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Abstract In this work, we consider a semilinear problem describing the motion
of a suspension bridge in the downward direction in the presence of its hanger
restoring force h(u) and a linear damping δut , where δ > 0 is a constant. By using
the semigroup theory, we establish the well posedness. We also use the multiplier
method to prove a stability result.
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1 Introduction

A simple model for a bending energy of a deformed thin plate � = (0, L) × (−�, �)

is given by

EB(u) =
∫

�

(
K 2

1

2
+ K 2

2

2
+ σK1K2

)
dxdy, (1.1)

where u = u(x, y) represents the downward vertical displacement of the plate and
K1, K2 are the principal curvatures of the graph of u. The constant σ = λ

2λ+μ
is the

Poission ratio andλ, μ are called the Lamémoduli. For some physical reasons,λ ≥ 0
andμ > 0, hence 0 < σ < 1

2 . For small deformation u, the following approximations
hold

(K1 + K2)
2 ≈ (�u)2, K1K2 ≈ det (D2u) = uxxuyy − u2xy .
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As a result, we get

1

2
K 2

1 + 1

2
K 2

2 + σK1K2 ≈ 1

2
(�u)2 + (σ − 1)det (D2u).

Consequently, the energy functional (1.1) takes the form

EB(u) =
∫

�

(
1

2
(�u)2 + (σ − 1)det (D2u)

)
dxdy. (1.2)

We note here that, for 0 < σ < 1
2 , EB is convex and is also coercive in suitable state

spaces such as H 2
0 (�) or H 2(�) ∩ H 1

0 (�).
If f is an external vertical load acting on the plate �, then the total energy is given
by

ET (u) = EB(u) −
∫

�

f udxdy

=
∫

�

[(
1

2
(�u)2 + (σ − 1)(uxxuyy − u2xy)

)
− f u

]
dxdy. (1.3)

The unique minimizer u of the functional (1.3) satisfies the Euler-Lagrange equation

�2u(x, y) = f (x, y), in �. (1.4)

For totally supported plate (u = ∂u
∂η

= 0), the problem has been first solved byNavier
[17] in 1823. Since the bridge is usually simply supported on the vertical sides
(x = 0, x = L , i.e. the y− axis) only

u(0, y) = uxx (0, y) = u(L , y) = uxx (L , y) = 0,

then different boundary conditions should be considered for the horizontal sides
(y = −�, y = �, i.e. x−axis). Various problems on a rectangular plate �, where
only the vertical sides are simply supported, were discussed by many authors, see,
for instance Mansfield [11]. Naturally, one should consider the plate � with free
horizontal sides. In such a situation, the boundary conditions are

⎧⎨
⎩
uyy(x,±�) + σuxx (x,±�) = 0, f or x,∈ (0, L),

uyyy(x,±�) + (2 − σ)uxxy(x,±�) = 0, f or x ∈ (0, L),

(1.5)

see Ventsel and Krauthammer [19]. Putting all pieces together (see Ferrero and
Gazzola [5]), the boundary value problem for a thin plate � modeling a suspension
bridge is



A Suspension Bridge Problem: Existence and Stability 153

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�2u(x, y) = f (x, y), in �,

u(0, y) = uxx (0, y) = u(L , y) = uxx (L , y) = 0, y ∈ (−�, �),

uyy(x,±�) + σuxx (x,±�) = 0, x ∈ (0, L),

uyyy(x,±�) + (2 − σ)uxxy(x,±�) = 0, x ∈ (0, L).

(1.6)

In order to describe the action of the hangers (cables), Ferrero and Gazzola [5]
introduced a nonlinear function h(x, y, u) which admits a potential energy given by∫

�

H(x, y, u)dxdy. As a result, the total energy (1.3) becomes

ET (u) =
∫

�

[(
1

2
(�u)2 + (σ − 1)(uxxuyy − u2xy)

)
+ H(x, y, u) − f u

]
dxdy,

(1.7)
whose unique minimizer satisfies the stationary problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�2u(x, y) + h(x, y, u(x, y)) = f (x, y), in �,

u(0, y) = uxx (0, y) = u(L , y) = uxx (L , y) = 0, y ∈ (−�, �),

uyy(x,±�) + σuxx (x,±�) = 0, x ∈ (0, L),

uyyy(x,±�) + (2 − σ)uxxy(x,±�) = 0, x ∈ (0, L).

(1.8)

If the external force f depends on time, f = f (x, y, t), then the kinetic energy
1
2

∫
�

u2t dxdy has to be added to the static total energy (1.7). Thus, the total energy

becomes

ET (u) =1

2

∫
�

u2t dxdy +
∫

�

[(
1

2
(�u)2 + (σ − 1)(uxxuyy − u2xy)

)

+ H(x, y, u) − f u

]
dxdy. (1.9)

Also, the equation of motion becomes

utt (x, y, t) + �2u(x, y, t) + h(x, y, u(x .y, t)) = f (x, y, t). (1.10)

Finally, we might add a damping term due to some internal friction or viscosity. In
this case, Eq. (1.10) takes the form

utt (x, y, t) + δut (x, y, t) + �2u(x, y, t) + h(x, y, u(x .y, t)) = f (x, y, t),
(1.11)
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where δ > 0 is called the friction constant. Equation (1.11) together with the
boundary conditions of (1.8) and initial data has been discussed by Ferrero and
Gazzola [5], for a general nonlinear restoring force h. They proved the existence
of a unique solution, using the Galerkin method. In addition, they discussed several
stationary problems. Recent results by Wang [20] and Al-Gwaiz et al. [2] have also
made use of the above mention boundary conditions.

Early results concerning suspension bridges go back to McKenna and collabora-
tors. For instance, Glover et al. [8] considered the damped couple system

{
utt + ut + uxxxx + γ1ut + k(u − v)+ = f,
εvt t − vxx + γ2vt − k(u − v)+ = g,

(1.12)

where,
u, v : [0, L] × R

+ −→ R

represent the downward deflection and the vertical displacement of the string. For
rigid suspension bridges, Lazer and Mckenna [12] reduced the system (1.12) to the
following fourth-order equation

utt + uxxxx + ut + k2u+ = f, x ∈ (0, 1), t > 0, (1.13)

and established existence of periodic solutions by assuming the suspension bridge
as a bending beam. Equation (1.13) has been studied by a few authors (see [1, 4]).
Mckenna and Walter, [14, 15] also investigated the nonlinear oscillations of suspen-
sion bridges and the existence of travelling wave solutions have been established. To
achieve this, they considered the suspension bridge as a vibrating beam. Bochicchio
et al. [3] considered

utt + ut + uxxxx + (p − ‖ux‖2L2((0,1)))uxx + ku2 = f, (1.14)

where p is a force that acts directly on the central axis of the bridge (axial force)
and f a general external source term. They established a well-posedness as well as
existence of global attractor. For more literature concerning the suspension bridges,
we refer the reader to Mckenna [13], Mckenna et al. [16], Filippo et al. [7], Imhof
[9], and Gazzola [6].

In this work, we consider the following fourth order semilinear plate problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt (x, y, t) + δut (x, y, t) + �2u(x, y, t) + h(u(x .y, t)) = 0, in � × (0,+∞),

u(0, y, t) = uxx (0, y, t) = u(π, y, t) = uxx (π, y, t) = 0, (y, t) ∈ (−�, �) × (0,+∞),

uyy(x,±�, t) + σuxx (x,±�, t) = 0, (x, t) ∈ (0,π) × (0,+∞),

uyyy(x,±�, t) + (2 − σ)uxxy(x,±�, t) = 0, (x, t) ∈ (0,π) × (0,+∞),

u(x, y, 0) = u0(x, y), ut (x, y, 0) = u1(x, y), in �.

(1.15)
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The aim of this work is to reformulate (1.15) into a semigroup setting and then make
use of the semigroup theory (see Pazy [18]) to establish the well-posedness. We
also use the multiplier method (see Komornik [10]) to prove a stability result for
problem (1.15). The rest of this work is organized as follows. In Sect. 2, we present
some basic and fundamental materials needed to establish ourmain results. In Sect. 3,
we establish a well-posedness result for problem (1.15). In Sect. 4, we state and prove
our stability result.

2 Preliminaries

In this section we present some basic and fundamental results which will be used
in proving our main results. For this, we impose the following assumptions on the
function h

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h : R −→ R is li pschit z such that h(0) = 0,

H(s) =
∫ s

0
h(τ )dτ is posi tive,

sh(s) − H(s) ≥ 0, ∀s ∈ R.

(2.1)

Example 2.1 An example of a function satisfying (2.1) is

h(s) = a|s|p−1s, a ≥ 0, p ≥ 1.

As in [5], we introduce the space

H 2
∗ (�) = {

w ∈ H 2(�) : w = 0 on {0,π} × (−�, �)
}
, (2.2)

�

−�

Ω
π

x

y

0

w = 0 w = 0

together with the inner product
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(u, v)H 2∗ =
∫

�

[(�u�v + (1 − σ)(2uxyvxy − uxxvyy − uyyvxx )]dxdy. (2.3)

For the completeness of H 2∗ (�), we have the following results by Ferrero and Gaz-
zola [5].

Lemma 2.1 [5] Assume 0 < σ < 1
2 . Then, the norm ‖.‖H 2∗ (�) given by ‖u‖2H 2∗ (�)

=
(u, u)H 2∗ is equivalent to the usual H

2(�)-norm.Moreover, H 2∗ (�) is a Hilbert space
when endowed with the scalar product (., .)H 2∗ . �

Lemma 2.2 [5] Assume 0 < σ < 1
2 and f ∈ L2(�). Then there exists a unique

u ∈ H 2∗ (�) such that

∫
�

[�u�v + (1 − σ)(2uxyvxy − uxxvyy − uyyvxx )]dxdy =
∫

�

f v, ∀v ∈ H 2
∗ (�).

(2.4)
�

Remark 2.1 The function u ∈ H 2∗ (�) satisfying (2.4) is called the weak solution of
the stationary problem (1.6).

Lemma 2.3 [5] The weak solution u ∈ H 2∗ (�), of (2.4), is in H 4(�) and there
exists a C = C(l,σ) > 0 such that

‖u‖H 4(�) ≤ C‖ f ‖L2(�). (2.5)

In addition if u ∈ C4(�̄), then u is called a classical solution of (1.6). �

Lemma 2.4 [20] Let u ∈ H 2∗ (�) and suppose 1 ≤ p < +∞. Then, there exists a
positive constant Ce = Ce(�, p) such that

‖u‖p
p ≤ Ce‖u‖p

H 2∗ (�)
.

�

Lemma 2.5 [10] Let E : R+ −→ R
+ be a non-increasing function. Assume that

there exists C > 0 such that
∫ ∞

s
E(t)dt ≤ CE(s), 0 < s < ∞.

Then, there exists λ > 0 a constant such that

E(t) ≤ E(0)e−λt , ∀t ≥ 0. (2.6)
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3 Well-Posedness

In this sectionwe establish thewell-posedness of problem (1.15) using the semigroup
theory. For this, we set ut = v, then problem (1.15) becomes

(P)

⎧⎨
⎩
Ut + AU = F

U (0) = U0,

where

U =
(
u
v

)
, AU =

( −v

�2u + δv

)
, F(U ) =

(
0

−h(u)

)
, U0 =

(
u0
u1

)
.

We define the Hilbert space

H = H 2
∗ (�) × L2(�)

equipped with the inner product

(U, V )H = (u, ũ)H 2∗ (�) + (v, ṽ)L2(�) , (3.1)

where
U = (u, v)T , V = (ũ, ṽ)

T ∈ H.

Next, we introduce the following notation

⎧⎨
⎩
uxx (0, y) = uxx (π, y) = 0
uyy(x,±�) + σuxx (x,±�) = 0
uyyy(x,±�) + (2 − σ)uxxy(x,±�) = 0.

(3.2)

The domain of the operator A is defined as

D(A) = {
(u, v) ∈ H/u ∈ H 4(�) satis f ying (3.2), v ∈ H 2

∗ (�)
}
.

Lemma 3.1 We have

(�2u, v)L2(�) = (u, v)H 2∗ , ∀u, v ∈ D(A). (3.3)

Proof Using Green’s formula we obtain that

∫
�

v�2u =
∫

�

�u�v +
∫

∂�

[v ∂�u

∂η
− �u

∂v

∂η
]. (3.4)
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Integration in (3.4) leads to

∫
�

v�2u =
∫

�

�u�v −
∫ π

0
v(x,−�)[uxxy(x,−�) + uyyy(x,−�)]dx

+
∫ π

0
v(x, �)[uxxy(x, �) + uyyy(x, �)]dx

+
∫ π

0
vy(x,−�)[uxx (x,−�) + uyy(x,−�)]dx

−
∫ �

−�

vx (π, y)[������0
uxx (π, y) +������0

uyy(π, y)]dy

−
∫ π

0
vy(x, �)[uxx (x, �) + uyy(x, �)]dx

+
∫ �

−�

vx (0, y)[������0
uxx (0, y) +������0

uyy(0, y)]dy].

This gives

∫
�

v�2u =
∫

�

�u�v −
∫ π

0
v(x,−�)[uxxy(x,−�) + uyyy(x,−�)]dx

+
∫ π

0
v(x, �)[uxxy(x, �) + uyyy(x, �)]dx

+
∫ π

0
vy(x,−�)[uxx (x,−�) + uyy(x,−�)]dx

−
∫ π

0
vy(x, �)[uxx (x, �) + uyy(x, �)]dx . (3.5)

By using (3.2), we obtain

∫
�

v�2u =
∫

�

�u�v + (1 − σ)

∫ π

0
[v(x,−�)uxxy(x,−�) − v(x, �)uxxy(x, �)]dx

+ (1 − σ)

∫ π

0
[vy(x,−�)uxx (x,−�) − vy(x, �)uxx (x, �)]dx . (3.6)

By performing similar integration by part on the right hand side of (2.3), we obtain
(3.6). Hence the result. �

Lemma 3.2 The operator A : D(A) ⊂ H −→ H is monotone.

Proof Exploiting Lemma 3.1, we obtain, for all U =
(
u
v

)
∈ D(A),
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(AU,U )H =
(( −v

�2u + δv

)
,

(
u
v

))
H

= − (u, v)H2∗ (�) + (
�2u + δv, v

)
L2(�)

= − (u, v)H2∗ (�) + (
�2u, v

)
L2(�)

+ δ‖v‖2L2(�)
= δ‖v‖2L2(�)

≥ 0. (3.7)

Thus, A is a monotone operator. �

Lemma 3.3 The operator A : D(A) ⊂ H −→ H is maximal, that is R(I + A)

= H.

Proof Let G = (k, l) ∈ H and consider the stationary problem

U + AU = G, (3.8)

where U =
(
u
v

)
. From (3.8) we obtain

⎧⎨
⎩
u − v = k,

v + �2u + δv = l.
(3.9)

Combining (3.9)1 and (3.9)2 gives, for δ0 = δ + 1,

δ0u + �2u = l + δ0k. (3.10)

The weak formulation of (3.10) is then

δ0

∫
�

uφ + (u,φ)H 2∗ (�) =
∫

�

(l + δ0k)φ, ∀φ ∈ H 2
∗ (�). (3.11)

We define the following bilinear and linear forms on H 2∗ (�)

B(u,φ) = δ0

∫
�

uφ + (u,φ)H 2∗ (�), (3.12)

F(φ) =
∫

�

(l + δ0k)φ. (3.13)

By using Lemmas 2.1 and 2.4, we show that B is bounded and coercive, and F is
bounded. For this, we can easily see that

|B(u,φ)| ≤ C‖u‖H 2∗ ‖φ‖H 2∗ .

Furthermore, we have that



160 S.A. Messaoudi and S.E. Mukiawa

B(u, u) = δ0‖u‖2L2 + ‖u‖2H 2∗
≥ ‖u‖2H 2∗

. (3.14)

Therefore B is bounded and coercive.
Also,

|F(φ)| ≤ ‖l‖L2‖φ‖L2 + δ0‖k‖L2‖φ‖L2 ≤ C(‖l‖L2 + δ0‖k‖H 2∗ )‖φ‖H 2∗ .

This implies that F is bounded. Thus, Lax- Milgram Theorem guarantees the exis-
tence of a unique u ∈ H 2∗ (�) satisfying (3.11), which yields

(u,φ)H 2∗ (�) =
∫

�

[l + δ0k − δ0u]φ, ∀φ ∈ H 2
∗ (�). (3.15)

Since l + δ0k − δ0u ∈ L2(�), it follows from Lemma 2.3 that u ∈ H 4(�). Thus, we
get u ∈ H 2∗ (�) ∩ H 4(�). By performing similar integration by parts as in Lemma
3.1 to Eq. (3.11), we obtain

∫
�

[δ0u + �2u − l + δ0k]φ +
∫ �

−�
[uxx (π, y)φx (π, y) − uxx (0, y)φx (0, y)]dy

+
∫ π

0
{[uyy(x, �) + σuxx (x, �)]φy(x, �) − [uyy(x,−�) + σuxx (x,−�)]φy(x,−�)}dx

+
∫ π

0
[uyyy(x, −�) + (2 − σ)uxxy(x,−�)]φ(x, l)dx

−
∫ π

0
[uyyy(x, �) + (2 − σ)uxxy(x, �)]φ(x, l)dx = 0, ∀φ ∈ H2∗ (�). (3.16)

Now, by considering φ ∈ C∞
0 (�) (hence φ ∈ H 2∗ (�)), then all the boundary terms

of (3.16) vanish and we obtain

∫
�

[δ0u + �2u − l + δ0k]φ = 0, ∀φ ∈ C∞
0 (�). (3.17)

Hence (by density) we have

∫
�

[δ0u + �2u − l + δ0k]φ = 0, ∀φ ∈ L2(�). (3.18)

This implies
δ0u + �2u = l + δ0k, in L2(�). (3.19)

We take
v = u − k in H 2

∗ (�)

and obtain
v + �2u + δu = l, in L2(�).
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Thus, u ∈ H 2∗ (�) ∩ H 4(�) and v ∈ H 2∗ (�) solves (3.9). Again, by choosing φ ∈
C∞(�̄) ∩ H 2∗ (�) in (3.16) and using (3.19), we get

���������� 0∫
�

[δ0u + �2u − w]φ +
∫ �

−�

[uxx (π, y)φx (π, y) − uxx (0, y)φx (0, y)]dy

+
∫ π

0
{[uyy(x, �) + σuxx (x, �)]φy(x, �) − [uyy(x,−�) + σuxx (x,−�)]φy(x,−�)}dx

+
∫ π

0
[uyyy(x,−�) + (2 − σ)uxxy(x,−�)]φ(x, l)dx

−
∫ π

0
[uyyy(x, �) + (2 − σ)uxxy(x, �)]φ(x, l)dx = 0.

(3.20)

By the arbitrary choice of φ ∈ C∞(�̄) ∩ H 2∗ (�), we obtain from (3.20) the boundary
conditions (3.2). Therefore there exists a unique

U =
(
u
v

)
∈ D(A)

satisfying (3.9). Thus, A is a maximal operator. �

Lemma 3.4 The function F is Lipschtz.

Proof Let U, V ∈ H and recall assumption (2.1)1 to have

‖F(U ) − F(V )‖H = ‖
(

0
−h(u)

)
−

(
0

−h(ũ)

)
‖H

= ‖
(

0
h(ũ) − h(u)

)
‖H = ‖h(ũ) − h(u)‖L2(�)

≤ C‖u − ũ‖L2(�) ≤ C‖U − V ‖H.

So, F is lipsctitz. �

Thus, by the semigroup theory [18], we have the following existence result.

Theorem 3.1 Assume that (2.1) hold. Let U0 ∈ H be given. Then the problem (P)
has a unique weak solution

U ∈ C ([0,+∞),H) .

Moreover, if h is linear and U0 ∈ D(A), then (P) has a unique strong solution

U ∈ C ([0,+∞), D(A)) ∩ C1([0,+∞),H).

Proof Follows from Lemmas 3.2, 3.3 and 3.4. �
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4 Stability

In this section, we use the multiplier method (see Komornik [10]) to establish a
stability result for the energy functional associated to problem (1.15).

Corollary 4.1 We have

∫
�

u�2u = ‖u‖2H 2∗
, ∀u ∈ D(A). (4.1)

Proof Let v = u in Lemma 3.1. �

The energy functional associated to problem (1.15) is defined by

E(t) = 1

2
‖ut (t)‖2L2(�) + 1

2
‖u(t)‖2H 2∗

+
∫

�

H(u(t)). (4.2)

Lemma 4.1 Let (u0, u1) ∈ D(A) be given and assume that (2.1) hold. Then the
energy functional (4.2) satisfies

dE(t)

dt
= −δ

∫
�

u2t ≤ 0. (4.3)

Proof Multiply (1.15)1 by ut and integrate over � to get

d

dt

(
1

2

∫
�

u2t + 1

2
‖u‖2H 2∗

+
∫

�

H(u)

)
+ δ

∫
�

u2t = 0. (4.4)

Hence, the result. The inequality in (4.3) remains true for weak solution by simple
density argument. Moreover, we get that E is a non-increasing functional. �

Theorem 4.1 Let (u0, u1) ∈ D(A) be given and assume (2.1) holds. Then, there
exist constants K > 0, λ > 0 such that the energy functional (4.2) satisfies

E(t) ≤ Ke−λt , ∀t ≥ 0. (4.5)

Proof Wemultiply (1.15)1 by u and integrate over � × (s, T ), for 0 < s < T to get

∫ T

s

∫
�

(
uttu + u�2u + uh(u) + δuut

) = 0. (4.6)

By using Corollary 4.1 we obtain
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∫ T

s

∫
�

(utu)t −
∫ T

s

∫
�

u2t +
∫ T

s
‖u‖2H 2∗

+
∫ T

s

∫
�

H(u) +
∫ T

s

∫
�

(uh(u) − H(u))

+ δ

∫ T

s

∫
�

uut = 0.

This gives

∫ T

s
E(t)dt +

∫ T

s

∫
�

(utu)t − 3

2

∫ T

s

∫
�

u2t + 1

2

∫ T

s
‖u‖2H 2∗

+
∫ T

s

∫
�

(uh(u)

− H(u)) + δ

∫ T

s

∫
�

uut = 0.

By exploiting assumption (2.1), we obtain

∫ T

s
E(t)dt ≤ −

∫ T

s

∫
�

(utu)t + 3

2

∫ T

s

∫
�

u2t − δ

∫ T

s

∫
�

uut . (4.7)

Now, we estimate the terms on the right-hand side of (4.7). By using Lemma 2.4 and
Young’s inequality, the first term can be estimated as follows

| −
∫

�

∫ T

s
(utu)t | ≤ |

∫
�

ut (s)u(s)| + |
∫

�

ut (T )u(T )|

≤ 1

2

∫
�

u2t (s) + 1

2

∫
�

u2(s) + 1

2

∫
�

u2t (T ) + 1

2

∫
�

u2(T )

≤ E(s) + C‖u(s)‖2H 2∗
+ E(T ) + C‖u(T )‖2H 2∗

≤ CE(s) + CE(T ) ≤ CE(s). (4.8)

For the second term, we have

3

2

∫ T

s

∫
�

u2t = 3

2δ

∫ T

s
(−E ′(t))dt = 3

2δ
E(s) − 3

2δ
E(T ) ≤ 3

2δ
E(s). (4.9)

For the third term, we have for any ε > 0 to be specified later
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| − δ

∫ T

s

∫
�

uut | ≤ Cεδ

∫ T

s

∫
�

u2t + δ
ε

2

∫ T

s

∫
�

u2

≤ Cεδ

∫ T

s
(−E ′(t))dt + δCe

ε

2

∫ T

s
‖u‖2H 2∗

≤ CεδE(s) + δCe
ε

2

∫ T

s
E(t)dt. (4.10)

Combining (4.8)–(4.10), we obtain

(
1 − Ceδ

ε

2

) ∫ T

s
E(t)dt ≤

(
C + 3

2δ
+ δCε

)
E(s). (4.11)

We then choose ε > 0 small enough so that
(
1 − Ceδ

ε
2

)
> 0 and obtain

∫ T

s
E(t)dt ≤ CE(s), ∀ s > 0. (4.12)

Letting T go to infinity and applying Lemma 2.5, we conclude from (4.12) the
existence of two constants K ,λ > 0 such that the energy of the solution of (1.15)
satisfies

E(t) ≤ Ke−λt , ∀t ≥ 0. (4.13)

This complete the proof. �

Remark 4.1 The decay estimate (4.5) remains valid for weak solutions by virtue of
the density of D(A) inH.
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