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Abstract. In this paper, we study the problem of classification of
sequences of temporal intervals. Our main contribution is the STIFE
framework for extracting relevant features from interval sequences to
build feature-based classifiers. STIFE uses a combination of basic sta-
tic metrics, shapelet discovery and selection, as well as distance-based
approaches. Additionally, we propose an improved way of computing the
state of the art IBSM distance measure between two interval sequences,
that reduces both runtime and memory needs from pseudo-polynomial
to fully polynomial, which greatly reduces the runtime of distance based
classification approaches. Our empirical evaluation not only shows that
STIFE provides a very fast classification time in all evaluated scenarios
but also reveals that a random forests using STIFE achieves similar or
better accuracy than the state of the art k-NN classifier.

1 Introduction

Sequences of temporal intervals are ubiquitous in a wide range of application
domains including sign language transcription [12], human activity monitoring,
music informatics [10], and healthcare [3]. Their main advantage over traditional
discrete event sequences is that they comprise events that are not necessarily
instantaneous, but may have a time duration. Hence, sequences of temporal
intervals can be encoded as a collection of labeled events accompanied by their
start and end time values. It becomes apparent that in such sequences events
may overlap with other events forming various types of temporal relations [12].

Examples. An example of such a sequence is depicted in Fig. 1, consisting of
seven event intervals that have various time durations. Note that each event may
occur several times in the sequence (e.g., events 0 and 1). Hence, a sequence
of temporal intervals can be seen as a series of event labels (y axis) that can
be active or inactive at a particular time point (x axis). Such sequences can
appear in various application areas. One example is sign language [12]. A sen-
tence expressed in signs consists of multiple, different gestures (e.g., head-shake,
eyebrow-raise) or speech tags (e.g., noun, wh-word), which may have a time
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Fig. 1. Example of a sequence of temporal intervals: on the y axis we have five events,
labeled as {0, 1, 2, 3, 4}, while on the x axis we can see the time points measured in
seconds.

duration and can start at potentially different points in time. Another example
is healthcare [3]. A sequence may correspond to a series of different types of
treatments (events) for a particular patient. Treatments typically have a time
duration and a patient could potentially be exposed to multiple treatments con-
currently. An interesting and at the same challenging task involving sequences
of temporal intervals is that of classification. For example, the correct classifica-
tion of sign language videos can lead to the discovery of associations of certain
types of expressions (labels) with various temporal combinations of gestural or
grammatical events (features). Moreover, the extraction of certain combinations
of treatments (features) may assist in the proper identification of adverse drug
events (labels).

Previous research in the area of classification of sequences of temporal inter-
vals has been limited to k-NN classifiers. Towards this direction, two state-of-the-
art distance measures have been proposed, Artemis [5] and IBSM [6]. The first
one quantifies the similarity between two sequences by measuring the fraction of
temporal relations shared between them using a bipartite graph mapping, while
ignoring their individual time duration. The second measure maps sequences of
temporal intervals to vectors, where each time point is characterized by a binary
vector indicating, which events are active at that particular time point. While
the results obtained by both k-NN classifiers are promising, such classifiers still
suffer from the fact that they consider only global trends or features in the data
while ignoring local distinctive properties that may have a detrimental effect in
predictive performance. Additionally the classification time of any k-NN classifier
will always be at least linear to the size of the training set, while the computa-
tional cost of the chosen distance measure may severely impact the total runtime
(e.g., Artemis is a distance measure with cubic computational complexity).

In this paper, we approach the problem of classification of sequences of tem-
poral intervals by focusing on feature-based classifiers. Hence, the challenge is
to identify and extract useful features from the sequences that could be then be
used as input to traditional feature-based classifiers.

Contributions. Our main contributions can be summarized as follows: (1)
we propose STIFE (Sequences of Temporal Intervals Feature Extraction
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Framework), a novel framework for feature extraction from sequences of tem-
poral intervals, and discuss its runtime complexity; (2) we present an improved
method for calculating the IBSM distance, hence substantially reducing both run-
time and memory requirements; (3) we provide an extensive empirical evaluation
using eight real datasets as well as synthetic data, in which we compare our novel
methods against the state-of-the-art.

2 Related Work

While arguably an understudied research area, sequences of temporal intervals
have attracted some attention within the areas of data mining and databases.
The first attempts at using sequences of temporal intervals mainly focused on
simplifying the data without losing too much information. For example Lin et
al. [8] show a way to mine maximal frequent intervals, but while doing so the
different dimensions of the intervals were discarded. Another common form of
simplification is to map sequences of temporal intervals to temporally ordered
events without considering the actual duration of the intervals [1].

A large variety of Apriori-based techniques [2,7,9] for finding temporal pat-
terns, episodes, and association rules on interval-based event sequences have been
proposed. In addition, more advanced candidate generation techniques and tree-
based structures have been employed by various methods [11–13], which apply
efficient pruning techniques, thus reducing the inherent exponential complex-
ity of the mining problem, while a non-ambiguous event-interval representation
is defined by [14] that considers start and end points of event sequences and
converts them to a sequential representation. The main weakness of performing
such mapping is the fact that the candidate generation process becomes more
cumbersome while introducing redundant patterns.

An approach for mining patterns of temporal intervals without perform-
ing any mapping to instantaneous events has been proposed by Papapetrou
et al. [12]. The authors of this paper applied unsupervised learning methods
to sequences of temporal intervals. In particular the Apriori algorithm for min-
ing frequent item-sets had been adapted to fit sequences of temporal intervals.
Subsequent to that, similarity of sequences of temporal intervals became more
popular and has been looked at quite a bit. Robust similarity measures allow the
use of sequences of temporal intervals as a data-basis for a lot of applications,
some of them being similarity search, clustering and classification through k-NN
classifier. It started with [5], where the authors propose two different similar-
ity measures. The first one maps sequences of temporal intervals to time series
data, the second one uses the temporal relations to construct and use a bipartite
graph. This approach has been improved through different data representation
and more robust similarity measures in [6].

With the transformation from sequences of temporal intervals to time series
data being explored, it is unsurprising that also finding the longest common sub-
pattern (LCSP) in sequences of temporal intervals has recently been considered.
Finding the longest common subsequence (LCS) is a classic problem for time
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series data and finding the LCSP can be seen as its equivalent counterpart for
sequences of temporal intervals. The problem of finding the LCSP was intro-
duced in [4], where the authors prove its NP-hardness, introduce approximation
algorithms as well as upper bounds.

3 Background

Let Σ define the alphabet of all possible events, i.e., the different types of inter-
vals. A temporal interval is defined as: I = (d, s, e) where d ∈ Σ is an event
label, and s, e ∈ N

+ are the start and end times of the event interval, with e ≥ s.
Given an event interval I = (d, s, e), we will sometimes denote d, s and e as
I.d, I.s and I.e, respectively.

A sequence of temporal intervals S is defined as an ordered multi-set of tem-
poral intervals: S = {I1, ..., Im}. Note that it is allowed for multiple event inter-
vals of the same label to overlap in a sequence. Further, a dataset of sequences
of temporal intervals is denoted as D.

The original IBSM method [6] represents a sequence S in a |Σ| × length(S)
matrix called event tables, where length(S) is the duration of the sequence (e.g.
the time value at which the last interval stops). We briefly repeat the most
important definitions next.

Definition 1. Active Interval. Given a sequence S, an Interval I ∈ S and a
point of time t, I is called active at point of time t if I.s ≤ t ≤ I.e.

Definition 2. Event Table. Given a sequence S, its Event Table ET is defined
as a |Σ| × length(S) matrix. The value of ET (d, t) is the number of Intervals
in S of dimension d that are active at point of time t. When we speak of the
length of an event table we refer to the length of its corresponding sequence:
length(ET ) = length(S).

For the rest of this paper we assume that all sequences are of the same length,
since this makes the definition of the distance measure easier. Note that this is
not a big constraint, since sequences of smaller length can be interpolated to
sequences of bigger length, by using linear interpolation. This was also suggested
in the original definition of IBSM. The original distance between two event tables
of the same length (number of columns) is called the IBSM-Distance.

Definition 3. IBSM-Distance. Given two event tables A and B where
length(A) = length(B) = z the IBSM-Distance is defined as

IBSM(A,B) =

√
√
√
√

|Σ|
∑

d=1

z∑

t=1

(A(d, t) − B(d, t))2

To counteract the large size of the event tables the authors suggest sampling
methods which improve computation time but come at the cost of accuracy for
the 1-NN classifier.
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4 Compressed IBSM

The key idea of compressing IBSM without losing information is to reduce the
size of the event table by only considering the points during which the value of
a row can change, which are the start and end times of an event interval I ∈ S.

Definition 4. Time Axis. Given a sequence S, let T = {t1, ..., tk} be the sorted
set of the start and end times of all intervals I ∈ S. We call T the time axis
of S.

Given a time axis T = {t1, t2, ..., tk} of sequence S we know according to
the definition that ti < ti+1 for i ∈ {1, ..., k − 1}. It is clear that for all t ∈
{1, .., length(S)} where ti < t < ti+1: column t of the event table is equal to
column ti. Note that k ≤ 2m always holds, since k can at most be 2m but may
be less since intervals in S can have the same start or end time. This allows us to
just store the columns for all t ∈ T and the other columns are implicitly given.
We call the optimized form compressed event tables.

Definition 5. Compressed Event Table (CET). Given a sequence S and
its time axis T = {t1, t2, ..., tk} we define CET as the compressed event table
of S as a |Σ| × |T | matrix where CET (d, ti) is the number of intervals in S of
dimension d that are active at point of time ti.

Table 1. Uncompressed
event table

1 2 3 4 5 6 7 8 9

D1 1 1 1 0 0 0 0 0 0

D2 0 0 0 0 1 1 1 1 0

Table 2. Compressed
event table

1 4 5 9

D1 1 0 0 0

D2 0 0 1 0

Tables 1 and 2 present the different representations for a simple, small exam-
ple. The distance between two compressed event tables can be calculated as
follows:

Definition 6. IBSM distance for Compressed Event Tables. Given two
compressed event tables A and B with time axis TA = {ta1, ..., tak} and
TB = {tb1, ..., tbp}, where tak = tbp (sequences have the same length) let
T = {t1, ..., tr} = TA ∪ TB be the merged time axis (still ordered). Then we
define the distance between the two compressed event tables as

Dist(A,B) =

√
√
√
√

|Σ|
∑

d=1

|T |
∑

j=1

E(A(d, IA(tj)), B(d, IB(tj))) · δ(j) (1)
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where

IA(t) = max({i|ti ∈ TA ti ≤ t})
IB(t) = max({i|ti ∈ TB ti ≤ t})

E(a, b) = (a − b)2

δ(j) =

{

tj+1 − tj if j < |T |
1 otherwise

The distance calculation now looks more complicated but the approach is
straightforward. The squared error E is calculated for each cell of the table and
is multiplied by the amount of time that the value would have been repeated in
the old IBSM representation (δ). IA and IB are functions that map a point of
time of the merged time axis T to the correct column index of their respective
compressed event tables.

Given this definition, it is clear that given two sequences the event tables
can be computed in Θ(m · (log(m) + |Σ|)). We need Θ(m · log(m)) to create the
sorted time axis. Given two event tables the distance computation is linear to
the number of cells in each table, which is Θ(|Σ|·m). This is a clear improvement
compared to the old Θ(|Σ| · length(S)), which is, as already mentioned, pseudo-
polynomial.

5 Feature-Based Classification Through STIFE

While improving the performance of the distance measure is the key to improve
the classification time of k-NN classifiers it can not address their overall disad-
vantage in classification time, which is that it will always be at least linear to
the size of the training database. This can become problematic if the database
is a huge size and classification of new instances is time critical. The rather
broad application domain of real-time analysis of data-streams would be such
an example.

Many feature based classifiers offer a classification time that is better than
linear to the size of the database, such as decision trees or random forests. Thus
if one is able to extract informative features from sequences of temporal intervals
one could use these feature based classifiers to further improve classification time.
An additional motivation besides time efficiency is that k-NN classifiers also
have other drawbacks compared to feature based classifiers, such as sensitivity
to outliers or units of measurements. Feature based classifiers might also yield
better accuracy in some cases, depending of course on the usefulness of the
extracted features.

In order to extract useful features we propose a novel method which we call
the STIFE (Sequences of Temporal Intervals Feature Extraction) framework.
The rest of this section gives a detailed explanation of the framework.
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5.1 STIFE Framework Components

Given a number of sequences as a training database, the main challenge of the
framework is to explore and find features, which help to classify the training
database. To do so we propose the STIFE Framework, which consists of three
parts: (I) Static metrics, (II) Shapelet extraction and selection, and (III) Distance
to class-cluster center.

Static metrics are simple, basic mappings that map one sequence to a set of
features independent of the other sequences in the database S. The other two
parts are dynamic, which means they consider the whole (training) database to
extract the features that are particularly helpful to classify the sequences of that
specific database. Subsects. 5.2, 5.3 and 5.4 describe the parts of the framework
in detail. Afterwards Subsect. 5.5 summarizes the framework’s time and memory
complexity for training and classification.

5.2 I - Static Metrics

Let S = {I1, ..., Im} be a sequence in which the intervals are sorted by start
time, and in case of a tie by end time. We define the following basic metrics that
will serve as static features:

– Duration: Im.e
– Earliest start: I1.s
– Majority dimension: The dimension d that occurs in most intervals I ∈ S.
– Interval count: |S|
– Dimension count: |{I.d|I ∈ s}|
– Density:

∑

I∈S I.e − I.s
– Normalized density: Density divided by the duration of the sequence.
– Max. overlapping intervals: Maximum number of overlapping intervals.
– Max. overlapping interval duration: The duration of the period with the high-

est number of overlapping intervals.
– Normalized max. overlapping interval duration: Max. overlapping interval

duration divided by the duration of the sequence.
– Pause time: The total duration with no active dimension interval.
– Normalized pause time: Pause time divided by the duration of the sequence.
– Active time: The reverse of pause time.
– Normalized active time: Active time divided by the duration of the sequence.

These static metrics provide a very basic method to obtain some features.
They are simple to understand, fast to compute and require little memory
compared to the original training database. After sorting the intervals of the
sequence all of these metrics can be calculated in either Θ(1) or Θ(m). Thus
the overall runtime complexity of extracting static features from the database
is Θ(n · m · log(m)). Only Θ(n) additional memory is needed, since the number
of static features is constant. The time to extract the features for an unseen
sequence Snew is Θ(m · log(m)).
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5.3 II - Shapelet Extraction and Selection

Shapelets are commonly defined as interesting or characteristic small subse-
quences of a larger sequence. The idea of shapelets has already been explored in
the context of time-series data and has also been used as a tool for classification
of time series data. Thus it is natural to also consider shapelets as candidates for
features of sequences of temporal intervals. In this paper we will restrict ourselves
to the shapelets of size 2 which are in the following referred to as 2-shapelets. To
be able to define a 2-shapelet of a sequence of temporal intervals we must first
define a few prerequisites such as temporal relationships between two intervals:

Definition 7. Time Equality Tolerance. We define ε ∈ N
+ as the maximum

tolerance which time values may differ from each other to still be considered as
equal from a view point of temporal relationships. Since the value of ε can be
quite domain specific we do not specify a fixed value here.

Given the time equality tolerance we can define temporal relationships between
temporal intervals:

Definition 8. Temporal Relationship. Let A and B be two intervals with the
following property: A.s−ε ≤ B.s (B does not start before A). Then we define the
set of possible temporal relationships as R= {meet, match, overlap, leftContains,
contains, rightContains, followedBy}. Their individual definition is visualized in
Fig. 2.

These temporal relations for event intervals have already been used in the
context of distance measures for sequences of temporal intervals on multiple
occasions [5,6]. Note that for an ordered pair of event intervals exactly one of
these relations applies, meaning the temporal relationship of two event intervals
is unambiguous. Based on this, a 2-shapelet can be defined.

Definition 9. 2-shapelet. Given a sequence S and two temporal intervals
A,B ∈ S we define a 2-shapelet as sh = (A.d,B.d, r) where r ∈ R is the

Fig. 2. The 7 temporal relations between an ordered pair of event intervals (A,B)
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Algorithm 1. Extract and select all shapelet features
Require: Let S = {S1, ..., Sn} be the sequences, Σ be the set of dimensions and k the

number of features to keep.
SM ←new n × (7 · |Σ|2) matrix
for i = 1 to n do

for (A, B) ∈ {(A, B) | A, B ∈ S ∧ A.s − ε ≤ B.s} do
r ← temporal relationship of (A, B)
j ← compute column index of shapelet (A.d, B.d, r)
SM [i, j] ← SM [i, j] + 1

end for
end for
gains ←new (7 · |Σ|2) array
for j = 1 to 7 · |Σ|2 do

gains[col] ← information gain of column j of SM
end for
featureIndices ← new List
for j = 1 to 7 · |Σ|2 do

if gains[j] is in the top k of gains then
featureIndices.add(j)

end if
end for
delete all columns of SM except for featureIndices
return SM

temporal relationship between the two intervals. In other words a two-shapelet
(d1, d2, r) says, that there are two intervals in S of the respective dimensions d1
and d2 that have the temporal relationship r.

All 2-shapelets of a sequence S can be found by simply determining the
relationships of all pairs of intervals (A,B), where A,B ∈ S and B does not
occur before A. The idea for the resulting features is simply to treat the num-
ber of occurences of each 2-shapelet as a feature of the sequence. This will
result in exactly |Σ| · |Σ| · |R| = 7 · |Σ|2 possible features which is a swiftly
increasing function of the number of dimensions. Thus it is necessary to perform
feature selection afterwards which we do by information gain. Information gain
is a measure of how much information is stored in an attribute with regard to
the class label distribution and is commonly used when building decision trees.
The formula is explained in detail in [15]. Since information gain is defined on
categorical features and the number of shapelet occurrences in a sequence are
numeric attributes, it is necessary to discretize them. We use the information
gain of the best binary split ( meaning the feature −→a is discretized to a vector of
boolean values according to −→a ≤ x for the x ∈ N that yields the highest infor-
mation gain). The algorithm for the shapelet feature extraction is roughly sum-
marized in Algorithm 1. To count all 2-shapelet occurences a n×7 · |Σ|2 matrix is
used (one row per sequence). For each sequence all correctly ordered pairs need
to be looked at, which amounts to the runtime Θ(m2) per sequence, thus the
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runtime for the shapelet occurence counting is Θ(n · m2). Memory requirement
is Θ(n · |Σ|2).

Calculating the information gain of a numeric attribute needs Θ(n · log(n)).
This is done for each feature, which means the total runtime of feature selection
via information gain is Θ(n · log(n) · |Σ|2). Memory remains at Θ(n · |Σ|2).
Thus, putting the two steps together we arrive at Θ(n · (m2 + log(n) · |Σ|2)) for
runtime and Θ(n · |Σ|2) memory to execute shapelet extraction and select the
best shapelets as features. Calculating the occurences of the selected 2-shapelets
for a new sequence takes Θ(m2) time in the worst case since once again all its
correctly ordered interval pairs need to be considered. Note that this is always
independent of |Σ|, since a constant number of shapelets are selected in the
feature selection step.

5.4 III - Distance to Class-Cluster Center

Our approach here is inspired by the k-medoids clustering algorithm. Since clus-
tering is an approach that is used in unsupervised learning and we are in the
supervised case (e.g. we have data with class labels) it is unnecessary to actually
execute the clustering algorithms. Instead we can just assume that we have the
clusters given by the class-labels of the training data and simply extract the
medoids of each class-cluster.

Given the medoids of each class-cluster, these will then be used as reference
points and the distance to them will result in features. As a distance measure
we choose the IBSM distance over ARTEMIS, since the compressed way of cal-
culating it as introduced by us has a better runtime than ARTEMIS and 1-NN
classifiers using IBSM yield better accuracy which leads us to believe that it is
the more suitable distance measure. Given the distance measure we formulate
the algorithm for distance based feature extraction in Algorithm2.

Since the class labels (and thus cluster labels) are given, the clustering takes
Θ(n) time. Afterwards we need to calculate the medoid of each cluster and
subsequently calculate the distance to those for all training sequences. Assuming
the number of classes is constant we know that the size of each cluster can be
Θ(n) but the number of clusters is constant. For each cluster all compressed event
tables (see Sect. 3) and their pairwise distances ( Θ(n2)) need to be computed
and stored. Thus the runtime and memory complexity of finding the distances
to all class-cluster medoids is Θ(n2 · m · (|Σ| + log(m))) time and Θ(n2 · m · |Σ|)
memory. The online feature extraction requires Θ(m · (|Σ| + log(m))) time and
Θ(m · |Σ|) memory.

5.5 Runtime and Memory Complexity Overview

When analyzing runtime and memory complexity of the STIFE framework, the
two interesting measures are training time and classification time. Extracting
and selecting the features based on the training data adds to the classifier’s
training time. Since the framework can be used with any feature based classifier
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Algorithm 2. Calculate all medoids and extract the distance to those as features
Require: Let S = {S1, ..., Sn} be the sequences, k the number of classes and D :

S × S �→ R
+ a distance measure for sequences

FM ←new n × k matrix
for c = 1 to k do

S(c) ← {Sj | Sj ∈ S ∧ class(Sj) = c}
DM ←new |S(k)| × |S(k)| matrix
for (Si, Sj) ∈ {(Si, Sj) | Si, Sj ∈ S(k) ∧ i ≤ j} do

DM [i, j] ← D(Si, Sj)
DM [j, i] ← DM [i, j]

end for
min ← ∞
minI ← −1
for i = 1 to |S(c)| do

dist ← row i of DM
if sum(dist) ≤ min then

min ← sum(dist); minI ← i
end if

end for
for i = 1 to n do

d ← D(S[i], S(c)[minI]); FM [i, c] ← d
end for

end for
return FM

we will use CTT (n) to describe the classifier training time and CTM(n) to
describe the classifier memory need for training.

For an unseen sequence, feature extraction is performed before the classifier
can be applied. We will use the term CCT (n) to describe the classifier classifica-
tion time and CCM(n) for the classifier classification memory need. The exact
training and classification runtime and memory complexities have already been
mentioned in the respective subsections. Table 3 presents upper bounds for the
whole framework.

Table 3. Upper bounds for memory and runtime complexity of STIFE.

Task Upper bound for complexity

Training Time O(m2 · n2 · |Σ|2 + CTT (n))

Training Memory O(m · n2 · |Σ|2 + CTM(n))

Classification Time O(m · log(m) + m · |Σ| + CCT (n))

Classification Memory O(m · |Σ| + CCM(n))

It can be observed that the biggest influencing factor besides the size of the
database is the number of dimensions |Σ|. How many dimensions actually exist
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in a data-set is once again dependent on the domain. If the number of dimensions
is very high, the memory requirement of the shapelet extraction and selection
step might not be practical (it is using an n×7 · |Σ|2 matrix). Since however the
matrix is usually sparse, memory need could be reduced by using appropriate
implementations.

6 Empirical Evaluation

Our evaluation consists of two parts. In Subsect. 6.1 we analyze classification
time and accuracy for real-life data-sets and in Subsect. 6.2 we conduct experi-
ments with synthetic data to analyze the individual performance of the proposed
methods for specific parameter settings. The STIFE framework, classifiers and
distance measures were implemented in java1. When evaluating STIFE, we used
the random forest implementation of Weka.

6.1 Real Data-Sets

For our empirical evaluation we used eight publicly available data sets. Some
basic information about each data set is given in Table 4. Note that many of these
data-sets come from different domains, which is very relevant when judging the
general applicability of classification algorithms based on the evaluation results.

Table 4. Basic properties of the data sets

Data-set Size test &
Training

# of classes max # of intervals (m) |Σ| duration

ASL-BU 873 9 40 216 5901

ASL-BU-2 1839 7 93 254 14968

AUSLAN2 200 10 20 12 30

BLOCKS 210 8 12 8 123

CONTEXT 240 5 148 54 284

HEPATITIS 498 2 592 63 7555

PIONEER 160 3 89 93 80

SKATING 530 6 143 41 6829

The data-sets were evaluated for three classifiers using 10-fold cross valida-
tion. The three evaluated classifiers are 1-NN using the uncompressed (original)
IBSM distance [6], 1-NN using our novel method of calculating the IBSM dis-
tance, in the following called compressed IBSM, and a random forest using the
STIFE framework, in the following called STIFE-RF. For STIFE-RF the Time

1 Implementation available at: https://github.com/leonbornemann/stife.

https://github.com/leonbornemann/stife
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Table 5. Mean accuracy for 1-NN using the IBSM distance measure and a random
forest using STIFE for feature extraction

Data-set STIFE + Random forest accuracy [%] IBSM accuracy [%]

ASL-BU 91.75 89.29

ASL-BU-2 87.49 76.92

AUSLAN2 47.00 37.50

BLOCKS 100 100

CONTEXT 99.58 96.25

HEPATITIS 82.13 77.52

PIONEER 98.12 95.00

SKATING 96.98 96.79

Table 6. Mean classification time for 1-NN using the IBSM and compressed IBSM
distance as well as a random forest using STIFE for feature extraction

Data-set STIFE + Random forest [ms] Compressed IBSM [ms] IBSM [ms]

ASL-BU 0.48 8.04 331.33

ASL-BU-2 0.47 22.46 1968.85

AUSLAN2 0.46 0.16 0.23

BLOCKS 0.15 0.07 0.15

CONTEXT 0.33 1.69 2.47

HEPATITIS 0.38 9.55 154.96

PIONEER 0.10 0.68 0.78

SKATING 0.18 4.36 97.31

Equality Tolerance (ε) as defined in Subsect. 5.3 was set to 5 and the amount
of shapelet features to keep was set to 75. Furthermore the number of trees was
set to 500 and the number of features per tree was set to

√
f , where f is the

number of extracted features.
The results for the accuracy are presented in Table 5. Since both IBSM and

compressed IBSM calculate the exact same distance value, both 1-NN classifiers
also return the same accuracy which is why we only report one of them. The
results for accuracy show that the random forest using STIFE is on par or better
than the state of the art 1-NN classifier. Especially on data-sets that seem to be
harder to classify (bold in the table) our novel method clearly beats the state of
the art IBSM classifier.

When evaluating accuracy the ASL-BU and ASL-BU-2 were treated in a
special manner, since they are multi-labeled data-sets, which means that each
sequence can have multiple class-labels. This presents a difficulty when evalu-
ating classifier accuracy. Since we introduce a novel method (Random forest +
STIFE) we want to show that it is at least on par with the state of the art 1-NN
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classifiers. Thus we chose a method of evaluation that is more lenient towards the
1-NN classifiers. For both classifiers we eliminated all sequences from the train-
ing database that have no class label. Subsequently we modified the training
database for the random forest: we copy each sequence once for each of its class-
labels and assign each copy exactly one class label. Example: If the sequence S
has class labels {1, 2, 3}, the training database for the random forest will contain
three instances of S with different class labels: {(S, 1), (S, 2), (S, 3)}. The train-
ing database of the 1-NN classifier remains unaltered (except for the removal of
unlabeled sequences). Subsequently we redefine accuracy in the following: If a
test sequence S has class labels A and a classifier predicts a set of class labels
P , we say that the sequence was correctly classified, if A∩P 	= ∅. Note that this
is a definition that favors the 1-NN classifiers, since they will output all class
labels of the nearest neighbour, while the random forest can only output exactly
one class label. The fact that the random forest using SITFE still achieves bet-
ter accuracy for both data-sets, although being at a disadvantage gives strong
evidence that it may be superior to the 1-NN classifiers.

Table 6 reports the classification time of each of the three classifiers. The
results show that compressed IBSM is always faster than IBSM. As expected
due to the nature of the algorithms, the speedup is most significant for data-sets
that contain high-duration sequences, namely ASL-BU, ASL-BU-2, HEPATITIS
and SKATING. The runtime of our second approach, the random forest, while
not always being faster is a lot more stable. It never exceeded a classification
time of 1 millisecond for all of the data-sets.

6.2 Synthetic Data

There are four different parameters that are relevant for the classification runtime
of the three studied classifiers. These are the size of the training database (n),
the number of intervals per sequence (m), the number of dimensions (|Σ|) and
the maximal duration of a sequence. In order to study their individual effects
on the classification runtime we randomly generated sequences with fixed values
for 3 of the four parameters while varying the fourth one. In order to study
the impact of a parameter in a scenario close to reality we set each of the fixed
parameters to the upper median of the eight data-sets described in 6.1. That
way the fixed parameters that are kept constant reflect a “normal” task. The
upper medians are: n = 498, m = 93, |Σ| = 63, duration = 5901. The results
are depicted in Fig. 3. The plotted curves confirm that both compressed IBSM
and STIFE-RF are independent of the sequence duration, as opposed to the
original IBSM distance. Furthermore, compressed IBSM is faster than IBSM
in all evaluated scenarios except for a very high number of intervals (given a
fixed duration). On top of that STIFE-RF scales much better with the size of
the training database (n) and the number of dimensions (|Σ|) than both 1-NN
classifier. Lastly the plots show clearly that STIFE-RF is extremely fast in all
scenarios: It’s classification time never exceeds 3 ms, which makes its plotted
curves look constant.
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Fig. 3. Classifier performance for different parameters

7 Conclusions

Our main contribution in this paper is the formulation of the STIFE framework,
a novel method that maps a sequence to a constant number of features, which
can be used for classification. In addition, we presented an improved way of
calculating the IBSM distance measure that reduces runtime and memory from
the original pseudo-polynomial Θ(|Σ|× length(S)) to the fully polynomial Θ(m ·
(log(m) + |Σ|)). Our experimental evaluation on real and synthetic datasets
showed that the STIFE framework using the random forest classifier outperforms
the state-of-the-art 1-NN classifier using IBSM and compressed IBSM in terms
of both classification accuracy and classification runtime. Directions for future
work include the investigation of more elaborate feature selection techniques for
selecting shapelets. Another direction is to compare the simple clustering by class
of the distance based part of the framework to actual clustering methods and
see if actually executing the k-medoids clustering algorithm results in medoids
to which the distance is a more discriminative feature.
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