recovery of fastidious
obligate anaerobes, however, manipulating large numbers of isolates in multiwell
plates and a confined environment is challenging. Interestingly, Raoult and col-
leagues (La Scola et al. 2014; Dione et al. 2015) discovered that the addition of
antioxidants to the growth medium permitted the growth of strict anaerobic bacteria
under atmospheric conditions. This observation could revolutionise our ability to
isolate fastidious gut bacteria particularly if it can be verified that their growth and
metabolic activity is similar under aerobic and anaerobic conditions, and it com-
plements advancements in automated colony picking robotic platforms that
are capable of operating in an anaerobic chamber.

The wealth of sequence data now available for gut microbes has also helped to
direct the isolation of gut microbes. For instance, Pope et al. (2011) described the
successful isolation of an uncultured bacterium affiliated with the
Succinivibrionaceae from foregut digesta samples collected from Tammar walla-
bies. Here, metagenomic data were used to partially reconstruct and model the
bacterium’s metabolism and physiological features, and then tailored culture con-
ditions were developed to direct the axenic cultivation of the bacterium by a process
termed metagenome directed isolation. Bomar et al. (2011) similarly used meta-
transcriptomic data to direct the isolation of an abundant Rikenella-like bacterium
from the gut of a medicinal leech. Recently, Oberhardt et al. (2015) developed a
web-based platform that uses a database of microbe-medium combinations to
predict media for microbes based on their 16S rRNA sequence. The exploitation of
sequence data to help bring the microbiome to life is a vital development as much
of these data languishes mostly unused in online databases.

The throughput of microbe identification has also been expedited by develop-
ments in matrix-assisted laser desorption/ionisation-time of flight mass spectrom-
etry (MALDI-TOF-MS) based analyses. The early classification of microbes was
primarily based on physiological and morphological characteristics (Virginia
Polytechnic Institute and State University Anaerobe Laboratory 1975), however,
the development of 16S rRNA-based phylogenetics allowed the genetic relatedness
of these isolates to be determined. The gold standard of 16S rRNA-based phy-
logeny taxonomy is based on the production of near full-length gene sequences that
are used to infer relatedness (Kim et al. 2011; Franzén et al.2015). The identifi-
cation of microbial isolates is typically achieved by low-throughput Sanger
sequencing of the 16S rRNA gene, however, due to its low rate of divergence, it is
widely recognised that the 16S rRNA gene is limited in its ability to provide
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phylogenetic resolution of the microbiota at lower phylogenetic levels. Other genes
can also be used as phylogenetic markers [e.g. gyrB, rpoB (Sunagawa et al. 2013;
Fish et al. 2013)] but these are less well established and not routinely used. Instead,
MALDI-TOF-MS-based analyses now provide an alternative and in many respects
a superior means to identify microbial isolates. The ability to identify specific
isolates is typically based on the mass patterns of ribosomal or other abundant
housekeeping proteins and is determined by reference to a database of spectra
produced using representative isolates. This approach is particularly valuable in
providing a cost-effective rapid and sensitive assessment of intraspecies variability
without any prior knowledge of the strains being tested, although the ability to
distinguish between very closely related strains can be challenging (Sandrin et al.
2013). We anticipate that MALDI-TOF-MS-based identification of microbial iso-
lates will increasingly supplant 16S rRNA gene-based identification as the reference
databases become more comprehensive and the technology more robust and
affordable.

In summation, meaningful progress has been made to increase the efficiency and
throughput of microbial isolation and these have increased the diversity of gut
microbes that are available in international biorepositories (e.g. Biodefense and
Emerging Infections Research Resources Repository (BEI Resources), Deutsche
Sammlung von Mikroorganismen und Zellkulturen (DSMZ) GmbH) or that are
held in private laboratory culture collections. Continued advances in automated
microbial isolation and identification will further expedite these efforts and support
a more mechanistic dissection of the gut microbiota in the maintenance of gut
homeostasis and the prevention of chronic gut diseases, although important chal-
lenges remain. Much of our understanding of the diversity and functional capability
of the gut microbiota is based on analyses of faecal associated microbiota, which
can be collected in a non-invasive manner and up to 54 % of the faecal mass is
comprised of microbial biomass (Stephen and Cummings 1980; Rose et al. 2015)
thus providing copious material for experimental interrogation. However, it has
been long recognised that the faecal and mucosa associated microbiota differ
(Zoetendal et al. 2002; Ott et al. 2004; Lepage et al. 2005; Eckburg et al. 2005) and
it is now also recognised that the mucosa associated microbiota is also characterised
by a distinct biogeography (Obata et al. 2010; Aguirre de Carcer et al. 2011; Pedron
et al. 2012; Sonnenberg et al. 2012; Zhang et al. 2014) that likely reflects different
ecological niches driven by variations in nutrient availability, oxygen tension, pH
and immune activation (reviewed by Donaldson et al. 2015). The aetiology of
several chronic gut diseases is characterised by site-specific differences with CD
predominantly affecting the ileum and proximal colon, and UC and CRC pre-
dominantly affecting the distal colon. Thus, the spatial distribution of the gut
microbiota may have implications for our understanding of host–microbe interac-
tions and their relationship to health and disease, and future efforts should seek to
preferentially culture gut microbes from sites relevant to disease.
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5 Dissecting the Functional Potential of the Gut
Microbiota: Advances in In Vitro Approaches
to Identify NF-κB Suppressive Gut Microbes

In 2014 it was reported that over 1000 cultured gut microbial species had been
described in the scientific literature and this number continues to increase rapidly
due to the new advances in microbial cultivation techniques (Rajilić-Stojanović and
de Vos 2014). The NF-κB suppressive activities of the vast majority of existing
isolates have not been assessed but taken together with the increasing rate of
microbial isolation there is a need for improved functional screening strategies to
effectively identify these strains. Strategies to identify immunomodulatory microbes
should address three key criteria. First, the assays should be biologically relevant,
sensitive and specific, facilitating the identification of virulent or cytotoxic microbes
at an early point in the screening process. Second, the assays should allow the
extent of immunomodulatory activity to be quantified and the host pathways
affected to be readily identified and dissected to determine the target of the
bioactive. Third, the assays should be cost-effective and robust, easy to perform and
amenable to scaling to an automated high-throughput format. Historically, the use
of well-established cell lines to identify NF-κB suppressive microbial isolates
broadly fulfils these criteria.

The NF-κB pathway has been extensively characterised and transcription can be
activated via two alternate pathways, called the canonical and non-canonical path-
ways. These pathways can be activated either independently (e.g. TNFα/IL-1β
activates the canonical pathway, B-cell activating factor activates the non-canonical
pathway) or in tandem (e.g. CD40L/Lipopolysaccharide activate both pathways).
Many gut bacteria are considered to be pathobionts—symbionts that are capable of
acting as pathogens under certain environmental conditions—and are capable of
stimulating an immune response. Consequently, the ability of gut bacteria to supress
NF-κB activation is often initially assessed using peripheral blood mononuclear cells
(PBMC) as several studies have reported that peripheral blood cells predict the
in vivo immunomodulatory potential of different bacteria (Foligne et al. 2007; Sokol
et al. 2008). Alternatively, NF-κB suppressive capability can be assessed using
peripheral blood derived cell lines (e.g. human monocyte-like THP-1 cell line,
murine RAW macrophage cell line) stimulated with a specific NF-κB pathway
agonist. These cell lines have rapid and reproducible growth characteristics and they
express a broad range of Toll-like receptors (TLR) [e.g. THP-1 cells expresses all
TLRs including the surface TLRs (i.e. TLR1/2, TLR2, TLR4, TLR5 and TLR6/2)].
These characteristics can be used to identify microbes that modulate NF-κB activity,
or that express virulence or cytotoxic factors, in a high-throughput manner.

Despite the usefulness of immune cell lines the ability of gut microbes to sup-
press NF-κB activity is typically assessed using intestinal epithelial cell culture
lines. Numerous epithelial cell lines are widely used by researchers, however, the
HT-29, Caco-2 and T84 cell lines and their derivatives are amongst the most widely
used to assess immunomodulatory activity. Gut epithelial cells are constantly
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exposed to microbial factors and are thus broadly unresponsive to stimulation by
the healthy gut microbiota. Consistent with this, HT-29, Caco-2 and T84 cells
express a subset of functional TLRs (e.g. TLR2, TLR3, TLR4 and TLR5) (Cario
et al. 2000; Melmed et al. 2003; Lakhdari et al. 2010), and the cell surface receptors
are predominantly expressed basolaterally. Several gut epithelial cell lines carrying
NF-κB reporter genes including secreted embryonic alkaline phosphatase (Lakhdari
et al. 2010), luciferase (Kaci et al. 2011) and green fluorescent protein
(Mastropietro et al. 2015) have been described. Using reporter cell lines, Blottière
and colleagues at the Institute National de la Recherche Agronomique
(France) have led efforts to identify gut bacteria and metagenomic clones capable of
modulating NF-κB expression using high-throughput screening approaches (e.g.
Lakhdari et al. 2010, 2011; Santos Rocha et al. 2012). In the most exhaustive study
to date, Lakhdari et al. (2011) used a series of immune and intestinal epithelial
reporter cells to determine the NF-κB suppressive capabilities of 49 strains of
well-described gut bacteria. Interestingly, thirteen NF-κB suppressive strains were
identified although their activity was cell line-dependent (one isolate suppressed
NF-κB activation in HT-29 cells whereas the other twelve isolates suppressed
activation in Caco-2 cells) suggesting that the responsiveness may be affected by
the genotype of the cell lines.

While cancer derived intestinal epithelial cell lines may provide biological
insights relevant to CRC, a major criticism is that they typically lack the genetic
susceptibilities relevant to IBD and obesity. For instance, IBD is associated with
over 160 genetic susceptibility loci (McGovern et al. 2010; Jostins et al. 2012) and
is characterised by disease heterogeneity with differences in location, severity and
extent that may change over time. Host genetics can also influence therapeutic
responsiveness and CD carriers of the nod2 mutation are more likely to be
refractory to glucocorticosteroid treatment although they can be effectively treated
by TNFα biologics (Niess et al. 2012). While primary cells can be used as an
alternative to immortal cell lines, they have a finite life span which typically pre-
cludes long-term study. Also, the diversity in cell lineages found in the gut
epithelium (e.g. epithelial, goblet, enteroendocrine, Paneth cells) is not reflected in
homogenous primary cells or immortal cell lines. This issue has been addressed by
recent advances in gut epithelial culture methods from human and laboratory ani-
mals which have resulted in the generation of “mini-guts” from intestinal samples
containing adult, human embryonic or inducible stem cells that retain the phenotype
of the tissue of origin. Mini-guts produced from embryonic or induced pluripotent
stem cells are termed induced intestinal organoids while those produced from adult
stem cells are termed enteroids (small intestinal) or colonoids (colonic) (Stelzner
et al. 2012). Induced intestinal organoid cultures take longer to establish and retain
a foetal phenotype and consequently enteroids/colonoids are considered to be a
more representative model for human disease. Enteroids/colonoids are derived from
intestinal samples containing adult stem cells following cultivation in the presence
of growth factors and ultimately form three-dimensional cultures containing dif-
ferentiated epithelial cells (Sato and Clevers 2013; VanDussen et al. 2015; Mahe
et al. 2015). The cultured cells can be grown as spheroids with the apical membrane
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facing a single internal lumen compartment or, alternatively, they can be grown as
monolayers in a transwell system. These cell cultures can also be stably maintained
through repeated rounds of propagation and freezing thus recapitulating the main
elements of cancer cell culture lines and providing a superior in vitro model to
assess NF-κB suppressive capabilities. For instance, the impact of NF-κB sup-
pressive bioactives on individual epithelial cell subtypes could be assessed by
fluorescence-activated cell sorting using antibodies targeting the NF-κB complex
and lineage specific markers. Enteroids/colonoids can be generated from animals
carrying reporter genes or, alternatively, Schwank et al. (2013) reported that the
CRISPR/Cas9 system could be used to edit organoid genome sequences. Along
with new developments in CRISPR/Cas9-based large fragment deletions and
insertions (Wang et al. 2015; Zhang et al. 2015a), this may provide new oppor-
tunities to produce patient-specific reporter cell lines. Together, these developments
offer new opportunities to identify and dissect disease-specific pathways as well as
assess their responsiveness to different therapeutics.

6 Metabolomic-Based Strategies to Identify NF-κB
Suppressive Bioactives

The healthy gut microbiota produces a diverse array of factors including proteins
(Rieu et al. 2014), peptides (Kaci et al. 2011; Quevrain et al. 2016),
polysaccharide-peptidoglycans (Matsumoto et al. 2009) and secondary metabolites
(Bansal et al. 2010; Gonzalez-Sarrias et al. 2010; Lim et al. 2015; Lee et al. 2015)
that are capable of suppressing NF-κB, revealing this capability is characterised by
a high degree of functional redundancy. Metabolomic approaches have played a
central role in the identification of these factors although they have been challenged
by the sheer diversity of metabolites produced by gut microbes. In addition, many
of these metabolites are produced at low concentrations and include novel
metabolites that are not represented in existing databases, further hindering iden-
tification efforts. Nonetheless, effective bioassay guided fractionation strategies that
typically involve successive fractionation coupled with functional assays to track
the fraction(s) retaining suppressive activity can be devised to identify NF-κB
suppressive bioactive factors (Fig. 4).

Microbes in the healthy gut environment are physically separated from epithelial
cells by a mucus layer and bioactive factors must be capable of traversing this
barrier to reach their cellular target. Many NF-κB bioactives are secreted into the
extracellular milieu and the first stage of the screening process involves the
preparation of a cell-free supernatant fraction of spent medium that can be assessed
for suppressive activity. The supernatant fraction of most fastidious gut microbes is
likely to contain SCFA which are produced by anaerobes as an end product of
fermentation, and are amongst the most abundant metabolites produced. Acetate,
propionate and butyrate are produced at the highest concentrations with other SCFA
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produced at lower concentrations. SCFA bind to G-protein coupled receptors
including GPR41 and GPR43 (acetate, butyrate, propionate), GPR109A (butyrate)
and OLFR78 (lactate, propionate). These receptors are found on a range of cells
including immune and epithelial cells (Karaki et al. 2008; Pluznick et al. 2013;
Tazoe et al. 2009; Thangaraju et al. 2009; Vinolo et al. 2011). SCFA are amongst
the most bioactive metabolites produced by the microbiota and they affect a variety
of cellular process including NF-κB activity (Inan et al. 2000; Tedelind et al. 2007;
Lakhdari et al. 2011). To identify culture supernatants possessing non-SCFA
suppressors of NF-κB activity, the SCFA concentrations in the spent culture
supernatant are typically first determined and the ability of similar concentrations of
SCFA to suppress NF-κB activation is then assessed (Lakhdari et al. 2011).

A variety of fractionation strategies have been described to differentiate between
bioactives with specific biochemical characteristics. For instance, small peptides
and secondary metabolites are considered to be more conducive to drug develop-
ment as they are more likely to possess desirable characteristics and be less costly to
produce (Uhlig et al. 2014; Fosgerau and Hoffmann 2015; Harvey et al. 2015).
These bioactives can often be readily separated from larger macromolecules on the

Fig. 4 Bioassay guided fractionation strategy to enrich and purify NF-κB suppressive bioactives.
The bioactive fractions are successively fractionated and the NF-κB suppressive activity in the
fractions is assessed after each treatment. Fractions enriched in primary and secondary metabolites
(1° and 2° respectively), and peptides are typically produced by size fractionation.
Fractions >3 kDa are typically not considered to be suitable for drug development but may help
to identify new drugable targets. Metabolites and peptide bioactives can be further fractionated
using biochemical treatments (e.g. protease, denaturant, thermal treatment). Peptide bioactives can
be further fractionated and used to identify new drugable targets or as lead molecules for drug
development. The 1° and 2° metabolites can be further fractionated (e.g. solid phase extractions,
HPLC based fractionation) to identify the bioactive factor. Secondary metabolites can also be used
to identify new drugable targets or as lead molecules for drug development
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basis of size and a simple 3 kDa molecular weight cut-off filter allows peptides up
to 27 amino acids long (assuming an average amino acid size of 110 Da) to be
easily separated from larger molecules. Bioactive secondary metabolites and pep-
tides can subsequently be distinguished using routine (e.g. protease, denaturing,
thermal) treatments and the sample can subsequently be further fractionated (e.g.
solid phase extractions, HPLC based fractionation) to further reduce the complexity
of the samples. This approach has been used effectively to identify
NF-κB suppressive peptides produced by Faecalibacterium prausnitzii (Quevrain
et al. 2016). However, the identification of secondary metabolites can be more
challenging and it can be necessary to fractionate large sample volumes to identify
the metabolites of interest, although this process can be expedited if isogenic mutant
or non-suppressive strains can be processed in parallel (Donia et al. 2014). Once
sufficiently enriched and concentrated the bioactives can be identified using spe-
cialist metabolomic methodologies and equipment.

7 Genetic-Based Strategies to Identify NF-κB
Suppressive Bioactives

Much of our understanding of the functional capacity of the microbial world has
been provided by the genetic dissection of clinically and agriculturally relevant
bacteria that are only distantly related to the microbes that typically inhabit the
human gut. The ability to conclusively link genes and function is a central challenge
in elucidating the functional potential of the microbiota. However, with limited
exceptions (Rey et al. 2013; Ichimura et al. 2013), few molecular tools have been
described for the characterisation of gut microbes. The vast majority of the currently
available microbial isolates are not known to be amenable to genetic transformation
although (meta)genomics has revealed evidence of extensive lateral gene transfer
within the gut microbiome. To address this challenge, we recently developed an
innovative approach termed metaparental mating that expedites the directed isola-
tion of genetically tractable gut bacteria from mixed microbial communities (Ó
Cuív et al. 2015). The metaparental mating approach is based on the
well-established biparental mating approach (Simon et al. 1983; Simon et al. 1986)
and uses RP4 (RK2)-mediated bacterial conjugation and a broad host range
mobilisable shuttle vector. Metaparental mating has several advantages over
alternative natural (i.e. transduction, transformation) or contrived (e.g. electropo-
ration, sonoporation) genetic transformation approaches. First, RP4-based conju-
gation is very promiscuous and has been shown to mediate the transfer of DNA to a
diverse range of bacteria (Whitehead and Hespell 1990; Picardeau 2008; Tolonen
et al. 2009; Dominguez and O’Sullivan 2013) and also to archaea (Dodsworth et al.
2010), fungi (Nishikawa et al. 1990) and animal cells (Waters 2001). Second, the
metaparental mating can be performed under anaerobic conditions and stably
transformed recipients can be recovered by selection of a vector encoded marker. In
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addition, as the antibiotic resistance phenotype of the recipients may not be known,
the laboratory E. coli ST18 donor strain can be efficiently counter selected without
antibiotics by nutritional auxotrophy (i.e. the omission of δ-aminolevulinic acid
from the selection medium). Third, the RP4-based conjugation can be readily
scaled and automated (Clarke et al. 2005) to increase the throughput of the meta-
parental mating mediated isolation process.

We used the metaparental mating approach to specifically target bacteria affili-
ated with the Firmicutes as these comprise the majority of the human gut microbial
core although they are underrepresented in microbial culture collections.
Furthermore, few of these bacteria, and in particular those affiliated with the
Clostridia, have been genetically characterised although many strains are capable of
modulating the host immune response (Sokol et al. 2008; Ivanov et al. 2009;
Atarashi et al. 2011, 2013; Li et al. 2014b; Quevrain et al. 2016). In support of this
effort we developed a series of modular vectors termed pEHR5 that can be con-
jugated from an E. coli host to a pool of potential recipients. As the efficiency of
conjugation can be affected by the size of the vectors, their modular architecture
helps minimise their overall size. In addition, it allows individual modules to be
easily exchanged ensuring that the base vectors are flexible and can be readily
re-purposed. Similar modular vectors have been used in a broad range of non-
E. coli hosts to support protein expression and the construction of fluorescently
labelled bacterial strains (Herrero et al. 1990; Charpentier et al. 2004; Fodor et al.
2004; Heap et al. 2009; Dammeyer et al. 2013; Wright et al. 2015). By this
approach, we recovered a broad suite of axenic fastidious gut bacteria affiliated with
the Firmicutes that were stably transformed with pEHR5-based vectors. In addition,
we demonstrated that the metaparental mating approach and the pEHR vectors can
be used for heterologous protein expression by constructing fluorescently labelled
gut bacteria (Ó Cuív et al. 2015).

The pEHR5 vector system is freely available to the research community without
the need for a restrictive material transfer agreement and it offers a basis for the
development of a uniform and streamlined set of molecular tools for the isolation
and functional genetic characterisation of fastidious microbes. Nonetheless, the
metaparental mating approach can plausibly be applied with any RP4 mobilisable
vector bearing an appropriate resistance marker(s) and origin(s) of replication, thus
allowing genetically tractable bacteria to be recovered from complex microbial
communities. We confirmed this hypothesis by using the narrow host range vector
pJQ200sk(+) (Quandt and Hynes 1993) to demonstrate that E. coli transconjugants
bearing pJQ200sk(+) could be selectively recovered from an anaerobic enrichment
from human faeces by metaparental mating (Fig. 5). In addition, we used the vector
pGusAmob [(Girbal et al. 2003), pGusA modified to carry an oriT] to target the
recovery of Firmicutes affiliated bacteria and isolated transconjugants affiliated with
Blautia hathewayi, Streptococcus pleomorphus and Anaerococcus vaginalis on
M10-based medium. We have now also demonstrated that the pEHR vectors can be
cured using standard molecular techniques to yield naïve strains (Pottenger and Ó
Cuív, Unpublished data).
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The metaparental mating approach and the pEHR vector series are significant
developments for the genetic dissection of the gut microbiota by forward and
reverse genetic approaches. For instance, it is now known that many gut bacteria
carry putative biosynthetic gene clusters for secondary metabolites (Letzel et al.
2013; Donia et al. 2014; Cimermancic et al. 2014; Donia and Fischbach 2015;
Hadjithomas et al. 2015), some of which may encode for NF-κB suppressive
bioactives. The specific gene clusters underpinning the production of NF-κB sup-
pressive bioactives could potentially be identified by comparative genomics of
suppressive and non-suppressive strains, however, reverse genetic approaches can
now also plausibly be applied to specifically disrupt target genes and conclusively
confirm their role in the production of specific bioactives (Donia et al. 2014).
Consistent with this, mutagenesis strategies based on homologous recombination
(Al-Hinai et al. 2012; Heap et al. 2012; Faulds-Pain and Wren 2013) and the Ll.
ltrB group II intron (Chen et al. 2005; Heap et al. 2007; Tolonen et al. 2009) have
been described for a diverse range bacteria affiliated with the Firmicutes. While the
specific factors underpinning NF-κB suppressive activity have been identified in
some cases (e.g. Rieu et al. 2014; Quevrain et al. 2016) in most instances, they

Fig. 5 a Identification of E. coli transconjugants carrying pJQ200sk(+) (5.4 kb) recovered by
metaparental mating. The E. coli transconjugants were recovered on LB medium and replica plated
onto MacConkey Agar supplemented with 30 μg.ml−1 gentamicin sulphate to differentiate between
the different laboratory and commensal strains. The laboratory strain E. coli JM109 carrying
pJQ200sk(+) was characterised by a clear zone around the patched culture consistent with its
inability to ferment lactose. In contrast, the recent human gut isolate E. coli PC1101 was capable of
fermenting lactose and the 13 transconjugants recovered exhibited a similar phenotype. As
expected, E. coli ST18 did not grow on MacConkey agar due to its nutritional requirement for
δ-aminolevulinic acid. b The identity of the transconjugants was confirmed by PCR using E. coli
specific primers (Sabat et al. 2000). Successful confirmation is indicated by a 545 bp product and,
as expected, E. coli ST18 carrying pJQ200sk(+) (Lane 2) and all of the transconjugants (Lanes 4–
16) produced a product of the correct size. In contrast, no products were observed for PCR lacking
DNA template (Lane 1) or containing Campylobacter jejuni DNA template (Lane 3). c The
presence and integrity of the plasmid vector was assessed by agarose gel electrophoresis. Plasmid
vector prepared from each of the 13 transconjugants (Lanes 3–15) exhibited similar mobility to
plasmid DNA prepared from E. coli JM109 (Lane 2) confirming that they were stably transformed
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remain cryptic and forward genetic approaches including transposon mutagenesis
(Liu et al. 2013; Ichimura et al. 2013; Zhang et al. 2015b) and in vivo transpo-
somics (Vidal et al. 2009; Veeranagouda et al. 2012) have been successfully
developed for fastidious bacteria. While forward genetic approaches can be applied
with fastidious gut microbes they are constrained by the number of mutant clones
that have to be screened to achieve good coverage of the genome. For example,
assuming a genome size of 4 Mb and an average gene size of 753 bp (Li et al.
2014a), over 12,000 mutants would have to be screened to achieve 90 % coverage
of the genome (Clarke and Carbon 1976).

An alternative approach involves the construction of medium/large insert gene
libraries (e.g. plasmid, cosmid, fosmid, BAC libraries) that are screened for NF-κB
suppressive activity in a suitable microbial host. Using this approach, approxi-
mately 230 clones would have to be screened to achieve 90 % coverage of the
genome assuming a genome size of 4 Mb and an average insert size of 40 kb. Gene
libraries generally assume that all of the genetic elements supporting the
immunomodulatory activity are linked, expressed and functional in the microbial
host. E. coli has relaxed requirements for promoter recognition and this approach
has been exploited to identify metagenomic fosmids derived from human gut
microbiota that are capable of suppressing/activating NF-κB (Lakhdari et al. 2010;
Cohen et al. 2015). Nonetheless, as few as 40 % of heterologous genes are
expressed in E. coli (Aakvik et al. 2011) and new cloning vectors have been
developed that have extended the host range of large insert vectors (e.g. Aakvik
et al. 2009; Kakirde et al. 2011). Currently, the replication range of these vectors is
mostly limited to proteobacteria and examples of vectors for more distantly related
phyla, especially the Firmicutes, are limited (Hain et al. 2008; Liu et al. 2009).

8 Bioprospecting for NF-κB Suppressive Bioactives:
Faecalibacterium prausnitzii as a Case Study

The butyrate producing gut bacterium, F. prausnitzii, comprises part of the core
microbiota in healthy adult humans and is ubiquitously found in the gut of mam-
mals and insects (Foglesong et al. 1984; Bjerrum et al. 2006; Castillo et al. 2007;
Qin et al. 2010; Nava and Stappenbeck 2011; Miquel et al. 2013; Oikonomou et al.
2013). This suggests that F. prausnitzii plays a critical role in host metabolism and
physiology and consequently it is widely considered to be a model gut bacterium
with relevance to health and disease. In that context, much progress has been made
in identifying the true metabolic potential of F. prasunitzii and its contribution to
health and well being (Sokol et al. 2008; Quevrain et al. 2016). Swidsinski et al.
(2008) first reported a reduced population of F. prausnitzii in CD subjects and
Sokol et al. (2008) subsequently demonstrated a low abundance of F. prausnitzii in
ileal biopsies from CD subjects at the time of surgery was associated with recur-
rence six months postoperatively, and that the abundance at six months was
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consistently lower in subjects with recurrent disease in comparison to those in
remission. In support of this observation a longitudinal study with an Australian CD
cohort examined the mucosa associated microbial communities in subjects under-
going ileal resection and determined that patients who were in remission 6 months
postoperatively had a higher population of F. prausnitzii and other members of the
Firmicutes at surgery (De Cruz et al. 2015). Notably, changes in the abundance of
F. prausnitzii in CD subjects have been reported in different ethnic populations
(Prideaux et al. 2013) and perturbations have also been reported in other inflam-
matory and metabolic disorders like ulcerative colitis, coeliac disease, juvenile
spondyloarthritis and type 2 diabetes (Sokol et al. 2009; De Palma et al. 2010;
Remely et al. 2014; Gill et al. 2015) suggesting that it plays an important role in
maintaining gut homeostasis.

The immunomodulatory potential of F. prausnitzii A2-165 was first identified by
Sokol et al. (2008) who demonstrated that the bacterium exerted an
anti-inflammatory effect in PBMCs by inducing IL-10 and suppressing IL-12 and
INFγ secretion. They also showed that spent culture supernatant but not sterile
medium, UV-killed F. prausnitzii or cellular fractions were able to block the
activation of NF-κB and reduce IL-8 secretion in Caco-2 cells. Butyrate exerts
physiological and anti-inflammatory effects in the gut (Canani et al. 2011; Ploger
et al. 2012), however, the presence of butyrate in the spent culture supernatants did
not suppress NF-κB activation in Caco-2 cells suggesting that other bioactive
factors were responsible for the anti-inflammatory effects (Sokol et al. 2008).
Critically, F. prausnitzii whole cells as well as filter-sterilised culture supernatant
could attenuate the overall severity of trinitrobenzene sulphonic acid induced colitis
in BALB/c mice by both a gut-dependent and gut-independent route. Separate
studies have also supported these observations and revealed that F. prausnitzii
and/or its supernatant can induce Treg proliferation (Qiu et al. 2013; Martin et al.
2014), modulate T-cell responses (Rossi et al. 2016) and improve gut barrier
function (Carlsson et al. 2013; Martin et al. 2015; Laval et al. 2015), thus also
contributing to the suppression of inflammation. Together, these observations
indicated that the anti-inflammatory activity could be largely attributed to a secreted
bioactive.

In addition to butyrate, it is now known that F. prausnitzii produces a range of
distinct immunomodulatory bioactives relevant to host health including peptides
and secondary metabolites. Using a peptidomic approach, Quevrain et al. (2016)
identified 7 peptides derived from a 15 kDa protein termed MAM (Microbial
Anti-inflammatory Molecule) that is phylogenetically narrowly distributed.
Intracellular expression of the MAM protein in human epithelial cells suppressed
NF-κB activation in a specific and dose-dependent manner possibly by affecting
IκκB function. Furthermore, Lactococcus lactis expressing MAM was capable of
ameliorating dinitrobenzene sulphonic acid induced colitis in BALB/c mice. The
mechanism of action of the MAM protein remains to be determined including
whether its NF-κB suppressive activity is mediated by the intact protein and/or its
derived peptides, and how these are delivered to the cell. In addition to MAM, F.
prausnitzii produces a range of (precursor) anti-inflammatory secondary
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metabolites. Using a gnotobiotic mouse model, Miquel et al. (2015) revealed that
the protective effect of F. prausnitzii following colonisation was associated with the
presence of salicylic acid and shikimic acid in gut and serum metabolomic profiles.
Salicylic acid is a precursor of 5-aminosalycilic acid and is capable of suppressing
IL-8 secretion from TNFα stimulated HT-29 cells. In contrast, shikimic acid is not
capable of suppressing IL-8 secretion from TNFα stimulated HT-29 cells, however,
this molecule is a precursor of anti-inflammatory aromatic compounds including
salicylic acid and 3,4-oxo-eisopropylideneshikimic acid (Xing et al. 2013).

These observations underline the role played by F. prausnitzii in the mainte-
nance of gut homeostasis and reveal the evolution of a variety of strategies to affect
specific aspects of gut function and the immune response. Consistent with this, F.
prausnitzii has been suggested as a candidate next generation probiotic for the
treatment of gut inflammatory diseases (Sokol et al. 2008; Neef and Sanz 2013).
Critically, the characterisation of F. prausnitzii has provided a template by which
the contribution of other microbes to gut health can be examined. It should be noted
that although F. prausnitzii A2-165 has been known to suppress NF-κB since 2008
and its genome was sequenced in 2009, the specific bioactives supporting this
activity remained unidentified until 2015, highlighting the limited capacity of -omic
approaches to identify novel functional capabilities. We have now used meta-
parental mating to isolate genetically tractable strains of F. prausnitzii (Ó Cuív et al.
2015), and we anticipate that these will further expedite the functional dissection of
this important gut bacterium.

9 Concluding Remarks and Future Perspective

The healthy gut microbiota plays a vital role in helping to maintain gut homeostasis
and preventing the onset of chronic gut disease. Surprisingly, little is known about
the essential functionalities that underlie this capability and how they might be
exploited to develop more effective therapeutic interventions. The rapid advances in
DNA sequencing technologies continue to provide an unprecedented insight into
structure-functional activity of the gut microbiome. In contrast, the development of
complementary approaches including microbial culturing, functional assays,
metabolomics and genetic technologies have not kept pace with these develop-
ments. This has hindered efforts to realise the functional potential of the microbiota,
however, the successful metabolomic dissection of F. prausnitzii will encourage
and inform the development of improved methodologies for other gut bacteria.
Similarly, new advances in microbial culturing and genetic techniques will provide
new opportunities to support a more mechanistic dissection of these functionalities.
We anticipate that the effective integration of these disparate yet complementary
approaches will afford the best opportunity to effectively bioprospect the gut
microbiota and support the discovery of novel bioactives, and the development of
new therapeutics.
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