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Abstract We determine explicitly the stable homotopy groups of Moore spaces
up to the range 7, using an equivalence of categories which allows to consider each
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1 Introduction

Moore spaces and their stable homotopy groups were widely studied and a complete
reference on this subject is the book of Baues [1].

In this paper, we propose a new approach allowing to see Moore spaces as exact
couples of Z-modules by means of an equivalence of categories. Even though a
similar result is proven in [1], the approach given here is of independent interest,
since it is used to determine explicitly the stable homotopy groups of Moore spaces
up to the range 7.

LetG be an abelian group and n an integer greater than 1. AMoore spaceM(G, n)

is a simply connected CW-complex X such that Hn(X) � G and ˜Hi (X) = 0 for
i �= n. The homotopy type of M(G,n) is uniquely determined by the pair (G,n) (see
[6]).
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178 I. Saihi

Let Mn be the category whose objects are Moore spaces M(A,n), where A is a
Z-module, and whose morphisms are homotopy classes of pointed maps between
such Moore spaces. Notice that, unlike the Eilenberg-MacLane, the set of homotopy
classes of pointed maps [M(A,n) , M(B,n)] between two Moore spaces is different
from Hom(A,B) (see proposition 2.1).

LetMod be the category ofZ-modules and letDe be the category of exact couples
inMod

A
2 �� A

α
����

��
��

�

B

β

���������

such that αβ = 2.
There are two exact functors �1 and �2 fromDe toMod assigning to a diagram

the Z-module A or B respectively.
The aimofSect. 2 is to construct, forn ≥ 3, an equivalenceof categoriesE between

Mn and De. In [1] and in a different context, Baues gave a similar result using the
properties of the Whitehead �-functor.

In Sect. 3, the stable homotopy groups πS
i (X) (0 ≤ i ≤ 7) of a Moore space X

will be expressed in term of E(X). The same techniques can be used to determine
πS
i (M(A,n)) for i ≥ 8, but calculations become complicated.

2 Equivalence of Categories Between Moore Spaces and
Diagrams

2.1 Category of Diagrams

In this section, we propose an equivalence of categories that allows to considerMoore
spaces as diagrams of Z-modules.

Recall that the suspension functor from Mn to Mn+1 is an equivalence of cate-
gories for n ≥ 3, so next results are independent of n.

Consider two modules A et B. Let X be the Moore space X = M(A,n), Y the
Moore space Y = M(B,n) and [X ,Y ] the set of homotopy classes of pointed maps
from X to Y ; this set is an abelian group (see [2]). Moreover:

Proposition 2.1 ([1], [2]) There is a natural exact sequence:

0 �� Ext(A,B/2) �� [X ,Y ] �� Hom(A,B) �� 0. (2.1)

Set S = M(Z,n) and P = M(Z/2,n). Applying the exact sequence (2.1) to S and
X , we obtain the exact sequence:
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0 �� Ext(Z,A/2) �� [S,X ] �� Hom(Z,A) �� 0

and [S,X ] is isomorphic to A. Similarly, applied to P and X , (2.1) becomes:

0 �� Ext(Z/2,A/2) �� [P,X ] �� Hom(Z/2,A) �� 0.

Since Ext(Z/2,A/2) is naturally isomorphic to A/2 (see Proposition 2.7), we have
the exact sequence:

0 �� A/2 �� A′ �� A2
�� 0 (2.2)

where A′ is the module [P,X ] and A2 is the set of order 2 elements in A. In other
words, we have the long exact sequence:

A
2 �� A

αX �� A′ βX �� A
2 �� A (2.3)

or equivalently, the exact couple denoted by DX :

A
2 �� A

αX����
��

��
�

A′
βX

���������

Moreover, if f is a map between two Moore spaces X = M(A,n) and Y =
M(B,n), then we can deduce a map f̄ : DX −→ DY as follows: f̄ = ( f1, f2) where
f1 : A � [S,X ] −→ B � [S,Y ] and f2 : A′ = [P,X ] −→ B ′ = [P,Y ] are the nat-
ural maps induced by f . The following diagrams commute:

A
2 ��

f1

��

A
αX ��

f1

��

A′ βX ��

f2
��

A
2 ��

f1

��

A

f1

��
B

2 �� B
αY �� B ′ βY �� B

2 �� B

2.1.1 Particular Case of P

When X = P , we have the next results:

Proposition 2.2 [P,P] � Z/4.

The proof of this result can be found in [2] or [7].

Lemma 2.3 The composition αPβP is multiplication by 2 on Z/4.
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Proof When X = P , the exact sequence (2.3) becomes:

Z/2 2 �� Z/2
αP �� Z/4

βP �� Z/2 2 �� Z/2

i.e.:

0 �� Z/2
αP �� Z/4

βP �� Z/2 �� 0

then αP = 2 and βP is the canonical surjection. Hence αPβP is the multiplication
by 2 on Z/4.

2.1.2 General Case

Lemma 2.4 For any Moore space X = M(A,n), the composition αXβX :A′ −→ A′
is multiplication by 2.

Proof Let u ∈ A′ = [P,X ] and f : P −→ X a representative of u. We have two
maps f1 and f2 and the commutative diagram:

Z/2 2=0 ��

f1

��

Z/2
αP ��

f1

��

Z/4
βP ��

f2

��

Z/2 2=0 ��

f1

��

Z/2

f1

��
A

2 �� A
αX �� A′ βX �� A

2 �� A

If u0 denotes the class of the identity map in [P,P], then f2(u0) = u. The result is
an immediate consequence of Lemma 2.3.

2.1.3 Category of Diagrams

Definition 2.5 Let De be the category of exact couples in the category Mod of
Z-modules

A
2 �� A

α
����

��
��

�

B

β

���������

(2.4)

such that αβ = 2.
A morphism f between two objects D and D′ is a couple f = ( f1, f2) such that

the following diagrams commute:
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A
2 ��

f1
��

A
α ��

f1
��

B
β ��

f2
��

A
2 ��

f1
��

A

f1
��

A′ 2 �� A′ α′
�� B ′ β′

�� A′ 2 �� A′

Notations: For ease, an object of De will be denoted by

A
α �� B
β

��

and a morphism between two objects D and D′ will be denoted by

A
αX ��

f1

��

A′
βX

��

f2
��

B
αY ��

B ′
βY

��

The previous constructions can be summarized in the following statement:

Proposition 2.6 There is a functor E : Mn −→ De assigning to each Moore space
X the diagram DX , and to each homotopy class f of pointed maps between two
Moore spaces X and Y the map f̄ : DX −→ DY .

In the remaining of this section, we will prove that the functor E is an equivalence
of categories.

Notations: Let �1 and �2 denote the two functors from De to Mod defined as
follows: if D is an object ofD given by:

A
α �� B
β

�� (2.5)

then �1(D) = A and �2(D) = B.
Notice that there is a natural transformation between functors�1 and�2 obtained

by associating to a diagram D given by (2.5), the morphism α. By associating to the
diagram D the morphism β, we get a natural transformation from �2 to �1.

2.2 Equivalence of Categories BetweenMn and De

2.2.1 Some Algebraic Results

This section is devoted to prove some general algebraic results needed to obtain the
equivalence of categories announced above.
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Proposition 2.7 For every Z/2-modules A and B, there is an isomorphism λ(A,B),
natural in A and in B:

λ(A,B) : Ext(A,B)
∼ �� Hom(A,B).

Proof An element e of Ext(A,B) is represented by an extension:

0 �� B
f �� E

g �� A �� 0.

Each element x ∈ A is of order 2 and g is surjective, so there is y ∈ E such that
g(y) = x and 2y ∈ ker g = Im f . Since f is injective, there exists a unique z ∈ B
such that f (z) = 2y. The map assigning to x the element z is well defined; then we
obtain a morphism:

λ(A,B) : Ext(A,B) �� Hom(A,B).

Since A is free, there is a natural isomorphism Ext(A,B) −→ Hom(A,Ext(Z/2,B))

obtained by restriction. (Each a ∈ A defines a map Z/2 −→ A which induces an
extension of Z/2 by B using a pull-back.) But Ext(Z/2,B) is naturaly isomorphic
to B, so we get an isomorphism from Ext(A,B) to Hom(A,B), which is λ(A,B).

Remark 2.8 If A and B are two Z-modules, we construct similarly a natural mor-
phism

λ(A,B) : Ext(A,B) −→ Hom(A2,B/2)

obtained by the composition:

λ(A,B) : Ext(A,B) �� Ext(A2,B/2)
λ(A2 ,B/2)�� Hom(A2,B/2),

where the first morphism is induced by restriction to order 2 elements in A and the
projection of B on B/2.

Corollary 2.9 If A is aZ/2-module and B aZ-module, thenExt(A,B) is isomorphic
to Hom(A,B/2).

Proof The morphism λ(A,B) is the composition

λ(A,B) : Ext(A,B)
pr �� Ext(A,B/2)

λ(A,B/2) �� Hom(A,B/2)

where pr is themorphism induced by the projection of B on B/2. By (2.7),λ(A,B/2) is
an isomorphism; it suffices to show that pr : Ext(A,B) −→ Ext(A,B/2) is bijective.
But A is a Z/2-module, so A is free and then can be written A = ⊕Z/2. Since
Ext(⊕Z/2,B) = ∏

Ext(Z/2,B) we can show the result for A = Z/2. Using the
resolution
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0 ��
Z

2 ��
Z

�� Z/2 �� 0,

we get the diagram:

Hom(Z/2,B) ��

�
��

B
2 ��

pr

��

B ��

pr

��

Ext(Z/2,B) ��

�
��

0

B2
�� B/2 2=0 �� B/2 �� Ext(Z/2,B/2) �� 0

Corollary 2.10 If A is aZ-module and B aZ/2-module, thenExt(A,B) � Hom(A2,B).

Proof Since the morphism λ(A,B) is the composition

λ(A,B) : Ext(A,B)
R �� Ext(A2,B)

λ(A2 ,B) �� Hom(A2,B),

where R is the morphism induced by the restriction to A2, and λ(A2,B) is an isomor-
phism, we have just to show that R is bijective.

But B is free, so B = ⊕Z/2; consider the injective module I = ⊕(Q/Z); then
we have the exact sequence:

0 �� B �� I
2 �� I �� 0.

Applying the functor Hom(A,·), we obtain the following diagram:

Hom(A,I )
2 ��

R

��

Hom(A,I ) ��

R

��

Ext(A,B) ��

R

��

0

Hom(A2,I )
2=0 �� Hom(A2,I ) �� Ext(A2,B) �� 0

where R denotes the morphism induced by the restriction to A2.
On the other hand, we have the exact sequence:

0 �� A2
�� A

2 �� A

Applying the functor Hom(·,I ), we get an isomorphism between Hom(A2,I ) and
Hom(A,I )/2, so R : Ext(A,B) −→ Ext(A2,B) is bijective.

2.2.2 Equivalence of Categories

Theorem 2.11 The functor E is an equivalence of categories between Mn and De.
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To prove this theorem, we need the next two lemmas.

Lemma 2.12 For each diagram D inDe, there exists a Moore space X inMn such
E(X) = D.

Proof Let D be an object of De given by:

A
α �� B
β

��

Set X the Moore space X = M(A,n). The diagram associated to X is given by:

A
αX ��

A′
βX

��

Then, we have the following diagram:

0 �� A/2 α ��

I d

��

B
β �� A2

��

I d

��

0

0 �� A/2
αX �� A′ βX �� A2

�� 0

where the lines are exact. Each horizontal exact sequence defines an element in
Ext(A2,A/2) � Hom(A2,A/2). Since βα = 2 on B and βXαX = 2 on A′, the two
extensions give the same element in Hom(A2,A/2) and then the two extensions are
isomorphic.

Lemma 2.13 If X and Y are two Moore spaces, then [X ,Y ] is isomorphic to
Hom(DX ,DY ) = Hom(E(X),E(Y )).

Proof Let X = M(A,n) and Y = M(B,n), then there is an exact sequence:

0 �� Ext(A,B) �� [X ,Y ] �� Hom(A,B) �� 0

But we have: Ext(A,B/2) � Ext(A2,B/2) � Hom(A2,B/2), so we obtain the exact
sequence:

0 �� Hom(A2,B/2) �� [X ,Y ] �� Hom(A,B) �� 0.

On the other side, the forgetful morphism Fr : Hom(DX ,DY ) −→ Hom(A,B) is
surjective. Recall that an element g ∈ Hom(DX ,DY ) is given by two maps g1 and g2
such that:

A
2 ��

g1

��

A
αX ��

g1

��

A′ βX ��

g2

��

A
2 ��

g1

��

A

g1

��
B

2 �� B
αY �� B ′ βY �� B

2 �� B
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so an element g ∈ Hom(DX ,DY ) is in the kernel of the forgetful morphism if g1 = 0
and then we obtain a morphism A2 −→ B/2. Hence, we get the following commu-
tative diagram:

0 �� Hom(A2,B/2) ��

fX ,Y

��

[X , Y ] ��

��

Hom(A,B) ��

I d

��

0

0 �� Hom(A2,B/2) �� Hom(DX ,DY )
Fr �� Hom(A,B) �� 0

To prove the isomorphism between [X ,Y ] and Hom(DX ,DY ), it suffices to verify
that fX ,Y is the identity map. Notice that fX ,Y is a bifunctor, covariant in B and
contravariant in A.

When X = P and Y = S, the diagram becomes:

0 �� Z/2 ��

fP,S

��

[P , S] � Z/2 ��

��

0 �� 0

0 �� Z/2 �� Hom(DP ,DS) � Z/2 Fr �� 0 �� 0

so fP,S is necessarily the identity map. When X = P and Y = M(B,n): an element
y ∈ B defines a morphism Z −→ B that can be realized by a map between Moore
spaces S −→ Y and then a map ȳ : Z/2 −→ B/2. By assigning ȳ to the generator
of Z/2, we get the commutative diagram:

Z/2 ��

fP,S=I d

��

Hom(Z/2,B/2) � B/2

fP,Y

��
Z/2 �� Hom(Z/2,B/2) � B/2

Since Hom(Z/2,B/2) is naturally isomorphic to B/2, even in this case fP,Y = I d.
Given x ∈ A2, it defines a map Z/2 −→ A2 ⊂ A which can be realized by a map

of Moore spaces P −→ X . This map allows to have the following commutative
diagram, using the functoriality of fX ,Y :

Hom(A2,B/2) ��

fX ,Y

��

Hom(Z/2,B/2) � B/2

fP,Y=I d

��
Hom(A2,B/2) �� Hom(Z/2,B/2) � B/2

the horizontal maps assign to a morphism ϕ : A2 −→ B/2 its evaluation ϕ(x) ∈
B/2. To conclude that fX ,Y is the identity map on Hom(A2,B/2), it suffices to notice
that the module A2 is Z/2-free, and if {ui }i∈I is a basis of A2 then Hom(A2,B/2) �



186 I. Saihi

∏

Hom(Z/2,B/2) � ∏

B/2. Using the evaluation on each generator ui , we deduce
the desired result.

Remark 2.14 With Lemmas 2.12 et 2.13, we get the proof of Theorem 2.11.

3 Stable Homotopy Groups of Moore Spaces

Let X = M(A,n) and consider theAtiyah-Hirzebruch spectral sequence in homology
with coefficients in the stable homotopy groups:

Hp(X;πS
q ) ⇒ πS

p+q(X).

This spectral sequence contains just two non trivial columns and induces the follow-
ing exact sequence:

0 �� A ⊗ πS
q

νX
�� πS

n+q(X)
μX

�� Tor(A,πS
q−1)

�� 0 (3.1)

Moreover, this exact sequence is natural in X .
Notice that, if X denotes the spectrum associated to the Moore space X , then

πS
n+i (X) = πS

i (X). In the following, the spectrum associated to a space X will also
be denoted by X .

Recall the first stable homotopy groups (see [3]):

πS
0 = Z,πS

1 = Z/2,πS
2 = Z/2,πS

3 = Z/24,πS
4 = πS

5 = 0,πS
6 = Z/2,πS

7 = Z/240,

so the exact sequence (3.1) allows to obtain, for any Moore space X :

πS
0 (X) = A, πS

1 (X) � A ⊗ Z/2 = A/2, πS
4 (X) � Tor(A,Z/24) = A24,

πS
5 (X) = 0, πS

6 (X) � A ⊗ Z/2 = A/2

but we can’t determine explicitly πS
2 (X), πS

3 (X) and πS
7 (X).

To compute πS
i (X), for i = 2, 3, 7, we need the following lemma:

Lemma 3.1 πS
2 (P) = Z/4, πS

3 (P) = Z/2 ⊕ Z/2, πS
7 (P) = Z/2 ⊕ Z/2.

Proof These groups are given in [7], but we propose an easier proof of these results
using the arguments of Sect. 2.

For q = 2, 3, 7, the exact sequence (3.1) becomes:

0 �� Z/2 �� πS
q (P) �� Z/2 �� 0

then πS
q (P) � Z/2 ⊕ Z/2 or πS

q (P) � Z/4.
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There is a cofibration sequence:

θ �� P
δ �� S

2 �� S
θ �� P

δ �� (3.2)

where θ is of degree 0 and δ of degree −1. If λ denotes the composition of δ by the
Hopf map from S to S, then we get the Moore spectra diagram

S
2 �� S

θ����
��

��
�

P

λ

���������

(3.3)

verifying 2θ = 0, 2λ = 0, λθ = 0 et θλ = 2.
Applying the functor πS

2 to (3.3), we obtain the following diagram:

Z/2 2=0 �� Z/2

θ∗		��������

πS
2 (P)

λ∗



��������

where 2λ∗ = 0, 2θ∗ = 0 and θ∗λ∗ = 2. This diagram is not necessarily exact, but,
the exact sequence of stable homotopy groups applied to the cofibration (3.2) gives:

ker(θ∗ : Z/2 −→ πS
2 (P)) = Im(2 : Z/2 −→ Z/2).

Then it suffices to find an element u ∈ πS
2 (P) such that λ∗(u) = 1. For this pur-

pose, we can choose n = 2 so S = S2 and P = P2 = �RP2.We have the cofibration:

S2 −→ P2 −→ S3.

Applying the stable homotopy functor, we get:

πS
4 (S

2) �� πS
4 (P2)

�� πS
4 (S

3) �� πS
3 (S

2) �� πS
3 (P2)

�� πS
3 (S

3)

πS
2

�� πS
2 (P) �� πS

1
�� πS

1
�� πS

1 (P) �� πS
0

Z/2 �� πS
2 (P) ��

�� �����������
Z/2 0 ��

� Hopf

��

Z/2 I d �� Z/2 0 ��
Z

Z/2
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Then πS
2 (P) is surjected on Z/2 = πS

1 which is sent by the Hopf map on Z/2 = πS
2

by assigning to the generator η of πS
1 = Z/2 the generator η2 of πS

2 = Z/2.
Now, applying the functor πS

3 to (3.3), we get:

Z/24 2 �� Z/24

θ∗��			
		

		
		

πS
3 (P)

λ∗












with 2θ∗ = 0, 2λ∗ = 0 and θ∗λ∗ = 2. This diagram is not necessarily exact, but

ker(θ∗ : Z/24 −→ πS
3 (P)) = Im(2 : Z/24 −→ Z/24).

Let x ∈ πS
3 (P), then 2λ∗(x) = 0. There exists u ∈ Z/24 such that λ∗(x) = 12u.

So 2x = θ∗(λ∗(x)) = θ∗(12u) = 0 since 2θ∗ = 0. This implies that elements of
πS
3 (P) vanish when multiplied by 2 and then πS

3 (P) � Z/2 ⊕ Z/2.
The same argument shows that πS

7 (P) = Z/2 ⊕ Z/2.
Consider a Moore space X = M(A,n). The next theorems compute πS

i (X), for
i = 2,3,7, in terms of the modules �1(DX ) and �2(DX ).

Theorem 3.2 For eachgeneratorγ ∈ πS
2 (P), there is anatural isomorphismπS

2 (X) �
�2(DX ) = [P,X ].
Proof Consider the exact sequence (2.2) and the exact sequence (3.1) for q = 2:

0 �� A/2 α �� A′ β �� A2
�� 0

0 �� A/2 νX
�� πS

2 (X)
μX

�� A2
�� 0

We construct amap A′ −→ πS
2 (X) as follows: choose γ a generator ofπS

2 (P) � Z/4.
Let u ∈ A′ and consider f representing the class u ∈ A′ = [P,X ].Then f induces
a map f∗ : πS

2 (P) −→ πS
2 (X) and we define ϕγ(u) = f∗(γ). the map ϕγ relies the

two exact sequences:

0 �� A/2 α �� A′ β ��

ϕγ

��

A2
�� 0

0 �� A/2 νX
�� πS

2 (X)
μX

�� A2
�� 0

Now, we may prove that the composite map
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A′ ϕγ �� πS
2 (X)

μX

�� A2

is β : A′ −→ A2. Using the functoriality, it suffices to prove the result when X = P .
In this case, he diagram becomes:

0 �� Z/2 α �� Z/4
β ��

ϕγ

��

Z/2 ��

I d

��

0

0 �� Z/2 νP
�� πS

2 (P) � Z/4
μP

�� Z/2 �� 0

where we see clearly that μP ◦ ϕγ = β.

By functoriality, for each Moore space X = M(A,n) we get the following com-
mutative diagram:

0 �� A/2 α ��

h

��

A′ β ��

ϕγ

��

A2
��

I d

��

0

0 �� A/2 νX
�� πS

2 (X)
μX

�� A2
�� 0

here h is the natural map making the diagram commute. Notice that h is functorial
in X . Then, to determine h : A/2 −→ A/2, it suffices to study the case X = S. In
that case, the diagram becomes:

0 �� Z/2 α ��

h

��

Z/2
β ��

ϕγ

��

0 ��

I d

��

0

0 �� Z/2 νS
�� πS

2 = Z/2
μS

�� 0 �� 0

and then h is necessarily the identity map.
Let X = M(A,n) be a Moore space. Each element x ∈ A defines a maps f :

Z −→ A given by f (1) = x . This map is realized by a map between Moore spaces
f : S −→ X and induces, by naturality of h, the following commutative diagram:

Z/2
f̄ ��

h=I d

��

A/2

h

��
Z/2

f̄ �� A/2

so h : A/2 −→ A/2 is still the identity map.
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Remark 3.3 The isomorphism πS
2 (X) � A′ depends on the choice of the generator

γ ∈ πS
2 (P) = Z/4. Choosing the generator −γ multiplies the isomorphisme by −1.

Theorem 3.4 For each γ ∈ πS
3 (P) such that μP(γ) = 1 ∈ Z/2, there is a natural

isomorphism πS
3 (X) � A′ ⊕A/2 A/24 obtained by the pushout

A/2 α ��

×12

��

A′

��
A/24 �� πS

3 (X)

where A = �1(DX ) and A′ = �2(DX ).

Proof When q = 3, the exact sequence (3.1) becomes:

0 �� A/24 νX
�� πS

3 (X)
μX

�� A2
�� 0

For X = P we get

0 �� Z/2 νP
�� πS

3 (P) � Z/2 ⊕ Z/2
μP

�� Z/2 �� 0

Choose γ ∈ πS
3 (P) such that μP(γ) is the generator of Z/2. We construct a map

ϕγ : A′ −→ πS
3 (X) as follows:

Let u ∈ A′ = [P,X ] and let f : P −→ X representing the class u. Thenϕγ(u) =
f∗(γ).

As in the proof of Theorem 3.2 we show that the composition of μX : πS
3 (X) −→

A2 by ϕγ is β : A′ −→ A2.
We obtain the following commutative diagram:

0 �� A/2 α ��

h

��

A′ β ��

ϕγ

��

A2
��

I d

��

0

0 �� A/24 νX
�� πS

3 (X)
μX

�� A2
�� 0

Since h is natural, we need just to determine it for X = S. In that case, the map
h : Z/2 −→ Z/24 assigns to the generator of Z/2 an element of Z/24 vanishing
when multiplied by 2, that means 0 or 12. Then h = 0 or h = ×12. To prove that
h = ×12, we consider the cofibration

S
2 �� S �� P

which induces the long exact sequence:
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· · · �� πS
n

2 �� πS
n

�� πS
n (P) �� πS

n−1
2 �� πS

n−1
�� · · · (3.4)

For n = 3, we have:

πS
3 = Z/24

2 �� πS
3 = Z/24 �� πS

3 (P) �� πS
2 = Z/2

2=0 �� πS
2 = Z/2

This proves that πS
3 (P) −→ πS

2 is surjective, so every map S −→ S of degree 2 can
be lifted to a map S −→ P of degree 3.

If γ ∈ πS
3 (P) is represented by a map, denoted also γ : S5 −→ P2, and since

μP(γ) = 1 ∈ Z/2 = Tor(Z/2,πS
2 ), then the map πS

3 (P) −→ πS
2 takes γ to the gen-

erator 1Z/2 ∈ πS
2 = Z/2.

Let

u : P2 δ2 �� S3
Hop f �� S2

be a representative of the nonzero element of [P,S] = Z/2 and a : S5 −→ S3 a rep-
resentative of the generator of πS

2 . Then ϕγ([u]) = u∗(γ) = η × (δ2)∗(γ) = η × [a]
where η denotes the multiplication by the class of the Hopf map. But the multi-
plication by the Hopf map class takes the generator of πS

2 to product by 12 of the
generator of πS

3 (see [3]). This allows to deduce that ϕγ([u]) = 12 ∈ Z/24 and that
h is multiplication by 12.

Remark 3.5 The isomorphism πS
3 (X) � A′ ⊕A/2 A/24 depends on the choice of

γ ∈ πS
3 (P) � Z/2 ⊕ Z/2 verifying μP(γ) = 1. There are two possible choices.

If we choose γ′ such that μP(γ′) = 1, then νP(1Z/2) = γ − γ′. We can show that

ϕγ′ = ϕγ + λ̃ ◦ β

where λ̃ : A2 −→ πS
3 (X) is defined as follows: if a ∈ A2, we can represent it by a

map a : S −→ X such that 2a = 0. This map induces a∗ : πS
3 −→ πS

3 (X) taking all
generators of πS

3 to the same element a∗(1Z/24) ∈ πS
3 (X) since 2a∗ = 0. Then we

define λ̃ by λ̃(a) = a∗(1Z/24).

Theorem 3.6 For each γ ∈ πS
7 (P) such that μP(γ) = 1 ∈ Z/2, there is a natural

isomorphism πS
7 (X) � A/240 ⊕ A2, where A = �1(DX ).

Proof Using the same construction of the case of πS
3 (X), we get the following com-

mutative diagram:

0 �� A/2 α ��

h

��

A′ β ��

ϕγ

��

A2
��

I d

��

0

0 �� A/240 νX
�� πS

7 (X)
μX

�� A2
�� 0
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To determine h, it suffices to consider the case of X = S, since it is natural on X . In
that case h : Z/2 −→ Z/240 is the multiplication by 0 or 120.

For n = 7, the long exact sequence (3.4) becomes:

πS
7 = Z/240

2 �� πS
7 = Z/240 �� πS

7 (P) �� πS
6 = Z/2

2=0 �� πS
6 = Z/2

showing thatπS
7 (P) −→ πS

6 is surjective.We use the same techniques of the previous
theorem proof, and the fact that the product by the Hopf class on πS

6 is zero (see [3]),
we deduce that h = 0

Remark 3.7 Using the new universal coefficient exact sequence of [4], we can rep-
resent the functor πS

i on Mn as a tensor product by particular objects of an abelian
category D containing De.
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