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Abstract In this paper, we discuss how to construct interpolation-based models for
American put options. In particular, we derive a closed-form expression and suggest
multi-parameter extensions. Our result makes no assumption about the dynamics of
the underlying asset, and is constructed to satisfy the necessary no-arbitrage condi-
tions. Finally, we discuss potential applications.
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1 Introduction

Since the seminalwork ofBlack andScholes [4], a commonapproach in the derivative
pricing literature has been to model the underlying asset’s price dynamics by a
stochastic process. Since option prices based on the geometric Brownian motion
model of Black and Scholes do not provide a reasonable fit to observed market
prices, several extensions have been proposed.Well-known examples of suchmodels
include the jump-diffusion model of Merton [12], the stochastic volatility model of
Heston [10], and the local volatility model of Dupire [7].

Although these extensions have a significantly better performance than the model
ofBlack andScholes, Epps [8],Alghalith [1] point out that there is no universalmodel
that provides a consistently good fit to observed option prices. Moreover, Figlewski
[9], Alghalith [2] point out that simple formulas, which make no assumption about
the underlying process, can produce good results. This idea has been explored by
Orosi [13] who finds that a nonparametric extension of Figlewski’s model provides
a nearly perfect fit to European call options on the S&P 500 index. Additionally,
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interpolation-based models can be used to extract information from European call
options (see for example (Orosi [14, 15]).

Motivated by these results, in this work, we introduce an interpolation-based
model for American put options. Instead of making an assumption about the under-
lying, we construct a suitable pricing function based on no-arbitrage conditions.
The rest of the paper is organized as follows. In Sect. 2, we state the necessary
no-arbitrage constraints and review how to construct interpolation-based put option
prices that satisfy well-known no arbitrage conditions.Moreover, we derive a closed-
form American put option formula and introduce a three-parameter model. To illus-
trate the applicability of our method, we calibrate our models to market quotes in
Sect. 3. Section4 discusses the practical use of our findings and we propose further
extensions. Finally, Sect. 5 presents our conclusions.

2 Constructing Suitable Pricing Functions

Merton [11] shows that an American put option function, P(K , T ), with strike
price K and time to expiry T , must satisfy the following no-arbitrage conditions: (i)
P(K , T ) is a convex and increasing function of K ; (ii) P(K , T ) ≤ K ; (iii) P(K , T )

is an increasing and convex function of T ; (iv) max(0, K − S) ≤ P(K , T ) where
S is the stock price; (v) P(0, T ) = 0; (vi) limK→∞ P(K ,T )

K−S = 1. Moreover, Carr and

Wu [6] show that for put options written on non-defaultable assets ∂P(K ,T )

∂K

∣
∣
∣
K=0

= 0.

We will refer to these as the necessary no-arbitrage conditions.
To determine suitable put option functions, first, we apply the following transfor-

mations to the strikes and put option prices:

p = P (K , T )

S

k = K

S
.

The main idea behind our approach is that it easier to construct suitable pricing
functions in the space that is rotated counterclockwise by 45◦. Furthermore, we
introduce the following function:

y = G
x2

(
1√
2

− x
) + x, (1)

where y and x represent the rotated values of p and k, respectively. Then, the put
option prices recovered from the above equation satisfy the necessary no-arbitrage
properties (see the results in the Appendix).

To obtain the relation between p and k, one must apply the transformation to x
and y that rotates these clockwise by 45◦. This transformation gives the following
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relation between the above variables:

p = y − x√
2

k = y + x√
2

.

Moreover, substituting (1) for y gives

p = 1√
2

⎛

⎝G
x2

(
1√
2

− x
) + x

⎞

⎠ − 1√
2
x,

where

x = k − p√
2

.

Finally, an analytic solution for p can be obtained from

p = 1√
2

⎛

⎜
⎝G

(
k−p√

2

)2

(
1√
2

− k−p√
2

)

⎞

⎟
⎠ (2)

that is given by

p = −√

2(G − 1)k + k2 + 1 + (G − 1)k + 1

G − 2
. (3)

Therefore, the arbitrage-free American put option function for a fixed maturity is
given by

P(K , T ) = S · p

=
−S

(√

2(G − 1)k + k2 + 1 + (G − 1)k + 1
)

G − 2
. (4)

Moreover, to incorporate the property that put options are an increasing function
of expiry, larger values of G can be fitted to longer expiries. This is illustrated in
Fig. 1 that plots arbitrage-free American put prices with two different parameters.
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Fig. 1 American put prices generated by the single-parameter model for two different values:
G = 0.03 and G = 0.1. The value of the stock price is assumed to be 100

2.1 A Multi-Parameter Extension

Instead of (1), one could consider the following relation with three parameters:

y = G
xα

(
1√
2

− x
)β

+ x . (5)

It can be easily shown that the necessary arbitrage-free conditions are satisfied if the
following the constraints are imposed on the parameters: α > 1 and β > 0 (see the
results in the Appendix). Although this three-parameter model provides a better fit
to observed option prices, there is no analytic solution for the put prices. Therefore,
these have to be determined numerically.

3 An Illustrative Example

In this section, to demonstrate the applicability of the models in (4) and (5), we
calibrate these to market quotes. The models are fitted to near-the-money American
put options written on Apple Inc. stock. We only consider options with the fixed
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expiry T = 1.093 on December 18, 2015. Moreover, the models are calibrated by
minimizing the Non-Linear Least Squares (NLS) objective:

n
∑

i=1

(Pi (θ) − Pi )
2 ,

where the Pi -s are the market prices for options, and the Pi (θ)-s are the put option
prices based on the model. The results are presented in Table1 for the single-
parameter model and in Table2 for the three-parameter model. It can be observed
that both models yields prices that are very close to the market prices. Moreover, all
of the put option prices based on the three-parameter lie inside the bid-ask spread.

Although we leave rigorous empirical analysis of the performance of the models
for further research, some advantages of the models to traditional approaches can
be easily highlighted. For example, Brooks and Chance [5] point out that the most
commonly used option pricing models rely on a constant interest rate as an input.
However, according to them, it is difficult to determine what interest rate one should
use for the purposes of option pricing. Moreover, they point out that even small
errors in the interest rate used can lead to misestimated option prices and implied
volatilities. In particular, the prices of American options are very sensitive because of
the impact of the interest rate on early exercise. Since our models do not use interest
rate as an input, option prices and hedge ratios can be efficiently and accurately
calculated from observed market prices.

Table 1 The resulting call option prices of the one-parameter model with the best fit parameter G
on Apple Inc. stock with T = 1.093 on December 18, 2015

S = 108.98

G = 0.033

Market price Model price BID ASK

K = 92.5 6.03 6.03 5.9 6.15

K = 95 6.83 6.83 6.75 6.9

K = 97.5 7.68 7.68 7.55 7.8

K = 100 8.63 8.63 8.5 8.75

K = 105 10.78 10.78 10.7 10.85

K = 110 13.23 13.23 13.1 13.35

K = 115 16.03 16.03 15.9 16.15

K = 120 19.15 19.15 19.05 19.25

K = 125 22.58 22.58 22.45 22.7

K = 130 26.28 26.28 26.1 26.45
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Table 2 The resulting call option prices of the three-parameter with the best fit parameter G, α

and β on Apple Inc. stock with T = 1.093 on December 18, 2015

S = 108.98

G = 0.4789, α = 4.6233, β = 0.4425

Market price Model price BID ASK

K = 92.5 6.03 5.99 5.9 6.15

K = 95 6.83 6.78 6.75 6.9

K = 97.5 7.68 7.66 7.55 7.8

K = 100 8.63 8.60 8.5 8.75

K = 105 10.78 10.74 10.7 10.85

K = 110 13.23 13.20 13.1 13.35

K = 115 16.03 15.99 15.9 16.15

K = 120 19.15 19.12 19.05 19.25

K = 125 22.58 22.55 22.45 22.7

K = 130 26.28 26.28 26.1 26.45

4 Applications and Extensions

4.1 Model-Free Hedge Ratios

Bates [3], Reiss and Wystup [16] point out that a model-free deltas and gammas
can be calculated if one has a continuous set of options as a function of strikes. For
example, for puts and calls, it is reasonable to assume that

O (aK , aS, T ) = aO (K , S, T ) ,

where O (K , S, T ) is the option price, K is the strike price, S is the price of the asset,
and a is a positive constant. Then, a model-free delta, OS , can be calculated from
the expression:

OSS + OK K = O (K , S, T ) . (6)

Similarly, deltas and kappas satisfy the relations:

OS (aK , aS, T ) = OS (K , S, T )

OK (aK , aS, T ) = OK (K , S, T ) .

From the above, the following equations can be obtained:

OSSS + OKSK = 0

OKSS + OKK K = 0.
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Then, eliminating OKS from the above yields

OSSS
2 = OKK K

2. (7)

Finally, OKK and OK can be calculated numerically or analytically, and model-free
deltas and gammas can be obtained.

4.2 A Further Extension

Instead of (1) or (5), one could consider the following relation:

y = G
s(x)

(
1√
2

− x
)β

+ x,

where s(x) is a function with an arbitrary number of parameters or a nonparametric
function. Note that if β > 0, s(0) = 0, s ′(0) = 0, s ′(x) ≥ 0, and s ′′(x) ≥ 0, then
the put option prices satisfy the necessary no-arbitrage conditions (see the results in
the Appendix).

5 Conclusion

In this paper, we demonstrate how to construct interpolation-basedmodels for Amer-
ican put options. Our approach is constructed to satisfy the necessary no-arbitrage
conditions, and makes no assumption about the dynamics of the underlying asset.
We also briefly explain the advantage of the proposed models and discuss potential
applications.

Appendix

In this section, we show that put prices obtained from (1) or (5) satisfy the necessary
no-arbitrage conditions.

Claim 1 If a function y = f (x) is convex on x ∈ [0,∞) and f ′(x) � 1, then the
resulting function obtained by rotating f (x) clockwise by 45◦ is convex and increas-
ing on [0,∞).

Proof First, note that the rotated function p = g(k) is given by the equations
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p = 1√
2
y − 1√

2
x

k = 1√
2
y + 1√

2
x .

From the above, the following can be obtained:

p = 1√
2

( f (x) − x) = 1√
2

(

f

(
k − p√

2

)

− k − p√
2

)

.

Then,

dp

dk
= p′ = 1√

2

(

f ′
(
k − p√

2

)
1 − p′
√
2

− 1 − p′
√
2

)

= 1

2

(

f ′
(
p − k√

2

)

− 1

)
(

1 − p′)

and

p′ =
1
2

(

f ′
(
k−p√

2

)

− 1
)

1 + 1
2

(

f ′
(
k−p√

2

)

− 1
) .

Therefore, p′ � 0 because f ′(x) � 1. Moreover,

d2 p

dk2
= p′′ = 1

2

(

f ′′
(
k − p√

2

) (
1 − p′
√
2

))
(

1 − p′) + 1

2

(

f ′
(
k − p√

2

)

− 1

)
(−p′′)

and

d2 p

dk2
= p′′ =

1
2

(

f ′′
(
k−p√

2

) (
1−p′√

2

)) (

1 − p′)

1 + 1
2

(

f ′
(
k−p√

2

)

− 1
) .

Therefore, p′′ � 0 because both the numerator and denominator are positive. �

Moreover, if a continuous function y = f (x) is convex on x ∈
[

0, 1√
2

)

, f ′(x) �
1, and limx→ 1√

2
f (x) = ∞, then it is bounded by the lines: y = x , x = 1√

2
, and the

y-axis. Hence, the function obtained by rotating f (x) clockwise by 45◦ is bounded
by the following lines: the k-axis (the horizontal axis), p = k (that line that passes
through the original and has a slope of 1), and p = k − 1. Moreover,

lim
p→∞

g(k)

k − 1
= 1,

g(0) = 0 iff f (0) = 0,

and f ′(0) = 1 iff g′(0) = 0.
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Consequently, we require f (x) to satisfy the following requirements: f (0) = 0,

f ′(0) = 1, limx→ 1√
2
f (x) = ∞, f (x) is convex on x ∈

[

0, 1√
2

)

, and f ′(x) � 1.

Then, the put prices obtained from

P(K , T ) = P(k · S, T ) = S · p = S · g(k)

satisfy the necessary no-arbitrage conditions with the exception of condition (iii).
Finally, condition (iii) is satisfied if the parameter G in (4) or (5) is and increasing
function of T .
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