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Abstract The aimof thiswork is to investigate the optimal control of the treatment in
a simple pandemicmodel as a switched nonlinear system.We used a newly developed
approach based on the theory of moments. This approach allows to transform a
nonlinear, non-convex optimal control problem to an equivalent linear and convex
one. To illustrate our finding, we used the example of influenza pandemic to compare
the full treatment approach to our optimal moment and time switching solution.
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1 Introduction

In order to avoid high mortalities and as a result of the severity of these outbreaks
over years, humans have focused their efforts on finding the best strategies to control
the spread of infectious diseases.

Due to poor planning, these efforts frequently fall short. For example, the supplies
of drug treatments are often inadequate and inefficient, causing health facilities to
run out of resources before meeting the needs [28].
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For these reasons, the optimization of the existing control resources is a continuous
concern in the public health. The optimal control theory has been a powerful approach
to solve optimality problems inmany disciplines. Themajority of the techniques used
in optimal control disease outbreakmodels (see e.g. [25]) are based on the Pontryagin
maximum principle [20] and forward-backward numerical algorithms to solve the
state and adjoint system of equations (for the use of numerical methods in optimal
control of epidemiological models see [2, 16] and for all other types of optimal
control problems see [24]).

One of the issues in using the standard optimal control approach is the suggested
control might not take into consideration some realistic constraints. For example, the
control agent could be a drug treatment that is not necessarily available at all times
[15] or simply might run-out [1]. In this case, it is clear that assuming that control
agent to be a continuous function is too optimistic of an assumption. In this situation,
a switched control system would be a better approach to deal with a control problem
of this nature.

Switched control systems are a class of hybrid systems that are composed of
a number of subsystems which are defined by the switches [17]. These systems
have extensively been used in recent years due to their applications in engineering
and other disciplines [5, 29]. Hence, different studies have adapted the maximum
principle to find the optimal control switched systems [9, 23, 26, 27]. However, one
the biggest problems of these versions of maximal principle of switched systems
is that they are numerically expensive since they involve the use of mixed integer
programming [3, 4].

The recent work of Mojica-Nava et al. [19] introduced a new approach to finding
the optimal switched control system.This approach is based on the use of the theory of
moments for global polynomial optimization via semidefinite programming, which
eases the numerical burden of using the previous approaches.

In thiswork, we use this new approach [19] in a simple classicalmodel that reflects
the switched aspect of the control in a pandemic model. A similar version of this
model without switched control can be found in a recent work of Brauer [6, 7]. Our
goal is to minimize the outflow from infected classes.

The paper is organized as follows: We introduce the problem in Sect. 2 then we
transform the problem to an optimal control of switched system in Sect. 3. In Sect. 4,
we present relaxation using moments approach where we transform the nonlinear,
non-convex optimal control problem to a linear and convex one. Issues related to
the implementation of the proposed method are presented in Sect. 5. Finally, we
illustrate our results with simulation in Sect. 6. We draw conclusions and present
discussion of our findings in Sect. 6.

2 Problem Statement

The aim of this work is to investigate the effect of treatment run-out supplies during
a pandemic. For this reason, we consider the following simple pandemic treatment
model
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Fig. 1 Flow diagram of
transitions between
epidemiological classes of
the STIR model

Ṡ = −β
S

N
(I + δT ),

İ = β
S

N
(I + δT ) − (α + γ u)I,

Ṫ = γ uI − ηT,

(1)

where the total population N is defined as N = N (t0) = S(t0) + I (t0). This SITR
model is an extension of the standardmodel of Kermack andMckendrick by adding a
fraction of infectives to be treated [6, 7], where S, I and T represent the susceptible,
the infected and treated individuals. The parameters in model (1) are defined as
follows: β is the transmission rate from susceptible to infected host and α is the
per capita loss rate of infected individuals through both mortality and recovery. We
assume that individuals in the T class have infectivity reduced by a factor δ and γ is
the rate of infectives that are treated. We also assume that the rate of removal from
treated class is η.

The flow chart of our model is given in Fig. 1.
The basic reproduction number is calculated in [6] as

R0 = β

α + γ u
+ βδγ u

η(α + γ u)
(2)

and the final size is given by [7]

N − S∞ = (α + γ u)

∫ ∞

0
I (t)dt. (3)

The parameter u in (1) is the treatment control which takes values 0 or 1, where
u = 1 means treatment is underway and u = 0 means no treatment. Accordingly,
system (1) can switch between two different subsystems (modes of operations),
corresponding to u = i, i = 0, 1, as time progresses. Thus, we have a switched
system.
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3 The Switched System

By considering x = (S, I, T )�, we can rewrite our system (1) as

ẋ(t) = fσ(t)(x(t)), (4)

where fi : IR3 → IR3 is the i th vector field,σ : [t0, t f ] → Q = {0, 1} is the switching
signal, a piecewise constant function of time, and [t0, t f ] is the time interval under
consideration. The initial conditions are given by x(0) = (S(0), I (0), T (0))�. Every
mode of operation of the system corresponds to a specific subsystem ẋ(t) = fi (x(t)),
for each i ∈ Q, where i = 0 corresponds to u = 0 and i = 1 corresponds to u = 1.

Our goal is to study the number of possible switches of treatment that allows
us to reduce the burden of the infection by reducing the size of the pandemic. Each
subsystem ẋ(t) = fi (x(t)), for i ∈ Q, corresponds to a mode of the switching signal
σ(t) which is our control input. The values of the switching input signal must be
chosen in away to satisfy the given initial conditions and the desirable final conditions
that represent specific desirable pandemic outcome. The optimal switching signal σ
would represent a public health optimal strategy to control the pandemic within the
limits of the available resources.

Before we continue our analysis, we assume the following [19]:

• There are no infinite switching accumulation points in time.
• The state does not have jump discontinuities.

Accordingly, we define the switched control of our system as a duplet of finite
sequence of modes and a finite sequence of switching times t0 < t1 < ... < t f .
Our optimal control cost function is defined, in Bolza form, as the functional

J =
∫ t f

t0

Lσ(t)(t, x(t))dt, (5)

with the running cost Lσ(t)(t, x(t)) is given by

Lσ(t)(t, x(t)) = α I (t) + ηT (t), (6)

where the term (α I (t) + ηT (t)) represents the outflow from infected classes at time
t [12], and σ(t) ∈ {0, 1}.

The switched optimal control problem becomes

min
σ(t)

J (t0, t f , x(t), σ (t)) (7)

subject to
ẋ(t) = fσ(t)(x(t)), (8)

where J is defined by (5) and σ(t) ∈ {0, 1}.
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Following the approach in [19], we use Lagrange polynomials to transform the
system (8) to a continuous non-switched control system. Therefore, we introduce a
new continuous control variable w ∈ Ω = {w ∈ IR

∣∣ g(w) = 0}, where

g(w) = w(w − 1). (9)

Let the kth Lagrange polynomial, lk(w), k = 0, 1, be defined by

l0(w) = (1 − w), l1(w) = w. (10)

Then, according to Proposition 4 in [19], we can write system (8) as the following
equivalent continuous system with polynomial dependence, F (x,w), in the new
control variable w ∈ Ω:

ẋ = F (x,w) = f0(x)l0(w) + f1(x)l1(w). (11)

Similarly, the running cost Lσ(t)(t, x(t)) is equivalently represented by the polyno-
mial L (x,w) of degree 1 in w:

L (x,w) = L0(t, x(t))l0(w) + L1(t, x(t))l1(w) (12)

and the cost function J in (5) becomes

J (t0, t f , x(t),w) =
∫ t f

t0

L (x,w)dt. (13)

Finally, the polynomial equivalent optimal control problem (PEOCP) can be stated
as

min
w∈Ω

J (t0, t f , x(t),w) (14)

subject to

ẋ =
1∑

k=0

fk(x)lk(w), (15)

with x(0) = x0, a given initial state. The polynomial constraint w ∈ Ω (g(w) = 0)
makes the problem nonconvex, as the feasible set Ω is non convex. To overcome the
nonconvexity of the problem, the moments approach, described in the next section,
is used to redefine the PEOCP in terms of moment variables which will render the
optimization problem convex.
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4 Relaxation Using Moments Approach

In this section, the moments approach is described for the relaxation of the PEOCP
which transforms the nonconvex PECOP into convex semidefinite programs (SDPs).
This approach is based on the concepts of moment and localizing matrices of prob-
ability measures supported in Ω .

4.1 Moment and Localizing Matrices

The concept of moment and localizing matrices of a probability measure is described
in details in [13, 14]. For the convenience of the reader, we report only the important
aspects.

LetPr be the space of univariate polynomials of degree at most r in the variable
x ∈ IR. If μ is a probability measure supported in some set A ⊂ IR, the i th moment
of μ is defined as

mi =
∫
A
xiμ(dx)

with m0 = 1. If p(x) ∈ Pr of degree r , p(x) =
r∑

i=0

pi x
i , then

∫
A
pr (x)μ(dx) =

r∑
i=0

pimi .

Now, if m = {m j }2rj=0 is a sequence a moments of some probability measure μ, the
moment matrix Mr (m) is defined as the symmetric (r + 1) × (r + 1) matrix with
(i, j) entries Mr (m)(i, j) = mi+ j , 0 ≤ i, j ≤ r , i.e.,

Mr (m) =

⎡
⎢⎢⎢⎣

m0 m1 · · · mr

m1 m2 · · · mr+1
...

... · · · ...

mr mr+1 · · · m2r

⎤
⎥⎥⎥⎦ .

The localizing matrix relative to a polynomial q(x) is defined as follows. Given

a polynomial q(x) of degree s, q(x) =
s∑

i=0

qi x
i , the localizing matrix denoted by

Mr (q m) is defined as the symmetric matrix of size (r + 1) × (r + 1) with (i, j)
entries, 0 ≤ i, j ≤ r , given by
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Mr (q m)(i, j) =
s∑

k=0

qkmi+ j+k .

As an example, in the case of r = 3, the moment matrix M3(m) is

M3(m) =

⎡
⎢⎢⎣
m0 m1 m2 m3

m1 m2 m3 m4

m2 m3 m4 m5

m3 m4 m5 m6

⎤
⎥⎥⎦ .

If q(x) = 2 − x2, {qi } = {2, 0,−1}, the (i, j) entries of the localizingmatrix is given
by M3(q m)(i, j) = 2mi+ j − mi+ j+2, i.e.,

M3(q m) =

⎡
⎢⎢⎣
2m0 − m2 2m1 − m3 2m2 − m4 2m3 − m5

2m1 − m3 2m2 − m4 2m3 − m5 2m4 − m6

2m2 − m4 2m3 − m5 2m4 − m6 2m5 − m7

2m3 − m5 2m4 − m6 2m5 − m7 2m6 − m8

⎤
⎥⎥⎦ .

A key property of Mr (m) and Mr (q m) used in this paper is their positive semi-
definiteness stated in the following proposition.

Proposition 1 If m = {mi } is a sequence of moments of some probability measure
μ supported in some set A ⊂ IR and q(x) = ∑

k
qkxk is a polynomial with q(x) ≥ 0,

∀ x ∈ A, then the matrices Mr (m) and Mr (q m) are positive semidefinite.

Proof Let c = (c0, c1, . . . , cr ) ∈ IRr+1. Let p(x) =
r∑

i=0

ci x
i . Then

cMr (m)c� =
r∑

i=0

r∑
j=0

ci c jmi+ j =
r∑

i=0

r∑
j=0

ci c j

∫
A
xi+ jμ(dx) =

∫
A
(p(x))2μ(dx) ≥ 0.

cMr (q m)c� =
r∑

i=0

r∑
j=0

∑
k

ci c jqkmi+ j+k

=
r∑

i=0

r∑
j=0

∑
k

ci c jqk

∫
A
xi+ j+kμ(dx) =

∫
A
q(x)(p(x))2μ(dx) ≥ 0.

which prove the positive semidefiniteness of Mr (m) and Mr (q m), since c is an
arbitrary vector in IRr+1.
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4.2 Semidefinite Programs Using Moments Approach

It has been shown in [13], see also [14], that the minimisation problem (14) is
equivalent to the minimisation problem

min
μ∈P(Ω)

∫
Ω

J μ(dw), (16)

that is,

min
w∈Ω

J = min
μ∈P(Ω)

∫
Ω

Jμ(dw)

where P(Ω) is the space of probability measures supported in Ω . Since J is a
polynomial of degree 1 in w (see (12) and (13)), we can rewrite the minimisation
problem in terms of the moments of μ as

min
μ∈P(Ω)

∫
Ω

Jμ(dw) = min
m∈M

∫ t f

t0

1∑
k=0

1∑
i=0

Lk(t, x(t))αkimi , (17)

where α00 = 1, α01 = −1, α10 = 0, α11 = 1, are the coefficients of the Lagrange
polynomials l0(w) and l1(w) in (10), and M is the space of moments defined by

M = {m = {mi }, mi =
∫

Ω

wiμ(dw), μ ∈ P(Ω)}.

The system state, Eq. (15), is rewritten in terms of the moments mi as

ẋ =
1∑

k=0

1∑
i=0

fk(x)αkimi . (18)

The constraintm ∈ M in (17) states thatm is a vector ofmoments of someprobability
measure. This implies that

M1(m) =
[
m0 m1

m1 m2

]

 0.

The constraint on the control variable w ∈ Ω , g(w) = w(w − 1) = w2 − w = 0, is
written as two inequality constraints:

g1(w) = g(w) = w2 − w ≥ 0, (19)

g2(w) = −g(w) = w − w2 ≥ 0. (20)
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The degree of both constraint functions g1 and g2 is even (=2), so following the
results in [13], we consider the family of relaxed convex SDPs, with relaxation order
r ≥ max(degree(g1)/2, degree(g2)/2) = 1:

SDPr :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
m

∫ t f

t0

1∑
k=0

1∑
i=0

Lk(t, x(t))αkimi dt,

Mr (m) 
 0,
Mr−1(g1 m) 
 0,
Mr−1(g2 m) 
 0,

ẋ =
1∑

k=0

1∑
i=0

fk(x)αkimi .

(21)

It was shown also in [13] that min SDPr is an increasing sequence of lower bounds
for min J , and as r −→ ∞, min SDPr ↑ min J .

For the lowest order of relaxation r = 1, we have the following SDP

SDP1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
m

∫ t f

t0

1∑
k=0

1∑
i=0

Lk(t, x(t))αkimi dt,

M1(m) 
 0,
M0(g1 m) = m2 − m1 
 0,
M0(g2 m) = m1 − m2 
 0,

ẋ =
1∑

k=0

1∑
i=0

fk(x)αkimi .

(22)

It is worth mentioning that one can use a higher relaxation order r but the number of
moment variables will increase, which canmake the problem numerically inefficient.
However, it is found that inmany situations the lowest order of relaxation can achieve
the optimal value. In our simulation, we treat our problem with the lowest order of
relaxation r = 1.

5 Numerical Implementation

In this section, we explain the numerical implementation steps used to solve (22).
The SDP in (22) is a constrained minimisation problem over the moments m(t)
which are time dependent. We discretize the interval [t0, t f ] with nodal points ti ,
i = 0, 1, . . . , N , with tN = t f , using a uniform step h. Denote by mi the vector of
the i th moments, i.e.,mi = {mi (t j )} j=0,1,...,N−1. Note thatm0 = [1, 1, . . . , 1], since
the zeroth moment m0 = 1 for all t . Let the vector m = [m1 m2] of length 2N .
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The integral defining the objective function and the state constraint differential
equation in (22) are descritized using appropriate quadratures. A trapezoidal rule
quadrature for the integral and a one-step forward discretization of the state equation
give the following discrete version of (22):

SDP1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
m

h
N−1∑
j=0

1∑
k=0

1∑
i=0

Lk(t j , x(t j ))αkimi (t j )

M1(m) 
 0,
M0(g1 m) = m2 − m1 
 0,
M0(g2 m) = m1 − m2 
 0,

x(t j+1) = x(t j ) + h
1∑

k=0

1∑
i=0

fk(x(t j ))αkimi (t j ).

(23)

where the minimisation is now over the vector m = [m1 m2].
Problem (23) is solved using the built in Matlab function fmincon, which is a

function designed for solving numerically nonlinear constrained minimization prob-
lems.

Once an optimal solution m∗(t j ) = (m∗
1(t j ),m

∗
2(t j )) of (23) is reached, the

switching signal σ(t j ) is determined using a rank condition [19] as follows. If
rank(M1(m∗(tj))) = rank(M0(m∗(tj))) = 1, then the optimal switching signal at t j
is σ(t j ) = m1(t j ), otherwise we use a sum up rounding procedure [21] as follows

σ(t j ) =

⎧⎪⎨
⎪⎩

m1(t j )� if
∫ t j

t0

m1(τ )dτ − h
j−1∑
k=0

σ(t)k) ≥ 0.5h,

�m1(t j )� otherwise,

(24)

where ·� and �·� are the ceiling and floor functions, respectively.

6 Numerical Simulation

To illustrate our model, we need to simulate the results of our analysis. We choose
the influenza pandemic as parameters of our model. The following parameters can
be found in different papers that have studied the influenza pandemic. In our case,
we used the parameters for models that studied the control strategy via vaccination
and treatment [8, 10, 11]. The parameters are presented in Table1.

The simulations illustrated in Fig. 2 describe the plot of the relaxed moment
solution function m∗

1(t j ) and the switching signal σ(t j ). Figure3 depicts the time
series of the three compartments’ populations considered in the model.

The optimal moment function and optimal switching signal showed that range
of the switches corresponding to optimal solution is between t = 0 to t = 26 time
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Table 1 Parameter estimation

Parameter Description Value References

β Transmission rate (days−1) 1.03–2.75 [8]

δ Relative infectiousness of the
asymptomatic class

0.5 [8, 10]

α Mortality rate (days−1) 0.01 [11]

γ Diagnostic rate (days−1) 0.5 [8]

η Recovery rate for hospitalized
class (days−1)

0.51 –

u Control treatment on hospitalized
individuals

0,1 –

S(0) Initial number of susceptible
individuals

174673 [8]

I (0) Initial number of infectious
individuals

132 [8]

T (0) Initial number of infectious
individuals

0 Assumed

Fig. 2 The moment function m1(t) (top) and the optimal switched control of the treatment σ(t)
(bottom)
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Fig. 3 The time series of the Susceptible, Infected and Treated. The plot displays these variable
with no control u = 0 (green), optimal switched control (blue), and full control u = 1 (red)

units (which is days in the case of influenza) to treat the infected population. After
that time there is no need for treatment. This finding is reflected on the time series in
Fig. 3 where the peak size and the peak time of the pandemic curve of u = 1 (in red),
which represent the full availability of the treatment at any given time, completely
match the case of optimal switched control. This shows that we can achieve the same
outcome of controlling the pandemic antiviral treatment by only treating (on and
off) for a a limited period of time, hence, avoiding the consequences of the long
term antiviral treatment which may exhaust drug stockpile and may develop drug
resistance.

7 Conclusion

In this paper, we studied the optimal control problem of a SITR model. The control
aimed to optimize the number of infected and treated population via only one control
agent, i.e. the treatment. The method used for solving the optimal control problem
of switched nonlinear systems was based on a polynomial approach developed by
Mojica-Nava et al. [19]. The method based on transforming the problem into a
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polynomial system which was transformed into a relaxed convex problem using the
method of moments [13].

Our results showed that, by using this approach, we can achieve the same outcome
of continuous treatment by only limiting treatment for period of time. This indicates
that if the treatment is not available or run-out after a specific time, the outcome of the
pandemic would be the same as if treatment is available at all times. It is important to
mention that the suggested control switches are all in the early time of the pandemic,
which line-up with the results in [1, 10]. Although the antiviral drug in a pandemic,
like influenza, has been considered as the first line of the defence [1], the long term
use of this drug could lead to the development of drug-resistance. This finding also
suggests a solution to the long and extensive use of the antiviral drug by limiting its
use (on and off) in the beginning of the pandemic and for a limited period of time.

Themodel suggested in this work is very simple and does not include other control
strategies such as vaccination and isolation, that are used to protect the public health
in the case of pandemics such as influenza. Our next step is to include these defence
measures as switched control in more extended models that include all different
levels of heterogeneities.
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