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Preface

This volume presents peer-reviewed contributions covering different areas of
mathematics and its applications. Many of these articles were presented at the
second International Conference on Mathematics and Statistics, which was held on
April 2–5, 2015 at the American University of Sharjah in the United Arab Emirates
(UAE). This conference was jointly organized by AUS and the American
Mathematical Society. It was attended by over 220 participants from around the
world.

The main objective of the conference, which is held every 5 years, is to offer a
forum where researchers and scientists working in all fields of mathematics and
statistics, and from both academia and industry, can come together, exchange ideas,
and learn about recent developments in mathematical research. The conference also
aims at promoting the image of mathematics and mathematical research in the UAE
and the Gulf region.

In addition to keynote lectures delivered by renowned mathematicians and
parallel sessions in all areas of mathematics and statistics, the scientific program
of the conference included special sessions in the areas of “commutative algebra
and co-algebras”, “designs, codes, and graphs”, “mathematical applications in
biology and medicine”, “mathematical finance and probability”, “number theory”,
and “topology and geometry”. These special sessions attracted a host of specialists
from all five continents. Keynote lectures were delivered by Gunnar Carlsson
(Stanford University), Samad Hedayat (University of Illinois at Chicago), and
Edriss Titi (Texas A&M). A short address was also given by Richard A. Brualdi
(University of Wisconsin, Madison) as the representative of the American
Mathematical Society.

The authors of the fine contributions in this volume are mathematicians who are
working in or have collaborative ties with mathematicians in the Gulf region. This
testifies to the rapid advances in mathematical research that the region is experi-
encing and to the enormous importance bestowed on academia during the last two
decades.

The American University of Sharjah (AUS) is a leading institution of higher
education in the UAE. It was founded in 1997 by His Highness Sheikh Dr. Sultan

v



bin Muhammad Al Qasimi, a member of the Supreme Council of the UAE and ruler
of Sharjah. Despite being young in age, AUS is acclaimed throughout the region for
its academic excellence and multicultural campus life. Its faculty members come
from more than 50 countries while its students hail from more than 90 countries.

This conference was sponsored by the American Mathematical Society, the
Mediterranean Institute for the Mathematical Sciences, and Wiley publishing.

We warmly thank all contributors to this volume and all participants who made
this conference a real success.

Sharjah, United Arab Emirates Taher Abualrub
May 2016 Abdul Salam Jarrah

Sadok Kallel
Hana Sulieman
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The Lusternik-Schnirelmann Category
for a Differentiable Stack

Samirah Alsulami, Hellen Colman and Frank Neumann

Abstract We introduce the notion of Lusternik-Schnirelmann category for differ-
entiable stacks and establish its relation with the groupoid Lusternik-Schnirelmann
category for Lie groupoids. This extends the notion of Lusternik-Schnirelmann cat-
egory for smooth manifolds and orbifolds.

Keywords Differentiable stacks · Lie groupoids · Orbifolds · LS-category
2010 Mathematics Subject Classication. 55M30 · 14A20 · 14D23 · 22A22

1 Introduction

The Lusternik-Schnirelmann category or LS-category of a manifold is a numerical
invariant introduced by Lusternik and Schnirelmann [21] in the early 1930s as a
lower bound on the number of critical points for any smooth function on a compact
smooth manifold. Later it was shown that the Lusternik-Schnirelmann category is
in fact a homotopy invariant and it became an important tool in algebraic topology
and especially homotopy theory. For an overview and survey on the importance of
LS-category in topology and geometry we refer the reader to [12, 18, 19].

Fundamental in the definition of LS-category of a smooth manifold or topological
space is the concept of a categorical set. A subset of a space is said to be categorical
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2 S. Alsulami et al.

if it is contractible in the space. The Lusternik-Schnirelmann category cat(X) of
a smooth manifold X is defined to be the least number of categorical open sets
required to cover X , if that number is finite, otherwise the category cat(X) is said to
be infinite.

In this article, we generalize the notion of Lusternik-Schnirelmann category to
differentiable stacks with the intention of providing a useful tool and invariant to
study homotopy theory, the theory of geodesics and Morse theory of differentiable
stacks. Differentiable stacks naturally generalize smooth manifolds and orbifolds
and are therefore of interest in many areas of geometry, topology and mathematical
physics. They are basically generalized smooth spaces where its points also have
automorphism groups. For example, they often appear as an adequate replacement
of quotients for general Lie group actions on smooth manifolds, especially when the
naive quotient does not exist as a smooth manifold. Many moduli and classification
problems like for example the classification of Riemann surfaces or vector bundles
on Riemann surfaces naturally lead to the notion of a differentiable stack. It can be
expected that the stacky LS-category will be a very useful topological invariant for
these kind of generalized smooth spaces which appear naturally in geometry and
physics. We aim to study the geometrical and topological aspects of the stacky LS-
category and its applications in a follow-up article [11]. Many of these constructions
can also be presented in a purely homotopicalmanner [2] by employing the homotopy
theory of topological stacks [24, 25].

The new notion of stacky LS-category for differentiable stacks presented here
employs the notion of a categorical substack and is again an invariant of the homo-
topy type of the differentiable stack, in fact of the underlying topological stack. It
generalizes the classical LS-category formanifolds [21] andwe show that it is directly
related with the groupoid LS-category for Lie groupoids as defined by Colman [9]
for Lie groupoids.

The material of this article is organised as follows: In the first section we collect
the basic definitions of differentiable stacks and Lie groupoids and establish some
fundamental properties. In particular we exhibit the various connections between
differentiable stacks and Lie groupoids. The second section recalls the foundations
of Lusternik-Schnirelmann category for groupoids and its Morita invariance. In the
third sectionwe introduce the new notion of stacky Lusternik-Schnirelmann category
and establish its relationship with the groupoid LS-category of the various groupoids
introduced in the Sect. 2.

2 Differentiable Stacks and Lie Groupoids

In this section we will collect in detail the notions and some of the fundamental
properties of differentiable stacks and Lie groupoids, which we will use later. We
refer the reader to various resources on differentiable stacks [3–6, 13, 16] and on Lie
groupoids [14, 20, 23, 28] for more details and specific examples and their interplay.

Differentiable stacks are defined over the category of smoothmanifolds. A smooth
manifold here will always mean a finite dimensional second countable smooth
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manifold,which neednot necessarily beHausdorff.Wedenote the category of smooth
manifolds and smooth maps by S.

A submersion is a smooth map f : U → X such that the derivative f∗ : TuU →
T f (u)X is surjective for all points u ∈ U . The dimension of the kernel of the linear
map f∗ is a locally constant function on U and called the relative dimension of the
submersion f . An étale morphism is a submersion of relative dimension 0. This
means that a morphism f between smooth manifolds is étale if and only if f is a
local diffeomorphism.

The étale site Set on the category S is given by the following Grothendieck
topology on S. We call a family {Ui → X} of morphisms in S with target X a
covering familyof X , if all smoothmapsUi → X are étale and the totalmap

∐
i Ui →

X is surjective. This defines a pretopology onS generating a Grothendieck topology,
the étale topology on S (see [1], Exposé II).

As remarked in [5], not all fibre products for twomorphismsU → X and V → X
exist in S, but if at least one of the two morphisms is a submersion, then the fibre
productU ×X V exists inS, which will be enough, while dealing with differentiable
stacks.

Definition 2.1 A category fibred in groupoids overS is a categoryX, together with
a functor πX : X → S such that the following axioms hold:

(i) For every morphism V → U inS, and every object x of X lying over U , there
exists an arrow y → x in X lying over V → U .

(ii) For every commutative triangleW → V → U inS andmorphisms z → x lying
over W → U and y → x lying over V → U , there exists a unique arrow z → y
lying over W → V such that the composition z → y → x is the morphism
z → x .

The axiom (ii) ensures that the object y over V , which exists after (i) is unique
up to a unique isomorphism. Any choice of such an object y is called a pullback of
x via the morphism f : V → U . We will write as usual y = x |V or y = f ∗x .

Let X be a category fibred in groupoids over S. Occasionally we will denote by
X0 the collection of objects and X1 the collection of arrows of the category X. The
subcategory of X of all objects lying over a fixed object U of S with morphisms
being those lying over the identity morphism idU is called the fibre or category of
sections of X over U , which will be denoted by XU or X(U ). By definition all fibres
XU are discrete groupoids.

Categories fibred in groupoids form a 2-category, denoted by CFG. The
1-morphisms are given by functors φ : X → Y respecting the projection functors
i.e. πY ◦ φ = πX and the 2-morphisms are given by natural transformations between
these functors preserving projection functors. Fibre products exist inCFG (see [15]).

We will say that the categories fibred in groupoids X and Y are isomorphic if
there are 1-morphisms φ : X → Y and ψ : Y → X and 2-morphisms T and T ′ such
that T : φ ◦ ψ ⇒ idY and T ′ : ψ ◦ φ ⇒ idX.

Example 2.2 (Identity) LetX be the fixed categoryS. Let π = idS : S → S be the
projection functor. Then X = S together with the identity map is a category fibred
in groupoids.
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Example 2.3 (Object) Given a fixed object X ∈ S, i.e. a smooth manifold, consider
the category X whose objects are (U, f ) where f : U → X is a morphism inS and
U an object in S, and whose arrows are diagrams

U
φ

f

V

g

X

The projection functor is π : X → S with π((U, f )) = U and π((U, f ),φ,
(V, g)) = φ. We have that X is a category fibred in groupoids.

In particular, in case that X is a point, X = ∗, we have that ∗ = S.

Example 2.4 (Sheaves) Let F : S → (Sets) be a presheaf, i.e. a contravariant func-
tor. We get a category fibred in groupoids X, where the objects are pairs (U, x), with
U a smooth manifold and x ∈ F(U ) and a morphism (U, x) → (V, y) is a smooth
map f : U → V such that x = y|FU , i.e. x = F( f )(y). The projection functor is
given by

π : X → S, (U, x) �→ U.

Especially any sheaf F : S → (Sets) gives therefore a category fibred in group-
oids over S and in particular we see again that every smooth manifold X gives a
category fibred in groupoids X over S as the sheaf represented by X , i.e. where

X(U ) = HomS(U, X).

To simplify notation, we will sometimes freely identify X with the smooth mani-
fold X .

Now let us recall the definition of a stack [5]. In the following let S always be
the category of smooth manifolds equipped with the étale topology as defined above.
We could of course replace the étale topology with any other Grothendieck topology
on S, but in this article we are mainly interested in stacks over the étale site Set .

Definition 2.5 A category fibred in groupoids X over S is a stack over S if the
following gluing axioms hold:

(i) For any smooth manifold X in S, any two objects x, y in X lying over X and
any two isomorphisms φ,ψ : x → y over X , such that φ|Ui = ψ|Ui for all Ui

in a covering {Ui → X} it follows that φ = ψ.
(ii) For any smooth manifold X in S, any two objects x, y ∈ X lying over X , any

covering {Ui → X} and, for every i , an isomorphism φi : x |Ui → y|Ui , such
that φ|Ui j = φ j |Ui j for all i, j , there exists an isomorphism φ : x → y with
φ|Ui = φ for all i .

(iii) For any smooth manifold X in S, any covering {Ui → X}, any family {xi }
of objects xi in the fibre XUi and any family of morphisms {φi j }, where φi j :
xi |Ui j → x j |Ui j satisfying the cocycle condition φ jk ◦ φi j = φik in X(Ui jk)
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there exist an object x lying over X with isomorphisms φi : x |Ui → xi such
that φi j ◦ φi = φ j in X(Ui j ).

The isomorphismφ in (ii) is unique by (i) and similar from (i) and (ii) it follows that
the object x whose existence is asserted in (iii) is unique up to a unique isomorphism.
All pullbacks mentioned in the definitions are also only unique up to isomorphism,
but the properties do not depend on choices.

In order to do geometry on stacks, we have to compare them with smooth mani-
folds.

A category X fibred in groupoids overS is representable if there exists a smooth
manifold X such that X is isomorphic to X as categories fibred in groupoids overS.

A morphism of categories fibred in groupoids X → Y is representable, if for
every smooth manifold U and every morphism U → Y the fibred product X ×Y U
is representable.

A morphism of categories fibred in groupoids X → Y is a representable sub-
mersion, if it is representable and the induced morphism of smooth manifolds
X ×Y U → U is a submersion for every smooth manifold U and every morphism
U → Y.

Definition 2.6 A stack X overS is a differentiable or smooth stack if there exists a
smooth manifold X and a surjective representable submersion x : X → X, i.e. there
exists a smooth manifold X together with a morphism of stacks x : X → X such
that for every smooth manifold U and every morphism of stacks U → X the fibre
product X ×X U is representable and the induced morphism of smooth manifolds
X ×X U is a surjective submersion.

If X is a differentiable stack, a surjective representable submersion x : X → X
as before is called a presentation of X or atlas for X. It need not be unique, i.e. a
differentiable stack can have different presentations.

Example 2.7 All representable stacks are differentiable stacks. Let X be a smooth
manifold. The category fibred in groupoids X is in fact a differentiable stack over
S since it is representable. A presentation is given by the identity morphism idX ,
which is in fact a diffeomorphism.

Example 2.8 (Torsor) Let G be a Lie group. Consider the category BG which has
as objects principal G-bundles (or G-torsors) P over S and as arrows commutative
diagrams

P
ψ

π

Q

τ

S
ϕ

T

where the map ψ : P → Q is equivariant.
The category BG together with the projection functor π : BG → S given

by π(P → S) = S and π((ψ,ϕ)) = ϕ is a category fibred in groupoids, in fact
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a differentiable stack, the classifying stack of G whose atlas presentation is given by
the representable surjective submersion ∗ → BG.

Example 2.9 (Quotient Stack) Let X be a smooth manifold with a smooth (left)
action ρ : G × X → X by a Lie group G. Let [X/G] be the category which has as
objects triples (P, S,μ), where S is a smooth manifold ofS, P a principal G-bundle
(or G-torsor) over S and μ : P → X a G-equivariant smooth map. A morphism
(P, S,μ) → (Q, T, ν) is a commutative diagram

X

P

μ

ψ

π

Q

ν

τ

S
ϕ

T

where ψ : P → Q is a G-equivariant map. Then [X/G] together with the projection
functor π : [X/G] → S given by π((P, S,μ)) = S and π((ψ,ϕ)) = ϕ is a category
fibred in groupoids overS. [X/G] is in fact a differentiable stack, the quotient stack
of G. An atlas is given by the representable surjective submersion x : X → [X/G].

If X = ∗ is just a point, we simply recover the differentiable stackBG as defined
in the previous example, i.e. [∗/G] = BG.

In some way, quotient stacks encode in a non-equivariant and systematic way
various equivariant data of general Lie group actions, which need not to be free.

Differentiable stacks are basically incarnations of Lie groupoids.

Definition 2.10 A Lie groupoid G is a groupoid in the categoryS of smooth mani-
folds, i.e.

G1 ⇒ G0

such that the space of arrows G1 and the space of objects G0 are smooth manifolds
and all structure morphisms

m : G1 ×G0 G1 → G1, s, t : G1 → G0, i : G1 → G0, e : G0 → G1

are smooth maps and additionally the source map s and the target map t are submer-
sions.

Morphisms between Lie groupoids are given by functors (φ1,φ0) where φi : Gi →
G ′

i is a smooth map. We will call them strict morphisms.
Lie groupoids, strict morphisms and natural transformations form a 2-category

that we denote LieGpd.
We will show now a construction of a Lie groupoid associated to a differentiable

stack. Let X be a differentiable stack with a given presentation x : X → X. We can



The Lusternik-Schnirelmann Category for a Differentiable Stack 7

associate to (X, x) a Lie groupoid G(x) = G1 ⇒ G0 as follows: Let G0 = X and
G1 = X ×X X . The source and target morphisms s, t : X ×X X ⇒ X of G are given
as the two canonical projection morphisms. The composition of morphisms m in G
is given as projection to the first and third factor

X ×X X ×X X ∼= (X ×X X) ×X (X ×X X) → X ×X X.

The morphism which interchanges factors X ×X X → X ×X X gives the inverse
morphism i and the unit morphism e is given by the diagonal morphism X → X ×X

X . Because the presentation x : X → X of a differentiable stack is a submersion, it
follows that the source and target morphisms s, t : X ×X X ⇒ X are submersions
as induced maps of the fibre product.

The Lie groupoid associated to the differentiable stack X in this way is also part
of a simplicial smooth manifold X•, whose homotopy type encodes the homotopy
type of X [14, 25, 26].

Given instead a Lie groupoidwe can associate a differentiable stack to it. Basically
this is a generalization of Example 2.8 where we associate to a Lie group G the
classifying stack BG.

Let’s introduce first the notions of groupoid action and groupoid torsor.

Definition 2.11 (Action of a groupoid on a manifold) Let G be a Lie groupoid
G1 ⇒ G0 and P a manifold in S. An action of G on P is given by

(i) an anchor map a : P → G0,
(ii) an action map μ : G1 ×s,a P → P

such that t (k) = a(k · p) for all (k, p) ∈ G1 × P with s(k) = a(p), satisfying the
standard action properties: e(a(p)) · p = p and (k · p) · h = (gh) · p whenever the
operations are defined.

Definition 2.12 (Groupoid torsor) Let G be a Lie groupoid G1 ⇒ G0 and S a man-
ifold in S. A G-torsor over S is given by

(i) a manifold P together with
(ii) a surjective submersion π : P → S and
(iii) an action of G on P

such that for all p, p′ ∈ P with π(p) = π(p′) there exists a unique k ∈ G1 such that
k · p = p′.

Let π : P → S and ρ : Q → T be G-torsors. A morphism of G-torsors is given
by a commutative diagram

P
ψ

π

Q

τ

S
ϕ

T

such that ψ is a G-equivariant map.
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Example 2.13 (G-torsors) Let G be a fixed Lie groupoid G1 ⇒ G0. Consider the
category BG which has as objects G-torsors P over S and as arrows morphisms of
G-torsors as described above.

Then BG is a category fibred in groupoids over S with projection functor
π : BG → S given by π(P → S) = S and π((ψ,ϕ)) = ϕ. Moreover, BG is a dif-
ferentiable stack.

We have the following fundamental property (see for example [5, Prop. 2.3])
of BG.
Theorem 2.14 For every Lie groupoid G = G1 ⇒ G0 the category fibred in group-
oids BG of G-torsors is a differentiable stack with a presentation τ0 : G0 → BG.

The stackBG is also called the classifying stack of G-torsors. It follows from this
also that the Lie groupoid G = G1 ⇒ G0 is isomorphic to the Lie groupoid G(τ0)
associated to the atlas τ0 : G0 → BG of the stack BG.

Under this correspondence between differentiable stacks and Lie groupoids, the
quotient stack [X/G] of an action of a Lie group G on a smooth manifold X as
described in Example 2.9 corresponds to the action groupoid G × X ⇒ X [5, 16].
In particular, if X is just a point the classifying stackBG of aLie groupG corresponds
to the Lie groupoid G ⇒ ∗.

As the presentations of a differentiable stack are not unique, the associated Lie
groupoidsmight be different. In order to define algebraic invariants, like cohomology
or homotopy groups for differentiable stacks they should however not depend on
a chosen presentation of the stack. Therefore it is important to know, when two
different Lie groupoids give rise to isomorphic stacks. This will be the case when
the Lie groupoids are Morita equivalent.

Definition 2.15 Let G = G1 ⇒ G0 and H = H1 ⇒ H0 be Lie groupoids. A mor-
phism of Lie groupoids is a smooth functor φ : G → H given by two smooth maps
φ = (φ1,φ0) with

φ0 : G0 → H0, φ1 : G1 → H1

which commutewith all structuremorphisms of the groupoids. Amorphismφ : G →
H of Lie groupoids is a Morita morphism or essential equivalence if

(i) φ0 : G0 → H0 is a surjective submersion,
(ii) the diagram

G1
(s,t)

φ1

G0 × G0

φ0×φ0

H1
(s,t)

H0 × H0

is cartesian, i.e. G1
∼= H1 ×H0×H0 G0 × G0.

Two Lie groupoids G andH areMorita equivalent, if there exists a third Lie groupoid
K and Morita morphisms
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G φ← K ψ→ H

We have the following main theorem concerning the relation of the various Lie
groupoids associated to various presentations of a differentiable stack [5, Theorem
2.24].

Theorem 2.16 Let G and H be Lie groupoids. Let X and Y be the associated
differentiable stacks, i.e. X = BG and Y = BH. Then the following are equivalent:

(i) the differentiable stacks X and Y are isomorphic,
(ii) the Lie groupoids G and H are Morita equivalent.

As a special casewe have the following fundamental property concerning different
presentations of a differentiable stack X.

Proposition 2.17 Let X be a differentiable stack with two given presentations x :
X → X and x ′ : X ′ → X. Then the associated Lie groupoids G(x) and G(x ′) are
Morita equivalent.

Therefore Lie groupoids present isomorphic differentiable stacks if and only if
they are Morita equivalent or in other words differentiable stacks correspond to
Morita equivalence classes of Lie groupoids.

We now recall the fundamental notion of a smooth morphism between differen-
tiable stacks (see for example [16]).

Definition 2.18 (Smooth morphism) An arbitrary morphism X → Y of differen-
tiable stacks is smooth, if there are atlases X → X and Y → Y such that the induced
morphism from the fibered product X ×Y Y → Y in the diagram below is a smooth
map between manifolds.

X ×Y Y X

X

Y Y

Let U be a subcategory of X. Recall that a subcategory is called saturated if
whenever it contains an object x then it contains the entire isomorphism class x̄ of
that object and is called full if whenever it contains an arrow between x and y, it
contains the entire set Hom(x, y) of arrows.

Let π : X → S be a differentiable stack and x : X → X be an atlas. Let U ⊂ X
be an open subset and consider the saturation U0 of the image x(U ) in X0, i.e.

U0 = {z ∈ X0| z ∈ x̄ for some x ∈ U }.

The full subcategory U on U0 is U1 ⇒ U0 where U1 = {g ∈ X1| s(g), t (g) ∈ U0}.
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Definition 2.19 (Restricted substack) Let π : X → S be a differentiable stack with
atlas x : X → X and U ⊂ X be an open set. Consider the full subcategory U on
U0 and let π′ := π ◦ i , where i : U → X is the inclusion. We say that U with the
projection π′ : U → S is the restricted substack of X to U.

Definition 2.20 (Constant morphism) Let c : X → Y be a smooth morphism
between differentiable stacks. We say that c is a constant morphism if there are
presentations X → X and Y → Y such that the induced morphism from the fibered
product X ×Y Y → Y is a constant map.

For instance, any smooth morphism X → Y whereY admits a presentation by a
point ∗ → Y is a constant morphism.

Example 2.21 Let S1 act on S1 by rotation and consider the quotient stack X asso-
ciated to this action, X = [S1/S1]. We will show that the identity map id[S1/S1] :
[S1/S1] → [S1/S1] is a constant map. The groupoid S1 × S1 ⇒ S1 is Morita equiv-
alent to a point groupoid ∗ ⇒ ∗, therefore the stacks X = [S1/S1] and ∗ are isomor-
phic. Since ∗ → ∗ is a presentation for ∗ it follows that ∗ → [S1/S1] is a presentation
forX. Hence any map with codomainX = [S1/S1] is a constant morphism of stacks.

Let us finish this section by remarking that it is also possible to define stacks and
groupoids over the more general category of diffeological spaces instead of using
the category of smooth manifolds as we have done here [7, 17, 27].

3 Lusternik-Schnirelmann Category for Lie Groupoids

We will first recall the definition and fundamental properties for the notion of
Lusternik-Schnirelmann category for Lie groupoids. The most important property
here is that the Lusternik-Schnirelmann category of a Lie groupoid is in fact Morita
invariant, which means that it is in fact an invariant of the associated differentiable
stack.Wewill follow here the general approach of [9], where the notion of Lusternik-
Schnirelmann category for Lie groupoids was first introduced.

Our contextwill be theMorita bicategory ofLie groupoidsLieGpd(E−1) obtained
from LieGpd by formally inverting the essential equivalences E . Objects in this
bicategory are Lie groupoids, 1-morphisms are generalized maps

K ε← J φ→ G

such that ε is an essential equivalence and 2-morphisms fromK ε← J φ→ G toK ε′←
J ′ φ′→ G are given by classes of diagrams:
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J
φε

K L
u

v

G

J ′
ε′ φ′

∼∼

where L is a topological groupoid, and u and v are essential equivalences.
The path groupoid of G is defined as the mapping groupoid in this bicategory,

PG = Map(I,G).
Let (σ, f ) : K σ← K′ f→ G and (τ , g) : K τ← K′′ g→ G be generalized maps. The

map (σ, f ) is groupoid homotopic to (τ , g) if there exists (ε, H) : K ε← K̃ H→ PG
and two commutative diagrams up to natural transformations:

K̃
ev0 Hε

K L0

u0

v0

G

K′
σ f

∼∼

K̃
ev1 Hε

K L1

u1

v1

G

K′′
τ g

∼∼

where Li is an action groupoid, and ui and vi are equivariant essential equivalences
for i = 0, 1.

Similarly as for differentiable stacks we also have the concept of a restricted
groupoid over a given invariant subset and that of a generalized constant map, which
we will need to define LS-category for Lie groupoids.

Definition 3.1 Let G = G1 ⇒ G0 be a Lie groupoid. An open setU ⊂ G0 is invari-
ant if t (s−1(U )) ⊂ U . The restricted groupoid U to an invariant set U ⊂ G0 is the
full groupoid over U . In other words, U0 = U and U1 = {g ∈ G1 : s(g), t (g) ∈ U }.
We write U = G|U ⊂ G.

Definition 3.2 We say that the map (ε, c) : K ε← K′ c→ G is a generalized constant
map if for all x ∈ K ′

0 there exists g ∈ G1 with s(g) = x0 such that c(x) = t (g) for a
fixed x0 ∈ G0.

In other words, the image of the generalized map (ε, c) is contained in a fixed
orbit O, the orbit of x0.

Definition 3.3 For an invariant open set U ⊂ G0, we will say that the restricted
groupoid U is G-categorical if the inclusion map iU : U → G is groupoid homotopic
to a generalized constant map (ε, c).
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In other words, the diagram

L c

ε

O

U G

is commutative up to groupoid homotopy where ε is an equivariant essential equiv-
alence and O an orbit.

Now we can make the following definition (see [10]).

Definition 3.4 Let G = G1 ⇒ G0 be a Lie groupoid. The groupoid Lusternik-
Schnirelmann or groupoid LS-category, cat(G), is the least number of invariant open
sets U needed to cover G0 such that the restricted groupoid U is G-categorical.

If G0 cannot be covered by a finite number of such open sets, we will say that
cat(G) = ∞.

Wehave the following important property of thegroupoidLusternik-Schnirelmann
category (see [9]).

Theorem 3.5 The Lusternik-Schnirelmann category of a Lie groupoid is invariant
under Morita equivalence of Lie groupoids, i.e. if G is a Lie groupoid which is Morita
equivalent to a Lie groupoid G ′, then we have

cat(G) = cat(G ′).

The groupoid Lusternik-Schnirelmann category also generalizes the ordinary
Lusternik-Schnirelmann category of a smooth manifold. In fact, if G = u(M) is
the unit groupoid, then we have cat(G) = cat(M), where cat on the right hand side
means the ordinary Lusternik-Schnirelmann category of a smooth manifold.

4 Lusternik-Schnirelmann Category of a Differentiable
Stack

Using homotopical properties of differentiable stacks we will now introduce the
Lusternik-Schnirelmann category of a differentiable stacks. LetX be a differentiable
stack. Consider the path stack PX = Map([0, 1],X) of X as defined by Noohi in
[24] for general topological stacks. We will say that the morphisms f : X → Y
and g : X → Y between differentiable stacks are homotopic if there exists a mor-
phism of stacks H : X → PY such that the following diagram of stack morphisms
is commutative up to natural transformations:
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Y PY
ev1ev0

Y

X

f g
H

Definition 4.1 Let π : X → S be a differentiable stack with atlas x : X → X and
U ⊂ X be an open set. We will say that the restricted substack U is X-categorical
if the inclusion map iU : U → X is homotopic to a constant morphism c : U → X
between differentiable stacks.

For instance, in Example 2.21 for the stackX = [S1/S1] letU be the set of triples
(P, S,μ), where S is a smooth manifold, P a S1-torsor over S and μ : P → S1 a
S1-equivariant smooth map. That is, U = [S1/S1]. We have that the stack U is X-
categorical since the identity map id : [S1/S1] → [S1/S1] is homotopic to a constant
morphism of stacks.

Definition 4.2 Let π : X → S be a differentiable stack with atlas x : X → X. The
stacky Lusternik-Schnirelmann or stacky LS-category, cat(X), is the least number of
open sets U needed to cover X such that the restricted substack U is X-categorical.

If X cannot be covered by a finite number of such open sets, we will say that
cat(X) = ∞.

Example 4.3 Let X be a smooth manifold. It follows immediately from the above
definition that the stacky LS-category cat(X) is equal to the classical LS-category
cat(X) of the manifold.

Example 4.4 From Example 2.21, we get immediately for the LS-category of the
quotient stack [S1/S1] that cat([S1/S1]) = 1.

The following theorems establish the relationship between Lusternik-
Schnirelmann category of differentiable stacks and Lie groupoids (see also [11]).

Theorem 4.5 Let X be a differentiable stack with a given presentation x : X0 → X
and associated Lie groupoid G(x) = X0 ×X X0 ⇒ X0. Then

cat(X) = cat(G(x)).

Proof This follows from the definition ofLS-category forLie groupoids. The fact that
LS-category of Lie groupoids is Morita invariant, implies now by using Proposition
2.17 that it does not depend on the chosen presentation for the differentiable stack
X, which gives the result. �

Theorem 4.6 LetG be a Lie groupoid andBG be the associated differentiable stack.
Then

cat(BG) = cat(G).
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Proof This follows from the explicit construction of the classifying stack BG of
G-torsors for the given Lie groupoid G. Now the associated Lie groupoid of the
differentiable stack BG is Morita equivalent to the given Lie groupoid G following
Theorem 2.16 above. �

Example 4.7 Consider the action groupoid G = S1 × S3 ⇒ S3 defined by the action
of the circle S1 on the 3-sphere S3 given by (v,w) �→ (z3v, zw).

If we think of S3 as the union of two solid tori, we have that the orbits of this action
are circles of length 2π for points on the two cores C1 and C2 and circles of length
2π

√
3‖v‖2 + ‖w‖2 elsewhere. We construct a G-categorical covering {U1,U2} by

subgroupoids of G given by considering the open sets U1 = S3 − C2 and U2 = S3 −
C1. We have that each inclusion iUi : Ui → G is groupoid homotopic to a generalized
constant map with image in each respective core Ci . Moreover, this groupoid is not
G-contractible and we have that cat(G) = 2.

Now for the differentiable stack [S3/S1] associated to this Lie groupoid, which
in fact describes the teardrop orbifold, we get from the last theorem that cat ([S3/

S1]) = 2.

More generally, given any quotient stack [X/G] of a Lie group action on a smooth
manifold, we see that the stacky LS-category of [X/G] is equal to the groupoid LS-
category of the action groupoid G × X ⇒ X , i.e. cat([X/G]) = cat(G × X ⇒ X).
This stacky LS-category of a quotient stack in fact generalizes also the notion of
equivariant LS-category catG(X) for Lie group actions on manifolds as introduced
before byMarzantowicz [8, 22].We also aim to study the relationship between stacky
LS-category and equivariant topology in forthcoming work.

Many of the particular examples and properties of LS-category for Lie groupoids
as discussed in [9], especially concerning Lie group actions on smooth manifolds
have interesting stacky analogs and will be discussed in detail in [11]. For example,
orbifolds in general can naturally be seen as particular differentiable stacks associ-
ated to proper étale Lie groupoids and therefore give rise to a variety of interesting
examples for LS-category of differentiable stacks and its relation with Morse theory,
which we will also explore in detail in [11].

Acknowledgements The first and third author like to thank Sadok Kallel and the American Uni-
versity of Sharjah, UAE for financial support where part of this work was presented at the Second
International Conference on Mathematics and Statistics. Both also like to thank the University of
Leicester for additional support. The second author is supported in part by the Simons Foundation.
Finally, the second and third authors also like to thank the Centro de Investigación en Matemáticas
(CIMAT) in Guanajuato for the kind hospitality and support while this project was pursued.

References

1. Artin, M., Grothendieck, A., Verdier, J.-L.: Théorie des topos et cohomolgie étale des schémas,
Séminaire de géometrie algébrique du Bois-Marie (SGA 4). Lecture Notes in Mathematics,
vol. 269, 270, 305. Springer-Verlag, Berlin-New York, 1972–1973



The Lusternik-Schnirelmann Category for a Differentiable Stack 15

2. Alsulami, S.: Homotopy types of topological groupoids and Lusternik-Schnirelmann category
of topological stacks. Ph.D. thesis, University of Leicester, May 2016

3. Behrend, K.: On the de Rham cohomology of differential and algebraic stacks. Adv. Math.
198, 583–622 (2005)

4. Behrend, K.: Cohomology of stacks, Intersection theory and moduli. ICTP Lect. Notes XIX,
Abdus Salam Int. Cent. Theor. Physics, Trieste 249–294 (2004)

5. Behrend, K., Xu, P.: Differentiable stacks and gerbes. J. Symp. Geom. 9, 285–341 (2011)
6. Biswas, I., Neumann, F.: Atiyah sequences, connections and characteristic forms for principal

bundles over groupoids and stacks. Comp. Ren. Math. Acad. Sci. Paris 352, 59–64 (2014)
7. Collier, B., Lerman, E.,Wolbert, S.: Parallel transport on principal bundles over stacks, preprint.

arXiv:math.DG/1509.05000
8. Colman,H.: Equivariant LS-category for finite group actions. Lusternik-Schnirelmann category

and related topics (South Hadley, MA) Contemp. Math. 316(2002), 35–40 (2001)
9. Colman, H.: The Lusternik-Schnirelmann category of a Lie groupoid. Trans. AMS 362(10),

5529–5567 (2010)
10. Colman, H.: On the 1-homotopy type of Lie groupoids. Appl. Categor. Struct. 19, 393–423

(2011)
11. Colman, H., Neumann, F.: Lusternik-Schnirelmann theory for stacks. In preparation
12. Cornea, O., Lupton, G., Oprea, J., Tanré, D.: Lusternik-Schnirelmann category, Mathematical

Surveys and Monographs, 103. American Mathematical Society, Providence, RI (2003)
13. Fantechi, B.: Stacks for everybody. European Congress of Mathematics. Barcelona 2000, vol.

I, pp. 349–359. Birkhäuser, Verlag (2001)
14. Felisatti, M., Neumann, F.: Secondary theories for étale groupoids. Regulators (Barcelona).

Contemp. Math. 571(2012), 135–151 (2010)
15. Grothendieck,A.:Revetements étale et groupe fundamental, Séminaire degéometrie algébrique

du Bois-Marie 1960–1961 (SGA 1). Lecture Notes in Mathematics, vol. 224. Springer-Verlag,
Berlin, New York (1971)

16. Heinloth, J.: Notes on differentiable stacks. In: Y. Tschinkel (ed.) Mathematisches Institut
Seminars 2004-2005, pp. 1-32. Georg-August Universität Göttingen

17. Iglesias-Zemmour, P.: Diffeology, Mathematical Surveys and Monographs 185. American
Mathematical Society, Providence, RI (2013)

18. James, I.M.: On category, in the sense of Lusternik-Schnirelmann. Topology 17(4), 331–348
(1978)

19. James, I.M.: Lusternik-Schnirelmann category. In:HandbookofAlgebraicTopology, pp. 1293–
1310. Elsevier Science, Amsterdam (1995)

20. Laurent-Gengoux, C., Tu, J.-L., Xu, P.: Chern-Weil map for principal bundles over groupoids.
Math. Zeit. 255, 451–491 (2007)

21. Lusternik, L., Schnirelmann, L.: Méthodes topologiques dans les Problèmes Variationnels.
Hermann, Paris (1934)

22. Marzantowicz, W.: A G-Lusternik-Schnirelman category of space with an action of a compact
Lie group. Topology 28(4), 403–412 (1989)
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Centrosymmetric, and Symmetric
and Hankel-Symmetric Matrices

Richard A. Brualdi and Shi-Mei Ma

Abstract We formulate and solve existence questions concerning centrosymmetric
matrices and symmetric, Hankel-symmetric matrices which are nonnegative, non-
negative and integral, and (0, 1)-matrices.

Keywords Symmetric matrices · Centrosymmetric matrices · Hankel symmetric
matrices · Palindromic vector · Hankel transpose · Interchange
Subject Classication: 05B20 · 15B05

1 Introduction

Let A = [ai j ] be an m × n matrix, and let A† = [a†i j ] denote the m × n matrix

obtained from A by a rotation of 180◦. Thus a†i j = an+1−i,n+1− j for all i and j .
The matrix A is centrosymmetric provided A† = A, that is, provided

an+1−i,n+1− j = ai j for all i and j.

If the m × n matrix A is centrosymmetric, then if m (resp., n) is odd, row
(m + 1)/2 (resp. column (n + 1)/2) is palindromic, that is, is the same read for-
ward or backward. The centrosymmetric matrix A is determined by its first �n/2�
columns. Centrosymmetric matrices have occured in many investigations; see e.g.
[1, 2, 6].
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As usual At = [ati j ] denotes the usual n × m transpose of A so that ati j = a ji

for all i and j . In addition, we consider the matrix Ah = [ahi j ] to denote the Hankel
transpose [5] of A. This is the n × m matrix obtained from A by interchanging rows
and columns as with the transpose, but using the reverse order in both cases. Thus
ahi j = an+1− j,n+1−i for all i and j . For example, if

A =
[
a b c
d e f

]

,

then

Ah =
⎡

⎣
f c
e b
d a

⎤

⎦ .

If A is a square matrix, then Ah is obtained from A by transposing across theHankel
diagonal, that is, across the diagonal of A running from upper right to lower left.

A matrix A is symmetric provided that At = A. We say that a matrix is Hankel-
symmetric provided that Ah = A. Symmetric and Hankel-symmetric matrices must
be square matrices. An example of a Hankel-symmetric matrix is

⎡

⎣
2 1 0
4 5 1
3 4 2

⎤

⎦ .

If a square matrix is both symmetric and Hankel-symmetric, then it is centrosym-
metric. This is because, consecutive reflections about two perpendicular lines (the
main diagonal and the antidiagonal) is a rotation by 180◦. More precisely, we have
the following basic result.

Proposition 1 Let A be an n × n matrix. Then any two of the following three prop-
erties implies the other:

(s) A is symmetric: At = A.
(hs) A is Hankel-symmetric: Ah = A.
(cs) A is centrosymmetric: A† = A.

Proof (i) (s) and (hs) ⇒ (cs): ai j
(hs)= an+1− j,n+1−i

(s)= an+1−i,n+1−l .

(ii) (s) and (cs) ⇒ (hs): ai j
(cs)= an+1−i.n+1− j

(s)= an+1− j,n+1−i .

(iii) (hs) and (cs) ⇒ (s): ai j
(cs)= an+1−i,n+1− j

(hs)= a ji .
�

Centrosymmetric permutation matrices are studied in [1, 2]. Centrosymmetric
graphs are considered in [6].

A matrix, even a permutation matrix, may be centrosymmetric but not Hankel
symmetric, or Hankel symmetric but not centrosymmetric. For example,
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⎡

⎢
⎢
⎣

1
1

1
1

⎤

⎥
⎥
⎦ (Hankel symmetric but not centrosymmetric),

and ⎡

⎢
⎢
⎣

1
1

1
1

⎤

⎥
⎥
⎦ (centrosymmetric but not Hankel symmetric)

Let R = (r1, r2, . . . .rm) and S = (s1, s2, . . . , sn) be two nonnegative vectors with
the sum of components:

τ := r1 + r2 + · · · + rm = s1 + s2 + · · · + sn.

We denote by T (R, S) the set of all nonnegative real matrices with row sum vector
R and column sum vector S. Matrices in T (R, S) are often called transportation
matrices because of their connection to the well-known transportation problem of
transporting goods from m sources with supplies of sizes given by R to n sources
with demands given by S. T (R, S) is a convex polytope, and is nonempty since the
m × n matrix T = [ti j ] with

ti j = ri s j
τ

for all i and j.

is in T (R, S). If R and S are also integral vectors, then T (R, S) is an integral trans-
portation polytope. An integral transportation polytope always contains an integral
matrix. In fact, the following transportation matrix algorithm always produces such
a matrix A = [ai j ] (see e.g. [4], pp. 26–27):
(1) Choose any i and j and set ai j = min{ri , s j }.

(a) If min{ri , s j } = ri , set ail = 0 for all l �= j .
(b) If min{ri , s j } = s j , set akj = 0 for all k �= i .

(2) Reduce ri and s j by min{ri , s j }, and proceed inductively.

In fact, the matrices produced by this algorithm carried out in all possible ways gives
all the extreme points of the convex polytope T (R, S). Note that if R and S are
integral vectors, then the algorithm always produces integral matrices. We denote
the class of integral matrices in T (R, S) by TZ (R, S). The class TZ (R, S) may or
may not contain a (0, 1)-matrix even if the components of R and S are small enough.
For instance, if R = (4, 3, 2, 1) and S = (4, 4, 1, 1), then there does not exists a
(0, 1)-matrix in Z(R, S).

Again with the assumption that R and S are nonnegative integral vectors, a much
studied class of matrices is the classA(R, S) consisting of allm × n (0, 1)-matrices
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in TZ (R, S). TheGale-Ryser theorem (see e.g. [4], p. 27) characterizes the nonempti-
ness of the class A(R, S) as follows.

Let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) be nonnegative integral vectors
with

r1 + r2 + · · · + rm = s1 + s2 + · · · + sn.

Assume without loss of generality (by permuting rows and columns if necessary)
that

r1 ≥ r2 ≥ · · · ≥ rm and s1 ≥ s2 ≥ · · · ≥ sn.

Let R∗ = (r∗
1 , r

∗
2 , . . . , r

∗
n ) be the conjugate of R, that is,

r∗
j = |{i : ri ≥ j}.

Then A(R, S) �= ∅ if and only if S is majorized by R, that is,

s1 + s2 + · · · + s j ≤ r∗
1 + r∗

2 + · · · + r∗
j ( j = 1, 2, . . . , n), with equality for j = n.

(1)

Assuming that R = S = (r1, r2, . . . , rn), one can also consider the existence of
symmetric matrices in the classes T (R, R) and, if R is integral, TZ (R, R) and
A(R, R). The classes T (R, R) and TZ (R, R) always contain a symmetric matrix
since they contain the diagonal matrix with r1, r2, . . . , rn on the main diagonal. It is
a consequence of a theorem of Fulkerson, Hoffman, and McAndrew that the class
A(R) contains a symmetric matrix if and only if it is nonempty (see e.g. [3], pp.
179–182).

In this note, we consider certain subsets of the above matrix classes defined by
imposing the structural conditions of centrosymmetry, and symmetry and Hankel-
symmetry, and we obtain analogous results to those described above.

2 Existence Theorems

In this section we obtain nonemptiness criteria for the classes introduced in the
previous section. Since the property of centrosymmetry does not require that the
matrix be square, we need not assume our matrices are square in this case; but
symmetry and Hankel-symmetry do require that the matrix be square. We shall adapt
three well-known algorithms to the centrosymmetric, and symmetric and Hankel-
symmetric cases.

Let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) be nonnegative vectors. Let
C(R, S) denote the class of all centrosymmetric, nonnegative matrices with row sum
vector R and column sum vector S. If R and S are also integral, let CZ (R, S) denote
the class of all centrosymmetric, nonnegative integral matrices with row sum vector
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R and column sum vector S. Recall that a vector (d1, d2, . . . , dk) is palindromic
provided that di = dk+1−i for all i .

Theorem 2 The class C(R, S) is nonempty if and only if

m∑

i=1

ri =
n∑

j=1

s j . (2)

and
R and S are palindromic. (3)

If R and S are integral vectors, the class CZ (R, S) is nonempty if and only if (2) and
(3) hold.

Proof The conditions (2) and (3) are certainly necessary in order that C(R, S) �= ∅
and, if R and S are integral, in order that CZ (R, S) �= ∅. Now assume that (2) and
(3) hold. We modify the transportation matrix algorithm to show the two classes are
nonempty.

Since R and S are palindromic, it follows from (2) that if m is even and n is odd,
then s(n+1)/2 is even. Similarly. if m is odd and n is even, then r(m+1)/2 is even. If m
and n are both odd, then r(m+1)/2 and s(n+1)/2 have the same parity. We proceed as in
the transportation algorithm but with the modifications as given below. If R and S
are integral, the result will be an integral matrix.

Ifm and n are both odd and e.g. r(m+1)/2 ≥ s(n+1)/2, then we put a(m+1)/2,(n+1)/2 =
s(n+1)/2, and put the remaining entries in column (n + 1)/2 equal to zero and adjust
r(m+1)/2 to r(m+1)/2 − s(n+1)/2. Then we are left to construct a centrosymmetric m ×
(n − 1) matrix where m is odd and n − 1 is even with palindromic row and column
sum vectors the sum of whose entries are equal.

If m is even and n is odd, then there are two possibilities (first we use row 1
although any row i ≤ m/2 can be used): If 2r1 ≤ s(n+1)/2, then we put a1,(n+1)/2 =
am,(n+1)/2 = r1 and set the remaining entries in rows 1 and m equal to zero. Then,
adjusting the sum of column (n + 1)/2, we are left to construct a centrosymmetric
(m − 2) × nmatrix with palindromic row and column sum vectors the sum of whose
entries are equal. If 2r1 > s(n+1)/2, then we set a1,(n+1)/2 = am,(n+1)/2 = s(n+1)/2

2 , and
set the remaining entries in column (n + 1)/2 equal to zero. If needed, we next
consider row 2 and continue until column (n + 1)/2 is specified. We are then left to
construct a centrosymmetric m × (n − 1) matrix with palindromic row and column
sum vectors the sum of whose entries are equal.

If m is odd and n is even, we proceed in a similar way.
Finally, if m and n are both even, then we proceed as in the transportation matrix

algorithm with additionally setting an+1−i,n+1− j = ai j , and adjusting two row or two
column sums as needed. �

Example 3 Let R = (2, 4, 5, 4, 2) and S = (5, 2, 3, 2, 5). Then one way to carry out
the above procedure to obtain a matrix in C(R, S) is the following:
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⎡

⎢
⎢
⎢
⎢
⎣

0
0
3
0
0

⎤

⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎣

0
0

1 0 3 0 1
0
0

⎤

⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎣

2 0 0 0 0
0

1 0 3 0 1
0

2 0 0 0 2

⎤

⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎣

2 0 0 0 2
2 0 0
1 0 3 0 1
0 0 2
0 0 0 0 2

⎤

⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎣

2 0 0 0 0
2 2 0 0 0
1 0 3 0 1
0 0 0 2 2
0 0 0 0 2

⎤

⎥
⎥
⎥
⎥
⎦

.

�

We now consider the possibility of the existence of an m × n (0, 1)-matrix A =
[ai j ] in C(R, S). Let C(0,1)(R, S) denote the set of (0, 1)-matrices in C(R, S). Then

C(0,1)(R, S) = C(R, S) ∩ A(R, S).

Hence, necessary conditions for the nonemptiness of C(0,1)(R, S) are that both
C(R, S) and A(R, S) are nonempty. For C(R, S) �= ∅, conditions (2) and (3) must
hold and hence R and S must be palindromic with the same sum of entries. Thus if
A = [ai j ] ∈ C(0,1)(R, S) and m and n are both odd, then r(m+1)/2 and s(n+1)/2 have
the same parity, and a(m+1)/2,(n+1)/2 = 1 if this parity is odd and a(m+1)/2,(n+1)/2 = 0
if this parity is even.

Before showing C(R, S) �= ∅ and A(R, S) �= ∅ are also sufficient for the class
C(0,1)(R, S) to be nonempty, we consider a property of this class analogous to a basic
property of A(R, S). This property of A(R, S) is the following.

Let A = [ai j ] ∈ A(R, S). Let i, j, k, l be indices where i < j and k < l such that
the 2 × 2 submatrix of A determined by rows i and j and columns k and l is

A[i, j |k, l] =
k l

i 1 0
j 0 1

. (4)

Replacing this 2 × 2 submatrix equal to I2 with

L2 =
[
0 1
1 0

]

gives another matrix in C(0,1)(R, S). Similarly, replacing an L2 with an I2 in a matrix
in A(R, S) always gives another matrix in A(R, S). Either of these replacements is
called an interchange. It is a basic fact (see e.g. [4], pp. 52–57) that any matrix in
A(R, S) can transformed into any other by a sequence of interchanges.

Now suppose that A is also centrosymmetric, Then if (4) holds in A, we also have
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A[n + 1 − j, n + 1 − i |n + 1 − l, n + 1 − k] =
n + 1 − l n + 1 − k

n + 1 − j 1 0
n + 1 − i 0 1

.

Replacing each of these 2 × 2 submatrices equal to I2 with

L2 =
[
0 1
1 0

]

gives another matrix in C(0,1)(R, S). We call this pair of substitutions and the one
going in the reverse direction (so two submatrices equal to L2 are replaced with
matrices equal to I2) a centrosymmetric double-interchange. Note that if i + j =
n + 1 and k + l = n + 1, only one 2 × 2 submatrix is involved in a centrosymmetric
double-interchange.

Lemma 4 Assume that at least one ofm and n is odd and A = [ai j ] ∈ C(0,1)(R, S) �=
∅. Then by a sequence of centrosymmetric double-interchanges we can obtain a
matrix C = [ci j ] ∈ C(0,1)(R, S) such that, except for c(m+1)/2,(n+1)/2 in the case that
both m and n are odd, the 1s in row (m + 1)/2 if m is odd occur in the positions
corresponding to the largest column sums, and the 1s in column (n + 1)/2 if n is
odd occur in the positions corresponding to the largest row sums.

Proof This lemma follows easily using centrosymmetric double-interchanges. First,
if m and n are both odd, then a(m+1)/2,(n+1)/2 equals 1 if r(m+1)/2 and s(n+1)/2 have
odd parity, and equals 0 if they have even parity. If there are two columns k and
l with 1 ≤ k, l ≤ (n + 1)/2 such that sk < sl but a(m+1)/2,k = 1 and a(m+1)/2,l = 0,
then for some i we must have aik = 0 and ail = 1. Then there is a centrosymmetric
double-interchange that replaces a(m+1)/2,k with 0 and a(m+1)/2,l with 1.A similar
argument works for rows. It follows that by centrosymmetric double-interchanges
we can arrive at C with the desired properties. �

Lemma 5 Let A and B be any twomatrices inC(0,1)(R, S). Then there is a sequence
of centrosymmetric double-interchanges which transforms A into B with all inter-
mediate matrices in C(0,1)(R, S).

Proof We may assume that both A = [ai j ] and B = [bi j ] have the properties of C
specified in Lemma 4. By deleting row (m + 1)/2 ifm is odd and column (n + 1)/2
if n is odd, we may assume that both m and n are even. By permutations of rows
and of columns in a way that preserves centrosymmetry, we may also assume that
r1 ≥ r2 ≥ · · · ≥ rm/2 and that s1 ≥ s2 ≥ · · · ≥ sn/2. Consider columns 1 and n of A,
and suppose they differ from columns 1 and n of B, respectively. Then there exists k
and l with k �= l such that akn = 1 and aln = 0, and bkn = 0 and bln = 1 (or the other
way around). Suppose there did not exist a p such that either akp = 0 and alp = 1,
or bkp = 1 and blp = 0. Since A and B have the same row sum vector R, from A
we see that rk > rl , and from B we see that rk < rl , a contradiction. Without loss
of generality, assume that akp = 0 and alp = 1 for some p. Then a centrosymmetric
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double-interchange applied to A results in amatrixC whose column n (and column1)
has more in common with the corresponding columns of B. Replacing A with C and
proceeding recursively, we see that there is a sequence of centrosymmetric double-
interchanges applied to A and a sequence of centrosymmetric double-interchanges
applied to B such that the resultingmatrices A′ and B ′ are inC(0,1)(R, S) and their cor-
responding columns n and corresponding columns 1 agree. Proceeding recursively,
we see that there is a sequence of centrosymmetric double-interchanges applied to A
and a sequence of centrosymmetric double-interchanges applied to B which result
in the same matrix. Since centrosymmetric double-interchanges are reversible, this
completes the proof. �

Since by Lemma 4, if at least one ofm and n is odd, we can reduce the nonempti-
ness ofC(0,1)(R, S) to the casewhere bothm and n are even, we now assume that both
m and n are even. By Theorem 2, C(R, S) �= ∅ if and only if (2) and (3) are satisfied.
Necessary and sufficient conditions for A(R, S) �= ∅ are given by the Gale-Ryser
theorem (see e.g. [4]). Assuming without loss of generality that the monotonicity
conditions r1 ≥ r2 ≥ · · · ≥ rm/2 and s1 ≥ s2 ≥ · · · ≥ sn/2 hold, the Gale-Ryser con-
ditions applied to the monotone rearrangements of R and S, that is, to

(r1, r1, r2, r2, . . . , rm/2, rm/2) and (s1, s1, s2, s2, . . . , sn/2, sn/2)

reduce to
k∑

j=1

s j ≤
k∑

j=1

r∗
j ( j = 1, 2, . . . , n/2), (5)

with equality for k = n/2. Here R̃∗ = (r∗
1 , r

∗
2 , . . . , r

∗
m/2) is the conjugate of R̃ =

(r1, r2, . . . , rm/2).
We then have the following theorem.

Theorem 6 Let m and n be even. The class C(0,1)(R, S) is nonempty if and only
if both of the classes C(R, S) and A(R, S) are nonempty, thus if and only if the
conditions (2), (3), and (5) hold.

Proof If C(0,1)(R, S) is nonempty, then clearly C(R, S) and A(R, S) are nonempty,
and (2), (3), and (1) hold.

Now assume that (2), (3), and (5) hold. We prove the existence (along with an
algorithm for construction) of a matrix in C(0,1)(R, S) by modifying the Gale-Ryser
algorithm to construct a matrix inA(R, S) (again see [4]), and thus we do not make
explicit use of (1). In theGale-Ryser algorithm, the rowand column sums are assumed
to be monotone, but this is just for ease of description to establish that the algorithm
produces a matrix in A(R, S) or that at least one of the Gale-Ryser conditions fails.
The Gale-Ryser algorithm is recursive and proceeds as follows.



Centrosymmetric, and Symmetric and Hankel-Symmetric Matrices 25

(i) Choose a column with the smallest prescribed column sum.
(ii) Put the prescribed number of 1s in that column in those rowswith the largest row

sum (there may be ties in which case the row can be chosen arbitrarily among
those rows with the same sum), and put 0s in all other positions of column n.

(iii) Adjust the prescribed row sums and proceed recursively with a column with
the next smallest sum.

Since R and S are palindromic, we have that

R = (r1, r2, . . . , r2, r1) and S = (s1, s2, . . . , s2, s1).

By reordering the first half of the entries of R (resp., S) with the corresponding
reordering of the second half of the entries, as above we assume that

r1 ≥ r2 ≥ · · · ≥ r�n/2� and s1 ≤ s2 ≤ · · · ≤ s�n/2�. (6)

We now adjust the Gale-Ryser algorithm in the case that R and S are palindromic,
stayingwithin the constraints of the algorithm, in order to produce a centrosymmetric
matrix.

Let c0, c1, c2, . . . , ck where c0 = 0 and ck = n/2 be defined by

r1 = · · · = rc1 > rc1+1 = · · · = rc1+c2 > · · · > rc1+···+ck−1+1 = · · · = rn/2.

Let s1 satisfy 2(c0 + c1 + · · · + cp) ≤ s1 < 2(c0 + c1 + · · · + cp + cp+1). In col-
umn 1 we put 1 s in rows {1, 2, . . . , c1 + · · · + cp} and in rows {n + 1 − 1, n + 1 −
2, . . . , n + 1 − (c1 + · · · + cp)}.Wealsoput 1 s in rows c1 + · · · + cp + 1, . . . , c1 +
· · · + cp+1, n + 1 − c1, · · · , n + 1 − cp+1 in the order listed until a total of s1 1s have
been placed in column 1. This is in agreement with a possible way to carry out the
Gale-Ryser algorithm to produce a matrix in A(R, S). Adjusting the needed row
sums as a result of these 1s in column 1, we see that if we rotate this column 1 by
180◦ and take it as column n, then this is also a next possible step in the Gale-Ryser
algorithm. Adjusting the needed row sums again, we see that they form a palin-
dromic sequence. We now delete columns 1 and n, and proceed recursively. In order
to keep the assumed monotonicty conditions on row and column sums, we may have
to reorder the rows keeping as we do so, the palindromic property. We conclude
that this way of carrying out the Gale-Ryser algorithm produces a centrosymmetric
(0, 1)-matrix with row sum vector R and column sum vector S. �

Example 7 Let R = (4, 4, 3, 3, 3, 3, 4, 4) and S = (5, 3, 3, 3, 3, 3, 3, 5). Then the
algorithm in the proof of Theorem 6 produces the followingmatrix, with the resulting
rowsumvectors after eachpair of steps, including the initial row sumvector, indicated
on the right.
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1 1 1 1 4 2 1 1 0
1 1 1 1 4 2 2 1 0
1 1 1 3 2 2 0 0
1 1 1 3 3 1 1 0
1 1 1 3 3 1 1 0
1 1 1 3 2 2 0 0

1 1 1 1 4 2 2 1 0
1 1 1 1 4 2 1 1 0

�

We know that a centrosymmetric matrix need not be symmetric or Hankel-
symmetric. So Theorem 6 does not directly address the question of the existence of a
symmetric and Hankel-symmetric matrix with a specified row sum vector (which by
symmetry equals its column sum vector). The existence of a symmetric (or Hankel-
symmetric) nonnegative integral matrix with a prescribed row sum vector follows
from the theorem of Erdös and Gallai (the (0, 1)-case with all zeros on the main
diagonal) and its generalizations (see again [4]). We show using a technique of Fulk-
erson, Hoffman, and McAndrew (see e.g. [3], pp. 179–182) that the existence of a
symmetric and Hankel symmetric (0, 1) matrix (so centrosymmetric) can be gotten
from Theorem 6. The row and column sum vector of such a matrix are equal to the
same palindromic vector.

Wenowmake use of the digraph associatedwith a (0, 1)-matrix. Let� be a digraph
with vertices {1, 2, . . . , n}. The outdegree sequence (resp., indegree sequence) of
� records the number of edges leaving (resp., entering) each of its vertices. The
adjacency matrix of � is the n × n (0, 1)-matrix A = [ai j ]where ai j = 1 if and only
if there is an edge from vertex i to vertex j . We write � = D(A) to indicate that the
digraph associatedwith A equals�. A digraph is a centrosymmetric digraph provided
after possible reordering of its vertices its adjacency matrix is centrosymmetric.

Recall that A(R, R) denotes the class of all (0, 1)-matrices with both row and
column sum vectors equal to R.

Theorem 8 Let R = (r1, r2, . . . , rn) be a vector of nonnegative integers.

(i) If the class A(R, R) contains a centrosymmetric matrix, then it contains a
Hankel-symmetric, symmetric matrix.

(ii) Necessary and sufficient conditions thatA(R, R) contains a Hankel-symmetric,
symmetric matrix are that R is palindromic and the Gale-Ryser conditions (1)
are satisfied.

Proof The assertion (ii) follows from Theorem 6 and assertion (i).
To prove assertion (i), let A = [ai j ] be a centrosymmetric matrix inA(R, R)with

digraph D(A). The indegree and outdegree sequences of D(A) are both equal to R.
If A is symmetric, then by Proposition 1, A is also Hankel-symmetric. Now assume
that A is not symmetric. Let A∗ = [a∗

i j ] be the matrix obtained from A by replac-
ing all pairs of symmetrically opposite 1s (including 1s on the main diagonal) with
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zeros. The matrix A∗ is also centrosymmetric; moreover, for each i , a∗
i,n+1−i = 0, for

otherwise we would have that a∗
i,n+1−i = 1 and, by centrosymmetry, a∗

n+1−i,i = 1, a
contradiction. The digraph D(A∗) has vertex set {1, 2, . . . , n} with an edge i → j
from vertex i to vertex j if and only if ai j = 1 but a ji = 0. Since A is centrosym-
metric, i → j is an edge of D(A∗) if and only if n + 1 − i → n + 1 − j is also an
edge. Since R is both the indegree and outdegree sequence of D(A), the indegree of
each vertex of D(A∗) also equals its outdegree. Since A is not symmetric, D(A∗)
has at least one edge. These facts imply that D(A∗) has a simple cycle of distinct
vertices

γ : i1 → i2 → · · · → ik → i1

for some k ≥ 3. Since A is palindromic,

γ† : n + 1 − i1 → n + 1 − i2 → · · · → n + 1 − ik → n + 1 − i1

is also a cycle of D(A∗), which we call the palindromic mate of γ. No edge of γ
can also be an edge of γ† for that would imply that a∗

i,n+1−i = a∗
n+1−i,i = 1 for some

i . a contradiction. It follows that the edges of D(A∗) can be partitioned into cycles
and these cycles come in palindromic pairs of cycles without common edges, or are
self-palindromic cycles (that is, they are cycles equal to their palindromic mates).

Consider a palindromic pair γ and γ† of these cycles. If the length of γ and γ† is
even, we delete the first, third, fifth, ... edges of these cycles and add the reverse of
the second, fourth, sixth, ... edges. If the length of γ and γ† is odd, then there are two
possibilities. The first possibility is that some vertex a of γ (and the corresponding
vertex n + 1 − a of γ†) does not contain a loop in D(A) (D(A∗) does not contain any
loops since A∗ has only zeros on its main diagonal). We then put a loop at vertices a
and n + 1 − a and delete every other edge of γ starting with an edge meeting vertex
a, and similarly delete every other edge of γ† starting with the corresponding edge
at vertex n + 1 − a; and we also insert the reverse of the remaining edges of γ and
γ†. If every vertex of γ has a loop at it in D(A) (and then so does every vertex of γ†),
we remove the loop at some vertex a of γ (and remove the loop at the corresponding
vertex n + 1 − a of γ†), insert the reverse of every other edge of γ starting with an
edge at vertex a, and similarly insert the reverse of every other edge of γ† starting
with the corresponding edge at vertex n + 1 − a, and delete all other edges of γ
and γ†. If γ = γ†, then we follow a similar procedure as above but we have only to
consider γ. In the case of n even, a self-palindromic cycle has even length and so we
can follow the procedure above for pairs of cycles of even length. In case of n odd,
a self-palindromic cycle may have even or odd length; if even length, we follow the
above procedure; if odd length, then (n + 1)/2 must be a vertex of the cycle, and
we follow the above procedure taking (n + 1)/2 as the first vertex of the cycle. The
resulting digraph has a centrosymmetric adjacency matrix with fewer nonsymmetric
arcs.

Repeating for each pair of palindromic cycles in the partition of the edges of
D(A∗), we obtain a digraph whose adjacency matrix B is symmetric and centrosym-
metric. Putting the symmetric 1 s into B that were deleted from A to get A∗, we
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obtain a symmetric, centrosymmetric (0, 1)-matrix with row sum vector R, and
hence a Hankel-symmetric, symmetric matrix in A(R, R). �

Example 9 Consider the 11 × 11 centrosymmetric (0, 1)-matrix with palindromic
R = S = (1, 3, 3, 2, 1, 2, 1, 2, 3, 3, 1):

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1 1 1
1 1 1

1 1
1

1 1
1
1 1

1 1 1
1 1 1

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The matrix A∗ is centrosymmetric and is given by

A∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1

1
1
1

1 1
1
1

1
1

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The decomposition of D(A∗) into palindromic pairs of cycles is

1 → 6 → 7 → 1, 11 → 6 → 5 → 11 and 2 → 9 → 8 → 2, 10 → 3 → 4 → 10,

and this corresponds to the following the decomposition of A∗:
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A∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

1
1 1

1

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1

1

1
1

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Replacing A∗ with
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

1
1 1
1

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 1
1

1

1
1

1 1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(the −1 corresponds to a loop that is deleted but is not part of the cycle), we then
get the centrosymmetric, symmetric (0, 1)-matrix with row and column sum vector
(1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1):

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1 1

1 1
1

1
1 1
1

1
1 1 1
1 1 1

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

�
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Let H(R) denote the class of all Hankel-symmetric, symmetric (0, 1)-matrices
with row and column sum vectors equal to R = (r1, r2, . . . , r2, r1). Theorem 8 con-
tains necessary and sufficient conditions on R in order that H(R) �= ∅. We now
show how to generate all matrices in a nonempty class H(R) from any one matrix
in H(R). This is the analogue of Lemma 5 for H(R). According to Corollary 7.2.4
in [4], any two symmetric (0, 1)-matrices with row and column sum vector R can be
obtained from one another by a sequence of symmetric interchanges. These symmet-
ric interchanges are of three types and transform a 2 × 2, 3 × 3, and 4 × 4 principal
submatrix into another as shown below:

(i)

[
1 0
0 1

]

↔
[
0 1
1 0

]

.

(ii)

⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦ ↔
⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦.

(iii)

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤

⎥
⎥
⎦ ↔

⎡

⎢
⎢
⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤

⎥
⎥
⎦.

In terms of the graph whose adjacency matrix is a symmetric (0, 1)-matrix, these
transformations are:

(i) Interchange (a) a configuration consisting of two distinct vertices u and v with
a loop at u and a loop at v with (b) the configuration consisting of an edge {u, v}
joining u and v.

(ii) Interchange (a) a configuration consisting of an edge joining distinct vertices u
and v and a loop at a third vertex w with (b) the configuration consisting of an
edge joining u and w and a loop at v.

(iii) Interchange (a) a configuration consisting of four distinct vertices u, v, w, z
and an edge joining u and v and one joining w and z with (b) the configuration
consisting of an edge joining u and w and one joining v and z.

Every symmetric interchange has a corresponding complementary interchange
with each index i of the corresponding principal submatrix (so a vertex of the asso-
ciated graph) replaced by the complementary index n + 1 − i (the complementary
vertex of the associated graph).

We can use these symmetric interchanges to transform each matrix in H(R)

to any other matrix in H(R). First we note that if n is odd, then all matrices in
H(R) agree in position (n + 1)/2, (n + 1)/2) and hence we never have to con-
sider loops at vertex (n + 1)/2. Whenever a symmetric interchange is required, we
also perform the corresponding complementary symmetric interchange, unless the
symmetric interchange is self-complementary in which case only one symmetric
interchange is performed. We call the simultaneous application of both of these a
symmetric double-interchange. This then gives the following result.
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Theorem 10 Let A and B be any two matrices in H(R). Then there is a sequence
of symmetric double-interchanges which transforms A into B with all intermediate
matrices in H(R).

3 Concluding Remarks

We have investigated two natural subclasses, namely the centrosymmetric subclass
and the symmetric, Hankel-symmetric subclass, of several well-known classes of
matrices. We have presented existence theorems, construction algorithms, and a
means to generate all matrices in a subclass starting from any one matrix contained
in it. Combinatorial questions concerning the number (or a good and simple upper
bounds) of matrices in these subclasses are of interest but presumably very difficult.
Formulas for the number of matrices in nonempty classes A(R, S) and TZ (R, S)

are available in terms of the Kostka numbers for the number of Young tableaux of
given shape and size (see [4], p. 147). It may be possible to express the number
of centrosymmetric, or symmetric and Hankel-symmetric, matrices in these classes
using Kostka numbers. There is also a (basically symbolic) generating polynomial
in m + n variables for the number of matrices in a class A(R, S). It would be of
interest to have useful generating polynomials for any of the classes and subclasses
considered in this paper.
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Partially Independent Random Variables

Costanza Catalano and Alberto Gandolfi

Abstract We study collections of random variables characterized by independence
requirements assigned for only a fraction of the joint values of the variables. Such
classes of random variables generalize various known models, like one-dependent
processes. We determine existence conditions, showing that existence is decidable,
and then interpret such conditions in terms ofDutchBooks. As an example, a new low
density based independence model is being developed, exhibiting a phase transition
in the vacuum probability.
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ditions · Dutch book · Decidability
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1 Introduction

Independence is one of the key concepts in probability theory, and yet its exploita-
tion has been somewhat limited; independent random variables, for instance, have
been mainly considered when their existence poses no difficulty, either by consider-
ing collection of independent random variables, or adding independent variables to
models whose existence has been already ascertained. In this paper we consider col-
lections of random variables with mixed prescribed distributions and independence
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requirements, in such a way that the existence or nonexistence of any such collection
needs to be carefully determined depending on the details. We call such collections
partially independent random variables.

Although we do not directly develop applications here, the possibility to analyze
existence conditions and basic properties of partially independent random variables
offers the availability of a new range of stochastic models which could be success-
fully applied to various contexts. The range of these models could parallel that of
Markov random fields [6, 11] or Gibbs distributions [14]; in fact, Markov random
fields are determined purely by assumptions about the conditional probabilities, and
partially independent random variables are determined purely by assumptions on
independence, both with additional assignments of unconditional probabilities.

One instance of the partially independent random variables has already been con-
sidered in the literature, namely the one-dependent (also called one-independent)
processes (see, for instance, [12] or [18]). In fact, such case stems from a very
important application [16] and constitute one instance of the so called probabilistic
method [2]. The one-dependent case has then been connected to statistical mechan-
ics in [17]. Our results here are a wide generalization of those for one-dependent
processes.

In the first part of the paper we study the finite case, in which n random variables
are considered, eachwith finite range. For each possible subcollection of the variables
and each possible joint value of the variables in the subcollection, we either require
independence (according to some further subdivision of the subcollection) or an
assigned probability. For an assigned selection of subcollections and of the possible
joint values, it is not at all obvious whether the model exists; detailed conditions are
in fact needed for it to be the case or to verify nonexistence. We determine necessary
and sufficient conditions for such collections of random variables to exist or not;
we actually show that, assuming a technical and natural assumption, the problem is
decidable, in the sense that there exists a finite time algorithmwhich allows to decide
if the collection of random variables exists or not; unfortunately, the algorithm is
exponential time, so decidability is, for practical purposes, only a preliminary step.
The existence conditions that we find in the context of partially independent random
variables are a particular case of a general theory about existence of probability
spaces and random variables in [10], in which also decidability is treated in wider
generality. Here, however, we get a self contained andmore explicit characterization,
amenable to a more concrete use in practice.

Examples of partially independent random variables are introduced in Sect. 4,
and then analyzed in some details by means of the existence conditions. The random
variables are taken to be independent as long as few of them are considered. This is a
simple model, named mean field in the physics literature, which nonetheless exploits
some of the power of the definition of partially independent random variables, as
independence is assigned only for some carefully chosen collections of events. We
call this a lowdensity independencemodel, and show that it exhibits a phase transition
in the vacuum probability, i.e. the probability that all the random variables take
the value 0. At the time of printing, we learned that this concepts appears in the
literature as K -wise independence, see [4], for instance, in which there are results
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about the above mentioned phase transition, and [13] for a survey of applications in
derandomization of computer algorithms.

Next, we consider the case of countably many random variables, each with finite
range. We show that the conditions found in the finite case, repeated for all finite
subsets of the countable set of indices, form an equivalent set of conditions for the
existence of countably many partially independent random variables.

In the next part, following [10], we develop a dual interpretation of the existence
problem: if there are no random variables satisfying the independence and distri-
butional requirements then there exists a Dutch Book against the believer of such
contradictory assumptions. A Dutch Book [19] is a rigging strategy that an external
player might devise to rig the believer of the above unsatisfiable requirements; the
strategy consists of a game in which the believer computes that (s)he has a nonneg-
ative average gain, while the game result is a loss for each possible realization. The
duality between existence of the random variables and Dutch Book is related to De
Finetti’s coherence (see [9] or, in general, [19]), and to the existence of a martingale
measure in arbitrage free markets [15].

2 Partially Independent (p.i.) Random Variables

For j ∈ N let Sj be a finite set and let:

SJ =
∏

j∈J

S j ∀ J ⊂ N, J �= ∅ (1)

S =
⋃

J⊆N

|J |<∞

SJ . (2)

If it exists, Sj is the range of the random variable X j . In general, if J �= ∅ then we
denote by xJ an element of SJ , while, given I ⊆ J , we let xJ

I indicate the components
of the vector xJ with indices in I . If I, J ⊂ N with I ∩ J = ∅ then z = (xJ , yI ) is
the vector in SI∪J such that zJ = xJ and zI = yI . We also let [n] = {1, . . . , n} for
every n ∈ N.

Consider next:

− subsets Ω,Ω ′ ⊆ S such that Ω ∩ Ω ′ = ∅ (3a)

− values {πx}x∈Ω ′ in [0, 1] (3b)

− a function φ defined on Ω such that ∀ xJ ∈ Ω,

φ(xJ ) = {I1, . . . , ImJ }, (3c)

with Ii � J and Ii �= ∅ ∀ i = 1, . . . ,mJ = mJ (xJ ).
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If |J | ≤ 1, then xJ cannot belong to Ω as it is not possible to assign subsets
{I1, . . . , ImJ } as in (3c); xJ can then only possibly belong to Ω ′.

Definition 1 (π-family and independence function) Given Ω , Ω ′, {πx}x∈Ω ′ and φ
as in (3a–3c), the family {πx}x∈Ω ′ is called π-family and φ is called independence
function.

Given Ω , Ω ′, a π-family and an independence function φ, we want to define par-
tially independent random variables as a collection of random variables with given
properties.

Definition 2 (Partially independent random variables) Given Sj , j ∈ N, Ω , Ω ′, a
π-family and an independence function φ, partially independent random variables,
also denoted by p.i. randomvariables, are any collection of randomvariables {X j } j∈N

such that
⎧
⎪⎨

⎪⎩

X j S j ∀ j ∈ N

P(XJ = xJ ) = πxJ ∀ xJ ∈ Ω ′

P(XJ = xJ ) = P
(
XIi = xJ

Ii

)
P(XJ\Ii = xJ

J\Ii ) ∀xJ ∈ Ω,∀i = 1, . . . ,mJ

(4)

where P(XJ = xJ ) indicates P(X j = xJ
j , j ∈ J ).

Ω e Ω ′ are the sets of joint values of the random variables for which there is a
requirement: in particular, for the values inΩ ′ we require a specific value of the joint
distribution, while Ω indicates the joint values for which there is some factorization
of the probabilities. The independence function φ indicates how the subcollection
of random variables can be split up to factorize the probabilities; for this there is a
compatibility condition, namely that

P
(
XIi = xJ

Ii

)
P(XJ\Ii = xJ

J\Ii ) = P(XI j = xJ
I j )P(XJ\I j = xJ

J\I j )

for each i, j ∈ {1, . . . ,mJ }, that is automatically satisfied in (4) as they are both
equal to P(XJ =xJ ).

Notice that we have taken conditions which are far less restrictive than assuming
that the factorization takes place on all realizations of a given subcollection (in
which case φ in (3c) would depend only on J ), or than assuming that the probability
P(XJ = xJ ) in (4) fully factorizes (in which case it would equal

∏mJ
i=1 P

(
XIi = xJ

Ii

)

where φ(xJ ) is a partition of J ). These more restricted assumptions are special cases
of the p.i. random variables.

The first question raised by the definitions above is whether, given the π’s, Ω,Ω ′
and φ, there exists at least one collection of random variables satisfying the require-
ments (4) based on the given elements. If at least one such collection of random
variables exists, then the requirements are not contradictory; one can then use the
assumptions as a model and draw consequences from them. If no such collection of
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randomvariables exists, then the requirements are contradictory, and no consequence
can be reasonably drawn; it is actually the case that a kind of dual consequence can
be drawn, namely a Dutch Book, as seen in Sect. 6 below.

3 Finitely Many p.i. Random Variables

We consider now the case of finitely many variables.

3.1 Existence Conditions

Let n ∈ N be fixed. We are making a technical assumption, namely that we con-
sider only values of the random variables which are always different from a fixed
assignment of values y[n] ∈ S[n]; assume thus that

Ω ∪ Ω ′ =
⋃

J⊆[n]
J �=∅

{xJ ∈ SJ : xJ
j �= y[n]

j ∀ j ∈ J } ∪ {x∅}, (5)

where it is convenient to take x∅ = S[n]; we always assume that x∅ ∈ Ω ′.
With this assumption, we can further assume that, after a possible relabelling, y[n]

is identically 0; we then have that 0 ∈ Sj for each j ∈ [n] and y[n] ≡ 0. Let us denote

Ŝ j = Sj \ {0} ∀ j ∈ [n] (6a)

Ŝ J =
∏

j∈J

Ŝ j ∀ J ⊆ [n] (6b)

Ŝ =
⋃

J⊆[n]
Ŝ J (6c)

so that Ω ∪ Ω ′ = Ŝ ∪ S[n].
The configuration y[n] ≡ 0 can be considered the vacuum state. Its importance in

the binary case is underlined by several results (see [16, 18]). It can also be considered
a desirable state, as in [8].

We consider next a π-family {πx}x∈Ω ′ such that πx∅ = 1 and an independence
function φ. It follows from (5) that

xJ ∈ Ω ∪ Ω ′ ⇒ xJ
J ′ ∈ Ω ∪ Ω ′ ∀ J ′ ⊆ J.

For every xJ ∈ Ω , it is possible to continue decomposing P(XJ = xJ ) using the
independence function φ and the rules in (4) till it is a product of π’s. In fact,
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the independence function indicates how the probability of a joint assignment xJ is
expressed as a product of probabilities of assignments in subsets of J ; these are either
themselves decomposed, or expressed in terms of π’s, as they are always in Ω ∪ Ω ′.
More formally, for every xJ ∈ Ω it is possible to find m ′

J (x
J ) = m ′

J partitions of J
(in generalm ′

J ≤ mJ ), indicated byX J
i = {Ji,1, . . . , Ji,l} for i = 1, . . . ,m ′

J , where
l = l(i, xJ ) is the number of elements of the partitionX J

i , such that the last condition
in (4) can be expressed as:

P(XJ = xJ ) =
l∏

k=1

P
(
XJi,k = xJ

Ji,k

)
=

l∏

k=1

πxJ
Ji,k

(7)

for every i = 1, . . . ,m ′
J . Clearly, the set of partitions {X J

i }i∈[m ′
J ] depends on the

whole of xJ and not only on J : the dependency is not explicitly indicated to simplify
the notation. If for some J ⊆ [n] there exist i, j ∈ [m ′

J ] such that
∏l

k=1 πxJ
Ji,k

�=
∏l ′

k=1 πxJ
J j,k

, then clearly no p.i. random variables can satisfy (4). If

l∏

k=1

πxJ
Ji,k

=
l ′∏

k=1

πxJ
J j,k

∀ i, j ∈ [m ′
J ], ∀ J ⊆ [n] (8)

holds we say that the independence function φ is compatible with the π−family
{πx}x∈Ω ′ .

Compatibility between the independence function and the π-family allows to fix
one partitionX J = {J1, . . . , Jl} for every xJ ∈ Ω such that

P(XJ = xJ ) =
l∏

k=1

πxJ
Jk

and thus define a function f : Ω ∪ Ω ′ → [0, 1] such that:

f (xJ ) =

⎧
⎪⎨

⎪⎩

πxJ if xJ ∈ Ω ′
l∏

k=1
πxJ

Jk
if xJ ∈ Ω, with {J1, . . . , Jl} = X J .

(9)

We can then rewrite (4) as

{
X j takes value in Sj ∀ j ∈ [n]
P(XJ = xJ ) = f (xJ ) ∀ xJ ∈ Ω ∪ Ω ′; (10)

we further assume that
πx∅ = 1. (11)
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The following theorem expresses existence conditions. Notice that Eq. (12) below
are linear in the probabilities: a priori they were not so, as we are talking about
independence; they are not linear in terms of the parameters {πx}x∈Ω ′ , though.

Theorem 1 LetΩ andΩ ′ be as in (5), {πx}x∈Ω ′ a π−family satisfying (11) and φ an
independence function compatible with the π-family. Let f be the function defined
in (9).
Then there exist p.i. random variablesX = {X1, . . . , Xn} satisfying (4) if and only if

∑

J⊆I⊆[n]
(−1)|I\J | ∑

xI∈Ŝ I :
xIJ=ẑJ

f (xI ) ≥ 0 ∀ ẑJ ∈ Ŝ J ,∀ J ⊆ [n]. (12)

Proof If X = {X1, . . . , Xn} are p.i. random variables satisfying (4), then for some
probability measure P (10) holds. We now show that, as P is a probability measure,

∑

J⊆I⊆[n]
(−1)|I\J | ∑

xI∈Ŝ I

xIJ=ẑJ

f (xI ) =
∑

J⊆I⊆[n]
(−1)|I\J | ∑

xI∈Ŝ I

xIJ=ẑJ

P(XI = xI )

=
∑

I⊆J c

(−1)|I |
∑

xI∈Ŝ I

P(XJ = ẑJ ,XI = xI )

= P(XJ = ẑJ ,XJ c = 0) ≥ 0, (13)

holds, where J c indicates [n] \ J and P(X∅ = x∅) = 1. We need to verify the last
equality, and we proceed by induction on |J c|. If |J c| = 1 then J c = {i} for some
i ∈ [n], and the statement follows by the additivity property of probability measures.
Suppose next that the last equality of (13) holds for every J c : |J c| ≤ m − 1, and let
ẑJ ∈ Ŝ J ; by inclusion-exclusion and induction hypothesis, we have then

P(XJ = ẑJ ,XJ c = 0)

=P(XJ = ẑJ ) −
∑

xJ
c∈SJc

xJ
c �=0

P(XJ = ẑJ ,XJ c = xJ
c
)

=P(XJ = ẑJ ) −
⎛

⎜
⎝

∑

φ�=I�J c

∑

xI∈Ŝ I
P(XJ c\I = 0,XI = xI ,XJ = ẑJ )

⎞

⎟
⎠

−
∑

xJc∈Ŝ Jc
P(XJ c = xJ

c
,XJ = ẑJ )
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= P(XJ = zJ )

−
∑

φ�=I�J c

∑

I ′⊆J c\I
(−1)|I ′| ∑

xI
′ ∈Ŝ I ′

xI∈Ŝ I

P(XI ′ = xI
′
,XI = xI ,XJ = ẑJ )

︸ ︷︷ ︸
(a)

−
∑

xJc∈Ŝ Jc
P(XJ = ẑJ ,XJ c = xJ

c
);

︸ ︷︷ ︸
(b)

we have to show that this equals

P(XJ = ẑJ ) +
∑

I⊆J c
I �=∅

(−1)|I |
∑

xI∈Ŝ I

P(XI = xI ,XJ = ẑJ ). (14)

For every Λ ⊆ J c,Λ �= ∅ and every xΛ ∈ ŜΛ we sum the coefficients in (a) and (b)
of P(XΛ = xΛ,XJ = ẑJ ):

• If Λ = J c then in (a) we have I ′ ∪ I = J c, thus I ′ = J c \ I , and the coefficient
is
∑|J c |−1

s=1

(|J c |
s

)
(−1)s = −1 − (−1)|J c |; in (b), the coefficient is 1. Altogether we

get −(−1 − (−1)|J |) − 1 = (−1)|J | as in (14).
• If Λ ⊂ J then in (a) we have I ′ ∪ I = Λ, so I ′ = Λ \ I , and the coefficient
becomes

∑|Λ|−1
s=0

(|Λ|
s

)
(−1)s = −(−1)|Λ|, while in (b) the coefficient is 0. Alto-

gether we get −(−(−1)|Λ|) = (−1)|Λ| as in (14).

To show the other direction, it is enough to find a collection of random variables
satisfying (10). Let X̄ j : S[n] → Sj with X̄ j (ω) = ω j . Let ¯A = P(S[n]) be the σ-
algebra of all subsets of S[n]. For ω ∈ S[n], let 0ω = {i : ωi = 0}, and 1ω = 0cω . Let

P̄(ω) =
∑

I :1ω⊆I⊆[n]
(−1)|I\1ω | ∑

xI∈Ŝ I

xI1ω =ω1ω

f (xI ) = (15)

=
∑

I⊆0ω

(−1)|I |
∑

xI∈Ŝ I

f (ω1ω
, xI )

and then extend P̄ on ¯A by setting, for Ā ⊆ S[n], P̄( Ā) = ∑

ω∈ Ā

P̄(ω). We have that P̄

is nonnegative by (12) and (countably) additive. In particular, if xJ ∈ Ω ∪ Ω ′ then
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P̄(XJ = xJ ) =
∑

ω:ωJ=xJ

P̄(ω)

=
∑

ω:ωJ=xJ

∑

I⊆0ω

(−1)|I |
∑

x̂I∈Ŝ I

f (ω1ω
, x̂I ) (16)

= f (xJ ) +
∑

ω:ωJ=xJ ,1ω �=J

∑

I⊆1ω\J
(−1)|I | f (ω1ω

) = f (xJ )

as
∑

I⊆A(−1)|I | = 0 for any set A.
It remains to be shown that

∑

ω∈S[n]
P(ω) = 1. By the same calculation as in (16)

we have

∑

ω∈Ω̄

P̄(ω) =
∑

ω∈Ω̄

∑

I⊆0ω

(−1)|I |
∑

x̂I∈Ŝ I

f (ω1ω
, x̂I ) = f (x∅) = πx∅ = 1.

��

3.2 Decidability

We summarize the results obtained so far by indicating an algorithm which decides
whether, given a π−family and an independent function φ, there exists a finite col-
lection of random variables satisfying (4).

In general, it is not necessarily the case that Ω,Ω ′ ⊆ Ŝ, and we can allow simply
that Ω,Ω ′ ⊆ S. On the other hand, to make use of the previous results let us still
assume that Ŝ ⊆ Ω ∪ Ω ′. We can then proceed as follows.

1. Verify if φ restricted to Ŝ satisfies (8) with respect to the family {πx}x∈Ŝ and
if πx∅ = 1. If the conditions are not satisfied then no p.i. random variables X
satisfying (4) exist.

2. Define the function f on Ŝ as in (9). If f does not satisfy (12) then no p.i. random
variables X satisfying (4) exist.

3. Use inclusion-exclusion to compute the probability of all other collection of values
in (Ω ∪ Ω ′)\Ŝ from the probabilities of the values in Ŝ. If one of the computed
values does not correspond to the one given in (4) for the random variables X,
which is to say, it does not equal the corresponding value in {πxJ }xJ∈Ω ′\Ŝ or in
φ |Ω\Ŝ , then no p.i. random variables X satisfying (4) exist.

If all the steps above have been satisfied, then we have p.i. random variables X.
Notice that all the three steps above contain a procedure which ends in finite time,

so the problems of existence of p.i. random variables X satisfying (4) is decidable.
Notice also that some of the steps, in particular Step 2., require a number of com-
parisons which depends on the number of subsets of [n], and hence it is exponential
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time. Therefore, the determination of existence of p.i. random variables X satisfying
(4) for a given π−family is a decidable, but exponential time algorithm.

There is an alternative strategy to show decidability which is presented in Sect. 6.

3.3 Partially Independent Events

We consider the case of binary random variables Xi ’s; this is equivalent to that of
considering events Ai , i = 1, . . . , n with the appropriate independence conditions,
which we then call partially independent events. In this case, (12) basically reduces
to the formula of inclusion-exclusion. We write it explicitly, as it is used in a later
example.
Let Si = {0, 1}, Ai = X−1

i ({1}) and denote Ac
i = X−1

i ({0}). Let A1
i = Ai and A0

i =
Ac
i so that for xJ ∈ S we have P(XJ = xJ ) = P(

⋂
j∈J A

xJ
j

j ). Note that in this case
Ω ∪ Ω ′ = {1J : J ⊆ [n]} so that the condition on avoiding y ≡ 0 is satisfied. The
next corollary follows from Theorem 1.

Corollary 1 Let S j = {0, 1} for every j = 1, . . . , n. Let Ω and Ω ′ be as in (5),
{πx}x∈Ω ′ a π−family with the property (11), φ an independence function compatible
with the π-family and f the function defined in (9). Then there exist n events A =
{A1, . . . , An}, in a suitable probability space, satisfying

P

(⋂

j∈J

A j

)

= f (J ) ∀J ⊆ [n] (17)

if and only if ∑

J⊆I⊆[n]
(−1)|I\J | f (I ) ≥ 0 ∀J ⊆ [n]. (18)

3.4 Related Works

Clearly, i.i.d. random variables are p.i. random variables. The next natural example
of p.i. random variables is block factors: consider i.i.d. random variables Y j , j in
some set of indices Λ and for each i ∈ Λ consider a subset Bi ⊆ Λ and a function
fi defined on the range of the joint distribution of the Yi = {Y j }, j ∈ Bi . The block
factor is the collection of random variables Xi = fi (Yi ). Clearly, Xi1 and Xi2 are
independent if Bi1 ∩ Bi2 = ∅. This defines p.i. random variables as follows: let Ω

be the collection of ranges of the joint distribution of the Xi ’s in subsets of Λ of
cardinality at least two and such that for any two indices i1 and i2 in the subset
Bi1 ∩ Bi2 = ∅ holds; let Ω ′ be the collection of ranges of the single variables Xi ,
and πx := P(Xi = x) if x is in the range of Xi . Then the block factor satisfies the
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requirements. Note that in this example, as in the others below, the requirement
of independence of an assignment of probability depends effectively on the set of
indices, and not on the particular value taken by the random variables with indices
in the set: as noted, this is a more restrictive requirement then the general one of p.i.
random variables.

A special case of the block factors is when the indices are vertices of some graph
G = (V, E) and Bi is the set of neighbors of i in G. Our definition of p.i. random
variables matches in this case that of strong dependency graph (see [5, 8]):

Definition 3 Let G = (V, E) be a locally finite graph with V = N and consider a
family of finite valued random variablesX = {Xn}n∈N. We say thatX hasG as strong
dependency graph if for every finite W1,W2 ⊂ V

d(W1,W2) > 1 ⇒ XW1 is independent from XW2

where d(W1,W2) indicates the graph distance betweenW1 andW2, and XW = {Xi :
i ∈ W }.

In this case the random variables are also called one-dependent (or, occasion-
ally, one-independent). Block factors, with the set of neighbors as block, are one-
dependent. It is then natural to wonder if in this case all one-dependent random
variables are obtained from a block factor, but this is not the case (see [1]).

As one-dependent processes (and a fortiori p.i. randomvariables) aremore general
than block factors, one is now interested in inequalities for certain quantities as others
are fixed. For instance, in [12] maximal and minimal correlations of one-dependent
processes with 0–1 variables are computed, as function of the probability of 1, for
stationary p.i. randomvariables. The one-dependent processeswere also originated in
a very important application [16] and connected to model of the so-called hard-core
pair interaction gasses with negative fugacity in statistical mechanics in [17].

See also the literature on K -wise independence, in [4], and [13] for a survey of
applications in derandomization of computer algorithms.

4 Example: Low Density Independence

We present here a class of p.i. random variables which has appeared in the literature
only in the binary case (see [4]).

4.1 Binary Variables

We consider first the binary case: we take then 0–1 valued exchangeable random
variables (expressed in terms of events). For fixed n, k ≤ n and α ∈ [0, 1], we call
low density independent events a collection of events Ai , i = 1, . . . , n such that:
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1. The Ai ’s are exchangeable.
2. Any sub collection with less than or equal to k events is independent.
3. P(Ai ) = α.

Call any such distribution a low density p.i. distribution and denote it by Pn,k,α.
Clearly, the assumptions are always consistent, as jointly independent events satis-
fying 3. do always exist.

Condition (18) can be rewritten as follows. Let βr = P(Ai1 ∩ · · · ∩ Air ) for some
set of distinct indices of cardinality r ; βr does not depend on the selection of indices
by exchangeability. Then, taking |J| = s, (18) becomes

Rn,k,α(s) = αs
(k−s)∨0∑

r=0

(
n − s

r

)

αr (−1)r (19)

+
n−s∑

r=(k−s+1)∨0

(
n − s

r

)

βr+s(−1)r ≥ 0

for s = 0, . . . , n − 1.
Here is an example with only pairwise independence.

Example 1 For any n ∈ N, k = 2,α = 1/(n − 1), let βr = α2 = 1/(n − 1)2 for
r = 3, . . . , n. This is a solution of (19) corresponding to P(Ai ) = 1/(n − 1) and
P(∩r

j=1Ai j ) = 1/(n − 1)2 for r = 2, . . . , n. In fact, (19) becomes

F(s) = αs
2−s∑

r=0

(
n − s

r

)

(−1)rαr + α2
n−s∑

r=(2−s+1)∨0

(
n − s

r

)

(−1)r , (20)

where the first sum appears only if 2 − s ≥ 0. Then we have F(0) = 0 as α =
1/(n − 1), F(1) = α − α2 > 0, and F(s) = 0 for all s ≥ 2.

Notice that in the example, there are only three types of configurations: all Ac
i ’s,

exactly one Ai , or more Ai ’s. At the other extreme, events could always be indepen-
dent, except when there are n of them.

Example 2 For any n ∈ N, k=n−1, α≥1/2, let βn = αn + (1 − α)n . These values
form a solution of (19). For a verification see the proof of Theorem 4.3 below.

Notice that in these examples we have exploited the full potentialities of p.i. random
variables, at least in the binary case, as independence depended upon the entire
configuration.

It is interesting to study the vacuum probability pn,k(α) = inf Pn,k,α(∩n
i=1A

c
i ) as

the infimum ranges over all lowdensity p.i. distributions for given n, k andα.We con-
sider, in analogy to [8] and ensuing literature, whether pn,k(α) > 0 or pn,k(α) = 0.
Notice that Pn,k,α(∩n

i=1A
c
i ) = Rn,k,α(0), so this question amounts to add the condition
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4. Rn,k,α(0) = 0

to 1.–3. and verify that there are no probability distributions satisfying all of the four
conditions together. As there are always some distributions satisfying the first three
conditions, this would imply the strict inequality. We then need to verify that there
are no solutions of

Rn,k,α(0) = 0, Rn,k,α(s) ≥ 0 for s = 1, . . . , n − 1. (21)

The distribution in Example 1 satisfies Rn,k,α(0) = 0, hence pn,2(1/(n − 1)) = 0.
Similarly in Example 2. We now see that there is a phase transition in α.

Theorem 2 For all n, k ≤ n − 1:

(I) If α ≥ 1/2 , then pn,k(α) = 0.
(II) If α < α, where α is the smallest solution in [0, 1] of the polynomial equation:

(1 − α)n + (−1)kαk

(
n

k + 1

)

2F1(1, 1 + k − n, 2 + k,α) (22)

= αk

(
n

k + 1

)

2F1(1, 1 + k − n, 2 + k,−1)

where 2F1 is Gauss hypergeometric function, then pn,k(α) > 0.

Proof Part (I ) is shown by completing the calculation of Example 2. Since n − 1 ≥
k, we can consider the particular distribution of Example 2 in which the probabili-
ties of up to n − 1 events factorize; the only remaining probability which does not
factorize is that of all n events together, which is taken to be βn = αn + (1 − α)n .
We have βn ≥ 0 and βn ≤ αn−1, since α ≥ 1/2, as it should be. For every s,

Rn,k,α(s) = αs
n−s−1∑

r=0

(
n − s

r

)

(−1)rαr + (−1)n−s(αn − (1 − α)n)

= αs
(
(1 − α)n−s + (−1)n−s+1αn−s

)+ (−1)n−s
(
αn − (1 − α)n

)
.

For (n − s) even this is greater or equal than 0 as α ≥ 1 − α. For (n − s) odd, the
above expression becomes

(
αs + (1 − α)s

)
(1 − α)n−s ≥ 0.

Moreover, Rn,k,α(0) = Pα(∩n
i=1A

c
i ) − (1 − α)n = 0, where Pα is the Binomial dis-

tribution with parameter α, under which all events are independent.
To show Part (II ) observe that

k∑

r=0

(
n

r

)

αr (−1)r = (1 − α)n + (−1)kαk
(

n

k + 1

)

2F1(1, 1 + k − n, 2 + k, α) (23)
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and

n∑

r=k+1

(
n

r

)

=
(

n

k + 1

)

2F1(1, 1 + k − n, 2 + k,−1). (24)

We have that βr < αk for all r ≥ k + 1; therefore,

pn,k(α) ≥
k∑

r=0

(
n

r

)

αr (−1)r +
n∑

r=k+1

βr

(
n

r

)

(−1)r

≥
k∑

r=0

(
n

r

)

αr (−1)r −
n∑

r=k+1

βr

(
n

r

)

≥
k∑

r=0

(
n

r

)

αr (−1)r − αk
n∑

r=k+1

(
n

r

)

> 0

for all α ≤ α, since at α = 0 the function equals 1, and α is the smallest solution of
(22) in [0, 1], written in terms of (23) and (24). ��
It makes sense to expect that there is a critical αc such that pn,k(α) > 0 for α < αc

and pn,k(α) = 0 forα > αc. Clearly,αc = 1 for k = n. Figure1 shows the numerical
values of the bounds we have obtained for αc.

None of the two bounds is tight:

Example 3 For n = 6, k = 4, αc is not equal to any of the bounds, as by solving
all the polynomial relations by cylindrical reduction one gets α ≤ 0.377 < αc ≈
0.419 < 1/2.

Fig. 1 Bounds for the phase
diagram of pn,k . None of the
bounds is tight; especially
notice that pn,n > 0 for all
α < 1
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4.2 Ternary Variables

This last example illustrates the full power of the general definition of p.i. ran-
dom variables, and of our existence conditions. For fixed n, k ≤ n and α1,α2 ∈
[0, 1],α1 + α2 ≤ 1, we call low density independent (ternary) random variables a
collection of random variables Xi , i = 1, . . . , n such that:

1. X j ∈ S = {0, 1, 2} for all j ∈ [n].
2. The X j ’s are exchangeable.
3. For any J ⊆ [n] : |J | ≤ k the random variables X j , j ∈ J are independent.
4. P(X j = �) = α� for � = 1, 2.

As before, we call any such distribution a low density p.i. distribution and denote it
by Pn,k,α1,α2 . Clearly, the assumptions are always consistent.

Condition (12) can now be rewritten as follows. Let r1, r2 ∈ N be such that
r1 + r2 ≤ n, J ⊆ [n] with |J | = r1 + r2, and x J ∈ SJ be such that |{ j : x J

j = 1}| =
r1, |{ j : x J

j = 2}| = r2; then let βr1,r2 = Pn,k,α1,α2(X
J = x J ), which does not depend

on the indices in which x J takes particular values by exchangeability. Then letting

L(k, s1, s2) = {(r1, r2) : r1, r2 = 0, . . . , k − s1 − s2 ∨ 0, r1 + r2 ≤ k − s1 − s2}

and

M(k, s1, s2) = {(r1, r2) : r1, r2 = 0, . . . , n − s1 − s2 ∨ 0, k − s1 − s2 ≤ r1 + r2}

(12) becomes

Rn,k,α1,α2(s1, s2) (25)

= αs1
1 αs2

2

∑

(r1,r2)∈L(k,s1,s2)

(
n − s1 − s2

r1, r2, n − s1 − s2 − r1 − r2

)

αr1
1 αr2

2 (−1)r1+r2

+
∑

(r1,r2)∈M(k,s1,s2)

(
n − s1 − s2

r1, r2, n − s1 − s2 − r1 − r2

)

βr1+s1,r2+s2(−1)r1+r2

for s1, s2 = 0, . . . , n − 1, s1 + s2 ≤ n − 1.
As in the binary case, it is interesting to study the vacuum probability pn,k(α1,α2)

= inf Pn,k,α1,α2(X j = 0 for all j) as the infimum ranges over all low density p.i.
distribution for given n, k and α1,α2. The results in the binary case suggest now the
following result:

Theorem 3 For all n, k,with k ≤ n − 1:

(I) If α1 + α2 ≥ 1/2 , then pn,k(α1,α2) = 0.
(II) If α1,α2 are such that
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∑

r1,r2∈L(k,0,0)

(
n

r1, r2, n − r1 − r2

)

αr1
1 αr2

2 (−1)r1+r2

> α
� k+1

2 �
1 α

� k+1
2 �

2

∑

� k+1
2 �≤r1,r2≤n

(
n

r1, r2, n − r1 − r2

)

(26)

+
� k+1

2 �−1∑

r1=0

αr1
1 αk+1−r1

2

n∑

r2=k+1−r1

(
n

r1, r2, n − r1 − r2

)

+
� k+1

2 �−1∑

r2=0

αr2
2 αk+1−r2

1

n∑

r1=k+1−r1

(
n

r1, r2, n − r1 − r2

)

then pn,k(α1,α2) > 0.

Proof Part (I ) is shown using the result of the binary case, as easily seen by lumping
together states 1 and 2.

To show Part (II) observe that βr1,r2 ≤ α
r ′
1
1 α

r ′
2
2 for all pairs r ′

1, r
′
2 which satisfy

r ′
1 ≤ r1, r ′

2 ≤ r2 and r ′
1 + r ′

2 ≤ k. This implies that

pn,k(α1,α2) ≥ Rn,k,α1,α2(0, 0) (27)

≥ α1α2

∑

r1,r2∈L(k,0,0)

(
n

r1, r2, n − r1 − r2

)

αr1
1 αr2

2 (−1)r1+r2

−
∑

r1,r2∈M(k,0,0)

(
n

r1, r2, n − r1 − r2

)

βr1,r2

≥ α1α2

∑

r1,r2∈L(k,0,0)

(
n

r1, r2, n − r1 − r2

)

αr1
1 αr2

2 (−1)r1+r2

−α
� k+1

2 �
1 α

� k+1
2 �

2

∑

� k+1
2 �≤r1,r2≤n

(
n

r1, r2, n − r1 − r2

)

(28)

−
� k+1

2 �−1∑

r1=0

αr1
1 αk+1−r1

2

n∑

r2=k+1−r1

(
n

r1, r2, n − r1 − r2

)

−
� k+1

2 �−1∑

r2=0

αr2
2 αk+1−r2

1

n∑

r1=k+1−r1

(
n

r1, r2, n − r1 − r2

)

> 0

if (26) holds. ��
It makes sense to expect that there is a critical region R in theα1 − α2 plane such that
pn,k(α1,α2) > 0 for (α1,α2) ∈ R and pn,k(α) = 0 for (α1,α2) /∈ R. Simple numer-
ical calculations give bounds for the phase transition region which are extensions of
the bounds shown for the binary case.
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5 Countably Many p.i. Random Variables

The results of the Sect. 3 can be extended to the case of countably many variables
using Kolmogorov extension theorem.

As before, suppose 0 ∈ Sj for every j ∈ N, let Ŝ j and Ŝ J be as in (6),

Ŝ =
⋃

J⊂N|J |<∞

Ŝ J

and consider
Ω ∪ Ω ′ = Ŝ ∪ {x∅}. (29)

We have again that xJ ∈ Ω ∪ Ω ′ implies xJ
J ′ ∈ Ω ∪ Ω ′ for every J ′ ⊆ J . Let

{πx}x∈Ω ′ be a π−family satisfying (11) and φ an independence function. As Ω ∪ Ω ′
contains only finite collection of values, all properties about compatibility between
the π-family and the independence function still hold. We then require that (8) holds
for every finite J ⊂ N, i.e. that φ is compatible with the π-family. As before, we
define the function f : Ω ∪ Ω ′ → [0, 1] such that formula (9) holds, in which X J

is a partition of J dependent on xJ (see Sect. 3). Requirements (4) can be written as

{
X j takes value in Sj ∀ j ∈ N

P(XJ = xJ ) = f (xJ ) ∀ xJ ∈ Ω ∪ Ω ′.
(30)

Then we have the following theorem.

Theorem 4 Let Ω and Ω ′ be as in (29), {πx}x∈Ω ′ a π−family satisfying (11) and φ
an independence function compatible with the π-family. Let f be the function defined
in (9). Then there is a collection of random variables X = {Xi }i∈N satisfying (30) if
and only if

∑

J⊆I⊆[n]
(−1)|I\J | ∑

xI∈Ŝ I

xIJ=ẑJ

f (xI ) ≥ 0 ∀ ẑJ ∈ Ŝ J ,∀ J ⊆ [n],∀n ∈ N. (31)

Proof If there exist p.i. random variables X = {Xi }i∈N satisfying (30), then there is
a probability space (Ω,A , P) on which the Xi ’s are defined. In particular, as P is
a probability, by inclusion-exclusion we have that:

∑

J⊆I⊆[n]
(−1)|I\J | ∑

xI∈Ŝ I

xIJ=ẑJ

f (xI ) =
∑

J⊆I⊆[n]
(−1)|I\J | ∑

xI∈Ŝ I

xIJ=ẑJ

P(XI = xI ) =

= P(XJ = ẑJ ,X[n]\J = 0) ≥ 0

as in the proof of Theorem 1.
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To show the reversed implication it is, once again, sufficient to find a probability
space (Ω̄, ¯A , P̄) and randomvariables X̄ = {X̄i }i∈N satisfying (30). Let Ω̄ = SN and
X̄i : Ω̄ → Si with X̄i (ω) = ωi . Consider the σ-algebra ¯A generated by cylinders.
For n ∈ N let

Ω̄n = S[n], Ωn = Ω ∩
∗⋃

J⊆[n]
Ŝ J , Ω ′

n = Ω ′ ∩
∗⋃

J⊆[n]
Ŝ J , fn = f |Ωn∪Ω ′

n
.

Note that Ωn+1⊇Ωn , Ω ′
n+1⊇Ω ′

n so that fn+1(xJ ) = fn(xJ ) for xJ ∈ Ωn ∪ Ω ′
n .

Note also that (31) is, for fixed n∈N, equivalent to (12) in Theorem1with f = fn .

Following the proof of the theorem we find a probability P̄n on
(
Ω̄n,P(Ω̄n)

)
such

that P̄n(xJ ) = fn(xJ ) for every xJ ∈ Ωn ∪ Ω ′
n .

We now show that these probabilities are consistent: let ω ∈ Ω̄n . Then we have

P̄n+1(ω × Sn+1) =
∑

xn+1∈Ŝn+1

P̄n+1
(
(ω, xn+1)

)+ P̄n+1
(
(ω, 0n+1)

)
(32)

where we denote by (ω, 0n+1) the vector in Sn+1 which equals to ω in the first n
components andwhose (n + 1)−th component equals 0. Let 0xJ = { j ∈ J : xJ

j = 0}
(note that this is different from 0n+1 used before) and 1xJ = { j ∈ J : xJ

j �= 0} for
every xJ ∈ S; we have

0(ω,xn+1) = 0ω, 1(ω,xn+1) = 1ω ∪ {n + 1} (33)

1(ω,0n+1) = 1ω, 0(ω,0n+1) = 0ω ∪ {n + 1}. (34)

It follows from (32) that

P̄n+1(ω × Sn+1) =
∑

xn+1∈Ŝn+1

∑

I⊆0ω

(−1)|I |
∑

xI∈Ŝ I

fn+1(ω1ω
, xn+1, xI )+

+
∑

I⊆0ω∪{n+1}
(−1)|I |

∑

xI∈Ŝ I

fn+1(ω1ω
, xI ) = (35)

=
∑

xn+1∈Ŝn+1

∑

I⊆0ω

(−1)|I |
∑

xI∈Ŝ I

fn+1(ω1ω
, xn+1, xI )+

+
∑

I⊆0ω

(−1)|I |
∑

xI∈Ŝ I

fn+1(ω1ω
, xI ) +

+
∑

I⊆0ω

(−1)|I |+1
∑

xI∈Ŝ I

∑

xn+1∈Ŝn+1

fn+1(ω1ω
, xn+1, xI ) =
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=
∑

I⊆0ω

(−1)|I |
∑

xI∈Ŝ I

fn+1(ω1ω
, xI ) =

=
∑

I⊆0ω

(−1)|I |
∑

xI∈Ŝ I

fn(ω1ω
, xI ) = P̄n(ω)

where the penultimate equality holds as (ω1ω
, xI ) has at most n components. By

Kolmogorov extention theorem (see [7] for instance), there is a probability P̄ on(
Ω̄, ¯A

)
such that for every n ∈ N and for every ωn ∈ Ω̄n:

P̄(Xn = ωn) = P̄(ωn) = P̄n(ωn).

In particular, let xJ ∈ Ω ∪ Ω ′. As J is a finite subset of N, there exists n ∈ N such
that J ⊆ [n] and xJ ∈ Ωn ∪ Ω ′

n . Therefore,

P̄(XJ = xJ ) = P̄(xJ ) = P̄n(xJ ) = fn(xJ ) = f (xJ )

as required. ��

6 Dutch Books

We develop now a dual theory for the case in which no collection of random variables
satisfies the requirements imposed by a π−family and an independent function. We
follow [10], repeating several details for self-containedness.

To do this, it is convenient to introduce new real variables zx, indexed by x ∈ S,
with S defined as in (2), in such a way that zxJ is meant to replace the probability of
P(XJ = xJ ) in the various formulas. Notice that with this replacement, the last two
sets of conditions in (4) become the following system of polynomial equations

{
zxJ = πxJ ∀ xJ ∈ Ω ′

zxJ = zxJ
Ii
zxJ

J\Ii
∀xJ ∈ Ω,∀i = 1, . . . ,mJ

(36)

in the variables {zx}x∈S . As noticed in [10], existence of solutions of this system is
only a necessary condition for existence of p.i. random variables satisfying (4), as
the real solutions might be negative, for instance. It is possible, however, to make
a change of variables which allows to write necessary and sufficient conditions in
terms of polynomial equation and inequalities.

Recall that X j takes values in Sj for j = 1, . . . , n and that S[n] =∏n
j=1 Sj . We

will consider new variables {ws}s∈S[n] which are meant to represent P(X = s). It is
shown in [10] that
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Lemma 1 Consider a system of relations of the form

gi
(
P(XJ1 = sJ1), . . . , P(XJk = sJk )

) �i 0 (37)

for i ∈ I, where I is some set of indices, k = |S| and �i stands for one of {= ,≥ ,>}
and express it in variables using z� to replace P(XJ� = sJ� ), to get the polynomial
system of equations and inequalities

gi (z1, . . . , zk) �i 0 i ∈ I. (38)

Then consider the following change of variables: for every J ⊆ [n] express {XJ =
sJ } = ⋃

s∈ΓsJ

{X = s} for a suitable ΓsJ ⊆ S[n]. The change of variables is

z�(w) =
∑

s∈Γ
sJ�

ws

in the new variables w = {ws}s∈S[n] . Then there are random variables X satisfying
(37) if and only if the system formed by the equations:

⎧
⎪⎪⎨

⎪⎪⎩

gi (z1(w), . . . , zk(w)) �i 0 ∀ i ∈ I

ws ≥ 0 ∀ s ∈ S[n]
∑

s∈S[n]
ws = 1

(39)

admits solution in the w variables.

As these are polynomial relations, existence of a solution is decidable by Tarski-
Seidenberg and Sturm’s Theorem [3]. As (36) is a special case of (37), this is a more
general, and algorithmically more involved, proof of decidability of the existence
problem for p.i. random variables.

The above translation of the existence problem into a question of semi-algebraic
geometry allows to use results from this field. In particular, the Positivstellensatz
(see [3]) asserts the following: rewrite the system (39) as

⎧
⎪⎨

⎪⎩

f j (w) = 0 j = 1, . . . , l

gr (w) ≥ 0 r = 1, . . . , t

hi (w) �= 0 i = 1, . . . , s

(40)

for some �, t and s depending on the value of �i . Note that an equation of the form
f (x) > 0 can be rewritten as the system

{
f (x) ≥ 0

f (x) �= 0
.
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so that every system (39) can be rewritten as (40). Next, let I be the ideal generated
by the family { f j } j=1,...,l , C the positive cone generated by the family {gr }r=1,...,t and
M the multiplicative monoid generated by the family {hi }i=1,...,s . Then there is no
solution to (40), and hence to (39), if and only if there are f ∈ I , g ∈ C and h ∈ M
such that f + g + h2 ≡ 0. In particular, if there are no strict inequality, i.e. {hi } is
empty, then (40) has no solutions if and only if there exist f ∈ I and g ∈ C such
that f + g ≡ −1.

It is proven in [10], based on the Positivstellensatz, that when there are no random
variables fulfilling (37) then it is possible to define a Dutch Book, i.e. a rigging
strategy in which a bookmaker can insure a strictly positive gain.

Definition 4 Given n events Ai , i = 1, . . . , n on someprobability space (Ω,A , P),
and relations, namely equalities or inequalities, among the probabilities of boolean
combinations of the Ai ’s, a Dutch Book is a σ(A1, . . . , An)-measurable random
variable G such that the mean value E(G) ≥ 0 if all the relations hold, but G(ω) =
−1 for all ω ∈ Ω .

In our case, the bookmaker offers a believer of (37) a random game in which the
believer computes that (s)he has a nonnegative average gain, while instead losing a
fixed amount in every single round. Adapting it from [10], we have

Theorem 5 ([10]) Given a family of requirements of the form (38) with no strict
inequalities, there are no random variables satisfying all the equations if and only
if, assuming that it is possible to realize a finite but sufficiently large number of
independent copies of the collection of random variables, it is possible to realize a
Dutch Book against any believer of (38).

Some care must be used in interpreting the content of this theorem. When talking
about a believer of (38) we intend that (s)he has determined some events that (s)he
believes satisfy (38). One of the assumptions in the theorem is that it is possible to
find or produce a finite, but sufficiently large, number of copies of such collection
of random variables in such a way that the believer of (38) also thinks that the
copy are independent. The need for more copies comes from the nonlinearity of the
polynomials in (40).

We now determine the Dutch Book for the p.i. random variables, showing that,
although the relations in (36) are not linear, in this casewe do not need the assumption
about additional copies as the results of the previous sections imply that the Dutch
Book actually requires one single copy only of the random variables.

Theorem 6 If there are no random variables satisfying (10) then it is possible to
realize a Dutch Book against any believer of (10).
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Proof Rewrite (10) in the variables z = {zx}x∈S as in (36) with the π−family satis-
fying (8). If (8) fails, it means that the believer of (10) believes also in the equality of
two unequal numbers: a not-random Dutch Book can then be produced by offering
the smaller amount, augmented by a fraction of the difference, in exchange for the
larger amount.

Changing variables into w, the system (39) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

zxJ (w) = πxJ ∀ xJ ∈ Ω ′

zxJ (w) = zxJ
Ii
(w)zxJ

J\Ii
(w) ∀xJ ∈ Ω,∀i = 1, . . . ,mJ

ws ≥ 0 ∀ s ∈ S[n]
∑

s∈S[n]
ws = 1.

(41)

By Lemma (1), there exist random variables satisfying (10) if and only if there is a
solution to (41), so the believer of (10) also believes that there is a solution to (41).
Introducing the function f as in (9), (41) becomes

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

s: sJ=xJ

ws − f (xJ ) = 0 ∀ J ⊆ [n], ∀ xJ ∈ Ŝ J

∑

s∈S[n]
ws − 1 = 0

ws ≥ 0 ∀ s ∈ S[n]

(42)

as zxJ (w) = ∑

s: sJ=xJ

ws. The believer of (10) also believes that (42) has a solution.

By Theorem 1, if there are no random variables satisfying (10) then there exist
J̄ ⊆ [n] and z J̄ ∈ Ŝ J̄ such that

∑

I : J̄⊆I⊆[n]
(−1)|I\ J̄ | ∑

xI∈Ŝ I

xI
J̄
=z J̄

f (xI ) = −D < 0 (43)

with D a positive constant.
Consider then the following linear combination of the equations in (42):

∑

I : J̄⊆I⊆[n]
(−1)|I\ J̄ | ∑

xI∈Ŝ I

xI
J̄
=z J̄

⎛

⎝ f (xI ) −
∑

s: sI=xI

ws

⎞

⎠ =

= −D −
∑

I : J̄⊆I⊆[n]
(−1)|I\ J̄ | ∑

xI∈Ŝ I

xI
J̄
=z J̄

⎛

⎝
∑

s: sI=xI

ws

⎞

⎠ = (44)
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= −D −
∑

I⊆ J̄ c

(−1)|I |
∑

xI∈Ŝ I

⎛

⎜
⎜
⎜
⎝

∑

s: s J̄=z J̄

sI=xI

ws

⎞

⎟
⎟
⎟
⎠

.

This polynomial belongs to the ideal generated by the equations in (42), as can be
seen in the first line. However, the coefficient of each ws is zero, as it equals

∑

I⊆ J̄ c

(−1)|I | = 0.

We have then found the relation

1

D

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

J̄⊆I⊆[n]
(−1)|I\ J̄ | ∑

xI∈Ŝ I

xI
J̄
=z J̄

⎛

⎝ f (xI ) −
∑

s: sI=xI

ws

⎞

⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

≡ −1. (45)

In order to generate the Dutch Book substitutews in (45) by the indicator function
Is that X = s. Then consider the game

G = 1

D

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

I : J̄⊆I⊆[n]
(−1)|I\ J̄ | ∑

xI∈Ŝ I

xI
J̄
=z J̄

⎛

⎝ f (xI ) −
∑

s: sI=xI

Is

⎞

⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(46)

As E(Is) = P(X = s), we have

E(G) = E

⎛

⎜
⎜
⎜
⎝

1

D

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

I : J̄⊆I⊆[n]
(−1)|I\ J̄ | ∑

xI∈Ŝ I

xI
J̄
=z J̄

⎛

⎝ f (xI ) −
∑

s: sI=xI

Is

⎞

⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎞

⎟
⎟
⎟
⎠

= 1

D

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

I : J̄⊆I⊆[n]
(−1)|I\ J̄ | ∑

xI∈Ŝ I

xI
J̄
=z J̄

E

⎛

⎝ f (xI ) −
∑

s: sI=xI

Is

⎞

⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= 1

D

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

J̄⊆I⊆[n]
(−1)|I\ J̄ | ∑

xI∈Ŝ I

xI
J̄
=z J̄

⎛

⎝ f (xI ) −
∑

s: sI=xI

ws

⎞

⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

≥ 0
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if one believes that the relations in (42) can all hold. On the other hand, (45) implies
that every single game results in a constant negative loss for the player, so G is the
required Dutch Book.

Notice that such a Dutch Book is linear in the I’s, and thus requires only one copy
of such variables. ��
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Sobol Sensitivity: A Strategy for Feature
Selection

Dmitry Efimov and Hana Sulieman

Abstract In this paper we propose a novel approach for feature selection inmachine
learning. The approach is based on the Sobol sensitivity analysis, a variance-based
technique that determines the contribution of each feature and their interactions to
the overall variance of the target variable. Similar to wrappers, Sobol sensitivity is a
model-based approach that utilizes the trainedmodel to evaluate feature importances.
It uses the full feature set to train the model just as embedded methods do. Based
on the trained model, it evaluates importance scores and, similar to filters, identifies
the subset of important features with highest scores without retraining the model.
The distinctive characteristic of the Sobol sensitivity approach is its computational
efficiency compared to the existing feature selection algorithms. This is because
importance scores for all individual features and subsets of features are calculated
with the same trainedmodel.We apply the proposed algorithm to a simulated data set
and to four benchmark data sets used in machine learning literature. The results are
compared to those obtained by two of the widely used feature selection algorithms
and some computational aspects are also discussed.

Keywords Feature selection · Sobol index · Sensitivity analysis ·Machine learning
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1 Introduction

The problem of variable (feature) selection in predictive modelling has received con-
siderable attention during the past 10years in both statistics and machine learning
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literatures. The aim of feature selection is to identify the subset of predictor variables
that provides a reliable and robust model for a given target variable. Feature selection
plays a central role in many areas such as natural language processing, gene expres-
sion array studies, computational biology, image recognition, information retrieval,
temporal modelling, consumer profile analysis and business data analytics. Curse of
dimensionality in data collected in these and other areas and the increased level of
noise in the associated features have motivated the development of various feature
selection techniques. Feature selection is a key mechanism to reduce a large number
of variables to relatively few.

In this article, a new approach for feature selection is proposed. The new approach
is inspired by the popular Sobol sensitivity measure developed by I.M. Sobol in
1990 [18]. Sobol sensitivity measure is a variance-based sensitivity technique that
decomposes the output (target) variable variance into summands of variances of the
input variables (features) in an increasing dimensionality. It has been widely used
in assessing global sensitivity of models in different fields such as environment,
economics, engineering and many others. The approach is a model-based technique
that utilizes the fittedmodel to compute the partial variances or variance contributions
by each feature and their interactions to the overall variance of the target variable.
It is shown to have lower computational cost than many existing feature selection
algorithms but its effectiveness depends on the quality of the fitted model as it is the
case for some popular algorithms.

The article is organized as follows. Section2 provides a review of some existing
methods on variable selection. Section3 proposes Sobol sensitivity approach for
variable selection and gives some theoretical foundation of the measure. It also
discusses some computational aspects of the method. Section4 applies the proposed
Sobol sensitivity to several data sets used in machine learning literature and provides
comparisons with some existing benchmark algorithms.

2 Literature Review

In this section we summarize some popular feature selection techniques, give some
computational consideration and provide the motivation for the proposed new
technique.

Feature selection techniques can be divided into three general frameworks: wrap-
pers, filters and embedded methods [21, 25]. Wrappers evaluate the predictive power
of subsets of features by retraining the model for different feature subsets. Filters
evaluate the importance of features before the main prediction algorithm is trained.
Embedded methods search for the optimal subset of features simultaneously with
minimizing a loss function. What follows is a brief description of each framework:
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Original feature set Choose subset of features Train model on the feature subset

Prediction
performance criterion

Fig. 1 Wrappers framework

1. Wrappers.
Wrappers are model-based methods for feature selection and are considered to
be the most effective and computationally intractable algorithms. Figure1 shows
the main principle of the wrapper methods’ framework.
Basically, to find the most relevant and informative subset of features, the pre-
scribed model is trained for different subsets of features. The subset with the
highest score on a particular prediction performance criterion is selected as best
set of features. Because wrapper methods utilize the model algorithm they are
considered more effective and hence more desired than filters and embedded
methods.
However, wrapper methods are generally criticized for their potential to overfit
the training data and for their computational cost. Overfitting occurs when the
complete data set is used for the training and the model becomes excessively
complex to fit the data too precisely but still provides poor predictions when
applied to new data set. This occurs when there is insufficient data to train and
the data does not fully recover the concept learned. Several approaches have been
proposed in the literature to overcome model overfitting:

a. Cross-Validation (CV): in this approach the data set is split into training
and validation sets. The model is trained on the training set and predictions
are obtained on the validation set. A variety of techniques are developed to
determine the fraction of data that should be used for training and that used
for validation. These techniques include random sub-sampling, leave-one-
out, K-fold and other CV sampling mechanisms.

b. Probabilistic approach: based on information theory principles. The predic-
tion accuracy of the algorithm is measured using various techniques such
as Akaike Information Criteria (AIC, [3, 4]), Bayesian Information Criteria
(BIC, [5]) and others.

As for computational cost, wrappers are deemed computationally expensive. For n
features, the number of feature subsets is defined byO(2n), i.e., the computational
needs of wrappers exponentially increase with the number of features in the
model. This makes the search for all possible subsets of features impractical for
even moderate value of n. The computational cost of wrapper methods can be
reduced by using efficient search strategies to find the optimal subset of features.
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One of the earliest attempt to improve the computational efficiency is due to
Hocking and Leslie in [1]. Their method starts by fitting the full model and then
features are eliminated based on themagnitudes of their t-statistics. The efficiency
gain of the method lies in the fact that entire subsets of features are eliminated
from further consideration when their reduced prediction error is greater than
other subsets already evaluated. The method can assume independent features
and works well when there is a small number of important features that dominate
the target variable and can easily be identified.
Sequential search methods such as forward selection, backward elimination and
stepwise regression became popular techniques used to overcome some of the
computational demands of wrappers. Forward selection begins with no variables
and progressively adds features until maximum reduction in prediction error is
reached. The reverse of this strategy is the backward elimination which begins
with full model and progressively removes features having smallest contribu-
tions. Once a feature is added in forward selection or eliminated in backward
elimination, the operation can not be reversed. To overcome this drawback, step-
wise selection is used. Stepwise selection starts by adding features until reaching
some stopping criteria. Then the algorithm starts dropping features until reach-
ing another stopping criteria and so on. While stepwise selection can reduce the
computational cost of the best set of features it does not, however, guarantee the
selection of the global optimal set.

2. Filters.
Filters evaluate feature importance as a pre-processing operation to model train-
ing as depicted in Fig. 2. The main difference between filters and wrappers is
that filters do not use the training procedure to capture the relationship between
features. Rather, they use some information metric to calculate feature ranking
from the data without direct input from the target. Popular information metrics
include t-statistic, p-value, Pearson correlation coefficient, mutual information
and other correlation measures. Computationally, filters are more efficient than
wrappers as they require only the computation of n scores for n features. They
are also more robust against overfitting than wrappers.
By using Pearson correlation, filters can only capture linear effects between fea-
tures and target variable. The nonlinear effects are left undiscovered. A successful
attempt to deal with nonlinear effects has been recently developed. Aliferis et al.
[24] described Markov blanket technique that is based on Bayesian network. A
Markov blanket of the target variable Y is defined as a minimal set of features
on which all other features are conditioned so as they become independent of Y .

Original feature set
Choose subset of features

with the highest metric score
Train model on
the feature subset

Fig. 2 Filters framework
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Original feature set
Train model on the
original feature set

Choose features subset
based on model parameters

Fig. 3 Embedded methods framework

In terms of relevancy of selected features, Markov blanket is shown by Tsamardi-
nos and Aliferis (2003) to provide the most relevant and optimal features in cal-
ibrated classifications in which the probability distribution of the target variable
can be perfectly estimated with the smallest number of variables. The authors
showed that neither filters nor wrappers are superior to one another in identifying
the optimal features because filters lack universal optimality,i.e., independently
of the classification algorithm and model-performance metric, and wrappers lack
universal efficiency. Markov blanket technique does not suffer from these short-
comings.

3. Embedded methods.
Embedded methods use training procedure to obtain feature rankings Fig. 3. The
aim of embedded methods is two-fold: first, maximizing the prediction accuracy
and second, minimizing the number of features in the predictive algorithm.
Regularization methods such as Ridge Regression [2], Nonnegative Garrote [6],
LeastAbsolute Selection and ShrinkageOperator (LASSO, [8]) are themost com-
mon forms of embedded methods. In these methods, the coefficients (weights) of
the features are penalized by some regularization terms or forced to be exactly
zero. Features with weights close to zero are then eliminated without compro-
mising the prediction performance of the model. Analogy to filters, several devel-
opments have been achieved in embedded regularization methods. LASSO [15]
and Elastic Net [11] are examples of methods that were developed to measure the
importance of subsets of features. Boosted LASSO [13] and Smoothly Clipped
Absolute Deviation (SCAD) [14] are examples of methods that use nonlinear reg-
ularization terms to produce more sparse and unbiased estimators of coefficients.
Other embedded methods are based on decision tree algorithms. In this group of
embedded methods, various decision trees are iteratively built using bootstrap-
ping and for each tree, information gain (based on specific information entropy)
is calculated for each feature. Features are then ranked based on the average infor-
mation gain over all trees. Random Forest algorithm [7] is one popular example of
decision tree methods. Louppe et al. in [17] provided comparative analysis of fea-
ture importance using various decision tree algorithms. Embedded methods can
be disadvantaged for the fact that feature weights are often estimated iteratively
not explicitly.

The reader is referred to the excellent reviews of feature selection methods found
in [22, 23].
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3 Sobol Sensitivity Approach

In this section we propose a new technique for feature selection in machine learning
and provide somemathematical foundation of the algorithm. The proposed technique
is based on variance decomposition principle of model output developed by Sobol
(1990) [18] (inRussian) andSobol (1993) [19] (inEnglish). Sobol sensitivity analysis
is intended to determine how much of the variability in model output is dependent
upon each of the input variables, either upon a single variable or upon an interaction
between different variables. The decomposition of the output variance in a Sobol
sensitivity analysis employs the same principal as the classical analysis of variance
in factorial experimental designs.

3.1 Theoretical Background

Let the function f (x), where x = (x1, ..., xn) be defined on the unit n-dimensional
cube

Kn = {x | 0 � xi � 1, i = 1, ..., n}.

Sobol’s main idea is to decompose the function f (x) into summands of increasing
dimensionality, namely

f (x) = f0 +
n∑

i=1

fi(xi) +
∑

1≤i<j≤n

fij(xi, xj) + ...... + f12...n(x1, ..., xn). (1)

The decomposition in (1) holds true if f0 is a constant and the integral of every
summand over any of its variables is zero, i.e.

1∫

0

fi1...is(xi1 , ..., xis)dxik = 0, 1 � i1 < .... < is ≤ n, 1 � k � s, s = 1, 2, .....n.

For independent x1, ..., xn, all terms in Eq. (1) are orthogonal and f0 can be calculated
as:

f0 =
∫

Kn

f (x)dx (2)

which represents the average value (or expectation) of the function f . Sobol (1993)
[19] showed that decomposition (1) is unique and all of its terms can easily be
evaluated through multi-variable integrals.

Because of the orthogonality of the x-space, the total variance D of f (x) can also
be partitioned in the same way as the original function, i.e.,
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D =
n∑

i=1

Di +
∑

1≤i<j≤n

Dij + ...... + D12...n (3)

where

D =
∫

Kn

f 2(x)dx − f 20

and

Di1...is =
1∫

0

...

1∫

0

f 2i1...is(xi1 , ..., xis)dxi1 ...dxis
1 � i1 < .... < is ≤ n,
s = 1, 2, .....n

Di1...is is the partial variance attributed to xi1 , ..., xis defined by the variance of the
conditional expectation of f (x) conditioned on xi1 , ..., xis , namely,

Di1...is = Var[E(f |xi1 , ..., xis)]

where the conditional expectation is taken over all xj not in {i1, ..., is} and variance
is computed over the range of possible values of xi1 , ..., xis .
The usefulness of Di1...is as a measure of sensitivity is easy to grasp. Influential
xi1 , ..., xis control f significantly and so E(f |xi1 , ..., xis) will mimic f . In this case the
total variance in f will be matched by the variability in E(f |xi1 , ..., xis) as xi1 , ..., xis
vary making Di1...is large compared to the total variance D.

Sobol in [20] proposed the following indices tomeasure sensitivity of the function
with respect to xi1 , ..., xis :

Si1...is = Di1...is

D
, 1 � i1 < .... < is � n, s = 1, 2, .....n (4)

with
∑

Si1...is = 1.
For s = 1, the sensitivity measure Si1 = Si is called first-order sensitivity index

which measures the fractional contribution of the individual variable xi to the total
variance of f . For s = 2, Sij is called the second-order sensitivity index which mea-
sures the portion of the variability in f due to the interaction of xi and xj and so on.
Total sensitivity index, defined as the sum of all sensitivity indices involving xi up to
the n-th order, i.e.,

TSi = Si +
n∑

j:j �=i

Sij + ....... + S1....i...n (5)

was also proposed to quantify the overall effect of xi on the model output.
Decomposition (1) or (3) has long history and was given in its general form

by Efron and Stein [9]. More concisely, one can think of f (x) as some statistics
defined on the independent variables x1, ..., xn, then f (x) may be decomposed into
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a grand mean f0 = E[f (x)]; i-th main effect fi(xi) = E[f (x|xi)] − f0; ij-th interac-
tion fij(xi, xj) = E[f (x|xi, xj)] − E[f (x|xi)] − E[f (x|xj)] + f0 and so on. Given these
definitions, decomposition (1) follows immediately. The f ,i s, f

,
ijs,....are known in

factorial experimental design as ANOVA-HDMR, where HDMR stands for High-
Dimensional Model Representation.
For example, when n = 2, f (x) can be decomposed into:

f (x1, x2) = f0 + f1(x1) + f2(x2) + f12(x1, x2) =
= f0 + E[f (x|x1)] − f0 + E[f (x|x2)] − f0+
+E[f (x|x1, x2)] − E[f (x|x1)] − E[f (x|x2)] + f0.

The individual terms of decomposition (1) can easily be shown to have a zero mean.
For example E[fi(xi)] = E[E[f (x|xi)] − f0] = E[f (x)] − f0 = 0. Decomposition (1)
terms can also be shown to bemutually uncorrelated, implying that the unconditional
total variance of f (x), D, can simply be expressed as a sum of variances of these
uncorrelated terms giving the variance decomposition (3) where

Di = Var(fi(xi)) = Var(E[f (x|xi)])
Dij = Var(fij(xi, xj)) = Var(E[f (x|xi, xj)]) + Var(E[f (x|xi)])+

+Var(E[f (x|xj)])

and so on. It is noted that decomposition (3) is similar to the classical ANOVA
decomposition without the residual error term.

If the relationship betweenx and themodel output is additive linear, then a straight-
forward variance decomposition can be provided by regression analysis. It can be
shown, in this case, that the first-order sensitivity index, Si is equal to the squared
standardized regression coefficients, i.e., Si = β2

i . That is, the β,
i s give the fractional

contribution of each predictor to the variance of the response variable. The effec-
tiveness of β,

i s as a measure of sensitivity, in this case, depends on the quality of
the fitted model and the degree of linearity in the relationship between the response
variable and predictors.

The definition of Sobol sensitivity index given in (3) can be extended to include
group indices for subsets of variables and their joint sensitivity behaviour. Suppose
the variables x1, ..., xn are partitioned into r disjoint groups x1, ..., xr , r < n, then
decomposition (1) can be expressed as:

f (x) = f0 +
r∑

i=1

fi(xi) +
∑

1�i<j�r

fij(xi, xj) + ...... + f1,2,.....,r(x1, ..., xr).

For r = 2 for example, the variables x are partitioned into two groups y and z, giving
the following decomposition:
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f (x) = f1(y) + f2(z) + f12(y, z).

The variances D1 and D2 for each of y and z are calculated as

D1 =
1∫

0

...

1∫

0

f 21 (y)dy, D2 =
1∫

0

...

1∫

0

f 22 (z)dz (6)

and

D =
1∫

0

...

1∫

0

f 2(x)dx − f 20 , D12 = D − D1 − D2. (7)

For this two-set decomposition, we define the following sensitivity index:

SIy = 1

D
(D1 + D12)

SIz = 1

D
(D2 + D12).

(8)

In the next section, SIy and SIz will be referred to as Sobol Importance (SI) measure
that will be used as the basis for feature selection mechanism.

In practice, variables are usually ranked based on the magnitude of their Sobol
sensitivity indices, the higher themagnitude, themore influential respective variables
are. Although no distinct cutoff value has been defined, the rather arbitrary value of
0.05 is frequently accepted for this type of analysis for distinguishing important from
unimportant variables. It should be noted though that this value of 0.05 is primarily
used for more complex models and it may be not stringent enough for relatively
simple models that contain only few input variables.

3.2 Sobol Sensitivity for Machine Learning

3.2.1 General Framework

Let m be a number of samples in the dataset and n be a number of features (vari-
ables). Denote the set of feature indices as J = {1, . . . , n}. For the purpose of feature
selection in machine learning, we propose to partition the set of indices J into two
subsets J1 = {j1, . . . , js} and J2 = {j ∈ J | j /∈ J1} and estimate the importance for the
features from each group separately using Sobol sensitivity index given in Eq. (8). In
manymachine learning problem settings, splitting features into two groups is deemed
sufficient for identifying important features. In the classical Sobol’s sensitivity analy-
sis, variables (features) are assumed independent and uniformly distributed over the
interval [0, 1]. In our proposed analysis, we consider normally distributed features
following the work of Arwade et al. (2010) [26] and continue to assume independent
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features. The Monte-Carlo procedure [20] can be applied to evaluate the quantities
from above (6) and (7). Assuming that X is an original design matrix we generate
two new matrices Y and Z such that Y is obtained from X by random shuffling each
column with index j ∈ J1, Z is obtained by random shuffling each column with index
j ∈ J2. We denote xi, yi, zi the i-th row of the matrices X, Y , and Z accordingly.

Based onMonte-Carlo exploration of the features’ space, the quantities in (6) and
(7) can be estimated as follows:

f0 = 1
m

m∑

i=1
f (xi), D + f 20 ≈ 1

m

m∑

i=1
f 2(xi),

D1 + f 20 ≈ 1
m

m∑

i=1
f (xi)f (zi), D2 + f 20 ≈ 1

m

m∑

i=1
f (xi)f (yi),

D12 = D − D1 − D2,

(9)

where summation is taken by all dataset entries.
The suggested permutation procedure of the designmatrixX allows the generation

of randomvalues from the assumed distribution of features for use in theMonte-Carlo
algorithm. Sobol importance scores for the feature subsets J1 and J2 are calculated
using (8).

3.2.2 Computational Aspects

The general framework described above gives rise to the following algorithm that cal-
culates feature importance for subsets of features. The main output of this algorithm
is the Sobol importance (SI) score for a given subset of features.

Algorithm 1 Sobol importance scores for feature subset
1: Let X be an m × n design matrix for the given dataset, y be a vector of outputs.
2: Train the model M on the original dataset X , y and obtain predictions p on the dataset X

3: Evaluate f0 = 1

m

m∑

i=1
pi and D = 1

m

m∑

i=1
p2i − f 20

4: Define a feature subset of interest
J1 = {j1, . . . , js}

and complimentary feature subset

J2 = {j ∈ {1, 2, . . . , n} | j /∈ J1}
5: Create matrix Y from X by random shuffling columns with indices j ∈ J1 and matrix Z from X

by random shuffling columns with indices j ∈ J2
6: Use model M with design matrix Z as an input to obtain D1 using Eq. (9)
7: Use model M with design matrix Y as an input to obtain D2 using Eq. (9)
8: Evaluate D12 = D − D1 − D2
9: Compute Sobol importance score for the subset J1 using Eq. (8):

SIJ1 = 1

D
(D1 + D12)
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Asmentioned earlier, themain challenge in feature selection algorithms is the high
computational cost due to huge number of subsets that need to be investigated. With
Sobol sensitivity approach, the importance of both individual features and subsets of
features can be computed using the same Monte Carlo integral. The next algorithm
utilizes this computational efficiency of the approach and calculates importance score
based on the total sensitivity index given in Eq. (5) up to second-order interactions.
In many application areas, second order interactions are deemed sufficient to capture
the joint sensitivity behaviour of features. To calculate the Sobol importance score SIi
for individual features, the subset J1 in Algorithm 1 is set to J1 = {i}, i = 1, 2, . . . , n
and for joint importance score SIij, J1 = {i, j}, j = 1, 2, . . . , i − 1, i + 1, . . . , n.

Algorithm 2 Feature selection based on total second order Sobol importances
1: Initialize the n × n matrix S of zeros
2: for i=1 to n do
3: for j=i to n do
4: if j == i then
5: Using Algorithm 1 calculate the individual importance SIi of feature with index i

and assign it to the diagonal elements of S, i.e. Sii = SIi
6: else
7: Using Algorithm 1 calculate the importance SIij of features with indices i, j and assign

it to Sij
8: Sort the features based on the total second order sensitivity indices given by:

TSIi =
n∑

j=1

Sij

9: For a given k, select the features with the highest k-TSI scores. k depends on the desired accuracy
of the model.

Algorithm 2 requires n(n+1)
2 score evaluations for n features. All these evaluations

are completed using the same Monte Carlo integral.
Similar to wrappers, Sobol sensitivity is a model-based approach that utilizes the

trained model to evaluate feature importances. While wrappers select a subset of
features to train the model, Sobol sensitivity uses the full feature set to train the
model just as embedded methods do. Based on the trained model, it evaluates impor-
tance scores and, similar to filters, it identifies the subset of important features with
highest scores without retraining the model. As the case for filters and wrappers, the
optimality and efficiency of the technique depend on the training algorithm (learner)
and/or model-performance metric used. Sobol sensitivity assumes normally distrib-
uted and statistically independent features. These two distributional assumptions are
popular in many feature selection algorithms. It can, however, consider other feature
probability distributions and can be implemented for statistically dependent features.
Because it is variance-based measure, it can be applied for linear and nonlinear rela-
tionships between target variable and features. In terms of computational needs,
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Sobol sensitivity approach can be considered one of the most tractable techniques
because importance scores for all feature subsets are computed using the sameMonte
Carlo integral.

4 Application and Comparisons

In this section, we apply the proposed feature selection techniques to several data
sets known in machine learning community and presents comparative evaluations of
the results obtained with results obtained using: Random Forest (RF) and Support
Vector Machine Recursive Feature Elimination (SVM-RFE).

Example 1: Effect of noise on Sobol importance.
In this example we demonstrate the behavior of Sobol importance approach under

different levels of noise in the model starting from zero-level noise model (100%
accurate predictions). We consider a model function given by Friedman in [28]:

f (x1, x2, x3, x4, x5) = 10 sin(πx1x2) + 20

(

x3 − 1

2

)2

+ 10x4 + 5x5+

+σh(x6, x7, ......, x15).

(10)

We generate the dataset with 1000 training examples and 15 features (drawn from the
normal distribution). Only first 5 features are important. Figure4 shows the results of
Algorithm 2 for different values of σ. Using 0.05 as the cutoff value to declare impor-
tance, it is easily seen that the first 5 features continue to be the important features for
σ ≤ 1. Once σ is inflated beyond 1, more features exhibit themselves as important.
However, for all σ values (except σ = 2.5, the overall ranking of features continues
to agree with the first five features being the subset of features demonstrating highest
importance scores.

Example 2: Comparisons using simulated data.
Friedman model function used in example 1 is used here to generate a data set

with 1000 training examples and 15 features drawn from the normal distribution,
only first 5 features are used to calculate the function in (10). The values of the
function are used as values of the target variable y.
We calculate Sobol importances based on four different models: Neural Network
(NN), Support Vector Machine (SVM), Random Forest (RF) and Gradient Boost-
ing Trees model (XGB). We compare the results with importances obtained using
Random Forest (RF) and Support Vector Machine Recursive Feature Elimination
(SVM-RFE). Figure5 depicts the findings. All algorithms correctly identify the first
five features as the important set of features. One exception is observed in SVM-
RFEwhere features 12 and 14 are identified as equally important. This wrong feature
identification can be due to nonlinearity in the relationship between target variable
and features for which SVM-RFE can not capture.
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Fig. 4 Sobol importances for Friedman function with noise
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Fig. 5 Comparisons using simulated Friedman dataset

Example 3: Comparisons using benchmark data sets.
In this example, four benchmarkdata sets, described inTable1, are used to evaluate

the performance of Sobol sensitivity as compared to SVM-RFE and RF algorithms.
The model is trained using NN, RF and SVM methods and Sobol importance

scores are calculated for all features in each data set using the three training methods.
The results are compared to importance measures obtained using SVM-RFE and RF
benchmark methods. For more meaningful comparisons, different threshold values
for the number of important features selected from the benchmark importances.
For example, threshold 10 means that we take top 10 important features from the
benchmark algorithms. To compare the results we use Area Under the Curve (AUC)
metric. The AUC calculates the overall differences in the feature rankings obtained
by the benchmark method for a given threshold and those obtained from the Sobol
importance scores. The general work flow is visualized in Fig. 6.

The resultingAUCvalues for the different models and the four datasets are plotted
against different threshold values in Fig. 7. The Fig. 7 demonstrates that the different
algorithms have succeeded in identifying comparable sets of important features.
For example, the AUC between RF and Sobol RF feature rankings is higher than
0.9, which means that more than 90% of features are common between the two
algorithms.
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Table 1 Datasets description

Set Domain Num. var. Num.
samples

Target Data type Ref.

SYLVA Ecology 216 14394 Ponderosa
pine

Continuous
and discrete

WCCI 2006
Perfor-
mance
Prediction
Challenge

HIVA Drug
discovery

1617 4229 Activity to
AIDS HIV
infection

Discrete
(binary)

WCCI 2006
Perfor-
mance
Prediction
Challenge

NOVA Text 16969 1929 Separate
politics
from
religion
topics

Discrete
(binary)

WCCI 2006
Perfor-
mance
Prediction
Challenge

BANK Financial 147 7063 Personal
bankruptcy

Continuous
and discrete

Foster and
Stine [29]

Original feature set

Benchmark method
(RF, SVM-RFE) Threshold

Train model
(NN, SVM, RF) TSI scores

AUC score

Fig. 6 Feature importances comparison framework

Furthermore, for each algorithm in Fig. 7, the top N% important features are
selected and themodel is trained by SVMalgorithmon the selected subset of features.
Table2 presents the reduced model accuracy values expressed by the Root Mean
Square Errors (RMSE). Reported in Table2 also are the RMSE values for the trained
model on all features in each data set.

Table2 demonstrates that for all benchmark data sets, the reduced models give
significantly more accurate predictions than that given by the full model. When top
10% important features are used in the model, the Sobol approach gives better result
than the benchmark algorithms SVM-RFE and RF. When including more than 10%
important features, SVM-RFE performs marginally better than Sobol approach in
two of the data sets. In calculating variance contributions of features to the overall
variability in the target variable, Sobol sensitivity approach can identify the small
number of most important features more accurately than other methods. When larger
number of features are desired in the model, the approach may fail to provide most
accurate predictions due to the increased level of noise in the data. According to
the analysis of Example 1, greater level of noise can distort the Sobol rankings of
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SYLVA: HIVA:

NOVA: BANK:

Fig. 7 Comparisons using benchmark data sets

important features. It may also imply that higher order interactions between features
are needed for more accurate predictions in this situation.

The performance consistency of the three techniques measured by the standard
deviation ofmodel accuracy overN valueswas also examined. The standard deviation
values, s, reported in Table2 clearly exhibits comparable consistency between the
three methods.

In summary, for the given data sets the total Sobol second order indices TSI
produce the most accurate model predictions for the majority of cases. By varying
the values of N , the TSI model accuracy shows small fluctuations (measured by s
values) that are comparable to fluctuations observed by SVM-RFE or RF benchmark
methods.

5 Conclusion

In this paper we implemented Sobol sensitivity analysis to select important fea-
tures for the supervised data mining problem. We have proposed two algorithms for
importance scoring: one algorithm to compute importance scores for the individual
features and another one to compute importance scores for subsets of features. The
main advantage of our proposed approach is lower computational cost and higher
efficiency compared to many other existing algorithms. It can be applied for all types
of relationships (linear or nonlinear) between target variable and features. A concern
about the algorithm is that it estimates the importance of features with respect to the
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Table 2 Reduced datasets model accuracy

N (top N %
features
selected)

SVM-RFE RF TSI(RF) TSI(NN) TSI(SVM)

SYLVA: RMSE (all features) = 0.144

10% 0.103 0.09 0.09 0.085 0.091

20% 0.104 0.088 0.094 0.096 0.095

30% 0.104 0.1 0.094 0.102 0.099

40% 0.106 0.113 0.109 0.102 0.102

50% 0.117 0.118 0.117 0.113 0.11

s 0.005 0.012 0.01 0.009 0.006

HIVA: RMSE (all features) = 0.179

10% 0.163 0.165 0.166 0.168 0.163

20% 0.162 0.168 0.168 0.168 0.165

30% 0.161 0.175 0.173 0.173 0.168

40% 0.165 0.177 0.18 0.175 0.17

50% 0.168 0.181 0.182 0.176 0.17

s 0.003 0.006 0.006 0.003 0.003

BANK: RMSE (all features) = 0.252

10% 0.227 0.235 0.24 0.225 0.213

20% 0.21 0.236 0.239 0.224 0.217

30% 0.213 0.229 0.238 0.223 0.216

40% 0.216 0.229 0.23 0.225 0.222

50% 0.217 0.226 0.221 0.23 0.226

s 0.006 0.004 0.007 0.002 0.005

NOVA: RMSE (all features) = 0.242

10% 0.256 0.275 0.27 0.24 0.28

20% 0.24 0.241 0.259 0.221 0.26

30% 0.237 0.24 0.253 0.219 0.248

40% 0.234 0.24 0.246 0.217 0.238

50% 0.236 0.244 0.246 0.218 0.233

s 0.008 0.01 0.009 0.009 0.017

model objective function which means that if the modeling algorithm is not accurate
or overfitting, the Sobol approach may give misleading feature importances. The
authors intend to further investigate the robustness of the approach to the training
algorithm. As Example 3 has shown, the accuracy of the reduced model is higher
than the full feature set model. It is then possible to train the model on a subset of fea-
tures identified by a pre-processing algorithm and use the reduced model to compute
Sobol feature importances. In addition to increasing Sobol importance reliability and
efficiency, using reduced model to calculate importances reduces the computational
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cost of the method. Another possible approach to reduce the computational cost is
using Kolmogorov representation theorem [27] in which the model objective func-
tion can be expressed in an additive form of sub-functions, each as a single-variable
function. If the hypothesis of additive model is true, then the Sobol algorithm can be
simplified so as to require 2n model evaluations only.
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Basis Independence of Implicitly Defined
Hamiltonian Circuit Dynamics

Jon Pierre Fortney

Abstract The Bloch-Crouch formulation of LC-circuit dynamics is seen to be an
implicitly defined Hamiltonian system on a particular manifold. A particular basis
independent Dirac structure is shown to be equivalent to the hybrid input-output
representation of the Dirac structure used by Bloch and Crouch thereby allowing
circuit dynamics to be written in a basis independent fashion.

Keywords Dirac structures · Hamiltonian dynamics · Implicitly defined
Hamiltonian systems · Circuit theory · LCR circuits

Mathematics Subject Classification: 70H05 · 70H45 · 94C05 · 53D99 · 53Z05

1 Introduction

Bloch andCrouch [2] introduced a formulation of LC circuit dynamicswhich utilized
a Dirac structure associated with the circuit. Their formulation turned out to be an
implicity defined Hamiltonian system as introduced by van der Schaft, see for exam-
ple [5, 10]. We note that utilizing the concept of implicitly defined port-Hamiltonian
systems, also introduced by van der Schaft, one can extend the Bloch-Crouch formu-
lation to LCR circuit dynamics. However, in writing down the Dirac structure Bloch
and Crouch are implicitly specifying a basis.

In this paper we provide a basis independent form for this Dirac structure and
then show that it is in fact equivalent to the Bloch-Crouch basis dependent form.
Furthermore, nothing we do depends on the fact that the circuit is LC and so is also
applicable to the implicitly defined port-Hamiltonian formulation for LCR circuits.
Thus we show that the implicit (port-) Hamiltonian formulation of circuit dynamics
is, as one would expect, basis independent. This is particularly interesting due to
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recent work that illustrated the geometric relationship between implicitly defined
port-Hamiltonian systems and pseudo-gradient systems [7], thereby extending the
applicability of this work. This work is also interesting in a wider context where the
use of Dirac structures has been extended to Lagrangian mechanics [11, 12]. These
references also contains an extensive introduction to the history and background
of interconnected and implicit systems for both the Hamiltonian and Lagrangian
formalisms.

This paper is organized as follows. In part 2 we briefly review the definition of
Dirac structures on vector spaces and on manifolds. We then define implicit Hamil-
tonian systems. In part 3 we review the Bloch-Crouch formulation of circuit dynam-
ics. Our presentation is more geometrical than that of the original paper but makes
it easier to see that this formulation is an implicitly defined Hamiltonian system. In
part 4 we present a basis independent formulation of the Dirac structure utilized in
part 3 and then show that it is in fact equivalent to the basis dependent formulation.

2 Basic Definitions

Dirac structures were originally introduced byDorfman [6] and Courant [4] as simul-
taneous generalizations of both symplectic forms and Poisson structures. Given a
vector space V and its dual V ∗ we can define the following symmetric bilinear form
on V × V ∗.

〈
(v, α), (w, β)

〉
+ = 〈w, α〉 + 〈v, β〉

2

for all (v, α), (w, β) ∈ V × V ∗, where 〈·, ·〉 represents the canonical pairing between
a vector space and its dual.

Definition 2.1 A general Dirac structure on an n-dimensional vector space V
is a subspace D ⊂ V × V ∗ such that D⊥ = D where D⊥ = {(v, α) ∈ V × V ∗ |
〈(v, α), (w, β)〉+ = 0, ∀(w, β) ∈ D}.
We note here that a Dirac structure also satisfies an additional integrability condition,
see [5]. In our context this integrability condition is automatically satisfied and plays
no further role so we will not discuss it here.

Proposition 2.1 A general Dirac structure on an n-dimensional vector space V is a
subspace D ⊂ V × V ∗ such that (i) 〈v, α〉 = 0, ∀(v, α) ∈ D and (ii) dim(D) = n.

This proposition is occasionally encountered as the definition of a general Dirac
structure. While there are a number of different possible representations of Dirac
structures we will only concern ourself with that introduced and utilized by Bloch
and Crouch. The proof of this proposition is found in [2].
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Proposition 2.2 (Hybrid Input-Output Representation) Let V be an n-dimensional
vector spacewith W ⊂ V × V ∗ an n-dimensional subspace of V × V ∗ and J : W →
W ∗ a skew symmetric linear map. Then D = graph(J) is a Dirac structure on V .

The definition of Dirac structures on vector spaces can be readily extended to
manifolds. Dirac structures on manifolds turn out to be a subbundle of TM ⊕ T ∗M
which are pointwise Dirac structures on the tangent vector space. The same symmet-
ric bilinear pairing, evaluated pointwise on M , is used.

Definition 2.2 A general Dirac structure on a manifold M is a smooth vector sub-
bundle D ⊂ TMx ⊕ T ∗M such that D⊥ = D where D⊥ = {(v, α) ∈ TM ⊕ T ∗M |
〈(v, α), (w, β)〉+ = 0, ∀(w, β) ∈ D}.
Again we present only the pertinent representation of a Dirac structure on amanifold.

Proposition 2.3 (Hybrid Input-Output Representation) Let M be an n dimensional
manifold with a general Dirac structure D and W = V1 × V ∗

2 ⊂ TM ⊕ T ∗M an n
dimensional vector bundle over M, i.e., for all x ∈ M, W (x) = V1(x) × V ∗

2 (x) ⊂
TxM × T ∗

x M is an n dimensional vector space. Then there exists a skew-symmetric
linear map J : W → W ∗ such that

D =
{(

(v1, α2), (α1, v2)
)∣∣
∣(α1, v2) = J(v1, α2), (v1, α2) ∈ W

}
.

Conversely, if D is the above set for some skew-symmetric linear map J : W → W ∗
and some and W = V1 × V ∗

2 ⊂ TM ⊕ T ∗M a smooth n dimensional vector bundle
over M, then D is a general Dirac structure.

Finally we define implicit Hamiltonian systems as found in [1, 8].

Definition 2.3 Let D be a (general) Dirac structure on the manifold M and let
H ∈ C∞(M) be a smooth function on M called the Hamiltonian function. Then the
implicitHamiltonian systemonM corresponding toD andH , denotedby (M,D, H),
is defined by the specification that

(
ẋ, dH(x)

) ∈ D(x).

Thus implicitly definedHamiltonian systems can be utilized to define dynamics. Fur-
thermore, implicit Hamiltonian systems are generalizations of classical Hamiltonian
systems where the Dirac structure takes the place of the symplectic form.

3 Bloch-Crouch Formulation of LC Circuit Dynamics

In electrical engineering, Kirchhoff’s current law states that the algebraic sum of the
currents into or out of any node in an electrical circuit is zero. Kirchhoff’s voltage
law states that the algebraic sum of the voltages about any closed loop in an electrical
circuit is zero. The word voltage in this statement of Kirchhoff’s voltage law refers
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to the voltage associated with a branch and is more accurately understood as the
voltage drop across the branch. What is clear is that the network topology of the
circuit determines the actual set of equations given by Kirchhoff’s laws, thereby
allowing graph-theoretic concepts to be used to write down Kirchhoff’s laws.

A circuit can be represented as a connected graph G which consists of a set V of
vertices, also called nodes, and a set E of edges, also called branches. A maximal
tree T of G is a subgraph of G which is connected, contains all the nodes of G, and
has no loops. (In this paper the word loop is used to refer to what is called a circuit in
graph-theoretical language; theword circuit is reserved for electrical circuits.We also
generally use the word branch to refer to what is called an edge in graph-theoretical
language.) The branches of G which are contained in the maximal tree T are called
twigs and the branches contained in L = G \ T are called links. A fundamental cut
set associated with a given twig is the set C of links, along with the given twig, that
(a) when removed from G results in two disconnected graphs and (b) the removal
of all but any one of the branches of C results in the graph remaining connected. A
fundamental loop associated with a given link consists of the link along with the set
of twigs connecting the link’s nodes. The fundamental cut set associated with each
twig and the fundamental loop associated with each link is unique.

The fundamental loops and fundamental cut sets associated with an arbitrarily
chosen maximal tree can be used to give Kirchhoff’s voltage and current laws. In
a procedure explained fully in [3], one can find the fundamental cut-set matrix Q
and the fundamental loop matrix B associated with a maximal tree T . The entries of
both Q and B are −1, 1, or 0, depending on whether specific branches are included
in particular cut-sets or loops (zero or non-zero), and what their orientation with
respect to the cut-set or loop is (positive or negative). In essence, the matrices B and
Q encode the topology of the circuit. Furthermore, due to the topological relationship
between cut-sets and loops, these matrices are related to each other by B = −QT ,
also proved in [3].

Let vT and vL denote the twig and link voltages respectively and iT and iL denote
the twig and link currents respectively. It is then possible to write Kirchhoff’s laws
in terms of the graph-theoretic matrices Q and B as

[
vT
vL

]

=
[
I
Q

]

vT and

[
iT
iL

]

=
[
B
I

]

iL.

The above equations can be combined into

[
iT
vL

]

=
[
0 −QT

Q 0

] [
vT
iL

]

(1)

where the matrix is clearly a skew symmetric linear map. To simplify our exposition
we will make the reasonable assumption that Faraday’s laws are linear and time
invariant. Thus we have
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i(t) = C
dv(t)

dt
and v(t) = L

di(t)

dt

whereC and L are constants associatedwith the capacitors and inductors. Integrating
both sides we get q(t) = Cv(t) and φ(t) = Li(t) where q is charge and φ is flux.
Therefore we have q̇ = i and φ̇ = v.

The manifold on which the Bloch-Crouch formulation of circuit dynamics resides
is given by the set of all capacitor charges and inductor fluxes for the circuit which
we will write as M = {(qC

T , qC
L, φL

T , φL
L)}. For m ∈ M , m = (qC

T , qC
L, φL

T , φL
L), we

have the tangent space of M at the point m to be given by

TmM = {
(q̇C

T (m), q̇C
L(m), φ̇L

T (m), φ̇L
L(m))

}

= {
(iCT (m), iCL(m), vL

T (m), vL
L(m))

}
.

Recalling that currents and voltages are considered dual to each other (which is made
mathematically precise in the next section) we have

T ∗
mM = {

(vC
T (m), vC

L(m), i LT (m), i LL(m))
}
.

The Hamiltonian function H : M → R associated with a circuit is given by

H(qC , φL) =
∑

T

(qC
T )2

2CT
+

∑

L

(qC
L)2

2CL

+
∑

T

(φL
T )2

2LT
+

∑

L

(φL
L)2

2LL

where on the far rightwe have partitioned our charges andfluxes according towhether
the associated capacitors or inductors are on twigs or links. This in turn gives us

∂H

∂φL
T

∣
∣
∣
∣
m

= i LT (m),
∂H

∂φL
L

∣
∣
∣
∣
m

= i LL(m),

∂H

∂qC
T

∣
∣
∣
∣
m

= vC
T (m),

∂H

∂qC
L

∣
∣
∣
∣
m

= vC
L(m)

resulting in dH(m) ∈ T ∗
mM as expected. Notice that these equations are in fact the

integrated form of Faraday’s laws mentioned above.
We now show that for each m ∈ M Eq. (1) is the hybrid-input-output representa-

tion of a Dirac structure on TmM . By making a finer partition of the variables in (1)
we obtain
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⎡

⎢
⎢
⎣

iCT
i LT
vC
L

vL
L

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 0 −QT
11 −QT

21
0 0 −QT

12 −QT
22

Q11 Q12 0 0
Q21 Q22 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

vC
T

vL
T
iCL
i LL

⎤

⎥
⎥
⎦

which becomes, upon rearrangement,

⎡

⎢
⎢
⎣

vC
L
i LT
iCT
vL
L

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 Q12 Q11 0
−QT

12 0 0 −QT
22−QT

11 0 0 −QT
21

0 Q22 Q21 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

iCL
vL
T

vC
T
i LL

⎤

⎥
⎥
⎦ .

We shall name the skew-symmetric matrix above J. For each m ∈ M we define the
vector spaces

V1(m) =
{[

iCL
vL
T

]}

, V2(m) =
{[

iCT
vL
L

]}

,

V ∗
1 (m) =

{[
vC
L
i LT

]}

, V ∗
2 (m) =

{[
vC
T
i LL

]}

.

It is clear that TmM = V1(m) × V2(m) and T ∗
mM = V ∗

1 (m) × V ∗
2 (m) and W (m) =

V1(m) × V ∗
2 (m) ⊂ TmM × T ∗

mM . Thus J defines a skew-symmetric linear mapping
J(m) : W (m) → W ∗(m). The matrix J and the vector spaces W (m) and W ∗(m) are
independent of m ∈ M so by the above proposition we have the hybrid input-output
representation of a Dirac structure D on M .

By letting x1 = {(qC
L, φL

T )} and x2 = {(qC
T , φL

L)} we have

ẋ1 =
[
q̇C
L

φ̇L
T

]

∈ V1, ẋ2 =
[
q̇C
T

φ̇L
L

]

∈ V2,

∂H

∂x1
=

⎡

⎣
∂H
∂qC

L

T

∂H
∂φL

T

T

⎤

⎦ ∈ V ∗
1 ,

∂H

∂x2
=

⎡

⎣
∂H
∂qC

T

T

∂H
∂φL

L

T

⎤

⎦ ∈ V ∗
2 .

The specification (ẋ, dH) ∈ D then leads to

⎡

⎢
⎢
⎢
⎣

∂H
∂qC

L

T

∂H
∂φL

T

T

q̇C
T

φ̇L
L

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0 QL12 QL11 0
−QT

L12
0 0 −QT

L22−QT
L11

0 0 −QT
L21

0 QL22 QL21 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

q̇C
L

φ̇L
T

∂H
∂qC

T

T

∂H
∂φL

L

T

⎤

⎥
⎥
⎥
⎦

.

But these are exactly the system of equations one obtains from Kirchhoff’s and
Faraday’s laws and so are the dynamical equations for LC circuits. Hence LC cir-
cuit dynamics are described by an implicitly defined Hamiltonian system. This
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geometrical formulation can be readily extended to LCR circuits by utilizing implic-
itly defined port-Hamiltonian systems. The details of this will not be provided here.

4 Basis Independent Formulation ofD

Using concepts from algebraic topologywe present a basis free formulation ofKirch-
hoff’s laws. This formulation of Kirchhoff’s laws has been previously mentioned in
the literature, see for example Smale [9]. We show that this formulation is a Dirac
structure, an observation which we believe is new. Then we show a maximal tree of
the graph associated with the circuit induces a basis for this Dirac structure. With
this basis the hybrid input-output representation of the Dirac structure is obtained.

An electrical circuit has an associated graph G = (V, E) consisting of a collec-
tion of vertices, also called nodes, or 0-simplices, V = {x1, . . . , xn} and edges, also
called branches, or 1-simplices, E = {{xi , x j }

}
. Graphs of electrical circuit have the

property that every branch is part of a loop. The state a circuit is in at any given time
is determined by the currents ik , along each branch and the voltage drops, vk , across
each branch, where k indexes the branches. The voltage potential at each node is
measured relative to ground with the voltage drop being the difference between the
node voltages potentials. Implicit in measuring the currents along a branch and the
voltage drop across a branch is the fact that the branch must have an (arbitrary) orien-
tation assigned to them.We use [xi , x j ] to denote the directed branch {xi , x j }. Clearly
[xi , x j ] = −[x j , xi ]. No direction can be assigned to a point, but for consistency we
use [xi ] to denote the node {xi }.

We then define the vector spaces C1(G) = span
{[xi , x j ]|{xi , x j } ∈ E

}
and

C0(G) = span
{[xi ]|xi ∈ V

}
as formal sums over the reals. SinceCi (G), i = 0, 1, are

vector spaces we can define their dual spaces, Ci (G) = (Ci (G))∗, for i = 0, 1. Ele-
ments of C0(G), C1(G), C0(G), and C1(G) are called 0-chains, 1-chains, 0-cochains,
and 1-cochains of G respectively. Also, {[xi ]} {[xi , x j ]}, {[xi ]∗}, and {[xi , x j ]∗} are
called the standard bases of C0(G), C1(G), C0(G), and C1(G) respectively. A linear
mapping called the boundary operator ∂1 : C1(G) → C0(G) is defined on basis ele-
ments of C1(G) by ∂1([xi , x j ]) = [xi ] − [x j ]. (This is simply the pertinent special
case of the boundary operator from algebraic topology.) Its adjoint is a mapping
∂∗
1 : C0(G) → C1(G). Since ∂1 and ∂∗

1 are the boundary operators most relevant here
we will in general simply write them as ∂ and ∂∗,

C1(G)
∂∗←− C0(G)

C1(G)
∂−→ C0(G).

A circuit’s current is considered to be a vector i = [i1, . . . , ib]T in C1(G) with
respect to the standard basis. Thus currents are 1-chains. Note that as required an
orientation for each edge is provided in this formulation. Likewise, an electrical
circuit with n nodes has a voltage associated with each node. (This would be the
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voltage potential at the node with respect to ground.) Thus a circuit’s voltage can, in
a sense, be considered to be a vector v = [v1, . . . , vn]T in C0(G) with respect to the
standard basis. Note, this is not what ismost usually called the voltage in engineering.
A straightforward calculation shows that in ∂∗

1 (v) ∈ C1(G) the coefficient of each
basis element [xi , x j ]∗ in the terms of ∂∗

1 (v) is the voltage drop across the oriented
branch [xi , x j ]. Hence the voltage drops across branches are elements of C1(G)

and are thus 1-cochains. Thus currents and voltage drops are dual variables in a
mathematically precise way. It is these voltage drops which are referred to as simply
the voltage in engineering. In keeping with the traditional engineering terminology
and notation we will continue to abuse notation and denote the 1-cochains ∂∗

1 (v) by
v as well.

Kirchhoff’s current law (KCL) states that the algebraic sumof the currents into and
out of any node is identically zero which can be written as i ∈ Ker(∂1). Kirchhoff’s
voltage law (KVL) states that the algebraic sum of the voltages (really voltage drops)
around any closed path in a circuit is identically zero. One-cochains v for which this
is true are clearly in Ker(∂∗

2 ) ⊂ C1(G), where ∂∗
2 : C1(G) → C2(G) is the adjoint of

the boundary operator on 2-simplices. However, by choosing one node as “ground”
it can be seen that in the current situation Ker(∂∗

2 ) = Im(∂∗
1 ). This gives Ker(∂1) ⊕

Im(∂∗
1 ) ≡ Ker(∂) ⊕ Im(∂∗) as a basis independent formulation of Kirchhoff’s laws.

Next we show this space is a Dirac structure.

Theorem 4.1 D = Ker(∂) ⊕ Im(∂∗) is a Dirac structure.

Proof We first show 〈v, i〉 = 0 for all (i, v) ∈ Ker(∂) ⊕ Im(∂∗). There clearly exists
a c ∈ C0(G) such that v = ∂∗c. Hencewehave 〈v, i〉 = 〈∂∗c, i〉 = 〈c, ∂i〉 = 〈c, 0〉 =
0. We note that this is actually Tellegen’s theorem from electrical engineering. Next
we show condition dim(D) = n. By the fundamental theorem of linear algebra we
have that dim(Ker(∂)) + dim(Im(∂)) = dim(C1(G)). We also have that dim(Im(∂)) =
rank(∂) = rank(∂∗) = dim(Im(∂∗)). Combining we get that dim(Ker(∂) ⊕ Im(∂∗)) =
dim(C1(G)). Thus both conditions are satisfied andKer(∂) ⊕ Im(∂∗) is a Dirac struc-
ture. We note that in fact this proof holds for any ∂n . Thus we have Ker(∂n) ⊕ Im(∂∗

n )

is a Dirac structure for all n. �

Theorem 4.2 Let G be the graph associated with an electrical circuit. Then given
any maximal tree T of G, the set of links of T induce a basis on Ker(∂) and the set
of twigs of T induce a basis on Im(∂∗).

Proof Suppose that a circuit has graph G with n nodes and b oriented branches.
Any maximal tree on G has n − 1 twigs and l = b − (n − 1) links. Let [xik , x jk ],
1 ≤ k ≤ l, be the links and [xik , x jk ], l + 1 ≤ k ≤ b, be the twigs.
(a) links −→ linearly independent elements of ker(∂):

Between any two vertices ofG there exists a unique pathwhich lies inT . Existence
of such a path follows from the maximal tree being connected and containing all
vertices ofG. Suppose the path is not unique, then there are two paths onT connecting
the two vertices. This would give rise to a loop on T which contradicts the fact that
T contains no loops. Thus each link [xik , x jk ], together with the unique path on T
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between the vertices [xik ] and [x jk ] which constitute the boundary of the link, gives
a unique loop. In other words, for each k, 1 ≤ k ≤ l, we define the unique loop set
as the set of branches

Ck = { [xik , x jk ]︸ ︷︷ ︸
link

, [xil1 , x jl1
], . . . , [xiln(k)

, x jln(k)
]

︸ ︷︷ ︸
twigs on path between[xik ],[x jk ]

}
.

By an abuse of notation define Ck ∈ C1(G), 1 ≤ k ≤ l, by

Ck = [xik , x jk ] +
b∑

m=l+1

qkm[xim , x jm ]

where qkm = 0 if the twig [xim , x jm ] is not one of the twigs on the path between [xik ]
and [x jk ]. If [xim , x jm ] is one of the twigs on the path between [xik ] and [x jk ] then
qkm = +1 if, when transversing the loop, the orientation of the twig is the same as
that of the kth link and qkm = −1 if the orientation is opposite that of the kth link.
Furthermore, since each Ck , 1 ≤ k ≤ l, contains a term associated with a different
link then these Ck are linearly independent elements in C1(G). Since each of these
elements is a loop in G we have

∂
(
Ck
)

= ∂
(
[xik , x jk ] +

b∑

t=l+1

qkt [xit , x jt ]
)

= 0

for each 1 ≤ k ≤ l. In other words, these l = b − (n − 1) elements are in Ker(∂).
(b) twigs −→ linearly independent elements of Im(∂∗):

Here we first note that for each twig of T there exists a unique cut set, denoted
by Ck , l + 1 ≤ k ≤ b, of the graph G which consists of the one twig and some links.
To see this we note that by removing twig k from T we separate T into two disjoint
components Gk

I and Gk
T where the initial vertex of twig k is in Gk

I and the terminal
vertex of twig k is in Gk

T . We then remove all links that have an initial vertex in Gk
I and

a terminal vertex in Gk
T or that have an initial vertex in Gk

T and a terminal vertex in Gk
I .

The set of removed branches constitutes Ck . Since we constructed Ck its existence is
clear. Uniqueness is also obvious, for suppose there existed two different cut sets Ck

and C̃k associated with twig k. Since the two cut sets are different then, without loss
of generality, there must exist some links in Ck which are not in C̃k . But these links
connect the components Gk

I and Gk
T and hence C̃k can not be a cut set, a contradiction.

Therefore, for each k, l + 1 ≤ k ≤ b we have an associated cut set

Ck =
{

[xik , x jk ]︸ ︷︷ ︸
twig

, [xil1 , x jl1
], . . . , [xiln(k)

, x jln(k)
]

︸ ︷︷ ︸
links in cut set

}
.
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As above define Ck ∈ C1(G), l + 1 ≤ k ≤ b, by

Ck = [xik , x jk ]∗ +
l∑

m=1

rkm[xim , x jm ]∗,

where rkm = 0 if the link [xim , x jm ] is not in the kth cut set. If [xim , x jm ] is in the
cut set, then rkm = +1 if [xim ] ∈ Gk

I and [x jm ] ∈ Gk
T and rkm = −1 if [xim ] ∈ Gk

T and
[x jm ] ∈ Gk

I . Since each of these Ck contains a term for a different twig then it is clear
that they are linearly independent.

Next we show, for some fixed k, l + 1 ≤ k ≤ b that Ck ∈ Im(∂∗). To do this we
must find a 0-cochain ck = ∑n

m=1 c
k
m[xm]∗ ∈ C0(G) such that ∂∗(ck) = Ck . If this

is true, then for each i ∈ C1(G) we have 〈Ck, i〉 = 〈∂∗(ck), i〉 = 〈ck, ∂(i)〉. Suppose
that [xik̃ , x jk̃ ] is a basis element ofC1(G) associated with one of the twigs of T . Then

〈
Ck, [xik̃ , x jk̃ ]

〉
= [xik , x jk ]∗[xik̃ , x jk̃ ] = δk

k̃
,

where δk
k̃

= 1 if k̃ = k and 0 otherwise, and

〈
Ck, [xik̃ , x jk̃ ]

〉
=

( n∑

m=1

ckm[xm]∗
)(

[xik̃ ] − [x jk̃ ]
)

= ckik̃ − ckjk̃ .

Thus we have ckik̃ − ckjk̃ = δk
k̃
. Next, for links [xil̃ , x jl̃ ] ∈ Ck , where here Ck denotes

the cut set, we have

rkl̃ =
〈
Ck, [xil̃ , x jl̃ ]

〉

=
( n∑

m=1

ckm[xm]∗
)(

[xil̃ ] − [x jl̃ ]
)

= ckil̃ − ckjl̃ .

For links [xil̃ , x jl̃ ] /∈ Ck , 0 =
〈
Ck, [xil̃ , x jl̃ ]

〉
= ckil̃ − ckjl̃ . For a fixed k, l + 1 ≤ k ≤ b,

we have the following system of equations:

ckik − ckjk = 1 :One equation, cut set Ck twig

ckik̃ − ckjk̃ = 0 : n − 2 equations, non-cut set Ck twigs

ckil̃ − ckjl̃ = ±1 : |Ck | − 1 equations, cut set Ck links

ckil̃ − ckjl̃ = 0 : b − (n − 1) − (|Ck | − 1)

equations, non-cut set Ck links.
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Thus for our fixed k we have b equations in the variables ckm where 1 ≤ m ≤ n and
b ≥ n since the number of branches in an electrical network is greater than or equal
to the number of nodes. Thus we have either an equal number of equations and
variables or more equations than variables. It is easy to see that if we let ckm = 1 for
all [xm] ∈ Gk

I and ckm = 0 for all [xm] ∈ Gk
T this constitutes a non-trivial solution set

for this system of equations.
Consider first the one equation ckik − ckjk = 1 associated with the twig [xik , x jk ]∗ in

Ck . This twig was in fact used to determine the sets Gk
I and Gk

T and clearly [xik ] ∈ Gk
I

and [x jk ] ∈ Gk
T . Thus, with the choice made above we have ckik − ckjk = 1 − 0 = 1,

satisfying the first equation. For the next n − 2 equations, associated with the non-cut
set Ck twigs, then it is clear that these twigs either have both of their nodes in Gk

I
or have both of their nodes in Gk

T . In the fist case ckik̃ − ckjk̃ = 1 − 1 = 0 and in the

second case ckik̃ − ckjk̃ = 0 − 0 = 0.

For the following |Ck | − 1 equations consider how the sign of the rkl̃ were chosen.
The sign was positive if the initial and terminal nodes of the link are in the same sets
as the initial and terminal nodes of the kth twig respectively, and negative otherwise.
In the first case we have ckil̃ = 1 and ckjl̃ = 0 giving us ckil̃ − ckjl̃ = 1 − 0 = 1 which is

what we wanted. In the second case we have ckil̃ = 0 and ckjl̃ = 1 giving us ckil̃ − ckjl̃ =
0 − 1 = −1 which is again what we wanted. Finally, it is clear that for the b − (n −
1) − (|Ck | − 1) equations associated with the non-cut set Ck links that those links
either have both of their nodes in Gk

I or have both of their nodes in Gk
T . In the fist case

we have ckil̃ − ckjl̃ = 1 − 1 = 0 and in the second case we have ckil̃ − ckjl̃ = 0 − 0 = 0.

Thus we have found a ck such that ∂∗(ck) = Ck . This process can be carried out for
each l + 1 ≤ k ≤ b, thus giving a 0-cochain in C0(G) which is the pre-image the
1-cochain Ck . Therefore we have that the set of Ck , l + 1 ≤ k ≤ b, is a linearly
independent set of Im(∂∗).

Therefore, from part (a) we have b − (n − 1) linearly independent elements of
Ker(∂) and from part (b) we have n − 1 linearly independent elements of Im(∂∗).
Together they are b linearly independent elements of Ker(∂)⊕Im(∂∗). But by above
lemma we have that dim(Ker(∂)⊕Im(∂∗)) = dim(C1(G)) = b. Thus we have that
these b elements are a basis for Ker(∂)⊕Im(∂∗) and hence the elements from part
(a) are a basis for Ker(∂) and the elements from part (b) are a basis of Im(∂∗). So
we actually have links induce a basis of

{Ck
∣
∣1 ≤ k ≤ l

}
of Ker(∂) and twigs induce

a basis of
{Ck

∣
∣l + 1 ≤ k ≤ b

}
of Im(∂∗). �

Corollary 4.1 A hybrid input-output representation of the Dirac structure Ker(∂) ⊕
Im(∂∗) is induced by the above basis.

Proof By property (i) of the above proposition on Dirac structures we have that the
basis elements of Im(∂∗) are constraint one-forms on C1(G). That is, 〈Ck, i〉 = 0,
l + 1 ≤ k ≤ b give n − 1 constraint equations on i ∈ C1(G) that indicate when i ∈
Ker(∂).Writing Ck as a row vector with respect to the standard basis ofC1(G) and i as
a column vector with respect to the standard basis of C1(G) we have 〈Ck, i〉 = Ck · i
for each k, l + 1 ≤ k ≤ b. This gives
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i ∈ Ker(∂) ⇔
⎡

⎢
⎣

←− Cl+1 −→
...

←− Cb −→

⎤

⎥
⎦

⎡

⎢
⎣

i1
...

ib

⎤

⎥
⎦ = 0

⇔
[
I
...R

] [ iT
iL

]

= 0 ⇔
[
iT
iL

]

=
[−R

I

]

iL

where the identity matrix I and the matrix R have the appropriate size. (The matrix
−R here is B in section three.) We also note that this is equivalent to writing KCL
with respect to the standard bases of C1(G).

Similarly, the basis elements of Ker∂ are constraint vectors on C1(G). That is,
〈v, Ck〉 = 0, 1 ≤ k ≤ l, gives l constraint equations on v ∈ C1(G) that indicate when
v ∈ Im(∂∗). Writing Ck and v with respect to the standard basis as above we have
〈v, Ck〉 = v · Ck for each k, 1 ≤ k ≤ l. This gives

v ∈ Im(∂∗) ⇔
⎡

⎢
⎣

←− C1 −→
...

←− Cl −→

⎤

⎥
⎦

⎡

⎢
⎣

v1
...

vb

⎤

⎥
⎦ = 0

⇔
[
Q

...I
] [

vT
vL

]

= 0 ⇔
[

vT
vL

]

=
[

I
−Q

]

vT

where the identity matrix I and the matrix Q have the appropriate sizes. (The matrix
Q here is negative of the one in section three.) We also note that this is equivalent to
writing KVL with respect to the standard bases of C1(G).

Recalling that the sum of the voltages drops around any closed loop is zero, we
consider the same closed loops that were constructed in (a) of the proof of the above
theorem we have that

0 = v1 +
b∑

t=l+1

q1tvt , . . . 0 = vl +
b∑

t=l+1

qltvt

⇒ [v1, . . . , vl ]T = −Q[vl+1, . . . , vb]T
⇒ vL = −QvT .

Nowsuppose that [v1, . . . , vb]T = ∑b
k=1 vk[xik , x jk ]∗ and [ṽl+1, . . . , ṽb]T = ∑b

k=l+1
ṽkCk represent the same current in Im(∂∗). Setting them equal we have
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b∑

k=1

vk[xik , x jk ]∗ =
b∑

k=l+1

ṽkCk

⇒
l∑

m=1

vm[xim , x jm ]∗ +
b∑

k=l+1

vk[xik , x jk ]∗

=
b∑

k=l+1

ṽk

(
[xik , x jk ]∗ +

l∑

t=1

rkt [xit , x jt ]∗
)

⇒ vk = ṽk, l + 1 ≤ k ≤ b, and

vm =
b∑

k=l+1

ṽkrkm, 1 ≤ m ≤ l.

The last equation gives us that [v1, . . . , vl ]T = RT [vl+1, . . . , vb]T , or vL = RT vT .
Thus we have RT = −Q. By combining this with the above equations, and by rela-
beling Q as −Q, we obtain Eq. (1), the hybrid input-output representation of the
Dirac structure on the vector space C1(G). �

The Dirac structure Ker(∂) ⊕ Im(∂∗) obtained from Kirchhoff’s laws is the basis
independent formulation of the Dirac structure originally used by Bloch and Crouch.
We define theDirac structureD onM byD(m) = Ker(∂) ⊕ Im(∂∗), ∀m ∈ M which
allows the implicitly defined Hamiltonian formulation of circuit dynamics, as spec-
ified by (ẋ, dH) ∈ D, to be expressed independent of basis.
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On a New Class of Variational Problems

Hichem Hajaiej

Abstract In this paper, we study a class of discrete fractional variational problems
modeling some phenomena arising in electron transports in bipolymers like organic
semi-conductors, molecular crystals and DNA. For some non-linearities covered by
our class of functionals, the underlying PDEsmodel Ferro-Magnets and spin glasses.
They also appear in the approximation of the Bose-Einstein condensation.

Keywords Fractional ·Laplacian ·Discrete ·Minimization ·Constraints · Inequal-
ities

1 Introduction

Fractional differential equations involving the fractional Laplacian (−�)s, 0 < s <

1, arise in many fields; medicine, geology, hydrology, mathematical physics and
mathematical biology; [1, 3, 4, 6–11] and references therein. The model case of
nonlinear fractional Schrödinger equations describing the above problems is:

i∂t�(t, x) + (−�)s�(t, x) + f (|x|, |�(t, x)|) = 0
�(0, x) = �0(x).

}
(1.1)

There are many interesting underlying problems related to (1.1), especially the study
of existence and uniqueness of the solutions. The ones which are of particular interest
are the, so called, standing waves, i.e., �(t, x) = e−iλtu(x). Such � solves (1.1) if
and only if u is a solution of the following fractional elliptic equation:

(−�)su + f (|x|, |u|) + λu = 0, (1.2)

where λ is a Lagrange multiplier.
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Ground state solutions of (1.2) are obtained by minimizing the following fractional
constrained variational problem:

Ic = inf{E(u) : u ∈ Sc} (1.3)

E(u) = 1

2
|∇su|22 −

∫

RN

F(|x|, u)dx,

|∇su|22 = CN,s

∫

RN

∫

RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy, CN,s = (2s−1s/πN/2 �(
N + s

2
)/�(1 − s

2
))

F(r, t) =
∫ t

0
f (r, p)dp and Sc =

{

u ∈ Hs(RN ))

∫

RN

u2 = c2
}

.

Solutions of (1.3) are the best candidates to guarantee the orbital stability of the
corresponding standing waves, which is one of the most important properties that
one has to investigate for (1.1) due to its tight connections to applications of this
fractional nonlinear Schrödinger equation.

(1.3) constitutes in itself a branch of nonlinear analysis as shown by the numerous
articles dedicated to this topic during the last decades. In many relevant cases, it is
crucial to derive some qualitative and quantitative properties of the minimizers of
(1.3) before studying their orbital stability. However in some situations, one has to
model (1.3) and then to numerically get the desired informations: This is the general
scheme to achieve this goal.

Step 1: First functions and functionals are discretized by replacingRN by centered
balls in zero, by replacing derivatives by finite differences and by restricting the
function spaces to finite dimensional spaces.

Step 2: The next step consists of analyzing the solutions of (1.3) of finite differ-
ence/finite element problems; apriori bounds, asymptotics, symmetry, radiality...

Step 3: In the last step, algorithms are designed to compute numerical approxi-
mations of solutions of the discretized problems.

In this paper, we consider a one-dimensional lattice hZ with a mesh size h > 0.
We denote xm = hm with m ∈ Z and �h : R × hZ → C. Then (1.1) becomes in the
discrete setting:

⎧
⎪⎪⎨

⎪⎪⎩

i d
dt�h(t, xm) = h

∑

n �=m

�h(t, xm) − �h(t, xn)

|xm − xn|1+2s
+

f (|xm|, |�h(xm)|)
�h(0, xm) = �0

h(xm).

(1.4)

Here the fractional power s can also be interpreted as a fixed parameter controlling
the decay behavior of the lattice interaction; [3, 11, 12].
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In [3], the authors have considered the cubic nonlinear Schrödinger equation (1.4) in
the special case f (r, t) = |t|2t;N = 1. More precisely, they have studied (see 2.1):

⎧
⎪⎪⎨

⎪⎪⎩

i d
dt uh(t, xm) = 1

β(h)

∑

n �=m

J|n−m| [uh(t, xm) − uh(t, xn)]
±|uh(t, xm)|2 uh(t, xm)

uh(0, xm) = uh(xm),

where xm = mh, Jn = |n|1−2s and β(h) = h2s.
(1.4) can also be viewed as the model of quantum particles on a lattice with

repulsive or self-interactions (depending on the sign of f ), [3]. When h → 0+, one
does expect that �h tends in some sense to the solution �(t, x) of (1.1).

When this happens, the justification that (1.4) models perfectly (1.1) is excellent.
These kind of simulations are very complicated because of the nonlocal properties
of the operator involved. However, some promising progress has been recently made
in this direction [4].

Now as indicated in Step 1 above, let� be a centered interval in zero and consider
a regular step size (xm = hm, xm+1 − xm = h).

Then discrete standing waves of (1.4) solve the following problem:

∑

x∈�h

u(x + h) + u(x − h) − 2u(x)

h1+2s
+ f (|x|, |u|) + λu = 0. (1.5)

The corresponding discretized energy functional is:

Jh(u) =
∑

x∈�h

{1
2
|∇s

hu|2 − F(|x|, u)}h,

where�h consists of the points of regular mesh of steps h that belong to the centered
interval � and:

|∇s
hu|22 =

∑

k,�

|u(xk) − u(x�)|2
|k − �|1+2sh2s

. (1.6)

Then an equivalent formulation of the discretized constrained variational problem is:

Ich = inf

{

Eh(uh) :
∑

m∈Z
u2h(xm)h = c2

}

(1.7)

Eh(uh) = 1

2
|∇s

huh|22h −
∑

m∈Z
F(|xm|, uh(xm))h
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for uh a lattice function defined on hZ. The more one knows about the qualitative
properties of solution of (1.7), the more efficient and less difficult is the design of
algorithms.

Very recently, the author has established optimal assumptions under which all
the minimizers of the continuous constrained variational problem (1.3) are Schwarz
symmetric (i.e. radial and radially decreasing); [3.4]. His method hinges on the
following rearrangement inequalities:

|∇su
∗|2 ≤ |∇su|2 (1.8)

|u|2 = |u∗|2 (1.9)

∫

RN

F(|x|, u)dx ≤
∫

RN

F(|x|, u∗)dx (1.10)

where u∗ is the Schwarz rearrangement of u, [10].
The main goal of the present paper is to extend the results of [4] to the discrete

case. The key step to reach this objective is to prove (1.8) to (1.10) in this setting:

∑

k,�∈Z

|u∗
h(xk) − u∗

h(x�)|2
|k − �|1+2s

≤
∑

k,�∈Z

|uh(xk) − uh(x�)|2
|k − �|1+2s

(1.11)

∑

k∈Z
u2h(xk) =

∑

k∈Z
(u∗

h)
2(xk) (1.12)

∑

k∈Z
F(|xk|, uh(xk)) ≤

∑

k∈Z
F(|xk|, u∗

h(xk)) (1.13)

(u∗
h) denotes the discrete Schwarz symmetrization of uh, [Definition 2.3]. Amazingly

the situation in the discrete setting is very intricate and Challenging. This is due to
the appearance of some unexpected phenomena in this kind of problems. In fact Mc
Kenna and Reichel have proved in [5] that critical points of a class of discretized
variational problems do not generally inherit the same symmetry properties as the
critical points of the corresponding continuous problems. More precisely, they were
able to show that unlike the continuous case, there are spurious situations in the
discrete one, i.e., solutions with no relation to the ones in the continuous setting.

In this work, we will show that such situations cannot occur in our context thanks
to the rearrangement inequalities (1.11)–(1.13). Moreover we will establish cases
of equality in (1.11) and (1.13). Therefore, we are able to determine hypotheses
on F and s for which all the minimizers of (1.7) are Schwarz symmetric (Theorem
4.1). Proving that solutions of the discretized constrained variational problem (1.7)
inherit symmetry and monotonocity properties is extremely important for the design
of numerical Scheme; [2]. It also implies that we need only to solve numerically
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these problems on a quarter region instead of the full one. this considerably cuts
down the computational cost.

Our paper is organized as follows. In the next section, we give some definitions
and preliminary results. In Sect. 3, we will prove (1.11)–(1.13). In the last section, we
will show that these inequalities are extremely helpful to prove that all theminimizers
of (1.7) are Schwarz symmetric.

From now on h is a fixed stepsize and for m ∈ Z xm = hm.

2 Notations and Preliminaries

2.1 Discrete Function Spaces

Definition 2.1 For sequences uh, vh : hZ → R, we define:

(uh, vh)L2
h

= h
∑

m∈Z
uh(xm)vh(xm),

‖uh‖2L2
h

= h
∑

m∈Z
u2h(xm).

And more generally for 1 ≤ p < ∞, we define:

‖uh‖Lp
h
= (h

∑

m∈Z
|uh(xm)|p)1/p (2.1)

Lp
h = {uh ∈ R

hZ, ‖u‖Lp
h
< +∞} is a complete Banach space

R
hZ = {f : hZ → R}.

For uh ∈ L2
h , we define its Fourier transform ûh : [−π,π] → C by

ûh(k) = 1√
2π

∑

m∈Z
uh(xm)e−imk .

Since uh ∈ L2
h , it follows that ûh ∈ L2([−π,π]) and that

uh(xm) = 1√
2π

∫ π

−π

ûh(k)e
imkdk.

Using Parseval’s identity, we obtain:

(uh, vh)L2
h
= h

∫ π

−π

ûh(k)v̂h(k)dk.
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Thanks to this observation, we can introduce the following fractional Sobolev norm
for lattice functions uh ∈ L2

h : Let 0 ≤ s ≤ 1 be given, we define ‖uh‖Hs
h
for uh ∈ L2

h
by setting

‖uh‖2Hs
h
= h

∫ π

−π

(1 + h−2s|k|2s)|ûh(k)|dk. (2.2)

Obviously ‖uh‖H0
h

= ‖uh‖L2
h
and ‖u‖Hs

h
< ∞ for any uh ∈ L2

h .

Definition 2.2 The L2
h norm of the fractional gradient of a lattice function uh is

defined by:

‖∇suh‖2L2
h
=

∑

k∈Z

∑

�∈Z

|uh(xk) − uh(x�)|2
|xk − x�|1+2s

1

h2s+1
. (2.3)

2.2 Discrete Functional Inequalities

First let us recall, for the convenience of the reader, that Sobolev embeddings are
still valid in the discrete setting. In our context, we will need the following ones: For
s < 1

2 , we have:

Hs
h is continuously embedded inLp+2

h for p < 4s (2.4)

Hs
h(Z̃) is compactly embedded inL�+2

h (Z̃) for p < 4s and Z̃ is a bounded lattice ofZ.

(2.5)
Discrete fractional Gagliardo-Nirenberg Inequality:

Following the proof of [3, Lemma 3.2], we can easily prove that:

‖uh‖L�+2
h

≤ K‖∇suh‖θ
L2
h
‖u‖1−θ

L2
h

(2.6)

for any � < 4s, θ = �

2s(� + 2)
.

2.3 Schwarz Symmetrization in hZ

Definition 2.3 If uh : hZ → R+ is bounded from above, the discrete Schwarz sym-
metrization of uh is the unique function u∗

h : hZ → R+ such that:

1. For all k ≥ 0 : u∗
h(xk) ≥ u∗

h(x−k) ≥ u∗
h(xk+1).

2. For all t ∈ R : #{k ∈ Z : u∗
h(xk) > t} = #{k ∈ Z : uh(xk) > t}.
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We can define explicity u∗
h by the following formula:

u∗
h(xk) =

{
sup{t ∈ R : #{� ∈ Z : uh(x�) > t} ≤ 2|k| + 1 if k ≤ 0
sup{t ∈ R : #{� ∈ Z : uh(x�) > t} ≤ 2k if k ≥ 0

.

The construction of u∗
h goes thus by taking for u∗

h(0) the maximum value of uh, for
u∗
h(h) the second largest value of uh, u∗

h(−h) the third one and so on.

Definition 2.4 A function uh : hZ → R+ is admissible if #{� ∈ Z : uh(x�) ≥ t} <

∞ for all t > 0.

Remark If uh ∈ Lp
h for 1 < p < ∞ and u is non−negative, then u is admissible.

Lemma 2.5 For every t > 0 then:

#{k ∈ Z, uh(xk) = t} = #{k ∈ Z : u∗
h(xk) = t}.

Proposition 2.6 (Cavalieri’s principle in the discrete setting
Let f : R+ → R+, uh : hZ → R+ be admissible.

If f (0) = 0, then: ∑

k∈Z
f (uh(xk)) =

∑

k∈Z
f (u∗

h(xk)). (2.7)

Proof We have:

∑

k∈Z
f (uh(xk)) =

∑

t

f (t)#{k ∈ Z : uh(xk) = t} + f (0) # {k ∈ Z : uh(xk) = 0}.

The analogous happens for u∗
h and we can conclude using Lemma 2.5 and the fact

that f (0) = 0.

Corollary 2.7 If uh ∈ Lp
h and uh is non-negative, then u∗

h ∈ Lp
h and

‖uh‖Lp
h
= ‖u∗

h‖Lp
h
. (2.8)

Now we need to prove some preliminary results about approximation of a Schwarz
rearrangement u∗

h of uh by repeated polarizations. This will be crucial to establish
the discrete symmetrization inequalities (1.11) and (1.13). We will use some ideas
and techniques developed by the author in [10] in the continuous setting. Let us first
define the polarization in the discrete setting.

Definition 2.8 The set of semi finite open intervals whose boundary is contained in
hZ/2 is denoted byHh = [ah/2,+∞[a ∈ Z. ForH ∈ Hh, the reflexion with respect
to ∂H is denoted by σH . Note that if H ∈ Hh,σH(hZ) = hZ.

Definition 2.9 The polarization of uh : hZ → R+ with respect to H ∈ Hh is the
function uHh : hZ → R+ defined by:
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uHh (xk) =
{
max{uh(xk), uh(σH(xk)) if xk ∈ hZ ∩ H
min{uh(xk), uh(σH(xk)) if xk ∈ hZ\H.

Proposition 2.10 Let uh : hZ → R+ and vh : hZ → R+ be admissible.
If uhvh ∈ L1

h and uHh v
H
h ∈ L1

h, then

∑

k∈Z
uh(xk)vh(xk) ≤

∑

k∈Z
uHh (xk)v

H
h (xk). (2.9)

Moreover if vh = vHh and there is equality in (2.9), then

uHh (xk) = uh(xk) and uHh (σH(xk)) = uh(σH(xk))

for any xk ∈ hZ ∩ H such that vh(xk) > vh(σH(xk)).

Proof For any xk ∈ hZ ∩ H:

uh(xk)vh(xk) + uh(σH(xk))vh(σH(xk)) ≤
uHh (xk)vHh (xk) + uHh (σH(xk))vHh (σH(xk)).

(2.10)

Summing these inequalities and noticing that uHh (xk)vHh (xk) = uh(xk)vh(xk) for xk ∈
hZ ∩ /H, we obtain (2.9).

In case, we have equality in (2.9), we have also equality in (2.10) for xk ∈ hZ ∩ H.
But by our assumption on v, this means that uh(σH(xk)) ≤ uh(xk) for every xk ∈
hZ ∩ H ⇒ uh = uHh .

For the latter, we will need two particular type of polarizations.

Definition 2.11 H+ =]0,+∞[,H− =] − ∞, h
2 [ so that:

uH+
h (xk) =

{
max(uh(xk), uh(xk)) if k ≥ 0
min(uh(xk), uh(xk)) if k ≤ 0

(2.11)

uH−
h (xk) =

{
max(uh(xk), uh(x1−k)) if k ≤ 0
min(uh(xk), uh(x1−k)) if k ≥ 1

. (2.12)

The aim of the following paragraph is to show that u∗
h is a limit of iterated

polarization. For uh : hZ → R+, define Thuh = (uH−
h )H+ . Iterating Th, one gets

u, uH−H+ , uH−H+H−H+ we shall prove that Tn
h uh goes to u

∗
h as n → ∞.

Proposition 2.12 The sequence (Tn
h uh)n≥0 is precompact in (Xh, d), where the

metric d is defined by

d(uh, vh) =
∑

k∈Z

|uh(xk) − vh(xk)|
1 + 2|k||uh(xk) − vh(xk)| .
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Moreover, for any cluster point vh:

#{k ∈ Z : vh(xk) > t} = #{k ∈ Z : uh(xk) > t}

for any uh admissible and any t > 0.

Proof Xh = {uh : hZ → R+} endowed with the metric d which is a complete metric
space:

uh,n(xk) → xh(xk) ∀ k ∈ Z ⇔ d(uh,n, uh) → 0.

Now first observe that by induction on n ≥ 0, we certainly have that

inf
|�|≤|k|

uh(x�) ≤ (Tn
h uh)(xk) ≤ sup

|�|≥|k|
uh(xk).

The precompactness then follows by a standard diagonal argument.
Let vh be a cluster point of the sequence (Tn

h uh). Assume that T
nj
h uh(xk) → vh(xk)

∀ k ∈ Z. Then:

#{k ∈ Z : uHh (xk) > t} = #{k ∈ Z : uh(xk) > t}; ∀t > 0.

Therefore for any n ≥ 0:

{k ∈ Z : (Tn
h uh)(xk) > t} = #{k ∈ Z : uh(xk) > t}; ∀t > 0.

This implies that:
#{k ∈ Z : vh(xk) > t} ≤

≤ lim�→∞#{k ∈ Z : uh(xk) > t}; ∀t > 0.

For the converse inequality, let A > 0 and note that:

#{k ∈ Z : |k| ≤ A and uHh (xk) ≥ t + 1

A
} ≥

≥ #{k ∈ Z : |k| ≤ A and uh(xk) ≥ t + 1

A
},

hence

#{k ∈ Z : |k| ≤ A and (Tn
h uh)(xk) ≥ t + 1

A
} ≥

#{k ∈ Z : |k| ≤ A and uh(xk) ≥ t + 1

A
}; ∀t > 0.
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And we can conclude by letting A tend to infinity that

#{k ∈ Z : vh(xk) ≥ t} = #{k ∈ Z : uh(xk) ≥ t}; ∀t > 0.

Proposition 2.13 If uh : hZ → R+ is admissible, then:

Tn
h uh(xk) → u∗

h(xk) for every k ∈ Z.

Proof WeknowbyProposition 2.12 that (Tn
h uh)n≥0 is precompact in (Xh, d). Assume

that T
nj
h uh(xk) → vh(xk) for every k ∈ Z. We need to prove that vh = u∗

h.
First not that for any k ≥ 0 : Tn

h uh(xk) ≥ Tn
h uh(x−k) so v(xk) ≥ v(x−k).

For k ≥ 0, � ∈ Z set w�(xk) =
{
1 if � ≤ k
0 if � > k

wH− = w, and by the previous proposition

∑

�∈Z
(T

nj
h uh)

H−(x�)wk(x�) ≤
∑

�∈Z
vh(x�)wk(x�).

Letting j → ∞, one gets

∑

�∈Z
vH−
h (x�)wk(x�) ≤

∑

�∈Z
vh(x�)wh(x�)

since σH(x−k) = xk+1 one has wk(x−�) = wk(σH(x−�)).
Thus using cases of equality established in Proposition 2.10, we can conclude.

3 Discrete Symmetrization Inequalities

Definition 3.1

• A function G : R × R → R is supermodular if:

G(x + x0, y + y0) + G(x, y) ≥ G(x, y + y0) + G(x + x0, y) (3.1)

for any x, y ∈ R, x0, y0 > 0.
• A function K : |hZ| × R+ → R is |hZ| supermodular (|hZ| = hN) if

K(|(m + m0)h|, y + y0) + K(|mh|, y) ≥ K(|mh|, y + y0) + K(|(m + m0)h|, y)
(3.2)

for any m ∈ Z, y ∈ R+, m0 ∈ N, y0 > 0.

We say that G is strictly supermodular if (3.1) holds true with a strict sign. The
function K is hZ strictly supermodular when (3.2) holds with a strict sign.



On a New Class of Variational Problems 101

In the sequel, we will make a frequent use of the following property : If uh is
admissible:

uh = u∗
h ⇔ uh = uHh ∀ σH ∈ H. (3.3)

Theorem 3.1

(i) Let G : R+ × R+ → R be a supermodular function then:

∑

k∈Z
G(uh(xk), vh(xk)) ≤

∑

k∈Z
G(uHh (xk), v

H
h (xk)) (3.4)

for any admissible functions uh and vh.
If vh = vHh and G is strictly supermodular, then equality holds true in (3.4) if and
only if uh = uHh .

(ii) If in addition G(., .) is continuous, non-decreasing with respect to each variable
and

∑

k∈Z
G(u∗

h(xk), v
∗
h(xk)) < ∞ then we have

∑

k∈Z
G(uh(xk), vh(xk)) ≤

∑

k∈Z
G(u∗

h(xk), v
∗
h(xk)) (3.5)

for any admissible function uh.
If vh = v∗

h and G is strictly supermodular, then equality holds in (3.5) if and only
if uh = u∗

h.

Proof

(i) By the supermodularity of G, we certainly have for any xk ∈ hZ ∩ H that:

G(uh(xk), vh(xk)) +G(uh(σH(xk)), vh(σH(xk))
≤ G(uHh (xk), vHh (xk)) + G(uHh (σH(xk)), vHh (σH(xk)).

(3.6)

Summing up this inequality and noticing that uHh (xk)vHh (xk) = uh(xk)vh(xk) for
any xk ∈ hZ ∩ ∂H, we obtain (3.4).
Now in case we have equality in (3.3), we will also have equality in (3.6) for
any xk ∈ hZ ∩ ∂H by the strict supermodularity of G. Now since we are also
assuming that vh = vHh , it follows that

uh(σH(xk)) ≤ uh(xk) ∀ xk ∈ hZ ∩ H; i.e. , uh = uHh . (3.7)

(ii) By the continuity and the monotonicity of G, (3.5) follows immediately from
(3.4) by applying the Theorem ofmonotone convergence.More precisely if (Tn

uh)

is the sequenceof iterated polarizations constructed inSect. 2,weobviously have:



102 H. Hajaiej

∑

k∈Z
G(uh(xk), vh(xk)) ≤

∑

k∈Z
G(Tuh(xk),Tvh(xk)) ≤ ... ≤

∑

k∈Z
G(Tn

uh(xk),T
n
vh(xk))

(3.8)

Thus letting n go to infinity, the result follows and we certainly have

∑

k∈Z
G(uh(xk), vh(xk)) ≤

∑

k∈Z
G(Tuh(xk),Tvh(xk)) ≤ ... ≤

∑

h∈Z
G(u∗

h(xk), vh(xk)).

(3.9)
Now if we have equality in (3.5), we will certainly have equality in (3.9):

∑

k∈Z
G(uh(xk), vh(xk)) =

∑

k∈Z
G(Tuh(xk),Tvh(xk)) = ... =

∑

k∈Z
G(u∗

h(xk), v
∗
h(xk)).

But we are supposing that vh = v∗
h ⇒ vHh = vh ∀ H. Thus using cases of equality of

part (i), it follows that uh = uHh ∀ H, which is equivalent to say that uh = u∗
h by (3.3).

Remark Hypotheses on G used in part (ii) can be relaxed.
In fact, it is sufficient to suppose that G is supermodular and that

∑

k∈Z
G(u∗

h(xk), 0)

and
∑

k∈Z
G(0, v∗

h(xk)) < ∞, since G̃(s1, s2) = G(s1, s2) − G(s1, 0) − G(0, s2) satis-

fies all the assumptions of Theorem 3.1. Therefore the monotonicity of the function
with respect to each variable can be removed.

Theorem 3.2 If F is a function: hN × R+ → R satisfying

1. F(|xm|, .) is continuous for any m ∈ Z.
2. −F is |hZ| supermodular.
3.

∑

k∈Z
F(|xk|, 0) < ∞, then

∑

k∈Z
F(|xk|, uh(xk)) ≤

∑

k∈Z
F(|xk|, u∗

h(xk)) (3.10)

for any admissible uh.

Moreover if −F is strictly |hZ| supermodular and we have equality in (3.10), then
uh = u∗

h.

Proof the proof is identical to the one of the previous result.

Theorem 3.3 (Discrete fractional Polya Szegö inequality). Let uh : hZ → R+ be
admissible, then:
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|∇suh|2L2
h

=
∑

�,k∈Z

|uh(xk) − uh(x�)|2h
|kh − �h|1+2s

= 1

h2s
∑

�,k∈Z

|uh(xk) − uh(x�)|2
|k − �|1+2s

≥ 1

h2s
∑

�,k∈Z

|u∗
h(xk) − u∗

h(x�)|2
|k − �|1+2s

= |∇su
∗
h|2L2

h
.

(3.11)

If one has equality in (3.9), then uh(xk) = uHh (xk) or = uHh (xk) = uh(σH(xk)) (i.e. uh
and u∗

h are equal up to a translation).

Proof Let k, � ∈ Z be such that ∂H �⊂ (k, �), set k′ = σH(k) and �′ = σH(�), then
|k − �| = |k′ − �′| ≤ |k − �′| = |k′ − �|.

Hence

|uh(xk) − uh(x�)|2
|k − �|1+2s

+ |uh(xk) − uh(x�′)|2
|k − �′|1+2s

+ |uh(xk′) − uh(x�)|2
|k′ − �|1+2s

+

|uh(xk′) − uh(x�′)|2
|k′ − �′|1+2s

= 1

|k′ − �|1+2s
P(uh) +

(
1

|k − �|1+2s
− 1

|k′ − �|1+2s

)

Q(uh)

where

P(uh) = |uh(xk) − uh(x�)|2 + |uh(xk) − uh(x�′)|2 + |uh(xk′) − uh(x�)|2+

|uh(xk′) − uh(x�′)|2 and Q(uh) = |uh(xk) − uh(x�)|2 + |uh(xk′) − uh(x�′)|2.

Noticing that P(uh) = P(uHh ) ∀ H ∈ Hh and that

(
1

|k − �|1+2s
− 1

|k′ − �|1+2s

)

Q(uh) ≥
(

1

|k − �|1+2s
− 1

|k′ − �|1+2s

)

Q(uHh )

and summing over k and �, enables us to conclude that

|∇suh|2L2
h
≥ |∇su

H
h |2L2

h
∀ H ∈ Hh.

Finally thanks to Proposition 2.12, we certainly have that |∇suh|2L2
h
≥ |∇su∗

h|2L2
h
for

any admissible uh.
Cases of equality are obtained in the same way as part (ii) of Theorem 3.1.

4 Discrete Fractional Constained Variational Problem

In this section we will study the following constrained variational problem:

Ihc = inf{Eh(uh) : uh ∈ Shc }. (4.1)
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Eh(uh) =
{
1

2
|∇suh|2L2

h
−

∫

F(|xk|, uh(xk))
}

h

Shc =
{

uh ∈ Hs
h :

∑

k∈Z
u2h(xk)h = c2

}

,

where c is a prescribed real number.
Our main result in this section is:

Theorem 4.1 Let F : |hZ| × R → R be a function satisfying the following assump-
tions:

(F0) F(|xm|, t) ≤ F(|xm|, |t|) ∀ t ∈ R.

(F1) F(|xm|, .) is continuous ∀ m ∈ Z.
(F2)∃ K > 0and0 < � < 4s such that∀ m ∈ Z, t ≥ 0, 0 ≤ F(|xm|, t) ≤ K(t2 +

t�+2).
(F3) ∀ ε > 0, ∃ m0 ∈ Z and t0 ∈ R such that

F(|xm|, t) ≤ εt2 ∀ m > m0 and |t| ≤ |t0|.

(F4) −F is hZ supermodular.
(F5) F(|xm|, θt) ≥ θ2F(|xm|, t) ∀ m ∈ Z, θ > 1, t ∈ R.
(F6) ∃ δ > 0, t1 > 0,m1 ∈ Z,α > 0 such that F(|xm|, t) > δtα for any m > m1

and |t| < |t1|, where 1 + 2s > α
2 .

Then (4.1) admits a Schwarz symmetric minimizer uhc = (uhc)
∗.

If in addition (F4) holds with a strict sign, then all minimizers of (4.1) are Schwarz
symmetric.
Before proving this result, we need the following lemma:

Lemma 4.2 Under (F6) Ihc < 0 ∀ c ∈ R.

Proof Let 0 < p < 1, uh ∈ Shc , then uph(xm) = p
1
2 uph(xm) is also in Shc .

Eh(u
p
h) =

∑

k,�∈Z

|uph(xk) − uph(x�)|2
h2s|k − �|1+2s

−
∑

m∈Z
F(|xm|, uph(xm))

∑

k,�∈Z

|p1/2uph(xk) − p1/2uph(x�)|2
|k − �|1+2s

− δ
∑

|m|≥|m2|pα/2upαh

uph(xm)

≤ p2s

h2s
∑

k,�∈Z

|uh(xk) − uh(x�)|2
|k − �|1+2s

− δp−1p
α
2

∑

|m|≥|m3|
uα
h (xm)

≤ p2s

h2s
∑

k,�∈Z

|uh(xk) − uh(x�)|2
|k − �|1+2s

− p
α
2 −1δ

∑

|m|≥|m3|
uα
h (xm)
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the choice of p and α enables us to conclude.

Proof of Theorem 4.1
Step 1: (4.1) is well posed (Ihc > −∞ and all minimizing sequences are

bounded in Hs
h).

By (F2), we can write:

∑

m∈Z
(F(|xm|, uh(xm))h ≤ K(

∑

m∈Z
u2h(xm)h +

∑

m∈Z
u�+2
h (xm)h) (4.2)

Now using the fractional discrete Gagliardo-Nirenberg inequality, (2.6), it follows:

‖uh‖L�+2
h

≤ K ′‖uh‖1−θ
L2
h

‖∇suh‖θ
L2
h

where θ = �

2s(� + 2)

which implies that

‖uh‖�+2
L�+2
h

≤ K ′′{‖uh‖(1−θ)(�+2)
L2
h

‖∇suh‖θ(�+2)
L2
h

}. (4.3)

Now using Young inequality, we have:

‖uh‖(1−θ)(�+2)
L2
h

‖∇su‖θ(�+2)
L2
h

≤ 1

p
εp‖∇suh‖pθ(�+2)

L2
h

+ 1

qεq
‖uh‖q(1−θ)(�+2)

L2
h

(4.4)

for any ε > 0, p > 1 where 1
p + 1

q = 1, thus choosing p = 2
θ
(� + 2) = 4s

�
, we get

‖uh‖�+2
L�+2
h

≤ K ′′
p εp‖∇suh‖2L2

h
+ K ′′

qεq ‖uh‖q(1−θ)(�+2)
L2
h

= K ′′
p εp‖∇suh‖2L2

h
+ K ′′

qεq c
q(1−θ)(�+2) (4.5)

for any uch ∈ Shc .
Therefore

Eh(uh) ≥ 1

2
‖∇suh‖2L2

h
− Kc2 − K ′′Kεp‖∇suh‖2L2

h

− KK ′′

qεq
cq(1−θ)(�+2)

≥ (
1

2
− KK ′′

p
εp)‖∇suh‖2L2

h
− Kc2 − KK ′′

qεq
cq(1−θ)(�+2).

Thus Ihc > −∞ and all minimizing sequences are bounded in Hs
h.

Step 2: Existence of Schwarz symmetric minimizing sequence.
By symmetrization inequalities proved in Sect. 3, we certainly have thanks to the

assumption made on F, that
Eh(|uh|) ≤ E(uh)
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so we can suppose without loss of generality that uh is non-negative:

Eh(u
∗
h) ≤ E(uh).

Step 3: Let uh,n = u∗
h,n be a Schwarz symmetric minimizing sequence of (4.1), then

we can find m0 ∈ Z such that

u∗
n,h(xm) ≤ c√

h
∀ n ∈ N. (4.6)

On the other hand by the weak lower semi-continuity of ‖ ‖L2
h
we have that

‖∇suh‖L2
h
≤ lim inf ‖∇suh‖L2

h
.

Now fix m4 ∈ N, since uh,n converges weakly to uh (up to a subsequence since it
is bounded in Hs

h), it follows that it converges strongly to uh in L
�+2
h (|m| ≤ m4).

This implies that

lim
∑

|m|≤m4

F(|xm|, uh,n(xm)) =
∑

|k|≤m4

F(|xm|, uh(xm))

(4.6) together with (F3) imply that

∑

|m|≥p0

F(|xm|, uh,n(xm)) and
∑

|m|≥p0

F(|xm|, uh(xm)) < ε, ∀ε > 0

for p0 ∈ N big enough.
In conclusion

lim
n→∞

∑

m∈Z
F(|xm|, uh,n(xm)) =

∑

m∈Z
F(|xm|, uh(xm)).

Step 4: Ihc is achieved:
By the weak lower semi-continuity of the norm L2

h , we know that

∑

m∈Z
u2h(xm)h ≤ c2.

Then observe that uh �= 0 since we know by Lemma 4.2 Ihc < 0 and F(., 0) = 0 by
(F2).

Now set th = c2

‖uh‖L2h
then th ≥ 1.

On the other hand

Ihc ≤ Eh(t
huh) ≤ (th)2E(uh) ≤ (th)2Ic ⇒ th ≤ 1

by the strict negativity of Ihc .
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If −F is strictly hZ supermodular, then it follows from Theorem 3.2 that all
minimizers are Schwarz symmetric.

Remark If � = 4s, it is easy to reproduce all the steps provided that c is small enough
(0 < c < ( 1

2KK ′′)4 ).

If lim
t→∞

F(|xm|, t)
t�+2

≥ A > 0, then Ihc = −∞.

5 Some Applications

In the very special case F(x, u) = 1
p+2u

p+2 and the fractional Laplacian is replaced

by the classical one, the nonlinear Schrödinger equation (1.1) becomes:

i∂tϕ = −�ϕ − |ϕ|pϕ,

and its non-local versions arise in many domains, where one has to consider a lat-
tice with a quantum particle sitting at each side, interacting with the others. Such
lattice systems are used to understand electron transport in biopolymers like organic
semiconductors, molecular crystals, and DNA.

As a first approximation, it is worth to consider a discrete model of quantum
particles at lattice points with two kinds of interactions: nearest-neighbor interac-
tions appearing as a discrete Laplacian term, representing interactions between base
pairs in DNA; and self-interactions appearing as a p-nonlinear term, representing
interactions within a base pair.

In a much better approximation, one has to take into account the long-range
interactions (which need not be of fixed range, because DNA is constantly in flux).
So we consider the same p self-interaction term as before, and inverse power-law
long-range interactions for s parameters.

Our main result is another continuum limit: for certain values of s, solutions of
the discrete model converge weakly to a solution of the NLS with fractional-order
Laplacian:

i∂tϕ = (−�)sϕ − |ϕ|pϕ.

The dynamics are governed by the discrete NLS on the lattice of mesh size h, and
we prove in the last section of this paper that taking the mesh size of the lattice to
zero (the continuum limit), gives macroscopic behavior described by the focusing
p-NLS:

It is important to have the same qualitative and quantititative properties of the
discretized problems of the fractional NLS. The main difficulties are that there is
no canonical discretization of the fractional derivative and that the most physical
one doesn’t obviously play well with the fractional derivative. We constructed a
discrete fractional calculus and an interpolation of the discrete functions based on a
special mollification (see Sect. 2). This framework is compatible with the fractional
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derivative. We also have developed some ingenious harmonic analysis techniques to
conduct the key steps of the proof in Fourier space.

For other nonlinearities covered by our integrand F, the lattice models Ferro-
magnets and spin glasses, Theorem 4.1 would clarify our understanding of glass
and phenomena like neural networks and other models approximating Bose-Einstein
condensation. A dynamic quantum icing model is the next step. Let us point out that
Bose-Einstein condensates are unusual states of matter near absolute zero that can be
used to slow and briefly stop light, as well as convert light to matter and back. There
are excellent applications, such as quantum information processing and increased
accuracy in measurements by inter-ferrometry with atom lasers instead of traditional
photon lasers. But the Bose Einstein Condensate is fragile and difficult to work with,
so it is vital to work out the theory.

More precisely, the particles are so super-cooled (to a few billionths of a degree
Kelvin) that they all fall into theground state and exhibit quantummechanical behav-
ior macroscopically, in effect they condense into a quantum super-particle. Only two
years ago, the Bose Einstein condensates macroscopic behavior was explained math-
ematically: the microscopic repulsive interactions between quantum particles give
rise, in the scaling limit, to quantum macro-behavior governed by the p- nonlinear
Schrödinger equation (p-NLS):

i∂tϕ = −�ϕ + b|ϕ|p+1ϕ.

Again usually the latter equation does not take into account natural anomalous dif-
fusion phenomena, and in the most realistic model, one has to replace the classical
Laplacian by the fractional Laplacian. As stated above the ground state solutions
play a key role here. This special non-linearity is also covered by our main result
(see Theorem 4.1).
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A Scientific Tour on Orthogonal Arrays

A.S. Hedayat

Abstract This paper gives a brief introduction to orthogonal arrays, including the
definitions, basic questions, important theorems and applications. It establishes the
connection between coding theory and orthogonal arrays. Based on coding theory,
many construction methods of orthogonal arrays and linear programming bound,
which is an improvement on Rao’s bound, are studied. Difference schemes and
Hadamard matrices are also discussed in the paper, which contribute to the con-
structions of orthogonal arrays. Moreover, the paper brings in basic definitions and
properties of mixed orthogonal arrays and focuses on problems and methods related
to their constructions. As the main statistical application of orthogonal arrays, fac-
torial experiments are then introduced, and ways orthogonal arrays can be used in
this field is discussed. Further, the applications of orthogonal arrays in computer
experiments and related structures are shown, including orthogonal Latin hypercube
designs, nested orthogonal arrays, sliced orthogonal arrays, Latin squares and com-
pound orthogonal arrays.

Keywords Orthogonal arrays · Coding theory · Factorial experiments · Computer
experiments
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1 Introduction

The general theory and application of orthogonal arrays were first introduced by Rao
[18–20]. Ever since their introduction, many outstanding researchers with various
backgrounds have been inspired by the subject and have made great contributions
to the field. Orthogonal arrays have played and continue to play a prominent role in
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the design of experiments. Besides the main applications, orthogonal arrays are also
closely related to finite geometry, combinatorics, error-correcting codes, Hadamard
matrices andLatin squares.Orthogonal arrays and related structures havebeenwidely
used in factorial experiments, medicine, clinical trials and computer experiments.

The paper is organized as follows. In this section we will introduce how orthogo-
nal arrays are used in factorial designs and provide basic definitions along with their
properties. Then we shall introduce Rao’s bounds and some famous construction
methods. In Sect. 2 we will discuss the relationships between orthogonal arrays and
coding theory. With the help of coding theory, we are able to find some construction
methods of orthogonal arrays and improve Rao’s bound using linear programming
bound. Hadamard matrices and difference schemes will be presented in Sect. 3 along
with their association with orthogonal arrays, which also inspires ideas in the con-
struction methods. In Sect. 4, definitions of mixed orthogonal arrays and their para-
meters will be studied.Moreover, somemethods of construction ofmixed orthogonal
arrays will be discussed. Application of orthogonal arrays in factorial experiments,
which is their most important statistical application, is discussed in Sect. 5, in which
we will see examples of special cases. Application of orthogonal arrays for com-
puter experiments will be the focus of Sect. 6, along with structures derived from
orthogonal arrays. Finally, in Sect. 7 we will see other topics such as Latin squares,
F-squares and compound orthogonal arrays.

1.1 Definitions and Properties

Let S = {0, 1, ..., s − 1} be a set of s symbols or levels. In the design of experiments,
the symbols typically indicate the levels of the factors whose effects on a response
of interest are to be studied.

Definition 1.1 An N × k array A with entries from S is said to be an orthogonal
array with s levels, strength t (0 ≤ t ≤ k) and index λ if every N × t subarray of A
contains each of the st possible t−tuples equally often (say λ times) as a row.

Such an array is denoted by OA(N, k, s, t) or OA(N, sk, t). The integers N, k, s, t
and λ are referred to as the parameters of the orthogonal array. The number of rows
N is the number of runs, the number of columns k is the number of factors, s is the
number of levels, t is the strength and λ is the index. In the important case when
λ = 1, we usually say that the orthogonal array has index unity.

Example 1.1 The array below is an orthogonal array with eight runs, four factors
each of two levels, strength three and of index unity. It’s an OA(8, 4, 2, 3).
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0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Some general properties can be obtained directly from the definition:

1. The parameters of an orthogonal array satisfy the equality

λ = N/st . (1)

2. An orthogonal array is invariant to permutations of rows, columns, and symbols
within a column. This property brings about the definitions of isomorphic and
statistical equivalent arrays. Two orthogonal arrays are said to be isomorphic
if one can be obtained from the other by a sequence of permutations of the
columns, the rows, and the levels of each factor. Two orthogonal arrays are said
to be statistically equivalent if one can be obtained from the other by a sequence
permutation of the runs.

3. If Ai, i = 1, ..., r is an OA(Ni, k, s, ti), then the array A obtained from the jux-
taposition of these r arrays is an OA(N, k, s, t) where N = N1 + N2 + . . . + Nr

and the strength is t for some t ≥ min{t1, ..., tr}. Further, when r = s and each Ai

is an OA(N, k, s, t), after appending a 0 to each row of A1, a 1 to each row of A2

and so on, we obtain an OA(sN, k + 1, s, t).
4. Any orthogonal array of strength t is also an orthogonal array of strength t′,

0 ≤ t′ < t. The index of the array when considered as an array of strength t′ is
λst−t′ , where λ denotes the index of the array when considered to have strength t.

5. Any N × k′ subarray of an OA(N, k, s, t) is an OA(N, k′, s, t′), where t′ =
min{k′, t}.

6. Existence of an OA(N, k, s, t) implies existence of an OA(N/s, k − 1, s, t − 1).
This process can be achieved by permutating the runs in OA(N, k, s, t) so that
the first N/s runs all begin with 0, the second N/s runs begin with 1, ..., the last
N/s runs begin with s − 1. Omitting the first columns yields an OA(N/s, k −
1, s, t − 1).

7. Let C be the set of all possible runs that could have occurred in a particular
orthogonal arrayA. For c ∈ C, let fc be the frequency of c inAand f = maxc∈C{fc}.
Then the array which contains run c with frequency f − fc for all c ∈ C is said
to be the complement of A. The complement of an OA(N, k, s, t) is an OA(fsk −
N, k, s, t).

8. Suppose A =
[

A1

A2

]

is an OA(N, k, s, t), where A1 itself is an OA(N1, k, s, t1).

Then A2 is an OA(N − N1, k, s, t2) with t2 ≥ min{t, t1}.



114 A.S. Hedayat

1.2 Rao’s Bounds

An important and basic problem in the study of orthogonal arrays is the existence
of OA(N, k, s, t) for given values of s ≥ 2, t ≥ 2, k ≥ t,N ≡ 0(mod st). It can be
treated as the problem of determining the minimal number of runs N , denoted by
F(k, s, t), in any OA(N, k, s, t) for given values of k, s and t. The problem can also
be changed to determining the maximal number of factors k, denoted by f (N, s, t), in
any OA(N, k, s, t) for given values of N , s and t. F(k, s, t) and f (N, s, t) are related
in the following ways:

F(k, s, t) = min{N : f (N, s, t) ≥ k},
f (N, s, t) ≤ max{k : F(k, s, t) ≤ N}. (2)

The way we establish values for f (N, s, t) and F(k, s, t) is typically through a
combination of obtaining a bound and constructing an orthogonal array that attains
that bound. One of the first upper bounds on the maximal number of factors in an
orthogonal arrays was obtained by Rao [19], which provides an explicit lower bound
for F(k, s, t) and an implicit upper bound for f (N, s, t). Details are shown in the
theorem below.

Theorem 1.1 (Rao’s Inequalities) The parameters of an OA(N, k, s, t) satisfy the
following inequalities:

N ≥
u∑

i=0

(
k
i

)

(s − 1)i, if t = 2u,

N ≥
u∑

i=0

(
k
i

)

(s − 1)i +
(

k − 1
u

)

(s − 1)u+1, if t = 2u + 1,

(3)

for u ≥ 0.

Rao’s bounds apply to any OA(N, k, s, t). But when considering specific values
for one or more of the parameters, the bounds can be attained for some cases and
sharpened for others. Bose and Bush [1] sharpened Rao’s bounds for when t = 2 or 3.
The discussions of various results of this type have been presented comprehensively
in Hedayat, Sloane and Stufken’s book Orthogonal Arrays: Theory and Application.

1.3 Constructions

A large number of techniques are known for constructing orthogonal arrays. An
example is given below.
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Example 1.2 (Zero-sum array) An OA(N, t + 1, s, t), t ≥ 2 can be constructed in
the following way: Start with an N × t array based on 0, ..., s − 1 which has each
of the st possible t−tuples N/st times as rows. Then add one more column to the
original array so that the entries in each row add up to 0(mod s) in the new arrays.
One can verify that the resulting N × (t + 1) array is an OA(N, t + 1, s, t). Since
this array has the property that the levels in each run add up to zero, it’s called a
zero-sum array.

Bush [3] studied the construction of orthogonal arrays of index unity, which have
the smallest number of runs for a given number of levels and strength, and are thus
mathematically interesting and highly useful in statistical experiments. Main results
of Bush’s construction are shown in Theorems 1.2 and 1.3.

Theorem 1.2 If s = pn, n ≥ 1, p is a prime power and s ≥ t, then an OA(st, s +
1, s, t) of index unity exists.

Theorem 1.2 gives a lower bound on the number of factors in such arrays when s
is a prime power. In some cases, the result can be improved. For example, the result
of Theorem 1.3 can be obtained for p = 2, t = 3.

Theorem 1.3 If s = 2m,m ≥ 1, and t = 3, then there exists an OA(s3, s + 2, s, 3).

Construction: When s = pn, n ≥ 1 where p is a prime power, we first construct
an st × s array whose columns are labeled by the elements of Galois field GF(s) and
whose rows are labeled by the st polynomials over GF(s) of degree at most t − 1.
Denote those polynomials by φ1, ...,φst :

φj(x) = aj,t−1xt−1 + · · · + aj,1x + aj,0, where aj,t−1, . . . , aj,1, aj,0 ∈ GF(s).

Define the entry in the ith column and the jth row to be φj(αi), which is the value
of the polynomial φj at αi. Now add one additional factor to the array and take the
level of this factor in the jth row to be the coefficient of xt−1 in φj. We can verify that
the resulting st × (s + 1) array is an OA(st, s + 1, s, t).

Specifically when s = 2m,m ≥ 1, we first use the previous construction method
to obtain an OA(s3, s + 1, s, 3), then adjoin another factor and take the level of this
factor in jth row to be the coefficient of x in φj. This s3 × (s + 2) array can be verified
to be an OA(s3, s + 2, s, 3).

From the construction above, we can find that there are two special properties of
the orthogonal arrayswe constructed, one is simple and the other is linear. Definitions
are listed below.

Definition 1.2 An orthogonal array is simple if its runs are distinct.

Definition 1.3 Let s be a prime power. If an orthogonal array OA(N, k, s, t) with
levels from GF(s) is simple and its N runs form a vector space over GF(s) when
considered as k−tuples from GF(s), then we say the orthogonal array is linear.
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If an orthogonal array is linear, then its runs can be regarded as the codewords
from a linear error-correcting codes. Relationship between codes and orthogonal
arrays are discussed in Sect. 2.

Rao [18, 19] gave a constructionmethod forOA(sn, (sn − 1)/(s − 1), s, 2), which
results in linear arrays. The same construction is also used in the Hamming [7] codes,
which is one of the best-known families of error-correcting codes. This construction
is thus called Rao-Hamming construction and the following results provide two
versions of it.

Theorem 1.4 If s is a prime power, then an OA(sn, (sn − 1)/(s − 1), s, 2) exists
whenever n ≥ 2.

Rao’s Construction: Form an sn × n array whose rows are all possible n−tuples
from GF(s). Let C1, ...,Cn denote the columns of this array. Then the columns of
the full orthogonal array consist of all columns of the form

z1C1 + · · · + znCn = [C1, . . . ,Cn]z,

where z = (z1, . . . , zn)
� is a nonzero n−tuple from GF(s) in which the first nonzero

zi is 1. Notice that there are (sn − 1)/(s − 1) such columns, thus forming an sn ×
(sn − 1)/(s − 1) array. One can verify that the resulting array is an OA(sn, (sn −
1)/(s − 1), s, 2).

Hamming’s Construction: Alternatively,we can startwith an n × (sn − 1)/(s − 1)
matrix whose columns are all nonzero n−tuples (z1, ..., zn)

� from GF(s) in which
the first nonzero zi is 1. By taking all linear combinations of the rows of this generator
matrix, we can obtain an orthogonal array whose runs are comprised of all linear
combinations

α1R1 + · · · + αnRn,

where R1, ...,Rn are the rows of the matrix and α1, ...,αn ∈ GF(s), thus an OA(sn,

(sn − 1)/(s − 1), s, 2) is constructed.

2 Orthogonal Arrays and Coding Theory

Error-correcting codes and orthogonal arrays are closely related. Both subjects study
analogous problems and have a number of parallel constructions and theorems. Some
of their basic parameters can also correspond to each other in parallel results. For
example, alphabet size, length of code, number of codewords and minimal distance
of dual in an error-correcting code can be treated as the number of levels, number
of factors, number of runs and strength of an orthogonal array respectively, and vice
verse. Basic definitions are given below.

Let S be a set of symbols of size s and Sk be the set of all sk vectors of length k.
An error-correcting code is any collection C of vectors in Sk (repetition allowed). S
is called the alphabet. The vectors in C are called codewords.
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The Hamming distance dist(u, v) between two vectors u, v ∈ Sk is defined to be
the number of positions where they differ. The minimal distance d of a code C is
defined to be the minimal distance between two distinct codewords:

d = min
u,v∈C,u �=v

dist(u, v).

d is undefined if the code is empty. If there is only one distinct codeword, then d is
defined to be k + 1.

If C is a code of length k, codewords size N and minimal distance d over an
alphabet of size s, then we denote C by (k,N, d)s code.

Example 2.1 A code of length k = 4 with an alphabet of size s = 2 (binary) with
N = 8 codewords size and minimal distance d = 2 is

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

If a code doesn’t contain repeated codewords, we call it a simple code. A simple
code with minimal distance d can correct up to 	(d − 1)/2
 errors. One of the
essential problems in coding theory is to find the maximal value of N for a simple
code given s, k and d. In practice one also wants to make encoding and decoding
feasible, thus codes with a rich mathematical structures are preferable.

A code C is called linear if its codewords are distinct and form a vector subspace
of Sk . The dimension of the code C is n if C has N = sn for some nonnegative integer
n, 0 ≤ n ≤ k. For a linear code, we can define its dual C⊥ through the vectors in the
null space of C: C⊥ consists of all vectors in v ∈ Sk such that

uv� = 0 for all u ∈ C.

Note that C⊥ is also a linear code and can be verified to be a (k,N ′, d⊥)s code
where N ′ = sk−n. d⊥ is called the dual distance of C. From the definition of linearity
in orthogonal arrays and codes, we can conclude that a orthogonal array is linear
if and only if its associated code is also linear. Bose [2] specified the relationship
between the strength of a linear orthogonal array and the associated linear code.

Theorem 2.1 If C is a linear code (k, N, d)s over GF(s) with dual distance d⊥,
then its codewords form the rows of an OA(N, k, s, d⊥ − 1) with entries from GF(s).
Conversely, the runs of a linear OA(N, k, s, t) over GF(s) form a (k,N, d)s linear
code over GF(s) with dual distance d⊥ ≥ t + 1 (equality holds if the orthogonal
array has strength t but not t + 1).
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The example below illustrates Theorem 2.1.

Example 2.2 The Rao-Hamming orthogonal array OA(8, 7, 2, 2) is given below.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1
1 0 0 1 1 1 0
0 1 0 0 1 1 1
1 0 1 0 0 1 1
1 1 0 1 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The runs of the array form a (7, 8, 4)2 code, which is a single-error correcting
code. Its dual is a (7, 16, 3)2 code, i.e. the dual distance of the (7, 8, 4)2 code is 3. It
belongs to the class of Hamming codes.

From Theorem 2.1, there is no direct relationship between d and strength t. Only
the dual distance d⊥ provides the performance of C as an orthogonal array. As a
result, we need to define the dual distance of a nonlinear code in order to establish
the relationship between nonlinear codes with orthogonal arrays. The introduction
of the weight distribution and weight enumerator of a code can help us to accomplish
the goal.

For a (k, N, d)s code C and a codeword u ∈ C, the weight distribution with
respect to u can be defined as (A0(u),A1(u), . . . ,Ak(u)), which is a (k + 1)−tuple of
nonnegative integers.Ai(u) is the number of codewords v ∈ C such that dist(u, v) = i.

Definition 2.1 The weight distribution of a code C can be defined as the (k +
1)−tuple (A0,A1, . . . ,Ak), where

Ai = 1

N

∑

u∈C

Ai(u), 0 ≤ i ≤ k.

The minimal distance of the code is the largest positive integer d such that

A1 = A2 = . . . = Ad−1 = 0.

The weight enumerator of C is

WC(x, y) =
k∑

i=0

Aix
k−iyi

which is a homogenous polynomial whose degree is equal to the length of the code.

If C is a linear code, Ai(u) is independent of u and Ai = Ai(u) for all u ∈ C. In
any case, the weight distribution of C satisfies



A Scientific Tour on Orthogonal Arrays 119

k∑

i=0

Ai = N,

A0 ≥ 1, A1 = A2 = . . . = Ad−1 = 0, Ai ≥ 0, for d ≤ i ≤ k.

(4)

For linear codes, we can obtain the formula for the weight enumerator of the dual
code, called the MacWilliams identity for linear codes. The proof can be found in
MacWilliams and Sloane [14].

Theorem 2.2 For a (k, sn, d)s linear code C,

WC⊥(x, y) = 1

N
WC(x + (s − 1)y, x − y). (5)

Using the identity, the weight distribution (A⊥
0 ,A⊥

1 , . . . ,A⊥
k ) of C⊥ can be

expressed in terms of the weight distribution of C:

A⊥
i = 1

N

k∑

j=0

AjPi(j), 0 ≤ i ≤ k, (6)

where the Pi(j) is the Krawtchouk polynomial, i.e.

Pi(j) =
i∑

r=0

(−1)r(s − 1)i−r

(
j
r

)(
k − j
i − r

)

, 0 ≤ i ≤ k.

The weight distribution (A⊥
0 ,A⊥

1 , . . . ,A⊥
k ) of C⊥ satisfies

k∑

i=0

A⊥
i = sk/N,

A⊥
0 = 1, A⊥

1 = . . . = A⊥
d⊥−1 = 0, A⊥

i ≥ 0, for d⊥ ≤ i ≤ k,

(7)

For a nonlinear code, we can still define the dual weight distribution using
MacWilliam identity based on (5) and (6). Then A⊥

0 = 1 and A⊥
i ≥ 0 for 0 ≤ i ≤ k

still hold. Further, we define the dual distance d⊥ to be the largest positive integer
such that

A⊥
1 = . . . = A⊥

d⊥−1 = 0.

Now the results in Theorem 2.1 can be extended to any codes. Theorem 2.3 is due
to Delsarte [4].

Theorem 2.3 If C is a (k, N, d)s code with dual distance d⊥, then the corresponding
orthogonal array is an OA(N, k, s, d⊥ − 1). Conversely, the code corresponding to
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an OA(N, k, s, t) is a (k,N, d)s code with dual distance d⊥ ≥ t + 1 (equality holds
if the orthogonal array has strength t but not t + 1).

From (4), we can find that the total number of runs or codewords in an orthogonal
array or code can be expressed in the form of the weight distribution:

N = A0 + A1 + . . . + Ak .

So we can obtain a lower bound on N by using linear programming to find the
smallest value of

∑k
i=0 Ai under the constraints of the conditions (4) and (7). Delsarte

(1937) established the linear programming bound for N as indicated in Theorem 2.4.

Theorem 2.4 (The LP Bound for orthogonal arrays [4]) Given k, s and t, let
NLP(k; d⊥) be the solution to the following linear programming problem:
choose real numbers A0, ...,Ak so as to

minimize
k∑

i=0

Ai

subject to the constraints

A0 ≥ 1; Ai ≥ 0, 1 ≤ i ≤ k,

A⊥
0 = 1; A⊥

i ≥ 0, 1 ≤ i ≤ k,

A⊥
1 = · · · = A⊥

t = 0, t = d⊥ − 1,

where A⊥
i are defined as in (6) for 0 ≤ i ≤ k.

(8)

Then the size of any orthogonal array OA(N, k, s, t) satisfies

N ≥ NLP(k; d⊥).

Linear programming bound provides a lower bound on N . This bound may be
very weak, thus can be improved in many cases. Using the notation in Sect. 1, we
know that F(k, s, t) ≥ NLP(k, d⊥). Note that NLP and Ai are usually non-integral,
and even if they are, there is always possibility that the corresponding orthogonal
array may not exist.

The linear programming bound is always at least as good as Rao’s bound since
Delsarte [4] showed that the general Rao’s bound can be implied by the linear pro-
gramming bound. Table1 shows an example of the comparison between these two
bounds for some values of k.

In Table1, let NRao and NLP denote the value given by Rao’s bound and the linear
programming bound, respectively. The numerical values of Rao’s bound and the next
multiple of 16 larger than them are given in the parentheses and the numbers before
the parentheses, respectively, in the second line. Similarly, the linear programming
bound and the the next multiple of 16 are presented in the third line. The last line
shows the smallest N that is known under certain value of k. If it is the smallest
possible N , an asterisk, ∗, is added after the number.
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Table 1 Comparison of Rao and linear programming bounds for orthogonal arrays with k factors
when s = 2, t = 4

k 6 7 8 9 10 11 12 13

NRao 32(22) 32(29) 48(37) 48(46) 64(56) 80(67) 80(79) 96(92)

NLP 32(26.7) 48(42.7) 64 96(85.3) 96(85.3) 96(85.3) 112(102) 128

Known 32* 64* 64* 128 128 128 128 128*

3 Difference Schemes and Hadamard Matrices

A difference scheme, a simple but powerful tool for the construction of orthogonal
arrays of strength two, was first defined by Bose and Bush [1]. Hadamard matrices
are the most important examples of two-level difference schemes. Their definitions
are listed below.

Let (A ,+), orA denote a finite abelian group with a binary operation+. Denote
the cardinality of A by s, the identity element by 0 and the inverse of an element σ
by −σ. In most examples (A ,+) will be taken to be the additive group associated
with the Galois field GF(s).

Definition 3.1 An r × c array D with entries from A is called a difference scheme
based on (A ,+) if it has the property that for all i and j with 1 ≤ i, j ≤ c, i �= j,
the vector difference between the ith and jth columns contains every element of A
equally often.

We denote such an array by D(r, c, s), and refer to it as a difference scheme with
s levels and index λ, where λ is the number of times each element of A occurs in
the difference of two columns. Clearly, r = λs.

Example 3.1 The 6 × 6 array below gives an example of D(6, 6, 3), which is a
difference scheme with 3 levels and index 2.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 1 2 1 2 0
0 2 1 1 0 2
0 2 2 0 1 1
0 0 1 2 2 1
0 1 0 2 1 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Jungnickel [13] established Theorem 3.1.

Theorem 3.1 If a difference scheme D(r, c, s) exists, then c ≤ r.

When c = r, s = 2, a difference scheme D(r, r, 2) is of great importance, which
is the ordinary Hadamard matrix of order r.

A Hadamard matrix of order n is an n × n matrix Hn with entries +1 and −1,
whose rows are orthogonal to each other. A Hadamard matrix satisfies
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HnH�
n = nIn (9)

Hadamardmatrices were first introduced in Hadamard [6]. In the paper Hadamard
showed that if A = (aij) is any n × n matrix with |aij| ≤ 1, then

| det A| ≤ nn/2,

with equality if and only if A is what is now called a Hadamard matrix.
Suppose Hn is a Hadamard matrix of order n. Then by definition H−1

n = n−1H�
n ,

H�
n Hn = nIn (10)

which implies that the columns of Hn are also orthogonal.
Due to the orthogonality relations (9) and (10), we can find that all matrices

obtained by permutations of rows or columns of Hn and negating any of rows or
columns of Hn will still satisfy (9) and (10), and they are said to be isomorphic to
Hn. Through this kind of transformation, we can arrange the first row and column
of Hn to consist of +1. Such a Hadamard matrix is said to be normalized. From the
orthogonality relations, we can obtain Lemma 3.1.

Lemma 3.1 Let Hn be a normalized Hadamard matrix of order n, n > 2. Let u =
(u1, . . . , un) and v = (v1, . . . , vn) be any two distinct rows of Hn apart from the first
one. Then:

(a) There are n/2 coordinates with ui = +1 and n/2 with ui = −1.
(b) There are n/4 coordinates with ui = vi = +1, n/4 with ui = vi = −1, n/4

with ui = −1, vi = +1 and n/4 with ui = +1, vi = −1.
(c) Similar results hold for the columns of Hn.

Following Lemma 3.1, we can conclude a necessary condition for the existence
of Hadamard matrices:

Corollary 3.1 If a Hadamard matrix Hn exists, then n = 1, 2 or n = 4u for some
integer u ≥ 1

The converse of Corollary 3.1 leads to theHadamard conjecture, which is awidely
accepted assertion. It provides an answer to the problem concerning the existence
condition of Hadamard matrices, but this problem remains unsolved.

Note 1 (The Hadamard Conjecture) A Hadamard matrix of order n exists if n is 1,
2 or n is a multiple of 4.

A difference scheme can be converted into an orthogonal array by following pro-
cedure: Let D be a difference scheme based on (A ,+), whereA = {σ0, . . . ,σs−1}.
We use Di to denote the array obtained from D by adding σi to each of its entries,
clearly, Di is a difference scheme with the same parameter as D. Then by juxtapo-
sition of the Di’s, we obtain an orthogonal array of strength 2. Theorem 3.2 can be
concluded from this process:
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Theorem 3.2 If D is a difference scheme D(r, c, s), then

A =
⎡

⎢
⎣

D0
...

D(s − 1)

⎤

⎥
⎦ =

⎡

⎢
⎣

D + 0
...

D + (s − 1)

⎤

⎥
⎦ (11)

is an OA(rs, c, s, 2).

We may want to know whether an orthogonal array of strength 2 constructed
through Theorem 3.2 has achieved the maximal number of factors. The answer is
no. Actually, it can be shown that at least an additional factor can be added, i.e.

Corollary 3.2 A difference scheme D(r, c, s) can lead to an orthogonal array
OA(rs, c + 1, s, 2).

Thus the maximal number of factors in this case f (rs, s, 2) ≥ c + 1.
As we have already discussed before, Hadamard matrices are special cases of the

difference schemes.

Theorem 3.3 A Hadamard matrix Hn exists if and only if a difference scheme
D(n, n, 2) exists.

As a result, we can also find the connection between Hadamard matrices and
orthogonal arrays.

Theorem 3.4 Orthogonal arrays OA(4λ, 4λ − 1, 2, 2) and OA(8λ, 4λ, 2, 3) exist
if and only if there exists a Hadamard matrix of order 4λ.

Construction: Suppose H4λ is a normalized Hadamard matrix. By Lemma 3.1,
we can obtain an OA(4λ, 4λ − 1, 2, 2) by omitting the first columns of H4λ:

H4λ = [
1 OA(4λ, 4λ − 1, 2, 2)

]
.

Similarly, an OA(8λ, 4λ, 2, 3) can be obtained by juxtaposing H4λ and −H4λ:

OA(8λ, 4λ, 2, 3) =
[

H4λ

−H4λ

]

.

From Theorem 3.4, we can conclude that the study of two-level orthogonal arrays
of strength 2 and 3 is essentially equivalent to the study of Hadamard matrices.

Note that we can only obtain orthogonal arrays of strength 2 or 3 from the results
before. Now we bring in the definition of difference schemes of strength t, which
contribute to the construction of orthogonal arrays of strength t.

LetA denote an abelian group of order s. When t ≥ 1, letA t denote the abelian
group of order st consisting of all possible t−tuples of elements from A , with the
binary operation being the vector addition. Treat each kind of t−tuples as a subgroup
of A t , i.e. start from A t

0 , which is a subgroup of order s:
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A t
0 = {(x1, . . . , xt) : x1 = · · · = xt ∈ A }.

Denote its cosets by A t
i , i = 1, . . . , st−1 − 1, then A t = ⋃st−1−1

i=0 A t
i .

Definition 3.2 An r × c array D with entries from A is called a difference scheme
of strength t if in every r × t subarray, members of each A t

i (i = 0, . . . , st−1 − 1)
occur equally often when the rows of the subarray are treated as elements of A t .
Such an array is denoted by Dt(r, c, s).

When t = 2, the definition is equivalent to Definition 3.1. Following result illus-
trates the relationship between difference schemes of strength t and orthogonal arrays
of strength t.

Theorem 3.5 A Dt(r, c, s) of strength t can be used to construct an OA(rs, c, s, t). If
Dt(r, c, s) itself is already an orthogonal arrays of strength t − 1, or it can be written
as the juxtaposition of s difference schemes Dt−1(r/s, c, s), then an additional factor
can be added, resulting in an OA(rs, c + 1, s, t).

Example 3.2 The array below shows a difference scheme D3(8, 7, 2) of strength 3
over (GF(2),+). Following Definition 3.2, the rows of any 8 × 3 subarray consist
of two members of each of A 3

0 = {(0, 0, 0), (1, 1, 1)}, A 3
1 = {(1, 0, 0), (0, 1, 1)},

A 3
2 = {(0, 1, 0), (1, 0, 1)}, A 3

3 = {(0, 0, 1), (1, 1, 0)}.

0 0 0 0 0 0 0
0 0 1 0 1 1 1
0 1 0 1 0 1 1
0 1 1 1 1 0 0
1 0 0 1 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 1 0
1 1 1 0 0 0 1

Since the above array can be treated as an orthogonal array of strength 2, i.e.
OA(8, 7, 2, 2). From Theorem 3.5, we are able to construct an orthogonal array
OA(16, 8, 2, 3), which is exhibited below:
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0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 0
0 1 0 1 0 1 1 0
0 1 1 1 1 0 0 0
1 0 0 1 1 0 1 0
1 0 1 1 0 1 0 0
1 1 0 0 1 1 0 0
1 1 1 0 0 0 1 0
1 1 1 1 1 1 1 1
1 1 0 1 0 0 0 1
1 0 1 0 1 0 0 1
1 0 0 0 0 1 1 1
0 1 1 0 0 1 0 1
0 1 0 0 1 0 1 1
0 0 1 1 0 0 1 1
0 0 0 1 1 1 0 1

Hedayat et al. [10] studied the existence of difference schemes of strength t along
with the methods for construction, and how to use them to construct orthogonal
arrays of strength t.

4 Mixed Orthogonal Arrays

In previous sections we focused on orthogonal arrays in which all the factors had
the same number of levels. However, in statistical application things can be more
complicated and the factors in orthogonal arrays will have different number of lev-
els. Such orthogonal arrays are called mixed or asymmetrical orthogonal arrays.
While the definition and the Rao bounds for asymmetrical orthogonal arrays extend
trivially from symmetrical ones, the construction is typically mathematically more
challenging.

Previously the notation OA(N, k, s, t)was used to denote a fixed-level orthogonal
arrays. Now in order to keep the notation consistent, we use OA(N, sk, t) to denote
fixed-level orthogonal arrays, where sk indicates that there are k factors each at s
levels. Thus, the following definition will be an extension of Definition 1.1, which
allows the factors to have different levels.

Definition 4.1 A mixed orthogonal orthogonal array OA(N, sk1
1 sk2

2 · · · skv
v , t) is an

array of size N × k, where k = k1 + k2 + · · · + kv is the total number of factors, in
which the first k1 columns have symbols from {0, 1, . . . , s1 − 1}, the next k2 columns
have symbols from {0, 1, . . . , s2 − 1} and so on, so that in any N × t subarray, every
possible t−tuple occurs equally often as a row. For no good reasons in the literature
the symbol LN (s

k1
1 sk2

2 · · · skv
v ) has also been used.
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Note that if s1, s2, . . . , sv are equal, the orthogonal array will be a symmetrical
one.

The Rao bound on the number of runs can also be extended to mixed orthogonal
arrays. To state the bound, we first define the set that contains all v−tuples whose
entries sum up to m, denoted by Im(v), where m ≥ 0 and v ≥ 1 are integers:

Im(v) = {(i1, i2, . . . , iv) : i1 ≥ 0, . . . , iv ≥ 0,
v∑

l=1

il = m}.

So
∑

Im(v)
denotes the summation over all v−tuples in Im(v).

Theorem 4.1 (Rao’s Inequalities for Mixed Orthogonal Arrays) Consider an
OA(N, sk1

1 sk2
2 · · · skv

v , t) where, without loss of generality, s1 ≤ s2 ≤ · · · ≤ sv. The
parameters of the array satisfy the following inequalities:

N ≥
u∑

m=0

∑

Im(v)

(
k1
i1

)

· · ·
(

kv

iv

)

(s1 − 1)i1 · · · (sv − 1)iv ,

if t = 2u,

N ≥
u∑

m=0

∑

Im(v)

(
k1
i1

)

· · ·
(

kv

iv

)

(s1 − 1)i1 · · · (sv−1 − 1)iv−1(sv − 1)iv

+
∑

Iu(v)

(
k1
i1

)

· · ·
(

kv−1

iv−1

) (
kv − 1

iv

)

(s1 − 1)i1 · · · (sv−1 − 1)iv−1(sv − 1)iv+1,

if t = 2u + 1,
(12)

for u ≥ 0.

Specifically, for an OA(N, sk1
1 sk2

2 , 2), the Rao bound states that

N ≥ 1 + k1(s1 − 1) + k2(s2 − 1).

However, the Rao bound can be improved under many parameters. Sloane and
Stufken [23] established the linear programming bound for mixed orthogonal arrays
using Delsarte’s theory, which is an improvement to the Rao bound.

Most methods for constructing mixed orthogonal arrays apply only to arrays of
strength 2. Here we mainly focus on the expansive replacement method. Difference
schemes are also powerful tools for constructing orthogonal arrays of strength 2 and
details can be found in Hedayat et al. [9]. A general method for construction is also
established in Suen et al. [24], which is based on the construction of fixed level
orthogonal arrays given by Bose and Bush [1].

Let A be an (mixed or fixed) orthogonal array of strength 2 in which factor 1 has
s1 levels. Let T be an (mixed or fixed) orthogonal array of strength 2 with s1 runs.
Then by making a one-to-one correspondence between the levels of factor 1 in A and
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the runs of T , i.e. replacing each level of factor 1 in A by the corresponding run in T ,
we can obtain a new orthogonal array B of strength 2 which contains at least as many
factors as A. This method of construction is referred to as the expansive replacement
method.

Example 4.1 By replacing the levels of the first factor in A, an OA(8, 24 41, 2), by
the corresponding runs in T , we can obtain B, an OA(8, 27, 2).

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 1 1 1 1
1 0 0 1 1
1 1 1 0 0
2 0 1 1 0
2 1 0 0 1
3 0 1 0 1
3 1 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 1 0 1 1 0
1 0 1 1 0 0 1
1 1 0 0 1 0 1
1 1 0 1 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Here

T =

⎡

⎢
⎢
⎣

0 0 0
0 1 1
1 0 1
1 1 0

⎤

⎥
⎥
⎦

In the first factor of A, level 0, 1, 2 and 3 correspond to the first, second, third and
last runs in T , respectively.

Conversely, in Example 4.1, notice that by contracting the first three factors in B,
A can be obtained through mapping (0, 0, 0) → 0, (0, 1, 1) → 1, (1, 0, 1) → 2 and
(1, 1, 0) → 3. This way of construction is called contraction replacement method.
Sometimes by selecting a set of factors in an orthogonal array of strength 2 and
replacing it by a single factor with a larger number of levels, the resulting array
can also be an orthogonal array. However, in order to use this method, the original
array should possess certain structure: A is an orthogonal array OA(N, s1s2 · · · sk, 2)
(repeated si allowed) such that for a subarray containing u factors of A, the runs of the
subarray consist of N/N1 copies of each of the runs of an OA(N1, s1s2 · · · su, 2), say
T . T satisfies the condition: N1 = 1 + ∑u

i=1(si − 1). Then by labeling the runs of T
by 0, 1, . . . ,N1 − 1 and replacing each runs of the subarray ofA by the corresponding
label, we can obtain an OA(N,N1su+1 . . . sk, 2), say B.

5 Application in Factorial Experiments

The goal of factorial experiments is often to study the effect of different levels
of various factors on a response variable of interest. Factors that might affect the
response variable are identified, then for each of the factors two or more levels are
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selected in the experiment.Once the factors and the levels are determined, a collection
of all possible level combinations can be obtained. However, it’s often impossible
to make measurements at each of the level combinations since the number of level
combinations is often too large. As a result, a subset of level combinations to be used
in the experiment must be selected, resulting in a fractional factorial experiment.
Obviously, not all selections are good. In the selection process, an orthogonal array
can help us select level combinations with desirable statistical properties.

SupposeA1, . . . ,Ak are the factors to be included in the experimentwith s1, . . . , sk

levels, respectively. The level combinations can be represented by the k−tuples
(j1, . . . , jk), where 0 ≤ jl ≤ sl − 1, l = 0, . . . , k. Let L be the set of all possible level
combinations and M be the cardinality of L. There are N experimental units and each
will be assigned to a specific level combination randomly.

Let Y be N × 1 vector of response random variable Yτ j, where Yτ j denotes the
response of j−th unit that is assigned to level combination τ ∈ L. μ is the M × 1
population mean vector and ε is the N × 1 vector of random errors. The model can
be written as

Y = Xμ + ε (13)

where X is an N × M matrix consists of 0’s and 1’s. The entries are obtained by
following the procedure: Label the columns by the level combinations in reverse
lexicographic order and the rows by the subscripts of corresponding entries in Y , the
entries in (τ j, τ ′) equals 1 if τ = τ ′ and 0 otherwise.

A treatment contrast can be used to compare population means for different level
combinations. The treatment contrast is a linear combination of the populationmeans
with coefficients add up to 0, i.e. for an M × 1 vector c, c�μ is called a treatment
contrast if c�1M = 0. A treatment contrast c�μ is said to be estimable under a
particular model and selection of level combinations if there exists an N × 1 vector
b such that E(b�Y) = c�μ, such a b�Y is called an unbiased estimator of c�μ. Two
treatment contrasts c�

1 μ and c�
2 μ are said to be orthogonal if c�

1 c2 = 0.
In a factorial experiment, an analysis of data and how factors affect the response

variable would be based on studying the main-effects and interactions of factors,
which are pairwise orthogonal treatment contrasts. However, inmost experiments not
all included factors are important for explaining the variability in response variables.
Sowe can assume that only a small subset of the effectswill suffice to understand how
important factors influence the response. This is called effects sparsity assumption,
and it’s essential in order to justify the use of fractional factorials.

Based on the concepts and assumptions, a reduced model of (13) can be built in
order to estimate the components of the effects that we are interested in, in which
the population mean vector μ is re-parameterized into the parameters that we want
to estimate, γ1, and the nuisance parameters, γ2. Details of how to build the reduced
model can be found in Chap.11 of Hedayat et al. [12].

The rows of an orthogonal array can be used to specify the fractional factorials.
Additionally, the strength t of an orthogonal array is related to estimability of para-
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meters under the reduced model when using the runs as fractional factorials. Then
the following results can be verified.

Theorem 5.1 Under certain models, if an OA(N, s1s2 . . . sk, t), t ≥ 2, is used in a
factorial experiment, then:

(i) If t is even, γ2 is absent and γ1 consists of the intercept parameter, all compo-
nents of main-effects and all components of interactions of at most t/2 factors, then
all elements of γ1 are estimable.

(ii) If t is odd, γ1 consists of the intercept parameter, all components of main-effects
and all components of interactions of at most (t − 1)/2 factors while γ2 consists of
all components of interactions of precisely (t + 1)/2 factors, then all elements of γ1
are estimable.

There are also many other desirable properties of orthogonal arrays for all kinds
of experiments. Check Hedayat et al. [12] to see details and related references.

6 Application in Computer Experiments

6.1 Orthogonal Latin Hypercube Designs

Example 6.1 Consider a known function

Y = f (X),

where Y ∈ R,X ∈ Rk . Random vector X = (X(1), . . . ,X(k)) has a uniform distribu-
tion on the unit hypercube [0, 1]k .

Suppose we want to estimate the mean of the random variable Y , but sometimes
it takes a large amount of efforts or money to compute f , or k is very large. Then the
problem can be converted to the problem of finding the integral of f (x) with respect
to the uniform measure on [0, 1]k .

The above example shows a problem of evaluating a complex integral (maybe
over a high-dimensional domain), which is a problemwe often see in scientific study.
Monte Carlo method is a very useful approach to solve high-dimensional integration
problems, and thus a good choice for solving this kind of problems. McKay et al.
[15] introduced Latin hypercube sampling (LHS) as an alternative to iid sampling
when selecting the points in Monte Carlo method to tackle this kind of problems.
Further research results showed that LHS lead to a smaller variance compared with
the iid variance.

Definition 6.1 A Latin hypercube is an N × k matrix, in which each column is
a permutation of 1, 2, . . . ,N . Denoted by LH(N, k). A Latin hypercube is an
OA(N, k,N, 1).
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Latin hypercube designs (LHD) are used in physical and computer experiments.
The main property of LHS is that it stratifies each univariate margin simultaneously,
thus filtering out the main effects. Similarly, one would expect that all the bivariate
interactions as well as the main effects can also be filtered out if stratification is
achieved on each bivariatemargin. In experimental designs, the uniformity properties
of OA designs are quite desirable since design points can be distributed in the design
region uniformly. However, OA designs are not suitable when a large number of
factors are to be studied but only a few of them are virtually effective. LHD’s can be
good alternatives in this case, but they can’t even guarantee the projection of design
points onto bivariate margins to be uniformly distributed.

Tang [25] showed that orthogonal arrays of strength t can be used to construct
LHD’s.He stated that suchOA-basedLHD’s have the t−variate uniformity properties
and can stratify each t−dimensionalmarginwhile keeping the univariate stratification
property. As a result, such OA-based LHD’s are more appropriate for computer
experiments than general LHD’s, and can also be applied in physical experiments.
The method of construction is as follows:

Let A be an OA(N, k, s, t). For each factor of A, replace the N/s positions with
entriesm,m ∈ {0, 1, . . . , s − 1}byapermutationofmN/s + 1,mN/s + 2, . . . , (m +
1)N/s for all m = 0, 1, . . . , s − 1. Then the resulting matrix, say U, is obviously a
Latin hypercube. Additionally, inheriting from A, U achieves the uniformity in each
t−variate margin.

How to use OA-based LH for numerical integration? For example, in the case
of Example 6.1, first we can obtain a random OA-based LH, denoted by U =
(uij), by randomizing the rows, columns and symbols in an orthogonal array
A = OA(N, k, s, r) and then replacing the N/s positions with entry m by a ran-
dom permutation shown above, for all m = 0, 1, ..., s − 1. Suppose in X, each
entry X(j)

i ∼ Unif ((i − 1)/N, i/N), i = 1, . . . ,N, j = 1 . . . , k, are randomly gen-
erated. Then the N points to be used for integration are selected and formed by
Xi = (X(1)

ui1
, . . . ,X(k)

uik
), i = 1, . . . ,N . This procedure is called U sampling.

Tang [25] also presents many other results, such as the study of U sampling
constructed by OA(s2, k, s, 2), since such an array leads to the smallest possible
sample size N = s2 for a given s, which can save time.

6.2 Sliced Orthogonal Arrays

Themotivation for sliced orthogonal arrays is to provide a systematic study to address
the experimental planning issue in the study of computer experiments with qualita-
tive and quantitative factors. Since the existing space-filling designs, such as Latin
hypercube designs assume that all input factors to be quantitative. Another kind of
space-filling designs, sliced space-filling designs are introduced by Qian and Wu
[17].
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The basic approach start with a Latin hypercube design for the quantitative factors.
Then partition the design into groups corresponding to different levels of qualitative
factors with each achieving uniformity in lower dimension.

Definition 6.2 An OA(N1, k, s1, t), say A, is called a sliced orthogonal array if its
rows can be partitioned into v = N1/N2 arrays Bi, each with N2 rows, such that
after mapping the s1 levels of Bi to s2 levels with s1 > s2, each Bi turns into an
OA(N2, k, s2, t).

Example 6.2 The example shows a sliced orthogonal array A = OA(16, 3, 4, 2),
after being partitioned into 4 arrays Bi (shown in (a)) and through the mapping:

0, 3 → 0; 1, 2 → 1

each small array Bi turns into an OA(4, 3, 2, 2), 1 ≤ i ≤ 4 (shown in (b)).

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 1 1
1 0 1
1 1 0
0 3 3
0 2 2
1 3 2
1 2 3
3 3 0
3 2 1
2 3 1
2 2 0
3 0 3
3 1 2
2 0 2
2 1 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(a)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 1 1
1 0 1
1 1 0
0 0 0
0 1 1
1 0 1
1 1 0
0 0 0
0 1 1
1 0 1
1 1 0
0 0 0
0 1 1
1 0 1
1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(b)

The idea of constructing a sliced space-filling design using sliced orthogonal
array is as follows: Let A be a sliced orthogonal array which can be used to generate
an OA-based Latin hypercube design by following the procedure in Sect. 6.1. The
resulting design is an OA-based LHD for quantitative factors, denoted by D, and it’s
partitioned into different groups Di, where each Di consists of points corresponding
to Bi. Different Di’s are associated with different level combinations of qualitative
factors, so the design points for the quantitative factors achieve uniformity in low
dimensions for any qualitative factor level combination. Now the array (D1, . . . ,Dv)

is a sliced space-filling design.
Qian and Wu [17] also introduced some statistical properties of sliced space-

filling designs. Further, several methods for the construction of sliced orthogonal
arrays were also provided.

http://dx.doi.org/10.1007/978-3-319-46310-0_6
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6.3 Nested Orthogonal Arrays

Nested orthogonal arrays have been applied in the construction of space-filling
designs when we want to combine two experiments, the expensive one with higher
accuracy to be nested in a relatively inexpensive one of lower accuracy.

Definition 6.3 A nested orthogonal array NOA((N1,N2), k, (s1, s2), t) is an OA(N1,

k, s1, t), say A, which contains an OA(N2, k, s2, t), where N2 < N1, s2 < s1.

Let r = s1/s2. Mukerjee et al. [16] studies the existence of nested orthogonal
arrays and obtains a Rao-type bound, shown as follows.

Theorem 6.1 A necessary condition on N1 for the existence of OA((N1,N2), k,
(s1, s2), t) is

N1 ≥ N2

(

1 + k(r − 1) + . . . +
(

k

u

)

(r − 1)u
)

, if t = 2u,

N1 ≥ N2

[

1 + k(r − 1) + . . . +
(

k

u

)

(r − 1)u +
(

k − 1

u

)

(r − 1)u+1
]

, if t = 2u + 1.

(14)

Theorem 6.2 A necessary condition on k for the existence of OA((N1,N2), k,
(s1, s2), t) is

k ≤ N1 − N2rt−2

N2rt−2(r − 1)
+ t − 2. (15)

This bound can be attained for some cases.Mukerjee et al. [16] provides a detailed
proof of this theorems with some examples discussed. We omit the details here.

Dey [5] provides some methods of construction for nested orthogonal arrays, and
extends the definition and constructions to asymmetric nested orthogonal arrays.

7 Other Topics

7.1 Latin Squares and F-Squares

The areas of Latin squares and F-squares have attracted numbers of researchers. The
connection between them and orthogonal arrays are also fascinating.

Definition 7.1 A Latin square of order s is an s × s array with entries from a set S
with cardinality s, such that in every row and every column each element of S appears
exactly once.

Definition 7.2 Two Latin squares of order s are said to be orthogonal to each other
if upon superimposition of one on the other, the ordered pairs (i, j) of corresponding
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entries consist of all possible s2 pairs. A Latin square is orthogonally mateless or
isolated if there is no Latin square orthogonal to it.

A collection of w Latin squares of order s is called a set of pairwise orthogonal
Latin squares (or mutually orthogonal Latin squares), if any pair of Latin squares
from the collection are orthogonal to each other, denote the collection by POL(s,w)
(or MOLS(s,w)).

It can be verified that 1 ≤ w ≤ s − 1. A POL(s, s − 1) is called a complete set of
pairwise orthogonal Latin square of order s.

Pairwise orthogonal Latin squares can be converted into orthogonal arrays of
strength 2 and vice versa.

Theorem 7.1 If a POL(s, k) exists, then an OA(s2, k + 2, s, 2) also exists. In par-
ticular, if s is a prime power, then an OA(s2, s + 1, s, 2) exists.

Theorem 7.2 An orthogonal array OA(s2, k + 2, s, 2), k ≥ 2 exists only if a
POL(s, k) exists.

The more general concepts, F-squares are more flexible, though not as well devel-
oped as Latin squares.

Definition 7.3 An F-square is an n × n array based on s symbols, such that in every
row and every column each symbol appears n/s times.

Definition 7.4 Two n × n F-squares are said to be orthogonal to each other if upon
superimposition of one on the other, the ordered pairs (i, j) of corresponding entries
contain all possible s2 pairs n2/s2 times.

Similarly we can define a set of pairwise orthogonal n × n F-squares and denote
it by POF(n, s,w).

The restriction on w for which POF(n, s,w) exists along with the proof can also
obtained, according to Hedayat et al. [8].

Theorem 7.3 A necessary condition for the existence of w pairwise orthogonal
n × n F-squares based on s symbols is

w ≤ (n − 1)2/(s − 1). (16)

Note that a POF(s, s,w) is just a POL(s,w). A POF(n, s,w) that attained the
equality in (16) is complete.

We can also convert pairwise orthogonal F-squares into orthogonal arrays of
strength 2.

Theorem 7.4 The existence of a POF(n, s, k1) implies the existence of an orthogonal
array OA(n2, k1 + 2, s, 2). In addition, if an OA(n, k2, s, 2) exists, then an orthogonal
array OA(n2, k1 + 2k2, s, 2) can be constructed.

However, the converse of Theorem 7.4 is not as straightforward as Theorem 7.2.
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7.2 Compound Orthogonal Arrays

First proposed by Rosenbaum [21, 22] and further studied by Hedayat and Stufken
[11], compound orthogonal arrays can be used in the study of dispersion effects in
factorial designs.

Definition 7.5 Let

B =
⎡

⎢
⎣

b1
...

bN1

⎤

⎥
⎦

be anOA(N1, s1 . . . sk1 , t1) andCi all be arrayswith parameters OA(N2, u1 . . . uk2 , t2),
i = 1, . . . ,N1. Then form the N1N2 × (k1 + k2) array

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1
... C1

b1
...

...

bN1

... CN1

bN1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Suppose A itself is an orthogonal array of strength t3. An array with this structure
is called a compound orthogonal array of type (t1, t2, t3), denoted by

COA((N1,N2), (k1, k2), (s1 . . . sk1 , u1 . . . uk2), (t1, t2, t3)).

Here some Ci could have greater strengths, and in this case t2 represents the
minimum strength of all Ci.

Compound orthogonal arrays in which the parameters satisfy

N1 ≤ s1s2 . . . sk1 (17)

N2 ≤ u1u2 . . . uk2 (18)

are of great interests. Four cases are distinguished in order to facilitate the discussion,
which are when both (17) and (18) attain equality; or (17) doesn’t attain equality but
(18) does; or (17) attains equality but (18) doesn’t; or both (17) and (18) fail to attain
equality. The goal is to obtain the maximal values for t1, t2, t3. For details of the
discussions, see Hedayat and Stufken [11].
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Hoffman’s Coclique Bound for Normal
Regular Digraphs, and Nonsymmetric
Association Schemes

Hadi Kharaghani and Sho Suda

Abstract We extend Hoffman’s coclique bound for regular digraphs with the prop-
erty that its adjacencymatrix is normal, and discuss cocliques attaining the inequality.
As a consequence, we characterize skew-Bush-type Hadamard matrices in terms of
digraphs.We present some normal digraphs whose vertex set is decomposed into dis-
joint cocliques attaining the bound. The digraphs provided here are relation graphs
of some nonsymmetric association schemes.

Keywords Hoffman’s coclique bound · Association scheme · Skew-Bush-type ·
Hadamard matrix · Regular biangular matrix · Twin asymmetric design
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1 Introduction

The method of discovery of certain properties of a graph from different parameters
of its adjacency matrix is an area of graph theory which is referred to as Spectral
Graph Theory. For example, using the eigenvalues or eigenspaces of the adjacency
matrix of a graph, several inequalities for parameters of the graph, such as the clique
size, the independent number, the chromatic number, etc. are obtained, see [4] for
details.

Hoffman has given an upper bound for the independent number of regular graphs,
see [4, 6]. In this paper we extend the Hoffman’s bound for normal regular digraphs.
Here, a normal digraph means a digraph with its adjacency matrix being normal,
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see Sect. 2.1. We also study normal digraphs with their coclique size attaining the
upper bound. In Sect. 4, we use the bound to characterize skew-Bush-type (or skew-
checkered) Hadamard matrices in terms of doubly regular asymmetric digraphs with
specific properties. This result is an analog of a result ofWallis [13], where it is shown
that there exists a symmetric Bush-type Hadamard matrix of order 4n2 if and only if
a strongly regular graph with parameters (4n2, 2n2 − n, n2 − n, n2 − n) exists such
that the vertex set is decomposed into 2n disjoint cocliques of size 2n. Note that the
cocliques of size 2n in any strongly regular graph attain Hoffman’s bound.

A coclique attaining Hoffman’s coclique bound in a strongly regular graph � is
a clique attaining the clique bound in the complement of �. A spread of a strongly
regular graph is a set of disjoint cliques attaining the clique bound and covering all
vertices. In [1, 4, 6], the spread of strongly regular graphs are extensively studied.
We provide in Sects. 5 and 6 some normal digraphs, which are all the relation graphs
of some association schemes, in such a way that their vertex set are decomposed into
disjoint cocliques with their sizes attaining the upper bound.

2 Preliminaries

2.1 Digraphs

A digraph � is a pair (X, E) such that the vertex set X is a finite set and the edge
set or arc set E is a subset of X × X with E ∩ {(x, x) | x ∈ X} = ∅. The adjacency
matrix of � is a (0, 1)-matrix with rows and columns indexed by the elements of X
such that Axy = 1 if (x, y) ∈ E and Axy = 0 otherwise. A digraph� is asymmetric if
(x, y) ∈ E implies (y, x) /∈ E , namely A + AT is a (0, 1)-matrix, where AT denotes
the transpose of A. A digraph� is normal if the adjacencymatrix A is normal, namely
AAT = AT A holds. A digraph � is k-regular if |{y ∈ X | (x, y) ∈ E}| = |{y ∈ X |
(y, x) ∈ E}| = k for any vertex x .

A digraph � is normally regular with parameters (n, k,λ,μ) if � is asymmetric,
the number of vertices of � is n and the adjacency matrix A of � satisfies

AAT = k In + λ(A + AT ) + μ(Jn − In − A − AT ), (1)

where In is the identity matrix of order n and Jn is the all ones matrix of order n. It
was shown in [9] that a normally regular digraph is indeed normal. A doubly regular
asymmetric digraph � with parameters (v, k,λ) is a normally regular digraph with
parameters (v, k,λ,λ).

A subset C in X is a coclique (or an independent set) in � if (x, y) /∈ E for any
x, y ∈ C .
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A digraph � is strongly connected if for any distinct vertices x, y, there exist
vertices x0, . . . , xs such that x0 = x , xs = y and (xi , xi+1) ∈ E for any i ∈ {0, 1, . . . ,
s − 1}.

The following lemma will be used in Proposition 4.1.

Lemma 2.1 Let � be a normally regular digraph with parameters (n, k,λ,μ) with
adjacency matrix A. Assume that A + AT = Jn − Ir ⊗ Jn/r for some positive inte-
ger r dividing n. Then the eigenvalues of A are k, ±√−k + μ, or −n/(2r) ±√
k − μ + (−λ + μ)n/r − n2/(4r2).

Proof The valency k is an eigenvalue of Awith the all-ones vector as an eigenvector.
Let α be an eigenvalue whose eigenvector is orthogonal to the all-ones vector. By
the Eq. (1), we have

αα = k + λ(α + α) + μ(−1 − α − α). (2)

Since A + AT = Jn − Ir ⊗ Jn/r , the real part of α is −n/(2r) or 0. By (2), α is the
desired value. �

2.2 Association Schemes

A commutative association scheme of class d with vertex set X of size n is a set
of non-zero (0, 1)-matrices A0, . . . , Ad , which are called adjacency matrices, with
rows and columns indexed by X , such that:

(i) A0 = In .
(ii)

∑d
i=0 Ai = Jn .

(iii) For any i ∈ {0, 1, . . . , d}, AT
i ∈ {A0, A1, . . . , Ad}.

(iv) For any i, j ∈ {0, 1, . . . , d}, Ai A j = ∑d
k=0 p

k
i j Ak for some pki j ’s.

(v) For any i, j ∈ {0, 1, . . . , d}, Ai A j = A j Ai .

The association scheme is said to be symmetric if all Ai are symmetric, nonsymmetric
otherwise. The intersection matrix Bi (i ∈ {0, 1, . . . , d}) is defined as follows: Bi =
(pki j )

d
j,k=0.

A digraph � = (X, E) is a relation graph of an association scheme with vertex
set X if the adjacency matrix of � is one of the adjacency matrices of the association
scheme.

The vector space spanned by the Ai ’s forms a commutative algebra, denoted
by A and called the Bose-Mesner algebra or adjacency algebra. There exists a
basis ofA consisting of primitive idempotents, say E0 = (1/n)Jn, E1, . . . , Ed . Since
{A0, A1, . . . , Ad} and {E0, E1, . . . , Ed} are two bases of A, there exist the change-
of-bases matrices P = (Pi j )di, j=0, Q = (Qi j )

d
i, j=0 so that
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A j =
d∑

i=0

Pi j Ei , E j = 1

n

d∑

i=0

Qi j Ai .

Thematrix P (Q respectively) is said to be the first (second respectively) eigenmatrix.

3 Hoffman’s Bound for Normal Digraphs

In this section, we give an upper bound for the size of cocliques in a normal digraph
in terms of eigenvalues of the adjacency matrix of the digraph �. The upper bound
is referred to as the Hoffman bound. For a digraph with adjacency matrix A, define
θmin = min{Re(θ) | θ is an eigenvalue of A}, Re(θ) is the real part of θ. Note that for
a normal graph which is not the empty graph, θmin is negative since the trace of A is
zero.

Proposition 3.1 Let n, k be positive integers. Let � = (X, E) be a strongly con-
nected k-regular normal digraph with n vertices and adjacency matrix A. For a
coclique C in �,

|C | ≤ n(−θmin)

k − θmin
(3)

holds. Moreover the following hold.

(i) If equality holds in (3), then |{y ∈ C | (x, y) ∈ E}| + |{y ∈ C | (y, x) ∈ E}| =
−2θmin for any x ∈ X \ C.

(ii) If equality holds in (3) and the number of eigenvalues with real part equal to
θmin is exactly one, then |{y ∈ C | (x, y) ∈ E}| = −θmin for any x ∈ X \ C.

Proof Let θ1, . . . , θl+2m be the eigenvalues of A such that θi ∈ R for any i ∈
{1, . . . , l} and θl+ j = θl+m+ j ∈ C \ R for any j ∈ {1, . . . ,m}. Let Ei be the orthogo-
nal projectiononto the eigenspaceofθi . Then El+ j = El+m+ j for any j ∈ {1, . . . ,m}.
Since k is an eigenvalue, we set θ1 = k. Since � is strongly connected, E1 = 1

n Jn .
Let χ be the characteristic column vector ofC . SinceC is a coclique of �, it holds

that

χT Aχ = 0. (4)

On the other hand we estimate the value χT Aχ to use the formula A = ∑l+2m
i=1 θi Ei

and χT El+ jχ = χT El+m+ jχ for j ∈ {1, . . . ,m} as follows:
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χT Aχ = χT (

l+2m∑

i=1

θi Ei )χ =
l+2m∑

i=1

θiχ
T Eiχ

= kχT E1χ +
l∑

i=2

θiχ
T Eiχ +

2m∑

i=1

θl+i + θl+i

2
χT El+iχ

≥ kχT E1χ + θmin

l+2m∑

i=2

χT Eiχ

= kχT E1χ + θminχ
T (In − E1)χ

= (k − θmin)|C |2
n

+ θmin|C |. (5)

Combining (4) and (5), we obtain |C | ≤ n(−θmin)/(k − θmin).
A coclique C meets the upper bound if and only if χT Eiχ = 0 for i such that

i ≥ 2 and Re(θi ) 	= θmin.
(i): Let A + AT = ∑t

i=1 τi Ft be the spectrum decomposition of A + AT , and set
τ1 = 2k and τt = 2θmin. Since Fiχ = 0 for i ∈ {2, 3, . . . , t − 1},

(A + AT )χ = 2kF1χ + τt Ftχ = 2kF1χ + τt

t∑

i=2

Fiχ = 2kF1χ + τt (In − F1)χ

= τtχ + (2k − τt )
1

n
Jnχ = τtχ + (2k − τt )

|C |
n

1 = (−2θmin)(1 − χ),

(6)

where 1 is the all-ones vector. Equation (6) is equivalent to the condition that the
|{y ∈ C | (x, y) ∈ E}| + |{y ∈ C | (x, y) ∈ E}| = −2θmin for any x ∈ X \ C .

(ii): Let θs satisfy Re(θs) = θmin. Then θs = θmin. Indeed, if θs ∈ C \ R, then θs
also satisfies Re(θs) = θmin. This contradicts the assumption. In this case,

Aχ = kE1χ + θs Esχ = kE1χ + θs

s∑

i=2

Eiχ = kE1χ + θs(In − E1)χ

= θsχ + (k − θs)
1

n
Jnχ = θsχ + (k − θs)

|C |
n

1 = (−θmin)(1 − χ). (7)

Equation (7) is equivalent to the condition that the size of {y ∈ C | (x, y) ∈ E} =
−θmin for any x ∈ X \ C . �

Remark 3.2 Assume that a normally regular digraph � satisfies the assumptions of
Lemma 2.1. By A + AT = Jn − Ir ⊗ Jn/r , the valency k of� is n(r−1)

2r . Thus the right
hand side of the bound in Proposition 3.1 is n/r . Then the cocliques represented as
the main diagonal blocks in A attain the bound in Proposition 3.1.
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4 A Characterization of Skew-Bush-type Hadamard
Matrices

A Hadamard matrix of order n is an n × n (1,−1)-matrix such that HHT = nIn . A
Hadamard matrix H of order 4n2 is of Bush-type (or checkered) if H = (Hi j )

2n
i, j=1,

where each Hi j is a 2n × 2n matrix, such that Hii = J2n for any i ∈ {1, . . . , 2n} and
Hi j J2n = J2nHi j = 0 for any distinct i, j ∈ {1, . . . , 2n}. A Bush-type Hadamard
matrix H = (Hi j )

2n
i, j=1 of order 4n2 is of skew-Bush-type (or skew-checkered) if

H − I2n ⊗ J2n is skew-symmetric.
It was shown by Haemers and Tonchev in [6] that there exists some symmetric

association scheme of class 3 if and only if there exists a strongly regular graph with
vertex set being decomposed into disjoint cliques attainingHoffmann’s clique bound.
It was shown by Wallis in [13] that there exists a symmetric Bush-type Hadamard
matrix of order 4n2 if and only if there exists a strongly regular graphwith parameters
(4n2, 2n2 − n, n2 − n, n2 − n) such that the vertex set is decomposed into 2n disjoint
cocliques of size 2n (see also [12, Lemma 1.1]).

Digraph’s counterpart of the result of Haemers and Tonchev by restricting the
parameters to (4n2, 2n2 − n, n2 − n, n2 − n) was shown in [5], which says there
exists some imprimitive nonsymmetric association scheme if and only if there exists
a skew-Bush-type Hadamard matrix. In this section, we show digraph counterpart
of the result of Wallis [13], namely characterizing the skew-Bush-type Hadamard
matrices in terms of the notion of doubly regular asymmetric digraphs with a similar
property to the undirected case.

Proposition 4.1 The following are equivalent.

(i) There exists a skew-Bush-type Hadamard matrix of order 4n2.
(ii) There exists a doubly regular asymmetric digraph with parameters (4n2, 2n2 −

n, n2 − n) such that the vertex set is decomposed into 2n disjoint cocliques of
size 2n.

Proof (i)⇒(ii): Let H be a skew-Bush-type Hadamard matrix of order 4n2. Define
a (0, 1)-matrix A = 1

2 (J4n2 − H). Since H − I2n ⊗ J2n is skew-symmetric, A sat-
isfies that A + AT = J4n2 − I2n ⊗ J2n . Thus A is the adjacency matrix of a digraph
whose vertex set is decomposed into disjoint 2n cliques of size 2n. Since H is
a regular Hadamard matrix in particular, it follows that A satisfies the equation
AAT = n2 I4n2 + (n2 − n)J4n2 . This shows that A is the adjacency matrix of a dou-
bly regular asymmetric digraph with the desired parameters.

(ii)⇒(i): Let � be a doubly regular asymmetric digraph with parameters
(4n2, 2n2 − n, n2 − n) with the property that the vertex set is decomposed into
2n disjoint cocliques of size 2n. Let A be the adjacency matrix of �. Since � is
decomposed into 2n disjoint cocliques of size 2n, after a suitable rearranging the
ordering of the vertices, we may assume that A + I2n ⊗ J2n is a (0, 1)-matrix. Let
H = A − AT + I2n ⊗ J2n , and set Hi j , Ai j (i, j ∈ {1, . . . , 2n}) to be 2n × 2nmatri-
ces such that H = (Hi j )

2n
i, j=1 and A = (Ai j )

2n
i, j=1. Then H is a (1,−1)-matrix, and
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the direct calculation shows that H is a Hadamard matrix. It is clear that each diago-
nal block of size 2n is Jn and H − I2n ⊗ J2n is skew-symmetric. By Lemma 2.1 the
eigenvalues of A are 2n2 − n,±√−1n,−n. As is shown in Remark 3.2, the disjoint
2n cocliques represented as the main diagonal blocks of A attain the upper bound
in Proposition 3.1, and thus by Proposition 3.1(ii) we have Ai j J2n = J2n Ai j = nJ2n
for any distinct i, j , namely Hi j J2n = J2nHi j = 0. Therefore H is a skew-Bush-type
Hadamard matrix. �

5 Regular Biangular Matrices and Association Schemes

In [7] the authors constructed association schemes from a Hadamard matrix of order
n and mutually orthogonal Latin squares of order n − 1. In this section, we construct
some association scheme from a Hadamard matrix of order n and a single Latin
square with some properties of order n − 1. Some relation graphs of the association
schemes have the property that its vertex set is decomposed into disjoint cocliques
attaining the bound in Proposition 3.1.

An (α,β)-biangular matrix of order n is an n × n (1,−1)-matrix H such that
the inner products of its normalized rows of H are in {α,β} [7]. An (α,β)-biangular
matrix H of order nm is called regular if the rows of H can be partitioned into
m-classes of size n each in such a way that:

(i) |〈u, v〉| = α for each distinct pair u, v in the same class.
(ii) |〈u, v〉| = β for each pair u, v belonging to different classes.

We will use the following lemma proven in [10].

Lemma 5.1 If there exists a Hadamard matrix of order n, then there exist symmetric
(1,−1)-matrices C1,C2, . . . ,Cn of order n such that:

(i) C1 = Jn.
(ii) CiC j = 0, 1 ≤ i 	= j ≤ n.
(iii) C2

i = nCi , 1 ≤ i ≤ n.
(iv)

∑n
i=1 Ci = nIn.

It follows from these conditions that the row sums and column sums are 0 for Ci ,
i 	= 1, and that

n∑

i=2

C2
i = n2 In − nJn .

Proof Letting H be anormalizedHadamardmatrixwith i th rowhi for i ∈ {1, . . . , n},
set Ci = hT

i hi . Then C1, . . . ,Cn satisfy the conditions (i)–(iv). �

Let H = (Hi j )
n
i, j=1 be a regular (α,β)-biangular matrix of order nm, where each

Hi j is a square matrix of order m and the rows in i-th block are in the same class
for any i ∈ {1, . . . ,m}. The regular (α,β)-biangular matrix H is said to be of skew-
symmetric if HT

i j = −Hji for any distinct i, j ∈ {1, . . . , n}.
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Theorem 5.2 Let n be the order of a Hadamard matrix. Then the following hold.

(i) There is a symmetric regular (0, 1
n−1 )-biangular matrix of order n(n − 1).

(ii) There is a skew-symmetric regular (0, 1
n−1 )-biangular matrix of order n(n − 1).

Proof Let H be a normalized Hadamard matrix, and let L be an addition table of
Zn−1. Then L is a symmetric Latin square with (i, j)-entry denoted by l(i, j). We
regard L as a Latin square on the set {2, . . . , n}.

Startingwith a symmetric Latin square on the set {2, . . . , n} and substituting i with
Ci from Lemma 5.1 for i ∈ {2, . . . , n}, we obtain a matrix which we will denote by
M . Clearly M is a (1,−1)-matrix of order n(n − 1). It follows from Lemma 5.1 that
MMT is a block matrix with all diagonal blocks equal to n2 In − nJn by Lemma 5.1,
and off-diagonal blocks equal to zero matrix by Lemma 5.1(ii) and the property of
L being a Latin square. This completes the proof of (i).

For a construction (ii), define M = (Mi j )
n
i, j=1 by Mi j = Cl(i, j) for i ≤ j and

Mi j = −Cl(i, j) for i > j . Then it is easy to see that the matrix M is the desired
skew-symmetric biangular matrix. �

More precisely, the matrices M in Theorem 5.2(i), (ii) satisfy the following equa-
tion:

MM T = n(n − 1)In(n−1) − nIn−1 ⊗ (Jn − In). (8)

We decompose M into disjoint (0, 1)-matrices A0, A1, . . . , A4 defined as follows:

M = A0 + A1 − A2 + A3 − A4

A0 = In(n−1)

A1 + A2 = (Jn−1 − In−1) ⊗ Jn, (9)

A0 + A3 + A4 = In−1 ⊗ Jn. (10)

Note that A1 = AT
1 , A2 = AT

2 ifM is a symmetric regular biangular matrix and A1 =
AT
2 if M is a skew-symmetric regular biangular matrix, and A3, A4 are symmetric in

both cases.

Theorem 5.3 (i) The set of matrices {A0, A1, A2, A3, A4} forms a symmetric asso-
ciation scheme if M is a symmetric regular biangular matrix.

(ii) The set of matrices {A0, A1, A2, A3, A4} forms a nonsymmetric association
scheme if M is a skew-symmetric regular biangular matrix.

Proof In both cases, the proof is the same as follows. Let A :=
span

R
{A0, A1, . . . , A4}. Since each block matrix of Ai for any i has a constant row

and column sum, we have

Ai (In−1 ⊗ Jn) = (In−1 ⊗ Jn)Ai ∈ A, (11)

Ai ((Jn−1 − In−1) ⊗ Jn) = ((Jn−1 − In−1) ⊗ Jn)Ai ∈ A. (12)
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First we show Ai A j ∈ A for i, j ∈ {3, 4}. By Lemma 5.1(iii), we have (A0 +
A3 − A4)

2 = n(A0 + A3 − A4). By (10) and (11)wehave A2
4 ∈ A. Similarly Ai A j ∈

A for others i, j ∈ {3, 4}.
Next we show Ai A j ∈ A for i ∈ {1, 2}, j ∈ {3, 4} or i ∈ {3, 4}, j ∈ {1, 2}. By

Lemma 5.1(ii), we have (A1 − A2)(A0 + A3 − A4) = 0. By (9), (10), (11) and
(12), we have A2A4 ∈ A. Similarly Ai A j ∈ A for others i ∈ {1, 2}, j ∈ {3, 4} or
i ∈ {3, 4}, j ∈ {1, 2}.

Finally we show Ai A j ∈ A for i, j ∈ {1, 2}. By (8) we have (A1 − A2)
2 ∈ A. By

(9) and (12), we have Ai A j ∈ A for i, j ∈ {1, 2}. Thus this completes the proof. �
The first eigenmatrices in Theorem 5.3(i), (ii) are as follows respectively:

P =

⎛

⎜
⎜
⎜
⎜
⎝

1 n(n−2)
2

n(n−2)
2

n−2
2

n
2

1 0 0 n−2
2 − n

2
1 − n

2 − n
2

n−2
2

n
2

1 − n
2

n
2 −1 0

1 n
2 − n

2 −1 0

⎞

⎟
⎟
⎟
⎟
⎠

, P =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 n(n−2)
2

n(n−2)
2

n−2
2

n
2

1 0 0 n−2
2 − n

2
1 − n

2 − n
2

n−2
2

n
2

1 −
√−1n

2

√−1n
2 −1 0

1
√−1n

2 −
√−1n

2 −1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

See Appendices A, B for the intersection numbers and second eigenmatrices. Con-
sider relation graphs with adjacency matrix A1, A2 in both association schemes. As
Proposition 3.1 shows, each main diagonal block of A1, A2 represents a coclique
and A4 corresponds to a partition of the vertex set by cliques attaining the bound in
Proposition 3.1.

6 Twin Asymmetric Designs and Association Schemes

Finally we focus on normally regular digraphs with λ = μ, or equivalently dou-
bly regular asymmetric graphs. If an incidence matrix N of a symmetric design is
such that N + NT is a (0, 1)-matrix, then N is an adjacency matrix of a doubly
regular asymmetric digraph, and vice versa. Our main reference for this section is
[8]. We will refer to a doubly regular asymmetric digraph with parameters (v, k,λ)

as a DRAD(v, k,λ). Symmetric (v, k,λ)-designs D = (X,B) and D′ = (X,B′) are
called twin designs if there is a bijection f : B → B′ such that every block B ∈ B is
disjoint from f (B). In general, it is not easy to find twin symmetric designs. How-
ever, if� is aDRAD(v, k,λ) and�′ is the digraph obtained by reversing the direction
of every arc of�, then the corresponding symmetric designs are twins. The following
theorem is proven in [8].

Theorem 6.1 Let h be a positive integer such that there exists a Hadamard matrix
of order 2h. If p = (2h − 1)2 is a prime power, then, for any positive integer d, there
exists a

DRAD

(
h(p2d − 1)

h + 1
, hp2d , h(h + 1)p2d−1

)

. (13)
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The construction makes use of skew balanced generalized weighing matrices and
Bush-type Hadamardmatrices constructed as in Lemma 5.1 from aHadamardmatrix
of order 2h. We illustrate this by an example which relates to the special case of the
theorem which used in this note.

Example 6.2 We start with a BGW(10, 9, 8) over the cyclic group C8. Let

W = [wi j ] =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 1 1 1 1 1 1 1
4 0 3 7 5 6 8 1 4 2
4 7 0 3 8 5 6 2 1 4
4 3 7 0 6 8 5 4 2 1
4 1 4 2 0 3 7 5 6 8
4 2 1 4 7 0 3 8 5 6
4 4 2 1 3 7 0 6 8 5
4 5 6 8 1 4 2 0 3 7
4 8 5 6 2 1 4 7 0 3
4 6 8 5 4 2 1 3 7 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then W is a skew BGW(10, 9, 8) over the cyclic group C8 = 〈g〉 generated by the
matrix

g =

⎛

⎜
⎜
⎝

0 I4 0 0
0 0 I4 0
0 0 0 I4

−I4 0 0 0

⎞

⎟
⎟
⎠ ,

where the number i in G denotes gi for i = 1, 2, . . . , 8. Let

H =

⎛

⎜
⎜
⎝

0 C2 C3 C4

−C4 0 C2 C3

−C3 −C4 0 C2

−C2 −C3 −C4 0

⎞

⎟
⎟
⎠ ,

where C2,C3,C4 are those constructed in Lemma 5.1 from a normalized Hadamard
matrix of order 4 and 0 denotes the zero matrix of order 16.

Let

R =

⎛

⎜
⎜
⎝

0 0 0 I4
0 0 I4 0
0 I4 0 0
I4 0 0 0

⎞

⎟
⎟
⎠ .

LetG = [Hwi j R], thenG canbe splitted to parts, namely the positive andnegative
part, to form a twin skew symmetric (160, 54, 18) design on 160 vertices.

To do this, keep all the 1-entries in G, change all the −1-entries to 0 and let
A1 be the (0, 1)-matrix obtained. Then, A1 is the incidence matrix of a symmetric
(160, 54, 18) design. Furthermore, A1 + AT

1 is a (0, 1)-matrix. So, A1 is the adja-
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cency matrix of a doubly regular asymmetric digraph. Now change all the 1-entries
inG to 0, all−1-entries to 1 and let A2 be the (0, 1)-matrix obtained. Then A2 = AT

1 ,
so A1 and A2 are twins. We refer the reader to [8] for the general construction.

We now use the sequence of doubly regular digraphs obtained from the above
theorem for d = 1 to deduce the existence of some association schemes of class five.
The general case corresponding to any positive integer d will appear elsewhere.

Theorem 6.3 Let h = 2n be a positive integer for which there is a Hadamardmatrix
of order h and p = 2n − 1 is a prime power. Consider the skew
BGW(p2 + 1, p2, p2 − 1) over the cyclic group of order 4n and the twin design
constructed in [8] for d = 1.
Let A1 be the plus and A2 the minus twin, A4 = I2n(p2+1) ⊗ (J2n − I2n), A5 =
Ip2+1 ⊗ (J4n2 − I2n ⊗ J2n).
Then {A0 = I4n2(p2+1), A1, A2, A3 = J4n2(p2+1) − A1 − A2 − A4 − A5, A4, A5}
forms a nonsymmetric association scheme of class 5 with the following intersection
numbers. Note that AT

1 = A2, A3, A4, A5 are symmetric.

• A1A1 = A2A2 = (n − 1)(2n − 1)(2n2 − n)(A1 + A2 + A3+A5)+ n2(2n−1)2A4.

• A1A2 = n2(2n − 1)2A0 + (2n − 1)2(n2 − n)J.
• A1A3 = A2A3 = 2n(n − 1)(2n − 1)(A1 + A2 + A3) + n(2n − 1)2A5.

• A1A4 = (n − 1)A1 + nA2.

• A1A5 = A2A5 = 2n(n − 1)(A1 + A2) + n(2n − 1)A3.

• A2A4 = nA1 + (n − 1)A2.

• A3A3 = 2n(2n − 1)2A0 + 4n(n − 1)(A1 + A2 + A3) + 2n(2n − 1)2A4.

• A3A4 = (2n − 1)A3.

• A3A5 = 2n(A1 + A2).

• A4A4 = (2n − 1)A0 + (2n − 2)A4.

• A4A5 = (2n − 1)A5.

• A5A5 = 2n(2n − 1)A0 + 2n(2n − 1)A4 + 4n(n − 1)A5.

Proof Let W = [wi j ] be a skew BGW(p2 + 1, p2, p2 − 1) over a cyclic group of
order 4n generated by a negacirculant matrix of order 4n as described in [8]. Let
R = R2n ⊗ I2n , where R2n denotes the back identity matrix of order 2n and I2n is
the identity matrix of order 2n. Then A3 = [|wi j |R].
The identities for A1A2 = A2A1 follows from the fact that each of A1 and A2 are the
inicdence matrices of a symmetric (p2 + 1)4n2, p2(2n2 − n), p2(n2 − n)) designs
and AT

1 = A2. The numbers for A1A1 and A2A2 follows from the fact that the sym-
metricmatrix A1 + A2 has a simple structure andwemakeuseof it infinding thenum-
bers for other products involving A1 and A2. The relation related to A3 follows from
the observation that A3 = [|wi j |R] and A1 + A2 + A3 = J4n2(p2+1) − Ip2+1 ⊗ J4n2 .
The remaining numbers are not hard to calculate. �
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The eigenmatrices P, Q are given as follows:

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 n(2n − 1)3 n(2n − 1)3 2n(2n − 1)2 2n − 1 2n(2n − 1)
1 n(2n − 1) n(2n − 1) −2n(2n − 1) 2n − 1 −2n
1 n(2n − 1)

√−1 −n(2n − 1)
√−1 0 −1 0

1 −n(2n − 1)
√−1 n(2n − 1)

√−1 0 −1 0
1 −n(2n − 1) −n(2n − 1) −2n 2n − 1 2n(2n − 1)
1 −n(2n − 1) −n(2n − 1) −2n(2n − 1) 2n − 1 −2n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 (2n − 1)m 2n(2n − 1)m 2n(2n − 1)m (2n − 1)2 (2n − 1)m

1 m
2n−1 − 2nm

√−1
2n−1

2nm
√−1

2n−1 −1 − m
2n−1

1 m
2n−1

2nm
√−1

2n−1 − 2nm
√−1

2n−1 −1 − m
2n−1

1 −m 0 0 −1 −2n + 1
1 m −2nm −2nm (2n − 1)2 m
1 −m 0 0 (2n − 1)2 −m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where m = 2n2 − 2n + 1. By the definition of A4, A5, we have A4 + A5 = Ip2+1 ⊗
(J4n2 − I4n2). The cocliques of the digraphs whose adjacency matrices are A1, A2

corresponding to the main diagonal blocks of A4 + A5 attain the upper bound in
Proposition 3.1.
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Appendix 1: Parameters of the association Scheme
in Theorem 5.3(i)

B1 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0 0
n2−2n

2
n2−3n

4
n2−3n

4
n2−4n

4
n2−2n

4

0 n2−3n
4

n2−3n
4

n2

4
n2−2n

4
0 n

4 − 1 n
4 0 0

0 n
4

n
4 0 0

⎞

⎟
⎟
⎟
⎟
⎠

B2 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 1 0 0
0 n2−3n

4
n2−3n

4
n2

4
n2−2n

4
n2−2n

2
n2−3n

4
n2−3n

4
n2−4n

4
n2−2n

4
0 n

4
n−4
4 0 0

0 n
4

n
4 0 0

⎞

⎟
⎟
⎟
⎟
⎠

B3 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 1 0
0 n

4 − 1 n
4 0 0

0 n
4

n
4 − 1 0 0

n
2 − 1 0 0 n

2 − 2 0
0 0 0 0 n

2 − 1

⎞

⎟
⎟
⎟
⎟
⎠



Hoffman’s Coclique Bound for Normal Regular Digraphs . . . 149

B4 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 1
0 n

4
n
4 0 0

0 n
4

n
4 0 0

0 0 0 0 n
2 − 1

n
2 0 0 n

2 0

⎞

⎟
⎟
⎟
⎟
⎠

Q =

⎛

⎜
⎜
⎜
⎜
⎝

1 n − 1 n − 2 (n−1)(n−2)
2

(n−1)(n−2)
2

1 0 −1 − n−1
2

n−1
2

1 0 −1 n−1
2 − n−1

2
1 n − 1 n − 2 −n + 1 −n + 1
1 −n + 1 n − 2 0 0

⎞

⎟
⎟
⎟
⎟
⎠

Appendix 2: Parameters of the Association Scheme in
Theorem 5.3(ii)

B1 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0 0
0 n2−3n

4
n2−3n

4
n2

4
n2−2n

4
n2−2n

2
n2−3n

4
n2−3n

4
n2−4n

4
n2−2n

4
0 n

4 − 1 n
4 0 0

0 n
4

n
4 0 0

⎞

⎟
⎟
⎟
⎟
⎠

B2 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 1 0 0
n2−2n

2
n2−3n

4
n2−3n

4
n2−4n

4
n2−2n

4

0 n2−3n
4

n2−3n
4

n2

4
n2−2n

4
0 n

4
n−4
4 0 0

0 n
4

n
4 0 0

⎞

⎟
⎟
⎟
⎟
⎠

B3 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 1 0
0 n

4 − 1 n
4 0 0

0 n
4

n
4 − 1 0 0

n
2 − 1 0 0 n

2 − 2 0
0 0 0 0 n

2 − 1

⎞

⎟
⎟
⎟
⎟
⎠

B4 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 1
0 n

4
n
4 0 0

0 n
4

n
4 0 0

0 0 0 0 n
2 − 1

n
2 0 0 n

2 0

⎞

⎟
⎟
⎟
⎟
⎠

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 n − 1 n − 2 (n−1)(n−2)
2

(n−1)(n−2)
2

1 0 −1 −
√−1(n−1)

2

√−1(n−1)
2

1 0 −1
√−1(n−1)

2 −
√−1(n−1)

2
1 n − 1 n − 2 −n + 1 −n + 1
1 −n + 1 n − 2 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠
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4. Cvetković, D.M., Doob,M., Sachs, H.: Spectra of graphs. Academic Press Inc. [Harcourt Brace
Jovanovich Publishers], New York (1980)

5. Goldbach,R.W.,Claasen,H.L.: 3-class association schemes andHadamardmatrices of a certain
block form. Europ. J. Combin. 19, 943–951 (1998)

6. Haemers, W.H., Tonchev, V.D.: Spreads in strongly regular graphs. Des. Codes Crypt. 8, 145–
157 (1996)

7. Holzmann, W.H., Kharaghani, H., Suda, S.: Mutually unbiased biangular vectors and associa-
tion schemes. In Colbourn, C. J. (ed.) Algebraic Design Theory and Hadamard Matrices, vol.
133, pp. 149–157. Springer International Publishing (2015)

8. Ionin,Y.J., Kharaghani, H.:Doubly regular digraphs and symmetric designs. J. Combin. Theory
Ser. A 101(1), 35–48 (2003)

9. Jorgensen, L.K., Jones, G.A., Klin, M.H., Song, S.Y.: Normally regular digraphs, associa-
tion schemes and related combinatorial structures. Sém. Lothar. Combin. 71, Art. B71c, 39pp
(2013/14)

10. Kharaghani, H.: New class of weighing matrices. Ars. Combin. 19, 69–72 (1985)
11. Kharaghani, H., Sasani,S., Suda, S.: Mutually unbiased Bush-type Hadamard matrices and

association schemes. Elec. J. Combin. 22 P3. 10 (2015)
12. Muzychuk, M., Xiang, Q.: Symmetric Bush-type Hadamard matrices of order 4m4 exist for all

odd m. Proc. Amer. Math. Soc. 134(8), 2197–2204 (2006)
13. Wallis, W.D.: On a problem of K. A. Bush concerning Hadamard matrices. Bull. Aust. Math.

Soc. 6, 321–326 (1971)



A Suspension Bridge Problem: Existence
and Stability

Salim A. Messaoudi and Soh Edwin Mukiawa

Abstract In this work, we consider a semilinear problem describing the motion
of a suspension bridge in the downward direction in the presence of its hanger
restoring force h(u) and a linear damping δut , where δ > 0 is a constant. By using
the semigroup theory, we establish the well posedness. We also use the multiplier
method to prove a stability result.

Keywords Suspension bridge · Semigroup theory · Well posedness · Stability ·
Exponential decay

Mathematics Subject Classification: 35L51 · 35L71 · 35B35 · 35B41

1 Introduction

A simple model for a bending energy of a deformed thin plate � = (0, L) × (−�, �)

is given by

EB(u) =
∫

�

(
K 2

1

2
+ K 2

2

2
+ σK1K2

)

dxdy, (1.1)

where u = u(x, y) represents the downward vertical displacement of the plate and
K1, K2 are the principal curvatures of the graph of u. The constant σ = λ

2λ+μ
is the

Poission ratio andλ, μ are called the Lamémoduli. For some physical reasons,λ ≥ 0
andμ > 0, hence 0 < σ < 1

2 . For small deformation u, the following approximations
hold

(K1 + K2)
2 ≈ (�u)2, K1K2 ≈ det (D2u) = uxxuyy − u2xy .
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As a result, we get

1

2
K 2

1 + 1

2
K 2

2 + σK1K2 ≈ 1

2
(�u)2 + (σ − 1)det (D2u).

Consequently, the energy functional (1.1) takes the form

EB(u) =
∫

�

(
1

2
(�u)2 + (σ − 1)det (D2u)

)

dxdy. (1.2)

We note here that, for 0 < σ < 1
2 , EB is convex and is also coercive in suitable state

spaces such as H 2
0 (�) or H 2(�) ∩ H 1

0 (�).
If f is an external vertical load acting on the plate �, then the total energy is given
by

ET (u) = EB(u) −
∫

�

f udxdy

=
∫

�

[(
1

2
(�u)2 + (σ − 1)(uxxuyy − u2xy)

)

− f u

]

dxdy. (1.3)

The unique minimizer u of the functional (1.3) satisfies the Euler-Lagrange equation

�2u(x, y) = f (x, y), in �. (1.4)

For totally supported plate (u = ∂u
∂η

= 0), the problem has been first solved byNavier
[17] in 1823. Since the bridge is usually simply supported on the vertical sides
(x = 0, x = L , i.e. the y− axis) only

u(0, y) = uxx (0, y) = u(L , y) = uxx (L , y) = 0,

then different boundary conditions should be considered for the horizontal sides
(y = −�, y = �, i.e. x−axis). Various problems on a rectangular plate �, where
only the vertical sides are simply supported, were discussed by many authors, see,
for instance Mansfield [11]. Naturally, one should consider the plate � with free
horizontal sides. In such a situation, the boundary conditions are

⎧
⎨

⎩

uyy(x,±�) + σuxx (x,±�) = 0, f or x,∈ (0, L),

uyyy(x,±�) + (2 − σ)uxxy(x,±�) = 0, f or x ∈ (0, L),

(1.5)

see Ventsel and Krauthammer [19]. Putting all pieces together (see Ferrero and
Gazzola [5]), the boundary value problem for a thin plate � modeling a suspension
bridge is
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�2u(x, y) = f (x, y), in �,

u(0, y) = uxx (0, y) = u(L , y) = uxx (L , y) = 0, y ∈ (−�, �),

uyy(x,±�) + σuxx (x,±�) = 0, x ∈ (0, L),

uyyy(x,±�) + (2 − σ)uxxy(x,±�) = 0, x ∈ (0, L).

(1.6)

In order to describe the action of the hangers (cables), Ferrero and Gazzola [5]
introduced a nonlinear function h(x, y, u) which admits a potential energy given by∫

�

H(x, y, u)dxdy. As a result, the total energy (1.3) becomes

ET (u) =
∫

�

[(
1

2
(�u)2 + (σ − 1)(uxxuyy − u2xy)

)

+ H(x, y, u) − f u

]

dxdy,

(1.7)
whose unique minimizer satisfies the stationary problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�2u(x, y) + h(x, y, u(x, y)) = f (x, y), in �,

u(0, y) = uxx (0, y) = u(L , y) = uxx (L , y) = 0, y ∈ (−�, �),

uyy(x,±�) + σuxx (x,±�) = 0, x ∈ (0, L),

uyyy(x,±�) + (2 − σ)uxxy(x,±�) = 0, x ∈ (0, L).

(1.8)

If the external force f depends on time, f = f (x, y, t), then the kinetic energy
1
2

∫

�

u2t dxdy has to be added to the static total energy (1.7). Thus, the total energy

becomes

ET (u) =1

2

∫

�

u2t dxdy +
∫

�

[(
1

2
(�u)2 + (σ − 1)(uxxuyy − u2xy)

)

+ H(x, y, u) − f u

]

dxdy. (1.9)

Also, the equation of motion becomes

utt (x, y, t) + �2u(x, y, t) + h(x, y, u(x .y, t)) = f (x, y, t). (1.10)

Finally, we might add a damping term due to some internal friction or viscosity. In
this case, Eq. (1.10) takes the form

utt (x, y, t) + δut (x, y, t) + �2u(x, y, t) + h(x, y, u(x .y, t)) = f (x, y, t),
(1.11)
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where δ > 0 is called the friction constant. Equation (1.11) together with the
boundary conditions of (1.8) and initial data has been discussed by Ferrero and
Gazzola [5], for a general nonlinear restoring force h. They proved the existence
of a unique solution, using the Galerkin method. In addition, they discussed several
stationary problems. Recent results by Wang [20] and Al-Gwaiz et al. [2] have also
made use of the above mention boundary conditions.

Early results concerning suspension bridges go back to McKenna and collabora-
tors. For instance, Glover et al. [8] considered the damped couple system

{
utt + ut + uxxxx + γ1ut + k(u − v)+ = f,
εvt t − vxx + γ2vt − k(u − v)+ = g,

(1.12)

where,
u, v : [0, L] × R

+ −→ R

represent the downward deflection and the vertical displacement of the string. For
rigid suspension bridges, Lazer and Mckenna [12] reduced the system (1.12) to the
following fourth-order equation

utt + uxxxx + ut + k2u+ = f, x ∈ (0, 1), t > 0, (1.13)

and established existence of periodic solutions by assuming the suspension bridge
as a bending beam. Equation (1.13) has been studied by a few authors (see [1, 4]).
Mckenna and Walter, [14, 15] also investigated the nonlinear oscillations of suspen-
sion bridges and the existence of travelling wave solutions have been established. To
achieve this, they considered the suspension bridge as a vibrating beam. Bochicchio
et al. [3] considered

utt + ut + uxxxx + (p − ‖ux‖2L2((0,1)))uxx + ku2 = f, (1.14)

where p is a force that acts directly on the central axis of the bridge (axial force)
and f a general external source term. They established a well-posedness as well as
existence of global attractor. For more literature concerning the suspension bridges,
we refer the reader to Mckenna [13], Mckenna et al. [16], Filippo et al. [7], Imhof
[9], and Gazzola [6].

In this work, we consider the following fourth order semilinear plate problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt (x, y, t) + δut (x, y, t) + �2u(x, y, t) + h(u(x .y, t)) = 0, in � × (0,+∞),

u(0, y, t) = uxx (0, y, t) = u(π, y, t) = uxx (π, y, t) = 0, (y, t) ∈ (−�, �) × (0,+∞),

uyy(x,±�, t) + σuxx (x,±�, t) = 0, (x, t) ∈ (0,π) × (0,+∞),

uyyy(x,±�, t) + (2 − σ)uxxy(x,±�, t) = 0, (x, t) ∈ (0,π) × (0,+∞),

u(x, y, 0) = u0(x, y), ut (x, y, 0) = u1(x, y), in �.

(1.15)
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The aim of this work is to reformulate (1.15) into a semigroup setting and then make
use of the semigroup theory (see Pazy [18]) to establish the well-posedness. We
also use the multiplier method (see Komornik [10]) to prove a stability result for
problem (1.15). The rest of this work is organized as follows. In Sect. 2, we present
some basic and fundamental materials needed to establish ourmain results. In Sect. 3,
we establish a well-posedness result for problem (1.15). In Sect. 4, we state and prove
our stability result.

2 Preliminaries

In this section we present some basic and fundamental results which will be used
in proving our main results. For this, we impose the following assumptions on the
function h

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h : R −→ R is li pschit z such that h(0) = 0,

H(s) =
∫ s

0
h(τ )dτ is posi tive,

sh(s) − H(s) ≥ 0, ∀s ∈ R.

(2.1)

Example 2.1 An example of a function satisfying (2.1) is

h(s) = a|s|p−1s, a ≥ 0, p ≥ 1.

As in [5], we introduce the space

H 2
∗ (�) = {

w ∈ H 2(�) : w = 0 on {0,π} × (−�, �)
}
, (2.2)

�

−�

Ω
π

x

y

0

w = 0 w = 0

together with the inner product
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(u, v)H 2∗ =
∫

�

[(�u�v + (1 − σ)(2uxyvxy − uxxvyy − uyyvxx )]dxdy. (2.3)

For the completeness of H 2∗ (�), we have the following results by Ferrero and Gaz-
zola [5].

Lemma 2.1 [5] Assume 0 < σ < 1
2 . Then, the norm ‖.‖H 2∗ (�) given by ‖u‖2H 2∗ (�)

=
(u, u)H 2∗ is equivalent to the usual H

2(�)-norm.Moreover, H 2∗ (�) is a Hilbert space
when endowed with the scalar product (., .)H 2∗ . �

Lemma 2.2 [5] Assume 0 < σ < 1
2 and f ∈ L2(�). Then there exists a unique

u ∈ H 2∗ (�) such that

∫

�

[�u�v + (1 − σ)(2uxyvxy − uxxvyy − uyyvxx )]dxdy =
∫

�

f v, ∀v ∈ H 2
∗ (�).

(2.4)
�

Remark 2.1 The function u ∈ H 2∗ (�) satisfying (2.4) is called the weak solution of
the stationary problem (1.6).

Lemma 2.3 [5] The weak solution u ∈ H 2∗ (�), of (2.4), is in H 4(�) and there
exists a C = C(l,σ) > 0 such that

‖u‖H 4(�) ≤ C‖ f ‖L2(�). (2.5)

In addition if u ∈ C4(�̄), then u is called a classical solution of (1.6). �

Lemma 2.4 [20] Let u ∈ H 2∗ (�) and suppose 1 ≤ p < +∞. Then, there exists a
positive constant Ce = Ce(�, p) such that

‖u‖p
p ≤ Ce‖u‖p

H 2∗ (�)
.

�

Lemma 2.5 [10] Let E : R+ −→ R+ be a non-increasing function. Assume that
there exists C > 0 such that

∫ ∞

s
E(t)dt ≤ CE(s), 0 < s < ∞.

Then, there exists λ > 0 a constant such that

E(t) ≤ E(0)e−λt , ∀t ≥ 0. (2.6)
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3 Well-Posedness

In this sectionwe establish thewell-posedness of problem (1.15) using the semigroup
theory. For this, we set ut = v, then problem (1.15) becomes

(P)

⎧
⎨

⎩

Ut + AU = F

U (0) = U0,

where

U =
(
u
v

)

, AU =
( −v

�2u + δv

)

, F(U ) =
(

0
−h(u)

)

, U0 =
(
u0
u1

)

.

We define the Hilbert space

H = H 2
∗ (�) × L2(�)

equipped with the inner product

(U, V )H = (u, ũ)H 2∗ (�) + (v, ṽ)L2(�) , (3.1)

where
U = (u, v)T , V = (ũ, ṽ)

T ∈ H.

Next, we introduce the following notation

⎧
⎨

⎩

uxx (0, y) = uxx (π, y) = 0
uyy(x,±�) + σuxx (x,±�) = 0
uyyy(x,±�) + (2 − σ)uxxy(x,±�) = 0.

(3.2)

The domain of the operator A is defined as

D(A) = {
(u, v) ∈ H/u ∈ H 4(�) satis f ying (3.2), v ∈ H 2

∗ (�)
}
.

Lemma 3.1 We have

(�2u, v)L2(�) = (u, v)H 2∗ , ∀u, v ∈ D(A). (3.3)

Proof Using Green’s formula we obtain that

∫

�

v�2u =
∫

�

�u�v +
∫

∂�

[v ∂�u

∂η
− �u

∂v

∂η
]. (3.4)
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Integration in (3.4) leads to

∫

�

v�2u =
∫

�

�u�v −
∫ π

0
v(x,−�)[uxxy(x,−�) + uyyy(x,−�)]dx

+
∫ π

0
v(x, �)[uxxy(x, �) + uyyy(x, �)]dx

+
∫ π

0
vy(x,−�)[uxx (x,−�) + uyy(x,−�)]dx

−
∫ �

−�

vx (π, y)[������0
uxx (π, y) +������0

uyy(π, y)]dy

−
∫ π

0
vy(x, �)[uxx (x, �) + uyy(x, �)]dx

+
∫ �

−�

vx (0, y)[������0
uxx (0, y) +������0

uyy(0, y)]dy].

This gives

∫

�

v�2u =
∫

�

�u�v −
∫ π

0
v(x,−�)[uxxy(x,−�) + uyyy(x,−�)]dx

+
∫ π

0
v(x, �)[uxxy(x, �) + uyyy(x, �)]dx

+
∫ π

0
vy(x,−�)[uxx (x,−�) + uyy(x,−�)]dx

−
∫ π

0
vy(x, �)[uxx (x, �) + uyy(x, �)]dx . (3.5)

By using (3.2), we obtain

∫

�

v�2u =
∫

�

�u�v + (1 − σ)

∫ π

0
[v(x,−�)uxxy(x,−�) − v(x, �)uxxy(x, �)]dx

+ (1 − σ)

∫ π

0
[vy(x,−�)uxx (x,−�) − vy(x, �)uxx (x, �)]dx . (3.6)

By performing similar integration by part on the right hand side of (2.3), we obtain
(3.6). Hence the result. �

Lemma 3.2 The operator A : D(A) ⊂ H −→ H is monotone.

Proof Exploiting Lemma 3.1, we obtain, for all U =
(
u
v

)

∈ D(A),
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(AU,U )H =
(( −v

�2u + δv

)

,

(
u
v

))

H

= − (u, v)H2∗ (�) + (
�2u + δv, v

)
L2(�)

= − (u, v)H2∗ (�) + (
�2u, v

)
L2(�)

+ δ‖v‖2L2(�)
= δ‖v‖2L2(�)

≥ 0. (3.7)

Thus, A is a monotone operator. �

Lemma 3.3 The operator A : D(A) ⊂ H −→ H is maximal, that is R(I + A)

= H.

Proof Let G = (k, l) ∈ H and consider the stationary problem

U + AU = G, (3.8)

where U =
(
u
v

)

. From (3.8) we obtain

⎧
⎨

⎩

u − v = k,

v + �2u + δv = l.
(3.9)

Combining (3.9)1 and (3.9)2 gives, for δ0 = δ + 1,

δ0u + �2u = l + δ0k. (3.10)

The weak formulation of (3.10) is then

δ0

∫

�

uφ + (u,φ)H 2∗ (�) =
∫

�

(l + δ0k)φ, ∀φ ∈ H 2
∗ (�). (3.11)

We define the following bilinear and linear forms on H 2∗ (�)

B(u,φ) = δ0

∫

�

uφ + (u,φ)H 2∗ (�), (3.12)

F(φ) =
∫

�

(l + δ0k)φ. (3.13)

By using Lemmas 2.1 and 2.4, we show that B is bounded and coercive, and F is
bounded. For this, we can easily see that

|B(u,φ)| ≤ C‖u‖H 2∗ ‖φ‖H 2∗ .

Furthermore, we have that
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B(u, u) = δ0‖u‖2L2 + ‖u‖2H 2∗
≥ ‖u‖2H 2∗

. (3.14)

Therefore B is bounded and coercive.
Also,

|F(φ)| ≤ ‖l‖L2‖φ‖L2 + δ0‖k‖L2‖φ‖L2 ≤ C(‖l‖L2 + δ0‖k‖H 2∗ )‖φ‖H 2∗ .

This implies that F is bounded. Thus, Lax- Milgram Theorem guarantees the exis-
tence of a unique u ∈ H 2∗ (�) satisfying (3.11), which yields

(u,φ)H 2∗ (�) =
∫

�

[l + δ0k − δ0u]φ, ∀φ ∈ H 2
∗ (�). (3.15)

Since l + δ0k − δ0u ∈ L2(�), it follows from Lemma 2.3 that u ∈ H 4(�). Thus, we
get u ∈ H 2∗ (�) ∩ H 4(�). By performing similar integration by parts as in Lemma
3.1 to Eq. (3.11), we obtain

∫

�
[δ0u + �2u − l + δ0k]φ +

∫ �

−�
[uxx (π, y)φx (π, y) − uxx (0, y)φx (0, y)]dy

+
∫ π

0
{[uyy(x, �) + σuxx (x, �)]φy(x, �) − [uyy(x,−�) + σuxx (x,−�)]φy(x,−�)}dx

+
∫ π

0
[uyyy(x, −�) + (2 − σ)uxxy(x,−�)]φ(x, l)dx

−
∫ π

0
[uyyy(x, �) + (2 − σ)uxxy(x, �)]φ(x, l)dx = 0, ∀φ ∈ H2∗ (�). (3.16)

Now, by considering φ ∈ C∞
0 (�) (hence φ ∈ H 2∗ (�)), then all the boundary terms

of (3.16) vanish and we obtain

∫

�

[δ0u + �2u − l + δ0k]φ = 0, ∀φ ∈ C∞
0 (�). (3.17)

Hence (by density) we have

∫

�

[δ0u + �2u − l + δ0k]φ = 0, ∀φ ∈ L2(�). (3.18)

This implies
δ0u + �2u = l + δ0k, in L2(�). (3.19)

We take
v = u − k in H 2

∗ (�)

and obtain
v + �2u + δu = l, in L2(�).
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Thus, u ∈ H 2∗ (�) ∩ H 4(�) and v ∈ H 2∗ (�) solves (3.9). Again, by choosing φ ∈
C∞(�̄) ∩ H 2∗ (�) in (3.16) and using (3.19), we get

���������� 0∫

�

[δ0u + �2u − w]φ +
∫ �

−�

[uxx (π, y)φx (π, y) − uxx (0, y)φx (0, y)]dy

+
∫ π

0
{[uyy(x, �) + σuxx (x, �)]φy(x, �) − [uyy(x,−�) + σuxx (x,−�)]φy(x,−�)}dx

+
∫ π

0
[uyyy(x,−�) + (2 − σ)uxxy(x,−�)]φ(x, l)dx

−
∫ π

0
[uyyy(x, �) + (2 − σ)uxxy(x, �)]φ(x, l)dx = 0.

(3.20)

By the arbitrary choice of φ ∈ C∞(�̄) ∩ H 2∗ (�), we obtain from (3.20) the boundary
conditions (3.2). Therefore there exists a unique

U =
(
u
v

)

∈ D(A)

satisfying (3.9). Thus, A is a maximal operator. �

Lemma 3.4 The function F is Lipschtz.

Proof Let U, V ∈ H and recall assumption (2.1)1 to have

‖F(U ) − F(V )‖H = ‖
(

0
−h(u)

)

−
(

0
−h(ũ)

)

‖H

= ‖
(

0
h(ũ) − h(u)

)

‖H = ‖h(ũ) − h(u)‖L2(�)

≤ C‖u − ũ‖L2(�) ≤ C‖U − V ‖H.

So, F is lipsctitz. �

Thus, by the semigroup theory [18], we have the following existence result.

Theorem 3.1 Assume that (2.1) hold. Let U0 ∈ H be given. Then the problem (P)
has a unique weak solution

U ∈ C ([0,+∞),H) .

Moreover, if h is linear and U0 ∈ D(A), then (P) has a unique strong solution

U ∈ C ([0,+∞), D(A)) ∩ C1([0,+∞),H).

Proof Follows from Lemmas 3.2, 3.3 and 3.4. �
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4 Stability

In this section, we use the multiplier method (see Komornik [10]) to establish a
stability result for the energy functional associated to problem (1.15).

Corollary 4.1 We have

∫

�

u�2u = ‖u‖2H 2∗
, ∀u ∈ D(A). (4.1)

Proof Let v = u in Lemma 3.1. �

The energy functional associated to problem (1.15) is defined by

E(t) = 1

2
‖ut (t)‖2L2(�) + 1

2
‖u(t)‖2H 2∗

+
∫

�

H(u(t)). (4.2)

Lemma 4.1 Let (u0, u1) ∈ D(A) be given and assume that (2.1) hold. Then the
energy functional (4.2) satisfies

dE(t)

dt
= −δ

∫

�

u2t ≤ 0. (4.3)

Proof Multiply (1.15)1 by ut and integrate over � to get

d

dt

(
1

2

∫

�

u2t + 1

2
‖u‖2H 2∗

+
∫

�

H(u)

)

+ δ

∫

�

u2t = 0. (4.4)

Hence, the result. The inequality in (4.3) remains true for weak solution by simple
density argument. Moreover, we get that E is a non-increasing functional. �

Theorem 4.1 Let (u0, u1) ∈ D(A) be given and assume (2.1) holds. Then, there
exist constants K > 0, λ > 0 such that the energy functional (4.2) satisfies

E(t) ≤ Ke−λt , ∀t ≥ 0. (4.5)

Proof Wemultiply (1.15)1 by u and integrate over � × (s, T ), for 0 < s < T to get

∫ T

s

∫

�

(
uttu + u�2u + uh(u) + δuut

) = 0. (4.6)

By using Corollary 4.1 we obtain
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∫ T

s

∫

�

(utu)t −
∫ T

s

∫

�

u2t +
∫ T

s
‖u‖2H 2∗

+
∫ T

s

∫

�

H(u) +
∫ T

s

∫

�

(uh(u) − H(u))

+ δ

∫ T

s

∫

�

uut = 0.

This gives

∫ T

s
E(t)dt +

∫ T

s

∫

�

(utu)t − 3

2

∫ T

s

∫

�

u2t + 1

2

∫ T

s
‖u‖2H 2∗

+
∫ T

s

∫

�

(uh(u)

− H(u)) + δ

∫ T

s

∫

�

uut = 0.

By exploiting assumption (2.1), we obtain

∫ T

s
E(t)dt ≤ −

∫ T

s

∫

�

(utu)t + 3

2

∫ T

s

∫

�

u2t − δ

∫ T

s

∫

�

uut . (4.7)

Now, we estimate the terms on the right-hand side of (4.7). By using Lemma 2.4 and
Young’s inequality, the first term can be estimated as follows

| −
∫

�

∫ T

s
(utu)t | ≤ |

∫

�

ut (s)u(s)| + |
∫

�

ut (T )u(T )|

≤ 1

2

∫

�

u2t (s) + 1

2

∫

�

u2(s) + 1

2

∫

�

u2t (T ) + 1

2

∫

�

u2(T )

≤ E(s) + C‖u(s)‖2H 2∗
+ E(T ) + C‖u(T )‖2H 2∗

≤ CE(s) + CE(T ) ≤ CE(s). (4.8)

For the second term, we have

3

2

∫ T

s

∫

�

u2t = 3

2δ

∫ T

s
(−E ′(t))dt = 3

2δ
E(s) − 3

2δ
E(T ) ≤ 3

2δ
E(s). (4.9)

For the third term, we have for any ε > 0 to be specified later
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| − δ

∫ T

s

∫

�

uut | ≤ Cεδ

∫ T

s

∫

�

u2t + δ
ε

2

∫ T

s

∫

�

u2

≤ Cεδ

∫ T

s
(−E ′(t))dt + δCe

ε

2

∫ T

s
‖u‖2H 2∗

≤ CεδE(s) + δCe
ε

2

∫ T

s
E(t)dt. (4.10)

Combining (4.8)–(4.10), we obtain

(
1 − Ceδ

ε

2

) ∫ T

s
E(t)dt ≤

(

C + 3

2δ
+ δCε

)

E(s). (4.11)

We then choose ε > 0 small enough so that
(
1 − Ceδ

ε
2

)
> 0 and obtain

∫ T

s
E(t)dt ≤ CE(s), ∀ s > 0. (4.12)

Letting T go to infinity and applying Lemma 2.5, we conclude from (4.12) the
existence of two constants K ,λ > 0 such that the energy of the solution of (1.15)
satisfies

E(t) ≤ Ke−λt , ∀t ≥ 0. (4.13)

This complete the proof. �

Remark 4.1 The decay estimate (4.5) remains valid for weak solutions by virtue of
the density of D(A) inH.
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An Interpolation-Based Approach
to American Put Option Pricing

Greg Orosi

Abstract In this paper, we discuss how to construct interpolation-based models for
American put options. In particular, we derive a closed-form expression and suggest
multi-parameter extensions. Our result makes no assumption about the dynamics of
the underlying asset, and is constructed to satisfy the necessary no-arbitrage condi-
tions. Finally, we discuss potential applications.

Keywords American option · Put option · Arbitrage-free conditions
MSC[2010] code: 91E45

1 Introduction

Since the seminalwork ofBlack andScholes [4], a commonapproach in the derivative
pricing literature has been to model the underlying asset’s price dynamics by a
stochastic process. Since option prices based on the geometric Brownian motion
model of Black and Scholes do not provide a reasonable fit to observed market
prices, several extensions have been proposed.Well-known examples of suchmodels
include the jump-diffusion model of Merton [12], the stochastic volatility model of
Heston [10], and the local volatility model of Dupire [7].

Although these extensions have a significantly better performance than the model
ofBlack andScholes, Epps [8],Alghalith [1] point out that there is no universalmodel
that provides a consistently good fit to observed option prices. Moreover, Figlewski
[9], Alghalith [2] point out that simple formulas, which make no assumption about
the underlying process, can produce good results. This idea has been explored by
Orosi [13] who finds that a nonparametric extension of Figlewski’s model provides
a nearly perfect fit to European call options on the S&P 500 index. Additionally,
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interpolation-based models can be used to extract information from European call
options (see for example (Orosi [14, 15]).

Motivated by these results, in this work, we introduce an interpolation-based
model for American put options. Instead of making an assumption about the under-
lying, we construct a suitable pricing function based on no-arbitrage conditions.
The rest of the paper is organized as follows. In Sect. 2, we state the necessary
no-arbitrage constraints and review how to construct interpolation-based put option
prices that satisfy well-known no arbitrage conditions.Moreover, we derive a closed-
form American put option formula and introduce a three-parameter model. To illus-
trate the applicability of our method, we calibrate our models to market quotes in
Sect. 3. Section4 discusses the practical use of our findings and we propose further
extensions. Finally, Sect. 5 presents our conclusions.

2 Constructing Suitable Pricing Functions

Merton [11] shows that an American put option function, P(K , T ), with strike
price K and time to expiry T , must satisfy the following no-arbitrage conditions: (i)
P(K , T ) is a convex and increasing function of K ; (ii) P(K , T ) ≤ K ; (iii) P(K , T )

is an increasing and convex function of T ; (iv) max(0, K − S) ≤ P(K , T ) where
S is the stock price; (v) P(0, T ) = 0; (vi) limK→∞ P(K ,T )

K−S = 1. Moreover, Carr and

Wu [6] show that for put options written on non-defaultable assets ∂P(K ,T )

∂K

∣
∣
∣
K=0

= 0.

We will refer to these as the necessary no-arbitrage conditions.
To determine suitable put option functions, first, we apply the following transfor-

mations to the strikes and put option prices:

p = P (K , T )

S

k = K

S
.

The main idea behind our approach is that it easier to construct suitable pricing
functions in the space that is rotated counterclockwise by 45◦. Furthermore, we
introduce the following function:

y = G
x2

(
1√
2

− x
) + x, (1)

where y and x represent the rotated values of p and k, respectively. Then, the put
option prices recovered from the above equation satisfy the necessary no-arbitrage
properties (see the results in the Appendix).

To obtain the relation between p and k, one must apply the transformation to x
and y that rotates these clockwise by 45◦. This transformation gives the following
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relation between the above variables:

p = y − x√
2

k = y + x√
2

.

Moreover, substituting (1) for y gives

p = 1√
2

⎛

⎝G
x2

(
1√
2

− x
) + x

⎞

⎠ − 1√
2
x,

where

x = k − p√
2

.

Finally, an analytic solution for p can be obtained from

p = 1√
2

⎛

⎜
⎝G

(
k−p√

2

)2

(
1√
2

− k−p√
2

)

⎞

⎟
⎠ (2)

that is given by

p = −√
2(G − 1)k + k2 + 1 + (G − 1)k + 1

G − 2
. (3)

Therefore, the arbitrage-free American put option function for a fixed maturity is
given by

P(K , T ) = S · p

=
−S

(√
2(G − 1)k + k2 + 1 + (G − 1)k + 1

)

G − 2
. (4)

Moreover, to incorporate the property that put options are an increasing function
of expiry, larger values of G can be fitted to longer expiries. This is illustrated in
Fig. 1 that plots arbitrage-free American put prices with two different parameters.
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Fig. 1 American put prices generated by the single-parameter model for two different values:
G = 0.03 and G = 0.1. The value of the stock price is assumed to be 100

2.1 A Multi-Parameter Extension

Instead of (1), one could consider the following relation with three parameters:

y = G
xα

(
1√
2

− x
)β

+ x . (5)

It can be easily shown that the necessary arbitrage-free conditions are satisfied if the
following the constraints are imposed on the parameters: α > 1 and β > 0 (see the
results in the Appendix). Although this three-parameter model provides a better fit
to observed option prices, there is no analytic solution for the put prices. Therefore,
these have to be determined numerically.

3 An Illustrative Example

In this section, to demonstrate the applicability of the models in (4) and (5), we
calibrate these to market quotes. The models are fitted to near-the-money American
put options written on Apple Inc. stock. We only consider options with the fixed
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expiry T = 1.093 on December 18, 2015. Moreover, the models are calibrated by
minimizing the Non-Linear Least Squares (NLS) objective:

n∑

i=1

(Pi (θ) − Pi )
2 ,

where the Pi -s are the market prices for options, and the Pi (θ)-s are the put option
prices based on the model. The results are presented in Table1 for the single-
parameter model and in Table2 for the three-parameter model. It can be observed
that both models yields prices that are very close to the market prices. Moreover, all
of the put option prices based on the three-parameter lie inside the bid-ask spread.

Although we leave rigorous empirical analysis of the performance of the models
for further research, some advantages of the models to traditional approaches can
be easily highlighted. For example, Brooks and Chance [5] point out that the most
commonly used option pricing models rely on a constant interest rate as an input.
However, according to them, it is difficult to determine what interest rate one should
use for the purposes of option pricing. Moreover, they point out that even small
errors in the interest rate used can lead to misestimated option prices and implied
volatilities. In particular, the prices of American options are very sensitive because of
the impact of the interest rate on early exercise. Since our models do not use interest
rate as an input, option prices and hedge ratios can be efficiently and accurately
calculated from observed market prices.

Table 1 The resulting call option prices of the one-parameter model with the best fit parameter G
on Apple Inc. stock with T = 1.093 on December 18, 2015

S = 108.98

G = 0.033

Market price Model price BID ASK

K = 92.5 6.03 6.03 5.9 6.15

K = 95 6.83 6.83 6.75 6.9

K = 97.5 7.68 7.68 7.55 7.8

K = 100 8.63 8.63 8.5 8.75

K = 105 10.78 10.78 10.7 10.85

K = 110 13.23 13.23 13.1 13.35

K = 115 16.03 16.03 15.9 16.15

K = 120 19.15 19.15 19.05 19.25

K = 125 22.58 22.58 22.45 22.7

K = 130 26.28 26.28 26.1 26.45
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Table 2 The resulting call option prices of the three-parameter with the best fit parameter G, α

and β on Apple Inc. stock with T = 1.093 on December 18, 2015

S = 108.98

G = 0.4789, α = 4.6233, β = 0.4425

Market price Model price BID ASK

K = 92.5 6.03 5.99 5.9 6.15

K = 95 6.83 6.78 6.75 6.9

K = 97.5 7.68 7.66 7.55 7.8

K = 100 8.63 8.60 8.5 8.75

K = 105 10.78 10.74 10.7 10.85

K = 110 13.23 13.20 13.1 13.35

K = 115 16.03 15.99 15.9 16.15

K = 120 19.15 19.12 19.05 19.25

K = 125 22.58 22.55 22.45 22.7

K = 130 26.28 26.28 26.1 26.45

4 Applications and Extensions

4.1 Model-Free Hedge Ratios

Bates [3], Reiss and Wystup [16] point out that a model-free deltas and gammas
can be calculated if one has a continuous set of options as a function of strikes. For
example, for puts and calls, it is reasonable to assume that

O (aK , aS, T ) = aO (K , S, T ) ,

where O (K , S, T ) is the option price, K is the strike price, S is the price of the asset,
and a is a positive constant. Then, a model-free delta, OS , can be calculated from
the expression:

OSS + OK K = O (K , S, T ) . (6)

Similarly, deltas and kappas satisfy the relations:

OS (aK , aS, T ) = OS (K , S, T )

OK (aK , aS, T ) = OK (K , S, T ) .

From the above, the following equations can be obtained:

OSSS + OKSK = 0

OKSS + OKK K = 0.
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Then, eliminating OKS from the above yields

OSSS
2 = OKK K

2. (7)

Finally, OKK and OK can be calculated numerically or analytically, and model-free
deltas and gammas can be obtained.

4.2 A Further Extension

Instead of (1) or (5), one could consider the following relation:

y = G
s(x)

(
1√
2

− x
)β

+ x,

where s(x) is a function with an arbitrary number of parameters or a nonparametric
function. Note that if β > 0, s(0) = 0, s ′(0) = 0, s ′(x) ≥ 0, and s ′′(x) ≥ 0, then
the put option prices satisfy the necessary no-arbitrage conditions (see the results in
the Appendix).

5 Conclusion

In this paper, we demonstrate how to construct interpolation-basedmodels for Amer-
ican put options. Our approach is constructed to satisfy the necessary no-arbitrage
conditions, and makes no assumption about the dynamics of the underlying asset.
We also briefly explain the advantage of the proposed models and discuss potential
applications.

Appendix

In this section, we show that put prices obtained from (1) or (5) satisfy the necessary
no-arbitrage conditions.

Claim 1 If a function y = f (x) is convex on x ∈ [0,∞) and f ′(x) � 1, then the
resulting function obtained by rotating f (x) clockwise by 45◦ is convex and increas-
ing on [0,∞).

Proof First, note that the rotated function p = g(k) is given by the equations
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p = 1√
2
y − 1√

2
x

k = 1√
2
y + 1√

2
x .

From the above, the following can be obtained:

p = 1√
2

( f (x) − x) = 1√
2

(

f

(
k − p√

2

)

− k − p√
2

)

.

Then,

dp

dk
= p′ = 1√

2

(

f ′
(
k − p√

2

)
1 − p′
√
2

− 1 − p′
√
2

)

= 1

2

(

f ′
(
p − k√

2

)

− 1

)
(
1 − p′)

and

p′ =
1
2

(
f ′

(
k−p√

2

)
− 1

)

1 + 1
2

(
f ′

(
k−p√

2

)
− 1

) .

Therefore, p′ � 0 because f ′(x) � 1. Moreover,

d2 p

dk2
= p′′ = 1

2

(

f ′′
(
k − p√

2

) (
1 − p′
√
2

))
(
1 − p′) + 1

2

(

f ′
(
k − p√

2

)

− 1

)
(−p′′)

and

d2 p

dk2
= p′′ =

1
2

(
f ′′

(
k−p√

2

) (
1−p′√

2

)) (
1 − p′)

1 + 1
2

(
f ′

(
k−p√

2

)
− 1

) .

Therefore, p′′ � 0 because both the numerator and denominator are positive. �

Moreover, if a continuous function y = f (x) is convex on x ∈
[
0, 1√

2

)
, f ′(x) �

1, and limx→ 1√
2
f (x) = ∞, then it is bounded by the lines: y = x , x = 1√

2
, and the

y-axis. Hence, the function obtained by rotating f (x) clockwise by 45◦ is bounded
by the following lines: the k-axis (the horizontal axis), p = k (that line that passes
through the original and has a slope of 1), and p = k − 1. Moreover,

lim
p→∞

g(k)

k − 1
= 1,

g(0) = 0 iff f (0) = 0,

and f ′(0) = 1 iff g′(0) = 0.
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Consequently, we require f (x) to satisfy the following requirements: f (0) = 0,

f ′(0) = 1, limx→ 1√
2
f (x) = ∞, f (x) is convex on x ∈

[
0, 1√

2

)
, and f ′(x) � 1.

Then, the put prices obtained from

P(K , T ) = P(k · S, T ) = S · p = S · g(k)

satisfy the necessary no-arbitrage conditions with the exception of condition (iii).
Finally, condition (iii) is satisfied if the parameter G in (4) or (5) is and increasing
function of T .

References

1. Alghalith, M.: A new stopping time model: a solution to a free-boundary problem. J. Optim.
Theory Appl. 152(1), 265–270 (2012)

2. Alghalith,M.:Option pricing: very simple formulas. J. Deriv.Hedge Funds 20(2), 71–73 (2014)
3. Bates, D.S.: Hedging the smirk. Finan. Res. Lett. 2(4), 195–200 (2005)
4. Black, F., Scholes, M.S.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3),

637–659 (1973)
5. Brooks, R., Chance, D.M.: Some subtle relationships and results in option pricing. J. Appl.

Finan. 24(1), 94–110 (2014)
6. Carr, P., Wu, L.: A simple robust link between American puts and credit protection. Rev. Finan.

Stud. 24(2), 473–505 (2011)
7. Dupire, B.: Pricing with a smile. Risk 7(1), 18–20 (1994)
8. Epps, T.W.: Quantitative Finance: Its Development, Mathematical Foundations, and Current

Scope. Wiley, New Jersey (2009)
9. Figlewski, S.: Assessing the incremental value of option pricing theory relative to an informa-

tionally passive benchmark. J. Deriv. 10(1), 80–96 (2002)
10. Heston, S.L.: A closed-form solution for options with stochastic volatility applications to bond

and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)
11. Merton, R.C.: Theory of rational option pricing. Bell J. Econ.Manag. Sci. 4(1), 141–183 (1973)
12. Merton, R.C.: Option pricingwhen underlying stock returns are discontinuous. J. Financ. Econ.

3(1–2), 125–144 (1976)
13. Orosi, G.: Arbitrage-free call option surface construction. Appl. Stoch. Models Bus. Indus.

31(4), 515–527 (2015a)
14. Orosi, G.: Closed-form interpolation-based formulas for European call options written on

defaultable assets. J. Asset Manag. 16(4), 236–242 (2015b)
15. Orosi, G.: Estimating option-implied risk-neutral densities: a novel parametric approach. J.

Deriv. 23(1), 41–61 (2015c)
16. Reiss, O.,Wystup, U.: Computing option price sensitivities using homogeneity and other tricks.

J. Deriv. 9(2), 41–53 (2001)



Stable Homotopy Groups of Moore Spaces

Inès Saihi

Abstract We determine explicitly the stable homotopy groups of Moore spaces
up to the range 7, using an equivalence of categories which allows to consider each
Moore space as an exact couple of Z-modules.

Keywords Moore spaces · Stable homotopy groups · Equivalence of categories
1991 Mathematics Subject Classification Primary 55Q10 · Secondary 55U20 ·
18G99

1 Introduction

Moore spaces and their stable homotopy groups were widely studied and a complete
reference on this subject is the book of Baues [1].

In this paper, we propose a new approach allowing to see Moore spaces as exact
couples of Z-modules by means of an equivalence of categories. Even though a
similar result is proven in [1], the approach given here is of independent interest,
since it is used to determine explicitly the stable homotopy groups of Moore spaces
up to the range 7.

LetG be an abelian group and n an integer greater than 1. AMoore spaceM(G, n)

is a simply connected CW-complex X such that Hn(X) � G and H̃i (X) = 0 for
i �= n. The homotopy type of M(G,n) is uniquely determined by the pair (G,n) (see
[6]).
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Let Mn be the category whose objects are Moore spaces M(A,n), where A is a
Z-module, and whose morphisms are homotopy classes of pointed maps between
such Moore spaces. Notice that, unlike the Eilenberg-MacLane, the set of homotopy
classes of pointed maps [M(A,n) , M(B,n)] between two Moore spaces is different
from Hom(A,B) (see proposition 2.1).

LetMod be the category ofZ-modules and letDe be the category of exact couples
inMod

A
2 �� A

α
����

��
��

�

B

β

���������

such that αβ = 2.
There are two exact functors �1 and �2 fromDe toMod assigning to a diagram

the Z-module A or B respectively.
The aimofSect. 2 is to construct, forn ≥ 3, an equivalenceof categoriesE between

Mn and De. In [1] and in a different context, Baues gave a similar result using the
properties of the Whitehead �-functor.

In Sect. 3, the stable homotopy groups πS
i (X) (0 ≤ i ≤ 7) of a Moore space X

will be expressed in term of E(X). The same techniques can be used to determine
πS
i (M(A,n)) for i ≥ 8, but calculations become complicated.

2 Equivalence of Categories Between Moore Spaces and
Diagrams

2.1 Category of Diagrams

In this section, we propose an equivalence of categories that allows to considerMoore
spaces as diagrams of Z-modules.

Recall that the suspension functor from Mn to Mn+1 is an equivalence of cate-
gories for n ≥ 3, so next results are independent of n.

Consider two modules A et B. Let X be the Moore space X = M(A,n), Y the
Moore space Y = M(B,n) and [X ,Y ] the set of homotopy classes of pointed maps
from X to Y ; this set is an abelian group (see [2]). Moreover:

Proposition 2.1 ([1], [2]) There is a natural exact sequence:

0 �� Ext(A,B/2) �� [X ,Y ] �� Hom(A,B) �� 0. (2.1)

Set S = M(Z,n) and P = M(Z/2,n). Applying the exact sequence (2.1) to S and
X , we obtain the exact sequence:
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0 �� Ext(Z,A/2) �� [S,X ] �� Hom(Z,A) �� 0

and [S,X ] is isomorphic to A. Similarly, applied to P and X , (2.1) becomes:

0 �� Ext(Z/2,A/2) �� [P,X ] �� Hom(Z/2,A) �� 0.

Since Ext(Z/2,A/2) is naturally isomorphic to A/2 (see Proposition 2.7), we have
the exact sequence:

0 �� A/2 �� A′ �� A2
�� 0 (2.2)

where A′ is the module [P,X ] and A2 is the set of order 2 elements in A. In other
words, we have the long exact sequence:

A
2 �� A

αX �� A′ βX �� A
2 �� A (2.3)

or equivalently, the exact couple denoted by DX :

A
2 �� A

αX����
��

��
�

A′
βX

���������

Moreover, if f is a map between two Moore spaces X = M(A,n) and Y =
M(B,n), then we can deduce a map f̄ : DX −→ DY as follows: f̄ = ( f1, f2) where
f1 : A � [S,X ] −→ B � [S,Y ] and f2 : A′ = [P,X ] −→ B ′ = [P,Y ] are the nat-
ural maps induced by f . The following diagrams commute:

A
2 ��

f1

��

A
αX ��

f1

��

A′ βX ��

f2
��

A
2 ��

f1

��

A

f1

��
B

2 �� B
αY �� B ′ βY �� B

2 �� B

2.1.1 Particular Case of P

When X = P , we have the next results:

Proposition 2.2 [P,P] � Z/4.

The proof of this result can be found in [2] or [7].

Lemma 2.3 The composition αPβP is multiplication by 2 on Z/4.
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Proof When X = P , the exact sequence (2.3) becomes:

Z/2 2 �� Z/2
αP �� Z/4

βP �� Z/2 2 �� Z/2

i.e.:

0 �� Z/2
αP �� Z/4

βP �� Z/2 �� 0

then αP = 2 and βP is the canonical surjection. Hence αPβP is the multiplication
by 2 on Z/4.

2.1.2 General Case

Lemma 2.4 For any Moore space X = M(A,n), the composition αXβX :A′ −→ A′
is multiplication by 2.

Proof Let u ∈ A′ = [P,X ] and f : P −→ X a representative of u. We have two
maps f1 and f2 and the commutative diagram:

Z/2 2=0 ��

f1

��

Z/2
αP ��

f1

��

Z/4
βP ��

f2

��

Z/2 2=0 ��

f1

��

Z/2

f1

��
A

2 �� A
αX �� A′ βX �� A

2 �� A

If u0 denotes the class of the identity map in [P,P], then f2(u0) = u. The result is
an immediate consequence of Lemma 2.3.

2.1.3 Category of Diagrams

Definition 2.5 Let De be the category of exact couples in the category Mod of
Z-modules

A
2 �� A

α
����

��
��

�

B

β

���������

(2.4)

such that αβ = 2.
A morphism f between two objects D and D′ is a couple f = ( f1, f2) such that

the following diagrams commute:
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A
2 ��

f1
��

A
α ��

f1
��

B
β ��

f2
��

A
2 ��

f1
��

A

f1
��

A′ 2 �� A′ α′
�� B ′ β′

�� A′ 2 �� A′

Notations: For ease, an object of De will be denoted by

A
α �� B
β

��

and a morphism between two objects D and D′ will be denoted by

A
αX ��

f1

��

A′
βX

��

f2
��

B
αY ��

B ′
βY

��

The previous constructions can be summarized in the following statement:

Proposition 2.6 There is a functor E : Mn −→ De assigning to each Moore space
X the diagram DX , and to each homotopy class f of pointed maps between two
Moore spaces X and Y the map f̄ : DX −→ DY .

In the remaining of this section, we will prove that the functor E is an equivalence
of categories.

Notations: Let �1 and �2 denote the two functors from De to Mod defined as
follows: if D is an object ofD given by:

A
α �� B
β

�� (2.5)

then �1(D) = A and �2(D) = B.
Notice that there is a natural transformation between functors�1 and�2 obtained

by associating to a diagram D given by (2.5), the morphism α. By associating to the
diagram D the morphism β, we get a natural transformation from �2 to �1.

2.2 Equivalence of Categories BetweenMn and De

2.2.1 Some Algebraic Results

This section is devoted to prove some general algebraic results needed to obtain the
equivalence of categories announced above.
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Proposition 2.7 For every Z/2-modules A and B, there is an isomorphism λ(A,B),
natural in A and in B:

λ(A,B) : Ext(A,B)
∼ �� Hom(A,B).

Proof An element e of Ext(A,B) is represented by an extension:

0 �� B
f �� E

g �� A �� 0.

Each element x ∈ A is of order 2 and g is surjective, so there is y ∈ E such that
g(y) = x and 2y ∈ ker g = Im f . Since f is injective, there exists a unique z ∈ B
such that f (z) = 2y. The map assigning to x the element z is well defined; then we
obtain a morphism:

λ(A,B) : Ext(A,B) �� Hom(A,B).

Since A is free, there is a natural isomorphism Ext(A,B) −→ Hom(A,Ext(Z/2,B))

obtained by restriction. (Each a ∈ A defines a map Z/2 −→ A which induces an
extension of Z/2 by B using a pull-back.) But Ext(Z/2,B) is naturaly isomorphic
to B, so we get an isomorphism from Ext(A,B) to Hom(A,B), which is λ(A,B).

Remark 2.8 If A and B are two Z-modules, we construct similarly a natural mor-
phism

λ(A,B) : Ext(A,B) −→ Hom(A2,B/2)

obtained by the composition:

λ(A,B) : Ext(A,B) �� Ext(A2,B/2)
λ(A2 ,B/2)�� Hom(A2,B/2),

where the first morphism is induced by restriction to order 2 elements in A and the
projection of B on B/2.

Corollary 2.9 If A is aZ/2-module and B aZ-module, thenExt(A,B) is isomorphic
to Hom(A,B/2).

Proof The morphism λ(A,B) is the composition

λ(A,B) : Ext(A,B)
pr �� Ext(A,B/2)

λ(A,B/2) �� Hom(A,B/2)

where pr is themorphism induced by the projection of B on B/2. By (2.7),λ(A,B/2) is
an isomorphism; it suffices to show that pr : Ext(A,B) −→ Ext(A,B/2) is bijective.
But A is a Z/2-module, so A is free and then can be written A = ⊕Z/2. Since
Ext(⊕Z/2,B) = ∏

Ext(Z/2,B) we can show the result for A = Z/2. Using the
resolution
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0 �� Z
2 �� Z �� Z/2 �� 0,

we get the diagram:

Hom(Z/2,B) ��

�
��

B
2 ��

pr

��

B ��

pr

��

Ext(Z/2,B) ��

�
��

0

B2
�� B/2 2=0 �� B/2 �� Ext(Z/2,B/2) �� 0

Corollary 2.10 If A is aZ-module and B aZ/2-module, thenExt(A,B) � Hom(A2,B).

Proof Since the morphism λ(A,B) is the composition

λ(A,B) : Ext(A,B)
R �� Ext(A2,B)

λ(A2 ,B) �� Hom(A2,B),

where R is the morphism induced by the restriction to A2, and λ(A2,B) is an isomor-
phism, we have just to show that R is bijective.

But B is free, so B = ⊕Z/2; consider the injective module I = ⊕(Q/Z); then
we have the exact sequence:

0 �� B �� I
2 �� I �� 0.

Applying the functor Hom(A,·), we obtain the following diagram:

Hom(A,I )
2 ��

R

��

Hom(A,I ) ��

R

��

Ext(A,B) ��

R

��

0

Hom(A2,I )
2=0 �� Hom(A2,I ) �� Ext(A2,B) �� 0

where R denotes the morphism induced by the restriction to A2.
On the other hand, we have the exact sequence:

0 �� A2
�� A

2 �� A

Applying the functor Hom(·,I ), we get an isomorphism between Hom(A2,I ) and
Hom(A,I )/2, so R : Ext(A,B) −→ Ext(A2,B) is bijective.

2.2.2 Equivalence of Categories

Theorem 2.11 The functor E is an equivalence of categories between Mn and De.



184 I. Saihi

To prove this theorem, we need the next two lemmas.

Lemma 2.12 For each diagram D inDe, there exists a Moore space X inMn such
E(X) = D.

Proof Let D be an object of De given by:

A
α �� B
β

��

Set X the Moore space X = M(A,n). The diagram associated to X is given by:

A
αX ��

A′
βX

��

Then, we have the following diagram:

0 �� A/2 α ��

I d

��

B
β �� A2

��

I d

��

0

0 �� A/2
αX �� A′ βX �� A2

�� 0

where the lines are exact. Each horizontal exact sequence defines an element in
Ext(A2,A/2) � Hom(A2,A/2). Since βα = 2 on B and βXαX = 2 on A′, the two
extensions give the same element in Hom(A2,A/2) and then the two extensions are
isomorphic.

Lemma 2.13 If X and Y are two Moore spaces, then [X ,Y ] is isomorphic to
Hom(DX ,DY ) = Hom(E(X),E(Y )).

Proof Let X = M(A,n) and Y = M(B,n), then there is an exact sequence:

0 �� Ext(A,B) �� [X ,Y ] �� Hom(A,B) �� 0

But we have: Ext(A,B/2) � Ext(A2,B/2) � Hom(A2,B/2), so we obtain the exact
sequence:

0 �� Hom(A2,B/2) �� [X ,Y ] �� Hom(A,B) �� 0.

On the other side, the forgetful morphism Fr : Hom(DX ,DY ) −→ Hom(A,B) is
surjective. Recall that an element g ∈ Hom(DX ,DY ) is given by two maps g1 and g2
such that:

A
2 ��

g1

��

A
αX ��

g1

��

A′ βX ��

g2

��

A
2 ��

g1

��

A

g1

��
B

2 �� B
αY �� B ′ βY �� B

2 �� B
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so an element g ∈ Hom(DX ,DY ) is in the kernel of the forgetful morphism if g1 = 0
and then we obtain a morphism A2 −→ B/2. Hence, we get the following commu-
tative diagram:

0 �� Hom(A2,B/2) ��

fX ,Y

��

[X , Y ] ��

��

Hom(A,B) ��

I d

��

0

0 �� Hom(A2,B/2) �� Hom(DX ,DY )
Fr �� Hom(A,B) �� 0

To prove the isomorphism between [X ,Y ] and Hom(DX ,DY ), it suffices to verify
that fX ,Y is the identity map. Notice that fX ,Y is a bifunctor, covariant in B and
contravariant in A.

When X = P and Y = S, the diagram becomes:

0 �� Z/2 ��

fP,S

��

[P , S] � Z/2 ��

��

0 �� 0

0 �� Z/2 �� Hom(DP ,DS) � Z/2 Fr �� 0 �� 0

so fP,S is necessarily the identity map. When X = P and Y = M(B,n): an element
y ∈ B defines a morphism Z −→ B that can be realized by a map between Moore
spaces S −→ Y and then a map ȳ : Z/2 −→ B/2. By assigning ȳ to the generator
of Z/2, we get the commutative diagram:

Z/2 ��

fP,S=I d

��

Hom(Z/2,B/2) � B/2

fP,Y

��
Z/2 �� Hom(Z/2,B/2) � B/2

Since Hom(Z/2,B/2) is naturally isomorphic to B/2, even in this case fP,Y = I d.
Given x ∈ A2, it defines a map Z/2 −→ A2 ⊂ A which can be realized by a map

of Moore spaces P −→ X . This map allows to have the following commutative
diagram, using the functoriality of fX ,Y :

Hom(A2,B/2) ��

fX ,Y

��

Hom(Z/2,B/2) � B/2

fP,Y=I d

��
Hom(A2,B/2) �� Hom(Z/2,B/2) � B/2

the horizontal maps assign to a morphism ϕ : A2 −→ B/2 its evaluation ϕ(x) ∈
B/2. To conclude that fX ,Y is the identity map on Hom(A2,B/2), it suffices to notice
that the module A2 is Z/2-free, and if {ui }i∈I is a basis of A2 then Hom(A2,B/2) �
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∏
Hom(Z/2,B/2) � ∏

B/2. Using the evaluation on each generator ui , we deduce
the desired result.

Remark 2.14 With Lemmas 2.12 et 2.13, we get the proof of Theorem 2.11.

3 Stable Homotopy Groups of Moore Spaces

Let X = M(A,n) and consider theAtiyah-Hirzebruch spectral sequence in homology
with coefficients in the stable homotopy groups:

Hp(X;πS
q ) ⇒ πS

p+q(X).

This spectral sequence contains just two non trivial columns and induces the follow-
ing exact sequence:

0 �� A ⊗ πS
q

νX
�� πS

n+q(X)
μX

�� Tor(A,πS
q−1)

�� 0 (3.1)

Moreover, this exact sequence is natural in X .
Notice that, if X denotes the spectrum associated to the Moore space X , then

πS
n+i (X) = πS

i (X). In the following, the spectrum associated to a space X will also
be denoted by X .

Recall the first stable homotopy groups (see [3]):

πS
0 = Z,πS

1 = Z/2,πS
2 = Z/2,πS

3 = Z/24,πS
4 = πS

5 = 0,πS
6 = Z/2,πS

7 = Z/240,

so the exact sequence (3.1) allows to obtain, for any Moore space X :

πS
0 (X) = A, πS

1 (X) � A ⊗ Z/2 = A/2, πS
4 (X) � Tor(A,Z/24) = A24,

πS
5 (X) = 0, πS

6 (X) � A ⊗ Z/2 = A/2

but we can’t determine explicitly πS
2 (X), πS

3 (X) and πS
7 (X).

To compute πS
i (X), for i = 2, 3, 7, we need the following lemma:

Lemma 3.1 πS
2 (P) = Z/4, πS

3 (P) = Z/2 ⊕ Z/2, πS
7 (P) = Z/2 ⊕ Z/2.

Proof These groups are given in [7], but we propose an easier proof of these results
using the arguments of Sect. 2.

For q = 2, 3, 7, the exact sequence (3.1) becomes:

0 �� Z/2 �� πS
q (P) �� Z/2 �� 0

then πS
q (P) � Z/2 ⊕ Z/2 or πS

q (P) � Z/4.
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There is a cofibration sequence:

θ �� P
δ �� S

2 �� S
θ �� P

δ �� (3.2)

where θ is of degree 0 and δ of degree −1. If λ denotes the composition of δ by the
Hopf map from S to S, then we get the Moore spectra diagram

S
2 �� S

θ����
��

��
�

P

λ

���������

(3.3)

verifying 2θ = 0, 2λ = 0, λθ = 0 et θλ = 2.
Applying the functor πS

2 to (3.3), we obtain the following diagram:

Z/2 2=0 �� Z/2

θ∗		��������

πS
2 (P)

λ∗



��������

where 2λ∗ = 0, 2θ∗ = 0 and θ∗λ∗ = 2. This diagram is not necessarily exact, but,
the exact sequence of stable homotopy groups applied to the cofibration (3.2) gives:

ker(θ∗ : Z/2 −→ πS
2 (P)) = Im(2 : Z/2 −→ Z/2).

Then it suffices to find an element u ∈ πS
2 (P) such that λ∗(u) = 1. For this pur-

pose, we can choose n = 2 so S = S2 and P = P2 = �RP2.We have the cofibration:

S2 −→ P2 −→ S3.

Applying the stable homotopy functor, we get:

πS
4 (S

2) �� πS
4 (P2)

�� πS
4 (S

3) �� πS
3 (S

2) �� πS
3 (P2)

�� πS
3 (S

3)

πS
2

�� πS
2 (P) �� πS

1
�� πS

1
�� πS

1 (P) �� πS
0

Z/2 �� πS
2 (P) ��

�� �����������
Z/2 0 ��

� Hopf

��

Z/2 I d �� Z/2 0 �� Z

Z/2
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Then πS
2 (P) is surjected on Z/2 = πS

1 which is sent by the Hopf map on Z/2 = πS
2

by assigning to the generator η of πS
1 = Z/2 the generator η2 of πS

2 = Z/2.
Now, applying the functor πS

3 to (3.3), we get:

Z/24 2 �� Z/24

θ∗��			
		

		
		

πS
3 (P)

λ∗












with 2θ∗ = 0, 2λ∗ = 0 and θ∗λ∗ = 2. This diagram is not necessarily exact, but

ker(θ∗ : Z/24 −→ πS
3 (P)) = Im(2 : Z/24 −→ Z/24).

Let x ∈ πS
3 (P), then 2λ∗(x) = 0. There exists u ∈ Z/24 such that λ∗(x) = 12u.

So 2x = θ∗(λ∗(x)) = θ∗(12u) = 0 since 2θ∗ = 0. This implies that elements of
πS
3 (P) vanish when multiplied by 2 and then πS

3 (P) � Z/2 ⊕ Z/2.
The same argument shows that πS

7 (P) = Z/2 ⊕ Z/2.
Consider a Moore space X = M(A,n). The next theorems compute πS

i (X), for
i = 2,3,7, in terms of the modules �1(DX ) and �2(DX ).

Theorem 3.2 For eachgeneratorγ ∈ πS
2 (P), there is anatural isomorphismπS

2 (X) �
�2(DX ) = [P,X ].
Proof Consider the exact sequence (2.2) and the exact sequence (3.1) for q = 2:

0 �� A/2 α �� A′ β �� A2
�� 0

0 �� A/2 νX
�� πS

2 (X)
μX

�� A2
�� 0

We construct amap A′ −→ πS
2 (X) as follows: choose γ a generator ofπS

2 (P) � Z/4.
Let u ∈ A′ and consider f representing the class u ∈ A′ = [P,X ].Then f induces
a map f∗ : πS

2 (P) −→ πS
2 (X) and we define ϕγ(u) = f∗(γ). the map ϕγ relies the

two exact sequences:

0 �� A/2 α �� A′ β ��

ϕγ

��

A2
�� 0

0 �� A/2 νX
�� πS

2 (X)
μX

�� A2
�� 0

Now, we may prove that the composite map
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A′ ϕγ �� πS
2 (X)

μX

�� A2

is β : A′ −→ A2. Using the functoriality, it suffices to prove the result when X = P .
In this case, he diagram becomes:

0 �� Z/2 α �� Z/4
β ��

ϕγ

��

Z/2 ��

I d

��

0

0 �� Z/2 νP
�� πS

2 (P) � Z/4
μP

�� Z/2 �� 0

where we see clearly that μP ◦ ϕγ = β.

By functoriality, for each Moore space X = M(A,n) we get the following com-
mutative diagram:

0 �� A/2 α ��

h

��

A′ β ��

ϕγ

��

A2
��

I d

��

0

0 �� A/2 νX
�� πS

2 (X)
μX

�� A2
�� 0

here h is the natural map making the diagram commute. Notice that h is functorial
in X . Then, to determine h : A/2 −→ A/2, it suffices to study the case X = S. In
that case, the diagram becomes:

0 �� Z/2 α ��

h

��

Z/2
β ��

ϕγ

��

0 ��

I d

��

0

0 �� Z/2 νS
�� πS

2 = Z/2
μS

�� 0 �� 0

and then h is necessarily the identity map.
Let X = M(A,n) be a Moore space. Each element x ∈ A defines a maps f :

Z −→ A given by f (1) = x . This map is realized by a map between Moore spaces
f : S −→ X and induces, by naturality of h, the following commutative diagram:

Z/2
f̄ ��

h=I d

��

A/2

h

��
Z/2

f̄ �� A/2

so h : A/2 −→ A/2 is still the identity map.
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Remark 3.3 The isomorphism πS
2 (X) � A′ depends on the choice of the generator

γ ∈ πS
2 (P) = Z/4. Choosing the generator −γ multiplies the isomorphisme by −1.

Theorem 3.4 For each γ ∈ πS
3 (P) such that μP(γ) = 1 ∈ Z/2, there is a natural

isomorphism πS
3 (X) � A′ ⊕A/2 A/24 obtained by the pushout

A/2 α ��

×12

��

A′

��
A/24 �� πS

3 (X)

where A = �1(DX ) and A′ = �2(DX ).

Proof When q = 3, the exact sequence (3.1) becomes:

0 �� A/24 νX
�� πS

3 (X)
μX

�� A2
�� 0

For X = P we get

0 �� Z/2 νP
�� πS

3 (P) � Z/2 ⊕ Z/2
μP

�� Z/2 �� 0

Choose γ ∈ πS
3 (P) such that μP(γ) is the generator of Z/2. We construct a map

ϕγ : A′ −→ πS
3 (X) as follows:

Let u ∈ A′ = [P,X ] and let f : P −→ X representing the class u. Thenϕγ(u) =
f∗(γ).

As in the proof of Theorem 3.2 we show that the composition of μX : πS
3 (X) −→

A2 by ϕγ is β : A′ −→ A2.
We obtain the following commutative diagram:

0 �� A/2 α ��

h

��

A′ β ��

ϕγ

��

A2
��

I d

��

0

0 �� A/24 νX
�� πS

3 (X)
μX

�� A2
�� 0

Since h is natural, we need just to determine it for X = S. In that case, the map
h : Z/2 −→ Z/24 assigns to the generator of Z/2 an element of Z/24 vanishing
when multiplied by 2, that means 0 or 12. Then h = 0 or h = ×12. To prove that
h = ×12, we consider the cofibration

S
2 �� S �� P

which induces the long exact sequence:
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· · · �� πS
n

2 �� πS
n

�� πS
n (P) �� πS

n−1
2 �� πS

n−1
�� · · · (3.4)

For n = 3, we have:

πS
3 = Z/24

2 �� πS
3 = Z/24 �� πS

3 (P) �� πS
2 = Z/2

2=0 �� πS
2 = Z/2

This proves that πS
3 (P) −→ πS

2 is surjective, so every map S −→ S of degree 2 can
be lifted to a map S −→ P of degree 3.

If γ ∈ πS
3 (P) is represented by a map, denoted also γ : S5 −→ P2, and since

μP(γ) = 1 ∈ Z/2 = Tor(Z/2,πS
2 ), then the map πS

3 (P) −→ πS
2 takes γ to the gen-

erator 1Z/2 ∈ πS
2 = Z/2.

Let

u : P2 δ2 �� S3
Hop f �� S2

be a representative of the nonzero element of [P,S] = Z/2 and a : S5 −→ S3 a rep-
resentative of the generator of πS

2 . Then ϕγ([u]) = u∗(γ) = η × (δ2)∗(γ) = η × [a]
where η denotes the multiplication by the class of the Hopf map. But the multi-
plication by the Hopf map class takes the generator of πS

2 to product by 12 of the
generator of πS

3 (see [3]). This allows to deduce that ϕγ([u]) = 12 ∈ Z/24 and that
h is multiplication by 12.

Remark 3.5 The isomorphism πS
3 (X) � A′ ⊕A/2 A/24 depends on the choice of

γ ∈ πS
3 (P) � Z/2 ⊕ Z/2 verifying μP(γ) = 1. There are two possible choices.

If we choose γ′ such that μP(γ′) = 1, then νP(1Z/2) = γ − γ′. We can show that

ϕγ′ = ϕγ + λ̃ ◦ β

where λ̃ : A2 −→ πS
3 (X) is defined as follows: if a ∈ A2, we can represent it by a

map a : S −→ X such that 2a = 0. This map induces a∗ : πS
3 −→ πS

3 (X) taking all
generators of πS

3 to the same element a∗(1Z/24) ∈ πS
3 (X) since 2a∗ = 0. Then we

define λ̃ by λ̃(a) = a∗(1Z/24).

Theorem 3.6 For each γ ∈ πS
7 (P) such that μP(γ) = 1 ∈ Z/2, there is a natural

isomorphism πS
7 (X) � A/240 ⊕ A2, where A = �1(DX ).

Proof Using the same construction of the case of πS
3 (X), we get the following com-

mutative diagram:

0 �� A/2 α ��

h

��

A′ β ��

ϕγ

��

A2
��

I d

��

0

0 �� A/240 νX
�� πS

7 (X)
μX

�� A2
�� 0
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To determine h, it suffices to consider the case of X = S, since it is natural on X . In
that case h : Z/2 −→ Z/240 is the multiplication by 0 or 120.

For n = 7, the long exact sequence (3.4) becomes:

πS
7 = Z/240

2 �� πS
7 = Z/240 �� πS

7 (P) �� πS
6 = Z/2

2=0 �� πS
6 = Z/2

showing thatπS
7 (P) −→ πS

6 is surjective.We use the same techniques of the previous
theorem proof, and the fact that the product by the Hopf class on πS

6 is zero (see [3]),
we deduce that h = 0

Remark 3.7 Using the new universal coefficient exact sequence of [4], we can rep-
resent the functor πS

i on Mn as a tensor product by particular objects of an abelian
category D containing De.
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Abstract Quasi-cyclic codes are generalizations of the familiar linear cyclic codes.
By using the results of [4], the authors in [2, 3] showed that a quasi-cyclic code
C over Fq of length �m and index � with m being pairwise coprime to � and the
characteristic of Fq is equivalent to a cyclic code if the constituent codes of C are
cyclic, where q is a prime power and the equivalence is given in [3]. In this paper, we
apply an algebraic method to prove that a quasi-cyclic code with cyclic constituent
codes is equivalent to a cyclic code. Moreover, the main result (see Theorem 4)
includes Proposition 9 in [3] as a special case.
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1 Introduction

Quasi-cyclic codes over finite fields form an important class of block codes that
include cyclic codes as a special case. In [4], Ling and Solé viewed each quasi-
cyclic code as a code over a polynomial ring, and extracted a description of each
quasi-cyclic code as being constructed from linear codes of shorter lengths over larger
fields, which are called the constituent codes of the quasi-cyclic code. It is interesting
to ask what kind of codes we will obtain if constituent codes of a quasi-cyclic code
are cyclic. Such codes can enjoy the ease of encoding of cyclic codes by polynomial
division for instance.

In [1], quasi-cyclic codes of length 5� and index � over Fq were obtained from a
pair of codes over Fq and Fq4 , respectively, by a combinatorial construction called
here the quintic construction. They enjoy a designed trellis description and a subop-
timal coset decoding algorithm. They are shown to be cyclic when the constituent
codes are cyclic of odd length coprime to 5. Lim [3] generalized the result in [1]
to the general case by a similar method. In [2], Güneri and Özbudak considered the
same issue. If the constituent codes of a quasi-cyclic code C of length m� and index
� are cyclic, the authors show that C can be viewed as a 2-D cyclic code of size
m × � over Fq . Moreover, in case m and � are also coprime to each other, C must
be equivalent to a cyclic code. However, the results of Refs. [2], [3] relied on the
structures of quasi-cyclic codes of the Ref. [4].

In this paper, we apply an algebraic method to investigate the same issue. More-
over, the equivalence in Proposition 9 of [3] is a special case of Theorem4,which pro-
vides many equivalences. Throughout this paper we require that (m, q) = (�, q) =
(m, �) = 1, where q = pk for some positive integer k, p is a prime.

2 The Circulant Matrix Decomposition of a Cyclic Code

Cyclic codes are generated by shift registers and play an important role in random
error-correcting and burst error-correcting. Cyclic codes were first studied by Prange
in 1957, and the study of the algebraic properties of cyclic codes developed rapidly
since then. An [n, k]q code C is called cyclic provided that, for each codeword c =
(c0, c1, c2, . . . , cn−1) ∈ C , the vector (cn−1, c0, c1, . . . , cn−2) ∈ C . In this section,
we require that (n, p) = 1.

Definition 1 Let C be a cyclic code of length n over Fq and A ⊆ C , then a circulant
matrix A containing the codeword (a0, a1, . . . , an−1) is defined as follows

A =

⎛

⎜
⎜
⎝

a0 a1 a2 . . . an−1

an−1 a0 a1 . . . an−2

. . . . . . . . .

a1 a2 a3 . . . a0

⎞

⎟
⎟
⎠ .
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Remark 1 A can be considered as a set of n codewords of C . In our case, codeword
repetition in A is omitted if necessary.

Lemma 1 A cyclic code C of length n over Fq can be decomposed into a finite
disjoint union of circulant matrices.

Proof If c = (a0, a1, . . . , an−1) ∈ C , thenwe have A ⊆ C . For any c′ = (b0, b1, . . . ,
bn−1) ∈ C and c′ /∈ A, following the construction of the circulant matrix, then
A ∩ B = ∅, where B is the circulant matrix containing c′, this operation will be
stopped after finite steps.

Take the [7, 4, 3] Hamming code C for example, which is a cyclic code with
generator polynomial 1 + x2 + x3, according to Lemma 1, we have C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 0 0 1 0 1 1
1 1 0 0 1 0 1
1 1 1 0 0 1 0
0 1 1 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋃

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋃

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋃

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Following Definition 1, we can prove the following lemma, which plays an im-
portant role in obtaining our results.

Lemma 2 Let C be a cyclic code of length n over Fq , then A is a circulant matrix
if and only if A = Pndiag( f (1), f (ζ ), . . . , f (ζ n−1))P−1

n , where

Pn =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 . . . 1
1 ζ ζ 2 . . . ζ n−1

1 ζ 2 ζ 2×2 . . . ζ 2(n−1)

...
...

...

1 ζ n−1 ζ 2(n−1) . . . ζ (n−1)(n−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

is a Vandermonde matrix, ζ is a primitive n-th root of unity, (a0, · · · , an−1) is the
first row of A and f (x) = a0 + a1x + a2x2 + · · · + an−1xn−1.

Proof It is clear that Pn is invertible since ζ is a primitive n-th root of unity.Moreover,
it is easy to check that

APn =

⎛

⎜
⎜
⎝

f (1) f (ζ ) . . . f (ζ n−1)

f (1) ζ f (ζ ) . . . ζ n−1 f (ζ n−1)

. . . . . . . . . . . .

f (1) ζ n−1 f (ζ ) . . . ζ (n−1)(n−1) f (ζ n−1)

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

1 1 . . . 1
1 ζ . . . ζ n−1

. . . . . . . . . . . .

1 ζ n−1 . . . ζ (n−1)(n−1)

⎞

⎟
⎟
⎠ diag( f (1), f (ζ ), . . . , f (ζ n−1)).
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Equivalently, A = Pndiag( f (1), f (ζ ), . . . , f (ζ n−1))P−1
n . The converse part is

straightforward.

3 Quasi-cyclic Codes with Cyclic Constituent Codes

A linear codeC is a quasi-cyclic code of length �mwith index � ifC is invariant under
a shift by � places, namely, for any (a00, a01, . . . , a0,�−1, a10, . . . , a1,�−1, . . . , am−1,0,

. . . , am−1,�−1) ∈ C , we have (am−1,0, am−1,1, . . . , am−1,�−1, a00, . . . , a0,�−1, . . . ,

am−2,0, . . . , am−2,�−1) ∈ C . The constituent codes of such a code are codes of length
� over extension alphabets that appear in the CRT decomposition of [4]. See [4] for
details. They are not cyclic in general. The class of quasi-cyclic codeswith cyclic con-
stituents is a strict subclass of all quasi-codes. In [2], the authors proved that ifm and �

are both relatively prime to q, and the constituents of the quasi-cyclic code (of length
�m and index �) are all cyclic codes, then C is a 2-D cyclic code. Therefore, a linear
code C of length �m is a quasi-cyclic code of length �m and index �with cyclic con-
stituent codes if (a00, a01, a02, . . . , a0,�−1, a10, . . . , a1,�−1, . . . , am−1,0, . . . , am−1,�−1)

∈ C implies that

(am−1,�−1, am−1,0, . . . , am−1,�−2, a0,�−1, . . . , a0,�−2, . . . , am−2,�−1, . . . , am−2,�−2) ∈ C .

Definition 2 Let C be a quasi-cyclic code of length �m and index � with cyclic
constituent codes, then a similar circulant matrix A′ containing the codeword

(a00, a01, . . . , a0,�−1, a10, . . . , a1,�−1, . . . , am−1,0, . . . , am−1,�−1)

is defined as follows

⎛

⎜
⎜
⎜
⎜
⎝

a00 a01 . . . a0,�−1 a10 . . . a1,�−1 . . . am−1,0 . . . am−1,�−1

am−1,�−1 am−1,0 . . . am−1,�−2 a0,�−1 . . . a0,�−2 . . . am−2,�−1 . . . am−2,�−2

am−2,�−2 am−2,�−1 . . . am−2,�−3 am−1,�−2 . . . am−1,�−3 . . . am−3,�−2 . . . am−3,�−3

. . . . . . . . . . . .

a11 a12 . . . a10 a21 . . . a20 . . . a01 . . . a00

⎞

⎟
⎟
⎟
⎟
⎠

.

Remark 2 A′ can be considered as a set of �m codewords ofC . Codeword repetition
in A′ is omitted if necessary. Note that A′ is a �m × �m matrix.

Similar to the proof of Lemma 1, we have the following corollary.

Corollary 1 Let C be a quasi-cyclic code of length �m and index � with cyclic
constituent codes, then the code C can be decomposed into finite disjoint unions of
similar circulant matrices.

We denote by Sn the symmetric group of n elements. The following lemma will
be clear from matrix theory.
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Lemma 3 Let D1 and D2 be n × n matrices, for σ ∈ Sn, σ(D1) represents the
action of σ on coordinates of every row of D1, σ T (D1) represents the action of σ on
coordinates of every column of D1, which means if

D1 =

⎛

⎜
⎜
⎝

d00 d01 d02 . . . d0,n−1

d10 d11 d12 . . . d1,n−1

. . . . . . . . .

dn−1,0 dn−1,1 dn−1,2 . . . dn−1,n−1

⎞

⎟
⎟
⎠ ,

then we have

σ(D1) =

⎛

⎜
⎜
⎝

d0,σ (0) d0,σ (1) d0,σ (2) . . . d0,σ (n−1)

d1,σ (0) d1,σ (1) d1,σ (2) . . . d1,σ (n−1)

. . . . . . . . .

dn−1,σ (0) dn−1,σ (1) dn−1,σ (2) . . . dn−1,σ (n−1)

⎞

⎟
⎟
⎠ ,

σ T (D1) =

⎛

⎜
⎜
⎝

dσ(0),0 dσ(0),1 dσ(0),2 . . . dσ(0),n−1

dσ(1),0 dσ(1),1 dσ(1),2 . . . dσ(1),n−1

. . . . . . . . .

dσ(n−1),0 dσ(n−1),1 dσ(n−1),2 . . . dσ(n−1),n−1

⎞

⎟
⎟
⎠

and D1D2 = σ(D1)σ
T (D2).

Lemma 4 Let ε be a primitive �m-th root of unity, then there exists a permutation
θ ∈ S�m such that θ(A′) = P�mΛP−1

�m , where

P�m =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 . . . 1
1 ε ε2 . . . ε�m−1

1 ε2 ε2×2 . . . ε2(�m−1)

...
...

...

1 ε�m−1 ε2(�m−1) . . . ε(�m−1)(�m−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

is a Vandermonde matrix, Λ = diag(g(1), g(ε), g(ε2), . . . , g(ε�m−1)) is a diag-
onal matrix, and g(y) = a00 + a11y + · · · + aim ,i� y

i + · · · + am−1,�−1y�m−1 with
im = i (mod m), i� = i (mod �), i = 0, 1, 2, . . . , �m − 1.

Proof Let ξ ∈ {1, ε, ε2, . . . , ε�m−1} and P ′
�m be obtained from the matrix P�m under

certain row shift, then there exists a permutation θ such that θT (P ′
�m) = P�m . Since

gcd(�,m) = 1, according to the Chinese Remainder Theorem, we can establish a
one-to-one correspondence between the coefficient of the term ξ i in g(ξ) and ξ i

denoted by aim ,i� ↔ ξ i , this correspondence can make the calculation of g(y) easily.
Let P ′

�m(ξ) be any column vector of P ′
�m , and A′P ′

�m(ξ) = (b0, b1, . . . , b�m−1)
T . Set

b0 = g(ξ), by this correspondence and the elements of the first row of A′, we can
determine P ′

�m(ξ) = (1, ξ tm, ξ 2tm, . . . , ξ i , . . . , ξ �m−1)T ,where t is themultiplicative
inverse of m module �. Thus θ is determined by P ′

�m(ξ). The elements of the j-th
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row of A′ can be expressed as

(a( j)
00 , a( j)

01 , . . . , a( j)
0,�−1, a

( j)
10 , a( j)

11 , . . . , a( j)
1,�−1, . . . , a

( j)
m−1,0, a

( j)
m−1,1, . . . , a

( j)
m−1,�−1),

where 1 ≤ j ≤ �m.
Next,we try to calculateb j ( j = 1, 2, . . . , �m − 1). Ifwefix j , by the construction

of the similar circulant matrix A′, since 1 ≤ i + j ≤ 2�m − 2, we know that in the
( j + 1)-th row of A′,

a(1)
im ,i�

= a( j+1)
(i+ j)m ,(i+ j)�

↔ ξ (i+ j)�m ,

and ξ (i+ j)�m = ξ i+ j for ξ�m = 1. Then

b j =
�m−1∑

i=0

a( j+1)
im ,i�

ξ i =
i+ j=�m−1∑

i+ j=0

a( j+1)
(i+ j)m ,(i+ j)�

ξ i+ j = ξ j
i+ j=�m−1∑

i+ j=0

a( j+1)
(i+ j)m ,(i+ j)�

ξ i

= ξ j
i+ j=�m−1∑

i+ j=0

a(1)
im ,i�

ξ i = ξ j
�m−1∑

i=0

a(1)
im ,i�

ξ i = ξ j b0. (1)

From (1), we have

A′P ′
�m(ξ) = (b0, b1, . . . , b�m−1)

T = g(ξ)(1, ξ, ξ 2, . . . , ξ �m−1)T . (2)

Set ξ = 1, ε, ε2, . . . , ε�m−1, from (2), we have

A′(P ′
�m(1), P ′

�m(ε), P ′
�m(ε2), . . . , P ′

�m(ε�m−1))T = A′P ′
�m,

then

A′P ′
�m =

⎛

⎜
⎜
⎝

g(1) g(ε) . . . g(ε�m−1)

g(1) εg(ε) . . . ε�m−1g(ε�m−1)

. . . . . . . . .

g(1) ε�m−1g(ε) . . . ε(�m−1)(�m−1)g(ε�m−1)

⎞

⎟
⎟
⎠ = P�mΛ. (3)

Thus A′P ′
�m = P�mΛ. From Lemma 3, we have A′P ′

�m = θ(A′)θT (P ′
�m) = θ(A′)

P�m = P�mΛ. Consequently, θ(A′) = P�mΛP−1
�m .

Corollary 2 A similar circulant matrix A′ is equivalent to a circulant matrix.

Proof From Lemmas 4 and 2, we know that θ(A′) is a circulant matrix, so A′ is
equivalent to a circulant matrix θ(A′). Moreover, from the expressions of f (x) and
g(y), the circulant matrix θ(A′) is none other than the circulant matrix containing
the codeword (a00, a11, . . . , aim ,i� , . . . , am−1,�−1).

Theorem 1 A quasi-cyclic code C of length �m and index � with cyclic constituent
codes is equivalent to a cyclic code.
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Proof From Corollary 1, we can write C = A′
1 ∪ A′

2 ∪ · · · ∪ A′
k = ∪k

i=1A
′
i , from

Lemma 4, let θ be a permutation that θ(A′
1) is a circulant matrix, and according to

the proof of Lemma 4, the permutation θ is universally applicable for the matrices
A′
i , thus θ(A′

i )(i = 1, . . . , k) are all circulant matrices. Now we prove that θ(C ) is
a linear cyclic code. For θ(c) ∈ θ(C ), then there exists i such that θ(c) ∈ θ(A′

i ),
from the construction of the circulant matrix, then θ(C ) is cyclic. The linearity
of θ(C ) is obtained by the linearity of C . In more details, for θ(c), θ(c′) ∈ θ(C ),
there exist c, c′ ∈ C , in such a way that, for k1, k2 ∈ Fp, k1c + k2c′ ∈ C we have
θ(k1c + k2c′) = k1θ(c) + k2θ(c′) ∈ θ(C ). Therefore, θ(C ) is a linear cyclic code
and C is equivalent to a cyclic code θ(C ).

Theorem 1 in fact gives an alternative proof of Proposition 9 in [3] by a different
method.

Lemma 5 (See Proposition 9 in [3]) Let q be a prime power, and let Fq denote a
finite field. Let � and m be coprime positive integers with m coprime to q, and let C
be a quasi-cyclic code of length �m and index �with cyclic constituent codes overFq ,
let t denote the multiplicative inverse of m module �, then C is equivalent to a cyclic
code C, the equivalence is given by d = (d0, d1, . . . , d�m−1) ∈ C, its pre-image c in
C is given by

(d(0)tm+0, dtm+0, d2tm+0, . . . , d(�−1)tm+0, d(�−1)tm+1, d(0)tm+1, dtm+1, . . . , d(�−2)tm+1,

. . . , d(�−m+1)tm+(m−1), d(�−m+2)tm+(m−1), d(�−m+3)tm+(m−1), . . . , d(�−m)tm+(m−1)).

Theorem 2 The results of Theorem 1 are equivalent to those of Lemma 5.

Proof According to Corollary 2, the codeword

(a00, . . . , a0,�−1, a10, . . . , a1,�−1, . . . , am−1,0, . . . , am−1,�−1) ∈ C

is equivalent to the codeword (a00, a11, . . . , aim ,i� , . . . , am−1,�−1) ∈ θ(C ). Let

(a00, a11, . . . , aim ,i� , . . . , am−1,�−1) = (y0, y1, y2, . . . , yi , . . . , y�m−1),

in such a way that aim ,i� = yi , where 0 ≤ i ≤ �m − 1. For any ai, j , write

km = i, k� = j ⇔ k ≡ i (mod m), k ≡ j (mod �). (4)

Note that mt = 1 (mod �), and 0 ≤ k ≤ �m − 1, it is easy to check that k = ( j −
i)�mt + i is a solution of the congruence Eq. (4). Therefore
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(a00, a01, a02, . . . , a0,�−1, a10, . . . , a1,�−1, . . . , am−1,0, . . . , am−1,�−1)

= (y(0)tm+0, ytm+0, y2tm+0, . . . , y(�−1)tm+0, y(�−1)tm+1, y(0)tm+1, ytm+1, . . . , y(�−2)tm+1,

. . . , y(�−m+1)tm+(m−1), y(�−m+2)tm+(m−1), y(�−m+3)tm+(m−1), . . . , y(�−m)tm+(m−1)),

which is the same as Lemma 5.

4 The Generator Polynomial of θ(C )

In this section, we make an attempt to describe the generator polynomials of C and
θ(C ) over Fq without using the results of [4].

Definition 3 For c = (a00, a01, a02, . . . , a0,�−1, a10, a11, a12 . . . , a1,�−1, . . . , am−1,0,

. . . , am−1,�−1) ∈ C , we define a mapping φ which maps from the codeword c ∈ C
to bivariate polynomial ring Fq [x, y]/〈xm − 1, y� − 1〉.

φ : c �→ φ(c) = a00 + a01y + a02y
2 + · · · + ai j x

i y j + · · · + am−1,�−1x
m−1y�−1,

where 0 ≤ i ≤ m − 1, 0 ≤ j ≤ � − 1.

Theorem 3 J is a principal ideal of Fq [x, y]/〈xm − 1, y� − 1〉 if and only if C is
a quasi-cyclic code of length �m and index � with cyclic constituent codes, where
J = φ(C ).

Proof For c = (a00, a01, a02, . . . , a0,�−1, a10, . . . , a1,�−1, . . . , am−1,0, . . . , am−1,�−1)

∈ C , namely, φ(c) = a00 + a01y + a02y2 + · · · + ai j x i y j + · · · + am−1,�−1xm−1

y�−1 ∈ J , thenwe have xφ(c) = a00x + a01xy + a02xy2 + · · · + ai j x i+1y j + · · · +
am−1,�−1y�−1 ∈ J . Therefore

(am−1,0, am−1,1, am−1,2, . . . , am−1,�−1, a00, . . . , a0,�−1, . . . , am−2,0, . . . , am−2,�−1) ∈ C (5)

and yφ(c) = a00y + a01y2 + a02y3 + · · · + ai j x i y j+1 + · · · + am−1,�−1xm−1 ∈ J ,
then

(a0,�−1, a00, a01, . . . , a0,�−2, a1,�−1, . . . , a1,�−2, . . . , am−1,�−1, . . . , am−1,�−2) ∈ C
(6)

Moreover, J is a principal ideal, then xi y jφ(c) ∈ J , and

φ−1(xi y jφ(c)) ∈ C . (7)

Since J is a principal ideal, then C is linear. Moreover, C satisfies Eqs. (5)-(7), so
that C is a quasi-cyclic code with cyclic constituent codes.
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Next, we consider the converse part. From Theorem 1, θ(C ) is a cyclic code, then
θ(C ) is a principal ideal of Fq [z]/〈z�m − 1〉, let the generator polynomial of θ(C )

be

g(z) =
�m−1∑

i=0

aim ,i� z
i ,

then θ(c) = (a00, a11, . . . , aim ,i� , . . . , am−1,�−1) ∈ θ(C ), according to Corollary 2,
we have

c = (a00, a01, a02, . . . , a0,�−1, a10, . . . , a1,�−1, . . . , am−1,0, . . . , am−1,�−1) ∈ C .

Now we claim that φ(C ) = 〈φ(c)〉. Clearly, φ(c) ∈ φ(C ), thus

〈φ(c)〉 ⊆ φ(C ). (8)

It is easy to check that xyφ(c) =

φ(am−1,�−1, am−1,0, . . . , am−1,�−2, a0,�−1, . . . , a0,�−2, . . . , am−2,�−1, . . . , am−2,�−2).

And (am−1,�−1, am−1,0, . . . , am−1,�−2, a0,�−1, . . . , a0,�−2, . . . , am−2,�−1, . . . , am−2,�−2) is
exactly the second rowof the similar circulantmatrix A′ containing c. FromLemma4,
xyφ(c) is equivalent to zg(z), since zg(z) is the second rowof θ(A′), similarly, z2g(z)
is equivalent to x2y2φ(c), and so on.

Since the coordinate transformation θ is a linear mapping, then we can define a
mapping Ψ which maps from the polynomial (codeword) of θ(C ) to the equivalent
polynomial (codeword) of 〈φ(c)〉. Namely,

Ψ : f (z)g(z) ∈ θ(C ) �→ f (xy)φ(c) ∈ 〈φ(c)〉 ⊆ φ(C ).

Nextwe prove themappingΨ is bijective. For θ(c′) ∈ θ(C ), since θ(C ) is a principal
ideal, we can write θ(c′) = f1(z)g(z), from the equivalence between C and θ(C ),
we can obtain φ(c′) = f1(xy)φ(c) ∈ φ(C ). It is clear that Ψ is injective. Now it is
sufficient to prove that xi y jφ(c) has its pre-image in θ(C ), rewrite

xi y j = xk1m+i yk2�+ j ,

and it is clear that the equation k1m + i = k2� + j has integer solution (k1, k2),
one can choose the pair (k1, k2) such that k1m + i is the smallest. Set k1m + i =
k2� + j = e, then xi y jφ(c) has pre-image zeg(z) ∈ θ(C ) for some positive integer
e. Thus the mapping Ψ is bijective. Consequently,

|θ(C )| = |φ(C )| = |〈φ(c)〉|. (9)

Combining (8) and (9), we obtain 〈φ(c)〉 = φ(C ).
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From the proof of Theorem 3, we have the following corollaries.

Corollary 3 Let C be a quasi-cyclic code of length �m and index � with cyclic
constituent codes, then φ(C ) is a principal ideal of Fq [x, y]/〈xm − 1, y� − 1〉. Sim-
ilar to the case of cyclic codes, φ(c) = a00 + a01y + a02y2 + · · · + ai j x i y j + · · · +
am−1,�−1xm−1y�−1 is a generator polynomial of C . Namely, C can be constructed
by a principal ideal of Fq [x, y]/〈xm − 1, y� − 1〉.
Corollary 4 Let C be a quasi-cyclic code of length �m and index � with cyclic
constituent codes, and C has a generator polynomial φ(c) = a00 + a01y + a02y2 +
· · · + ai j x i y j + · · · + am−1,�−1xm−1y�−1, then θ(C ) is a cyclic code with the gener-
ator polynomial g(z) = ∑�m−1

i=0 aim ,i� z
i .

5 General Equivalences

In this section, we will give more general equivalences which include θ in Lemma 4
and the equivalence of Proposition 9 in [3] as a special case.

Theorem 4 Let C be a quasi-cyclic code of length �m and index � with cyclic
constituent codes, then there exists another permutation θ ′ such that θ ′(C ) is a
cyclic code and similar to the proof of Theorem 3, we can obtain another generator
polynomial of φ(C ).

Proof If C is a quasi-cyclic code of length �m and index � with cyclic constituent
codes and gcd(k3, �) = gcd(k4,m) = 1, where k3 and k4 are positive integers, then
for

(a00, a01, a02, . . . , a0,�−1, a10, . . . , a1,�−1, . . . , am−1,0, . . . , am−1,�−1) ∈ C ,

we have

(am−k4,�−k3 , am−k4,�−k3+1, . . . , am−k4,�−1, am−k4,0, . . . , am−k4,�−k3−1,

am−k4+1,�−k3 , . . . , am−k4+1,�−k3−1, . . . , am−k4−1,�−k3 , . . . , am−k4−1,�−k3−1) ∈ C .

Similar to Definition 1, we can define a similar circulant matrix E ′ containing the
codeword (a00, a01, a02, . . . , a0,�−1, a10, . . . , a1,�−1, . . . , am−1,0, . . . , am−1.�−1)

E ′ =

⎛

⎜
⎜
⎜
⎜
⎝

a00 . . . a0,�−1 . . . am−1,0 . . . am−1,�−1

am−k4,�−k3 . . . am−k4,�−k3−1 . . . am−k4−1,�−k3 , . . . am−k4−1,�−k3−1

am−2k4,�−2k3 . . . am−2k4,�−2k3−1 . . . am−2k4−1,�−2k3 . . . am−2k4−1,�−2k3−1

. . . . . . . . . . . .

ak4,k3 . . . ak4,k3−1 . . . ak4−1,k3 . . . ak4−1,k3−1

⎞

⎟
⎟
⎟
⎟
⎠

.
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Parallel to the proof of Lemma 4 and Corollary 2, there exists another permutation
θ ′ such that θ ′(E ′) is a circulant matrix.

Takem = 5, � = 3, p = 2, k3 = 2 and k4 = 1 for example. Let E ′ be a similar cir-
culant matrix containing the codeword (a00, a01, a02, a10, a11, a12, a20, a21, a22, a30,
a31,a32, a40, a41, a42), namely,

E ′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a00 a01 a02 a10 a11 a12 a20 a21 a22 a30 a31 a32 a40 a41 a42
a41 a42 a40 a01 a02 a00 a11 a12 a10 a21 a22 a20 a31 a32 a30
a32 a30 a31 a42 a40 a41 a02 a00 a01 a12 a10 a11 a22 a20 a21
a20 a21 a22 a30 a31 a32 a40 a41 a42 a00 a01 a02 a10 a11 a12
a11 a12 a10 a21 a22 a20 a31 a32 a30 a41 a42 a40 a01 a02 a00
a02 a00 a01 a12 a10 a11 a22 a20 a21 a32 a30 a31 a42 a40 a41
a40 a41 a42 a00 a01 a02 a10 a11 a12 a20 a21 a22 a30 a31 a32
a31 a32 a30 a41 a42 a40 a01 a02 a00 a11 a12 a10 a21 a22 a20
a22 a20 a21 a32 a30 a31 a42 a40 a41 a02 a00 a01 a12 a10 a11
a10 a11 a12 a20 a21 a22 a30 a31 a32 a40 a41 a42 a00 a01 a02
a01 a02 a00 a11 a12 a10 a21 a22 a20 a31 a32 a30 a41 a42 a40
a42 a40 a41 a02 a00 a01 a12 a10 a11 a22 a20 a21 a32 a30 a31
a30 a31 a32 a40 a41 a42 a00 a01 a02 a10 a11 a12 a20 a21 a22
a21 a22 a20 a31 a32 a30 a41 a42 a40 a01 a02 a00 a11 a12 a10
a12 a10 a11 a22 a20 a21 a32 a30 a31 a42 a40 a41 a02 a00 a01

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Set

h(y) = a01 + a10y + a22y
2 + a31y

3 + a40y
4 + a02y

5 + a11y
6 + a20y

7 + a32y
8 + a41y

9

+ a00y
10 + a12y

11 + a21y
12 + a30y

13 + a42y
14.

Let ε be a primitive 15-th root of unity, and ξ ∈ {1, ε, ε2, . . . , ε14}.

Q′
3×5(ξ) = (ξ 10, 1, ξ 5, ξ, ξ 6, ξ 11, ξ 7, ξ 12, ξ 2, ξ 13, ξ 3, ξ 8, ξ 4, ξ 9, ξ 14)T ,

P3×5(ξ) = (1, ξ, ξ 2, ξ 3, ξ 4, ξ 5, ξ 6, ξ 7, ξ 8, ξ 9, ξ 10, ξ 11, ξ 12, ξ 13, ξ 14)T ,

and the correspondence between the coefficient of the term ξ i in h(ξ) and ξ i is
a01 ↔ 1, a10 ↔ ξ , a22 ↔ ξ 2, a31 ↔ ξ 3, a40 ↔ ξ 4, a02 ↔ ξ 5, a11 ↔ ξ 6, a20 ↔ ξ 7,
a32 ↔ ξ 8, a41 ↔ ξ 9, a00 ↔ ξ 10, a12 ↔ ξ 11, a21 ↔ ξ 12, a30 ↔ ξ 13, a42 ↔ ξ 14.

It is easy to check that E ′Q′
3×5(ξ) = h(ξ)P3×5(ξ), according to Lemma 4, there

exists a permutation θ ′ in S15 such that

θ ′(E ′) = (P3×5(1), . . . , P3×5(ξ
14))diag(h(1), . . . , h(ξ14)(P3×5(1), . . . , P3×5(ξ

14))−1.
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Consequently, E ′ is equivalent to the circulant matrix E containing the codeword

(a01, a10, a22, a31, a40, a02, a11, a20, a32, a41, a00, a12, a21, a30, a42),

namely,

E =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a01 a10 a22 a31 a40 a02 a11 a20 a32 a41 a00 a12 a21 a30 a42
a42 a01 a10 a22 a31 a40 a02 a11 a20 a32 a41 a00 a12 a21 a30
a30 a42 a01 a10 a22 a31 a40 a02 a11 a20 a32 a41 a00 a12 a21
a21 a30 a42 a01 a10 a22 a31 a40 a02 a11 a20 a32 a41 a00 a12
a12 a21 a30 a42 a01 a10 a22 a31 a40 a02 a11 a20 a32 a41 a00
a00 a12 a21 a30 a42 a01 a10 a22 a31 a40 a02 a11 a20 a32 a41
a41 a00 a12 a21 a30 a42 a01 a10 a22 a31 a40 a02 a11 a20 a32
a32 a41 a00 a12 a21 a30 a42 a01 a10 a22 a31 a40 a02 a11 a20
a20 a32 a41 a00 a12 a21 a30 a42 a01 a10 a22 a31 a40 a02 a11
a11 a20 a32 a41 a00 a12 a21 a30 a42 a01 a10 a22 a31 a40 a02
a02 a11 a20 a32 a41 a00 a12 a21 a30 a42 a01 a10 a22 a31 a40
a40 a02 a11 a20 a32 a41 a00 a12 a21 a30 a42 a01 a10 a22 a31
a31 a40 a02 a11 a20 a32 a41 a00 a12 a21 a30 a42 a01 a10 a22
a22 a31 a40 a02 a11 a20 a32 a41 a00 a12 a21 a30 a42 a01 a10
a10 a22 a31 a40 a02 a11 a20 a32 a41 a00 a12 a21 a30 a42 a01

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

And the equivalence is given by θ ′ = (1 11 4 2)(3 6 12 9)(5 7 8 13)(10 14)(15) in S15.
However, θ = (2 11 14 5)(3 6 12 9)(4 7 13 10) in S15 by Lemma 4 and Corollary 2.

Similar to the proof of Theorem 1, θ ′(C ) is a cyclic code. Now we try to give
another generator polynomial of φ(C ). According to Definition 3,

φ : c �→ φ(c) = a00 + a01y + a02y
2 + · · · + ai j x

i y j + · · · + am−1,�−1x
m−1y�−1.

And the linear mapping Ψ(k3,k4) (similar to Ψ in Theorem 3) is defined as follows,

Ψ(k3,k4) : f (z)g(z) ∈ θ(C ) �→ f (xk4 yk3)φ(c) ∈ 〈φ(c)〉 ⊆ φ(C ).

According to the proof of Theorem 3, Ψ(k3,k4) is one-to-one since gcd(k3, �) =
gcd(k4,m) = 1. Then parallel to the proof of Theorem 3, the generator polynomial
of φ(C ) can be obtained.

Remark 3 According to the proof of Theorem 4, θ ′ relies on k3 and k4, and the
similar circulant matrix A′ in Sect. 3 is the case when k3 = k4 = 1.
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6 Application Examples

In this section, we are ready to give some examples to illustrate the discussed results.

Example 1 If C is a quasi-cyclic code over Fq of length 6 and index 2 with cyclic
constituent codes, where (q, 6) = 1, and let

B ′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a00 a01 a10 a11 a20 a21
a21 a20 a01 a00 a11 a10
a10 a11 a20 a21 a00 a01
a01 a00 a11 a10 a21 a20
a20 a21 a00 a01 a10 a11
a11 a10 a21 a20 a01 a00

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

be a similar circulant matrix of C , where � = 2,m = 3, ε is a primitive 6-th root
of unity, and g(y) = a00 + a11y + a20y2 + a01y3 + a10y4 + a21y5. According to
the proof of Lemma 4, the correspondence is a00 ↔ 1, a11 ↔ ε, a20 ↔ ε2, a01 ↔
ε3, a10 ↔ ε4, a21 ↔ ε5. Write

B ′P ′
2×3(ε) = (b0, b1, b2, b3, b4, b5)

T .

Set b0 = g(ε), then we have P ′
2×3(ε) = (1, ε3, ε4, ε, ε2, ε5)T . Then

B ′(1, ε3, ε4, ε, ε2, ε5)T = g(ε)(1, ε, ε2, ε3, ε4, ε5)T .

Therefore

B ′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a00 a01 a10 a11 a20 a21
a21 a20 a01 a00 a11 a10
a10 a11 a20 a21 a00 a01
a01 a00 a11 a10 a21 a20
a20 a21 a00 a01 a10 a11
a11 a10 a21 a20 a01 a00

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⇔ θ(B ′) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a00 a11 a20 a01 a10 a21
a21 a00 a11 a20 a01 a10
a10 a21 a00 a11 a20 a01
a01 a10 a21 a00 a11 a20
a20 a01 a10 a21 a00 a11
a11 a20 a01 a10 a21 a00

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

And the equivalence is given by θ = (24)(35) in S6.

Example 2 Let C be a quasi-cyclic code over F5 of length 6 and index 2 with cyclic
constituent codes and the generator polynomial of φ(C ) is 1 + xy + x2(100110) ∈
F5[x, y]/〈x3 − 1, y2 − 1〉, where the codeword c = (100110) is the corresponding
polynomial 1 + xy + x2 by Definition 3. Equivalently, φ(C ) = 〈φ(c)〉, then from
Corollary 4, θ(C ) = 〈1 + z + z2〉(111000) ∈ F5[z]/〈z6 − 1〉. And the linear map-
ping is

Ψ : 〈φ(1 + z + z2)〉 �→ 〈1 + xy + x2〉,
according to the mapping Ψ , we have
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1 �→ 1, z �→ xy = xy, z2 �→ x2y2 = x2, z3 �→ x3y3 = y, z4 �→ x4y4 = x, z5 �→ x5y5 = x2y

In more details:

φ(c) = 1 + xy + x2 (100110) ⇔ g(z) = 1 + z + z2 (111000)

xyφ(c) = y + xy + x2 (010110) ⇔ zg(z) = z3 + z + z2 (011100)

x2φ(c) = x + y + x2 (011010) ⇔ z2g(z) = z3 + z4 + z2 (001110)

yφ(c) = y + x + x2y (011001) ⇔ z3g(z) = z3 + z4 + z5 (000111)

xφ(c) = x + x2y + 1 (101001) ⇔ z4g(z) = 1 + z4 + z5 (100011)

x2yφ(c) = 1 + xy + x2y (100101) ⇔ z5g(z) = 1 + z + z5 (110001)

and f (z)g(z) �→ f (xy)φ(c) is given by the linearity of C and θ(C ). And the equiv-
alence is given by θ = (24)(35) in S6.

Example 3 LetC be a quasi-cyclic code over F5 of length 12 and index 4 with cyclic
constituent codes, and

φ(C ) = 〈1 + y3 + xy + x2y2〉(100101000010) ∈ F5[x, y]/〈x3 − 1, y4 − 1〉,

then θ(C ) = 〈1 + z + z2 + z3〉(111100000000) ∈ F5[z]/〈z12 − 1〉, the linear map-
ping is Ψ : 〈φ(1 + z + z2 + z3)〉 �→ 〈1 + y3 + xy + x2y2〉, and
1 �→ 1, z �→ xy, z2 �→ x2y2, z3 �→ x3y3 = y3, z4 �→ x4y4 = x, z5 �→ x5y5 = x2y, z6 �→ x6y6 = y2,

z7 �→ x7y7 = xy3, z8 �→ x8y8 = x2, z9 �→ x9y9 = y, z10 �→ x10y10 = xy2, z11 �→ x11y11 = x2y3.

And the equivalence is given by θ = (2 10 6)(3 7 11) in S12.
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Factorization of Computations in Bayesian
Networks: Interpretation of Factors

Linda Smail and Zineb Azouz

Abstract Given a Bayesian network (BN) relative to a set I of discrete random
variables, we are interested in computing the probability distribution PS , where the
target S is a subset of I . The general idea is to express PS in the form of a product
of factors whereby each factor is easily computed and can be interpreted in terms of
conditional probabilities. In this paper, a condition statingwhen PS can bewritten as a
product of conditional probability distributions is called a non-pathology condition.
This paper also considers an interpretation of the factors involved in computing
marginal probabilities in BNs and a representation of the probability target as a
Bayesian network of level two. Establishing such a factorization and interpretations
is indeed interesting and relevant in the case of large BNs.

Keywords Bayesian networks · Bayesian networks of level two · Inference ·
Pathological bayesian networks
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1 Introduction

Given a set I and a directed acyclic graph (DAG) G on I , a Bayesian Network (BN)
(see [5, 6]) is a family of random variables XI = (Xi )i∈I , where Xi has values in
Ωi , implying that XI has values in ΩI = ∏

i∈I Ωi . By definition, a BN is such that,
for all i , the conditional probability Xi , which is conditioned on the set of all random
variables other than itself and its descendants (denoted by d(i)), depends only on the
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value of xp(i) taken by the set of its parents: ∀ i ∀ xI Pi |I−({i}∪d(i))(xi |xI−({i}∪d(i))) =
Pi |p(i)(xi |xp(i)) with the convention that i is a root of the graph G (that is p(i) = ∅)
and Pi |p(i) is the probability of Xi . The result is that the expression of the joint
probability distribution of the family XI is as follows:

PI (xI ) =
∏

i∈I
Pi |p(i)(xi |xp(i)). (1)

We are interested in the computation of the restrictions of the probability distri-
bution PI of the BN. In other words, given a subset S of I , we are interested in the
computation of PS , the joint probability distribution of XS = (Xi )i∈S . Given xS ∈ ΩS

and the decomposition of xI into (xS, xI−S), we consider the following computation:

PS(xS) =
∑

xI−S∈ΩI−S

PI (xS, xI−S). (2)

By definition, the restriction of a BN to an initial part J of I (which is a subset
where ∀ j ∈ J p( j) ⊂ J ) has the structure of a BN. Thus, for any subset S, PS can
be computed by considering the restriction to the initial part generated by S, which
is denoted as S+:

PS(xS) =
∑

xS+−S∈ΩS+−S

PI (xS, xS+−S). (3)

Therefore, without loss of generality, we suppose that S+ = I ; in other words, all
the leaves of I are in S. If p(i) is the set of the parents of i , then

PS(xS) =
∑

xI−S∈ΩI−S

PI (xS, xI−S) =
∑

xI−S∈ΩI−S

∏

i∈I
Pi |p(i)(xi |xp(i)). (4)

It is important to construct an ordering for some simplification techniques of the
summations over xI−S ∈ ΩI−S . Finding a way to simplify and order such summa-
tions, segment them into several computations that can be run in parallel, and find an
interpretation of each of the intermediate factors is considered the main issue related
to inference in BNs.

A wide range of literature on BNs concerns the performance of methods used
to compute PS , where S is small compared to I (see [7], [9], [10], [14], [13]).
It is particularly useful to write the expression of PS in the form of a product of
factors whereby each factor is easy to compute and has an interpretation in terms of
conditional probabilities.

In the special case of Markov chains where I = {1, ..., n}, S = {s1, s2, ..., sm}
(with s1 < s2 < ... < sm) and where the probability distribution is defined by P1 (the
probability of X1) and by the conditional probability distributions Pi |i−1 (for i ≥ 2),

it is evident that PS =
m∏

k=1
Ak(xs).
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Furthermore, with two computations for Ak(xk), we obtain the following: if sk =
sk−1 + 1, then Ak(xk) = Pk|k−1(xk |xk−1) (which is P1(x1) if k = 1 and s1 = 1). In
addition, if sk > sk−1 + 1, then

Ak(xS) =
∑

(xsk−1+1,...,xsk−1)

sk∏

i=sk−1+1

Pi |i−1(xi |xi−1). (5)

This factor depends exclusively on xsk−1 and xsk (indeed, it is exactly P1(xs1) if
s1 > 1 and k = 1) and can be interpreted as Psk |sk−1(xsk |xsk−1).

In the general case, it remains true that there exists a partition C of I − S
where, if we denote by L the set of variables of S that have no parent in I − S,
PS(xS) = ∏

�∈L
A�(xs)

∏

C∈C
AC(xS), where A�(xs) = P�|p(�)(x�|xp(�)) (given by the

BN). Moreover, if we denote by T (C) the set of children of variables of C that
are not themselves in C , then

AC(xS) =
∑

xC∈ΩC

∏

i∈C∪T (C)

Pi |p(i)(xi |xp(i)). (6)

We would like to evaluate the existence of an interpretation of AC(xS), similar to
the interpretation of Ak(xs) for the Markov chain in the case where sk > sk−1 + 1.
In most BNs, it is true that

AC(xS) = PT (C)|R(C)(xT (C)|xR(C)), (7)

where R(C) is the set of elements of the Markov blanket of C (see [5]) being neither
in C nor in T (C).

We will show that for this interpretation to hold, it is sufficient that the graph on
I relative to the case in which the set (XI )i∈I is a BN possesses a property that we
will call non-pathological. This property is necessary in the sense that, if it is not
satisfied, we can construct a BN for which the desirable interpretation of the factors
AC(xS) is impossible.

Butz et al. in [3] analyzed the inference task in the junction tree algorithm (see
[9] for additional details about the junction tree algorithm) and was able to write
each intermediate computation, namely, the product of potentials, as probability
distributions but only for BNs satisfying a specific condition of topological order
called Butz’s condition. (Presented in Sect. 2).

In this paper, we focus on the interpretation of the factors involved in computing
marginal probabilities in BNs. We characterize all BNs where Butz’s condition does
not apply, which are denoted as pathological BNs (See Definition 1). We show
in Theorem 1, the main result of this paper, that the desired factorization is not
possible for such networks. For non-pathological BNs, we prove the possibility of
writing the target probability distribution as a product of conditional probability
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distributions. Furthermore, we relate the factorization of computations for these BNs
to the structure of Bayesian networks of level two (BN2), introduced in [17].

This paper is organized as follows. Section2 explains the motivation of our work
and presents the problem of the computation of restrictions in BNs in both the special
case of Markov chains and the general case of BNs. Section 3 introduces Patholog-
ical Bayesian networks and gives the main theorem and its proof. Section 4 recalls
Bayesian networks of level two anddiscusses their relationshipwith non-pathological
BNs, that is writing the target probability distribution as a product of conditional
probability distribution associated to a BN2.

2 Presentation of the Problem: Computation
of Restrictions in Bayesian Networks

2.1 Motivation

Here, we extend the work presented by Smail in [17]. In that work, a new compu-
tation algorithm called the Successive Restriction Algorithm was presented along
with the possible factorizations of those computations. That method was in contrast
to classical methods, which, regardless of the applied computing procedure, result
in target probability distributions under an extensive form and obtain intermediate
computations as potentials lacking clear probabilistic interpretations (see [4], [8]).
The successive restriction algorithm has the advantage of being able to present, at
each stage, interpretable results in terms of conditional probabilities under the form
of a Bayesian network of level two and thus is technically usable (see [16]).

The same concerns were presented in [18], in which Studeny presented a fac-
torization formula on the largest chain graph equivalent to the BN found based on
chain graphs and d-Separation properties. In addition, Shafer [12] provided a con-
dition under which each product of two potential functions, namely, φ(X1|Y1) and
φ(X2|Y2), yields a conditional probability table φ(X1, X2|Y1,Y2). In other words,
φ(X1, X2|Y1,Y2) = φ(X1|Y1)φ(X2|Y2) provided that X2 is disjoint of {X1,Y1}.

In [1], Butz and Yan presented the following example (Fig. 1) wherein the Shafer
condition does not apply and introduced a new method for the semantics of the
conditional probability tables in the variable elimination algorithm.

Example 1 Eliminating variable c from the graph in Fig. 1 yields the following:

∑

c

P(c)P(d|a, b, c)P(e|d, c) =
∑

c

[P(c)P(e|d, c)] P(d|a, b, c) (8)

=
∑

c

φ(c, e|d)P(d|a, b, c) (9)

= φ(a, b, c, d, e).
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Fig. 1 A Bayesian network
a b c

d

e

Fig. 2 A Bayesian network a

b

c

d

e

As we notice, the Shafer condition applies to the product in Eq. (8) but does
not apply to the product in Eq. (9); therefore, the final result should be noted as a
potential (extensive form) and not as a probability distribution table, it means as
φ(a, b, c, d, e).

In [3], Butz et al. presented a condition on the BN graph allowing potentials, as
the one above, to be written as conditional probability tables. Butz’s condition is
given as follows:

P(X |Y ) = ∏
xi∈X P(xi |p(xi )), where Y = (

⋃
xi∈X p(xi )) − X , if there is a topo-

logical order of I in which the variables of X appear consecutively.
However, in [2], Butz et al. stated that, using the following example (Fig. 2), the

topological condition is sufficient but not necessary to ensure a result as a conditional
probability table.

Example 2 Let us consider eliminating the variable b from the graph above (Fig. 2).
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∑

b

P(b|a)P(c|b)P(d|c)P(e|d, b) =
∑

b

[P(b|a)P(c|b)P(d|c)] P(e|d, b)

=
∑

b

φ(b, c|a)P(e|d, b) (10)

=
∑

b

φ(b, c, e|a, d) (11)

= φ(c, e|a, d).

By Butz’s condition, φ(b, c|a) in Eq. (10) is P(b, c|a) because (b, c) is a topo-
logical order; however, φ(b, c, e|a, d) in Eq. (11) is not φ(b, c, e|a, d) because all
topological orders between c and e have d in between.

This work was undertaken to address the semantics and interpretations of mar-
ginal probability distributions computed from BNs similar to the example above. A
characterization of such BNs is given along with a necessary and sufficient condition
that enables the factorization under the form of conditional probability distributions.

2.2 A Special Case: A Markov Chain

The simplification of the computation of PS is a classic problem in the case of a
finite Markov chain, where I = {1, .., n} and XI = (X1, X2, ..., Xn). The graph G
in this case is composed of the elementary pairs (i − 1, i) (2 ≤ i ≤ n). Therefore, for
each i ∈ {1, 2, ..., n}, its unique parent is i − 1 (p(i) = {i − 1}); furthermore, for
each i ∈ {1, 2, ..., n − 1}, its descendant is d(i) = {i + 1, i + 2, ..., n}. Thus, if S =
{s1, s2, ...sm}, where (s1 < s2 < ... < sm), and if sm = n (so that S+ = {1, ..., n}),
then XS = (Xs1 , ...., Xsm ) is also a Markov chain, and PS can be written as follows:

PS(xs1 , ..., xsm ) =
m∏

k=1

Psk |sk−1(xsk |xsk−1) (12)

with the convention that if k = 1, Ps1|s0(xs1 |xs0) = Ps1(xs1).
Let L be the set of indices � such that s� has no parents in I − S (thus, either

� = 1 with s1 = 1 or s�−1 ∈ S). In other words, if � ∈ L , then s� is either 1 or the
child of s�−1, and ps�|s�−1 is one of the entries of the Markov chain in the latter
case. If k /∈ L , the computation of Psk |sk−1 is simple and uses only the elements
of Ck = {sk−1 + 1, ..., sk − 1} (such that if s1 > 1, we obtain the particular case
C1 = {1, ...., s1 − 1}). The subsets Ck (where k /∈ L) form a partition of I − S, and
hence, we have the following:

Psk |sk−1(xsk |xsk−1) =
∑

xCk ∈ΩCk

sk∏

i=sk−1+1

Pi |i−1(xi |xi−1). (13)
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In summary, due to Eq. (12), the computation of PS(xs1 , ..., xsm ) can be conducted
in the following form:

PS(xs1 , ..., xsm ) =
[
∏

k∈L
Psk |sk−1(xsk |xsk−1)

]

×
⎡

⎣
∏

k /∈L

∑

xCk ∈ΩCk

sk∏

i=sk−1+1

Pi |i−1(xi |xi−1)

⎤

⎦ .

(14)

Example 3 Let us consider a Markov chain consisting of {X0, X1, X2, X3, X4, X5,

X6, X7}. The joint probability distribution in this case can be written as follows:

P(x0, . . . , x7) = P(x0)P(x1|x0)P(x2|x1)P(x3|x2)P(x4|x3)P(x5|x4)
× P(x6|x5)P(x7|x6).

Let us consider the subset S = {X1, X4, X5}, and let us attempt to write its prob-
ability distribution P(S). To do so, we need to eliminate the variables {X0, X2, X3,

X6, X7} from the joint probability distribution P(x0, . . . , x7) as follows:

P(S) =
∑

x0,x2,x3,x6,x7

P(x0, . . . , x7)

= P(x5|x4) ×
[
∑

x0

P(x0)P(x1|x0)
]

×
[

∑

x2,x3

P(x2|x1)P(x3|x2)P(x4|x3)
] [

∑

x6,x7

P(x6|x5)P(x7|x6)
]

.

Using probability distribution properties,
[∑

x6,x7
P(x6|x5)P(x7|x6)

] = 1; there-
fore,

P(S) = P(x5|x4)
[
∑

x0

P(x0)P(x1|x0)
] [

∑

x2,x3

P(x2|x1)P(x3|x2)P(x4|x3)
]

.

Using the above notations, let us consider s1 = 1, s2 = 4, and s3 = 5, namely,
the indices of the variables in S. We notice in this case that only 3 has no parents
in {X0, X2, X3, X6, X7}. Thus, for each k in {1, 2}, complementary of L = {3}, we
obtain C1 = {0, 1} and C2 = {2, 3}.

Thus, the composition of PS can be written as follows:

P(S) = P(x5|x4) ×
[
∑

C1

i=1∏

i=0

P(xi |xp(i))
][

∑

C2

i=4∏

i=2

P(xi |xp(i))
]

.
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2.3 The General Case

The generalization of the Markov chain composition for BNs will use the following
remark: in a Markov chain, if i ′ and i ′′ (where i ′ < i ′′) are two indices of I not in
S that belong to Ck ′ and Ck ′′ , respectively, where k ′ 
= k ′′, then the only path that
connects i ′ to i ′′ contains at least one element of S.

Therefore, in the general case of BNs, the subsets Ck are introduced as equivalent
classes associated with an equivalence relation on I − S. For this relation, i ′ and
i ′′ are equivalent if and only if they are not d-Separated by S (the classic notion
introduced by [11]). In other words, i ′ and i ′′ are equivalent if and only if there
exists, in the moral graph associated to G , a Markov chain that links i ′ to i ′′.
We recall that the moral graph associated with the DAG G is the undirected graph
H in which the links are the pairs

{
i ′, i

}
such that one of the elements is a parent

of the other one, or they have a common child.
We notice that, in a Markov chain, the moral graph H has as links the pairs

{i − 1, i} (2 ≤ i ≤ n).

Therefore, the S-conditional partition, denoted by C , is defined as the partition of
I − S on equivalent classes for this relation. Furthermore, let us denote by L the set
of elements of S that have no parent in I − S (regardless of whether they are roots
or their parents are all in S).

For each part C ∈ C , we introduce the following:

• M(C), the Markov blanket of C , defined as the set of elements of I that are either
in C or are neighbors to at least one element of C in the moral graph. In other
words, the elements of M(C) which are in C , are parents or children of at least
one element of C , or have a common child with at least one element in C.

• F(C), the Markov boundary of C , defined as the set of elements of M(C) that are
not in C .
We notice that F(C) is a subset of S. Consider i ∈ F(C): if i does not belong to
S, then it belongs to an equivalent set C ′ other than C , which is absurd because it
is linked to at least one element of C in the moral graph.

• (T (C), R(C)) the partition of F(C), which is called the canonical partition, where
R(C) is the set of elements of F(C) that are not children of at least one element
of C.

We previously made the assumption that I = S+. It immediately follows that, for
each nonemptyC of S+ − S (which is the case for the elements of the S−conditional
partition), T (C) is also nonempty, and C is a subset of T (C)+.

In the case of aMarkov chain of length n, ifC = {sk−1 + 1, ..., sk − 1} (where k ≥
2 and sk > sk−1), then we have M(C) = {sk−1, ..., sk}, F(C) = {sk−1, sk}, T (C) =
{sk}, and R(C) = {sk−1}. In contrast, if s1 > 1 andC = {1, ..., s1 − 1}, thenM(C) =
{1, ...., s1} , F(C) = T (C) = {s1}, and R(C) = ∅.

For each BN, we show that (see [17])
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PS(xS) =
∏

�∈L
P�|p(�)(x�|p(x�)) ×

∏

C∈C

∑

xC∈ΩC

∏

i∈C∪T (C)

Pi |p(i)(xi |xp(i)). (15)

The above equation generalizes Eq. (14), which is well known for Markov chains.
From Eq. (15), consider the factor

∑

xC∈ΩC

∏

i∈C∪T (C)

Pi |p(i)(xi |xp(i)). We will check

whether this factor depends exclusively on xF(C). For each i in C ∪ T (C), Pi |p(i)
involves only variables in theMarkov blanketM(C) by the definition ofM(C). After
computing summations over the variables in C , this expression reduces to a function
of xM(C)−C , which means a function of only xF(C).

However, in the case of a Markov chain where C = {sk−1 + 1, ...., sk − 1} and
T (C) = {sk}, it is true that

∑

xC∈ΩC

∏

i∈C∪T (C)

Pi |p(i)(xi |xp(i)) = Psk |sk−1(xsk |xsk−1).

We now check whether this result remains valid in the general case:

∑

xC∈ΩC

∏

i∈C∪T (C)

Pi |p(i)(xi |xp(i)) = PT (C)|R(C)(xT (C)|xR(C)). (16)

We first establish that this last equation does not hold in general and second find a
characterization for the BNs for which the above equation holds. The BNs for which
Eq. (16) does not hold are called pathological; this terminology is justified because
there are situations related to the graph G where researchers perform modeling in
terms of a BN to avoid such situations.

3 Pathological Bayesian Networks

Consider a fixed class C of the S-Conditional partition. Denote its Markov blanket
by M , and denote the canonical partition of its Markov boundary F by (T, R). We
recall that T is defined as the set of vertices that are children of at least one element
of C . It seems natural to see the vertices appear “generally” after the elements of C
and R. In other words, it is “abnormal” to find a parent belonging to T for an element
of T+ (the initial part generated by T ) that is neither in T nor in C (it belongs to
R ∪ J , where J = T+ − M).

This situation may occur as in the following examples (Fig. 3), which are the
simplest cases where there exists an i ∈ R ∪ J such that the parent is in T (in graph
1 (left), 3 ∈ J and in graph 2 (right), 3 ∈ R).

This circumstance is necessary and sufficient for the partition of the pathology
and is the subject of the theorem being presented in this section.

For the following sections, we define the partitions (C, T, R, J ) of T+ with the
following groupings:
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Fig. 3 Pathological BNs

F = T ∪ R, M = C ∪ F = C ∪ T ∪ R, T+ = M ∪ J = C ∪ T ∪ R ∪ J .

Definition 1 Given a subset C of I , the graph G presents a pathology on C if and
only if there exists an i ∈ R ∪ J such that p(i) ∩ T 
= ∅.

The following two lemmas provide necessary and sufficient conditions of the
pathology property.

Lemma 1 The graph G presents a pathology on C if and only if R ∪ J is not an
initial part.

Proof For R ∪ J to be an initial part, it is necessary and sufficient that there exists
i ∈ R ∪ J such that at least one parent does not belong to R ∪ J , in other words,
it is enough that p(i) ∩ (C ∪ T ) 
= ∅. However, we know that if i ∈ R ∪ J , then
p(i) ∩ C = ∅because, by the definition of T , a child of an element ofC is necessarily
inC ∪ T . Hence, for each i ∈ R ∪ J , the conditions p(i) ∩ (C ∪ T ) 
= ∅ and p(i) ∩
T 
= ∅ are equivalent. �

Lemma 2 For the graphG to present a pathology onC, it is necessary and sufficient
that there is a path in G , say, ( j0, . . . jn) (where n ≥ 1) such that
• j0 ∈ T .
• jn ∈ R.
• If n ≥ 2, then, for every k such that 1 ≤ k ≤ n − 1, we have jk ∈ J .

Proof The sufficient condition
Given that ( j0, . . . jn) is a path as described in the lemma,we have p( j1) ∩ T 
= ∅,

where j1 ∈ R ∪ J (in other words, j1 belongs to R if n = 1 and to J if n > 1).
The necessary condition
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By assumption, there exists i ∈ R ∪ J such that p(i) ∩ T 
= ∅. We assume that
j1 = i , and we consider j0 to be a parent of i belonging to T .

If i ∈ R, then the lemma is proven (with the path ( j0, j1)).
Let us assume now that i ∈ J .
Because i ∈ T+, there exists t ∈ T and a path ( j1, . . . , jm) (with m ≥ 2) such

that j1 = i and jm = t .
Assume that j� (where 2 ≤ � ≤ m) is the first element that belongs to T on this

path (it necessarily exists because jm ∈ T ). In other words, on the path ( j1, . . . , j�),
only the last element belongs to T .

By construction, j�−1 has a child in common with an element of C (because
j� ∈ T ), and therefore, j�−1 ∈ M . However, j�−1 /∈ T ; thus, j�−1 ∈ C ∪ R.

Assume that jn is the first element that belongs toC ∪ R on the path ( j1, . . . , j�−1);
it is necessary that n ≥ 2 because j1 ∈ J . By its construction, the sequence ( j1, . . . ,
jn) is such that, for any k ≤ n − 1, jk can belong neither to T nor toC ∪ R; therefore,
it belongs to J .

It remains to be shown that jn ∈ R. Because jn ∈ C ∪ R by construction, jn cannot
belong toC . If jn belonged toC , then jn−1, which is one of its parents, must be in the
Markov blanket of C or M . However, this situation is impossible because we have
just shown that all jk such that 1 ≤ k ≤ n − 1 belong to J = T+ − M . �

The following theoremapplies to any subsetC ⊂ I that satisfies the same hypothe-
ses as the equivalent classes of the S−conditional partition. In section (4), we will
comment on this theorem’s use in the computation of the probability PS.

Theorem 1 LetC be a nonempty subset of I such that T is a nonempty set of children
not in C and that C ⊂ T+. For the existence of a BN (Xi )i∈I such that

∑

xC∈ΩC

∏

i∈C∪T (C)

Pi |p(i)(xi |xp(i)) 
= PT |R(xT |xR),

it is necessary and sufficient that the graph G presents a pathology on C.

Proof The expression PT |R(xT |xR) appearing in the theorem is equal to PF (xF )

PR(xR)
. It

will be computed in the general case by first computing PM(xM), then PF (xF ) =∑
xC∈ΩC

PM(xC , xF ), and finally PR(xR) = ∑
xT ∈ΩT

PF (xT , xR).

Wewill observe where the condition of the theorem, meaning where the presence
of a pathology on C , contradicts the equality between PT |R(xT |xR) and

∑
xC∈ΩC∏

i∈C∪T (C)Pi |p(i)(xi |xp(i)).
The computation of PM(xM)

M and J are subsets of T+, by definition an initial subset and thus preserving the
structure of a BN. We are permitted to obtain PM(xM) based only on computations
on T+.

PM(xM) =
∑

xJ∈ΩJ

∏

i∈T+
Pi |p(i)(xi |xp(i)).
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According to the cases where i belongs to C, T, R and J , it is useful to examine
which components of xT+ interfere in xi and xp(i). If neither i nor its parents belong

to J , then Pi |p(i)(xi |xp(i)) can be factored during the summations
∑

xJ∈ΩJ

.

This factoring is valid if i ∈ C because its parents are in M by the definition of
M itself. Similarly, if i ∈ T and at least one of its parents (say, i ′) belongs to C , then
there is a possibility that the other parents of i also belong to M (because i is linked
to i ′ in the moral graph); therefore, the parents do not belong to J. In contrast, if
i ∈ R, it may occur that the parents of i are in J.
Therefore, we can write

PM(xM) =
∑

xJ∈ΩJ

(
∏

i∈C∪T
Pi |p(i)(xi |xp(i))

∏

i∈R∪J

Pi |p(i)(xi |xp(i))
)

,

which means

PM(xM) =
(

∏

i∈C∪T
Pi |p(i)(xi |xp(i))

)

×
(

∑

xJ∈ΩJ

∏

i∈R∪J

Pi |p(i)(xi |xp(i))
)

. (17)

The computation of PF (xF )

PF (xF ) =
∑

xC∈ΩC

PM(xC , xF ).

In expression (17), the factor
∑

xJ∈ΩJ

(
∏

i∈R∪J

Pi |p(i)(xi |xp(i))
)

depends only on xF

because if i ∈ R ∪ J , its parents are in F ∪ J , which means they cannot belong to C
(by the definition of T , all the children of elements of C are in C ∪ T and therefore
are not in R ∪ J ). Due to expression (17),

PF (xF ) =
(

∏

i∈C∪T
Pi |p(i)(xi |xp(i))

)

×
(

∑

xJ∈ΩJ

∏

i∈R∪J

Pi |p(i)(xi |xp(i))
)

. (18)

Proof of the necessary condition of the Theorem
Using the contrapositive, we show that if we have a graph G that does not have

the pathology property and that is a subset of C , then we have

∑

xC∈ΩC

∏

i∈C∪T
Pi |p(i)(xi |xp(i)) = PT |R(xT |xR). (19)

Assume (see Lemma 1) that R ∪ J is an initial part; thus, we can prove equality
(19).

Because PT |R(xT |xR) = PF (xF )

PR(xR)
, we still have to compute
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PR(xR) =
∑

xT ∈ΩT

PF (xT , xR)

=
∑

xT ∈ΩT

(
∑

xC∈ΩC

∏

i∈C∪T
Pi |p(i)(xi |xp(i))

)

×
(

∑

xJ∈ΩJ

∏

i∈R∪J

Pi |p(i)(xi |xp(i))
)

.

Because R ∪ J is an initial part, the factor
∏

i∈R∪J

Pi |p(i)(xi |xp(i)) depends exclu-

sively on xR∪J , and after summing out xJ ∈ ΩJ , the expression
∑

xJ∈ΩJ

∏

i∈R∪J

Pi |p(i)(xi |xp(i)) depends only on xR and clearly does not depend on xT . Therefore,

PR(xR) =
(

∑

xC∪T ∈ΩC∪T

∏

i∈C∪T
Pi |p(i)(xi |xp(i))

)

×
(

∑

xJ∈ΩJ

∏

i∈R∪J

Pi |p(i)(xi |xp(i))
)

=
∑

xJ∈ΩJ

∏

i∈R∪J

Pi |p(i)(xi |xp(i)). (20)

It is clear that, for each subset A of I ,
∑

xA∈ΩA

∏

i∈A

Pi |p(i)(xi |xp(i)) = 1.

Equality (20) implies the following:

PT |R(xT |xR) =

(
∑

xC∈ΩC

∏

i∈C∪T
Pi |p(i)(xi |xp(i))

)(
∑

xJ∈ΩJ

∏

i∈R∪J

Pi |p(i)(xi |xp(i))
)

(
∑

xJ∈ΩJ

∏

i∈R∪J

Pi |p(i)(xi |xp(i))
)

=
∑

xC∈ΩC

∏

i∈C∪T
Pi |p(i)(xi |xp(i)).

Proof of the sufficient condition of the theorem
Given ( j0, . . . jn), a similar sequence to the one produced in Lemma 2, we will

construct a BN with Boolean variables Xi where for each i , Ωi = {0, 1} such that

∃ (xT , xR) ∈ {0, 1}card(F) PT |R(xT |xR) 
=
∑

xC∈{0,1}C

∏

i∈C∪T
Pi |p(i)(xi |xp(i)) .

To do so, if i /∈ { j1, . . . jn}, we consider, for Pi |p(i), the equiprobability that is
independent of the values of the conditional variables, in other words,

∀ xp(i)∈{0,1}card(p(i)) Pi |p(i)(0|xp(i)) = Pi |p(i)(1|xp(i)) = 1

2
.
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Thus, for each jk (with 1 ≤ k ≤ n), Px jk |p(x jk ) will depend on the conditioning
variable x jk−1 (and only on it if jk has parents other than jk−1). We write

Pjk |p( jk )(x jk |xp( jk )) = a
x jk−1
k,x jk

with a
x jk−1
k,0 + a

x jk−1
k,1 = 1.

Therefore, Pjk |p( jk ) is characterized by the two numbers a0k,0 and a1k,0, a
0
k,1 =

1 − a0k,0 and a
1
k,1 = 1 − a1k,0.

We know that it is always true that PF (xF ) = A(xF )B(xF ), where

A(xF ) =
∑

xC∈{0,1}C

∏

i∈C∪T
Pi |p(i)(xi |xp(i))

and
B(xF ) =

∑

xJ∈{0,1}J

∏

i∈R∪J

Pi |p(i)(xi |xp(i)) .

Here, none of the indices jk (with 1 ≤ k ≤ n) belong to C ∪ T (because jn ∈ R
and if 1 ≤ k ≤ n − 1, then jk ∈ J ). Therefore, in the expression of A(xF ), all the
factors are equal to 1

2 , and thus, each term of the sum is equal to ( 12 )
card(C∪T ). Because

each of these terms is repeated 2card(C) times,

A(xF ) = (
1

2
)card(T ).

We now compute B(xF ). Every term
∏

i∈R∪J Pi |p(i)(xi |xp(i)) involves all the fac-
tors Pjk |p( jk )(x jk |xp( jk )) (where 1 ≤ k ≤ n) together with card(R) + card(J ) − n
factors that are equal to 1

2 . In the summation
∑

xJ∈{0,1}card(J ) , there are terms that are
equal to

(
1

2
)card(R)+card(J )−n

∏

1≤k≤n

a
x jk−1
k,x jk

and each of these terms is repeated 2card(J )−(n−1) times (because n − 1 elements of
the sequence ( j1, . . . jn) belong to J ). Therefore, if we denote yk = x jk , for all k such
that 0 ≤ k ≤ n, we have the following expression:

B(xF ) = (
1

2
)card(R)−1

∑

(y1,...yn−1)∈{0,1}n−1

∏

1≤k≤n

ayk−1
k,yk

which depends only on the pair (y0, yn) because the only elements of the sequence
( j0, . . . jn) that belong to F are j0 (in T ) and jn (in R).
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Finally, by decomposing xF into (xR, xT ), we produce

PF (xR, xT ) = (
1

2
)card(T )+card(R)−1g(y0, yn)

where

g(y0, yn) =
∑

(y1,...yn−1)∈{0,1}n−1

∏

1≤k≤n

ayk−1
k,yk

.

By computing

PR(xR) =
∑

xT ∈{0,1}T )

PF (xR, xT ) ,

we find that

PR(xR) = (
1

2
)card(R)(g(0, yn) + g(1, yn)).

Therefore,

PT |R(xR|xR) = (
1

2
)card(T )−1 g(y0, yn)

g(0, yn) + g(1, yn)
.

However, in this example,

∑

xC∈{0,1}C

∏

i∈C∪T
Pi |p(i)(xi |xp(i)) = 2card(C)(

1

2
)card(C)+card(T ) = (

1

2
)card(T ) .

Thus, the equality

PT |R(xR|xR) =
∑

xC∈{0,1}C)

∏

i∈C∪T
Pi |p(i)(xi |xp(i))

holds if and only if g(y0,yn)
g(0,yn)+g(1,yn)

= 1
2 , which means that g(0, yn) = g(1, yn).

Returning to the definition of the function g, our search for an opposite example
consists of finding a family of pairs (a0k,0, a

1
k,1)1≤k≤n such that the expression below

depends only on y0 and yn:

∑

(y1,...yn−1)∈{0,1}n−1

∏

1≤k≤n

ayk−1
k,yk

.
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For yn fixed (for example, yn = 0), the above expression takes different values
for y0 = 0 and y0 = 1.

This property can easily be interpreted in terms of the sequence of random vari-
ables (Y0, . . . ,Yn) = (X j0 , . . . , X jn )

Indeed, this example is aMarkov chain (not necessarily homogeneous) of boolean
random variables such that, for each k (where 1 ≤ k ≤ n),

Pk|k−1(yk |yk−1) = ayk−1
k,yk

.

Then,
Pn|0(yn|y0) =

∑

(y1,...yn−1)∈{0,1}n−1

∏

1≤k≤n

ayk−1
k,yk

.

Therefore, we dispose of the example we have been looking for because Pn|0(0|0)

= Pn|0(0|1) (the random variables Y0 and Yn are not independent). An obvious and
necessary condition for this example is that, for all k in {1, . . . , n}, the random vari-
ables Yk and Yk−1 are not independent. This implies that a0k,0 
= a1k,0. Indeed, if there
were k such that Yk and Yk−1 are independent, the Markov chain (Y0, . . . ,Yn) would
be divided into two independent sub-channels (Y0, . . . ,Yk−1) and (Yk, . . . ,Yn).

To check that this condition is sufficient or, in other words, for Y0 and Yn to be
independent, it is necessary that there exists at least one k ∈ {1, . . . , n} such that Yk
and Yk−1 are independent. This property results from a basic computation. If n = 2,
then we have the following:

a01,0a
0
2,0 + a01,1a

1
2,0 = a11,0a

0
2,0 + a11,1a

1
2,0.

In other words,

a01,0a
0
2,0 + (1 − a01,0)a

1
2,0 = a11,0a

0
2,0 + (1 − a11,0)a

1
2,0,

which is equivalent to a01,0a
1
1,0 or a

0
2,0a

1
2,0.

For n ≥ 3, we establish by induction that, for Y0 and Yn to be independent, it is
necessary that we dispose of at least one of the independences of Y0 and Y1 from one
side or of Y1 and Yn from the other side. Then, for Y1 and Yn to be independent, it
is necessary that we dispose of at least one of the independences of Y1 and Y2 from
one side or of Y2 and Yn from the other side, etc. �

Example 4 Recall Example 2.WithC = {b}, T (C) = {c, e}, and R(C) = {a, d}, we
conclude, using Theorem 1, that

∑
b P(b|a)P(c|b)P(d|c)P(e|d, b) 
= P(c, e|d, b)

= P(T (C)|R(C)), (presence of a pathology on the BN).
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4 Non-pathological Situations and Bayesian Networks
of Level Two

Itmay be useful to ensure that no pathologymay occur for any subset S. Although this
condition is elementary, it is apparently strong enough to imply that there is no couple
(i, i ′) that satisfies the following condition: i is a parent of i ′, and furthermore, there
exists a path (i0 , ...in) (n ≥ 3) for which none of the elements i j (1 ≤ j ≤ n − 2) is
a parent of i ′.

Let us now recall the definition of Bayesian networks of level two before present-
ing their relationship with non-pathological BNs.

Let I be a partition of I , and let us consider a directed acyclic graph G on I .
The vertices of the graph G are the atoms J of the partitionI , in other words, each
vertex J of I is a subset of indices of j of I . We say that there is a link from J ′
to J ′′ (where J ′ and J ′′ are atoms of the partitionI ) if (J ′, J ′′) ∈ G . If J ∈ I , we
denote p(J ) as the set of parents of J , that is, the set of J ′ such that (J ′, J ) ∈ G .

Definition 2 The probability PI is defined by the Bayesian Network of level two,
BN2, on I , (I ,G, (PJ |p(J ))J∈I ), if we have the conditional probability PJ |p(J ) for
each J ∈ I ; in other words, the probability of XJ is conditioned on X p(J ) (which,
if p(J ) = ∅, is the marginal probability PJ ), so that

PI (xI ) =
∏

J∈I
PJ |p(J )(xJ |xp(J )).

A BN is a special case of level 2, with the partitioning of I into single vertices.
In some cases, it can be useful to remark that PJ/p(J ) depends only on a subset

K of ∪J ′∈p(J ) J ′; this is equivalent to the concept of bubble graphs from Shafer [12].
(For additional details on Bayesian networks of level two, see [17], [15], [16]).

Example 5 The probability distribution PI associated with the Bayesian network of
level 2 in Fig. 4 can be written as

PI (x1, x2, x3, x4, x5, x6, x7, x8) = P1(x1)P2(x2)P3,|1,2(x3|x1, x2)P4,5|2(x4, x5|x2)
P6/3,4,5(x6|x3, x4, x5)P7,8/3(x7, x8|x3).

Let QS be the set of parts of S composed of singletons {�}, where � covers the set
L of elements of S with no parents in S+ − S, and of parts T (C), where C covers
the S−conditional partition C . Note that one of these two types of elements of QS

may be absent.
It has been shown (see [17], [16]) that QS as defined constitutes a partition of

S. This results from Eq. (15) and from Theorem 1 stating that if the BN does not
present the pathology property relative to any subset C ∈ C , in other words if the
BN is non-pathological, then
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Fig. 4 Example of a
Bayesian network of level
two

PS(xS) =
[
∏

�∈L
P�|p(�)(x�|xp(�))

]

×
[

∏

C∈C
PT (C)|R(C)(xT (C)|xR(C))

]

,

where p(�) (� ∈ L) and R(C) (where C ∈ C ) are subsets of S (which may be empty
subsets).

Here, we see an expression of PS that is similar to the probability distribution of
a BN that can have none of the elements of S as vertices on its graph; however, the
elements of the partition QS can be vertices of a Bayesian network of level 2 [16],
as you can see in Example 6 below.

Example 6 Recall Example 2 with S = {a, c, d, e}. It has been shown in [16] that

P(S) =
∑

b

P(a)P(b|a)P(c|b)P(d|c)P(e|d, b)

= P(a)
∑

b

[P(b|a)P(c|b)P(d|c)P(e|d, b)]

= P(a)P(c, d, e|a).

We have a structure of a BN2 on S with two vertices {a} and {c, d, e}. In contrast
to Butz et al. computation in [2], the result is given as a product of probabilities and
not as a simple potential in an extensive form.

However, to prove the above-mentioned identification,we should study in advance
if QS is endowed with the structure of an oriented acyclic graph, denoted G ′

S , such
that, for any �, p(�) belongs to the set of parents relative to G ′

S of {�} and, for any C ,
R(C) is a subset of the set of parents relative to G ′

S of T (C). This preemptive study
leads to the following definition of G ′

S:

• If � ∈ L and �′ ∈ L , then ({�}, {�′}) ∈ G ′
S if (�, �′) ∈ G .

• If � ∈ L and C ∈ C , then ({�}, T (C)) ∈ G ′
S if � ∈ R(C ).

• If C ∈ C and C ′ ∈ C , then (T (C), T (C ′)) ∈ G ′
S if T (C) ∩ R(C ′) 
= ∅.
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Fig. 5 Non-pathological graphs

However, we note that the oriented graph defined in this way on QS is not necessarily
acyclic, as shown in the following example (Fig. 5), which is constructed from a non-
pathological graphG with S = {2, 4, 6, 8, 10}, L = ∅,C1 = {1, 9},C2 = {3, 5}, and
C3 = {7}.

In this case, we have the following: T (C1) = {2, 10}, T (C2) = {4, 6}, T (C3) =
{8}, R(C1) = {8}, R(C2) = {2}, and R(C3) = {6}.

Although it is non-pathological, this graph presents a phenomenon with a “distant
effect” (the arc from 1 to 9) similar to those effects that characterize the pathological
graphs.

5 Conclusion

This work presented a method of interpreting factors used in a subset of BNs named
non-pathological BNs. It also related non-pathological BNs to Bayesian networks of
level two and presented results on the factorization of the marginal probability dis-
tribution of any subset of a BN as a product of conditional probability distributions;
moreover, all intermediate computations can be written as conditional probability
distributions. This has an advantage in keeping the probabilistic independence infor-
mation available and thus technically usable; in addition, this information can be
stored as a Bayesian network of level two and not in an extensive form as potential
functions. Future work will include comparison of the pathological and topological
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order conditions on more general BNs and the extension of this work to the case of
evidence. We also propose to seek a characterization of the graphs G and the parts
S such that the associated graph G ′

S will be acyclic.
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Optimal Drug Treatment in a Simple
Pandemic Switched System Using
Polynomial Approach

Abdessamad Tridane, Mohamed Ali Hajji and Eduardo Mojica-Nava

Abstract The aimof thiswork is to investigate the optimal control of the treatment in
a simple pandemicmodel as a switched nonlinear system.We used a newly developed
approach based on the theory of moments. This approach allows to transform a
nonlinear, non-convex optimal control problem to an equivalent linear and convex
one. To illustrate our finding, we used the example of influenza pandemic to compare
the full treatment approach to our optimal moment and time switching solution.

Keywords Switched systems · Epidemic model · Optimal control · Theory of
moment
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1 Introduction

In order to avoid high mortalities and as a result of the severity of these outbreaks
over years, humans have focused their efforts on finding the best strategies to control
the spread of infectious diseases.

Due to poor planning, these efforts frequently fall short. For example, the supplies
of drug treatments are often inadequate and inefficient, causing health facilities to
run out of resources before meeting the needs [28].
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For these reasons, the optimization of the existing control resources is a continuous
concern in the public health. The optimal control theory has been a powerful approach
to solve optimality problems inmany disciplines. Themajority of the techniques used
in optimal control disease outbreakmodels (see e.g. [25]) are based on the Pontryagin
maximum principle [20] and forward-backward numerical algorithms to solve the
state and adjoint system of equations (for the use of numerical methods in optimal
control of epidemiological models see [2, 16] and for all other types of optimal
control problems see [24]).

One of the issues in using the standard optimal control approach is the suggested
control might not take into consideration some realistic constraints. For example, the
control agent could be a drug treatment that is not necessarily available at all times
[15] or simply might run-out [1]. In this case, it is clear that assuming that control
agent to be a continuous function is too optimistic of an assumption. In this situation,
a switched control system would be a better approach to deal with a control problem
of this nature.

Switched control systems are a class of hybrid systems that are composed of
a number of subsystems which are defined by the switches [17]. These systems
have extensively been used in recent years due to their applications in engineering
and other disciplines [5, 29]. Hence, different studies have adapted the maximum
principle to find the optimal control switched systems [9, 23, 26, 27]. However, one
the biggest problems of these versions of maximal principle of switched systems
is that they are numerically expensive since they involve the use of mixed integer
programming [3, 4].

The recent work of Mojica-Nava et al. [19] introduced a new approach to finding
the optimal switched control system.This approach is based on the use of the theory of
moments for global polynomial optimization via semidefinite programming, which
eases the numerical burden of using the previous approaches.

In thiswork, we use this new approach [19] in a simple classicalmodel that reflects
the switched aspect of the control in a pandemic model. A similar version of this
model without switched control can be found in a recent work of Brauer [6, 7]. Our
goal is to minimize the outflow from infected classes.

The paper is organized as follows: We introduce the problem in Sect. 2 then we
transform the problem to an optimal control of switched system in Sect. 3. In Sect. 4,
we present relaxation using moments approach where we transform the nonlinear,
non-convex optimal control problem to a linear and convex one. Issues related to
the implementation of the proposed method are presented in Sect. 5. Finally, we
illustrate our results with simulation in Sect. 6. We draw conclusions and present
discussion of our findings in Sect. 6.

2 Problem Statement

The aim of this work is to investigate the effect of treatment run-out supplies during
a pandemic. For this reason, we consider the following simple pandemic treatment
model
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Fig. 1 Flow diagram of
transitions between
epidemiological classes of
the STIR model

Ṡ = −β
S

N
(I + δT ),

İ = β
S

N
(I + δT ) − (α + γ u)I,

Ṫ = γ uI − ηT,

(1)

where the total population N is defined as N = N (t0) = S(t0) + I (t0). This SITR
model is an extension of the standardmodel of Kermack andMckendrick by adding a
fraction of infectives to be treated [6, 7], where S, I and T represent the susceptible,
the infected and treated individuals. The parameters in model (1) are defined as
follows: β is the transmission rate from susceptible to infected host and α is the
per capita loss rate of infected individuals through both mortality and recovery. We
assume that individuals in the T class have infectivity reduced by a factor δ and γ is
the rate of infectives that are treated. We also assume that the rate of removal from
treated class is η.

The flow chart of our model is given in Fig. 1.
The basic reproduction number is calculated in [6] as

R0 = β

α + γ u
+ βδγ u

η(α + γ u)
(2)

and the final size is given by [7]

N − S∞ = (α + γ u)

∫ ∞

0
I (t)dt. (3)

The parameter u in (1) is the treatment control which takes values 0 or 1, where
u = 1 means treatment is underway and u = 0 means no treatment. Accordingly,
system (1) can switch between two different subsystems (modes of operations),
corresponding to u = i, i = 0, 1, as time progresses. Thus, we have a switched
system.
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3 The Switched System

By considering x = (S, I, T )�, we can rewrite our system (1) as

ẋ(t) = fσ(t)(x(t)), (4)

where fi : IR3 → IR3 is the i th vector field,σ : [t0, t f ] → Q = {0, 1} is the switching
signal, a piecewise constant function of time, and [t0, t f ] is the time interval under
consideration. The initial conditions are given by x(0) = (S(0), I (0), T (0))�. Every
mode of operation of the system corresponds to a specific subsystem ẋ(t) = fi (x(t)),
for each i ∈ Q, where i = 0 corresponds to u = 0 and i = 1 corresponds to u = 1.

Our goal is to study the number of possible switches of treatment that allows
us to reduce the burden of the infection by reducing the size of the pandemic. Each
subsystem ẋ(t) = fi (x(t)), for i ∈ Q, corresponds to a mode of the switching signal
σ(t) which is our control input. The values of the switching input signal must be
chosen in away to satisfy the given initial conditions and the desirable final conditions
that represent specific desirable pandemic outcome. The optimal switching signal σ
would represent a public health optimal strategy to control the pandemic within the
limits of the available resources.

Before we continue our analysis, we assume the following [19]:

• There are no infinite switching accumulation points in time.
• The state does not have jump discontinuities.

Accordingly, we define the switched control of our system as a duplet of finite
sequence of modes and a finite sequence of switching times t0 < t1 < ... < t f .
Our optimal control cost function is defined, in Bolza form, as the functional

J =
∫ t f

t0

Lσ(t)(t, x(t))dt, (5)

with the running cost Lσ(t)(t, x(t)) is given by

Lσ(t)(t, x(t)) = α I (t) + ηT (t), (6)

where the term (α I (t) + ηT (t)) represents the outflow from infected classes at time
t [12], and σ(t) ∈ {0, 1}.

The switched optimal control problem becomes

min
σ(t)

J (t0, t f , x(t), σ (t)) (7)

subject to
ẋ(t) = fσ(t)(x(t)), (8)

where J is defined by (5) and σ(t) ∈ {0, 1}.
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Following the approach in [19], we use Lagrange polynomials to transform the
system (8) to a continuous non-switched control system. Therefore, we introduce a
new continuous control variable w ∈ Ω = {w ∈ IR

∣
∣ g(w) = 0}, where

g(w) = w(w − 1). (9)

Let the kth Lagrange polynomial, lk(w), k = 0, 1, be defined by

l0(w) = (1 − w), l1(w) = w. (10)

Then, according to Proposition 4 in [19], we can write system (8) as the following
equivalent continuous system with polynomial dependence, F (x,w), in the new
control variable w ∈ Ω:

ẋ = F (x,w) = f0(x)l0(w) + f1(x)l1(w). (11)

Similarly, the running cost Lσ(t)(t, x(t)) is equivalently represented by the polyno-
mial L (x,w) of degree 1 in w:

L (x,w) = L0(t, x(t))l0(w) + L1(t, x(t))l1(w) (12)

and the cost function J in (5) becomes

J (t0, t f , x(t),w) =
∫ t f

t0

L (x,w)dt. (13)

Finally, the polynomial equivalent optimal control problem (PEOCP) can be stated
as

min
w∈Ω

J (t0, t f , x(t),w) (14)

subject to

ẋ =
1∑

k=0

fk(x)lk(w), (15)

with x(0) = x0, a given initial state. The polynomial constraint w ∈ Ω (g(w) = 0)
makes the problem nonconvex, as the feasible set Ω is non convex. To overcome the
nonconvexity of the problem, the moments approach, described in the next section,
is used to redefine the PEOCP in terms of moment variables which will render the
optimization problem convex.
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4 Relaxation Using Moments Approach

In this section, the moments approach is described for the relaxation of the PEOCP
which transforms the nonconvex PECOP into convex semidefinite programs (SDPs).
This approach is based on the concepts of moment and localizing matrices of prob-
ability measures supported in Ω .

4.1 Moment and Localizing Matrices

The concept of moment and localizing matrices of a probability measure is described
in details in [13, 14]. For the convenience of the reader, we report only the important
aspects.

LetPr be the space of univariate polynomials of degree at most r in the variable
x ∈ IR. If μ is a probability measure supported in some set A ⊂ IR, the i th moment
of μ is defined as

mi =
∫

A
xiμ(dx)

with m0 = 1. If p(x) ∈ Pr of degree r , p(x) =
r∑

i=0

pi x
i , then

∫

A
pr (x)μ(dx) =

r∑

i=0

pimi .

Now, if m = {m j }2rj=0 is a sequence a moments of some probability measure μ, the
moment matrix Mr (m) is defined as the symmetric (r + 1) × (r + 1) matrix with
(i, j) entries Mr (m)(i, j) = mi+ j , 0 ≤ i, j ≤ r , i.e.,

Mr (m) =

⎡

⎢
⎢
⎢
⎣

m0 m1 · · · mr

m1 m2 · · · mr+1
...

... · · · ...

mr mr+1 · · · m2r

⎤

⎥
⎥
⎥
⎦

.

The localizing matrix relative to a polynomial q(x) is defined as follows. Given

a polynomial q(x) of degree s, q(x) =
s∑

i=0

qi x
i , the localizing matrix denoted by

Mr (q m) is defined as the symmetric matrix of size (r + 1) × (r + 1) with (i, j)
entries, 0 ≤ i, j ≤ r , given by
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Mr (q m)(i, j) =
s∑

k=0

qkmi+ j+k .

As an example, in the case of r = 3, the moment matrix M3(m) is

M3(m) =

⎡

⎢
⎢
⎣

m0 m1 m2 m3

m1 m2 m3 m4

m2 m3 m4 m5

m3 m4 m5 m6

⎤

⎥
⎥
⎦ .

If q(x) = 2 − x2, {qi } = {2, 0,−1}, the (i, j) entries of the localizingmatrix is given
by M3(q m)(i, j) = 2mi+ j − mi+ j+2, i.e.,

M3(q m) =

⎡

⎢
⎢
⎣

2m0 − m2 2m1 − m3 2m2 − m4 2m3 − m5

2m1 − m3 2m2 − m4 2m3 − m5 2m4 − m6

2m2 − m4 2m3 − m5 2m4 − m6 2m5 − m7

2m3 − m5 2m4 − m6 2m5 − m7 2m6 − m8

⎤

⎥
⎥
⎦ .

A key property of Mr (m) and Mr (q m) used in this paper is their positive semi-
definiteness stated in the following proposition.

Proposition 1 If m = {mi } is a sequence of moments of some probability measure
μ supported in some set A ⊂ IR and q(x) = ∑

k
qkxk is a polynomial with q(x) ≥ 0,

∀ x ∈ A, then the matrices Mr (m) and Mr (q m) are positive semidefinite.

Proof Let c = (c0, c1, . . . , cr ) ∈ IRr+1. Let p(x) =
r∑

i=0

ci x
i . Then

cMr (m)c� =
r∑

i=0

r∑

j=0

ci c jmi+ j =
r∑

i=0

r∑

j=0

ci c j

∫

A
xi+ jμ(dx) =

∫

A
(p(x))2μ(dx) ≥ 0.

cMr (q m)c� =
r∑

i=0

r∑

j=0

∑

k

ci c jqkmi+ j+k

=
r∑

i=0

r∑

j=0

∑

k

ci c jqk

∫

A
xi+ j+kμ(dx) =

∫

A
q(x)(p(x))2μ(dx) ≥ 0.

which prove the positive semidefiniteness of Mr (m) and Mr (q m), since c is an
arbitrary vector in IRr+1.
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4.2 Semidefinite Programs Using Moments Approach

It has been shown in [13], see also [14], that the minimisation problem (14) is
equivalent to the minimisation problem

min
μ∈P(Ω)

∫

Ω

J μ(dw), (16)

that is,

min
w∈Ω

J = min
μ∈P(Ω)

∫

Ω

Jμ(dw)

where P(Ω) is the space of probability measures supported in Ω . Since J is a
polynomial of degree 1 in w (see (12) and (13)), we can rewrite the minimisation
problem in terms of the moments of μ as

min
μ∈P(Ω)

∫

Ω

Jμ(dw) = min
m∈M

∫ t f

t0

1∑

k=0

1∑

i=0

Lk(t, x(t))αkimi , (17)

where α00 = 1, α01 = −1, α10 = 0, α11 = 1, are the coefficients of the Lagrange
polynomials l0(w) and l1(w) in (10), and M is the space of moments defined by

M = {m = {mi }, mi =
∫

Ω

wiμ(dw), μ ∈ P(Ω)}.

The system state, Eq. (15), is rewritten in terms of the moments mi as

ẋ =
1∑

k=0

1∑

i=0

fk(x)αkimi . (18)

The constraintm ∈ M in (17) states thatm is a vector ofmoments of someprobability
measure. This implies that

M1(m) =
[
m0 m1

m1 m2

]


 0.

The constraint on the control variable w ∈ Ω , g(w) = w(w − 1) = w2 − w = 0, is
written as two inequality constraints:

g1(w) = g(w) = w2 − w ≥ 0, (19)

g2(w) = −g(w) = w − w2 ≥ 0. (20)
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The degree of both constraint functions g1 and g2 is even (=2), so following the
results in [13], we consider the family of relaxed convex SDPs, with relaxation order
r ≥ max(degree(g1)/2, degree(g2)/2) = 1:

SDPr :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
m

∫ t f

t0

1∑

k=0

1∑

i=0

Lk(t, x(t))αkimi dt,

Mr (m) 
 0,
Mr−1(g1 m) 
 0,
Mr−1(g2 m) 
 0,

ẋ =
1∑

k=0

1∑

i=0

fk(x)αkimi .

(21)

It was shown also in [13] that min SDPr is an increasing sequence of lower bounds
for min J , and as r −→ ∞, min SDPr ↑ min J .

For the lowest order of relaxation r = 1, we have the following SDP

SDP1 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
m

∫ t f

t0

1∑

k=0

1∑

i=0

Lk(t, x(t))αkimi dt,

M1(m) 
 0,
M0(g1 m) = m2 − m1 
 0,
M0(g2 m) = m1 − m2 
 0,

ẋ =
1∑

k=0

1∑

i=0

fk(x)αkimi .

(22)

It is worth mentioning that one can use a higher relaxation order r but the number of
moment variables will increase, which canmake the problem numerically inefficient.
However, it is found that inmany situations the lowest order of relaxation can achieve
the optimal value. In our simulation, we treat our problem with the lowest order of
relaxation r = 1.

5 Numerical Implementation

In this section, we explain the numerical implementation steps used to solve (22).
The SDP in (22) is a constrained minimisation problem over the moments m(t)
which are time dependent. We discretize the interval [t0, t f ] with nodal points ti ,
i = 0, 1, . . . , N , with tN = t f , using a uniform step h. Denote by mi the vector of
the i th moments, i.e.,mi = {mi (t j )} j=0,1,...,N−1. Note thatm0 = [1, 1, . . . , 1], since
the zeroth moment m0 = 1 for all t . Let the vector m = [m1 m2] of length 2N .
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The integral defining the objective function and the state constraint differential
equation in (22) are descritized using appropriate quadratures. A trapezoidal rule
quadrature for the integral and a one-step forward discretization of the state equation
give the following discrete version of (22):

SDP1 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
m

h
N−1∑

j=0

1∑

k=0

1∑

i=0

Lk(t j , x(t j ))αkimi (t j )

M1(m) 
 0,
M0(g1 m) = m2 − m1 
 0,
M0(g2 m) = m1 − m2 
 0,

x(t j+1) = x(t j ) + h
1∑

k=0

1∑

i=0

fk(x(t j ))αkimi (t j ).

(23)

where the minimisation is now over the vector m = [m1 m2].
Problem (23) is solved using the built in Matlab function fmincon, which is a

function designed for solving numerically nonlinear constrained minimization prob-
lems.

Once an optimal solution m∗(t j ) = (m∗
1(t j ),m

∗
2(t j )) of (23) is reached, the

switching signal σ(t j ) is determined using a rank condition [19] as follows. If
rank(M1(m∗(tj))) = rank(M0(m∗(tj))) = 1, then the optimal switching signal at t j
is σ(t j ) = m1(t j ), otherwise we use a sum up rounding procedure [21] as follows

σ(t j ) =

⎧
⎪⎨

⎪⎩

m1(t j )� if
∫ t j

t0

m1(τ )dτ − h
j−1∑

k=0

σ(t)k) ≥ 0.5h,

�m1(t j )� otherwise,

(24)

where ·� and �·� are the ceiling and floor functions, respectively.

6 Numerical Simulation

To illustrate our model, we need to simulate the results of our analysis. We choose
the influenza pandemic as parameters of our model. The following parameters can
be found in different papers that have studied the influenza pandemic. In our case,
we used the parameters for models that studied the control strategy via vaccination
and treatment [8, 10, 11]. The parameters are presented in Table1.

The simulations illustrated in Fig. 2 describe the plot of the relaxed moment
solution function m∗

1(t j ) and the switching signal σ(t j ). Figure3 depicts the time
series of the three compartments’ populations considered in the model.

The optimal moment function and optimal switching signal showed that range
of the switches corresponding to optimal solution is between t = 0 to t = 26 time
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Table 1 Parameter estimation

Parameter Description Value References

β Transmission rate (days−1) 1.03–2.75 [8]

δ Relative infectiousness of the
asymptomatic class

0.5 [8, 10]

α Mortality rate (days−1) 0.01 [11]

γ Diagnostic rate (days−1) 0.5 [8]

η Recovery rate for hospitalized
class (days−1)

0.51 –

u Control treatment on hospitalized
individuals

0,1 –

S(0) Initial number of susceptible
individuals

174673 [8]

I (0) Initial number of infectious
individuals

132 [8]

T (0) Initial number of infectious
individuals

0 Assumed

Fig. 2 The moment function m1(t) (top) and the optimal switched control of the treatment σ(t)
(bottom)
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Fig. 3 The time series of the Susceptible, Infected and Treated. The plot displays these variable
with no control u = 0 (green), optimal switched control (blue), and full control u = 1 (red)

units (which is days in the case of influenza) to treat the infected population. After
that time there is no need for treatment. This finding is reflected on the time series in
Fig. 3 where the peak size and the peak time of the pandemic curve of u = 1 (in red),
which represent the full availability of the treatment at any given time, completely
match the case of optimal switched control. This shows that we can achieve the same
outcome of controlling the pandemic antiviral treatment by only treating (on and
off) for a a limited period of time, hence, avoiding the consequences of the long
term antiviral treatment which may exhaust drug stockpile and may develop drug
resistance.

7 Conclusion

In this paper, we studied the optimal control problem of a SITR model. The control
aimed to optimize the number of infected and treated population via only one control
agent, i.e. the treatment. The method used for solving the optimal control problem
of switched nonlinear systems was based on a polynomial approach developed by
Mojica-Nava et al. [19]. The method based on transforming the problem into a
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polynomial system which was transformed into a relaxed convex problem using the
method of moments [13].

Our results showed that, by using this approach, we can achieve the same outcome
of continuous treatment by only limiting treatment for period of time. This indicates
that if the treatment is not available or run-out after a specific time, the outcome of the
pandemic would be the same as if treatment is available at all times. It is important to
mention that the suggested control switches are all in the early time of the pandemic,
which line-up with the results in [1, 10]. Although the antiviral drug in a pandemic,
like influenza, has been considered as the first line of the defence [1], the long term
use of this drug could lead to the development of drug-resistance. This finding also
suggests a solution to the long and extensive use of the antiviral drug by limiting its
use (on and off) in the beginning of the pandemic and for a limited period of time.

Themodel suggested in this work is very simple and does not include other control
strategies such as vaccination and isolation, that are used to protect the public health
in the case of pandemics such as influenza. Our next step is to include these defence
measures as switched control in more extended models that include all different
levels of heterogeneities.
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On Carathéodory Quasilinear Functionals
for BV Functions and Their Time Flows
for a Dual H1 Penalty Model for Image
Restoration

Thomas Wunderli

Abstract We extend the theory of functionals defined on BV space by including
certain Carathéodory functions ϕ(x, p) for functionals of the form

∫
�

ϕ(x, Du), u ∈
BV (�) , so that ϕ is only measurable in x without the usual continuity assumption
in x, and prove lower semicontinuity in L1 of

∫
�

ϕ(x, Du) as well as compactness
with an extra with an L1 condition on ϕ. We also consider the case of the dual H1

penalty model with integral constraint introduced in Osher-Solé-Vese [38] for image
restoration, with the more general energy term

∫
�

ϕ(x, Du), analyze the time flow
of the dual H1 model in BV, and derive an integral property for the flow in the case
of one space dimension.

Keywords Bounded variation · Image restoration · Gradient flows · Dual of h1 ·
Anisotropic diffusion

2000 Mathematics Subject Classification. Primary 35A05 · 35D05 · Secondary
49xx

1 Introduction

In this paper we present some results of gradient time flows in L2 (�) corresponding
to minimization problems of functionals of the form

F(u) :=
∫

�

ϕ(x, Du) + λ

∫

�

|∇(�−1)(I − u)|2 dx

with dual H1 penalty term λ
∫
�

|∇(�−1)(I − u)|2 dx defined for u ∈ BV (�) ∩
L2 (�) , � ⊂ Rn open and bounded and constant λ > 0. Here we assume the
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Carathéodory function ϕ(x, p), ϕ : � × Rn → [0,∞), is for a.e. x both convex and
has a linear growth assumption in p, and also has an additional integrability assump-
tion to insure compactness. We make no assumption of continuity in x. As described
later in this section, the minimization problem was originally proposed for image
restoration applications in Osher et al. [38] for the case of pure total variation term
ϕ(Du) = |Du| with dual H1 penalty.

Existence, uniqueness, and qualitative properties for solutions for flows in L1 and
L2 with pure total variation term and different boundary conditions were obtained in
[9–13, 18] with no penalty term for the L1 case, and simple L2 penalty for the L2 case.
For the purpose of the study of entropy solutions, they also consider flows in L1 with
quasilinear term φ(x, Du) for u ∈ BV where φ has a strong continuity assumption
in x. For our case, in addition to the dual H1 penalty, ϕ(x, Du) includes certain
Carathéodory functions that are only measurable in x with no continuity assumption
in x. The flow considered in this paper is

∂u

∂t
= div

(∇pϕ(x, Du)
) − 2λ�−1(I − u) for t > 0, on �

with constraint
∫
�

u dx = ∫
�

I dx, initial condition u(0, x) = I(0), Neumann
boundary condition ∂u

∂n = 0 on ∂�, for open bounded � ⊂ R1 or R2 with Lipschitz
boundary, and ϕ(x, Du) as mentioned above.

One of the objectives of image processing is to restore corrupted images while
retaining important features of the image, such as edges. One of the first models
for this purpose using total variation was the Rudin-Osher-Fatemi (ROF) model [40,
41]. The ROF model consists of finding a minimizer um ∈ L2 (�) of the functional

R(u) :=
∫

�

|∇u| + λ

2

∫

�

(u − I)2 dx (1.1)

where I : � → R, � ⊂ Rn bounded and open, represents the noisy or corrupted
image and um represents the restored or cleaned image. For these types of minimiza-
tion models, the images are represented by functions u : � → R, where � ⊂ R2 is
typically a rectangle, and u(x) the image intensity at x. The first term on the right in
the above functional is the total variation of u:

T V (u) :=
∫

�

|∇u|

:= sup

{∫

�

u∇ · ϕ dx : ϕ ∈ C1
c (�;Rn), |ϕ(x)| ≤ 1 for all x ∈ �

}

.

The space of all such u ∈ L1(�)with T V (u) < ∞ is known as the space of functions
of bounded variation, or BV (�), with the norm ‖u‖BV =: ‖u‖L1(�) + ∫

�
|∇u|. Any

minimizer ofRwill be in BV (�). It is common to use the Lebesgue decomposition
to write any u ∈ BV as
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∫

�

|Du| =
∫

�

|∇u| dx +
∫

�

|Dsu|

where we decompose the total variation measure Du,with |Du| =: ∫
�

|∇u| into the
absolutely continuous part with respect to Lebesgue measure ∇u dx and the singular
part Dsu as

Du = ∇u dx + Dsu.

In [15] the above integral foru ∈ BV is extended to
∫
�

ϕ(x, Du) for functionsϕ(x, p),

x ∈ �, p ∈ Rn, continuous on � × Rn, and convex and of linear growth in p (see
Theorem 2 in the next section).We also refer the reader to [27] for results concerning
certain functionals of the form

∫
�

√
1 + |Du|dx + ∫

�
G(x, u) dx.

The use of BV space with the TV term is that minimizers of R may still be
discontinuous with jumps corresponding to edges, unlike images restricted to the
Sobolev space W 1,1. The second term of R is the penalty which ensures that the
restored image u does not deviate too far from the input image I. One way to solve
this is to solve the gradient flow of the Euler-Lagrange equation

0 = div

( ∇u

|∇u|
)

− λ(u − I)

and let t → ∞ for the solution u(x, t). See also [45] for the time flow for applications
to plasticity. The gradient flow is then

∂u

∂t
= div

( ∇u

|∇u|
)

− λ(u − I) on � × [0,∞) with
∂u

∂n
= 0 on ∂�

u(x, 0) = I(x) on �.

We should also mention the use of primal dual methods, instead of the gradient time
flow, for minimizing functionals such as (1.1). These are especially used for models
with pure TV term

∫
�

|Du| due its non differentiability. See, for example, [23] and
[31].

In general, the above model works very well for image denoising while retaining
edges. Modifications of the ROF model have also been introduced in other works to
provide better restoration of noisy images due to such unwanted effects such as the
stair casing effect, which may occur in solving (1.1) numerically. See [1–6, 16, 21,
22, 28, 29, 44] for further discussion and models.

Certain details, such a oscillatory textures are not well preserved with the above
L2 norm penalty λ

2

∫
�
(u − I)2 dx. In [35], Meyer introduced a new penalty designed

to overcome this, by replacing the L2 penalty with a weaker norm that can retain
oscillatory textures. In [35], the new model problem is to find a minimizer of

M(u) :=
∫

�

|∇u| + λ ‖I − u‖∗ .
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The new penalty norm ‖f ‖∗ is defined there for all f ∈ G by

‖f ‖∗ = inf

{√
g21 + ... + g2n : g = (g1,..., gn), gi ∈ L∞ (�) each i, and f = div g

}

,

where G is the Banach space of all generalized functions f that can be written as
f = div g on � for some g = (g1,..., gn), gi ∈ L∞ (�) each i, open � ⊂ Rn.

To simplify the Euler-Lagrange equation for the n = 2 case, the authors in [42]
replaced the minimization of M with finding

inf
u,g1,g2

{

Gp(u, g1, g2) =
∫

�

|∇u| + λ

∫

�

|I − (u + ∂xg1 + ∂yg2)|2 dxdy

+μ

[∫

�

(√
g2
1 + g2

2

)p

dxdy

]1/p
}

where λ,μ are parameters and p → ∞. Due to the three variable functions u, g1, g2
this yields three coupled equations as a result of the Euler-Lagrange equations.

This approach is further simplified in [38] by dropping the last term in the above
functional, bywriting I − u = div g forg ∈ L2(�)2, and by formally using theHodge
decomposition of g:

g = ∇P + q

where q is a divergence free vector field, thus giving u − I = − div g = −�P. The
inverse Laplace operator �−1 is then defined by P =: −�−1(u − I). In fact we have
(see for example, [26])

Theorem 1 Let � ⊂ Rn be a bounded open region with Lipschitz boundary ∂� and
V0 = {

u ∈ H1(�) : ∫
�

u dx = 0
}
. If v ∈ L2(�) with

∫
�

v dx = 0, then the problem

−�P = v,
∂P

∂n
|∂� = 0,

has a unique solution P in V0.

Consequently, the OSV model proposed in [38] is to instead find a minimizer of

E(u) :=
∫

�

|∇u| + λ

∫

�

|∇(�−1)(I − u)|2 dx =
∫

�

|∇u| + λ ‖I − u‖2H−1(�) (1.2)

over the space L2(�) with the constraint
∫
�

u dx = ∫
�

I dx. For the last term on
the right side it is shown in [38] that for functions v ∈ L2(�) with

∫
�

v dx = 0,
‖v‖2H−1(�) = ∫

�
|∇(�−1)v|2 dx. The Euler-Lagrange equation for this is formally
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0 = div

( ∇u

|∇u|
)

− 2λ�−1(I − u) on � (1.3)

∂u

∂n
|∂� = 0

with constraint
∫
�

u dx = ∫
�

I dx. This is solved there numerically on a rectangle
� ⊂ R2 by applying −� to both sides of (1.3) and solving the following time flow
for u(x, y, t)

∂u

∂t
= −� div

( ∇u

|∇u|
)

+ 2λ(I − u)

0 = ∂u

∂n
|∂� =

∂ div
(

∇u
|∇u|

)

∂n
|∂�, u(x, y, 0) = I(x, y) on �,

∫
�

u dx = ∫
�

I dx, and letting t → ∞ to drive to the steady state solution of (1.3).
Clearly, the first term on the right of the equation is not defined for all functions u in
BV or even W 1,1. We thus need to define a weak solution to the time flow to (1.3).

We will expand the functional E to include a class of Carathéodory functions for
the energy term ϕ(x, p) that are convex and of linear growth in p. By definition, a
Carathéodory function, ϕ : � × Rn → R, satisfies the following conditions:

(1) for each p ∈ R
n, ϕ(·, p) : � → R is a measurable function defined on � and

(2) for a.e. x ∈ �, ϕ(x, ·) : Rn → R is continuous in the p variable.
The functional is now

F(u) :=
∫

�

ϕ(x, Du) + λ

∫

�

|∇(�−1)(I − u)|2 dx

such that
∫

�

u dx =
∫

�

I dx.

For example we have the variable exponent case,

ϕ(x, p) =
{

1
q(x) |p|q(x) if |p| ≤ 1

|p| − q(x)−1
q(x) if |p| > 1

(1.4)

where q(x) ∈ L∞ (�) , 1 < α ≤ q(x) ≤ 2 a.e. See [36] and [24] for an application
of a functional using the anisotropic diffusion term (1.4) with simple L2 penalty term∫
�
(u − I)2 dx.We also refer the reader to [39] PDE problemswith variable exponent.

The time flow of the Euler-Lagrange equations for F becomes
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∂u

∂t
= div

(∇pϕ(x,∇u)
) − 2λ�−1(I − u) (1.5)

∂u

∂n
= 0 on ∂�

u(x, 0) = I(x)
∫

�

u dx =
∫

�

I dx for all t.

The rest of the paper is organized as follows.We extend the definition of function-
als

∫
�

ϕ(x, Du) defined for u ∈ BV (�) by including certain Carathéodory functions
ϕ(x, p)where we directly use the convex dual functionϕ∗ ofϕ rather than the theory
of convex functionals of measures as in [8, 14, 15]. We only assume measurability
in x for ϕ whereas previous work uses a continuity condition in x to prove lower
semicontinuity of

∫
�

ϕ(x, Du) in L1. In addition we prove compactness in L1 with an
extra L1 integrability condition on ϕ. This then allows for a greater class of function-
als to be considered for minimization problems that use both the

∫
�

ϕ(x, Du) term
for smoothing and the dual H1 penalty for retaining oscillatory features of images.
For example we may use a more robust selective smoothing term

∫
�

ϕ(x, Du) in
place of the simple total variation term

∫
�

|Du| that is used in the OSV model. We
thus consider the OSV dual H1 penalty model from [38] with general energy term∫
�

ϕ(x, Du) and the corresponding gradient time flow (1.5). We then use the semi-
group method to prove existence, L2 stability, and asymptotic convergence for the
weak solution to the time flow (1.5). It should be noted that the semigroup method
is used in [9–13], where, as previously mentioned, they proved existence of a strong
solution of the total variation flow

∂u

∂t
= div

( ∇u

|∇u|
)

u(x, 0) = I(x)

with both Neumann or Dirichlet boundary conditions in L1 and L2. They also con-
sidered flows with a quasilinear term div(∇pφ(x,∇u)) with a modulus of continuity
assumption for φ in the x variable. Since the flow for our case is in the Hilbert space
L2, we apply the theory of semigroups based on classical maximal monotone theory
of Brezis [17]. Finally, we derive an integral property for solutions to the gradient
flow for the case of space dimension n = 1 with pure TV term

∫
�

|Du|.As we note in
the Conclusion, it is hoped to extend this integral property, or possibly derive other
properties, to our general case with the

∫
�

ϕ(x, Du) term.
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2 The Stationary Problem and Important Results
for BV Functions

We will first state some important theorems concerning functions in BV space. The
following theorem is from [43]. Also see [7].

Theorem 2 Let � ⊂ Rn be bounded and open, ϕ(x, p) be C1 on � × Rn, convex
in p, with linear growth for |p| ≥ β > 0, that is c1|p| ≤ ϕ(x, p) ≤ c2(|p| + 1) for
|p| ≥ β with constants c1, c2,β > 0, and where limt→∞ ϕ(x, t p

|p| )/t = ϕ∞(x). Then
∫
�

ϕ(x, Du) is lower semicontinuous in L1(�).

From [15] we also have a formula for
∫
�

ϕ(x, Du) for u ∈ BV (�) where ϕ is the
C1 function as stated in Theorem 2, in fact

∫

�

ϕ(x, Du) =
∫

�

ϕ(x,∇u) dx +
∫

�

ϕ∞(x)|Dsu|. (2.1)

The approximation of BV functions by smooth functions for the anisotropic func-
tional with (1.4) is given by:

Theorem 3 If � ⊂ Rn is bounded, open, u ∈ BV (�) ∩ L2(�), and ϕ given by (1.4),
then (1) there exists a sequence

{
uj

} ⊂ C∞ (�) ∩ H1(�) such that

uj → u in L2(�) and

lim
j→∞

∫

�

ϕ(x, Duj) =
∫

�

ϕ(x, Du);

(2) if
∫

�

u dx = c, we may take the sequence above to also satisfy
∫

�

uj dx = c;
(3) if u ∈ L∞ (�) , and ϕ is independent of x, then we may also take the sequence to
satisfy

∥
∥uj

∥
∥

L∞ ≤ C (�) ‖u‖L∞ , and if � has Lipschitz boundary ∂�, we may also
take the sequence to satisfy uj ∈ C∞ (

�
)
.

Proof With simple modifications, the first part is proved as in [24] (in their case for
u with trace value Tu|∂�) using

∫
�

ϕ(x, Du) = supφ∈V
{− ∫

�
udivφ + ϕ∗(x,φ) dx

}
.

In fact it is only assumed that q(x) ∈ L∞ (�) , 1 < α ≤ q(x) ≤ 2 a.e. For the second

part we note that uj → u in L2(�) implies that
∫

�

uj dx →
∫

�

u dx = c. We then

let ũj = uj − 1
|�|

∫

�

(uj − c)dx giving
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ũj → u in L2(�) and

lim
n→∞

∫

�

ϕ(x, D̃uj) =
∫

�

ϕ(x, Du)

∫

�

ũj dx = 0 for all j.

For (3), note the remark in [25]. �

Remark 1 For the case of pure total variationϕ(p) = |p|, from [32] Theorems 2 and
3 hold with the proof of (2) the same as above.

For similar approximation results with a different proof for functions ϕ defined
on� × Rn,with certain continuity conditions on both x and p, see for example [12].

We now extend the definition of
∫
�

ϕ(x, Du) for a Carath éodory functionwhich is
continuous in p and no continuity assumption in x, by using the Legendre transform.
For a convex function g on Rn, the convex dual or Legendre transform g∗of g, is
defined as g∗ (q) = supp∈Rn {p · q−g (p)} . If g is continuous then by the Fenchel-
Moreau theorem [19] we in fact have g∗∗ (p) = g (p) = supq∈Rn {p · q−g∗ (q)} .

Proposition 1 Let � ⊂ Rn be open, ϕ(x, p) a Carathéodory function on � × Rn,
continuous and convex in p, of linear growth in p with c1|p| − c2 ≤ ϕ(x, p) ≤
c1(|p| + 1) for |p| ≥ β, for constants c1 > 0, β, c2 ≥ 0. Then (1) for a.e. x,
ϕ∗(x, q) = sup{p∈Rn,|p|≤β}{q · p − ϕ(x, p)} = max{p∈Rn,|p|≤β}{q · p − ϕ(x, p)} and
(2) ϕ∗(x, q) is a Carathéodory function on � × {|q| ≤ c1}. Furthermore ϕ∗(x, q) =
∞ for a.e. x, |q| > c1.

Proof By the linear growth conditionϕ(x, p) ≤ c1(|p| + 1),we have ϕ∗(x, q) < ∞
if and only if |q| ≤ c1 and this occurs for |p| ≤ β from the assumption c1|p| − c2 ≤
ϕ(x, p). The fact that the supremum is a maximum follows by continuity. This
proves (1). To prove (2) we fix a.e. x and first assume that ϕ(x, p) is strictly
convex for |p| ≤ β. The case where β = 0 gives ϕ∗(x, q) = max{p∈Rn,|p|=0}{q ·
p − ϕ(x, p)} = −ϕ(x, 0) if |q| ≤ c1. Now assume β > 0. Then by strict convexity
there is a unique p∗(q)with |p∗(q)| ≤ β so that ϕ∗(x, q) = q · p∗(q) − ϕ(x, p∗(q)).

To show that p∗ is continuous we let qn → q. Thus there is a subsequence qnk

such that p∗(qnk ) → p
′
for some |p′ | ≤ β. Hence for each qnk , ϕ∗(x, qnk ) = qnk ·

p∗(qnk ) − ϕ(x, p∗(qnk )) ≥ qnk · p − ϕ(x, p) for all |p| ≤ β. Thus for each |p| ≤
β q · p − ϕ(x, p) ≤ limk→∞ ϕ∗(x, qnk ) = limk→∞(qnk · p∗(qnk ) − ϕ(x, p∗(qnk )) =
q · p

′ − ϕ(x, p
′
). Therefore p

′ = p∗(q). To show that the full
sequence p∗(qn) converges to p∗(q) we assume that there is another subsequence
qni and ε > 0 such that qni → q but

∣
∣p∗(qni) − p∗(q)

∣
∣ ≥ ε for all ni. We extract

a further subsequence qnij
with qnij

→ q and p∗(qnij
) → p′′. Repeating the above

argument we have p′′ = p∗(q) but
∣
∣p′′−p∗(q)

∣
∣ ≥ ε, a contradiction. Since p∗(q)

is continuous, so is ϕ∗(x, q). Without the strict convex assumption on ϕ(x, q) we
consider ϕε(x, p) := ϕ(x, p) + ε |p|2 for |p| ≤ β. As ε ≥ ϕ∗(x, p) − ϕ∗

ε(x, p) and
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ϕ∗(x, p) ≥ ϕ∗
ε(x, p)wehave ε ≥ |ϕ∗(x, p) − ϕ∗

ε(x, p)| and thusϕ∗
ε → ϕ∗ uniformly

on |p| ≤ β as ε → 0. Sinceϕε(x, p) is strictly convex for |p| ≤ β, ϕ∗
ε(x, p) is contin-

uous in p, hence it follows that ϕ∗(x, p) is continuous for |p| ≤ β. Finally, ϕ∗ being
for fixed q the pointwise maximum of measurable functions in x, is measurable in
x. Item (2) is proved. �

This proposition then allows us to define the following:

Definition 1 For open � ⊂ Rn and ϕ(x, p) a Carathéodory function on � × Rn,
continuous and convex in p, of linear growth in p with c1|p| − c2 ≤ ϕ(x, p) ≤
c1(|p| + 1) for |p| ≥ β, for constants c1 > 0, β, c2 ≥ 0. Define

∫

�

ϕ(x, Du) = sup
φ∈V

{

−
∫

�

udivφ + ϕ∗(x,φ(x)) dx

}

where ϕ∗(x, q) = sup{p∈Rn,|p|≤β}{q · p − ϕ(x, p)} for each q ∈ R
n with |q| ≤ c1 and

V = {
φ ∈ C1

c (�,Rn) : |φ(x)| ≤ c1 for all x ∈ �
}
.

Note that the supremum is only taken for φ ∈ V since from the proposition
ϕ∗(x, q) = ∞ if |q| >c1.

We remark that this is the definition used in [24] for the specific case of the
anisotropic functional

∫
�

ϕ(x, Du)whereϕ, given by (1.4), satisfies the conditions of
Definition 1, andϕ∗ is directly calculated.Also for the total variation caseϕ (p) = |p|
we have c1 = 1 and ϕ∗ is the usual

ϕ∗ (q) =
{
0 if |q| ≤ 1
∞ otherwise

FromDefinition 1, lower semicontinuity in L1 (�) follows immediately as in [32].

Theorem 4 If � and ϕ satisfy the conditions of Definition 1,
∫
�

ϕ(x, Du) is lower
semicontinuous in L1 (�) .

Proof Let un → u in L1 (�) . Then for fixed φ ∈ V we have − ∫
�

udivφ + ϕ∗(x,φ)

dx = limn→∞
(− ∫

�
undivφ + ϕ∗(x,φ) dx

) ≤ lim infn→∞
∫
�

ϕ(x, Dun). Taking
the supremum on the left gives

∫
�

ϕ(x, Du) ≤ lim infn→∞
∫
�

ϕ(x, Dun). �

With an added L1 condition on ϕ we have

Theorem 5 If � ⊂ Rn is open and bounded, ϕ satisfies the conditions of Definition 1
and in addition

∫
�
sup|p|≤β |ϕ(x, p)| dx ≤ c3 for some c3 > 0, then

∫
�

ϕ(x, Du) < ∞
if and only if u ∈ BV (�) . In fact we have c1

∫
�

|Du| ≤ ∫
�

ϕ(x, Du) + C(c1,c3,
β,�) and

∫
�

ϕ(x, Du) ≤ c1
∫
�

|Du| + C(c1, c3,β,�) for some constant C(c1, c3,
β,�) ≥ 0.
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Proof From the definition ofϕ∗ we haveϕ∗(x,φ(x)) ≤ |φ(x)|β + sup|p|≤β |ϕ(x, p)|
and thus

c1

∫

�

|Du| = sup
φ∈V

{

−
∫

�

udivφ dx

}

≤ sup
φ∈V

{

−
∫

�

udivφ + ϕ∗(x,φ) dx

}

+ sup
φ∈V

∣
∣
∣
∣

∫

�

ϕ∗(x,φ) dx

∣
∣
∣
∣

≤
∫

�

ϕ(x, Du) + C(c1, c3,β,�)

where C(c1, c3,β,�) ≥ 0; and also

∫

�

ϕ(x, Du) = sup
φ∈V

{

−
∫

�

udivφ + ϕ∗(x,φ) dx

}

≤ c1

∫

�

|Du| + C(c1, c3,β,�). �

We then have the compactness theorem:

Theorem 6 Let ϕ satisfy the conditions of Theorem 5. Let uj be a sequence in BV (�)

with
∫
�

ϕ(x, Duj) bounded, where � ⊂ Rn is bounded with Lipschitz boundary ∂�.

Then there is a subsequence of uj, also denoted by uj, and u ∈ Lp (�) such that
uj → u strongly in Lp (�) for all 1 ≤ p < n/(n − 1) and weakly in Ln/(n−1) (�) .

Proof From Theorem 5, uj is a sequence bounded in BV (�) . The theorem then
follows from Giusti [32]. �

Remark 2 We assumed that c1|p| − c2 ≤ ϕ(x, p) ≤ c1(|p| + 1) for |p| ≥ β for ease
of proof. However, wemay replace this with themore general linear growth condition
k1|p| − c ≤ ϕ(x, p) ≤ k2(|p| + 1) for |p| ≥ β for k2 > k1 > 0, β, c ≥ 0, with the
same convex and Carathéodory condition on ϕ. In this case we still have ϕ∗(x, q) <

∞ if and only if |q| ≤ k2. Ifϕ∗(x, q) achieves is supremumon a bounded set |p| ≤ K
where K is independent of q, then Proposition 1, Definition 1, and Theorems 4–7
hold with the respective L1 integral condition on ϕ.

We return to theminimization problem from [37] using theOSVmodel.We extend
this model to include any ϕ as stated in Theorem 5. This assumption will hold in
the sequel unless stated otherwise. As stated in the introduction the minimization
model is
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min
u∈BV ∩VI

F(u) : =
∫

�

ϕ (x, Du) + λ ‖u − I‖2H−1(�) = (2.2)
∫

�

ϕ (x, Du) + λ

∫

�

|∇(�−1)(I − u)|2 dx

where VI =: {
u ∈ L2 (�) | ∫

�
u dx = ∫

�
I dx

}
, � ⊂ Rn.

Theorem 7 For n = 1 or 2, the functional F is convex, lower semicontinuous and
thus the stationary problem (2.2) has a unique solution.

Proof This is proved in [38] for the original problem of minimizing (1.2). We just
note that for ϕ we still have lower semicontinuity and compactness from Theorems
4 and 5. Existence and uniqueness then follows from standard theory. �

For the rest of the paper we assume n = 1 or 2.

3 Time Flow of the Weak Solution

We return to the gradient time flow corresponding to the stationary problem (2.2)
using the Euler-Lagrange equation of (2.2), div (ϕP(x,∇u)) − 2λ�−1(u − I) = 0.
Without loss of generality we will assume ϕ(x, 0) = 0.

Definition 2 The time flow of (2.2) is defined by

∂u

∂t
= div

(∇pϕ(x,∇u)
) − 2λ�−1(I − u) (3.1)

∂u

∂n
= 0 on ∂� (3.2)

u(x, 0) = I(x) (3.3)
∫

�

u dx =
∫

�

I dx for all t. (3.4)

where � ⊂ Rn is an open bounded region with Lipschitz boundary ∂�, and I ∈
L2(�) ∩ BV (�) .

Since u is assumed to be only in BV , this must be defined as a weak solution as
will be given below. In the sequel, � satisfies the conditions stated in Definition 2.
Following, for example, [25, 45] we motivate the definition of a weak solution to
(3.1)–(3.4) by assuming sufficient smoothness of u and v satisfying the constraint

∫

�

u dx =
∫

�

v dx =
∫

�

I dx
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for a.e. t, multiplying (3.1) by v − u, integrating by parts, using convexity of ϕ,

namely ϕ(x, p) − ϕ(x, q) ≥ ∇ϕP(x, q) · (p − q), noting that

∫

�

�−1(I − u)(v − u) dx = −
∫

�

�−1(I − u)��−1(v − u) dx

=
∫

�

∇�−1(I − u) · ∇�−1(v − I + I − u) dx,

and finally expanding and using Young’s inequality to get for a.e.t

∫

�

ut(v − u) dx +
∫

�

ϕ(x,∇v) + λ

∫

�

|∇(�−1)(I − v)|2 dx (3.5)

≥
∫

�

ϕ(x,∇u) + λ

∫

�

|∇(�−1)(I − u)|2 dx.

By Theorem 3 we see that (3.5) holds for u, v in BV (�) satisfying the above con-
straint for a.e. t. We therefore define a weak solution u ∈ L2((0, T); L2(�) ∩ VI) ∩
L1((0, T); BV (�)) , ut ∈ L2((0, T), L2(�)) of (3.1)–(3.4) to satisfy (3.5) for all

v ∈ L2((0, T); L2(�) ∩ VI) ∩ L1((0, T); BV (�))

where

VI =
{

v ∈ L2 (�) :
∫

�

v dx =
∫

�

I dx

}

.

In what follows, let H0 be the Hilbert space

H0 =
{

v ∈ L2(�) :
∫

�

v dx = 0

}

.

Theorem 8 Let ϕ satisfy the conditions of Theorem 5 and I ∈ L2(�) ∩ BV (�).
There exists a unique weak solution u(t) to (3.1)–(3.4). That is, for a.e. t > 0, u(t) ∈
L2(�) with u(t) − I ∈ BV (�) ∩ H0, ut ∈ L∞((0,∞); H0)

∫

�

ut(v − u) dx +
∫

�

ϕ(x, Dv) + λ

∫

�

|∇(�−1)(I − v)|2 dx (3.6)

≥
∫

�

ϕ(x, Du) + λ

∫

�

|∇(�−1)(I − u)|2 dx

for each v − I ∈ BV (�) ∩ H0. Hence for the case with constraint
∫
�

I dx = 0 we
have for a.e.t > 0
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1

2

∫

�
u2 dx +

∫ t

0

∫

�
ϕ(x, Du) ds + λ

∫ t

0

∫

�
|∇(�−1)(I − u)|2 dx ds (3.7)

≤ λ

∫ t

0

∫

�
|∇�−1I|2 dxds

and

1

2

∫

�

(u − I)2 dx +
∫ t

0

∫

�

ϕ(x, Du) ds (3.8)

+λ

∫ t

0

∫

�

|∇(�−1)(I − u)|2 dxds ≤
∫ t

0

∫

�

ϕ(x, DI) ds;

and for the general case
∫
�

I dx = c, we have (3.8) for a.e. t > 0

1

2

∫

�
(u − c

|�| )
2 dx +

∫ t

0

∫

�
ϕ(x, Du) ds + λ

∫ t

0

∫

�
|∇(�−1)(I − u)|2 dxds (3.9)

≤ λ

∫ t

0

∫

�
|∇(�−1)(I − c

|�| )|
2 dxds.

Also for initial conditions I1, I2 ∈ L2 (�) ∩ BV (�) with corresponding solutions
u1, u2,

‖u1 − u2‖L2(�) ≤ ‖I1 − I2‖L2(�)

for a.e. t > 0. Finally, The solution u to (3.1)–(3.4) converges weakly in L2(�) and
strongly in L1(�) to the minimizer of u∞ of 2.2 as t → ∞.

Proof We first assume
∫
�

I dx = 0. The functional

F(u) =:
{∫

�
ϕ(x, Du) + λ

∫
�

|∇(�−1)(I − u)|2 dx if u ∈ BV (�) ∩ H0

∞ if u ∈ H0\BV (�)

on H0 is proper, convex, and lower semicontinuous from Theorem 4. Consequently
from the theory from maximal monotone operators and semigroups [17], the subdif-
ferential ∂F(u) is amaximalmonotone operatorwith a unique, absolutely continuous
solution u(t) ∈ [0,∞) → H0, u(0) = I, ut ∈ L∞((0,∞); H0), to

−ut ∈ ∂F(u(t)).

Thus by the definition of ∂F, the first inequality (3.6) holds. Also from [17]

‖u1 − u2‖L2(�) ≤ ‖I1 − I2‖L2(�)

for solutions u1, u2 with corresponding initial conditions I1, I2 ∈ L2 (�) ∩ BV (�) .

The inequalities (3.7) and (3.8) are obtained by letting v = 0 and v = I respectively
and integrating with respect to t. For the general constraint

∫
�

I dx = c, we replace
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u in (3.6) with ũ = u − c
|�| so that

∫
�

ũ dx = 0. Letting v = c
|�| gives (3.9), noting

ϕ(x, 0) = 0.
We now consider the asymptotic limit of the solution u(t) as t → ∞. Let u be

the solution to (3.1)–(3.3). Since − du
dt ∈ ∂F(u) the theorem from [20] proves that

u(t) ⇀ u∞ in L2 (�) weakly as t → ∞. To prove strong convergence in L1 (�)

we use Theorem A.33 in [12], which implies that, after adjusting by a constant if
necessary,

∫
�

ϕ(x, Du(t)) + λ
∫
�

|∇(�−1)(I − u(t))|2 dx is a decreasing function of
t with ∫

�

ϕ(x, Du(t)) + λ

∫

�

|∇(�−1)(I − u(t))|2 dx ≤
∫

�

ϕ(x, DI).

From Poincaré’s inequality for BV functions,
∫
�

|u − u�|dx ≤ C (�)
∫
�

|Du| where
u� :=

∫
�

udx

|�| = 0 for a.e. t. Thus by Theorem 5 u(t) is bounded in BV (�) and

by compactness (Theorem 6) and uniqueness of limits, there exists a subsequence
u(tn) → u∞ in L1 (�) as tn → ∞. Hence u(t) → u∞ in L1 (�) as t → ∞. Again
adjusting by a constant, we again have u(t) → u∞ in L1 (�) for the general case of∫
�

udx = c. �

For ϕ satisfying the conditions of Theorem 2, formula (2.1) holds. Now replacing
v in (3.6) with η(v − u) + u for η > 0 dividing by η and letting η → 0+ we obtain
as in [33, 34] for any v ∈ BV (�) ∩ H0 (�) with Dsv << |Dsu|

∫

�
(v − u)ut dx ≤ −

∫

�
∇pϕ(x,∇u) · (∇v − ∇u) dx +

∫

�
ϕ∞(x)

Dsu

|Dsu| · (Dsv − Dsu)

−
∫

�

[
2λ�−1(I − u)

]
(v − u) dx

where Dsu
|Dsu| denotes the Radon-Nikodym derivative ofDsuwith respect to |Dsu|. Note

that
∣
∣
∣ Dsu
|Dsu|

∣
∣
∣ = 1, |Dsu|-a.e. Repeating for η < 0 we have equality:

∫

�

(v − u)ut dx = −
∫

�

∇pϕ(x,∇u) · (∇v − ∇u) dx (3.10)

+
∫

�

ϕ∞(x)
Dsu

|Dsu| · (Dsv − Dsu) −
∫

�

[
2λ�−1(I − u)

]
(v − u) dx

for a.e. t ≥ 0, for all v ∈ BV (�) ∩ H0 with Dsv << |Dsu| . Now letting v = u + φ
for any φ ∈ C∞

0 (�)∩H0

∂u

∂t
= div (ϕP(x,∇u)) − 2λ�−1(I − u) D′ (�) ∩ H0

as Dsφ = 0. This gives
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Corollary 1 For the case ϕ ∈ C1 (� × Rn) satisfying the conditions of Theorem 2,
the weak solution u(t) to (3.1)–(3.4), satisfies for a.e. t ≥ 0,

∂u

∂t
= div (∇ϕP(x,∇u)) − 2λ�−1(I − u) D′ (�) ∩ H0

(in the distributional sense), and for fixed a.e. t ≥ 0, (3.10) holds for all v ∈
BV (�) ∩ H0 with Dsv << |Dsu|.

In the following theorem we note a property of the weak solution u to (3.1)–(3.3),
inspired by a result for the stationary case in [38]. Additionally we extend this to an
integral result for the case of n = 1.

Theorem 9 Let w =: −2λ�−1(I − u). If u is a weak solution to (3.1)-(3.3) for
n = 1 and ϕ(p) = p then there exists a g ∈ L∞ (�) with ‖g‖∞ ≤ 1 such that g′ =
w − ut =: −2λ�−1(I − u) − ut .

Proof By assumption we have for a.e. t ∈ [0, T ]

−ut ∈ ∂J(u) + 2λ�−1(I − u)

where

J(u) =:
∫

�

|∇u|.

Thus
−ut − 2λ�−1(I − u) ∈ ∂J(u)

and hence by duality (see [30])

u ∈ ∂J∗(−2λ�−1(I − u) − ut)

for a.e. t. where

J∗(u) = sup
u∈L2(�)

∫

�

(uv − J(u))dx =
{
0 if u ∈ K
+∞ otherwise

and
K =: {

div g| g ∈ (L2 (�))2 and ‖g‖∞ ≤ 1
}
.

Therefore

0 ∈ −2λu + 2λ∂J∗(−2λ�−1(I − u) − ut)

= 2λ(I − u) − 2λI + 2λ∂J∗(−2λ�−1(I − u) − ut).
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Hence for w =: −2λ�−1(I − u)

0 ∈ ∂

∥
∥∇(w + 2λ�−1I)

∥
∥2

L2

2
+ 2λ∂J∗(w − ut)

= ∂

∥
∥∇(w + 2λ�−1I)

∥
∥2

L2

2
+ 2λ∂J(w)

where J(v) =: J∗(v − ut) and ∂ denotes the subdifferential. Thus w is in fact a
minimizer of

G(ŵ) =:
∥
∥∇(ŵ + 2λ�−1I)

∥
∥2

L2

2
+ 2λJ(ŵ)

over all ŵ ∈ H1 (�) ∩ V0. For n = 1, � an open interval, by choosing a ŵ ∈
H1 (�) ∩ V0 with ‖ŵ − ut‖L2 ≤ |�|−1/2 we can find g on � with g′ = ŵ − ut and
‖g‖∞ ≤ 1, namely g(x) = ∫ x

a (ŵ − ut) dx, some a ∈ �. Thus the functional J (and
hence G) is proper, that is, J is finite for some ŵ. Therefore ŵ ∈ K and the theorem
is proved. �
Corollary 2 If u is a weak solution to (3.1)–(3.3) for n = 1, ϕ(p) = |p|, with � an
open interval, then for each subinterval [z, z′] ⊂ �,

ess sup
t≥0

∣
∣
∣
∣
∣

∫ z′

z
λ�−1(I − u) + 1

2
ut dx

∣
∣
∣
∣
∣
≤ 1.

Proof On each subinterval [z, z′] of � we have for a.e. t ≥ 0

∫ z′

z
g′ dx =

∫ z′

z
(−2λ�−1(I − u) − ut) dx.

Hence as ‖g‖∞ ≤ 1,

∣
∣
∣
∣
∣

∫ z′

z
(−2λ�−1(I − u) − ut) dx

∣
∣
∣
∣
∣
≤ 2

for a.e. t ≥ 0. �

4 Conclusion

We have defined
∫
�

ϕ(x, Du) for a class Carath éodory functions ϕ(x, p) that are
convex and of linear growth in p, with the use of the convex dual ϕ∗ of ϕ. With this
definition, lower semicontinuity in L1 immediately follows without any continuity
assumption in x as was assumed in previous work. We then used these results to
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prove the existence of the flow in BV ∩ L2 of the dual H1 penalty image restoration
model, with our general energy term

∫
�

ϕ(x, Du), rather than just
∫
�

|Du| as in [44].
For further study, we note that for functions u ∈ W 1,1 (�) , integration by parts

and the Fenchel-Moreau theorem gives

−
∫

�

u divφ + ϕ∗(x,φ(x)) dx =
∫

�

∇u · φ − ϕ∗(x,φ(x)) dx

≤
∫

�

sup
φ∈V

{∇u · φ − ϕ∗(x,φ(x))
}

dx

=
∫

�

ϕ∗∗(x,∇u) dx =
∫

�

ϕ(x,∇u)dx.

Thus
∫
�

ϕ(x, Du) ≤ ∫
�

ϕ(x,∇u)dx. To show the reverse inequality, we require a
sequence of functions φj in C1

c (�) such that

sup
j

∫

�

∇u · φj − ϕ∗(x,φj(x)) dx ≥
∫

�

sup
φ∈V

{∇u · φ − ϕ∗(x,φ(x))
}

dx.

For ϕ ∈ C1(� × Rn) we may use the implicit function theorem as was done in [43],
whereas in this case we only have ϕ∗ measurable in x. Using Proposition 1, it is
hoped we can extend Theorem 3 to our class of ϕ as was done for the anisotropic
model in [24], as well as extend formula 2.1 and hence Corollary 1, if ϕ is C1 in p.
We may also consider extensions of Theorem 9 and Corollary 2 for this class of ϕ,

noting the use of the dual J∗.
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