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Abstract. The missing value imputation process can be defined as a
preprocessing step that fills missing values of attributes in incomplete
datasets. Nowadays, the problem of incomplete datasets in the hierar-
chical classification scenario must be solved using unsupervised missing
value imputation methods due to the lack of supervised methods to deal
with the hierarchical context. Thus, in this work, we propose and eval-
uate a supervised missing value imputation method for datasets used
in hierarchical classification problems in which the classes are organized
into tree structure. Experiments were performed on incomplete datasets
to evaluate the effect of the proposed missing value imputation method
on classification performance when using a global hierarchical classifier.
The results showed that, using the proposed method for dealing with
missing attribute values, it provided higher classifier predictive perfor-
mance than other unsupervised missing value imputation methods.

Keywords: Missing attribute value imputation · Hierarchical classifi-
cation · Data mining

1 Introduction

The technological advances in the last decades have allowed the production and
storage of a huge amount of data related to different types of applications. The
transformation of this data in useful, valid and understandable information is
essential. However, this is not an easy task, requiring automated strategies to
analyse the data [1]. Thus, the Knowledge Discovery from Data (KDD) process
adopted for this purpose is basically composed by three main steps: data pre-
processing, data mining and results validation.

The missing value imputation process can be defined as a preprocessing step
that fills missing values of attributes in incomplete datasets [2]. Attribute’s miss-
ing value can occur in a dataset for several reasons, such as filling failure, omis-
sion of data by respondents in survey questions or even a failure on the sensor
responsible to collect the data. Missing values can make the manipulation of
datasets more complex and reduce the efficiency of data mining algorithms [3].

Classification is a data mining task that aims to identify an instance’s class
through its characteristics [1]. Different types of classification problems can be
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found in the literature, each one with its own complexity level [4]. In flat classifi-
cation problems each instance is assigned to a class, in which classes do not have
relationships to each other. Nevertheless, there are more complex classification
problems, known as hierarchical classification problems, in which the classes are
hierarchically organized.

Several application domains such as text categorization [5,6], protein func-
tion prediction [7,8], music genre classification [9,10], image classification [11,12]
and emotional speech classification [13] can benefit from hierarchical classifica-
tion techniques, since the classes to be predicted are naturally organized into
class hierarchies. Despite of some works have ignored the class hierarchy and
performed predictions considering only leaf node classes (flat classification app-
roach), hierarchical classification methods are overall better than flat classifi-
cation methods when solving hierarchical classification problems [4]. Therefore,
hierarchical classification is a research topic that certainly deserves attention.

In literature, it is possible to find several works that deal with missing
attribute values. Expectation Maximization and KNNImpute are examples of
popular methods often used to handle missing attribute values [14–16]. Since
they are unsupervised methods (ignore the target class values), they can be
applied to datasets used in flat or hierarchical classification scenario. Thus, in
hierarchical classification context, due to the lack of suitable supervised miss-
ing value imputation methods (able to take into account the class relationships
in the target problem), the researchers are limited to use unsupervised miss-
ing value imputation techniques. [17–19] are examples of works that have used
an unsupervised missing value imputation method for hierarchical classification
context.

Therefore, in this work, we fill this gap by presenting and evaluating a super-
vised missing value imputation method for datasets for hierarchical classification
task. Experiments performed on incomplete datasets using a global hierarchical
classifier showed that the method proposed to deal with missing attribute values
provided higher classifier predictive performance than other popular unsuper-
vised missing value imputation methods.

2 Background

2.1 Hierarchical Classification

Several classification problems are available in literature wherein the huge major-
ity of them deals with the flat classification scenario. In flat classification prob-
lems there is no relationship among the classes. However, there are more complex
classification problems where the classes are hierarchical organized as a tree or
DAG (Direct Acyclic Graph). This group of problems is known as hierarchical
classification problems [4].

Hierarchical classification methods can be analysed according to different
aspects. The first aspect is related to the hierarchical structure the method is
able to deal with. The classes can be hierarchically organized in a tree or DAG
(Direct Acyclic Graph) structure. The main difference between these structures
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Fig. 1. (a) Class hierarchy structured as tree; (b) Class hierarchy structured as DAG.

is related to the number of parents of a class. The tree structure restricts each
class to possess only one parent class. However, in the DAG structure a class
(node) is allowed to have more than one parent class. Figure 1 presents a tree and
a DAG example, where the nodes represent the classes and the edges indicate a
relationship between them.

The second aspect is related to the prediction depth of the method. Thus,
hierarchical classification problems can either be organized in mandatory leaf
node prediction (MLNP) or non-mandatory leaf node prediction (NMLNP). In
the mandatory leaf node prediction, the output of a classifier is always a class
represented by a leaf node of the class hierarchy. For the non-mandatory leaf node
prediction, the most specific class predicted by the classifier can be represented
by a node at any level (internal or leaf) of the class hierarchy.

The third aspect refers to the number of different paths in the hierarchy a
method can assign to a given instance. This aspect defines two different types
of problems: single path of labels (SPL) and multiple path of labels (MPL).
Single path problems restrict each instance to be assigned to at most one path
of predicted labels whilst multiple path problems allow an instance to be assigned
to multiple paths of predicted labels.

Finally, the fourth aspect concerns how the hierarchical structure is handled
by the method. In [4], three approaches are listed: flat classification, which do not
take into account the class hierarchy and performs predictions considering only
the leaf node classes; local model approaches, when a group of flat classifiers
are employed; and global model approaches, when a single classifier is built
considering the class hierarchy as a whole.

Several works in literature consist of proposals to modify existing flat clas-
sifiers to cope with the entire class hierarchy in a single step and, therefore,
creating global classifiers. Some examples of modifications of traditional flat
classification algorithms are: HC4.5 [20] and HLC [21] (modified versions of the
C4.5), Global Model Naive Bayes (modified version of the Naive Bayes) [22],
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Clus-HMC (based on Predictive Cluster Trees) [23,24] and hAnt-Miner (adap-
tation of Ant-Miner algorithm) [25]. Given the relevance of global classifiers to
the hierarchical classification scenario, one can see that it is important the devel-
opment of preprocessing techniques to deal with the class hierarchy as a whole.
Thus, in this work, we propose a supervised missing value imputation method
for datasets used by global hierarchical classifiers.

2.2 Missing Value Imputation

Missing value imputation can be defined as the estimation of values based on the
analysis of the known values of the attribute [26]. The missing values in data can
be the result of failure during the data collection process, accidental removal of
values or refusal to answer questions in surveys used to collect data. Whatever
the reasons, missing attribute values can pose an obstacle for classification and
other data mining tasks.

The missing value imputation methods can be categorized according to dif-
ferent criteria [2]. Methods that use the target class values during the imputation
process are categorized as supervised, while methods that ignore the target class
values are categorized as unsupervised. While univariate methods impute miss-
ing values on each attribute for each instance based on observed values for other
instances on same attribute, multivariate methods impute missing values on each
attribute for each instance based on observed values for same instance on other
attributes.

The strategies used to impute missing attribute values vary from simple
statistical algorithms like mean imputation to more complex approaches based
on predictive models.

Mean imputation, one of the easiest ways to impute missing values, works
by replacing each missing value with mean of observed values of that attribute
for other instances. Despite its simplicity, this method changes the distribution
of attribute, producing different kinds of bias.

Expectation Maximization [27] algorithm is a popular method to impute
missing attribute values. It is an iterative refinement method that assumes the
data are distributed based on a parametric model with unknown parameters.
Basically, in each iteration, it estimates missing values and parameters model.
After parameters model initialization, it has an Expectation step, where a miss-
ing attribute value for an instance i is substituted by its expected value computed
from the estimates for parameters model and observed values for same instance
i on other attributes. Then, in the Maximization step, parameters model are
updated in order to maximize the complete data likelihood. These two steps are
iteratively repeated until convergence is obtained. The Expectation Maximiza-
tion method is categorized as unsupervised and multivariate.

KNNImpute [15] is another widely used method to impute missing attribute
values. In short, it selects the k nearest instances (neighbours) from dataset
instances with known value in the attribute to be imputed. Aiming at finding
the nearest neighbours a distance measure (e.g., Euclidean distance) must be
adopted. Then, the missing attribute value is replaced by a value calculated from
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the k selected neighbours. Usually, mode (for categorical data) and mean (for
continuous data) are used to compute the replacement value. The KNNImpute
method is categorized as unsupervised and multivariate.

3 Proposed Method

The missing value imputation method proposed in this work will be referenced
as Hierarchical Supervised Imputation Method (HSIM). The HSIM is a super-
vised method able to deal with datasets containing classes hierarchically orga-
nized in a tree structure.

The motivation behind the HSIM is to take into account the class hierarchy to
impute missing attribute values. In short, whenever there are no known attribute
values for the instances associated to a particular class, the main idea of the
proposed method is replacing each missing value with mean (for continuous
data) or mode (for categorical data) of observed values of that attribute for
other instances associated to a class descendant or ascendant of the class of the
instance containing the missing value.

An example is now presented to illustrate the operation of the proposed
method. Consider the incomplete dataset shown in Table 1, where the instances
2, 7, 9 and 13 contain missing value for attribute F . For each of these instances,
a different strategy is adopted by HSIM to impute missing attribute value.

Note that instance 2 is associated to the class R.2, that is also the class
associated to other instances (3, 6 and 10) containing observed values of the
attribute F . In this case, the missing value is substituted by the average of the

Table 1. Incomplete dataset

ID F Class attribute

1 0.15 R.1.1

2 ? R.2

3 3.41 R.2

4 4.12 R.2.1

5 0.22 R.1.2

6 3.5 R.2

7 ? R.1

8 0.34 R.1.2

9 ? R.3.1.1

10 4.1 R.2

11 1.6 R.3.1

12 1.55 R.3

13 ? R.4

14 1.71 R.3.1



HSIM: A Supervised Imputation Method 139

three observed values (3.41, 3.5 and 4.1) of the instances associated to the same
class of the instance containing the missing value (R.2). Thus, the attribute value
of instance 2 is imputed as 3.67.

In the case of instance 7, where the missing value is associated to the class R.1,
since there are no other instances associated to that class, the missing value is
imputed with the average of the observed values (0.15, 0.22 and 0.34) of instances
associated to descendant classes of the class associated to the instance containing
the missing value. Thus, the attribute value of the instance 7 is imputed as 0.24.

The previous strategies are not applicable to the case of instance 9, as the
missing value is associated to the class R.3.1.1, which is not associated to any
other dataset instance and neither is an ascendant class of any class associated
to an instance with observed value of the attribute F . Then, the missing value
is replaced with mean of the observed values (1.6, 1.55 and 1.71) of instances
associated to ascendant classes of the class associated to the instance containing
the missing value. Thus, the attribute value of the instance 9 is imputed as 1.62.

Finally, instance 13 has a missing value associated to the class R.4, which
is not associated to any other dataset instance and neither is an ascendant or
descendant class of any class associated to an instance with observed value of the
attribute F . Then, the missing value is replaced with mean of observed values
of attribute F for all other instances. In this example, the attribute value of the
instance 13 is imputed as 2.07.

Table 2 shows the complete dataset achieved after application of the HSIM on
the incomplete dataset presented in Table 1. In this table, the imputed attribute
values are highlighted in bold. The steps of the proposed method described in
the Algorithm 1 are detailed next.

Algorithm 1 describes the steps of the proposed method. First, HSIM receives
as input a dataset represented by an M × N matrix, where M is the num-
ber of instances and N is the total number of attributes (predictive attributes
and class attribute). In addition, we consider that the last matrix column is
the class attribute. By scanning the data matrix (lines 1 and 2), whenever a
missing value for attribute j in instance i is found (line 3), four empty vec-
tors (sameClass, descendantClass, ascendantClass and differentClass) are
initialized (lines 4, 5, 6 and 7). Then, all known values for attribute j asso-
ciated to the same class of the instance i (line 10) are stored in the vector
sameClass (line 11). Similarly, all known values for attribute j associated
to a class descendant of the class of the instance i (line 12) are stored in
the vector descendantClass (line 13). In the same way, all known values for
attribute j associated to a class ascendant of the class of the instance i (line 14)
are stored in the vector ascendantClass (line 15). The remaining known val-
ues for attribute j associated to a class non-descendant and non-ascendant of
the class of the instance i are stored in the vector differentClass (line 17).
After, if the vector sameClass has some element, the average or mode of the
sameClass elements is used to impute the missing value (lines 23 and 25). Oth-
erwise, if the vector descendantClass is not empty, the average or mode of the
descendantClass elements is used to impute the missing value (lines 29 and 31).
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Table 2. Complete dataset

ID F Class attribute

1 0.15 R.1.1

2 3.67 R.2

3 3.41 R.2

4 4.12 R.2.1

5 0.22 R.1.2

6 3.5 R.2

7 0.24 R.1

8 0.34 R.1.2

9 1.62 R.3.1.1

10 4.1 R.2

11 1.6 R.3.1

12 1.55 R.3

13 2.07 R.4

14 1.71 R.3.1

Alternatively, when sameClass and descendantClass vectors are empty, if the
vector ascendantClass is not empty, the average or mode of the ascendantClass
elements is used to impute the missing value (lines 35 and 37). Finally, when-
ever sameClass, descendantClass and ascendantClass vectors are empty, the
average or mode of the differentClass elements is used to impute the missing
value (lines 41 and 43).

4 Computational Experiments

4.1 Datasets and Experimental Setup

Computational experiments were carried out on incomplete datasets to evaluate
the effect of the proposed missing value imputation method on classification per-
formance when using a global hierarchical classifier. Thus, the proposed method
(HSIM) was compared against the following popular unsupervised missing value
imputation methods: Mean Imputation (MI), Expectation Maximization (EM)
and KNNImpute. Since there are no supervised missing value imputation meth-
ods proposed in literature for hierarchical classification context, we consider that
it is fair to have a comparison of proposed method against unsupervised meth-
ods, given that they can be directly applied for datasets used in hierarchical
classification scenario.

While KNNImpute algorithm was implemented in C++ programming lan-
guage, for MI and EM, the experiments were executed using the WEKA [28]
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Algorithm 1. HSIM
Input: DB matrix ; //Incomplete Dataset
Output: DB full matrix ; //Complete Dataset

1: for j = 1; j < N − 1; j + + do
2: for i = 1; i <= M ; i + + do
3: if DB[i][j] == “?” then
4: sameClass ← ∅
5: descendantClass ← ∅
6: ascendantClass ← ∅
7: differentClass ← ∅
8: for k = 1; k <= M ; k + + do
9: if k �= i and DB[k][j] �= “?” then
10: if DB[k][N ] == DB[i][N ] then

11: sameClass.insert(DB[k][j]);

12: else if isDescendant(DB[k][N ], DB[i][N ]) then

13: descendantClass.insert(DB[k][j]);
14: else if isAscendant(DB[k][N ], DB[i][N ]) then
15: ascendantClass.insert(DB[k][j]);

16: else

17: differentClass.insert(DB[k][j]);
18: end if

19: end if

20: end for
21: if size(sameClass) > 0 then

22: if is continuous(j) then
23: DB full[i][j] = average(sameClass);

24: else

25: DB full[i][j] = mode(sameClass);
26: end if
27: else if size(descendantClass) > 0 then
28: if is continuous(j) then
29: DB full[i][j] = average(descendantClass);

30: else
31: DB full[i][j] = mode(descendantClass);

32: end if

33: else if size(ascendantClass) > 0 then
34: if is continuous(j) then

35: DB full[i][j] = average(ascendantClass);

36: else

37: DB full[i][j] = mode(ascendantClass);
38: end if
39: else

40: if is continuous(j) then

41: DB full[i][j] = average(differentClass);

42: else
43: DB full[i][j] = mode(differentClass);
44: end if
45: end if

46: else
47: DB full[i][j] = DB[i][j]

48: end if

49: end for

50: end for
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implementations, named ReplaceMissingValues and EMImputation, respec-
tively. For KNNImpute, the experiments were conducted by varying the parame-
ter k (number of nearest instances considered to impute missing values) between
10 % and 50 % of the number of instances in the dataset, in increments of 10 %.
Since the best results were obtained for k = 10%, it was adopted to obtain the
results presented here. For EM, WEKA’s default parameters were used.

Experiments were conducted by running both the proposed and the baseline
methods on 8 bioinformatics datasets related to gene functions of yeast. In these
datasets, the predictor attributes include the following types of bioinformatics
data: secondary structure, phenotype, homology, sequence statistics, and expres-
sion. In addition, the classes to be predicted are hierarchically organized in a tree
structure. The datasets, initially presented in [20], were multi-label data. Since
in this work we focus on single path label scenario, before running the miss-
ing value imputation algorithms, the datasets were converted into single label
data by choosing one class for each instance. This process consisted of selecting,
for each instance, the more frequent class in the original dataset. HSIM imple-
mentation and the single label datasets are available at https://github.com/
leandrodvmg/HSIM. Table 3 provides the main characteristics of the datasets
used in the experiments. This table shows, for each dataset, its number of pre-
dictive attributes, number of instances, number of classes at each hierarchy level
(1st/2nd/3rd/4th/5th/6th levels), percentage of instances containing at least one
missing attribute value and percentage of missing data in the M × P matrix,
where M is the number of instances and P is the total number of predictive
attributes.

After all datasets were processed by both the proposed and the baseline
missing value imputation methods, the imputation quality was measured by
running a global hierarchical classifier on these datasets. However, before run-
ning the classifier, as in [7,9,29], an unsupervised discretization algorithm based
on equal-frequency binning (using 20 bins) was applied to continuous attributes.

Table 3. Characteristics of the datasets

Dataset # Attributes # Instances # Classes per level % Incomplete
instances

% Missing
values

Categorical /
Continuous

CellCycle 0 / 77 3758 8/37/73/46/25/2 93.45 5.57

Church 1 / 26 3756 8/37/72/47/25/2 61.76 9.65

Eisen 0 / 79 2425 5/26/55/34/22/2 75.45 1.93

Expr 4 / 547 3780 8/37/73/46/26/2 100.00 8.90

Gasch1 0 / 173 3765 8/37/73/46/26/2 86.34 2.27

Gasch2 0 / 52 3780 8/37/73/46/26/2 61.15 3.55

Sequence 5 / 473 3920 8/37/73/46/26/2 0.66 0.01

SPO 3 / 77 3704 8/37/73/46/26/2 99.43 2.28

https://github.com/leandrodvmg/HSIM
https://github.com/leandrodvmg/HSIM
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The Global-Model Naive Bayes (GMNB) [22], an extension of the flat classifier
Naive Bayes to deal with hierarchical classification problems, was the global hier-
archical classifier adopted in these experiments. It makes possible predictions at
any level of the class hierarchy. In order to evaluate the predictive performance of
the hierarchical classifier GMNB, we used the 10-fold cross validation method [1]
and the hierarchical F-measure, an adaptation of the flat F-measure customized
for hierarchical classification scenario. For each dataset, the same ten folds were
used in the evaluation of the GMNB classifier.

4.2 Computational Results

As mentioned earlier, the objective of experiments was to compare the hierarchi-
cal classifier performances when running on datasets preprocessed using different
missing value imputation methods. More specifically, the HSIM method was com-
pared against each one of the baseline methods (Mean Imputation, Expectation
Maximization and KNNImpute). Therefore, for each dataset, in order to deter-
mine if there is a statistically significant difference between the F-measures of
the GMNB classifier when running on the dataset preprocessed by HSIM and by
other baseline method, we have used the Wilcoxon’s Signed-Rank Test (two-sided
test) with Bonferroni adjustment on the results as we are making many-to-one
comparisons [30]. This statistical test was applied with 95 % of confidence level.

Experimental results are shown in Table 4 for each dataset listed in the first
column. This table shows, from the second to fifth column, the average hierar-
chical F-measure (hF ) achieved by GMNB classifier (with standard deviation in
parentheses) when running on each dataset preprocessed by the missing value
imputation methods Mean Imputation (MI), Expectation Maximization (EM),
KNNImpute (KNN) and HSIM, respectively. In bold we mark the best result
achieved for each dataset. In addition, the � symbol after an hF value indicates
that the difference between that baseline method and HSIM holds statistical
significance. Finally, the last row of the table summarizes the results of statisti-
cal test, i.e., for each baseline method, it is presented the number of times the
HSIM outperformed the baseline method by providing a better GMNB classifier
performance.

From results presented in Table 4 it is possible to observe that for most of
datasets the GMNB classifier achieved higher predictive performance when the
dataset was preprocessed using the proposed HSIM. In 6 out of 8 datasets,
HSIM obtained significantly better results than MI and, in the remaining two
datasets there was no statistically significant difference between the two methods.
EM is outperformed by HSIM, with statistical significance, in 5 out of 8 datasets
and, in the remaining datasets, the difference between the methods was not
statistically significant. Finally, HSIM outperformed KNNImpute in 7 out of 8
datasets with statistical significance and, in the remaining dataset there was no
statistically significant difference between the methods. It is also interesting to
note that, in 5 out of 8 datasets, the HSIM outperformed all baseline methods
by providing significantly better GMNB predictive performance. For only one
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Table 4. Experimental Results

Dataset MI + GMNB
hF (std. error)

EM + GMNB
hF (std. error)

KNN + GMNB
hF (std. error)

HSIM + GMNB
hF (std. error)

CellCycle 15.57 (2.00) � 15.91 (1.13) � 16.00 (1.70) � 27.17 (2.17)

Church 8.42 (1.20) � 8.31 (1.17) � 8.26 (0.95) � 13.10 (1.41)

Eisen 20.59 (2.23) 20.56 (1.66) 20.06 (1.36) � 21.88 (1.68)

Expr 19.62 (1.84) � 20.27 (1.27) � 20.20 (1.51) � 45.64 (2.32)

Gasch1 18.29 (1.30) � 18.47 (2.06) � 18.22 (1.61) � 22.97 (1.86)

Gasch2 15.37 (1.30) � 15.44 (1.35) � 15.44 (1.65) � 19.55 (1.78)

Sequence 18.73 (1.13) 18.95 (1.48) 18.76 (1.15) 18.75 (1.15)

SPO 13.37 (1.03) � 13.22 (1.13) 13.37 (1.03) � 14.36 (0.76)

HSIM wins 6 5 7

dataset (Sequence) HSIM was statistically equivalent to all baseline imputation
methods.

When analysing the results showed in Table 4 and the percentage of miss-
ing values in datasets presented in Table 3, it is interesting to note that HSIM
improves the most over the other methods on datasets with large percentage of
missing values. Besides, the unique dataset (Sequence) where HSIM does not
outperform any baseline method has very small percentage (0.01 %) of missing
values.

In order to contribute to understand the results presented in Table 4, in the
graphs of Fig. 2, it is presented the distribution of missing value per attribute
as well as information on the predictive power of the attributes for classification
purpose. The hierarchical Symmetrical Uncertainty (SUH), originally proposed
in [31] to deal with feature selection for hierarchical classification problems, was
adopted as measure of predictive power of each attribute. A higher SUH indicates
better predictive power. In these graphs, the bars represent the percentage of
missing value of each attribute while the solid and dashed lines correspond to
SUH of the attributes without missing value imputation and with missing value
imputation using HSIM, respectively.

From the graphs presented in Fig. 2, we can observe that for most of datasets
(6 out of 8) the predictive power (according to SUH) of several attributes
improved after missing value imputation process using HSIM. These graphs show
that the missing value imputation does not necessarily imply higher predictive
power of attributes, since it depends on the quality of imputation. Nevertheless,
even for datasets where only a few attributes had their predictive power increased
after missing value imputation process (e.g., Church dataset), it is possible to
verify the improvement of the predictive performance of the GMNB classifier.
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Fig. 2. Percentage of missing values and predictive power for each attribute with miss-
ing data.

5 Conclusion

In data mining applications, incomplete datasets is a very common situation.
Since many classification algorithms are sensitive to missing attribute values,
they can pose an obstacle for classification and other data mining tasks. Although
several methods for substituting the missing values can be found in the literature,
to the best of our knowledge, for hierarchical classification scenario, there are
no supervised methods to deal with the hierarchical context. Therefore, in this
work, we proposed and evaluated a supervised missing value imputation method
for datasets used in the hierarchical classification problems.
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The proposed method, named HSIM, takes into account the class relation-
ships in the target problem to impute missing attribute values. The main idea of
HSIM is replacing each missing value with mean or mode of observed values of
that attribute for other instances associated to a class descendant or ascendant of
the class of the instance containing the missing value. This procedure is adopted
whenever there are no known attribute values for the instances associated to a
particular class.

The evaluation of the proposed method was conducted on 8 bioinformatics
datasets by comparing it against the following popular unsupervised missing
value imputation methods: Mean Imputation, Expectation Maximization and
KNNImpute. As the objective was to evaluate the effect of the proposed missing
value imputation method on classification performance when using a global hier-
archical classifier, the imputation quality was measured by running the global
hierarchical classifier, known as Global-Model Naive Bayes, on datasets pre-
processed by aforementioned imputation methods.

In our experiments, for most of datasets, the hierarchical classifier achieved
the best predictive performance when the dataset was preprocessed using the
proposed HSIM. Considering the Wilcoxon’s Signed-Rank statistical test with
Bonferroni correction, the HSIM outperformed all baseline imputation methods
(by providing significantly better GMNB predictive performance) in 5 out of
8 datasets. In the remaining three datasets, HSIM reached results statistically
equivalent or better than baseline methods. Therefore, we conclude that the
proposed missing value imputation method has shown good performance in the
hierarchical classification context.

As future work we intend to evaluate the performance of the method proposed
in this work in other application domains, such as image classification, music
genre classification and text categorization. We also intend to extend the HSIM
to deal with hierarchical multi-label classification scenario.
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E., Wortmann, H. (eds.) NLDB 2012. LNCS, vol. 7337, pp. 191–196. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31178-9 20

13. Le, B.V., Bang, J.H., Lee, S.: Hierarchical emotion classification using genetic
algorithms. In: Proceedings of the Fourth Symposium on Information and Com-
munication Technology, pp. 158–163. ACM (2013)

14. Van Hulse, J., Khoshgoftaar, T.M.: Incomplete-case nearest neighbor imputation
in software measurement data. Inf. Sci. 259, 596–610 (2014)

15. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R.,
Botstein, D., Altman, R.B.: Missing value estimation methods for dna microarrays.
Bioinformatics 17(6), 520–525 (2001)

16. Rahman, M.G., Islam, M.Z.: IDMI: a novel technique for missing value imputa-
tion using a decision tree and expectation-maximization algorithm. In: 2013 16th
International Conference on Computer and Information Technology (ICCIT), pp.
496–501. IEEE (2014)

17. Bi, W., Kwok, J.T.: Multi-label classification on tree-and dag-structured hierar-
chies. In: Proceedings of the 28th International Conference on Machine Learning
(ICML 2011), pp. 17–24 (2011)

18. Sun, Z., Zhao, Y., Cao, D., Hao, H.: Hierarchical multilabel classification with
optimal path prediction. Neural Process. Lett., 1–15 (2016)

19. Cerri, R., Barros, R.C., de Carvalho, A.: Hierarchical classification of gene
ontology-based protein functions with neural networks. In: IEEE International
Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2015)

20. Clare, A., King, R.D.: Predicting gene function in saccharomyces cerevisiae. Bioin-
formatics 19(suppl 2), ii42–ii49 (2003)

21. Chen, Y.L., Hu, H.W., Tang, K.: Constructing a decision tree from data with
hierarchical class labels. Expert Syst. Appl. 36(3), 4838–4847 (2009)

22. Silla, C.N., Freitas, A.A.: A global-model naive bayes approach to the hierarchical
prediction of protein functions. In: 2009 Ninth IEEE International Conference on
Data Mining, ICDM 2009, pp. 992–997. IEEE (2009)

http://dx.doi.org/10.1007/978-3-642-40131-2_14
http://dx.doi.org/10.1007/978-3-642-12297-2_34
http://dx.doi.org/10.1007/978-3-642-31178-9_20


148 L.R. Galvão and L.H.C. Merschmann

23. Blockeel, H., Schietgat, L., Struyf, J., Džeroski, S., Clare, A.: Decision trees
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