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Abstract Quasi-cyclic codes are generalizations of the familiar linear cyclic codes.
By using the results of [4], the authors in [2, 3] showed that a quasi-cyclic code
C over Fq of length �m and index � with m being pairwise coprime to � and the
characteristic of Fq is equivalent to a cyclic code if the constituent codes of C are
cyclic, where q is a prime power and the equivalence is given in [3]. In this paper, we
apply an algebraic method to prove that a quasi-cyclic code with cyclic constituent
codes is equivalent to a cyclic code. Moreover, the main result (see Theorem 4)
includes Proposition 9 in [3] as a special case.
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1 Introduction

Quasi-cyclic codes over finite fields form an important class of block codes that
include cyclic codes as a special case. In [4], Ling and Solé viewed each quasi-
cyclic code as a code over a polynomial ring, and extracted a description of each
quasi-cyclic code as being constructed from linear codes of shorter lengths over larger
fields, which are called the constituent codes of the quasi-cyclic code. It is interesting
to ask what kind of codes we will obtain if constituent codes of a quasi-cyclic code
are cyclic. Such codes can enjoy the ease of encoding of cyclic codes by polynomial
division for instance.

In [1], quasi-cyclic codes of length 5� and index � over Fq were obtained from a
pair of codes over Fq and Fq4 , respectively, by a combinatorial construction called
here the quintic construction. They enjoy a designed trellis description and a subop-
timal coset decoding algorithm. They are shown to be cyclic when the constituent
codes are cyclic of odd length coprime to 5. Lim [3] generalized the result in [1]
to the general case by a similar method. In [2], Güneri and Özbudak considered the
same issue. If the constituent codes of a quasi-cyclic code C of length m� and index
� are cyclic, the authors show that C can be viewed as a 2-D cyclic code of size
m × � over Fq . Moreover, in case m and � are also coprime to each other, C must
be equivalent to a cyclic code. However, the results of Refs. [2], [3] relied on the
structures of quasi-cyclic codes of the Ref. [4].

In this paper, we apply an algebraic method to investigate the same issue. More-
over, the equivalence in Proposition 9 of [3] is a special case of Theorem4,which pro-
vides many equivalences. Throughout this paper we require that (m, q) = (�, q) =
(m, �) = 1, where q = pk for some positive integer k, p is a prime.

2 The Circulant Matrix Decomposition of a Cyclic Code

Cyclic codes are generated by shift registers and play an important role in random
error-correcting and burst error-correcting. Cyclic codes were first studied by Prange
in 1957, and the study of the algebraic properties of cyclic codes developed rapidly
since then. An [n, k]q code C is called cyclic provided that, for each codeword c =
(c0, c1, c2, . . . , cn−1) ∈ C , the vector (cn−1, c0, c1, . . . , cn−2) ∈ C . In this section,
we require that (n, p) = 1.

Definition 1 Let C be a cyclic code of length n over Fq and A ⊆ C , then a circulant
matrix A containing the codeword (a0, a1, . . . , an−1) is defined as follows

A =

⎛
⎜⎜⎝

a0 a1 a2 . . . an−1

an−1 a0 a1 . . . an−2

. . . . . . . . .

a1 a2 a3 . . . a0

⎞
⎟⎟⎠ .
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Remark 1 A can be considered as a set of n codewords of C . In our case, codeword
repetition in A is omitted if necessary.

Lemma 1 A cyclic code C of length n over Fq can be decomposed into a finite
disjoint union of circulant matrices.

Proof If c = (a0, a1, . . . , an−1) ∈ C , thenwe have A ⊆ C . For any c′ = (b0, b1, . . . ,
bn−1) ∈ C and c′ /∈ A, following the construction of the circulant matrix, then
A ∩ B = ∅, where B is the circulant matrix containing c′, this operation will be
stopped after finite steps.

Take the [7, 4, 3] Hamming code C for example, which is a cyclic code with
generator polynomial 1 + x2 + x3, according to Lemma 1, we have C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 0 0 1 0 1 1
1 1 0 0 1 0 1
1 1 1 0 0 1 0
0 1 1 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⋃

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⋃

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⋃

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Following Definition 1, we can prove the following lemma, which plays an im-
portant role in obtaining our results.

Lemma 2 Let C be a cyclic code of length n over Fq , then A is a circulant matrix
if and only if A = Pndiag( f (1), f (ζ ), . . . , f (ζ n−1))P−1

n , where

Pn =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
1 ζ ζ 2 . . . ζ n−1

1 ζ 2 ζ 2×2 . . . ζ 2(n−1)

...
...

...

1 ζ n−1 ζ 2(n−1) . . . ζ (n−1)(n−1)

⎞
⎟⎟⎟⎟⎟⎠

is a Vandermonde matrix, ζ is a primitive n-th root of unity, (a0, · · · , an−1) is the
first row of A and f (x) = a0 + a1x + a2x2 + · · · + an−1xn−1.

Proof It is clear that Pn is invertible since ζ is a primitive n-th root of unity.Moreover,
it is easy to check that

APn =

⎛
⎜⎜⎝

f (1) f (ζ ) . . . f (ζ n−1)

f (1) ζ f (ζ ) . . . ζ n−1 f (ζ n−1)

. . . . . . . . . . . .

f (1) ζ n−1 f (ζ ) . . . ζ (n−1)(n−1) f (ζ n−1)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

1 1 . . . 1
1 ζ . . . ζ n−1

. . . . . . . . . . . .

1 ζ n−1 . . . ζ (n−1)(n−1)

⎞
⎟⎟⎠ diag( f (1), f (ζ ), . . . , f (ζ n−1)).
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Equivalently, A = Pndiag( f (1), f (ζ ), . . . , f (ζ n−1))P−1
n . The converse part is

straightforward.

3 Quasi-cyclic Codes with Cyclic Constituent Codes

A linear codeC is a quasi-cyclic code of length �mwith index � ifC is invariant under
a shift by � places, namely, for any (a00, a01, . . . , a0,�−1, a10, . . . , a1,�−1, . . . , am−1,0,

. . . , am−1,�−1) ∈ C , we have (am−1,0, am−1,1, . . . , am−1,�−1, a00, . . . , a0,�−1, . . . ,

am−2,0, . . . , am−2,�−1) ∈ C . The constituent codes of such a code are codes of length
� over extension alphabets that appear in the CRT decomposition of [4]. See [4] for
details. They are not cyclic in general. The class of quasi-cyclic codeswith cyclic con-
stituents is a strict subclass of all quasi-codes. In [2], the authors proved that ifm and �

are both relatively prime to q, and the constituents of the quasi-cyclic code (of length
�m and index �) are all cyclic codes, then C is a 2-D cyclic code. Therefore, a linear
code C of length �m is a quasi-cyclic code of length �m and index �with cyclic con-
stituent codes if (a00, a01, a02, . . . , a0,�−1, a10, . . . , a1,�−1, . . . , am−1,0, . . . , am−1,�−1)

∈ C implies that

(am−1,�−1, am−1,0, . . . , am−1,�−2, a0,�−1, . . . , a0,�−2, . . . , am−2,�−1, . . . , am−2,�−2) ∈ C .

Definition 2 Let C be a quasi-cyclic code of length �m and index � with cyclic
constituent codes, then a similar circulant matrix A′ containing the codeword

(a00, a01, . . . , a0,�−1, a10, . . . , a1,�−1, . . . , am−1,0, . . . , am−1,�−1)

is defined as follows

⎛
⎜⎜⎜⎜⎝

a00 a01 . . . a0,�−1 a10 . . . a1,�−1 . . . am−1,0 . . . am−1,�−1

am−1,�−1 am−1,0 . . . am−1,�−2 a0,�−1 . . . a0,�−2 . . . am−2,�−1 . . . am−2,�−2

am−2,�−2 am−2,�−1 . . . am−2,�−3 am−1,�−2 . . . am−1,�−3 . . . am−3,�−2 . . . am−3,�−3

. . . . . . . . . . . .

a11 a12 . . . a10 a21 . . . a20 . . . a01 . . . a00

⎞
⎟⎟⎟⎟⎠

.

Remark 2 A′ can be considered as a set of �m codewords ofC . Codeword repetition
in A′ is omitted if necessary. Note that A′ is a �m × �m matrix.

Similar to the proof of Lemma 1, we have the following corollary.

Corollary 1 Let C be a quasi-cyclic code of length �m and index � with cyclic
constituent codes, then the code C can be decomposed into finite disjoint unions of
similar circulant matrices.

We denote by Sn the symmetric group of n elements. The following lemma will
be clear from matrix theory.
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Lemma 3 Let D1 and D2 be n × n matrices, for σ ∈ Sn, σ(D1) represents the
action of σ on coordinates of every row of D1, σ T (D1) represents the action of σ on
coordinates of every column of D1, which means if

D1 =

⎛
⎜⎜⎝

d00 d01 d02 . . . d0,n−1

d10 d11 d12 . . . d1,n−1

. . . . . . . . .

dn−1,0 dn−1,1 dn−1,2 . . . dn−1,n−1

⎞
⎟⎟⎠ ,

then we have

σ(D1) =

⎛
⎜⎜⎝

d0,σ (0) d0,σ (1) d0,σ (2) . . . d0,σ (n−1)

d1,σ (0) d1,σ (1) d1,σ (2) . . . d1,σ (n−1)

. . . . . . . . .

dn−1,σ (0) dn−1,σ (1) dn−1,σ (2) . . . dn−1,σ (n−1)

⎞
⎟⎟⎠ ,

σ T (D1) =

⎛
⎜⎜⎝

dσ(0),0 dσ(0),1 dσ(0),2 . . . dσ(0),n−1

dσ(1),0 dσ(1),1 dσ(1),2 . . . dσ(1),n−1

. . . . . . . . .

dσ(n−1),0 dσ(n−1),1 dσ(n−1),2 . . . dσ(n−1),n−1

⎞
⎟⎟⎠

and D1D2 = σ(D1)σ
T (D2).

Lemma 4 Let ε be a primitive �m-th root of unity, then there exists a permutation
θ ∈ S�m such that θ(A′) = P�mΛP−1

�m , where

P�m =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
1 ε ε2 . . . ε�m−1

1 ε2 ε2×2 . . . ε2(�m−1)

...
...

...

1 ε�m−1 ε2(�m−1) . . . ε(�m−1)(�m−1)

⎞
⎟⎟⎟⎟⎟⎠

is a Vandermonde matrix, Λ = diag(g(1), g(ε), g(ε2), . . . , g(ε�m−1)) is a diag-
onal matrix, and g(y) = a00 + a11y + · · · + aim ,i� y

i + · · · + am−1,�−1y�m−1 with
im = i (mod m), i� = i (mod �), i = 0, 1, 2, . . . , �m − 1.

Proof Let ξ ∈ {1, ε, ε2, . . . , ε�m−1} and P ′
�m be obtained from the matrix P�m under

certain row shift, then there exists a permutation θ such that θT (P ′
�m) = P�m . Since

gcd(�,m) = 1, according to the Chinese Remainder Theorem, we can establish a
one-to-one correspondence between the coefficient of the term ξ i in g(ξ) and ξ i

denoted by aim ,i� ↔ ξ i , this correspondence can make the calculation of g(y) easily.
Let P ′

�m(ξ) be any column vector of P ′
�m , and A′P ′

�m(ξ) = (b0, b1, . . . , b�m−1)
T . Set

b0 = g(ξ), by this correspondence and the elements of the first row of A′, we can
determine P ′

�m(ξ) = (1, ξ tm, ξ 2tm, . . . , ξ i , . . . , ξ �m−1)T ,where t is themultiplicative
inverse of m module �. Thus θ is determined by P ′

�m(ξ). The elements of the j-th
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row of A′ can be expressed as

(a( j)
00 , a( j)

01 , . . . , a( j)
0,�−1, a

( j)
10 , a( j)

11 , . . . , a( j)
1,�−1, . . . , a

( j)
m−1,0, a

( j)
m−1,1, . . . , a

( j)
m−1,�−1),

where 1 ≤ j ≤ �m.
Next,we try to calculateb j ( j = 1, 2, . . . , �m − 1). Ifwefix j , by the construction

of the similar circulant matrix A′, since 1 ≤ i + j ≤ 2�m − 2, we know that in the
( j + 1)-th row of A′,

a(1)
im ,i�

= a( j+1)
(i+ j)m ,(i+ j)�

↔ ξ (i+ j)�m ,

and ξ (i+ j)�m = ξ i+ j for ξ�m = 1. Then

b j =
�m−1∑
i=0

a( j+1)
im ,i�

ξ i =
i+ j=�m−1∑

i+ j=0

a( j+1)
(i+ j)m ,(i+ j)�

ξ i+ j = ξ j
i+ j=�m−1∑

i+ j=0

a( j+1)
(i+ j)m ,(i+ j)�

ξ i

= ξ j
i+ j=�m−1∑

i+ j=0

a(1)
im ,i�

ξ i = ξ j
�m−1∑
i=0

a(1)
im ,i�

ξ i = ξ j b0. (1)

From (1), we have

A′P ′
�m(ξ) = (b0, b1, . . . , b�m−1)

T = g(ξ)(1, ξ, ξ 2, . . . , ξ �m−1)T . (2)

Set ξ = 1, ε, ε2, . . . , ε�m−1, from (2), we have

A′(P ′
�m(1), P ′

�m(ε), P ′
�m(ε2), . . . , P ′

�m(ε�m−1))T = A′P ′
�m,

then

A′P ′
�m =

⎛
⎜⎜⎝
g(1) g(ε) . . . g(ε�m−1)

g(1) εg(ε) . . . ε�m−1g(ε�m−1)

. . . . . . . . .

g(1) ε�m−1g(ε) . . . ε(�m−1)(�m−1)g(ε�m−1)

⎞
⎟⎟⎠ = P�mΛ. (3)

Thus A′P ′
�m = P�mΛ. From Lemma 3, we have A′P ′

�m = θ(A′)θT (P ′
�m) = θ(A′)

P�m = P�mΛ. Consequently, θ(A′) = P�mΛP−1
�m .

Corollary 2 A similar circulant matrix A′ is equivalent to a circulant matrix.

Proof From Lemmas 4 and 2, we know that θ(A′) is a circulant matrix, so A′ is
equivalent to a circulant matrix θ(A′). Moreover, from the expressions of f (x) and
g(y), the circulant matrix θ(A′) is none other than the circulant matrix containing
the codeword (a00, a11, . . . , aim ,i� , . . . , am−1,�−1).

Theorem 1 A quasi-cyclic code C of length �m and index � with cyclic constituent
codes is equivalent to a cyclic code.
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Proof From Corollary 1, we can write C = A′
1 ∪ A′

2 ∪ · · · ∪ A′
k = ∪k

i=1A
′
i , from

Lemma 4, let θ be a permutation that θ(A′
1) is a circulant matrix, and according to

the proof of Lemma 4, the permutation θ is universally applicable for the matrices
A′
i , thus θ(A′

i )(i = 1, . . . , k) are all circulant matrices. Now we prove that θ(C ) is
a linear cyclic code. For θ(c) ∈ θ(C ), then there exists i such that θ(c) ∈ θ(A′

i ),
from the construction of the circulant matrix, then θ(C ) is cyclic. The linearity
of θ(C ) is obtained by the linearity of C . In more details, for θ(c), θ(c′) ∈ θ(C ),
there exist c, c′ ∈ C , in such a way that, for k1, k2 ∈ Fp, k1c + k2c′ ∈ C we have
θ(k1c + k2c′) = k1θ(c) + k2θ(c′) ∈ θ(C ). Therefore, θ(C ) is a linear cyclic code
and C is equivalent to a cyclic code θ(C ).

Theorem 1 in fact gives an alternative proof of Proposition 9 in [3] by a different
method.

Lemma 5 (See Proposition 9 in [3]) Let q be a prime power, and let Fq denote a
finite field. Let � and m be coprime positive integers with m coprime to q, and let C
be a quasi-cyclic code of length �m and index �with cyclic constituent codes overFq ,
let t denote the multiplicative inverse of m module �, then C is equivalent to a cyclic
code C, the equivalence is given by d = (d0, d1, . . . , d�m−1) ∈ C, its pre-image c in
C is given by

(d(0)tm+0, dtm+0, d2tm+0, . . . , d(�−1)tm+0, d(�−1)tm+1, d(0)tm+1, dtm+1, . . . , d(�−2)tm+1,

. . . , d(�−m+1)tm+(m−1), d(�−m+2)tm+(m−1), d(�−m+3)tm+(m−1), . . . , d(�−m)tm+(m−1)).

Theorem 2 The results of Theorem 1 are equivalent to those of Lemma 5.

Proof According to Corollary 2, the codeword

(a00, . . . , a0,�−1, a10, . . . , a1,�−1, . . . , am−1,0, . . . , am−1,�−1) ∈ C

is equivalent to the codeword (a00, a11, . . . , aim ,i� , . . . , am−1,�−1) ∈ θ(C ). Let

(a00, a11, . . . , aim ,i� , . . . , am−1,�−1) = (y0, y1, y2, . . . , yi , . . . , y�m−1),

in such a way that aim ,i� = yi , where 0 ≤ i ≤ �m − 1. For any ai, j , write

km = i, k� = j ⇔ k ≡ i (mod m), k ≡ j (mod �). (4)

Note that mt = 1 (mod �), and 0 ≤ k ≤ �m − 1, it is easy to check that k = ( j −
i)�mt + i is a solution of the congruence Eq. (4). Therefore
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(a00, a01, a02, . . . , a0,�−1, a10, . . . , a1,�−1, . . . , am−1,0, . . . , am−1,�−1)

= (y(0)tm+0, ytm+0, y2tm+0, . . . , y(�−1)tm+0, y(�−1)tm+1, y(0)tm+1, ytm+1, . . . , y(�−2)tm+1,

. . . , y(�−m+1)tm+(m−1), y(�−m+2)tm+(m−1), y(�−m+3)tm+(m−1), . . . , y(�−m)tm+(m−1)),

which is the same as Lemma 5.

4 The Generator Polynomial of θ(C )

In this section, we make an attempt to describe the generator polynomials of C and
θ(C ) over Fq without using the results of [4].

Definition 3 For c = (a00, a01, a02, . . . , a0,�−1, a10, a11, a12 . . . , a1,�−1, . . . , am−1,0,

. . . , am−1,�−1) ∈ C , we define a mapping φ which maps from the codeword c ∈ C
to bivariate polynomial ring Fq [x, y]/〈xm − 1, y� − 1〉.

φ : c �→ φ(c) = a00 + a01y + a02y
2 + · · · + ai j x

i y j + · · · + am−1,�−1x
m−1y�−1,

where 0 ≤ i ≤ m − 1, 0 ≤ j ≤ � − 1.

Theorem 3 J is a principal ideal of Fq [x, y]/〈xm − 1, y� − 1〉 if and only if C is
a quasi-cyclic code of length �m and index � with cyclic constituent codes, where
J = φ(C ).

Proof For c = (a00, a01, a02, . . . , a0,�−1, a10, . . . , a1,�−1, . . . , am−1,0, . . . , am−1,�−1)

∈ C , namely, φ(c) = a00 + a01y + a02y2 + · · · + ai j x i y j + · · · + am−1,�−1xm−1

y�−1 ∈ J , thenwe have xφ(c) = a00x + a01xy + a02xy2 + · · · + ai j x i+1y j + · · · +
am−1,�−1y�−1 ∈ J . Therefore

(am−1,0, am−1,1, am−1,2, . . . , am−1,�−1, a00, . . . , a0,�−1, . . . , am−2,0, . . . , am−2,�−1) ∈ C (5)

and yφ(c) = a00y + a01y2 + a02y3 + · · · + ai j x i y j+1 + · · · + am−1,�−1xm−1 ∈ J ,
then

(a0,�−1, a00, a01, . . . , a0,�−2, a1,�−1, . . . , a1,�−2, . . . , am−1,�−1, . . . , am−1,�−2) ∈ C
(6)

Moreover, J is a principal ideal, then xi y jφ(c) ∈ J , and

φ−1(xi y jφ(c)) ∈ C . (7)

Since J is a principal ideal, then C is linear. Moreover, C satisfies Eqs. (5)-(7), so
that C is a quasi-cyclic code with cyclic constituent codes.
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Next, we consider the converse part. From Theorem 1, θ(C ) is a cyclic code, then
θ(C ) is a principal ideal of Fq [z]/〈z�m − 1〉, let the generator polynomial of θ(C )

be

g(z) =
�m−1∑
i=0

aim ,i� z
i ,

then θ(c) = (a00, a11, . . . , aim ,i� , . . . , am−1,�−1) ∈ θ(C ), according to Corollary 2,
we have

c = (a00, a01, a02, . . . , a0,�−1, a10, . . . , a1,�−1, . . . , am−1,0, . . . , am−1,�−1) ∈ C .

Now we claim that φ(C ) = 〈φ(c)〉. Clearly, φ(c) ∈ φ(C ), thus

〈φ(c)〉 ⊆ φ(C ). (8)

It is easy to check that xyφ(c) =

φ(am−1,�−1, am−1,0, . . . , am−1,�−2, a0,�−1, . . . , a0,�−2, . . . , am−2,�−1, . . . , am−2,�−2).

And (am−1,�−1, am−1,0, . . . , am−1,�−2, a0,�−1, . . . , a0,�−2, . . . , am−2,�−1, . . . , am−2,�−2) is
exactly the second rowof the similar circulantmatrix A′ containing c. FromLemma4,
xyφ(c) is equivalent to zg(z), since zg(z) is the second rowof θ(A′), similarly, z2g(z)
is equivalent to x2y2φ(c), and so on.

Since the coordinate transformation θ is a linear mapping, then we can define a
mapping Ψ which maps from the polynomial (codeword) of θ(C ) to the equivalent
polynomial (codeword) of 〈φ(c)〉. Namely,

Ψ : f (z)g(z) ∈ θ(C ) �→ f (xy)φ(c) ∈ 〈φ(c)〉 ⊆ φ(C ).

Nextwe prove themappingΨ is bijective. For θ(c′) ∈ θ(C ), since θ(C ) is a principal
ideal, we can write θ(c′) = f1(z)g(z), from the equivalence between C and θ(C ),
we can obtain φ(c′) = f1(xy)φ(c) ∈ φ(C ). It is clear that Ψ is injective. Now it is
sufficient to prove that xi y jφ(c) has its pre-image in θ(C ), rewrite

xi y j = xk1m+i yk2�+ j ,

and it is clear that the equation k1m + i = k2� + j has integer solution (k1, k2),
one can choose the pair (k1, k2) such that k1m + i is the smallest. Set k1m + i =
k2� + j = e, then xi y jφ(c) has pre-image zeg(z) ∈ θ(C ) for some positive integer
e. Thus the mapping Ψ is bijective. Consequently,

|θ(C )| = |φ(C )| = |〈φ(c)〉|. (9)

Combining (8) and (9), we obtain 〈φ(c)〉 = φ(C ).
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From the proof of Theorem 3, we have the following corollaries.

Corollary 3 Let C be a quasi-cyclic code of length �m and index � with cyclic
constituent codes, then φ(C ) is a principal ideal of Fq [x, y]/〈xm − 1, y� − 1〉. Sim-
ilar to the case of cyclic codes, φ(c) = a00 + a01y + a02y2 + · · · + ai j x i y j + · · · +
am−1,�−1xm−1y�−1 is a generator polynomial of C . Namely, C can be constructed
by a principal ideal of Fq [x, y]/〈xm − 1, y� − 1〉.
Corollary 4 Let C be a quasi-cyclic code of length �m and index � with cyclic
constituent codes, and C has a generator polynomial φ(c) = a00 + a01y + a02y2 +
· · · + ai j x i y j + · · · + am−1,�−1xm−1y�−1, then θ(C ) is a cyclic code with the gener-
ator polynomial g(z) = ∑�m−1

i=0 aim ,i� z
i .

5 General Equivalences

In this section, we will give more general equivalences which include θ in Lemma 4
and the equivalence of Proposition 9 in [3] as a special case.

Theorem 4 Let C be a quasi-cyclic code of length �m and index � with cyclic
constituent codes, then there exists another permutation θ ′ such that θ ′(C ) is a
cyclic code and similar to the proof of Theorem 3, we can obtain another generator
polynomial of φ(C ).

Proof If C is a quasi-cyclic code of length �m and index � with cyclic constituent
codes and gcd(k3, �) = gcd(k4,m) = 1, where k3 and k4 are positive integers, then
for

(a00, a01, a02, . . . , a0,�−1, a10, . . . , a1,�−1, . . . , am−1,0, . . . , am−1,�−1) ∈ C ,

we have

(am−k4,�−k3 , am−k4,�−k3+1, . . . , am−k4,�−1, am−k4,0, . . . , am−k4,�−k3−1,

am−k4+1,�−k3 , . . . , am−k4+1,�−k3−1, . . . , am−k4−1,�−k3 , . . . , am−k4−1,�−k3−1) ∈ C .

Similar to Definition 1, we can define a similar circulant matrix E ′ containing the
codeword (a00, a01, a02, . . . , a0,�−1, a10, . . . , a1,�−1, . . . , am−1,0, . . . , am−1.�−1)

E ′ =

⎛
⎜⎜⎜⎜⎝

a00 . . . a0,�−1 . . . am−1,0 . . . am−1,�−1

am−k4,�−k3 . . . am−k4,�−k3−1 . . . am−k4−1,�−k3 , . . . am−k4−1,�−k3−1

am−2k4,�−2k3 . . . am−2k4,�−2k3−1 . . . am−2k4−1,�−2k3 . . . am−2k4−1,�−2k3−1

. . . . . . . . . . . .

ak4,k3 . . . ak4,k3−1 . . . ak4−1,k3 . . . ak4−1,k3−1

⎞
⎟⎟⎟⎟⎠

.
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Parallel to the proof of Lemma 4 and Corollary 2, there exists another permutation
θ ′ such that θ ′(E ′) is a circulant matrix.

Takem = 5, � = 3, p = 2, k3 = 2 and k4 = 1 for example. Let E ′ be a similar cir-
culant matrix containing the codeword (a00, a01, a02, a10, a11, a12, a20, a21, a22, a30,
a31,a32, a40, a41, a42), namely,

E ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a00 a01 a02 a10 a11 a12 a20 a21 a22 a30 a31 a32 a40 a41 a42
a41 a42 a40 a01 a02 a00 a11 a12 a10 a21 a22 a20 a31 a32 a30
a32 a30 a31 a42 a40 a41 a02 a00 a01 a12 a10 a11 a22 a20 a21
a20 a21 a22 a30 a31 a32 a40 a41 a42 a00 a01 a02 a10 a11 a12
a11 a12 a10 a21 a22 a20 a31 a32 a30 a41 a42 a40 a01 a02 a00
a02 a00 a01 a12 a10 a11 a22 a20 a21 a32 a30 a31 a42 a40 a41
a40 a41 a42 a00 a01 a02 a10 a11 a12 a20 a21 a22 a30 a31 a32
a31 a32 a30 a41 a42 a40 a01 a02 a00 a11 a12 a10 a21 a22 a20
a22 a20 a21 a32 a30 a31 a42 a40 a41 a02 a00 a01 a12 a10 a11
a10 a11 a12 a20 a21 a22 a30 a31 a32 a40 a41 a42 a00 a01 a02
a01 a02 a00 a11 a12 a10 a21 a22 a20 a31 a32 a30 a41 a42 a40
a42 a40 a41 a02 a00 a01 a12 a10 a11 a22 a20 a21 a32 a30 a31
a30 a31 a32 a40 a41 a42 a00 a01 a02 a10 a11 a12 a20 a21 a22
a21 a22 a20 a31 a32 a30 a41 a42 a40 a01 a02 a00 a11 a12 a10
a12 a10 a11 a22 a20 a21 a32 a30 a31 a42 a40 a41 a02 a00 a01

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Set

h(y) = a01 + a10y + a22y
2 + a31y

3 + a40y
4 + a02y

5 + a11y
6 + a20y

7 + a32y
8 + a41y

9

+ a00y
10 + a12y

11 + a21y
12 + a30y

13 + a42y
14.

Let ε be a primitive 15-th root of unity, and ξ ∈ {1, ε, ε2, . . . , ε14}.

Q′
3×5(ξ) = (ξ 10, 1, ξ 5, ξ, ξ 6, ξ 11, ξ 7, ξ 12, ξ 2, ξ 13, ξ 3, ξ 8, ξ 4, ξ 9, ξ 14)T ,

P3×5(ξ) = (1, ξ, ξ 2, ξ 3, ξ 4, ξ 5, ξ 6, ξ 7, ξ 8, ξ 9, ξ 10, ξ 11, ξ 12, ξ 13, ξ 14)T ,

and the correspondence between the coefficient of the term ξ i in h(ξ) and ξ i is
a01 ↔ 1, a10 ↔ ξ , a22 ↔ ξ 2, a31 ↔ ξ 3, a40 ↔ ξ 4, a02 ↔ ξ 5, a11 ↔ ξ 6, a20 ↔ ξ 7,
a32 ↔ ξ 8, a41 ↔ ξ 9, a00 ↔ ξ 10, a12 ↔ ξ 11, a21 ↔ ξ 12, a30 ↔ ξ 13, a42 ↔ ξ 14.

It is easy to check that E ′Q′
3×5(ξ) = h(ξ)P3×5(ξ), according to Lemma 4, there

exists a permutation θ ′ in S15 such that

θ ′(E ′) = (P3×5(1), . . . , P3×5(ξ
14))diag(h(1), . . . , h(ξ14)(P3×5(1), . . . , P3×5(ξ

14))−1.
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Consequently, E ′ is equivalent to the circulant matrix E containing the codeword

(a01, a10, a22, a31, a40, a02, a11, a20, a32, a41, a00, a12, a21, a30, a42),

namely,

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a01 a10 a22 a31 a40 a02 a11 a20 a32 a41 a00 a12 a21 a30 a42
a42 a01 a10 a22 a31 a40 a02 a11 a20 a32 a41 a00 a12 a21 a30
a30 a42 a01 a10 a22 a31 a40 a02 a11 a20 a32 a41 a00 a12 a21
a21 a30 a42 a01 a10 a22 a31 a40 a02 a11 a20 a32 a41 a00 a12
a12 a21 a30 a42 a01 a10 a22 a31 a40 a02 a11 a20 a32 a41 a00
a00 a12 a21 a30 a42 a01 a10 a22 a31 a40 a02 a11 a20 a32 a41
a41 a00 a12 a21 a30 a42 a01 a10 a22 a31 a40 a02 a11 a20 a32
a32 a41 a00 a12 a21 a30 a42 a01 a10 a22 a31 a40 a02 a11 a20
a20 a32 a41 a00 a12 a21 a30 a42 a01 a10 a22 a31 a40 a02 a11
a11 a20 a32 a41 a00 a12 a21 a30 a42 a01 a10 a22 a31 a40 a02
a02 a11 a20 a32 a41 a00 a12 a21 a30 a42 a01 a10 a22 a31 a40
a40 a02 a11 a20 a32 a41 a00 a12 a21 a30 a42 a01 a10 a22 a31
a31 a40 a02 a11 a20 a32 a41 a00 a12 a21 a30 a42 a01 a10 a22
a22 a31 a40 a02 a11 a20 a32 a41 a00 a12 a21 a30 a42 a01 a10
a10 a22 a31 a40 a02 a11 a20 a32 a41 a00 a12 a21 a30 a42 a01

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

And the equivalence is given by θ ′ = (1 11 4 2)(3 6 12 9)(5 7 8 13)(10 14)(15) in S15.
However, θ = (2 11 14 5)(3 6 12 9)(4 7 13 10) in S15 by Lemma 4 and Corollary 2.

Similar to the proof of Theorem 1, θ ′(C ) is a cyclic code. Now we try to give
another generator polynomial of φ(C ). According to Definition 3,

φ : c �→ φ(c) = a00 + a01y + a02y
2 + · · · + ai j x

i y j + · · · + am−1,�−1x
m−1y�−1.

And the linear mapping Ψ(k3,k4) (similar to Ψ in Theorem 3) is defined as follows,

Ψ(k3,k4) : f (z)g(z) ∈ θ(C ) �→ f (xk4 yk3)φ(c) ∈ 〈φ(c)〉 ⊆ φ(C ).

According to the proof of Theorem 3, Ψ(k3,k4) is one-to-one since gcd(k3, �) =
gcd(k4,m) = 1. Then parallel to the proof of Theorem 3, the generator polynomial
of φ(C ) can be obtained.

Remark 3 According to the proof of Theorem 4, θ ′ relies on k3 and k4, and the
similar circulant matrix A′ in Sect. 3 is the case when k3 = k4 = 1.
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6 Application Examples

In this section, we are ready to give some examples to illustrate the discussed results.

Example 1 If C is a quasi-cyclic code over Fq of length 6 and index 2 with cyclic
constituent codes, where (q, 6) = 1, and let

B ′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

a00 a01 a10 a11 a20 a21
a21 a20 a01 a00 a11 a10
a10 a11 a20 a21 a00 a01
a01 a00 a11 a10 a21 a20
a20 a21 a00 a01 a10 a11
a11 a10 a21 a20 a01 a00

⎞
⎟⎟⎟⎟⎟⎟⎠

be a similar circulant matrix of C , where � = 2,m = 3, ε is a primitive 6-th root
of unity, and g(y) = a00 + a11y + a20y2 + a01y3 + a10y4 + a21y5. According to
the proof of Lemma 4, the correspondence is a00 ↔ 1, a11 ↔ ε, a20 ↔ ε2, a01 ↔
ε3, a10 ↔ ε4, a21 ↔ ε5. Write

B ′P ′
2×3(ε) = (b0, b1, b2, b3, b4, b5)

T .

Set b0 = g(ε), then we have P ′
2×3(ε) = (1, ε3, ε4, ε, ε2, ε5)T . Then

B ′(1, ε3, ε4, ε, ε2, ε5)T = g(ε)(1, ε, ε2, ε3, ε4, ε5)T .

Therefore

B ′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

a00 a01 a10 a11 a20 a21
a21 a20 a01 a00 a11 a10
a10 a11 a20 a21 a00 a01
a01 a00 a11 a10 a21 a20
a20 a21 a00 a01 a10 a11
a11 a10 a21 a20 a01 a00

⎞
⎟⎟⎟⎟⎟⎟⎠

⇔ θ(B ′) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a00 a11 a20 a01 a10 a21
a21 a00 a11 a20 a01 a10
a10 a21 a00 a11 a20 a01
a01 a10 a21 a00 a11 a20
a20 a01 a10 a21 a00 a11
a11 a20 a01 a10 a21 a00

⎞
⎟⎟⎟⎟⎟⎟⎠

.

And the equivalence is given by θ = (24)(35) in S6.

Example 2 Let C be a quasi-cyclic code over F5 of length 6 and index 2 with cyclic
constituent codes and the generator polynomial of φ(C ) is 1 + xy + x2(100110) ∈
F5[x, y]/〈x3 − 1, y2 − 1〉, where the codeword c = (100110) is the corresponding
polynomial 1 + xy + x2 by Definition 3. Equivalently, φ(C ) = 〈φ(c)〉, then from
Corollary 4, θ(C ) = 〈1 + z + z2〉(111000) ∈ F5[z]/〈z6 − 1〉. And the linear map-
ping is

Ψ : 〈φ(1 + z + z2)〉 �→ 〈1 + xy + x2〉,
according to the mapping Ψ , we have
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1 �→ 1, z �→ xy = xy, z2 �→ x2y2 = x2, z3 �→ x3y3 = y, z4 �→ x4y4 = x, z5 �→ x5y5 = x2y

In more details:

φ(c) = 1 + xy + x2 (100110) ⇔ g(z) = 1 + z + z2 (111000)

xyφ(c) = y + xy + x2 (010110) ⇔ zg(z) = z3 + z + z2 (011100)

x2φ(c) = x + y + x2 (011010) ⇔ z2g(z) = z3 + z4 + z2 (001110)

yφ(c) = y + x + x2y (011001) ⇔ z3g(z) = z3 + z4 + z5 (000111)

xφ(c) = x + x2y + 1 (101001) ⇔ z4g(z) = 1 + z4 + z5 (100011)

x2yφ(c) = 1 + xy + x2y (100101) ⇔ z5g(z) = 1 + z + z5 (110001)

and f (z)g(z) �→ f (xy)φ(c) is given by the linearity of C and θ(C ). And the equiv-
alence is given by θ = (24)(35) in S6.

Example 3 LetC be a quasi-cyclic code over F5 of length 12 and index 4 with cyclic
constituent codes, and

φ(C ) = 〈1 + y3 + xy + x2y2〉(100101000010) ∈ F5[x, y]/〈x3 − 1, y4 − 1〉,

then θ(C ) = 〈1 + z + z2 + z3〉(111100000000) ∈ F5[z]/〈z12 − 1〉, the linear map-
ping is Ψ : 〈φ(1 + z + z2 + z3)〉 �→ 〈1 + y3 + xy + x2y2〉, and
1 �→ 1, z �→ xy, z2 �→ x2y2, z3 �→ x3y3 = y3, z4 �→ x4y4 = x, z5 �→ x5y5 = x2y, z6 �→ x6y6 = y2,

z7 �→ x7y7 = xy3, z8 �→ x8y8 = x2, z9 �→ x9y9 = y, z10 �→ x10y10 = xy2, z11 �→ x11y11 = x2y3.

And the equivalence is given by θ = (2 10 6)(3 7 11) in S12.
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