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1 Introduction

Let A = [ai j ] be an m × n matrix, and let A† = [a†i j ] denote the m × n matrix

obtained from A by a rotation of 180◦. Thus a†i j = an+1−i,n+1− j for all i and j .
The matrix A is centrosymmetric provided A† = A, that is, provided

an+1−i,n+1− j = ai j for all i and j.

If the m × n matrix A is centrosymmetric, then if m (resp., n) is odd, row
(m + 1)/2 (resp. column (n + 1)/2) is palindromic, that is, is the same read for-
ward or backward. The centrosymmetric matrix A is determined by its first �n/2�
columns. Centrosymmetric matrices have occured in many investigations; see e.g.
[1, 2, 6].
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As usual At = [ati j ] denotes the usual n × m transpose of A so that ati j = a ji

for all i and j . In addition, we consider the matrix Ah = [ahi j ] to denote the Hankel
transpose [5] of A. This is the n × m matrix obtained from A by interchanging rows
and columns as with the transpose, but using the reverse order in both cases. Thus
ahi j = an+1− j,n+1−i for all i and j . For example, if

A =
[
a b c
d e f

]
,

then

Ah =
⎡
⎣ f c
e b
d a

⎤
⎦ .

If A is a square matrix, then Ah is obtained from A by transposing across theHankel
diagonal, that is, across the diagonal of A running from upper right to lower left.

A matrix A is symmetric provided that At = A. We say that a matrix is Hankel-
symmetric provided that Ah = A. Symmetric and Hankel-symmetric matrices must
be square matrices. An example of a Hankel-symmetric matrix is

⎡
⎣2 1 0
4 5 1
3 4 2

⎤
⎦ .

If a square matrix is both symmetric and Hankel-symmetric, then it is centrosym-
metric. This is because, consecutive reflections about two perpendicular lines (the
main diagonal and the antidiagonal) is a rotation by 180◦. More precisely, we have
the following basic result.

Proposition 1 Let A be an n × n matrix. Then any two of the following three prop-
erties implies the other:

(s) A is symmetric: At = A.
(hs) A is Hankel-symmetric: Ah = A.
(cs) A is centrosymmetric: A† = A.

Proof (i) (s) and (hs) ⇒ (cs): ai j
(hs)= an+1− j,n+1−i

(s)= an+1−i,n+1−l .

(ii) (s) and (cs) ⇒ (hs): ai j
(cs)= an+1−i.n+1− j

(s)= an+1− j,n+1−i .

(iii) (hs) and (cs) ⇒ (s): ai j
(cs)= an+1−i,n+1− j

(hs)= a ji .
�

Centrosymmetric permutation matrices are studied in [1, 2]. Centrosymmetric
graphs are considered in [6].

A matrix, even a permutation matrix, may be centrosymmetric but not Hankel
symmetric, or Hankel symmetric but not centrosymmetric. For example,
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⎡
⎢⎢⎣

1
1

1
1

⎤
⎥⎥⎦ (Hankel symmetric but not centrosymmetric),

and ⎡
⎢⎢⎣

1
1

1
1

⎤
⎥⎥⎦ (centrosymmetric but not Hankel symmetric)

Let R = (r1, r2, . . . .rm) and S = (s1, s2, . . . , sn) be two nonnegative vectors with
the sum of components:

τ := r1 + r2 + · · · + rm = s1 + s2 + · · · + sn.

We denote by T (R, S) the set of all nonnegative real matrices with row sum vector
R and column sum vector S. Matrices in T (R, S) are often called transportation
matrices because of their connection to the well-known transportation problem of
transporting goods from m sources with supplies of sizes given by R to n sources
with demands given by S. T (R, S) is a convex polytope, and is nonempty since the
m × n matrix T = [ti j ] with

ti j = ri s j
τ

for all i and j.

is in T (R, S). If R and S are also integral vectors, then T (R, S) is an integral trans-
portation polytope. An integral transportation polytope always contains an integral
matrix. In fact, the following transportation matrix algorithm always produces such
a matrix A = [ai j ] (see e.g. [4], pp. 26–27):
(1) Choose any i and j and set ai j = min{ri , s j }.

(a) If min{ri , s j } = ri , set ail = 0 for all l �= j .
(b) If min{ri , s j } = s j , set akj = 0 for all k �= i .

(2) Reduce ri and s j by min{ri , s j }, and proceed inductively.

In fact, the matrices produced by this algorithm carried out in all possible ways gives
all the extreme points of the convex polytope T (R, S). Note that if R and S are
integral vectors, then the algorithm always produces integral matrices. We denote
the class of integral matrices in T (R, S) by TZ (R, S). The class TZ (R, S) may or
may not contain a (0, 1)-matrix even if the components of R and S are small enough.
For instance, if R = (4, 3, 2, 1) and S = (4, 4, 1, 1), then there does not exists a
(0, 1)-matrix in Z(R, S).

Again with the assumption that R and S are nonnegative integral vectors, a much
studied class of matrices is the classA(R, S) consisting of allm × n (0, 1)-matrices
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in TZ (R, S). TheGale-Ryser theorem (see e.g. [4], p. 27) characterizes the nonempti-
ness of the class A(R, S) as follows.

Let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) be nonnegative integral vectors
with

r1 + r2 + · · · + rm = s1 + s2 + · · · + sn.

Assume without loss of generality (by permuting rows and columns if necessary)
that

r1 ≥ r2 ≥ · · · ≥ rm and s1 ≥ s2 ≥ · · · ≥ sn.

Let R∗ = (r∗
1 , r

∗
2 , . . . , r

∗
n ) be the conjugate of R, that is,

r∗
j = |{i : ri ≥ j}.

Then A(R, S) �= ∅ if and only if S is majorized by R, that is,

s1 + s2 + · · · + s j ≤ r∗
1 + r∗

2 + · · · + r∗
j ( j = 1, 2, . . . , n), with equality for j = n.

(1)

Assuming that R = S = (r1, r2, . . . , rn), one can also consider the existence of
symmetric matrices in the classes T (R, R) and, if R is integral, TZ (R, R) and
A(R, R). The classes T (R, R) and TZ (R, R) always contain a symmetric matrix
since they contain the diagonal matrix with r1, r2, . . . , rn on the main diagonal. It is
a consequence of a theorem of Fulkerson, Hoffman, and McAndrew that the class
A(R) contains a symmetric matrix if and only if it is nonempty (see e.g. [3], pp.
179–182).

In this note, we consider certain subsets of the above matrix classes defined by
imposing the structural conditions of centrosymmetry, and symmetry and Hankel-
symmetry, and we obtain analogous results to those described above.

2 Existence Theorems

In this section we obtain nonemptiness criteria for the classes introduced in the
previous section. Since the property of centrosymmetry does not require that the
matrix be square, we need not assume our matrices are square in this case; but
symmetry and Hankel-symmetry do require that the matrix be square. We shall adapt
three well-known algorithms to the centrosymmetric, and symmetric and Hankel-
symmetric cases.

Let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) be nonnegative vectors. Let
C(R, S) denote the class of all centrosymmetric, nonnegative matrices with row sum
vector R and column sum vector S. If R and S are also integral, let CZ (R, S) denote
the class of all centrosymmetric, nonnegative integral matrices with row sum vector



Centrosymmetric, and Symmetric and Hankel-Symmetric Matrices 21

R and column sum vector S. Recall that a vector (d1, d2, . . . , dk) is palindromic
provided that di = dk+1−i for all i .

Theorem 2 The class C(R, S) is nonempty if and only if

m∑
i=1

ri =
n∑
j=1

s j . (2)

and
R and S are palindromic. (3)

If R and S are integral vectors, the class CZ (R, S) is nonempty if and only if (2) and
(3) hold.

Proof The conditions (2) and (3) are certainly necessary in order that C(R, S) �= ∅
and, if R and S are integral, in order that CZ (R, S) �= ∅. Now assume that (2) and
(3) hold. We modify the transportation matrix algorithm to show the two classes are
nonempty.

Since R and S are palindromic, it follows from (2) that if m is even and n is odd,
then s(n+1)/2 is even. Similarly. if m is odd and n is even, then r(m+1)/2 is even. If m
and n are both odd, then r(m+1)/2 and s(n+1)/2 have the same parity. We proceed as in
the transportation algorithm but with the modifications as given below. If R and S
are integral, the result will be an integral matrix.

Ifm and n are both odd and e.g. r(m+1)/2 ≥ s(n+1)/2, then we put a(m+1)/2,(n+1)/2 =
s(n+1)/2, and put the remaining entries in column (n + 1)/2 equal to zero and adjust
r(m+1)/2 to r(m+1)/2 − s(n+1)/2. Then we are left to construct a centrosymmetric m ×
(n − 1) matrix where m is odd and n − 1 is even with palindromic row and column
sum vectors the sum of whose entries are equal.

If m is even and n is odd, then there are two possibilities (first we use row 1
although any row i ≤ m/2 can be used): If 2r1 ≤ s(n+1)/2, then we put a1,(n+1)/2 =
am,(n+1)/2 = r1 and set the remaining entries in rows 1 and m equal to zero. Then,
adjusting the sum of column (n + 1)/2, we are left to construct a centrosymmetric
(m − 2) × nmatrix with palindromic row and column sum vectors the sum of whose
entries are equal. If 2r1 > s(n+1)/2, then we set a1,(n+1)/2 = am,(n+1)/2 = s(n+1)/2

2 , and
set the remaining entries in column (n + 1)/2 equal to zero. If needed, we next
consider row 2 and continue until column (n + 1)/2 is specified. We are then left to
construct a centrosymmetric m × (n − 1) matrix with palindromic row and column
sum vectors the sum of whose entries are equal.

If m is odd and n is even, we proceed in a similar way.
Finally, if m and n are both even, then we proceed as in the transportation matrix

algorithm with additionally setting an+1−i,n+1− j = ai j , and adjusting two row or two
column sums as needed. �

Example 3 Let R = (2, 4, 5, 4, 2) and S = (5, 2, 3, 2, 5). Then one way to carry out
the above procedure to obtain a matrix in C(R, S) is the following:
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⎡
⎢⎢⎢⎢⎣

0
0
3
0
0

⎤
⎥⎥⎥⎥⎦ →

⎡
⎢⎢⎢⎢⎣

0
0

1 0 3 0 1
0
0

⎤
⎥⎥⎥⎥⎦ →

⎡
⎢⎢⎢⎢⎣

2 0 0 0 0
0

1 0 3 0 1
0

2 0 0 0 2

⎤
⎥⎥⎥⎥⎦ →

⎡
⎢⎢⎢⎢⎣

2 0 0 0 2
2 0 0
1 0 3 0 1
0 0 2
0 0 0 0 2

⎤
⎥⎥⎥⎥⎦ →

⎡
⎢⎢⎢⎢⎣

2 0 0 0 0
2 2 0 0 0
1 0 3 0 1
0 0 0 2 2
0 0 0 0 2

⎤
⎥⎥⎥⎥⎦ .

�

We now consider the possibility of the existence of an m × n (0, 1)-matrix A =
[ai j ] in C(R, S). Let C(0,1)(R, S) denote the set of (0, 1)-matrices in C(R, S). Then

C(0,1)(R, S) = C(R, S) ∩ A(R, S).

Hence, necessary conditions for the nonemptiness of C(0,1)(R, S) are that both
C(R, S) and A(R, S) are nonempty. For C(R, S) �= ∅, conditions (2) and (3) must
hold and hence R and S must be palindromic with the same sum of entries. Thus if
A = [ai j ] ∈ C(0,1)(R, S) and m and n are both odd, then r(m+1)/2 and s(n+1)/2 have
the same parity, and a(m+1)/2,(n+1)/2 = 1 if this parity is odd and a(m+1)/2,(n+1)/2 = 0
if this parity is even.

Before showing C(R, S) �= ∅ and A(R, S) �= ∅ are also sufficient for the class
C(0,1)(R, S) to be nonempty, we consider a property of this class analogous to a basic
property of A(R, S). This property of A(R, S) is the following.

Let A = [ai j ] ∈ A(R, S). Let i, j, k, l be indices where i < j and k < l such that
the 2 × 2 submatrix of A determined by rows i and j and columns k and l is

A[i, j |k, l] =
k l

i 1 0
j 0 1

. (4)

Replacing this 2 × 2 submatrix equal to I2 with

L2 =
[
0 1
1 0

]

gives another matrix in C(0,1)(R, S). Similarly, replacing an L2 with an I2 in a matrix
in A(R, S) always gives another matrix in A(R, S). Either of these replacements is
called an interchange. It is a basic fact (see e.g. [4], pp. 52–57) that any matrix in
A(R, S) can transformed into any other by a sequence of interchanges.

Now suppose that A is also centrosymmetric, Then if (4) holds in A, we also have
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A[n + 1 − j, n + 1 − i |n + 1 − l, n + 1 − k] =
n + 1 − l n + 1 − k

n + 1 − j 1 0
n + 1 − i 0 1

.

Replacing each of these 2 × 2 submatrices equal to I2 with

L2 =
[
0 1
1 0

]

gives another matrix in C(0,1)(R, S). We call this pair of substitutions and the one
going in the reverse direction (so two submatrices equal to L2 are replaced with
matrices equal to I2) a centrosymmetric double-interchange. Note that if i + j =
n + 1 and k + l = n + 1, only one 2 × 2 submatrix is involved in a centrosymmetric
double-interchange.

Lemma 4 Assume that at least one ofm and n is odd and A = [ai j ] ∈ C(0,1)(R, S) �=
∅. Then by a sequence of centrosymmetric double-interchanges we can obtain a
matrix C = [ci j ] ∈ C(0,1)(R, S) such that, except for c(m+1)/2,(n+1)/2 in the case that
both m and n are odd, the 1s in row (m + 1)/2 if m is odd occur in the positions
corresponding to the largest column sums, and the 1s in column (n + 1)/2 if n is
odd occur in the positions corresponding to the largest row sums.

Proof This lemma follows easily using centrosymmetric double-interchanges. First,
if m and n are both odd, then a(m+1)/2,(n+1)/2 equals 1 if r(m+1)/2 and s(n+1)/2 have
odd parity, and equals 0 if they have even parity. If there are two columns k and
l with 1 ≤ k, l ≤ (n + 1)/2 such that sk < sl but a(m+1)/2,k = 1 and a(m+1)/2,l = 0,
then for some i we must have aik = 0 and ail = 1. Then there is a centrosymmetric
double-interchange that replaces a(m+1)/2,k with 0 and a(m+1)/2,l with 1.A similar
argument works for rows. It follows that by centrosymmetric double-interchanges
we can arrive at C with the desired properties. �

Lemma 5 Let A and B be any twomatrices inC(0,1)(R, S). Then there is a sequence
of centrosymmetric double-interchanges which transforms A into B with all inter-
mediate matrices in C(0,1)(R, S).

Proof We may assume that both A = [ai j ] and B = [bi j ] have the properties of C
specified in Lemma 4. By deleting row (m + 1)/2 ifm is odd and column (n + 1)/2
if n is odd, we may assume that both m and n are even. By permutations of rows
and of columns in a way that preserves centrosymmetry, we may also assume that
r1 ≥ r2 ≥ · · · ≥ rm/2 and that s1 ≥ s2 ≥ · · · ≥ sn/2. Consider columns 1 and n of A,
and suppose they differ from columns 1 and n of B, respectively. Then there exists k
and l with k �= l such that akn = 1 and aln = 0, and bkn = 0 and bln = 1 (or the other
way around). Suppose there did not exist a p such that either akp = 0 and alp = 1,
or bkp = 1 and blp = 0. Since A and B have the same row sum vector R, from A
we see that rk > rl , and from B we see that rk < rl , a contradiction. Without loss
of generality, assume that akp = 0 and alp = 1 for some p. Then a centrosymmetric
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double-interchange applied to A results in amatrixC whose column n (and column1)
has more in common with the corresponding columns of B. Replacing A with C and
proceeding recursively, we see that there is a sequence of centrosymmetric double-
interchanges applied to A and a sequence of centrosymmetric double-interchanges
applied to B such that the resultingmatrices A′ and B ′ are inC(0,1)(R, S) and their cor-
responding columns n and corresponding columns 1 agree. Proceeding recursively,
we see that there is a sequence of centrosymmetric double-interchanges applied to A
and a sequence of centrosymmetric double-interchanges applied to B which result
in the same matrix. Since centrosymmetric double-interchanges are reversible, this
completes the proof. �

Since by Lemma 4, if at least one ofm and n is odd, we can reduce the nonempti-
ness ofC(0,1)(R, S) to the casewhere bothm and n are even, we now assume that both
m and n are even. By Theorem 2, C(R, S) �= ∅ if and only if (2) and (3) are satisfied.
Necessary and sufficient conditions for A(R, S) �= ∅ are given by the Gale-Ryser
theorem (see e.g. [4]). Assuming without loss of generality that the monotonicity
conditions r1 ≥ r2 ≥ · · · ≥ rm/2 and s1 ≥ s2 ≥ · · · ≥ sn/2 hold, the Gale-Ryser con-
ditions applied to the monotone rearrangements of R and S, that is, to

(r1, r1, r2, r2, . . . , rm/2, rm/2) and (s1, s1, s2, s2, . . . , sn/2, sn/2)

reduce to
k∑
j=1

s j ≤
k∑
j=1

r∗
j ( j = 1, 2, . . . , n/2), (5)

with equality for k = n/2. Here R̃∗ = (r∗
1 , r

∗
2 , . . . , r

∗
m/2) is the conjugate of R̃ =

(r1, r2, . . . , rm/2).
We then have the following theorem.

Theorem 6 Let m and n be even. The class C(0,1)(R, S) is nonempty if and only
if both of the classes C(R, S) and A(R, S) are nonempty, thus if and only if the
conditions (2), (3), and (5) hold.

Proof If C(0,1)(R, S) is nonempty, then clearly C(R, S) and A(R, S) are nonempty,
and (2), (3), and (1) hold.

Now assume that (2), (3), and (5) hold. We prove the existence (along with an
algorithm for construction) of a matrix in C(0,1)(R, S) by modifying the Gale-Ryser
algorithm to construct a matrix inA(R, S) (again see [4]), and thus we do not make
explicit use of (1). In theGale-Ryser algorithm, the rowand column sums are assumed
to be monotone, but this is just for ease of description to establish that the algorithm
produces a matrix in A(R, S) or that at least one of the Gale-Ryser conditions fails.
The Gale-Ryser algorithm is recursive and proceeds as follows.
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(i) Choose a column with the smallest prescribed column sum.
(ii) Put the prescribed number of 1s in that column in those rowswith the largest row

sum (there may be ties in which case the row can be chosen arbitrarily among
those rows with the same sum), and put 0s in all other positions of column n.

(iii) Adjust the prescribed row sums and proceed recursively with a column with
the next smallest sum.

Since R and S are palindromic, we have that

R = (r1, r2, . . . , r2, r1) and S = (s1, s2, . . . , s2, s1).

By reordering the first half of the entries of R (resp., S) with the corresponding
reordering of the second half of the entries, as above we assume that

r1 ≥ r2 ≥ · · · ≥ r�n/2� and s1 ≤ s2 ≤ · · · ≤ s�n/2�. (6)

We now adjust the Gale-Ryser algorithm in the case that R and S are palindromic,
stayingwithin the constraints of the algorithm, in order to produce a centrosymmetric
matrix.

Let c0, c1, c2, . . . , ck where c0 = 0 and ck = n/2 be defined by

r1 = · · · = rc1 > rc1+1 = · · · = rc1+c2 > · · · > rc1+···+ck−1+1 = · · · = rn/2.

Let s1 satisfy 2(c0 + c1 + · · · + cp) ≤ s1 < 2(c0 + c1 + · · · + cp + cp+1). In col-
umn 1 we put 1 s in rows {1, 2, . . . , c1 + · · · + cp} and in rows {n + 1 − 1, n + 1 −
2, . . . , n + 1 − (c1 + · · · + cp)}.Wealsoput 1 s in rows c1 + · · · + cp + 1, . . . , c1 +
· · · + cp+1, n + 1 − c1, · · · , n + 1 − cp+1 in the order listed until a total of s1 1s have
been placed in column 1. This is in agreement with a possible way to carry out the
Gale-Ryser algorithm to produce a matrix in A(R, S). Adjusting the needed row
sums as a result of these 1s in column 1, we see that if we rotate this column 1 by
180◦ and take it as column n, then this is also a next possible step in the Gale-Ryser
algorithm. Adjusting the needed row sums again, we see that they form a palin-
dromic sequence. We now delete columns 1 and n, and proceed recursively. In order
to keep the assumed monotonicty conditions on row and column sums, we may have
to reorder the rows keeping as we do so, the palindromic property. We conclude
that this way of carrying out the Gale-Ryser algorithm produces a centrosymmetric
(0, 1)-matrix with row sum vector R and column sum vector S. �

Example 7 Let R = (4, 4, 3, 3, 3, 3, 4, 4) and S = (5, 3, 3, 3, 3, 3, 3, 5). Then the
algorithm in the proof of Theorem 6 produces the followingmatrix, with the resulting
rowsumvectors after eachpair of steps, including the initial row sumvector, indicated
on the right.
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1 1 1 1 4 2 1 1 0
1 1 1 1 4 2 2 1 0
1 1 1 3 2 2 0 0
1 1 1 3 3 1 1 0
1 1 1 3 3 1 1 0
1 1 1 3 2 2 0 0

1 1 1 1 4 2 2 1 0
1 1 1 1 4 2 1 1 0

�

We know that a centrosymmetric matrix need not be symmetric or Hankel-
symmetric. So Theorem 6 does not directly address the question of the existence of a
symmetric and Hankel-symmetric matrix with a specified row sum vector (which by
symmetry equals its column sum vector). The existence of a symmetric (or Hankel-
symmetric) nonnegative integral matrix with a prescribed row sum vector follows
from the theorem of Erdös and Gallai (the (0, 1)-case with all zeros on the main
diagonal) and its generalizations (see again [4]). We show using a technique of Fulk-
erson, Hoffman, and McAndrew (see e.g. [3], pp. 179–182) that the existence of a
symmetric and Hankel symmetric (0, 1) matrix (so centrosymmetric) can be gotten
from Theorem 6. The row and column sum vector of such a matrix are equal to the
same palindromic vector.

Wenowmake use of the digraph associatedwith a (0, 1)-matrix. Let� be a digraph
with vertices {1, 2, . . . , n}. The outdegree sequence (resp., indegree sequence) of
� records the number of edges leaving (resp., entering) each of its vertices. The
adjacency matrix of � is the n × n (0, 1)-matrix A = [ai j ]where ai j = 1 if and only
if there is an edge from vertex i to vertex j . We write � = D(A) to indicate that the
digraph associatedwith A equals�. A digraph is a centrosymmetric digraph provided
after possible reordering of its vertices its adjacency matrix is centrosymmetric.

Recall that A(R, R) denotes the class of all (0, 1)-matrices with both row and
column sum vectors equal to R.

Theorem 8 Let R = (r1, r2, . . . , rn) be a vector of nonnegative integers.

(i) If the class A(R, R) contains a centrosymmetric matrix, then it contains a
Hankel-symmetric, symmetric matrix.

(ii) Necessary and sufficient conditions thatA(R, R) contains a Hankel-symmetric,
symmetric matrix are that R is palindromic and the Gale-Ryser conditions (1)
are satisfied.

Proof The assertion (ii) follows from Theorem 6 and assertion (i).
To prove assertion (i), let A = [ai j ] be a centrosymmetric matrix inA(R, R)with

digraph D(A). The indegree and outdegree sequences of D(A) are both equal to R.
If A is symmetric, then by Proposition 1, A is also Hankel-symmetric. Now assume
that A is not symmetric. Let A∗ = [a∗

i j ] be the matrix obtained from A by replac-
ing all pairs of symmetrically opposite 1s (including 1s on the main diagonal) with
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zeros. The matrix A∗ is also centrosymmetric; moreover, for each i , a∗
i,n+1−i = 0, for

otherwise we would have that a∗
i,n+1−i = 1 and, by centrosymmetry, a∗

n+1−i,i = 1, a
contradiction. The digraph D(A∗) has vertex set {1, 2, . . . , n} with an edge i → j
from vertex i to vertex j if and only if ai j = 1 but a ji = 0. Since A is centrosym-
metric, i → j is an edge of D(A∗) if and only if n + 1 − i → n + 1 − j is also an
edge. Since R is both the indegree and outdegree sequence of D(A), the indegree of
each vertex of D(A∗) also equals its outdegree. Since A is not symmetric, D(A∗)
has at least one edge. These facts imply that D(A∗) has a simple cycle of distinct
vertices

γ : i1 → i2 → · · · → ik → i1

for some k ≥ 3. Since A is palindromic,

γ† : n + 1 − i1 → n + 1 − i2 → · · · → n + 1 − ik → n + 1 − i1

is also a cycle of D(A∗), which we call the palindromic mate of γ. No edge of γ
can also be an edge of γ† for that would imply that a∗

i,n+1−i = a∗
n+1−i,i = 1 for some

i . a contradiction. It follows that the edges of D(A∗) can be partitioned into cycles
and these cycles come in palindromic pairs of cycles without common edges, or are
self-palindromic cycles (that is, they are cycles equal to their palindromic mates).

Consider a palindromic pair γ and γ† of these cycles. If the length of γ and γ† is
even, we delete the first, third, fifth, ... edges of these cycles and add the reverse of
the second, fourth, sixth, ... edges. If the length of γ and γ† is odd, then there are two
possibilities. The first possibility is that some vertex a of γ (and the corresponding
vertex n + 1 − a of γ†) does not contain a loop in D(A) (D(A∗) does not contain any
loops since A∗ has only zeros on its main diagonal). We then put a loop at vertices a
and n + 1 − a and delete every other edge of γ starting with an edge meeting vertex
a, and similarly delete every other edge of γ† starting with the corresponding edge
at vertex n + 1 − a; and we also insert the reverse of the remaining edges of γ and
γ†. If every vertex of γ has a loop at it in D(A) (and then so does every vertex of γ†),
we remove the loop at some vertex a of γ (and remove the loop at the corresponding
vertex n + 1 − a of γ†), insert the reverse of every other edge of γ starting with an
edge at vertex a, and similarly insert the reverse of every other edge of γ† starting
with the corresponding edge at vertex n + 1 − a, and delete all other edges of γ
and γ†. If γ = γ†, then we follow a similar procedure as above but we have only to
consider γ. In the case of n even, a self-palindromic cycle has even length and so we
can follow the procedure above for pairs of cycles of even length. In case of n odd,
a self-palindromic cycle may have even or odd length; if even length, we follow the
above procedure; if odd length, then (n + 1)/2 must be a vertex of the cycle, and
we follow the above procedure taking (n + 1)/2 as the first vertex of the cycle. The
resulting digraph has a centrosymmetric adjacency matrix with fewer nonsymmetric
arcs.

Repeating for each pair of palindromic cycles in the partition of the edges of
D(A∗), we obtain a digraph whose adjacency matrix B is symmetric and centrosym-
metric. Putting the symmetric 1 s into B that were deleted from A to get A∗, we
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obtain a symmetric, centrosymmetric (0, 1)-matrix with row sum vector R, and
hence a Hankel-symmetric, symmetric matrix in A(R, R). �

Example 9 Consider the 11 × 11 centrosymmetric (0, 1)-matrix with palindromic
R = S = (1, 3, 3, 2, 1, 2, 1, 2, 3, 3, 1):

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 1 1
1 1 1

1 1
1

1 1
1
1 1

1 1 1
1 1 1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrix A∗ is centrosymmetric and is given by

A∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
1
1

1 1
1
1

1
1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The decomposition of D(A∗) into palindromic pairs of cycles is

1 → 6 → 7 → 1, 11 → 6 → 5 → 11 and 2 → 9 → 8 → 2, 10 → 3 → 4 → 10,

and this corresponds to the following the decomposition of A∗:
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A∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1
1 1

1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1

1
1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Replacing A∗ with
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1
1 1
1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 1
1

1

1
1

1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(the −1 corresponds to a loop that is deleted but is not part of the cycle), we then
get the centrosymmetric, symmetric (0, 1)-matrix with row and column sum vector
(1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1):

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 1

1 1
1

1
1 1
1

1
1 1 1
1 1 1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

�
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Let H(R) denote the class of all Hankel-symmetric, symmetric (0, 1)-matrices
with row and column sum vectors equal to R = (r1, r2, . . . , r2, r1). Theorem 8 con-
tains necessary and sufficient conditions on R in order that H(R) �= ∅. We now
show how to generate all matrices in a nonempty class H(R) from any one matrix
in H(R). This is the analogue of Lemma 5 for H(R). According to Corollary 7.2.4
in [4], any two symmetric (0, 1)-matrices with row and column sum vector R can be
obtained from one another by a sequence of symmetric interchanges. These symmet-
ric interchanges are of three types and transform a 2 × 2, 3 × 3, and 4 × 4 principal
submatrix into another as shown below:

(i)

[
1 0
0 1

]
↔

[
0 1
1 0

]
.

(ii)

⎡
⎣0 1 0
1 0 0
0 0 1

⎤
⎦ ↔

⎡
⎣0 0 1
0 1 0
1 0 0

⎤
⎦.

(iii)

⎡
⎢⎢⎣
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ ↔

⎡
⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦.

In terms of the graph whose adjacency matrix is a symmetric (0, 1)-matrix, these
transformations are:

(i) Interchange (a) a configuration consisting of two distinct vertices u and v with
a loop at u and a loop at v with (b) the configuration consisting of an edge {u, v}
joining u and v.

(ii) Interchange (a) a configuration consisting of an edge joining distinct vertices u
and v and a loop at a third vertex w with (b) the configuration consisting of an
edge joining u and w and a loop at v.

(iii) Interchange (a) a configuration consisting of four distinct vertices u, v, w, z
and an edge joining u and v and one joining w and z with (b) the configuration
consisting of an edge joining u and w and one joining v and z.

Every symmetric interchange has a corresponding complementary interchange
with each index i of the corresponding principal submatrix (so a vertex of the asso-
ciated graph) replaced by the complementary index n + 1 − i (the complementary
vertex of the associated graph).

We can use these symmetric interchanges to transform each matrix in H(R)

to any other matrix in H(R). First we note that if n is odd, then all matrices in
H(R) agree in position (n + 1)/2, (n + 1)/2) and hence we never have to con-
sider loops at vertex (n + 1)/2. Whenever a symmetric interchange is required, we
also perform the corresponding complementary symmetric interchange, unless the
symmetric interchange is self-complementary in which case only one symmetric
interchange is performed. We call the simultaneous application of both of these a
symmetric double-interchange. This then gives the following result.
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Theorem 10 Let A and B be any two matrices in H(R). Then there is a sequence
of symmetric double-interchanges which transforms A into B with all intermediate
matrices in H(R).

3 Concluding Remarks

We have investigated two natural subclasses, namely the centrosymmetric subclass
and the symmetric, Hankel-symmetric subclass, of several well-known classes of
matrices. We have presented existence theorems, construction algorithms, and a
means to generate all matrices in a subclass starting from any one matrix contained
in it. Combinatorial questions concerning the number (or a good and simple upper
bounds) of matrices in these subclasses are of interest but presumably very difficult.
Formulas for the number of matrices in nonempty classes A(R, S) and TZ (R, S)

are available in terms of the Kostka numbers for the number of Young tableaux of
given shape and size (see [4], p. 147). It may be possible to express the number
of centrosymmetric, or symmetric and Hankel-symmetric, matrices in these classes
using Kostka numbers. There is also a (basically symbolic) generating polynomial
in m + n variables for the number of matrices in a class A(R, S). It would be of
interest to have useful generating polynomials for any of the classes and subclasses
considered in this paper.
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