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1 Introduction

‘Omics’-based techniques comprise a suite of tools and approaches, each with their
own specific protocols and frameworks for setting minimum data and reporting
standards (Field et al. 2008; Morrison et al. 2006; Sansone et al. 2007; Sumner et al.
2007; Orchard and Kerrien 2010). This suite of techniques primarily comprises
metagenomics, transcriptomics, proteomics and metabolomics. There are also a
number of other specialized ‘omic’-based approaches that are included under the
broader ‘omics’ banner, such as lipidomics, fluxomics (metabolic flux analysis),
toxicogenomics, nutrigenomics and foodomics. However, these additional ‘omics’
approaches are not considered within the context of this chapter, as they are subcat-
egories of the aforementioned suite of techniques. In addition, for completeness, it
should be noted that within the context of this chapter, (meta)genomics has been
defined as the analysis of genetic material recovered from an organism or environ-
mental samples (Handelsman 2004); (meta)transcriptomics is the analysis of RNA
molecules, including messenger RNA (mRNA), Ribosomal RNA (rRNA), transfer
RNA (tRNA) and other non-coding RNA produced by an organism or a population of
organisms (Pascault et al. 2015); (meta)proteomics is the analysis of proteins produced
by an organism or population of organisms, and their function (Douterelo et al. 2014);
and lastly, metabolomics is the analysis of the small chemical compounds produced
and consumed by an organism or a population of organisms (Beale et al. 2016a).
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The application of these ‘omics’ techniques in isolation has been demonstrated
to be beneficial in the understanding and characterization of numerous biological
systems within the environment, engineered and industrial systems and treatment
processes, in addition to providing insight into human health and clinical investi-
gations (Cohen et al. 2015). It is when these ‘omics’-based techniques are applied in
combination, however, that their real power can be utilized. These techniques
enable researchers to identify and characterize the entire microbial community
present at greater depth (i.e. metagenomics) and, in combination with the other
techniques studied in parallel, further enable researchers to identify what that
community is doing, in terms of gene expression (i.e. transcriptomics), protein
production (i.e. proteomics) and the community metabolism (i.e. metabolomics)
(Turnbaugh and Gordon 2008). Figure 1 illustrates the chronological order (i.e. the
magnitude of information that can be obtained) of these principal ‘omics’ based
techniques, which inform researchers on the microbial potential, functionality, and
activity starting at the metagenome through to the metabolome. This multiple
‘omics’-based approach has been coined “multi-omics”.

The objective of this chapter is to highlight examples in the literature that go
beyond metabolomics only studies, giving rise to a greater depth of systems biology
research that is multi-omics. While multi-omics research is not new, it is a growing
area of research that has increased in popularity amongst the scientific community
in recent years. Furthermore, the underlying aim of this review is not to provide a
detailed chronology of multi-omics or a detailed guide on how to integrate
multi-omics datasets; this has been the focus of recent reviews published

Overview of multi-omics approaches

Microbial Potential

Microbial Function Microbial Activity 

1 2 3 4

(meta)Genome Metabolome(meta)Proteome(meta)Transcriptome

Fig. 1 Chronical order of ‘omics’ based techniques commonly used in multi-omics studies.
Adapted from Abram (2015)
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(Barh et al. 2013; Blanchet and Smolinska 2016; Fondi and Liò 2015; Kohl et al.
2014; Schneider and Orchard 2011; Zhang et al. 2010). Instead, the aim of this
chapter is to provide an overview of the different approaches used in multi-omics-
based research and the tools used to integrate multi-omics data, using examples from
the literature from a range of environmental, industrial and biomedical applications
to highlight the value of extending beyond metabolomics only research.

2 The Multi-Omic Data Analysis Challenge

Multi-omics based techniques are inherently data-rich studies. For example, the
human genome comprises ca. 20,000–25,000 protein coding genes (Pertea and
Salzberg 2010) and the human metabolome is estimated to comprise over 40,000
metabolites (Forsythe and Wishart 2009). As such, the challenge in all ‘omic-based
investigations’, which is only compounded further when applying a multi-omics
approach, is the handling of these large and complex datasets (Kohl et al. 2014;
Röling et al. 2010). Röling et al. (2010) characterized the data processing and
quantitative comprehension of multi-omic information as a bottleneck in the overall
workflow, requiring input and interpretation of ‘systems biologists’ and microbi-
ologists. In addition, the authors of this review propose that it needs further input
from the bioanalytical chemist/biochemist/biostatistician to first evaluate the quality
and validity of the study (experimental) design, as well as the quality of the data
acquired from the instrument, before even attempting to integrate and synthesize
findings (indeed the old adage of poor data in equals poor data out applies). In any
case, assuming the data obtained are of high quality and are valid [following each
‘omics’ specific protocol and frameworks for minimum data and reporting stan-
dards as highlighted by the various societies (Field et al. 2008; Sansone et al. 2007;
Sumner et al. 2007)], there are a number of approaches to analyzing and inter-
preting multi-omics data, namely: post-data analysis integration and integrated data
analysis techniques.

In a post-data analysis approach, datasets are analyzed in isolation of each other
and key features are networked in a post analysis exercise through the synthesis of
significant features at joint nodes in the overall model metabolic pathway. This
approach has been used in previous studies that focused on characterizing and
assessing biological wastewater treatment systems (Beale et al. 2016b), the
microbial resistance of marine sediments after an oil spill (Kimes et al. 2013) and
characterizing permafrost (Hultman et al. 2015). In contrast, an integrated
multi-omics approach employs specialized tools to merge datasets prior to under-
taking any data analysis and interpretation (Kuo et al. 2013), thus enabling simi-
larities of each omic approach to be statistically derived, as opposed to relying on
human interpretation. The principal differences between the post-data analysis and
integrated analysis approaches are graphically presented in Fig. 2.

In addition to post-data analysis integration and integrated data analysis tech-
niques, a third model-based integration approach has been identified. However, a
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model-based approach is considered unobtainable, in a practical sense, as stated by
Kamburov et al. (2011). Model-based integration methods rely on a well-defined
understanding of the system being investigated in order to compare new experi-
mental findings against modelled predictions. That’s not to say that a complete
multi-omics model-based integration approach is not obtainable as suggested. There
are already examples in the literature of its use. For example, Noecker et al. (2016)
used a model-based approach to integrate taxonomic and metabolomics data to
predict the effects of community ecology on metabolite concentrations and evalu-
ated these predictions with measured metabolomic profiles from the vaginal
microbiome. It was concluded that predicted species composition correlated with
identified putative metabolic mechanisms underlying these predictions (Noecker
et al. 2016). However, it is noteworthy to mention that a model-based integration
approach was achieved primarily because of the vaginal microbiome investigated
had already been well defined and studied beforehand, utilizing previously pub-
lished data and publically available datasets (Erickson et al. 2012; Srinivasan et al.
2015; Theriot et al. 2014; Jansson et al. 2009; Jozefczuk et al. 2010). As such, the
real challenge for model-based integration approaches is not that they are princi-
pally unobtainable, but that not all the systems studied are yet fully characterized as
per the example presented by Noecker et al. (2016). Therefore, until a systems
biology approach is taken for all studied systems (i.e. a multi-omics approach in

Fig. 2 Principal differences between the post-data analysis and integrated analysis approaches
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order to obtain baseline data), a model-based integration approach is limited to only
those systems that are already well defined.

Regardless of the multi-omics approach being applied, there are numerous tools
and approaches that assist researchers to integrate omics-based datasets. As illus-
trated in Table 1, there are tools that have been developed that are context specific
(i.e. targeted towards the integration of omics data from specific animal models,
medical and clinical studies and selected plant species). There are also tools that are
unspecified in terms of the studied system but provide users a set of statistical tools
for data normalization and transformation, and a range of chemometric models for
interpreting data once integrated.

3 Application of Multi-Omics

There are many examples in the literature of multi-omic studies, with various levels
of integration. Some studies comprise simple levels of integrations (i.e. combing
two different -omics datasets) through to more comprehensive and computationally
demanding studies (i.e. integration of multiple omics datasets). Typically, a
two-omics integration study combines either metagenomics or transcriptomics data
with proteomics (Sunagar et al. 2016; Wildburger et al. 2015) or metabolomics
datasets (Tokimatsu et al. 2005b; Garcia-Alcalde et al. 2011; Kamburov et al. 2011)
or combines proteomics and metabolomics datasets (Xu et al. 2015). These studies
demonstrate how predicted functional metabolism (metagenomics) or gene
expression (transcriptomics) relate to actual protein and metabolite expression and,
by extension, provide a means to self-validate findings through cross-referencing
experimental findings (Fondi and Liò 2015). The following section provides some
examples of multi-omics studies applied to various fields of research, all of which
provided an extension beyond a metabolomics only study (or other singular
omics-based approaches) and enabled further depth of analysis that would other-
wise not be achieved.

3.1 Environmental Contaminants

Marine subsurface environments comprise an abundant and diverse microbial
community (El-Serehy et al. 2016; Yanagawa et al. 2014). These communities have
the ability to bio-transform and mineralize numerous contaminants (Kimes et al.
2013). The application of omics-based research has been used in the past to
characterize and understand sediment and marine environment dynamics. Chariton
et al. (2014) used metagenomics to investigate benthic invertebrate diversity in
exposed sediments with elevated concentrations of triclosan (antibacterial and
antifungal agent). However, a single omics-based approach only provides limited
information. As is this case, a metagenomics approach will only provide
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information of the microbial diversity present (and by extension, a theoretical
analysis of their functionality). Investigating beyond metagenomics would provide
a greater depth to the analysis by measuring the actual function of the studied
population using proteomics or metabolomics. Hook et al. (2014) investigated
contaminated sediments using a similar approach, however, they used transcrip-
tomics and metabolomics in order to better understand the modes of toxic action
within contaminated ecosystems. The inclusion of metabolomics in such a study
enabled the assessment of changes in the biochemical profiles of microbial com-
munities living in contaminated sites (Jones et al. 2014; Llewellyn et al. 2015). In
the study by Hook et al. (2014), the function of transcripts with altered abundance
in Melita plumulosa (an epibenthic amphipod) following whole-sediment exposure
to a series of common environmental contaminants was investigated. Contaminants
included in the study comprised porewater ammonia, bifenthrin and fipronil (pes-
ticides), diesel and crude oil (petroleum products) and metals (Cu, Ni and Zn).
Subsequent data integration and hierarchical cluster analysis demonstrated grouped
transcriptome and metabolome expression profiles by contaminant class. Many of
the transcriptional changes observed were consistent with patterns previously
described in other crustaceans (Osborn and Hook 2013).

Furthermore, following the Deepwater Horizon (DWH) oil spill in the Gulf of
Mexico, researchers used metagenomic analysis and metabolomic profiling of
deep-sea sediment samples (Kimes et al. 2013). Post-data analysis integration of the
two datasets identified the presence of aerobic microbial communities and their
associated functional genes among all the samples collected, whereas, a greater
number of Deltaproteobacteria and anaerobic functional genes were found in the
sediments closest to the point of oil contamination. Metabolic profiling revealed a
greater number of putative metabolites in sediments surrounding the contamination
site relative to background sites. These putative metabolites were identified as a
series of benzylsuccinates (with carbon chain lengths from 5 to 10), suggesting that
increased exposure to hydrocarbons enriched the Deltaproteobacteria, which are
known to be capable of anaerobic hydrocarbon metabolism. Lastly, through a
combined multi-omics approach, it was surmised that the sediment samples col-
lected at the site of contamination comprised an active indigenous microbial
community capable of metabolising aromatic hydrocarbons in deep-sea sediments
of the Gulf of Mexico (Kimes et al. 2013).

Hultman et al. (2015) undertook a similar study investigating the microbial
metabolism of permafrost. They used several ‘omics approaches, combined with
post-data analysis in order to determine the phylogenetic composition of microbial
communities of intact permafrost, the seasonally thawed active layer and thermo-
karst bog (surfaces of marshy hollows). The multi-omics strategy revealed good
correlation of process rates for methanogenesis (the dominant process), in addition
to providing insights into novel survival strategies for potentially active microbes in
permafrost (Hultman et al. 2015).
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The advancement of omics-based techniques and their integration have con-
tributed towards marine biologists and molecular biologists pushing the boundaries
of our understanding of marine molecular biology (Thakur et al. 2008). This is best
evident in a global holistic approach to the study of marine ecosystems presented by
Karsenti et al. (2011). In this study, the application of multi-omics was extended by
including additional meta-data, linking biogeography with ecology, genetics and
morphology datasets to provide a global perspective to marine systems.

3.2 Food and Nutrition

Metagenomics-based characterization of microbial communities provides a very
promising and powerful approach to food safety testing, with research to date
undertaken focusing on foodborne pathogen biology (Stasiewicz et al. 2015).
However, transcriptomics, proteomics and metabolomics approaches have also
been demonstrated to have the potential for food safety applications (Valdés et al.
2013; Jadhav et al. 2014, 2015; Beale et al. 2014b). To date, transcriptomics,
proteomics and metabolomics have become the three most commonly used tech-
niques in food and nutrition-based ‘omics’ research (Kato et al. 2011).

Takahashi et al. (2014) combined gene expression profiles using DNA
microarrays with proteomic and metabolomics data in order to assess the
anti-obesity effects of coffee in mice. The underlying premise was that coffee
consumption may reduce the risks of developing obesity and diabetes. As such,
gene expression, protein and metabolite profiles in the livers of C57BL/6J mice fed
a high-fat diet containing three types of coffee (caffeinated, decaffeinated and green
unroasted coffee) were investigated. The data were integrated using an in-house
software tool and visualized in KEGG pathways (summarized in Fig. 3). Takahashi
et al. (2014) concluded that the alterations within and around the urea cycle were
found to be highly consistent between transcripts and metabolites, suggesting that
expression of the genes related to the urea cycle were downregulated by a high-fat
diet and up-regulated by coffee consumption. These findings were also consistent
when integrated post-data analysis of each omics dataset.

For nutrition-based research, to further advance the application of multi-omics
research and disseminate current findings more broadly for other researchers to use,
a database of nutrition-focused omics (genomics and DNA microarray data) has
been created (Nutrigenomics Database) (Saito et al. 2005). Similar approaches have
been applied to other areas of research. For example, VitisNet was created in order
analyze omics-based data relating to common wine grapes enabling the integration
of large datasets, streamlining biological functional processing and improving the
understanding of dynamic processes in systems biology experiments (Grimplet
et al. 2009). PaintOmics has similar functionality but is targeted towards a defined
list of plants (Garcia-Alcalde et al. 2011).
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3.3 Water and Wastewater Systems

The application of metagenomics to characterize microbial populations in
wastewater treatments systems (Talbot et al. 2008; Vanwonterghem et al. 2014; Pap
et al. 2015; Kovács et al. 2015; Ma et al. 2014; Albertsen et al. 2012) and pipes
(Vincke et al. 2001; Santo Domingo et al. 2011; Neria-González et al. 2006) is not
new. However, to the authors’ knowledge, the application of multi-omics approa-
ches is limited. Gomez-Alvarez et al. (2012) analyzed the whole-metagenome to
determine the microbial composition and functional genes associated with biomass
harvested from sections of a corroded wastewater pipe. Taxonomic and functional
analysis demonstrated that approximately 90 % of the total diversity was associated
with the phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria.
Furthermore, the biofilm was found to have an abundance of sulphur-oxidizing
bacteria and sulphate-reducing bacteria. Combined with transcriptomics,
Gomez-Alvarez et al. (2012) also demonstrated an enrichment of genes associated
with heavy metal resistance, virulence (protein secretion systems) and stress
response in the biofilm analyzed.

Mohan et al. (2014) analyzed hydraulic fracturing source water and wastewater
produced during fracking using metagenomic and metabolomic techniques.

Fig. 3 Integrated analysis of transcriptomics, metabolomics and proteomics of liver tissue
samples collected from mice fed a high-fat diet containing high levels of coffee. Adapted from
Takahashi et al. (2014)
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The post-data analysis of the multi-omic datasets revealed a relative increase in
genes responsible for carbohydrate metabolism, respiration, sporulation and dor-
mancy, iron acquisition and metabolism, stress response and sulphur metabolism in
the produced water samples from a diverse microbial community (Mohan et al.
2014). These results suggest that microbial communities in potable water have an
increased genetic ability to handle stress, which has significant implications for
infrastructure management, such as biofilm control and combating microbial
influenced corrosion.

Another multi-omics study conducted by Beale et al. (2016b) investigated
operational shocks in laboratory scale Anaerobic Digesters (AD) treating municipal
wastewater (Fig. 4). The laboratory scale digesters were operated to simulate
potential shocks to the AD process experienced at a 350 ML/day wastewater
treatment plant. The shocks included high (42 °C) and low (32 °C) temperature
(either side of the optimum temperature of 37 °C) and a 20 % loading of fats, oil
and grease (20 % w:v). These variables were explored at two sludge retention times
(12 and 20 days) and two organic loading rates (2.0 and 2.5 kg TS/m3 day).
Metagenomics and metabolomics approaches were then used to characterize the
impact of operational shocks in regard to temperature and fats, oil and grease
addition, as determined through monitoring of biogas production, the microbial
profile and their metabolism. Results showed that AD performance was not greatly
affected by temperature shocks. Post-data analysis of the metagenomics and
metabolomics data indicated that methanogens and methane oxidizing bacteria were
low in relative abundance, and that the ratio of oxidizing bacteria (methane, sul-
phide and sulphate), with respect to sulphite reducing bacteria had a noticeable
influence on biogas production. Furthermore, increased biogas production corre-
lated with an increase in short chain fatty acids, a product of the addition of 20 %
fat, oil and grease.

As demonstrated by the works of Gomez-Alvarez et al. (2012), Mohan et al.
(2014), Beale et al. (2016b), the application of omics-based techniques to charac-
terize the microbial community and their function provides insight to the resilience

Fig. 4 Post-data analysis approach applied to a multi-omics study investigating operational
shocks within laboratory scale digesters treating municipal waste. Adapted from Beale et al.
(2016b)
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of crucial microbial populations within water sources, pipes and treatment process.
In addition, it is anticipated that through multi-omics approaches, new insights into
microbial populations in terms of diversity, resilience and activity when exposed to
shocks and stresses (such as illegal discharges within sewer networks and opera-
tional shock during treatment) will be obtained. Furthermore, multi-omics may
provide insight into driving higher biogas and methane production during treatment
and collection systems for reuse.

3.4 Biofilms and Biofilms Known to Influence Corrosion

The safety and quality of potable water is often assumed and taken for granted by
consumers in most developed countries. However, our understanding of potable
water biofilms is limited, partly as they are difficult to access and traditional
microbiology approaches fail to provide sufficient information on their composition
and activity (Douterelo et al. 2014). To date, numerous researchers have applied
omics-based techniques to characterize and assess aquatic biofilms, in a range of
environments. For example, Shaw et al. (2014), Chao et al. (2013) assessed the
community structure of potable water biofilms using metagenomics when exposed
to different water treatment strategies. Metagenomics was also used to investigate
intertidal marine biofilm communities (Zhang et al. 2013) and black fungal biofilms
growth in domestic water fixtures (Heinrichs et al. 2013). Metabolomics has also
been used to investigate biofilms found on the surface of copper pipes (Beale et al.
2010; Beale et al. 2012) and within potable water distribution networks (Beale et al.
2013). However, the application of multi-omics approaches has been limited. Leary
et al. (2014) used a metagenomic and metaproteomic approach to analyze the
composition and function of marine biofilms; others have investigated microbial
communities in extreme environments using metagenomics and proteomics (Singer
2012; Schneider and Riedel 2010). Nevertheless, it has been identified that there is a
need for a multi-omics approaches to assess biofilms. This has resulted in the
recently proposed term “Biofomics” and web-based interface for biofilm data
(Lourenço et al. 2012). Biofomics provides a framework, database depository and
selection of statistical tools for researchers to follow, merge and examine data from
different approaches such as metagenomics, transcriptomics, proteomics and key
metabolites (metabolomics) (Nozhevnikova et al. 2015). The biofilm data results
from experiments involving several types of bacterial genera such as Salmonella
spp., Escherichia coli and Candida spp., and is supported by the minimum infor-
mation about a biofilm experiment (MIABiE) initiative (Lourenço et al. 2012). To
date, the majority of biofomics work has been related to the biomedical and clinical
fields.

An issue of particular concern to infrastructure asset managers is biofilms that
cause biocorrosion/biodeterioration (also known as MIC). Due to their potential
financial and economic impact to infrastructure, there has been a considerable
amount of research published on the role of microorganisms in promoting
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corrosion. The majority of this work has been undertaken to address the problem of
MIC in offshore oil and gas pipelines, and concrete structures with some prelimi-
nary research on microbial/metal surface interactions in water pipes. As such, a
number of extensive reviews have been compiled on MIC mechanisms over the
past 20 years (Videla and Herrera 2009; Edyvean and Videla 1991; Videla 2003;
Beech and Gaylarde 1999; Flemming 1994; Beech et al. 2014).

Corrosion is the result of a series of chemical, physical and (micro) biological
processes leading to the deterioration of materials. The mechanisms of MIC and
MIC inhibition are not completely understood, because they cannot be linked to a
single biochemical reaction or specific microbial species or group (Kip and van
Veen 2015). As such, MIC biofilm communities can be studied at both their
compositional and functional levels through the use of multi-omics. A number of
traditional techniques, such as clone libraries and genetic fingerprinting, along with
more recent metagenomics and transcriptomics, are being used to characterize and
understand MIC biofilms (Chakraborty et al. 2014).

Relatively few metabolomic-MIC studies have been reported. The role of cor-
rosion products on MIC of carbon steel has been investigated by gas
chromatography-mass spectrometry (GC-MS) (Liu et al. 2000), where S2− and
organic acids were found to destroy the protective layer and promote hydrogen
permeation. Furthermore, GC-MS-based metabolomics has also been explored as a
potential tool in monitoring MIC in copper pipes in water distribution systems
(Beale et al. 2010, 2012). It was found that the biofilm metabolites of bacteria
causing copper pipe MIC comprised a combination of organic acids, amino acids
and lipids. These are common in biological metabolic processes, specifically those
relating to soluble monomers and sulphite reducing substrates. In addition, the
range of carboxylic acids released from the isolates (Bosea, Methylobacterium,
Paenibacillus, Sphingomonas and Variovorax) suggests that the corrosion potential
of these biofilms varies, which would account for localized pitting corrosion
commonly observed in metallic pipes (Beale et al. 2014a). Kouremenos et al.
(2014) investigated the metabolic profile of Pseudomonas putida in potable water
exposed to high and low doses of soluble and insoluble iron using LC-TOFMS and
identified metabolites that included nucleobases, nucleosides, dipeptides, amino
acids, fatty acids, sugars and phospholipids as a response to exposure. While not
directly related to MIC, the approach by Kouremenos et al. (2014) and the pre-
liminary work of Beale et al. (2010, 2012) demonstrate the feasibility of GC and
LC-based metabolomics techniques to assess microbial populations exposed to
metals or isolated from biofilms known to cause MIC in potable water networks. In
a study by Booth et al. (2011), the difference in response to metal stress between
sessile and planktonic bacterial populations was characterized. The planktonic
population had an oxidative stress response to copper ion exposure, whereas the
same species within a biofilm environment responded by shifts in
exo-polysaccharide-related metabolism. This finding suggests that microbial
responses pertinent to corrosion are different between sessile and planktonic pop-
ulations, and through more research using metabolomic-based techniques, linkages
between the metabolite activity of both sessile and planktonic populations and their
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release of extracellular metabolites from a biofilm can be achieved. While biofilms,
in general, and their influence on corrosion, in particular, have been subject to
extensive research, there has been limited experimental work performed on the
in situ characterization of the organic compounds within biofilms (Beech et al.
2014; Graeber et al. 2014).

With DNA sequencing costs decreasing, omics-based techniques are enabling an
increasing number of laboratories to taxonomically and functionally classify a wide
range of the organisms that are present in biofilms, and the extension of proteomics
and metabolomics techniques enables the assessment of biofilm microbiological
communities more broadly (Douterelo et al. 2014). The study of functional genes
involved in metabolic pathways is essential when attempting to link microbial
diversity with specific ecological functions. In the context of biofilms, better
knowledge of the role microorganisms play in MIC and MIC processes such as
biofilm formation and corrosion is required and through the application of
multi-omics research, such knowledge will be realized.

3.5 Medical and Clinical

Metabolomics studies have been used to investigate the gut microbial population
structure associated with a wide range of human diseases (Alam et al. 2014; Garrett
2015; Gevers et al. 2014; Goldman et al. 2014; Ley et al. 2006; Smith et al. 2013).
Expression profiling studies have contributed significantly to the understanding of
underlying molecular mechanisms of several diseases. In the context of cancer
research, this has resulted in the improved classification of tumour subtypes
(Karnovsky et al. 2012). However, the lack of early diagnostic markers still remains
a problem (Diamandis 2010). Proteomics and metabolomics have the potential to
provide additional biological insight for solving this problem (Enjalbert et al. 2011).

The multi-omics approach has been applied to identify markers related to
retinoblastoma which is caused by the RB1 gene inactivation. The miRNA pathway
analysis, coupled with miRNA microarray indicated a presence of 18 novel
miRNAs responsible for the onset of this type of retinal cancer (Guha et al. 2015).
In addition to cancer studies, multi-omics approach has been applied to other
studies such as asthma-COPD overlap syndrome (Trentacoste et al.), autism dis-
orders, sickle cell anemia and kidney disorders among many (Megan et al. 2016;
Zeidan-Chulia et al. 2014; Goodman et al. 2016; Cisek et al. 2015). A very recent
research conducting ACOS pattern among asthma patients recorded a trend of
increased Immunoglobulin E (IgE) antibody. A differential gene expression of
Toll-like receptor 10 (TLR10), an asthma related gene was observed. Also, a further
study of single nucleotide polymorphisms (SNPs) indicated a role of another gene
IL21R in ACOS. Based on pathway analysis, the pattern was also observed to affect
the activities related to cytochrome P450 system (Megan et al. 2016).

A recent review by Higdon et al. (2015) indicated numerous domains (genes,
RNA and proteins) related to autism spectrum disorders (ASD) such as fragile-X
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mental retardation protein (FMRP) and chromatin modifying genes and postsy-
naptic and embryonic development proteins. Expression analysis models such as
linear models for microarray analysis (LIMMA) and significance analysis of
microarrays (SAM) have been used to identify differential expressions based on
several databases and networks such as KEGG, HMDB, BioCyc, Panther among
many others. The former modelling approach (LIMMA) was used to identify
Alzheimer’s related genes and signal transduction pathways such as NOTCH and
Wnt in mitochondrial expressional system of ASD patients (Zeidan-Chulia et al.
2014).

Overall, it has been observed that multi-omics research has been at fairly
advanced levels in cancer research, and has made inroads into other clinical
researches. It is expected that a rapid growth in those studies will be observed in
near future, with a further expansion in other related fields, thereby leading to
‘personalized medicine’ development.

3.6 Biofuels

In recent years, one of the prominent fields of multi-omics applications is algal
origin biofuels. Although, the studies involving these applications have been
generally referred to as ‘metabolic engineering’, they involve more than two
approaches (mostly, genomics or transcriptomics and metabolomics). A recent
study reported by Trentacoste et al. (2013) was conducted to improve the lipid
accumulation in microalga Thalassiosira pseudonana. Transcriptomic analysis
indicated the role of hydrolase Thaps3_264297. A knocking out of this gene by
lipase enzyme overexpression by RNAi and antisense approach resulted in a 3-5
fold increased output of lipids.

Another approach of multi-omics in improving lipid accumulation is by nitrogen
starving of algal cells. The responses based on triacylglycerol (TAG) synthesis by
Chlamydomonas reinhardtii showed a switching on of gluconeogenic phase
(� 30 min), followed by a transition to glycolytic phase (� 4 h). Additionally, a
transduction to Carbon–Nitrogen responsive pathways occurred (due to alterations
in cw15 proteome), causing increased carbon assimilation and nitrogen metabolism.
This led to an increased TAG synthesis in two stages of ‘before TAG synthesis
(BTS)’ and ‘after TAG synthesis (ATS)’ (Park et al. 2015). Similar approaches
have been previously reported for alga mediated high density biofuels (biodiesel
fuel) (Beer et al. 2009; Hossain et al. 2008), indicating an estimated 13 % in energy
surplus (Dassey et al. 2014).

Similar results to that of algal research mentioned above have also been observed
in other organisms regarding biofuel production capabilities of microbial cells.
A recent example is that of metabolome and proteome analysis of the yeast
Yarrowia lipolytica. Nitrogen depletion in this yeast induced an alteration in 133
phosphorylation sites, thereby enriching phosphorylating proteins, causing
up-regulation of lipid synthesis (Pomraning et al. 2016).
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4 Conclusion

Enhanced knowledge through the application of ‘omics’-based techniques provides
a holistic opportunity to measure biological systems and the impact of these sys-
tems under stress. Furthermore, through the application of multi-omics, researchers
are able to obtain a greater depth of knowledge that otherwise would not be
achieved through a single ‘omics’-based study. Combining metagenomic and
transcriptomic data with proteomics and metabolomic datasets will provide
researchers and clinicians details on the microbial population present and their
metabolic functions. In addition, multi-omics research provides a path for
self-validating findings through a combined parallel ‘omics’ approach, and will
ultimately result in the accelerated understanding of these complex populations and
processes, driving better diagnostic techniques and drug therapies, environmental
remediation strategies and the development of innovative synthetic/engineered
biological products.

It is anticipated that the rise of multi-omics research will enable biological
systems to be well characterized, enabling model-based assessments to be generated
and future research undertaken with only a subset of the data needed for clinical and
experimental research, resulting in cost-effective more affordable research (through
data mining of available literature and datasets and reducing the amount of
experimental data needed). Although it is currently considered to be a nascent field,
various potential applications and data integration tools are either currently
underway or are expected to appear on the scientific horizon in the near future. It is
expected that the exponential development in overall ‘omics’ knowledge coupled
with rapidly developing technology in this field, will assist in the exploration of
various multi-omics applications and related scientific discoveries in the fields of
environmental, industrial and clinical biology.
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