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Abstract In this paper we propose a novel approach for feature selection inmachine
learning. The approach is based on the Sobol sensitivity analysis, a variance-based
technique that determines the contribution of each feature and their interactions to
the overall variance of the target variable. Similar to wrappers, Sobol sensitivity is a
model-based approach that utilizes the trainedmodel to evaluate feature importances.
It uses the full feature set to train the model just as embedded methods do. Based
on the trained model, it evaluates importance scores and, similar to filters, identifies
the subset of important features with highest scores without retraining the model.
The distinctive characteristic of the Sobol sensitivity approach is its computational
efficiency compared to the existing feature selection algorithms. This is because
importance scores for all individual features and subsets of features are calculated
with the same trainedmodel.We apply the proposed algorithm to a simulated data set
and to four benchmark data sets used in machine learning literature. The results are
compared to those obtained by two of the widely used feature selection algorithms
and some computational aspects are also discussed.
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1 Introduction

The problem of variable (feature) selection in predictive modelling has received con-
siderable attention during the past 10years in both statistics and machine learning
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literatures. The aim of feature selection is to identify the subset of predictor variables
that provides a reliable and robust model for a given target variable. Feature selection
plays a central role in many areas such as natural language processing, gene expres-
sion array studies, computational biology, image recognition, information retrieval,
temporal modelling, consumer profile analysis and business data analytics. Curse of
dimensionality in data collected in these and other areas and the increased level of
noise in the associated features have motivated the development of various feature
selection techniques. Feature selection is a key mechanism to reduce a large number
of variables to relatively few.

In this article, a new approach for feature selection is proposed. The new approach
is inspired by the popular Sobol sensitivity measure developed by I.M. Sobol in
1990 [18]. Sobol sensitivity measure is a variance-based sensitivity technique that
decomposes the output (target) variable variance into summands of variances of the
input variables (features) in an increasing dimensionality. It has been widely used
in assessing global sensitivity of models in different fields such as environment,
economics, engineering and many others. The approach is a model-based technique
that utilizes the fittedmodel to compute the partial variances or variance contributions
by each feature and their interactions to the overall variance of the target variable.
It is shown to have lower computational cost than many existing feature selection
algorithms but its effectiveness depends on the quality of the fitted model as it is the
case for some popular algorithms.

The article is organized as follows. Section2 provides a review of some existing
methods on variable selection. Section3 proposes Sobol sensitivity approach for
variable selection and gives some theoretical foundation of the measure. It also
discusses some computational aspects of the method. Section4 applies the proposed
Sobol sensitivity to several data sets used in machine learning literature and provides
comparisons with some existing benchmark algorithms.

2 Literature Review

In this section we summarize some popular feature selection techniques, give some
computational consideration and provide the motivation for the proposed new
technique.

Feature selection techniques can be divided into three general frameworks: wrap-
pers, filters and embedded methods [21, 25]. Wrappers evaluate the predictive power
of subsets of features by retraining the model for different feature subsets. Filters
evaluate the importance of features before the main prediction algorithm is trained.
Embedded methods search for the optimal subset of features simultaneously with
minimizing a loss function. What follows is a brief description of each framework:
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Original feature set Choose subset of features Train model on the feature subset

Prediction
performance criterion

Fig. 1 Wrappers framework

1. Wrappers.
Wrappers are model-based methods for feature selection and are considered to
be the most effective and computationally intractable algorithms. Figure1 shows
the main principle of the wrapper methods’ framework.
Basically, to find the most relevant and informative subset of features, the pre-
scribed model is trained for different subsets of features. The subset with the
highest score on a particular prediction performance criterion is selected as best
set of features. Because wrapper methods utilize the model algorithm they are
considered more effective and hence more desired than filters and embedded
methods.
However, wrapper methods are generally criticized for their potential to overfit
the training data and for their computational cost. Overfitting occurs when the
complete data set is used for the training and the model becomes excessively
complex to fit the data too precisely but still provides poor predictions when
applied to new data set. This occurs when there is insufficient data to train and
the data does not fully recover the concept learned. Several approaches have been
proposed in the literature to overcome model overfitting:

a. Cross-Validation (CV): in this approach the data set is split into training
and validation sets. The model is trained on the training set and predictions
are obtained on the validation set. A variety of techniques are developed to
determine the fraction of data that should be used for training and that used
for validation. These techniques include random sub-sampling, leave-one-
out, K-fold and other CV sampling mechanisms.

b. Probabilistic approach: based on information theory principles. The predic-
tion accuracy of the algorithm is measured using various techniques such
as Akaike Information Criteria (AIC, [3, 4]), Bayesian Information Criteria
(BIC, [5]) and others.

As for computational cost, wrappers are deemed computationally expensive. For n
features, the number of feature subsets is defined byO(2n), i.e., the computational
needs of wrappers exponentially increase with the number of features in the
model. This makes the search for all possible subsets of features impractical for
even moderate value of n. The computational cost of wrapper methods can be
reduced by using efficient search strategies to find the optimal subset of features.
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One of the earliest attempt to improve the computational efficiency is due to
Hocking and Leslie in [1]. Their method starts by fitting the full model and then
features are eliminated based on themagnitudes of their t-statistics. The efficiency
gain of the method lies in the fact that entire subsets of features are eliminated
from further consideration when their reduced prediction error is greater than
other subsets already evaluated. The method can assume independent features
and works well when there is a small number of important features that dominate
the target variable and can easily be identified.
Sequential search methods such as forward selection, backward elimination and
stepwise regression became popular techniques used to overcome some of the
computational demands of wrappers. Forward selection begins with no variables
and progressively adds features until maximum reduction in prediction error is
reached. The reverse of this strategy is the backward elimination which begins
with full model and progressively removes features having smallest contribu-
tions. Once a feature is added in forward selection or eliminated in backward
elimination, the operation can not be reversed. To overcome this drawback, step-
wise selection is used. Stepwise selection starts by adding features until reaching
some stopping criteria. Then the algorithm starts dropping features until reach-
ing another stopping criteria and so on. While stepwise selection can reduce the
computational cost of the best set of features it does not, however, guarantee the
selection of the global optimal set.

2. Filters.
Filters evaluate feature importance as a pre-processing operation to model train-
ing as depicted in Fig. 2. The main difference between filters and wrappers is
that filters do not use the training procedure to capture the relationship between
features. Rather, they use some information metric to calculate feature ranking
from the data without direct input from the target. Popular information metrics
include t-statistic, p-value, Pearson correlation coefficient, mutual information
and other correlation measures. Computationally, filters are more efficient than
wrappers as they require only the computation of n scores for n features. They
are also more robust against overfitting than wrappers.
By using Pearson correlation, filters can only capture linear effects between fea-
tures and target variable. The nonlinear effects are left undiscovered. A successful
attempt to deal with nonlinear effects has been recently developed. Aliferis et al.
[24] described Markov blanket technique that is based on Bayesian network. A
Markov blanket of the target variable Y is defined as a minimal set of features
on which all other features are conditioned so as they become independent of Y .

Original feature set
Choose subset of features

with the highest metric score
Train model on
the feature subset

Fig. 2 Filters framework
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Original feature set
Train model on the
original feature set

Choose features subset
based on model parameters

Fig. 3 Embedded methods framework

In terms of relevancy of selected features, Markov blanket is shown by Tsamardi-
nos and Aliferis (2003) to provide the most relevant and optimal features in cal-
ibrated classifications in which the probability distribution of the target variable
can be perfectly estimated with the smallest number of variables. The authors
showed that neither filters nor wrappers are superior to one another in identifying
the optimal features because filters lack universal optimality,i.e., independently
of the classification algorithm and model-performance metric, and wrappers lack
universal efficiency. Markov blanket technique does not suffer from these short-
comings.

3. Embedded methods.
Embedded methods use training procedure to obtain feature rankings Fig. 3. The
aim of embedded methods is two-fold: first, maximizing the prediction accuracy
and second, minimizing the number of features in the predictive algorithm.
Regularization methods such as Ridge Regression [2], Nonnegative Garrote [6],
LeastAbsolute Selection and ShrinkageOperator (LASSO, [8]) are themost com-
mon forms of embedded methods. In these methods, the coefficients (weights) of
the features are penalized by some regularization terms or forced to be exactly
zero. Features with weights close to zero are then eliminated without compro-
mising the prediction performance of the model. Analogy to filters, several devel-
opments have been achieved in embedded regularization methods. LASSO [15]
and Elastic Net [11] are examples of methods that were developed to measure the
importance of subsets of features. Boosted LASSO [13] and Smoothly Clipped
Absolute Deviation (SCAD) [14] are examples of methods that use nonlinear reg-
ularization terms to produce more sparse and unbiased estimators of coefficients.
Other embedded methods are based on decision tree algorithms. In this group of
embedded methods, various decision trees are iteratively built using bootstrap-
ping and for each tree, information gain (based on specific information entropy)
is calculated for each feature. Features are then ranked based on the average infor-
mation gain over all trees. Random Forest algorithm [7] is one popular example of
decision tree methods. Louppe et al. in [17] provided comparative analysis of fea-
ture importance using various decision tree algorithms. Embedded methods can
be disadvantaged for the fact that feature weights are often estimated iteratively
not explicitly.

The reader is referred to the excellent reviews of feature selection methods found
in [22, 23].
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3 Sobol Sensitivity Approach

In this section we propose a new technique for feature selection in machine learning
and provide somemathematical foundation of the algorithm. The proposed technique
is based on variance decomposition principle of model output developed by Sobol
(1990) [18] (inRussian) andSobol (1993) [19] (inEnglish). Sobol sensitivity analysis
is intended to determine how much of the variability in model output is dependent
upon each of the input variables, either upon a single variable or upon an interaction
between different variables. The decomposition of the output variance in a Sobol
sensitivity analysis employs the same principal as the classical analysis of variance
in factorial experimental designs.

3.1 Theoretical Background

Let the function f (x), where x = (x1, ..., xn) be defined on the unit n-dimensional
cube

Kn = {x | 0 � xi � 1, i = 1, ..., n}.

Sobol’s main idea is to decompose the function f (x) into summands of increasing
dimensionality, namely

f (x) = f0 +
n∑

i=1

fi(xi) +
∑

1≤i<j≤n

fij(xi, xj) + ...... + f12...n(x1, ..., xn). (1)

The decomposition in (1) holds true if f0 is a constant and the integral of every
summand over any of its variables is zero, i.e.

1∫

0

fi1...is(xi1 , ..., xis)dxik = 0, 1 � i1 < .... < is ≤ n, 1 � k � s, s = 1, 2, .....n.

For independent x1, ..., xn, all terms in Eq. (1) are orthogonal and f0 can be calculated
as:

f0 =
∫

Kn

f (x)dx (2)

which represents the average value (or expectation) of the function f . Sobol (1993)
[19] showed that decomposition (1) is unique and all of its terms can easily be
evaluated through multi-variable integrals.

Because of the orthogonality of the x-space, the total variance D of f (x) can also
be partitioned in the same way as the original function, i.e.,
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D =
n∑

i=1

Di +
∑

1≤i<j≤n

Dij + ...... + D12...n (3)

where

D =
∫

Kn

f 2(x)dx − f 20

and

Di1...is =
1∫

0

...

1∫

0

f 2i1...is(xi1 , ..., xis)dxi1 ...dxis
1 � i1 < .... < is ≤ n,
s = 1, 2, .....n

Di1...is is the partial variance attributed to xi1 , ..., xis defined by the variance of the
conditional expectation of f (x) conditioned on xi1 , ..., xis , namely,

Di1...is = Var[E(f |xi1 , ..., xis)]

where the conditional expectation is taken over all xj not in {i1, ..., is} and variance
is computed over the range of possible values of xi1 , ..., xis .
The usefulness of Di1...is as a measure of sensitivity is easy to grasp. Influential
xi1 , ..., xis control f significantly and so E(f |xi1 , ..., xis) will mimic f . In this case the
total variance in f will be matched by the variability in E(f |xi1 , ..., xis) as xi1 , ..., xis
vary making Di1...is large compared to the total variance D.

Sobol in [20] proposed the following indices tomeasure sensitivity of the function
with respect to xi1 , ..., xis :

Si1...is = Di1...is

D
, 1 � i1 < .... < is � n, s = 1, 2, .....n (4)

with
∑

Si1...is = 1.
For s = 1, the sensitivity measure Si1 = Si is called first-order sensitivity index

which measures the fractional contribution of the individual variable xi to the total
variance of f . For s = 2, Sij is called the second-order sensitivity index which mea-
sures the portion of the variability in f due to the interaction of xi and xj and so on.
Total sensitivity index, defined as the sum of all sensitivity indices involving xi up to
the n-th order, i.e.,

TSi = Si +
n∑

j:j �=i

Sij + ....... + S1....i...n (5)

was also proposed to quantify the overall effect of xi on the model output.
Decomposition (1) or (3) has long history and was given in its general form

by Efron and Stein [9]. More concisely, one can think of f (x) as some statistics
defined on the independent variables x1, ..., xn, then f (x) may be decomposed into
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a grand mean f0 = E[f (x)]; i-th main effect fi(xi) = E[f (x|xi)] − f0; ij-th interac-
tion fij(xi, xj) = E[f (x|xi, xj)] − E[f (x|xi)] − E[f (x|xj)] + f0 and so on. Given these
definitions, decomposition (1) follows immediately. The f ,i s, f

,
ijs,....are known in

factorial experimental design as ANOVA-HDMR, where HDMR stands for High-
Dimensional Model Representation.
For example, when n = 2, f (x) can be decomposed into:

f (x1, x2) = f0 + f1(x1) + f2(x2) + f12(x1, x2) =
= f0 + E[f (x|x1)] − f0 + E[f (x|x2)] − f0+
+E[f (x|x1, x2)] − E[f (x|x1)] − E[f (x|x2)] + f0.

The individual terms of decomposition (1) can easily be shown to have a zero mean.
For example E[fi(xi)] = E[E[f (x|xi)] − f0] = E[f (x)] − f0 = 0. Decomposition (1)
terms can also be shown to bemutually uncorrelated, implying that the unconditional
total variance of f (x), D, can simply be expressed as a sum of variances of these
uncorrelated terms giving the variance decomposition (3) where

Di = Var(fi(xi)) = Var(E[f (x|xi)])
Dij = Var(fij(xi, xj)) = Var(E[f (x|xi, xj)]) + Var(E[f (x|xi)])+

+Var(E[f (x|xj)])

and so on. It is noted that decomposition (3) is similar to the classical ANOVA
decomposition without the residual error term.

If the relationship betweenx and themodel output is additive linear, then a straight-
forward variance decomposition can be provided by regression analysis. It can be
shown, in this case, that the first-order sensitivity index, Si is equal to the squared
standardized regression coefficients, i.e., Si = β2

i . That is, the β,
i s give the fractional

contribution of each predictor to the variance of the response variable. The effec-
tiveness of β,

i s as a measure of sensitivity, in this case, depends on the quality of
the fitted model and the degree of linearity in the relationship between the response
variable and predictors.

The definition of Sobol sensitivity index given in (3) can be extended to include
group indices for subsets of variables and their joint sensitivity behaviour. Suppose
the variables x1, ..., xn are partitioned into r disjoint groups x1, ..., xr , r < n, then
decomposition (1) can be expressed as:

f (x) = f0 +
r∑

i=1

fi(xi) +
∑

1�i<j�r

fij(xi, xj) + ...... + f1,2,.....,r(x1, ..., xr).

For r = 2 for example, the variables x are partitioned into two groups y and z, giving
the following decomposition:
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f (x) = f1(y) + f2(z) + f12(y, z).

The variances D1 and D2 for each of y and z are calculated as

D1 =
1∫

0

...

1∫

0

f 21 (y)dy, D2 =
1∫

0

...

1∫

0

f 22 (z)dz (6)

and

D =
1∫

0

...

1∫

0

f 2(x)dx − f 20 , D12 = D − D1 − D2. (7)

For this two-set decomposition, we define the following sensitivity index:

SIy = 1

D
(D1 + D12)

SIz = 1

D
(D2 + D12).

(8)

In the next section, SIy and SIz will be referred to as Sobol Importance (SI) measure
that will be used as the basis for feature selection mechanism.

In practice, variables are usually ranked based on the magnitude of their Sobol
sensitivity indices, the higher themagnitude, themore influential respective variables
are. Although no distinct cutoff value has been defined, the rather arbitrary value of
0.05 is frequently accepted for this type of analysis for distinguishing important from
unimportant variables. It should be noted though that this value of 0.05 is primarily
used for more complex models and it may be not stringent enough for relatively
simple models that contain only few input variables.

3.2 Sobol Sensitivity for Machine Learning

3.2.1 General Framework

Let m be a number of samples in the dataset and n be a number of features (vari-
ables). Denote the set of feature indices as J = {1, . . . , n}. For the purpose of feature
selection in machine learning, we propose to partition the set of indices J into two
subsets J1 = {j1, . . . , js} and J2 = {j ∈ J | j /∈ J1} and estimate the importance for the
features from each group separately using Sobol sensitivity index given in Eq. (8). In
manymachine learning problem settings, splitting features into two groups is deemed
sufficient for identifying important features. In the classical Sobol’s sensitivity analy-
sis, variables (features) are assumed independent and uniformly distributed over the
interval [0, 1]. In our proposed analysis, we consider normally distributed features
following the work of Arwade et al. (2010) [26] and continue to assume independent
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features. The Monte-Carlo procedure [20] can be applied to evaluate the quantities
from above (6) and (7). Assuming that X is an original design matrix we generate
two new matrices Y and Z such that Y is obtained from X by random shuffling each
column with index j ∈ J1, Z is obtained by random shuffling each column with index
j ∈ J2. We denote xi, yi, zi the i-th row of the matrices X, Y , and Z accordingly.

Based onMonte-Carlo exploration of the features’ space, the quantities in (6) and
(7) can be estimated as follows:

f0 = 1
m

m∑
i=1

f (xi), D + f 20 ≈ 1
m

m∑
i=1

f 2(xi),

D1 + f 20 ≈ 1
m

m∑
i=1

f (xi)f (zi), D2 + f 20 ≈ 1
m

m∑
i=1

f (xi)f (yi),

D12 = D − D1 − D2,

(9)

where summation is taken by all dataset entries.
The suggested permutation procedure of the designmatrixX allows the generation

of randomvalues from the assumed distribution of features for use in theMonte-Carlo
algorithm. Sobol importance scores for the feature subsets J1 and J2 are calculated
using (8).

3.2.2 Computational Aspects

The general framework described above gives rise to the following algorithm that cal-
culates feature importance for subsets of features. The main output of this algorithm
is the Sobol importance (SI) score for a given subset of features.

Algorithm 1 Sobol importance scores for feature subset
1: Let X be an m × n design matrix for the given dataset, y be a vector of outputs.
2: Train the model M on the original dataset X , y and obtain predictions p on the dataset X

3: Evaluate f0 = 1

m

m∑
i=1

pi and D = 1

m

m∑
i=1

p2i − f 20

4: Define a feature subset of interest
J1 = {j1, . . . , js}

and complimentary feature subset

J2 = {j ∈ {1, 2, . . . , n} | j /∈ J1}
5: Create matrix Y from X by random shuffling columns with indices j ∈ J1 and matrix Z from X

by random shuffling columns with indices j ∈ J2
6: Use model M with design matrix Z as an input to obtain D1 using Eq. (9)
7: Use model M with design matrix Y as an input to obtain D2 using Eq. (9)
8: Evaluate D12 = D − D1 − D2
9: Compute Sobol importance score for the subset J1 using Eq. (8):

SIJ1 = 1

D
(D1 + D12)
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Asmentioned earlier, themain challenge in feature selection algorithms is the high
computational cost due to huge number of subsets that need to be investigated. With
Sobol sensitivity approach, the importance of both individual features and subsets of
features can be computed using the same Monte Carlo integral. The next algorithm
utilizes this computational efficiency of the approach and calculates importance score
based on the total sensitivity index given in Eq. (5) up to second-order interactions.
In many application areas, second order interactions are deemed sufficient to capture
the joint sensitivity behaviour of features. To calculate the Sobol importance score SIi
for individual features, the subset J1 in Algorithm 1 is set to J1 = {i}, i = 1, 2, . . . , n
and for joint importance score SIij, J1 = {i, j}, j = 1, 2, . . . , i − 1, i + 1, . . . , n.

Algorithm 2 Feature selection based on total second order Sobol importances
1: Initialize the n × n matrix S of zeros
2: for i=1 to n do
3: for j=i to n do
4: if j == i then
5: Using Algorithm 1 calculate the individual importance SIi of feature with index i

and assign it to the diagonal elements of S, i.e. Sii = SIi
6: else
7: Using Algorithm 1 calculate the importance SIij of features with indices i, j and assign

it to Sij
8: Sort the features based on the total second order sensitivity indices given by:

TSIi =
n∑

j=1

Sij

9: For a given k, select the features with the highest k-TSI scores. k depends on the desired accuracy
of the model.

Algorithm 2 requires n(n+1)
2 score evaluations for n features. All these evaluations

are completed using the same Monte Carlo integral.
Similar to wrappers, Sobol sensitivity is a model-based approach that utilizes the

trained model to evaluate feature importances. While wrappers select a subset of
features to train the model, Sobol sensitivity uses the full feature set to train the
model just as embedded methods do. Based on the trained model, it evaluates impor-
tance scores and, similar to filters, it identifies the subset of important features with
highest scores without retraining the model. As the case for filters and wrappers, the
optimality and efficiency of the technique depend on the training algorithm (learner)
and/or model-performance metric used. Sobol sensitivity assumes normally distrib-
uted and statistically independent features. These two distributional assumptions are
popular in many feature selection algorithms. It can, however, consider other feature
probability distributions and can be implemented for statistically dependent features.
Because it is variance-based measure, it can be applied for linear and nonlinear rela-
tionships between target variable and features. In terms of computational needs,
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Sobol sensitivity approach can be considered one of the most tractable techniques
because importance scores for all feature subsets are computed using the sameMonte
Carlo integral.

4 Application and Comparisons

In this section, we apply the proposed feature selection techniques to several data
sets known in machine learning community and presents comparative evaluations of
the results obtained with results obtained using: Random Forest (RF) and Support
Vector Machine Recursive Feature Elimination (SVM-RFE).

Example 1: Effect of noise on Sobol importance.
In this example we demonstrate the behavior of Sobol importance approach under

different levels of noise in the model starting from zero-level noise model (100%
accurate predictions). We consider a model function given by Friedman in [28]:

f (x1, x2, x3, x4, x5) = 10 sin(πx1x2) + 20

(
x3 − 1

2

)2

+ 10x4 + 5x5+

+σh(x6, x7, ......, x15).

(10)

We generate the dataset with 1000 training examples and 15 features (drawn from the
normal distribution). Only first 5 features are important. Figure4 shows the results of
Algorithm 2 for different values of σ. Using 0.05 as the cutoff value to declare impor-
tance, it is easily seen that the first 5 features continue to be the important features for
σ ≤ 1. Once σ is inflated beyond 1, more features exhibit themselves as important.
However, for all σ values (except σ = 2.5, the overall ranking of features continues
to agree with the first five features being the subset of features demonstrating highest
importance scores.

Example 2: Comparisons using simulated data.
Friedman model function used in example 1 is used here to generate a data set

with 1000 training examples and 15 features drawn from the normal distribution,
only first 5 features are used to calculate the function in (10). The values of the
function are used as values of the target variable y.
We calculate Sobol importances based on four different models: Neural Network
(NN), Support Vector Machine (SVM), Random Forest (RF) and Gradient Boost-
ing Trees model (XGB). We compare the results with importances obtained using
Random Forest (RF) and Support Vector Machine Recursive Feature Elimination
(SVM-RFE). Figure5 depicts the findings. All algorithms correctly identify the first
five features as the important set of features. One exception is observed in SVM-
RFEwhere features 12 and 14 are identified as equally important. This wrong feature
identification can be due to nonlinearity in the relationship between target variable
and features for which SVM-RFE can not capture.
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Fig. 4 Sobol importances for Friedman function with noise
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Fig. 5 Comparisons using simulated Friedman dataset

Example 3: Comparisons using benchmark data sets.
In this example, four benchmarkdata sets, described inTable1, are used to evaluate

the performance of Sobol sensitivity as compared to SVM-RFE and RF algorithms.
The model is trained using NN, RF and SVM methods and Sobol importance

scores are calculated for all features in each data set using the three training methods.
The results are compared to importance measures obtained using SVM-RFE and RF
benchmark methods. For more meaningful comparisons, different threshold values
for the number of important features selected from the benchmark importances.
For example, threshold 10 means that we take top 10 important features from the
benchmark algorithms. To compare the results we use Area Under the Curve (AUC)
metric. The AUC calculates the overall differences in the feature rankings obtained
by the benchmark method for a given threshold and those obtained from the Sobol
importance scores. The general work flow is visualized in Fig. 6.

The resultingAUCvalues for the different models and the four datasets are plotted
against different threshold values in Fig. 7. The Fig. 7 demonstrates that the different
algorithms have succeeded in identifying comparable sets of important features.
For example, the AUC between RF and Sobol RF feature rankings is higher than
0.9, which means that more than 90% of features are common between the two
algorithms.
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Table 1 Datasets description

Set Domain Num. var. Num.
samples

Target Data type Ref.

SYLVA Ecology 216 14394 Ponderosa
pine

Continuous
and discrete

WCCI 2006
Perfor-
mance
Prediction
Challenge

HIVA Drug
discovery

1617 4229 Activity to
AIDS HIV
infection

Discrete
(binary)

WCCI 2006
Perfor-
mance
Prediction
Challenge

NOVA Text 16969 1929 Separate
politics
from
religion
topics

Discrete
(binary)

WCCI 2006
Perfor-
mance
Prediction
Challenge

BANK Financial 147 7063 Personal
bankruptcy

Continuous
and discrete

Foster and
Stine [29]

Original feature set

Benchmark method
(RF, SVM-RFE) Threshold

Train model
(NN, SVM, RF) TSI scores

AUC score

Fig. 6 Feature importances comparison framework

Furthermore, for each algorithm in Fig. 7, the top N% important features are
selected and themodel is trained by SVMalgorithmon the selected subset of features.
Table2 presents the reduced model accuracy values expressed by the Root Mean
Square Errors (RMSE). Reported in Table2 also are the RMSE values for the trained
model on all features in each data set.

Table2 demonstrates that for all benchmark data sets, the reduced models give
significantly more accurate predictions than that given by the full model. When top
10% important features are used in the model, the Sobol approach gives better result
than the benchmark algorithms SVM-RFE and RF. When including more than 10%
important features, SVM-RFE performs marginally better than Sobol approach in
two of the data sets. In calculating variance contributions of features to the overall
variability in the target variable, Sobol sensitivity approach can identify the small
number of most important features more accurately than other methods. When larger
number of features are desired in the model, the approach may fail to provide most
accurate predictions due to the increased level of noise in the data. According to
the analysis of Example 1, greater level of noise can distort the Sobol rankings of
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SYLVA: HIVA:

NOVA: BANK:

Fig. 7 Comparisons using benchmark data sets

important features. It may also imply that higher order interactions between features
are needed for more accurate predictions in this situation.

The performance consistency of the three techniques measured by the standard
deviation ofmodel accuracy overN valueswas also examined. The standard deviation
values, s, reported in Table2 clearly exhibits comparable consistency between the
three methods.

In summary, for the given data sets the total Sobol second order indices TSI
produce the most accurate model predictions for the majority of cases. By varying
the values of N , the TSI model accuracy shows small fluctuations (measured by s
values) that are comparable to fluctuations observed by SVM-RFE or RF benchmark
methods.

5 Conclusion

In this paper we implemented Sobol sensitivity analysis to select important fea-
tures for the supervised data mining problem. We have proposed two algorithms for
importance scoring: one algorithm to compute importance scores for the individual
features and another one to compute importance scores for subsets of features. The
main advantage of our proposed approach is lower computational cost and higher
efficiency compared to many other existing algorithms. It can be applied for all types
of relationships (linear or nonlinear) between target variable and features. A concern
about the algorithm is that it estimates the importance of features with respect to the
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Table 2 Reduced datasets model accuracy

N (top N %
features
selected)

SVM-RFE RF TSI(RF) TSI(NN) TSI(SVM)

SYLVA: RMSE (all features) = 0.144

10% 0.103 0.09 0.09 0.085 0.091

20% 0.104 0.088 0.094 0.096 0.095

30% 0.104 0.1 0.094 0.102 0.099

40% 0.106 0.113 0.109 0.102 0.102

50% 0.117 0.118 0.117 0.113 0.11

s 0.005 0.012 0.01 0.009 0.006

HIVA: RMSE (all features) = 0.179

10% 0.163 0.165 0.166 0.168 0.163

20% 0.162 0.168 0.168 0.168 0.165

30% 0.161 0.175 0.173 0.173 0.168

40% 0.165 0.177 0.18 0.175 0.17

50% 0.168 0.181 0.182 0.176 0.17

s 0.003 0.006 0.006 0.003 0.003

BANK: RMSE (all features) = 0.252

10% 0.227 0.235 0.24 0.225 0.213

20% 0.21 0.236 0.239 0.224 0.217

30% 0.213 0.229 0.238 0.223 0.216

40% 0.216 0.229 0.23 0.225 0.222

50% 0.217 0.226 0.221 0.23 0.226

s 0.006 0.004 0.007 0.002 0.005

NOVA: RMSE (all features) = 0.242

10% 0.256 0.275 0.27 0.24 0.28

20% 0.24 0.241 0.259 0.221 0.26

30% 0.237 0.24 0.253 0.219 0.248

40% 0.234 0.24 0.246 0.217 0.238

50% 0.236 0.244 0.246 0.218 0.233

s 0.008 0.01 0.009 0.009 0.017

model objective function which means that if the modeling algorithm is not accurate
or overfitting, the Sobol approach may give misleading feature importances. The
authors intend to further investigate the robustness of the approach to the training
algorithm. As Example 3 has shown, the accuracy of the reduced model is higher
than the full feature set model. It is then possible to train the model on a subset of fea-
tures identified by a pre-processing algorithm and use the reduced model to compute
Sobol feature importances. In addition to increasing Sobol importance reliability and
efficiency, using reduced model to calculate importances reduces the computational
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cost of the method. Another possible approach to reduce the computational cost is
using Kolmogorov representation theorem [27] in which the model objective func-
tion can be expressed in an additive form of sub-functions, each as a single-variable
function. If the hypothesis of additive model is true, then the Sobol algorithm can be
simplified so as to require 2n model evaluations only.
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