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Abstract We extend the theory of functionals defined on BV space by including
certain Carathéodory functions ϕ(x, p) for functionals of the form

∫
�

ϕ(x, Du), u ∈
BV (�) , so that ϕ is only measurable in x without the usual continuity assumption
in x, and prove lower semicontinuity in L1 of

∫
�

ϕ(x, Du) as well as compactness
with an extra with an L1 condition on ϕ. We also consider the case of the dual H1

penalty model with integral constraint introduced in Osher-Solé-Vese [38] for image
restoration, with the more general energy term

∫
�

ϕ(x, Du), analyze the time flow
of the dual H1 model in BV, and derive an integral property for the flow in the case
of one space dimension.

Keywords Bounded variation · Image restoration · Gradient flows · Dual of h1 ·
Anisotropic diffusion
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1 Introduction

In this paper we present some results of gradient time flows in L2 (�) corresponding
to minimization problems of functionals of the form

F(u) :=
∫

�

ϕ(x, Du) + λ

∫

�

|∇(�−1)(I − u)|2 dx

with dual H1 penalty term λ
∫
�

|∇(�−1)(I − u)|2 dx defined for u ∈ BV (�) ∩
L2 (�) , � ⊂ R

n open and bounded and constant λ > 0. Here we assume the
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Carathéodory function ϕ(x, p), ϕ : � × R
n → [0,∞), is for a.e. x both convex and

has a linear growth assumption in p, and also has an additional integrability assump-
tion to insure compactness. We make no assumption of continuity in x. As described
later in this section, the minimization problem was originally proposed for image
restoration applications in Osher et al. [38] for the case of pure total variation term
ϕ(Du) = |Du| with dual H1 penalty.

Existence, uniqueness, and qualitative properties for solutions for flows in L1 and
L2 with pure total variation term and different boundary conditions were obtained in
[9–13, 18] with no penalty term for the L1 case, and simple L2 penalty for the L2 case.
For the purpose of the study of entropy solutions, they also consider flows in L1 with
quasilinear term φ(x, Du) for u ∈ BV where φ has a strong continuity assumption
in x. For our case, in addition to the dual H1 penalty, ϕ(x, Du) includes certain
Carathéodory functions that are only measurable in x with no continuity assumption
in x. The flow considered in this paper is

∂u

∂t
= div

(∇pϕ(x, Du)
) − 2λ�−1(I − u) for t > 0, on �

with constraint
∫
�

u dx = ∫
�

I dx, initial condition u(0, x) = I(0), Neumann
boundary condition ∂u

∂n = 0 on ∂�, for open bounded � ⊂ R
1 or R2 with Lipschitz

boundary, and ϕ(x, Du) as mentioned above.
One of the objectives of image processing is to restore corrupted images while

retaining important features of the image, such as edges. One of the first models
for this purpose using total variation was the Rudin-Osher-Fatemi (ROF) model [40,
41]. The ROF model consists of finding a minimizer um ∈ L2 (�) of the functional

R(u) :=
∫

�

|∇u| + λ

2

∫

�

(u − I)2 dx (1.1)

where I : � → R, � ⊂ R
n bounded and open, represents the noisy or corrupted

image and um represents the restored or cleaned image. For these types of minimiza-
tion models, the images are represented by functions u : � → R, where � ⊂ R

2 is
typically a rectangle, and u(x) the image intensity at x. The first term on the right in
the above functional is the total variation of u:

T V (u) :=
∫

�

|∇u|

:= sup

{∫

�

u∇ · ϕ dx : ϕ ∈ C1
c (�;Rn), |ϕ(x)| ≤ 1 for all x ∈ �

}

.

The space of all such u ∈ L1(�)with T V (u) < ∞ is known as the space of functions
of bounded variation, or BV (�), with the norm ‖u‖BV =: ‖u‖L1(�) + ∫

�
|∇u|. Any

minimizer ofRwill be in BV (�). It is common to use the Lebesgue decomposition
to write any u ∈ BV as
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∫

�

|Du| =
∫

�

|∇u| dx +
∫

�

|Dsu|

where we decompose the total variation measure Du,with |Du| =: ∫
�

|∇u| into the
absolutely continuous part with respect to Lebesgue measure ∇u dx and the singular
part Dsu as

Du = ∇u dx + Dsu.

In [15] the above integral foru ∈ BV is extended to
∫
�

ϕ(x, Du) for functionsϕ(x, p),

x ∈ �, p ∈ R
n, continuous on � × R

n, and convex and of linear growth in p (see
Theorem 2 in the next section).We also refer the reader to [27] for results concerning
certain functionals of the form

∫
�

√
1 + |Du|dx + ∫

�
G(x, u) dx.

The use of BV space with the TV term is that minimizers of R may still be
discontinuous with jumps corresponding to edges, unlike images restricted to the
Sobolev space W 1,1. The second term of R is the penalty which ensures that the
restored image u does not deviate too far from the input image I. One way to solve
this is to solve the gradient flow of the Euler-Lagrange equation

0 = div

( ∇u

|∇u|
)

− λ(u − I)

and let t → ∞ for the solution u(x, t). See also [45] for the time flow for applications
to plasticity. The gradient flow is then

∂u

∂t
= div

( ∇u

|∇u|
)

− λ(u − I) on � × [0,∞) with
∂u

∂n
= 0 on ∂�

u(x, 0) = I(x) on �.

We should also mention the use of primal dual methods, instead of the gradient time
flow, for minimizing functionals such as (1.1). These are especially used for models
with pure TV term

∫
�

|Du| due its non differentiability. See, for example, [23] and
[31].

In general, the above model works very well for image denoising while retaining
edges. Modifications of the ROF model have also been introduced in other works to
provide better restoration of noisy images due to such unwanted effects such as the
stair casing effect, which may occur in solving (1.1) numerically. See [1–6, 16, 21,
22, 28, 29, 44] for further discussion and models.

Certain details, such a oscillatory textures are not well preserved with the above
L2 norm penalty λ

2

∫
�
(u − I)2 dx. In [35], Meyer introduced a new penalty designed

to overcome this, by replacing the L2 penalty with a weaker norm that can retain
oscillatory textures. In [35], the new model problem is to find a minimizer of

M(u) :=
∫

�

|∇u| + λ ‖I − u‖∗ .
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The new penalty norm ‖f ‖∗ is defined there for all f ∈ G by

‖f ‖∗ = inf

{√
g21 + ... + g2n : g = (g1,..., gn), gi ∈ L∞ (�) each i, and f = div g

}

,

where G is the Banach space of all generalized functions f that can be written as
f = div g on � for some g = (g1,..., gn), gi ∈ L∞ (�) each i, open � ⊂ R

n.

To simplify the Euler-Lagrange equation for the n = 2 case, the authors in [42]
replaced the minimization of M with finding

inf
u,g1,g2

{

Gp(u, g1, g2) =
∫

�

|∇u| + λ

∫

�

|I − (u + ∂xg1 + ∂yg2)|2 dxdy

+μ

[∫

�

(√
g2
1 + g2

2

)p

dxdy

]1/p
}

where λ,μ are parameters and p → ∞. Due to the three variable functions u, g1, g2
this yields three coupled equations as a result of the Euler-Lagrange equations.

This approach is further simplified in [38] by dropping the last term in the above
functional, bywriting I − u = div g forg ∈ L2(�)2, and by formally using theHodge
decomposition of g:

g = ∇P + q

where q is a divergence free vector field, thus giving u − I = − div g = −�P. The
inverse Laplace operator �−1 is then defined by P =: −�−1(u − I). In fact we have
(see for example, [26])

Theorem 1 Let � ⊂ R
n be a bounded open region with Lipschitz boundary ∂� and

V0 = {
u ∈ H1(�) : ∫

�
u dx = 0

}
. If v ∈ L2(�) with

∫
�

v dx = 0, then the problem

−�P = v,
∂P

∂n
|∂� = 0,

has a unique solution P in V0.

Consequently, the OSV model proposed in [38] is to instead find a minimizer of

E(u) :=
∫

�

|∇u| + λ

∫

�

|∇(�−1)(I − u)|2 dx =
∫

�

|∇u| + λ ‖I − u‖2H−1(�) (1.2)

over the space L2(�) with the constraint
∫
�

u dx = ∫
�

I dx. For the last term on
the right side it is shown in [38] that for functions v ∈ L2(�) with

∫
�

v dx = 0,
‖v‖2H−1(�) = ∫

�
|∇(�−1)v|2 dx. The Euler-Lagrange equation for this is formally
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0 = div

( ∇u

|∇u|
)

− 2λ�−1(I − u) on � (1.3)

∂u

∂n
|∂� = 0

with constraint
∫
�

u dx = ∫
�

I dx. This is solved there numerically on a rectangle
� ⊂ R

2 by applying −� to both sides of (1.3) and solving the following time flow
for u(x, y, t)

∂u

∂t
= −� div

( ∇u

|∇u|
)

+ 2λ(I − u)

0 = ∂u

∂n
|∂� =

∂ div
(

∇u
|∇u|

)

∂n
|∂�, u(x, y, 0) = I(x, y) on �,

∫
�

u dx = ∫
�

I dx, and letting t → ∞ to drive to the steady state solution of (1.3).
Clearly, the first term on the right of the equation is not defined for all functions u in
BV or even W 1,1. We thus need to define a weak solution to the time flow to (1.3).

We will expand the functional E to include a class of Carathéodory functions for
the energy term ϕ(x, p) that are convex and of linear growth in p. By definition, a
Carathéodory function, ϕ : � × R

n → R, satisfies the following conditions:
(1) for each p ∈ R

n, ϕ(·, p) : � → R is a measurable function defined on � and
(2) for a.e. x ∈ �, ϕ(x, ·) : Rn → R is continuous in the p variable.
The functional is now

F(u) :=
∫

�

ϕ(x, Du) + λ

∫

�

|∇(�−1)(I − u)|2 dx

such that
∫

�

u dx =
∫

�

I dx.

For example we have the variable exponent case,

ϕ(x, p) =
{

1
q(x) |p|q(x) if |p| ≤ 1

|p| − q(x)−1
q(x) if |p| > 1

(1.4)

where q(x) ∈ L∞ (�) , 1 < α ≤ q(x) ≤ 2 a.e. See [36] and [24] for an application
of a functional using the anisotropic diffusion term (1.4) with simple L2 penalty term∫
�
(u − I)2 dx.We also refer the reader to [39] PDE problemswith variable exponent.

The time flow of the Euler-Lagrange equations for F becomes
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∂u

∂t
= div

(∇pϕ(x,∇u)
) − 2λ�−1(I − u) (1.5)

∂u

∂n
= 0 on ∂�

u(x, 0) = I(x)
∫

�

u dx =
∫

�

I dx for all t.

The rest of the paper is organized as follows.We extend the definition of function-
als

∫
�

ϕ(x, Du) defined for u ∈ BV (�) by including certain Carathéodory functions
ϕ(x, p)where we directly use the convex dual functionϕ∗ ofϕ rather than the theory
of convex functionals of measures as in [8, 14, 15]. We only assume measurability
in x for ϕ whereas previous work uses a continuity condition in x to prove lower
semicontinuity of

∫
�

ϕ(x, Du) in L1. In addition we prove compactness in L1 with an
extra L1 integrability condition on ϕ. This then allows for a greater class of function-
als to be considered for minimization problems that use both the

∫
�

ϕ(x, Du) term
for smoothing and the dual H1 penalty for retaining oscillatory features of images.
For example we may use a more robust selective smoothing term

∫
�

ϕ(x, Du) in
place of the simple total variation term

∫
�

|Du| that is used in the OSV model. We
thus consider the OSV dual H1 penalty model from [38] with general energy term∫
�

ϕ(x, Du) and the corresponding gradient time flow (1.5). We then use the semi-
group method to prove existence, L2 stability, and asymptotic convergence for the
weak solution to the time flow (1.5). It should be noted that the semigroup method
is used in [9–13], where, as previously mentioned, they proved existence of a strong
solution of the total variation flow

∂u

∂t
= div

( ∇u

|∇u|
)

u(x, 0) = I(x)

with both Neumann or Dirichlet boundary conditions in L1 and L2. They also con-
sidered flows with a quasilinear term div(∇pφ(x,∇u)) with a modulus of continuity
assumption for φ in the x variable. Since the flow for our case is in the Hilbert space
L2, we apply the theory of semigroups based on classical maximal monotone theory
of Brezis [17]. Finally, we derive an integral property for solutions to the gradient
flow for the case of space dimension n = 1 with pure TV term

∫
�

|Du|.As we note in
the Conclusion, it is hoped to extend this integral property, or possibly derive other
properties, to our general case with the

∫
�

ϕ(x, Du) term.
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2 The Stationary Problem and Important Results
for BV Functions

We will first state some important theorems concerning functions in BV space. The
following theorem is from [43]. Also see [7].

Theorem 2 Let � ⊂ R
n be bounded and open, ϕ(x, p) be C1 on � × R

n, convex
in p, with linear growth for |p| ≥ β > 0, that is c1|p| ≤ ϕ(x, p) ≤ c2(|p| + 1) for
|p| ≥ β with constants c1, c2,β > 0, and where limt→∞ ϕ(x, t p

|p| )/t = ϕ∞(x). Then
∫
�

ϕ(x, Du) is lower semicontinuous in L1(�).

From [15] we also have a formula for
∫
�

ϕ(x, Du) for u ∈ BV (�) where ϕ is the
C1 function as stated in Theorem 2, in fact

∫

�

ϕ(x, Du) =
∫

�

ϕ(x,∇u) dx +
∫

�

ϕ∞(x)|Dsu|. (2.1)

The approximation of BV functions by smooth functions for the anisotropic func-
tional with (1.4) is given by:

Theorem 3 If � ⊂ R
n is bounded, open, u ∈ BV (�) ∩ L2(�), and ϕ given by (1.4),

then (1) there exists a sequence
{
uj

} ⊂ C∞ (�) ∩ H1(�) such that

uj → u in L2(�) and

lim
j→∞

∫

�

ϕ(x, Duj) =
∫

�

ϕ(x, Du);

(2) if
∫

�

u dx = c, we may take the sequence above to also satisfy
∫

�

uj dx = c;
(3) if u ∈ L∞ (�) , and ϕ is independent of x, then we may also take the sequence to
satisfy

∥
∥uj

∥
∥

L∞ ≤ C (�) ‖u‖L∞ , and if � has Lipschitz boundary ∂�, we may also
take the sequence to satisfy uj ∈ C∞ (

�
)
.

Proof With simple modifications, the first part is proved as in [24] (in their case for
u with trace value Tu|∂�) using

∫
�

ϕ(x, Du) = supφ∈V
{− ∫

�
udivφ + ϕ∗(x,φ) dx

}
.

In fact it is only assumed that q(x) ∈ L∞ (�) , 1 < α ≤ q(x) ≤ 2 a.e. For the second

part we note that uj → u in L2(�) implies that
∫

�

uj dx →
∫

�

u dx = c. We then

let ũj = uj − 1
|�|

∫

�

(uj − c)dx giving
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ũj → u in L2(�) and

lim
n→∞

∫

�

ϕ(x, D̃uj) =
∫

�

ϕ(x, Du)

∫

�

ũj dx = 0 for all j.

For (3), note the remark in [25]. �

Remark 1 For the case of pure total variationϕ(p) = |p|, from [32] Theorems 2 and
3 hold with the proof of (2) the same as above.

For similar approximation results with a different proof for functions ϕ defined
on� × R

n,with certain continuity conditions on both x and p, see for example [12].
We now extend the definition of

∫
�

ϕ(x, Du) for a Carath éodory functionwhich is
continuous in p and no continuity assumption in x, by using the Legendre transform.
For a convex function g on R

n, the convex dual or Legendre transform g∗of g, is
defined as g∗ (q) = supp∈Rn {p · q−g (p)} . If g is continuous then by the Fenchel-
Moreau theorem [19] we in fact have g∗∗ (p) = g (p) = supq∈Rn {p · q−g∗ (q)} .

Proposition 1 Let � ⊂ R
n be open, ϕ(x, p) a Carathéodory function on � × R

n,
continuous and convex in p, of linear growth in p with c1|p| − c2 ≤ ϕ(x, p) ≤
c1(|p| + 1) for |p| ≥ β, for constants c1 > 0, β, c2 ≥ 0. Then (1) for a.e. x,
ϕ∗(x, q) = sup{p∈Rn,|p|≤β}{q · p − ϕ(x, p)} = max{p∈Rn,|p|≤β}{q · p − ϕ(x, p)} and
(2) ϕ∗(x, q) is a Carathéodory function on � × {|q| ≤ c1}. Furthermore ϕ∗(x, q) =
∞ for a.e. x, |q| > c1.

Proof By the linear growth conditionϕ(x, p) ≤ c1(|p| + 1),we have ϕ∗(x, q) < ∞
if and only if |q| ≤ c1 and this occurs for |p| ≤ β from the assumption c1|p| − c2 ≤
ϕ(x, p). The fact that the supremum is a maximum follows by continuity. This
proves (1). To prove (2) we fix a.e. x and first assume that ϕ(x, p) is strictly
convex for |p| ≤ β. The case where β = 0 gives ϕ∗(x, q) = max{p∈Rn,|p|=0}{q ·
p − ϕ(x, p)} = −ϕ(x, 0) if |q| ≤ c1. Now assume β > 0. Then by strict convexity
there is a unique p∗(q)with |p∗(q)| ≤ β so that ϕ∗(x, q) = q · p∗(q) − ϕ(x, p∗(q)).

To show that p∗ is continuous we let qn → q. Thus there is a subsequence qnk

such that p∗(qnk ) → p
′
for some |p′ | ≤ β. Hence for each qnk , ϕ∗(x, qnk ) = qnk ·

p∗(qnk ) − ϕ(x, p∗(qnk )) ≥ qnk · p − ϕ(x, p) for all |p| ≤ β. Thus for each |p| ≤
β q · p − ϕ(x, p) ≤ limk→∞ ϕ∗(x, qnk ) = limk→∞(qnk · p∗(qnk ) − ϕ(x, p∗(qnk )) =
q · p

′ − ϕ(x, p
′
). Therefore p

′ = p∗(q). To show that the full
sequence p∗(qn) converges to p∗(q) we assume that there is another subsequence
qni and ε > 0 such that qni → q but

∣
∣p∗(qni) − p∗(q)

∣
∣ ≥ ε for all ni. We extract

a further subsequence qnij
with qnij

→ q and p∗(qnij
) → p′′. Repeating the above

argument we have p′′ = p∗(q) but
∣
∣p′′−p∗(q)

∣
∣ ≥ ε, a contradiction. Since p∗(q)

is continuous, so is ϕ∗(x, q). Without the strict convex assumption on ϕ(x, q) we
consider ϕε(x, p) := ϕ(x, p) + ε |p|2 for |p| ≤ β. As ε ≥ ϕ∗(x, p) − ϕ∗

ε(x, p) and
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ϕ∗(x, p) ≥ ϕ∗
ε(x, p)wehave ε ≥ |ϕ∗(x, p) − ϕ∗

ε(x, p)| and thusϕ∗
ε → ϕ∗ uniformly

on |p| ≤ β as ε → 0. Sinceϕε(x, p) is strictly convex for |p| ≤ β, ϕ∗
ε(x, p) is contin-

uous in p, hence it follows that ϕ∗(x, p) is continuous for |p| ≤ β. Finally, ϕ∗ being
for fixed q the pointwise maximum of measurable functions in x, is measurable in
x. Item (2) is proved. �

This proposition then allows us to define the following:

Definition 1 For open � ⊂ R
n and ϕ(x, p) a Carathéodory function on � × R

n,
continuous and convex in p, of linear growth in p with c1|p| − c2 ≤ ϕ(x, p) ≤
c1(|p| + 1) for |p| ≥ β, for constants c1 > 0, β, c2 ≥ 0. Define

∫

�

ϕ(x, Du) = sup
φ∈V

{

−
∫

�

udivφ + ϕ∗(x,φ(x)) dx

}

where ϕ∗(x, q) = sup{p∈Rn,|p|≤β}{q · p − ϕ(x, p)} for each q ∈ R
n with |q| ≤ c1 and

V = {
φ ∈ C1

c (�,Rn) : |φ(x)| ≤ c1 for all x ∈ �
}
.

Note that the supremum is only taken for φ ∈ V since from the proposition
ϕ∗(x, q) = ∞ if |q| >c1.

We remark that this is the definition used in [24] for the specific case of the
anisotropic functional

∫
�

ϕ(x, Du)whereϕ, given by (1.4), satisfies the conditions of
Definition 1, andϕ∗ is directly calculated.Also for the total variation caseϕ (p) = |p|
we have c1 = 1 and ϕ∗ is the usual

ϕ∗ (q) =
{
0 if |q| ≤ 1
∞ otherwise

FromDefinition 1, lower semicontinuity in L1 (�) follows immediately as in [32].

Theorem 4 If � and ϕ satisfy the conditions of Definition 1,
∫
�

ϕ(x, Du) is lower
semicontinuous in L1 (�) .

Proof Let un → u in L1 (�) . Then for fixed φ ∈ V we have − ∫
�

udivφ + ϕ∗(x,φ)

dx = limn→∞
(− ∫

�
undivφ + ϕ∗(x,φ) dx

) ≤ lim infn→∞
∫
�

ϕ(x, Dun). Taking
the supremum on the left gives

∫
�

ϕ(x, Du) ≤ lim infn→∞
∫
�

ϕ(x, Dun). �

With an added L1 condition on ϕ we have

Theorem 5 If � ⊂ R
n is open and bounded, ϕ satisfies the conditions of Definition 1

and in addition
∫
�
sup|p|≤β |ϕ(x, p)| dx ≤ c3 for some c3 > 0, then

∫
�

ϕ(x, Du) < ∞
if and only if u ∈ BV (�) . In fact we have c1

∫
�

|Du| ≤ ∫
�

ϕ(x, Du) + C(c1,c3,
β,�) and

∫
�

ϕ(x, Du) ≤ c1
∫
�

|Du| + C(c1, c3,β,�) for some constant C(c1, c3,
β,�) ≥ 0.
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Proof From the definition ofϕ∗ we haveϕ∗(x,φ(x)) ≤ |φ(x)|β + sup|p|≤β |ϕ(x, p)|
and thus

c1

∫

�

|Du| = sup
φ∈V

{

−
∫

�

udivφ dx

}

≤ sup
φ∈V

{

−
∫

�

udivφ + ϕ∗(x,φ) dx

}

+ sup
φ∈V

∣
∣
∣
∣

∫

�

ϕ∗(x,φ) dx

∣
∣
∣
∣

≤
∫

�

ϕ(x, Du) + C(c1, c3,β,�)

where C(c1, c3,β,�) ≥ 0; and also

∫

�

ϕ(x, Du) = sup
φ∈V

{

−
∫

�

udivφ + ϕ∗(x,φ) dx

}

≤ c1

∫

�

|Du| + C(c1, c3,β,�). �

We then have the compactness theorem:

Theorem 6 Let ϕ satisfy the conditions of Theorem 5. Let uj be a sequence in BV (�)

with
∫
�

ϕ(x, Duj) bounded, where � ⊂ R
n is bounded with Lipschitz boundary ∂�.

Then there is a subsequence of uj, also denoted by uj, and u ∈ Lp (�) such that
uj → u strongly in Lp (�) for all 1 ≤ p < n/(n − 1) and weakly in Ln/(n−1) (�) .

Proof From Theorem 5, uj is a sequence bounded in BV (�) . The theorem then
follows from Giusti [32]. �

Remark 2 We assumed that c1|p| − c2 ≤ ϕ(x, p) ≤ c1(|p| + 1) for |p| ≥ β for ease
of proof. However, wemay replace this with themore general linear growth condition
k1|p| − c ≤ ϕ(x, p) ≤ k2(|p| + 1) for |p| ≥ β for k2 > k1 > 0, β, c ≥ 0, with the
same convex and Carathéodory condition on ϕ. In this case we still have ϕ∗(x, q) <

∞ if and only if |q| ≤ k2. Ifϕ∗(x, q) achieves is supremumon a bounded set |p| ≤ K
where K is independent of q, then Proposition 1, Definition 1, and Theorems 4–7
hold with the respective L1 integral condition on ϕ.

We return to theminimization problem from [37] using theOSVmodel.We extend
this model to include any ϕ as stated in Theorem 5. This assumption will hold in
the sequel unless stated otherwise. As stated in the introduction the minimization
model is
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min
u∈BV ∩VI

F(u) : =
∫

�

ϕ (x, Du) + λ ‖u − I‖2H−1(�) = (2.2)
∫

�

ϕ (x, Du) + λ

∫

�

|∇(�−1)(I − u)|2 dx

where VI =: {
u ∈ L2 (�) | ∫

�
u dx = ∫

�
I dx

}
, � ⊂ R

n.

Theorem 7 For n = 1 or 2, the functional F is convex, lower semicontinuous and
thus the stationary problem (2.2) has a unique solution.

Proof This is proved in [38] for the original problem of minimizing (1.2). We just
note that for ϕ we still have lower semicontinuity and compactness from Theorems
4 and 5. Existence and uniqueness then follows from standard theory. �

For the rest of the paper we assume n = 1 or 2.

3 Time Flow of the Weak Solution

We return to the gradient time flow corresponding to the stationary problem (2.2)
using the Euler-Lagrange equation of (2.2), div (ϕP(x,∇u)) − 2λ�−1(u − I) = 0.
Without loss of generality we will assume ϕ(x, 0) = 0.

Definition 2 The time flow of (2.2) is defined by

∂u

∂t
= div

(∇pϕ(x,∇u)
) − 2λ�−1(I − u) (3.1)

∂u

∂n
= 0 on ∂� (3.2)

u(x, 0) = I(x) (3.3)
∫

�

u dx =
∫

�

I dx for all t. (3.4)

where � ⊂ R
n is an open bounded region with Lipschitz boundary ∂�, and I ∈

L2(�) ∩ BV (�) .

Since u is assumed to be only in BV , this must be defined as a weak solution as
will be given below. In the sequel, � satisfies the conditions stated in Definition 2.
Following, for example, [25, 45] we motivate the definition of a weak solution to
(3.1)–(3.4) by assuming sufficient smoothness of u and v satisfying the constraint

∫

�

u dx =
∫

�

v dx =
∫

�

I dx
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for a.e. t, multiplying (3.1) by v − u, integrating by parts, using convexity of ϕ,

namely ϕ(x, p) − ϕ(x, q) ≥ ∇ϕP(x, q) · (p − q), noting that

∫

�

�−1(I − u)(v − u) dx = −
∫

�

�−1(I − u)��−1(v − u) dx

=
∫

�

∇�−1(I − u) · ∇�−1(v − I + I − u) dx,

and finally expanding and using Young’s inequality to get for a.e.t

∫

�

ut(v − u) dx +
∫

�

ϕ(x,∇v) + λ

∫

�

|∇(�−1)(I − v)|2 dx (3.5)

≥
∫

�

ϕ(x,∇u) + λ

∫

�

|∇(�−1)(I − u)|2 dx.

By Theorem 3 we see that (3.5) holds for u, v in BV (�) satisfying the above con-
straint for a.e. t. We therefore define a weak solution u ∈ L2((0, T); L2(�) ∩ VI) ∩
L1((0, T); BV (�)) , ut ∈ L2((0, T), L2(�)) of (3.1)–(3.4) to satisfy (3.5) for all

v ∈ L2((0, T); L2(�) ∩ VI) ∩ L1((0, T); BV (�))

where

VI =
{

v ∈ L2 (�) :
∫

�

v dx =
∫

�

I dx

}

.

In what follows, let H0 be the Hilbert space

H0 =
{

v ∈ L2(�) :
∫

�

v dx = 0

}

.

Theorem 8 Let ϕ satisfy the conditions of Theorem 5 and I ∈ L2(�) ∩ BV (�).
There exists a unique weak solution u(t) to (3.1)–(3.4). That is, for a.e. t > 0, u(t) ∈
L2(�) with u(t) − I ∈ BV (�) ∩ H0, ut ∈ L∞((0,∞); H0)

∫

�

ut(v − u) dx +
∫

�

ϕ(x, Dv) + λ

∫

�

|∇(�−1)(I − v)|2 dx (3.6)

≥
∫

�

ϕ(x, Du) + λ

∫

�

|∇(�−1)(I − u)|2 dx

for each v − I ∈ BV (�) ∩ H0. Hence for the case with constraint
∫
�

I dx = 0 we
have for a.e.t > 0
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1

2

∫

�
u2 dx +

∫ t

0

∫

�
ϕ(x, Du) ds + λ

∫ t

0

∫

�
|∇(�−1)(I − u)|2 dx ds (3.7)

≤ λ

∫ t

0

∫

�
|∇�−1I|2 dxds

and

1

2

∫

�

(u − I)2 dx +
∫ t

0

∫

�

ϕ(x, Du) ds (3.8)

+λ

∫ t

0

∫

�

|∇(�−1)(I − u)|2 dxds ≤
∫ t

0

∫

�

ϕ(x, DI) ds;

and for the general case
∫
�

I dx = c, we have (3.8) for a.e. t > 0

1

2

∫

�
(u − c

|�| )
2 dx +

∫ t

0

∫

�
ϕ(x, Du) ds + λ

∫ t

0

∫

�
|∇(�−1)(I − u)|2 dxds (3.9)

≤ λ

∫ t

0

∫

�
|∇(�−1)(I − c

|�| )|
2 dxds.

Also for initial conditions I1, I2 ∈ L2 (�) ∩ BV (�) with corresponding solutions
u1, u2,

‖u1 − u2‖L2(�) ≤ ‖I1 − I2‖L2(�)

for a.e. t > 0. Finally, The solution u to (3.1)–(3.4) converges weakly in L2(�) and
strongly in L1(�) to the minimizer of u∞ of 2.2 as t → ∞.

Proof We first assume
∫
�

I dx = 0. The functional

F(u) =:
{∫

�
ϕ(x, Du) + λ

∫
�

|∇(�−1)(I − u)|2 dx if u ∈ BV (�) ∩ H0

∞ if u ∈ H0\BV (�)

on H0 is proper, convex, and lower semicontinuous from Theorem 4. Consequently
from the theory from maximal monotone operators and semigroups [17], the subdif-
ferential ∂F(u) is amaximalmonotone operatorwith a unique, absolutely continuous
solution u(t) ∈ [0,∞) → H0, u(0) = I, ut ∈ L∞((0,∞); H0), to

−ut ∈ ∂F(u(t)).

Thus by the definition of ∂F, the first inequality (3.6) holds. Also from [17]

‖u1 − u2‖L2(�) ≤ ‖I1 − I2‖L2(�)

for solutions u1, u2 with corresponding initial conditions I1, I2 ∈ L2 (�) ∩ BV (�) .

The inequalities (3.7) and (3.8) are obtained by letting v = 0 and v = I respectively
and integrating with respect to t. For the general constraint

∫
�

I dx = c, we replace
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u in (3.6) with ũ = u − c
|�| so that

∫
�

ũ dx = 0. Letting v = c
|�| gives (3.9), noting

ϕ(x, 0) = 0.
We now consider the asymptotic limit of the solution u(t) as t → ∞. Let u be

the solution to (3.1)–(3.3). Since − du
dt ∈ ∂F(u) the theorem from [20] proves that

u(t) ⇀ u∞ in L2 (�) weakly as t → ∞. To prove strong convergence in L1 (�)

we use Theorem A.33 in [12], which implies that, after adjusting by a constant if
necessary,

∫
�

ϕ(x, Du(t)) + λ
∫
�

|∇(�−1)(I − u(t))|2 dx is a decreasing function of
t with ∫

�

ϕ(x, Du(t)) + λ

∫

�

|∇(�−1)(I − u(t))|2 dx ≤
∫

�

ϕ(x, DI).

From Poincaré’s inequality for BV functions,
∫
�

|u − u�|dx ≤ C (�)
∫
�

|Du| where
u� :=

∫
�

udx

|�| = 0 for a.e. t. Thus by Theorem 5 u(t) is bounded in BV (�) and

by compactness (Theorem 6) and uniqueness of limits, there exists a subsequence
u(tn) → u∞ in L1 (�) as tn → ∞. Hence u(t) → u∞ in L1 (�) as t → ∞. Again
adjusting by a constant, we again have u(t) → u∞ in L1 (�) for the general case of∫
�

udx = c. �

For ϕ satisfying the conditions of Theorem 2, formula (2.1) holds. Now replacing
v in (3.6) with η(v − u) + u for η > 0 dividing by η and letting η → 0+ we obtain
as in [33, 34] for any v ∈ BV (�) ∩ H0 (�) with Dsv << |Dsu|

∫

�
(v − u)ut dx ≤ −

∫

�
∇pϕ(x,∇u) · (∇v − ∇u) dx +

∫

�
ϕ∞(x)

Dsu

|Dsu| · (Dsv − Dsu)

−
∫

�

[
2λ�−1(I − u)

]
(v − u) dx

where Dsu
|Dsu| denotes the Radon-Nikodym derivative ofDsuwith respect to |Dsu|. Note

that
∣
∣
∣ Dsu
|Dsu|

∣
∣
∣ = 1, |Dsu|-a.e. Repeating for η < 0 we have equality:

∫

�

(v − u)ut dx = −
∫

�

∇pϕ(x,∇u) · (∇v − ∇u) dx (3.10)

+
∫

�

ϕ∞(x)
Dsu

|Dsu| · (Dsv − Dsu) −
∫

�

[
2λ�−1(I − u)

]
(v − u) dx

for a.e. t ≥ 0, for all v ∈ BV (�) ∩ H0 with Dsv << |Dsu| . Now letting v = u + φ
for any φ ∈ C∞

0 (�)∩H0

∂u

∂t
= div (ϕP(x,∇u)) − 2λ�−1(I − u) D′ (�) ∩ H0

as Dsφ = 0. This gives
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Corollary 1 For the case ϕ ∈ C1 (� × R
n) satisfying the conditions of Theorem 2,

the weak solution u(t) to (3.1)–(3.4), satisfies for a.e. t ≥ 0,

∂u

∂t
= div (∇ϕP(x,∇u)) − 2λ�−1(I − u) D′ (�) ∩ H0

(in the distributional sense), and for fixed a.e. t ≥ 0, (3.10) holds for all v ∈
BV (�) ∩ H0 with Dsv << |Dsu|.

In the following theorem we note a property of the weak solution u to (3.1)–(3.3),
inspired by a result for the stationary case in [38]. Additionally we extend this to an
integral result for the case of n = 1.

Theorem 9 Let w =: −2λ�−1(I − u). If u is a weak solution to (3.1)-(3.3) for
n = 1 and ϕ(p) = p then there exists a g ∈ L∞ (�) with ‖g‖∞ ≤ 1 such that g′ =
w − ut =: −2λ�−1(I − u) − ut .

Proof By assumption we have for a.e. t ∈ [0, T ]

−ut ∈ ∂J(u) + 2λ�−1(I − u)

where

J(u) =:
∫

�

|∇u|.

Thus
−ut − 2λ�−1(I − u) ∈ ∂J(u)

and hence by duality (see [30])

u ∈ ∂J∗(−2λ�−1(I − u) − ut)

for a.e. t. where

J∗(u) = sup
u∈L2(�)

∫

�

(uv − J(u))dx =
{
0 if u ∈ K
+∞ otherwise

and
K =: {

div g| g ∈ (L2 (�))2 and ‖g‖∞ ≤ 1
}
.

Therefore

0 ∈ −2λu + 2λ∂J∗(−2λ�−1(I − u) − ut)

= 2λ(I − u) − 2λI + 2λ∂J∗(−2λ�−1(I − u) − ut).
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Hence for w =: −2λ�−1(I − u)

0 ∈ ∂

∥
∥∇(w + 2λ�−1I)

∥
∥2

L2

2
+ 2λ∂J∗(w − ut)

= ∂

∥
∥∇(w + 2λ�−1I)

∥
∥2

L2

2
+ 2λ∂J(w)

where J(v) =: J∗(v − ut) and ∂ denotes the subdifferential. Thus w is in fact a
minimizer of

G(ŵ) =:
∥
∥∇(ŵ + 2λ�−1I)

∥
∥2

L2

2
+ 2λJ(ŵ)

over all ŵ ∈ H1 (�) ∩ V0. For n = 1, � an open interval, by choosing a ŵ ∈
H1 (�) ∩ V0 with ‖ŵ − ut‖L2 ≤ |�|−1/2 we can find g on � with g′ = ŵ − ut and
‖g‖∞ ≤ 1, namely g(x) = ∫ x

a (ŵ − ut) dx, some a ∈ �. Thus the functional J (and
hence G) is proper, that is, J is finite for some ŵ. Therefore ŵ ∈ K and the theorem
is proved. �
Corollary 2 If u is a weak solution to (3.1)–(3.3) for n = 1, ϕ(p) = |p|, with � an
open interval, then for each subinterval [z, z′] ⊂ �,

ess sup
t≥0

∣
∣
∣
∣
∣

∫ z′

z
λ�−1(I − u) + 1

2
ut dx

∣
∣
∣
∣
∣
≤ 1.

Proof On each subinterval [z, z′] of � we have for a.e. t ≥ 0

∫ z′

z
g′ dx =

∫ z′

z
(−2λ�−1(I − u) − ut) dx.

Hence as ‖g‖∞ ≤ 1,

∣
∣
∣
∣
∣

∫ z′

z
(−2λ�−1(I − u) − ut) dx

∣
∣
∣
∣
∣
≤ 2

for a.e. t ≥ 0. �

4 Conclusion

We have defined
∫
�

ϕ(x, Du) for a class Carath éodory functions ϕ(x, p) that are
convex and of linear growth in p, with the use of the convex dual ϕ∗ of ϕ. With this
definition, lower semicontinuity in L1 immediately follows without any continuity
assumption in x as was assumed in previous work. We then used these results to
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prove the existence of the flow in BV ∩ L2 of the dual H1 penalty image restoration
model, with our general energy term

∫
�

ϕ(x, Du), rather than just
∫
�

|Du| as in [44].
For further study, we note that for functions u ∈ W 1,1 (�) , integration by parts

and the Fenchel-Moreau theorem gives

−
∫

�

u divφ + ϕ∗(x,φ(x)) dx =
∫

�

∇u · φ − ϕ∗(x,φ(x)) dx

≤
∫

�

sup
φ∈V

{∇u · φ − ϕ∗(x,φ(x))
}

dx

=
∫

�

ϕ∗∗(x,∇u) dx =
∫

�

ϕ(x,∇u)dx.

Thus
∫
�

ϕ(x, Du) ≤ ∫
�

ϕ(x,∇u)dx. To show the reverse inequality, we require a
sequence of functions φj in C1

c (�) such that

sup
j

∫

�

∇u · φj − ϕ∗(x,φj(x)) dx ≥
∫

�

sup
φ∈V

{∇u · φ − ϕ∗(x,φ(x))
}

dx.

For ϕ ∈ C1(� × R
n) we may use the implicit function theorem as was done in [43],

whereas in this case we only have ϕ∗ measurable in x. Using Proposition 1, it is
hoped we can extend Theorem 3 to our class of ϕ as was done for the anisotropic
model in [24], as well as extend formula 2.1 and hence Corollary 1, if ϕ is C1 in p.
We may also consider extensions of Theorem 9 and Corollary 2 for this class of ϕ,

noting the use of the dual J∗.
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