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Abstract Quasi-cyclic codes are generalizations of the familiar linear cyclic codes.
By using the results of [4], the authors in [2, 3] showed that a quasi-cyclic code
¢ over F, of length ¢{m and index ¢ with m being pairwise coprime to ¢ and the
characteristic of I, is equivalent to a cyclic code if the constituent codes of & are
cyclic, where ¢ is a prime power and the equivalence is given in [3]. In this paper, we
apply an algebraic method to prove that a quasi-cyclic code with cyclic constituent
codes is equivalent to a cyclic code. Moreover, the main result (see Theorem 4)
includes Proposition 9 in [3] as a special case.
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1 Introduction

Quasi-cyclic codes over finite fields form an important class of block codes that
include cyclic codes as a special case. In [4], Ling and Solé viewed each quasi-
cyclic code as a code over a polynomial ring, and extracted a description of each
quasi-cyclic code as being constructed from linear codes of shorter lengths over larger
fields, which are called the constituent codes of the quasi-cyclic code. It is interesting
to ask what kind of codes we will obtain if constituent codes of a quasi-cyclic code
are cyclic. Such codes can enjoy the ease of encoding of cyclic codes by polynomial
division for instance.

In [1], quasi-cyclic codes of length 5¢ and index £ over IF, were obtained from a
pair of codes over IF, and I+, respectively, by a combinatorial construction called
here the quintic construction. They enjoy a designed trellis description and a subop-
timal coset decoding algorithm. They are shown to be cyclic when the constituent
codes are cyclic of odd length coprime to 5. Lim [3] generalized the result in [1]
to the general case by a similar method. In [2], Giineri and Ozbudak considered the
same issue. If the constituent codes of a quasi-cyclic code ¢ of length m¢ and index
£ are cyclic, the authors show that % can be viewed as a 2-D cyclic code of size
m x £ over IF,. Moreover, in case m and £ are also coprime to each other, ¢’ must
be equivalent to a cyclic code. However, the results of Refs. [2], [3] relied on the
structures of quasi-cyclic codes of the Ref. [4].

In this paper, we apply an algebraic method to investigate the same issue. More-
over, the equivalence in Proposition 9 of [3] is a special case of Theorem 4, which pro-
vides many equivalences. Throughout this paper we require that (m, g) = (¢, q) =
(m, £) = 1, where ¢ = p* for some positive integer k, p is a prime.

2 The Circulant Matrix Decomposition of a Cyclic Code

Cyclic codes are generated by shift registers and play an important role in random
error-correcting and burst error-correcting. Cyclic codes were first studied by Prange
in 1957, and the study of the algebraic properties of cyclic codes developed rapidly
since then. An [n, k], code C is called cyclic provided that, for each codeword ¢ =
(co, 1,2, ...,cy—1) € C, the vector (c,_1, co, €1, ..., Cnn) € C. In this section,
we require that (n, p) = 1.

Definition 1 Let C be a cyclic code of length n over F, and A C C, then a circulant

matrix A containing the codeword (ag, ai, . . ., a,—1) is defined as follows
ap adp dzy ... d4dy—
A= ap,_1ap dy ...d4dy_>

ay az az ... ag
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Remark 1 A can be considered as a set of n codewords of C. In our case, codeword
repetition in A is omitted if necessary.

Lemma 1 A cyclic code C of length n over F, can be decomposed into a finite
disjoint union of circulant matrices.

Proof Ife = (ap, a1, ...,a,—1) € C,thenwehave A C C.Foranyc' = (b, by, ...,
b,—1) € C and ¢ ¢ A, following the construction of the circulant matrix, then
AN B =, where B is the circulant matrix containing ¢’, this operation will be
stopped after finite steps.

Take the [7, 4, 3] Hamming code C for example, which is a cyclic code with
generator polynomial 1 + x? 4 x?, according to Lemma 1, we have C =

1011100 1101000 0000000 1111111
0101110 0110100 0000000 1111111
0010111 0011010 0000000 1111111
1001011 LJ 0001101 LJ 0000000 1111111
1100101 1000110 0000000 1111111
1110010 0100011 0000000 1111111
0111001 1010001 0000000 1111111

Following Definition 1, we can prove the following lemma, which plays an im-
portant role in obtaining our results.

Lemma 2 Let C be a cyclic code of length n over Fy, then A is a circulant matrix
ifand only if A = Pydiag(f (1), f(¢),.... f&"")) P!, where

I 1 I ... 1
1 ; {2 é-n*l
P = 1 4-2 §2><2 ;2(n71)

1 é-nfl §2(n71) o é-(nfl)(nfl)
is a Vandermonde matrix, ¢ is a primitive n-th root of unity, (ag, - - , a,—1) is the
first row of A and f(x) = ap + a1x + ax® 4+ Fa,_ x" L
Proof ltis clear that P, is invertible since ¢ is a primitive n-th root of unity. Moreover,
it is easy to check that

f@h
¢l renh

JAQY.
JAQY.

VAt

AP, — tf @)

F) ¢y . g De=D pen=t)
1 1 ... 1

1 ..ogrl :
_ ¢ ¢ diag(f (1), f(©). ...

BT BRICRICa)

L e,
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Equivalently, A = P,diag(f(1), f(£),..., f(&" )P '. The converse part is
straightforward.

3 Quasi-cyclic Codes with Cyclic Constituent Codes

Alinear code %’ is a quasi-cyclic code of length £m with index £ if €’ is invariant under
ashift by £ places, namely, for any (aoo, do1, - - -, @0.6—15 Q105 « -+ » A1 0—15 - - - s Am—1,05
ey am,Lg,l) € (5, we have (Clmfl,(), Ap—1,1s s An—1,—15A00s « + + s A0 L—15 « + + »
Am—2.0s - - > Am—2.0—1) € €. The constituent codes of such a code are codes of length
£ over extension alphabets that appear in the CRT decomposition of [4]. See [4] for
details. They are not cyclic in general. The class of quasi-cyclic codes with cyclic con-
stituents is a strict subclass of all quasi-codes. In [2], the authors proved that if m and £
are both relatively prime to ¢, and the constituents of the quasi-cyclic code (of length
£m and index ¢) are all cyclic codes, then %’ is a 2-D cyclic code. Therefore, a linear
code % of length £m is a quasi-cyclic code of length £m and index ¢ with cyclic con-
stituentcodesif(aoo, apl, A2y -+« A0 L—15sA10s «++ s AL =15+« s A—1,05 + « + » am_l’(_])
€ ¢ implies that

(am—l,l—ls An—1,05 > Am—1,0-2,A00—15 -+, A0 L—-25 -+ s Q-2 0—15 -+, am—Z,l—Z) €%.

Definition 2 Let & be a quasi-cyclic code of length £m and index ¢ with cyclic
constituent codes, then a similar circulant matrix A’ containing the codeword

(apo, aots - - - ap,e—1,aA10s «+ -5 AL 415 -+ > Am—1,05 - - - ,Gm—l,z—l)

is defined as follows

aopo aol <. aoe—1 ao cee dle—-1 --. Am—-1,0 --- Am—1,-1
am—1,—-1 4m—-1,0 ---Adm—1¢-2 4aoe—1 ... 4AQL—2 ---Am-24—1 --- Q2402
An—2,0-2 Am-2,0—1 -+ Qu-2,0-3 Am—1,0-2 -+ Am—1,0-3 -+~ Am-30-2 - .. Au—3,0-3

apy an ... ajp an| ... ax ... apl ... ap

Remark 2 A’ can be considered as a set of £m codewords of %’. Codeword repetition
in A’ is omitted if necessary. Note that A" is a £m X £m matrix.

Similar to the proof of Lemma 1, we have the following corollary.

Corollary 1 Let € be a quasi-cyclic code of length {m and index € with cyclic
constituent codes, then the code € can be decomposed into finite disjoint unions of
similar circulant matrices.

We denote by S, the symmetric group of n elements. The following lemma will
be clear from matrix theory.
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Lemma 3 Let D; and D, be n x n matrices, for o € S,, (D) represents the
action of o on coordinates of every row of Dy, oI (D)) represents the action of o on
coordinates of every column of Dy, which means if

doo doi  dop ... don-i
D, = dio dn  di ... dig ’
dp1,0 dp—1,1 dp—12 - dp_101
then we have
dosoy dooy doo - doom-1
o(Dy) = disoy dicqy dioc@ - diom-1 ’

dn—1,60) dn=1,6(1) An-1,602) - - - dp—1,0(n-1)

ds,0 do,1 do2 --- ds©)n-1
oT(Dy) = dsy,0  doy,1 doy2 --- de(yn-1

do(n=1),0 de(n—1),1 do(n—1),2 - - - As(n—1),n—1

and D1D2 = O’(Dl)O'T(Dz).

Lemma 4 Let ¢ be a primitive £m-th root of unity, then there exists a permutation
0 € Sop such that (A’ = Py, AP, ', where

tm>
1 1 1 1
P 82 gém—l
1 82 82X2 82(€m—1)

i Elm—l 82(Z;n—1) 8(€m—l.)(lm—l)

is a Vandermonde matrix, A = diag(g(1l), g(¢), g(sz), ..., g™ YY) is a diag-
onal matrix, and g(y) = aoo +any + -+ a, i,y + -+ au_1,-1y" " with
im=1i(modm),iy,=i(mod¢),i=0,1,2,...,fm — 1.

Proof Let& € {1,¢,¢% ..., '} and P}, be obtained from the matrix Py, under
certain row shift, then there exists a permutation 6 such that QT(PL,’m) = Py,,. Since
gcd(£, m) = 1, according to the Chinese Remainder Theorem, we can establish a
one-to-one correspondence between the coefficient of the term £/ in g(£) and &'
denoted by a;, ;, <> &', this correspondence can make the calculation of g(y) easily.
Let P;,,(£) be any column vector of P, ,and A'P;, (§) = (bo, by, ..., bym—1)7. Set
by = g(&), by this correspondence and the elements of the first row of A’, we can
determine P}, (§) = (1,&™, g2m . g .. . & 1T wheretisthe multiplicative
inverse of m module £. Thus 6 is determined by P,, (£). The elements of the j-th

m
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row of A’ can be expressed as

o) () ) o) () ) ) ) )
(g » gy s -3 Aggys Q10 s Q1T s vy Ay g qs s G g 05 Gy 1o+ o o5 Gy 1),
where 1 < j < fm.
Next, wetrytocalculateb; (j = 1,2, ...,¢m — 1).If wefix j, by the construction
of the similar circulant matrix A’, since 1 <i + j < 2¢m — 2, we know that in the

(j + 1)-throw of A’,
W _ G e
Qippiy = Uit ity < § ;

and £GTDo — g+) for £ — 1, Then

fm—1 i+j=tm—1 i+j=tm—1
= G+Dgi _ G+ itj _ gJ 4+ i
bj= Z Apip & = Z it i =8 Z it it ne§
=0 i+j=0 i+j=0
i+j=tm—1 tm—1
j () gi j () gi j
=& Z @, ;5 =& Z a; &' =& bo. (1
i+j=0 i=0

From (1), we have
AP (&) = (bo, b1, ... by )T = g&)(1,& &%, ... " DT, @)
Seté& =1,¢e,62,..., "1, from (2), we have
A'(P}, (1), Pl,(&), Ppu(e®), ..., P, (e ) = A'P,,

then
gy gl& ... ) g(lee’”‘e‘) 1
AP, = g(l) egle) ... &M gle™) — P A 3)

g(l) Slmflg(s) o S(Emfl)(fmfl)g(glmfl)

Thus A’P;,, = Py, A. From Lemma 3, we have A'P,

f = 007 (P,
Py, = Py, A. Consequently, 6(A') = Py, AP,

m

) =0(A)

Corollary 2 A similar circulant matrix A’ is equivalent to a circulant matrix.

Proof From Lemmas 4 and 2, we know that 6(A") is a circulant matrix, so A’ is
equivalent to a circulant matrix 6(A’). Moreover, from the expressions of f(x) and
g(y), the circulant matrix 6(A’) is none other than the circulant matrix containing
the codeword (ag, aiy, .- -, A iy e s Am—1.0-1)-

Theorem 1 A quasi-cyclic code € of length £m and index € with cyclic constituent
codes is equivalent to a cyclic code.
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Proof From Corollary 1, we can write ¢ = A] UA,U---U A}, = U'_ A, from
Lemma 4, let 0 be a permutation that 6(A}) is a circulant matrix, and according to
the proof of Lemma 4, the permutation 6 is universally applicable for the matrices
A}, thus O(A))(i =1, ..., k) are all circulant matrices. Now we prove that 6(%) is
a linear cyclic code. For 6(c) € 6(%), then there exists i such that 6(c) € 6(A}),
from the construction of the circulant matrix, then 6(%) is cyclic. The linearity
of 6(%) is obtained by the linearity of %. In more details, for 6(c), 6(c¢’) € (%),
there exist ¢, ¢’ € ¢, in such a way that, for ki, k» € ), kijc + kp¢’ € € we have
O(kic + k') = k16(c) + k26(c’) € 8(€). Therefore, 6(%) is a linear cyclic code
and % is equivalent to a cyclic code 6(%).

Theorem 1 in fact gives an alternative proof of Proposition 9 in [3] by a different
method.

Lemma 5 (See Proposition 9 in [3]) Let g be a prime power, and let T, denote a
finite field. Let £ and m be coprime positive integers with m coprime to q, and let €
be a quasi-cyclic code of length £m and index € with cyclic constituent codes over F,
let t denote the multiplicative inverse of m module £, then € is equivalent to a cyclic

code C, the equivalence is given by d = (dy, dy, . .., dyy—1) € C, its pre-image ¢ in

€ is given by

(d©)yim+0> Aims0s A2tm+0s - -+ A@—1ytm+0> de—)im+1> AOytm+1s dim1s - - > de—2)tm+15
o A mt Dim+m=1)s At—m12tm+m—1)> Ae—m+3)yim+-m—=1)» - - - » Ae—m)ytm+m—1)) -

Theorem 2 The results of Theorem I are equivalent to those of Lemma 5.

Proof According to Corollary 2, the codeword

(@00, + 5 A0L—15A10s «+ > AL e—Ts oy Ape1,05 « - Am—1,0—1) € C
is equivalent to the codeword (ago, @11, - -, @iy, iys - - - s Am—1,0-1) € 6(%). Let
(@005 A11s -+ 5 Gipyiys - - Qn—1,6—1) = (Y05 Y15 Y20 o+ o3 Vis -+ Yem—1),

in such a way that a;, ;, = y;, where 0 <7 < £m — 1. For any q; ;, write
ky =i,k =j < k=i(modm), k= j(mod?¢). 4)

Note that mz = 1 (mod ¢), and 0 < k < ¢m — 1, it is easy to check that k = (j —
i)¢mt + i is a solution of the congruence Eq. (4). Therefore
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(a()(), aot, a2, - -+, 40,e—1,A105 - -+, A1,6—15 -+« > An—1,05 - - - » amfl,lfl)
= (y(O)tm+Os Ytm+0s Y2tm+05 - - - s YU—=Dtm+0> Y—Dtm+15 Y(O)tm~+1> Yem—+15 + - - s YU—=2)tm+1>
<o Y—m+Dtm+(m—1)s Yl—m+2)tm+(m—1)> Yl—m~+3)tm-+(m—1)s « -+ » y(lfm)tm#»(mfl))s

which is the same as Lemma 5.

4 The Generator Polynomial of 0 (%)

In this section, we make an attempt to describe the generator polynomials of 4" and
6(%) over F, without using the results of [4].

Definition 3 Forc = (ago, ao1, o, - ., @o,e—1, 10, 11, A12 . .., A1 e—15 - -« » Ap—1,0,
ooy @u—14-1) € €, we define a mapping ¢ which maps from the codeword ¢ € ¢
to bivariate polynomial ring F,[x, y]/(x™ — 1, y* — 1).

¢:c> ¢(e) =ap +any +any’ + - +ayx'y 4+ @y e x™ Y

where0 <i <m—-1,0<j <{¢-—1.

Theorem 3 J is a principal ideal of Fy[x, y]/(x™ — 1, y* — 1) if and only if € is
a quasi-cyclic code of length ¢m and index £ with cyclic constituent codes, where

J = ¢(%).

Proof Fore = (a0, aor, G2, - - A0,6-1, 105 - - -, ALe—1s s Am—1,05 - - - » Am—1,6-1)
€ ¢, namely, ¢(c) =ap +aony + any*+ -+ a;x'y + -+ ay_y 1 x" !
y'~! € J,thenwehave x¢ (¢) = agox + agixy + apxy* + -+ a;jx"y/ + ... +

apn_1.0-1y""" € J. Therefore

(Am—1,0, Am=1,1, An—12+ - - -+ Am=1,6=1 Q00+ - - - » A0, b1 - - - » Am=2,0 - - - » Am—2,6—1) € C  (5)

and y¢(c) = agpy +any* +any? + - +ax'y o ay g x™ e J,
then

(a().{flv apo, Aot - -+ A0E—2, al,@*la ey al,efzs ey amfl,fflv ey Clmfl,efz) € (g
(6)

Moreover, J is a principal ideal, then x'y/¢ (¢) € J, and

o '(x'y¢(e) € C. (7)

Since J is a principal ideal, then % is linear. Moreover, % satisfies Egs. (5)-(7), so
that & is a quasi-cyclic code with cyclic constituent codes.
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Next, we consider the converse part. From Theorem 1, 6(%) is a cyclic code, then
0(¢) is a principal ideal of F,[z]/(z"" — 1), let the generator polynomial of 6(%)

be
m—1
g(x) = E ai, i, 2
i=0
then 6(c) = (aco, ait, -, @iy iys - - > Am—1,0-1) € 0(%), according to Corollary 2,
we have
€ = (o0, A01, 402, - -+ A0 0—1, Q105 + - s A1 o—15 -+ s Au—1,05 - - - » Am—1,4—1) € C.

Now we claim that ¢ (%) = (¢(c)). Clearly, ¢ (¢) € ¢ (%), thus

(p(0)) S @ (F). (8)
It is easy to check that xy¢(c) =
G(Am—1,0-1> Gn—1,0 -+ +» Am—1,0-25 A0,0—15 - = » A0L=25 = + = » Am=2,0—15 + - - » Ay —2,¢—2)-
And (ap—1.0-1, Am—1,05 +++ s Ame1,0—25 A0 L—1s «+ o s AOL—2s -+ o s Q=2 0—1» - - s Ap—2,0—2) is

exactly the second row of the similar circulant matrix A’ containing ¢. From Lemma4,
xy¢(c)is equivalent to zg(z), since zg(z) is the second row of 6 (A), similarly, z2g (z)
is equivalent to x?y%¢(c), and so on.

Since the coordinate transformation 6 is a linear mapping, then we can define a
mapping ¥ which maps from the polynomial (codeword) of 6(%’) to the equivalent
polynomial (codeword) of (¢ (c)). Namely,

¥ f(2)g(x) €0(F) = fxy)p(c) € (¢(c)) S ¢(F).

Next we prove the mapping ¥ is bijective. For 6 (c’) € 6(%), since 6(%) is a principal
ideal, we can write 6(c’) = f1(z)g(z), from the equivalence between 4" and 6 (%),
we can obtain ¢ (¢') = fi(xy)¢(c) € ¢p(%). Itis clear that ¥ is injective. Now it is
sufficient to prove that x’y/ ¢ (c) has its pre-image in 6(%), rewrite
xiyj — xk1i11+iyk2€+j

and it is clear that the equation kym +i = k,¢ + j has integer solution (ky, k»),
one can choose the pair (ki, ky) such that kym + i is the smallest. Set kym +i =
ko 4+ j = e, then x'y/ ¢ (c) has pre-image z°g(z) € 8(%) for some positive integer
e. Thus the mapping ¥ is bijective. Consequently,

10 = 1p(E)] = [(p(e))]. €))

Combining (8) and (9), we obtain (¢ (c)) = ¢(%).
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From the proof of Theorem 3, we have the following corollaries.

Corollary 3 Let € be a quasi-cyclic code of length £m and index £ with cyclic
constituent codes, then ¢ () is a principal ideal of F[x, y]/(x™ — 1, yt —1). Sim-
ilar to the case of cyclic codes, ¢ (¢) = ago + apy + a02y2 + -4+ aijxiyj + -4
ap_1.01X" 'y is a generator polynomial of €. Namely, € can be constructed

by a principal ideal of Fy[x, y]/(x™ — 1, y* — 1).

Corollary 4 Let € be a quasi-cyclic code of length {m and index € with cyclic
constituent codes, and € has a generator polynomial ¢ (¢) = agy + any + apny? +
cee 4 aijxiyj + -4 am,lqg,lxm_lye_', then (%) is a cyclic code with the gener-

tm—1 i

ator polynomial g(z) = > ;" ai, i,z

5 General Equivalences

In this section, we will give more general equivalences which include 6 in Lemma 4
and the equivalence of Proposition 9 in [3] as a special case.

Theorem 4 Let € be a quasi-cyclic code of length ¢m and index € with cyclic
constituent codes, then there exists another permutation 0’ such that 0'(%) is a
cyclic code and similar to the proof of Theorem 3, we can obtain another generator
polynomial of ¢ (6).

Proof 1f € is a quasi-cyclic code of length £m and index ¢ with cyclic constituent
codes and gcd (ks, £) = gcd(ka, m) = 1, where k3 and k4 are positive integers, then
for

(@00, @015 Q25+ -+ 5 AO0—15 @105 -+ -5 AL f—1» -+ > u—1,05 - - - » Am—1,0—1) € C,
we have
(@m kg ks> Am—keg b~k 15+ + > Am—kg b~ 1> Am—ky, 05+ + » kg, b—k3—1
Aty 1,6—ks > -+ = > Am—deat1 l—ts—1s - - > Q—ky—1b—kzs « -  » Q—ky—1,0—ks—1) € C .

Similar to Definition 1, we can define a similar circulant matrix E’ containing the

codeword (ago, Ao1, 402, -+ -5 A0 4—15 A10s -+ s AL 415 -+ » Au—1,05 - + - » An—1.4—1)
ap . ao,e—1 B B A
An—kg ks =+ Om—kglobs—1 o+ Gm—ky—10—ky> +-+ Gm—ky—10—ks—1
’
E = A —2ky, 0—2ks +++ Am—2ky 0—2kz—1 - -« Am—2ky—1,0—2ks « -+ Am—2ky—1,6—2k3—1

Ak, ks e Ay ky—1 e Ak, —1,ks e Aiy—1,k3—1
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Parallel to the proof of Lemma 4 and Corollary 2, there exists another permutation
0’ such that 0’(E’) is a circulant matrix.

Takem = 5,0 =3, p = 2,k; = 2 and k4 = 1 forexample. Let E’ be a similar cir-
culant matrix containing the codeword (agg, ao1, aps, aio, ai1, aiz, ax, da1, s, dzo,
as1,as, a4o, ds1, d4p), namely,

Qpo Aol do2 dip diy diz dxo dz) Az Aazp Ad3) dzp d4o d4) A4
a4 Qg2 aqo Aoy Aoz doo di1 di2 Adjo d21 d dpo Azl Az Adszp
aszp azp Aszy A4z d4o d41 do2 doo Aol d12 dio dii Az dzp A2
Qo Az Az Az ds) dsp d4o A41 A4 Aoo Aol do2 dip dil A2
app ap ajp dzy dxp dxp azy aszp Aazp d41 A4 A4 dol doz2 doo
Qg doo dol di2 djp diy Az Ao A1 Az dzp A3 d4p A4p d4)
a4 aq1 Aqp doo dor do2 djo A1 Agz do dz) dp dzp Azl A3
asy) aszp aszp dq) d4p dgo dop do2 Aoo A1l A1z dip dz1 dzp dxo
Ay Ay dz) Az dzp dz) d4p 4o A41 A doo dol di2 dip A1y
ajp app ap axop dzy dzp azp az) Az A4 A4 d42 dop dol Ao
Apr Az doo Ay diz Ajp dzy Az Ao Azp Az dzp d4) d4p A4
Qqp A4 d4) Aoz dop dol di2 Alo A1 A dpo dz) dsp dAzp Az
asp aszy aszp dqo d41 d42 doo dor Aoz dlo dp1 di2 dxo dz) a
apy dapp dpo A3y A3 A3zp A41 A42 440 Aol do2 Qoo d11 d12 Ao
apz ayp ap axp dxo dz) aszp azp dzp A4 dgo A4y do doo Aol

E/

Set

h(y) = ap1 + aroy +any® +az1y® +asy* +aoy® +ar1y® +axy’ +azny® +asry’

+agoy'® +aipy! +axiy'? + a3y’ + anyt.
Let ¢ be a primitive 15-th root of unity, and & € {1, ¢, &2, ..., 814}.
0, s(®) = (6", 1,8, & 6% " &7, &1 &2 6D £ 5 £ £° 19T
Pys(E) = (16,67, 8, 6%, 8, 6%, 67,65, 8 "0, &1 &2 P g7,

and the correspondence between the coefficient of the term £ in h(£) and & is
agy < 1, a10 < &, apn < £, a31 < §, a5 < 4 ap < £, a1 < £% ay < &7,
ap < E% ay © £% a0 < £ apn < §' ay © £'%, a3 © £V apn < £

It is easy to check that E'Q%, s(§) = h(£) P3xs5(§), according to Lemma 4, there
exists a permutation 6’ in S5 such that

0'(E') = (P3x5(1), ..., Pyxs(E")diagh(1), ..., hE™)(P3ys(D), ..., P3xsE*) =L
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Consequently, E’ is equivalent to the circulant matrix E containing the codeword

(ao1, aro, az, asi, aso, apz, A1, d20, A3z, A41, Aoy, A12, A21, A30, A42),

namely,

apr Ao Az Az d4o doz dp) Ao Azz A4 doo di2 dz) dsp d4
A4 Aoy Ao dpz Azp d4o do2 dp Ao A3z d4) doo dj2 Az A3o
asp dq2 Agpl dio dz dsp A4 do2 Ail do dzp d41 doo di2 A2l
apy azp A4 dop dio Az Azy A4o Aoz A1) Ao Az d41 doo A2
Az azp asp d4p doy djp dzp Asz) Agqo Aoz A dzo dsp d4) doo
Qpo apn dz) dsp d4p doy djo Az Azp A4 do2 i) dpp Asp d4)
a4 oo Az dz1 azp d42 dop djo dzz Aszj d4qo doz dj) dzo ds2
E = | a3z a41 ap arn az azp ag apr ayo ax az) dao do2 aip axo
Qo azp a4y dop di2 dz) Azp A4 Aop Ao A2 Az d4o doz dig
app axp asp a4y dop diz dz) azo A4 Aop Ao d2 Az d4p Ao
Ay Ay dzp dsp d4) doo diz dz1 azo A4 dop Ao dz2 d3) d4o
Qg0 Ap Ay dzo dsp d4) doo A1z A1 Azp d42 dop djp dzp A3)
asy Aqo Agp Al dzo Az d4) doo Ai2 d21 dzo d42 dop dip a2
app Az dgo Aoz A1l A0 A3 A4 oo A12 dz1 A3o d42 dor Ao
ajo a Az dso do di) azp Az Adgqp doo di2 dz1 dsp d4p do)

And the equivalence is givenby 6’ = (11142)(36129)(57813)(10 14)(15) in S;5.
However,0 = (211 145)(36129)(47 13 10) in S;5 by Lemma 4 and Corollary 2.

Similar to the proof of Theorem 1, 8'(%) is a cyclic code. Now we try to give
another generator polynomial of ¢ (%’). According to Definition 3,

¢ ¢(e) =ap +any +any” + -+ agx'y + -+ @y e x™ YL

And the linear mapping ¥, «,) (similar to ¥ in Theorem 3) is defined as follows,

Wiy ) & [(2)8(2) € 0(F) > f(xMy)p(e) € (p(0)) € ¢(F).

According to the proof of Theorem 3, W, x,) is one-to-one since gcd (k3, £) =
gcd(ks, m) = 1. Then parallel to the proof of Theorem 3, the generator polynomial
of ¢ (%) can be obtained.

Remark 3 According to the proof of Theorem 4, 6’ relies on k3 and k4, and the
similar circulant matrix A’ in Sect. 3 is the case when k3 = k4 = 1.
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6 Application Examples

In this section, we are ready to give some examples to illustrate the discussed results.

Example 1 If € is a quasi-cyclic code over I, of length 6 and index 2 with cyclic
constituent codes, where (g, 6) = 1, and let

aopo dpr Ao Al dzo dzy
Ay axp dop doo di1 dio
B = ajp ap dzo dz doo dol
Aol Apo A1l Ao d21 Ao
aszp Azy Aopo doi dio dii
app app azy dxop dor doo

be a similar circulant matrix of ¢, where £ = 2, m = 3, ¢ is a primitive 6-th root
of unity, and g(y) = ag + ay1y + axy? + ap1y* + ay* + as1y>. According to
the proof of Lemma 4, the correspondence is agy <> 1, a1y <> €, axy <> €2, apg <
&3, ayy < &%, ay; <> &°. Write

B'P; 5(e) = (bo. by, by, b3, by, bs)" .

Set by = g(¢), then we have P} _;(¢) = (1, &%, &*, &, %, ¢°)7. Then

3 4 2 5\T 2 3 4 5\T
B'(1,&°, &%, e,e7,¢”) =g(e)(1,e,e%, ¢, 6%, ).

Therefore

dpp Aol Ao apl do azi dpo ajy azo Aol Aaio dzi
as) azp Aol dopo di1 Ao dazp dpp Adil azp Aol 4o
ajp apy azo dsy Aopo d ayp az) Aop Apq Ao A

B — 10 d11 d20 dz1 doo Aol N 9(3/) _ 10 421 doo d11 dzo Aol
dpp dopo ai1 dio az1 axo dap) ajp dz1 dopo ail azo
app dz1 Qoo dor aio ain app Aol djo dz1 oo Aii
app app azy dzo aol aoo apy azp dor dio azi aoo

And the equivalence is given by 6 = (24)(35) in Sg.

Example 2 Let € be a quasi-cyclic code over F5 of length 6 and index 2 with cyclic
constituent codes and the generator polynomial of ¢ (%) is 1 + xy + x>(100110) e
Fs[x, y1/(x* — 1, y?> — 1), where the codeword ¢ = (100110) is the corresponding
polynomial 1 + xy + x? by Definition 3. Equivalently, ¢ (%) = (¢ (c)), then from
Corollary 4, 0(%) = (1 + z + z?)(111000) € Fs[z]/(z® — 1). And the linear map-
ping is

U (p(l+z+20)) = (I +xy+x%),

according to the mapping ¥, we have
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1= 1,z xy :xy,z2 = xzy2 :x2,z3 = x3y3 =y,z4 = x4y4 :x,z5 = xsy5 :xzy

In more details:

() =1+ xy+x? (100110) < g(z) = 1 + z + z* (111000)
xyp(e) =y +xy + x? (010110) & zg(z) = z° + z + 2> (011100)
x%*p(c) = x +y +x% (011010) & z%g(z) = 2° + z* + 2% (001110)
yo(e) =y +x +x%y (011001) & z’g(z) = 2> +z* 4+ 2° (000111)
x¢(c) = x 4+ x>y + 1 (101001) & z%g(z) = 1+ z* + 27 (100011)
x2yp(e) = 1+ xy + x2y (100101) < 22g(z) = 1 + z + z° (110001)

and f(z)g(z) — f(xy)¢p(c)is given by the linearity of " and 6(%’). And the equiv-
alence is given by 0 = (24)(35) in Sg.

Example 3 Let € be a quasi-cyclic code over F5 of length 12 and index 4 with cyclic
constituent codes, and

#(€) = (1 +y> + xy 4+ x?y?)(100101000010) € Fs[x, y]/ (x> — 1, y* — 1),

then 6(%) = (1 4+ z + z> 4+ 2°)(111100000000) € Fs[z]/(z'*> — 1), the linear map-
pingis¥ : (p(1 +z +224+2)) - 1+ y3 +xy +x2y2), and

3
I Lz xy 2 222, 2 > x5 =93, 4 xy? =1, 25 > 2595 = x2y, 28 > x6)8 = )2,

7

T 1Ty = xy, 8

9 10,10 1 11,11

r—>x8yS:x2,z r—>x9y9=y,z'0}—>x y =xy2,zl —xlly =x2y3.

And the equivalence is given by 8 = (2 10 6)(3 7 11) in Si,.
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