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Abstract. With the realization of networks in many of the real world
domains, research work in network science has gained much attention
now-a-days. The real world interaction networks are exploited to gain
insights into real world connections. One of the notion is to analyze
how these networks grow and evolve. Most of the works rely upon the
socio centric networks. The socio centric network comprises of several ego
networks. How these ego networks evolve greatly influences the structure
of network. In this work, we have analyzed the evolution of ego networks
from a massive call network stream by using an extensive list of graph
metrics. By doing this, we studied the evolution of structural properties
of graph and related them with the real world user behaviors. We also
proved the densification power law over the temporal call ego networks.
Many of the evolving networks obey the densification power law and the
number of edges increase as a function of time. Therefore, we discuss a
sequential sampling method with forgetting factor to sample the evolving
ego network stream. This method captures the most active and recent
nodes from the network while preserving the tie strengths between them
and maintaining the density of graph and decreasing redundancy.
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1 Introduction

Enormous streams of graphs are generated by some of the real-time applica-
tions, at a speed of millions of nodes and billions of edges per day. Such social
streams provide an abstraction of interactions between real world social enti-
ties or individuals. Studying the structural properties of these streams enables
powerful insights and extrapolations of real world. Space and time complexity
is one of the challenging issues related to analyzing these streams. Networks
representing real world social structures are usually temporal and evolving. The
rapidly changing and evolving structure of these graphs, calls for an exigency
of latest and up to date results. Processing the real-time network stream as it
arrives, is one of the best solutions for the above problem. Therefore, we employ
the stream processing approach to process enormous data. Some of the social
network analysis methods that can be applied over streams of graphs are given
in [12]. Furthermore, we use a streaming ego network approach over a telecom-
munications’ call graph stream of temporal edge/calls’ as in [14].
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An ego network is based on the relationships of a single node called “ego”
with the other nodes in a social network. An ego can represent an individual,
entity, object or organization. All the other nodes related to ego in the network
are called alters. An ego network maps the relationships of an ego with alters and
also between themselves. In the recent work [4] by Google.com, the authors argue
that it is possible to address important graph mining tasks by analyzing the ego-
nets of a social network and performing independent computations on them. The
studies made by Everett and Borgatti [5] indicate that the local ego betweenness
is highly correlated with the betweenness of the actor in the complete network.
In [17] Wellman describes an ego network as a personal network. The author
explains that the importance of local ties becomes apparent by redefining the
composition of personal community networks in terms of the number of contacts
(interactions) that egos have with the active members of the networks instead
of the traditional procedure of counting the number of ties (relationships). In
this work, we analyze the evolution of ego networks by using a bunch of social
network analysis metrics.

We also discuss the growth pattern of our ego networks. In [8] the authors
discussed how large graphs evolve over time. They stated a densification power
law which is followed by these networks. In our work, we test the densification
power law over the temporal ego networks of call graph stream and observe that
it obeys the densification power law and follows the similar properties of large
graphs. We also consider the properties of real world graphs depicted by [1,2,
10,16] such as diameter, path length etc.

As we observe the call ego networks satisfy the densification power law and
the number of edges grow superlinearly to the number of nodes, the evolving
graphs can get humongous in no time. There are a few sampling strategies dis-
cussed in [14] for sampling real time streaming graphs, but none of them preserve
the tie strengths between nodes in the network. Nevertheless, there are no sam-
pling techniques designed for ego networks to preserve the tie strengths, while
maintaining the active and most recent nodes. Now the obvious question is, how
do we capture the ego network of an evolving multi-graph stream over time with
least possible edges, while preserving the structure, properties and efficiency of an
ego network? For which, we proposed a streaming ego network sampling method
using a forgetting factor [13]. The proposed method is suitable for dynamically
evolving multi-graphs. We use this method over a real world temporal stream
of edges/calls to generate a sample stream in real time. Our results show that
the proposed method preserves tie strengths in the networks. We also show that
our method decreases redundancy in the network while preserving the impor-
tance of ego. We measure the importance and efficiency of network using some
socio-metrics. We evaluate our method by comparing the samples generated by
varying parametric values, with the original ego network. The proposed method
can also be implemented over a socio-centric network.

The following paper is organized as follows: In Sect. 2 we discuss some related
works. In Sect. 3, we described our call network data and the metrics we used in
our experiments in Sect. 4. We proved the densification power law for our evolving
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ego networks in Sect. 5. In Sect. 6, we analyzed the properties and structure of
evolving call ego network. Further in Sect. 7, we proposed a sampling method
for ego network multi graph streams with forgetting factor. Sections 8 and 9, we
evaluated the above method by comparing the samples with the original network.

2 Related Work

The concept of ego networks was discussed by L.C. Freeman in [6], where he
described an ego network as a social network, built around a particular social
unit called ego. In [17] Wellman discusses the importance of local ties in per-
sonal networks. In [3] Burt studied the affects, gaps and relationships between
the neighborhood of a node, referring them as structural holes. He also intro-
duced metrics to evaluate an efficient-effective network which strives to optimize
structural holes in order to maximize information benefits.

Most of the research works in this field are carried out by analyzing the
structure and growth pattern of evolving socio centric networks and evolutionary
nature of socio centric graphs [1,2,8,10,11,16]. Nevertheless, there are few works
which studied the structure of ego networks [3,6,7,13,15]. To the best of our
knowledge, this is the first work about analyzing the evolution of ego networks.
We would analyze the evolution of ego network for 31 days using an extensive
list of graph level and node level metrics.

[9] proposed an ego-centric network sampling approach for viral marketing
applications. The authors employed a variation of forest fire algorithm for sam-
pling ego network. They compared the degree and clustering coefficient distrib-
utions of sampled ego networks with the original ego network. In this work, we
discuss an edge based sampling method with forgetting factor over an evolving
ego network stream of temporal edges.

3 Description of Call Network Data

Telecommunications’ call graphs are one of the massive streams of calls generated
in real-time. We made use of such anonymised temporal call stream of 31 days
available from a service provider. The network data stream is generated a speed
of 10 to 280 calls per second around mid-night and mid-day. On an average
we have 12.4 million calls made by 4 million subscribers per day. Streaming
approach is highly feasible for this kind of rapidly evolving data.

From the above massive stream of calls for 31 days, we built the ego networks
by selecting egos with five different properties. The first ego network egonet1 is
built by selecting an ego with a degree equal to average degree of network.
The egonet2 with an ego of highest in-degree centrality of graph and is also
the node with highest eigen vector centrality of graph. The egonet3 and egonet4
with highest betweenness centrality and lowest out-degree centrality respectively
for enhancing the diversity of ego networks. We built these ego networks by
accumulating all the adjacent edges of ego and their adjacent edges i.e. a network
of radius 2. We generated the ego network streams from a call network stream
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of 400 million calls made by 12 million subscribers on an aggregated scale. In
order to avoid duplicated number of edges as it is a multi-graph, we maintained
unique edges between any pair of nodes in the network and map them onto a
weighted graph.

4 Metrics for Evaluating Ego Networks

In this section we discuss an extensive list of graph metrics we would use in
the later sections to analyze the densification of call ego-network, to analyze the
evolution of structural, topological and behavioral properties of call ego network
and to evaluate the proposed sampling method of forgetting factor. We exploit
these properties at graph level and node level.

4.1 Graph Level Metrics

We studied the properties of ego network graphs using average degree, average
weighted degree, density, diameter and average path length.

Additionally for evaluating evolving samples using our proposed method, we
compared the degree distributions of the samples at the end of 31 days with
the original network using kolmogorov-Smirnov test. We use the D-statistics
from the test and also p-values to evaluate our null hypothesis (H0) that our
sampled ego networks follow the same distribution as the original ego network.
The degree distributions of the networks is obtained by counting the frequency
of each degree d in the network. The frequency of each degree d is given by the
number of nodes with degree d in the network snapshots at the end of 31 days.

We compared the effective size and efficiency of samples with that of ego net-
work using ego metrics introduced by Burt in [3]. Effective size of the ego network
(ES) is the number of alters that an ego has, minus the average number of ties
that each alter has to other alters. In the simplest form, for an undirected ego
network of radius 1, the effective size can be given with the Eq. 1. Efficiency
(EF ) of an ego network is the proportion of ego’s ties to its neighborhood that
are “non-redundant.” Efficiency is the normalized form of effective network size
(Eq. 2). Therefore, it is a good measure for comparing ego networks of differ-
ent sizes.

ES = na −
∑na

a=1(da − 1)
na

(1)

EF =
ES

na
(2)

where na is the number of alters in the ego network and da is the degree of
an alter a.

4.2 Node Level Metrics

The node level centrality metrics discussed in the later sections are Degree,
Weighted Degree, Closeness (CC), and Eigen Vector Centralities (EVC). We
also explored the Eccentricity and Clustering Coefficient of the ego.
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5 Densification Law for Evolving Call Ego-Network

In [8] the authors studied the temporal evolution of, number of nodes vs number
of edges. Besides, the authors employed the measures of average out degree to
ascertain the densification law proposed by them. They validated that, most of
these graphs densify over time, with the number of edges growing super-linearly
to the number of nodes and their average degree increases. They investigated
the above properties in an evolving citation graph, autonomous systems graph
and affiliation graph. The authors stated that as the graphs evolve over time,
they follow the relation given by the Eq. 3.

e(t) ∝ n(t)a (3)

where e(t) and n(t) denote the number of edges and nodes of the graph at
time t, and a is an exponent that generally lies strictly between 1 and 2. The
authors refer to such a relation as a densification power law, or growth power
law where the number of edges grow super-linearly to the number of nodes. The
authors also show that the average degree of these graphs gradually increases.
With this justification the authors prove that the graphs densify over time. In
this section we investigate the densification power law (DPL) over the temporal
stream of call ego network by depicting a densification power law plot (DPL plot)
for the number of nodes n(t) and the number of edges e(t) at each timestamp t.
In our experiments, we used a time stamp of one day.

We used the four temporal evolving ego networks from the call/edge stream
as described in Sect. 3. We grabbed the snapshots of ego networks at the end
of each day and calculated the number of nodes and edges. Figure 1 shows the
DPL plots for the call ego networks. As the slope of the line in a log-log plot
gives the exponent in a power law relation, in the figure discussed above, we
derived the lines obeying power relation with the best fits of 0.99 and 1.0 with
their respective points. Therefore, the slope of these lines gives the densification
exponents as a = 1.03, 1.1, 1.08, and 1.05 (in Fig. 1a, b, c and d respectively)
which shows a super-linear growth of edges over nodes. Hence, we deduce that
the ego networks of a call network also follow the densification power law as many
other socio centric networks, with the number of edges growing super linearly to
the number of nodes with their respective exponents a.

We consider the average degree of ego networks per time stamp, which is
plotted in Fig. 2. We see that the average degree of graphs for Fig. 2b and d (ego
network of highest in-degree centrality node and highest eigen vector centrality
of graph) is gradually increasing. Average degree of graphs in Figs. 2a and c
are is slightly increasing with the evolution. From the above experiments with
the densification power law and the average degree, we see that the graphs are
densifying. Hence we require sampling techniques in real-time to analyze such
enormous evolving data.
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(a) egonet1 evolution for 31 days,
slope a=1.03

(b) egonet2 evolution for 31 days,
slope a=1.10

(c) egonet3 evolution for 31 days,
slope a=1.11

(d) egonet4 evolution for 31 days,
slope a=1.06

Fig. 1. DPL plot for temporal call ego networks

(a) egonet1 evolution (b) egonet2 evoltuion

(c) egonet3 evolution (d) egonet4 evolution

Fig. 2. Average degree evolution in temporal call ego networks for 31 days
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6 Evolution Analysis of a Temporal Ego-Network

In this section, we have analyzed the evolution of the ego network (egonet1)
over a period of one month using the metrics mentioned in Sect. 4. As described
in earlier section, we have constituted the adjacent nodes of an ego and their
adjacent nodes in the ego network as the stream progresses for a month. Then
we took snapshots of the ego network per equal intervals of time stamp i.e. one
day in our case. To investigate the evolving structure and properties of a call ego
network, we undertook a piecemeal structural analysis of network by employing
the following metrics per day i.e. average degree, average weighted degree, Den-
sity, Diameter and Average Path Length and derive some empirical observations.
We also made use of a bunch of centrality metrics to study the importance of
ego in the network and compare the position of ego during evolution, they are
Degree, Weighted degree, Closeness (CC), and Eigen vector centralities (EVC).
We also explored the Eccentricity and Clustering coefficient of the ego.

Fig. 3. Degree vs weighted degree of ego network

Figure 3 plots the degree vs weighted degree of the ego in the ego network
over a log log plot. The equation of the line that best fits our temporal data
points is given in the figure. The slope of the line is given as 1.22 which shows
a power relation between degree and weighted degree of a node. Therefore, we
can say that the weighted degree of the node is growing superlinearly over its
degree. The above analysis demonstrates a social behavior, that the people are
more interested in maintaining their old relationships or friends than making
new friends. However they also show interest in making new pals.

Figure 4 depicts the graph metrics and node metrics over the evolving ego
network. When considering node metrics we see that the CC and eccentricity
of the ego increases with the evolution but the EVC remains constant, as the
ego remains the important person in the network with highest betweenness cen-
trality. The betweenness centrality of the ego also increases with the function of
network size.

Figure 5 displays the call ego network of a particular ego for day 1 and final
accumulated network on day 31. The ego is represented with the red dot in
the center. The figure illustrates the evolution of network for one month from
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Fig. 4. Metrics over temporal call ego network

timestamp 1 to timestamp 31. We maintained the tie strengths between the
nodes by mapping the multi graph to a weighted graph.

7 Sampling Ego Network with Forgetting Factor (SEFF)

In this method, we sample edges from a stream of temporal network. We start
by building the ego network of a specific ego and begin to scrape together all
the adjacent ties to the ego and their adjacent ties. We do this by using a set for
storing adjacent nodes. For every recurring edge, we increment the edge weight
of the corresponding edge by maintaining a hash table. We impose a forgetting
factor over edges, following successive grace periods. In our experiments, we use
a grace period of 1 day. This means we apply the forgetting factor over the ego
network as soon as the stream enters a new day, i.e. we forget the old edges each
of a kind (i.e. edges between a pair of nodes), by some fixed percentage defined
by the forgetting factor. The forgetting factor is given by two parameters, an
attenuation factor α and a threshold θ. Where 0 < α < 1 and also 0 < θ < 1.
After every grace period or update time t the tie strength between two nodes is
given by the Eq. 4.

wt = wt + (1 − α)wt−1 (4)

where wt is the tie strength between any two nodes in the ego network at
time t. After every successive grace period, we decrease the edge weight by α and
consequently remove the alter/alters adjacent to the corresponding edge, as the
edge weight decreases than the threshold value θ. When α = 1 we have a maxi-
mum forgetting i.e. we forget the whole network except the network of current
day. When α = 0 we get the original network. If the removed edge corresponds
to an alter adjacent to the ego, we remove the adjacent edge and the alter, and
all the second level alters adjacent to the alter itself, if the above condition is
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Fig. 5. Evolution of a call ego network

satisfied. If we forget a second level edge, not having a direct connection to ego
then we only forget the corresponding node. Following this strategy, we can have
most active alters in the ego network at the end of each day.

8 Evaluation Methodology

In order to evaluate our method SEFF discussed in Sect. 7, we applied it over
a real world streaming call Graph G of 31 days by randomly choosing an ego
e and generating a sample stream of depth d = 2 at any point of flow. This
was done by generating six real time sample streams, where each sample stream
Si is generated by different combinations of α ∈ {0.9, 0.8, 0.7, 0.5} and θ ∈
{0.1, 0.2, 0.3, 0.4, 0.5} discussed in Sect. 7. For investigating the above sample
streams, we captured their snapshots of sample streams at the end of 31 days
each. Each snapshot S31

i ⊂ G. Beforehand, we took a snapshot G31
e of original

ego network stream Ge of e (where d(Ge) = 2) at the end of 31 days from the
socio-centric call graph G. Each sample graph S31

i ⊂ G31
e . We then compared the

conclusive sample snapshots S31
i where 1 ≤ i ≤ 6, with the original ego network

snapshot G31
e by employing metrics discussed in Sect. 4. We use Kalmogorov-

Smirnoff test to compare the degree distributions of the original network with
that of samples. Conclusively, we derive some conclusions about the properties
preserved by the sample networks.

9 Experimental Evaluation

The call networks are the special application scenario for employing our method
as these networks are multi-graphs with more than one edge between two users,
representing the strength of their relationship unlike a social network based on
friendship and, follower and followee relations, where there is a single binomial
relation between two nodes. However, the proposed method can be applied to
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(a) (b)

(c) (d)

Fig. 6. Metrics over ego networks with and without forgetting factor

networks with binomial relationships as it forgets edges and eventually forgets
nodes. SEFF method is also appropriate for sampling weighted networks.

We selected an arbitrary user “ego” from the real world call/edge stream
described in Sect. 3 and start building the ego network of ego with a two step
neighborhood, i.e. by acquiring the neighbors of ego and the neighbor of neigh-
bors of ego. We take a snapshot of the ego network at the end of 31 days stream.
Using the same ego we start constructing the sample ego networks (using SEFF)
gradually as the stream flows for 31 days. For which, we have used six different
combinations of α and θ corresponding to six different samples depicted in Fig. 6.
The figure also plots the values of computed metrics discussed in Sect. 4 over the
conclusive sampled ego networks and the original ego network.

Figure 6(a) shows the number of nodes and the number of edges in the above
described ego networks. We observe that the number of nodes gradually decrease
with the increasing forgetting factor. For an attenuation value of 0.5 and thresh-
old value of 0.5 we forget 50 % of the edges per day, between two adjacent nodes.
This shows we always have the most active nodes with the increased forgetting
factor. We also observed that, the number of edges decrease in greater proportion
than the number of nodes, Almost reaching equal for the highest forgetting fac-
tor in the illustration. This exhibits that the proposed SEFF method decreases
redundant edges.

We also compare the degree distributions of the original ego network with
the samples generated by using SEFF method at the end of 31 days. We applied
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Table 1. Comparison of degree distributions using KS-Test

Samples α = 0.1,
θ = 0.1

α = 0.1,
θ = 0.2

α = 0.1,
θ = 0.4

α = 0.2,
θ = 0.2

α = 0.3,
θ = 0.3

α = 0.5,
θ = 0.5

D-stat 0.146 0.138 0.173 0.146 0.191 0.096

p-value 0.114 0.124 0.065 0.182 0.105 0.724

Fig. 7. Degree distributions of ego networks at the end of 31 days with and without
forgetting factor

Kolmogorov–Smirnov test to compare the degree distributions of the samples
with the original network. The D-statistics and P-values of tests are given in
the Table 1. The p-values are computed using exact method. The significance
level used for the comparisons is 5 %, i.e. α = 0.5. The results show that all the
sampled distributions follow the distribution of original graph. We also observe
that the value of θ has a greater impact on the similarity of distributions, than
α in the SEFF method. We can see the pictorial representation of the degree
distributions of the original graph and sample graphs in Fig. 7.

Figure 6(b) depicts metrics over the ego networks. The diameter of the graphs
varies with the inclusion and removal of the connecting nodes from the ego
network. It depends on the network of ego selected. Average degree and the
average path length decreases with the increasing forgetting, this shows that the
networks shrink with increased forgetting. The SEFF method has a noticeable
effect over the weighted degree of graphs.

The degree and weighted degree of the ego are plotted in Fig. 6(c). Both the
values decreased with the increased forgetting, while the drop in weighted degree
is higher, this suggests that when we increased forgetting we decreased the tie
strengths but relatively maintained the ties. In Fig. 6(d) we see that the eccentric-
ity has a similar effect of diameter in the ego network graphs. This corresponds
to the conceptual relation between diameter and eccentricity. Closeness of the
ego with alters also decreased gradually with the increased forgetting factor. The
clustering coefficient of ego is too low to compare. The eigen vector centrality
portrays the important node in the network. SEFF preserves the importance of
ego along side forgetting.
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Fig. 8. Efficiency and effective size of ego networks

Figure 8 illustrates the effective size and efficiency of the ego networks. There
is negligible difference in the effective size of samples. Efficiency of the network
indicates the impact of ego in the network. In the given figure we can observe
that the efficiency of the network is maintained through out the samples using
SEFF. The measure of effective size of the network is not normalized with the
size of network, therefore it decreases with the average number of ties that each
alter has to other alters.

10 Conclusions

In this work, we analyzed the evolution of ego network for a period of one
month. We exploited the structural properties of network and related them with
the natural behavior of users. We also proved the densification law over the ego
networks of call graphs for a period of one month and found that the graphs are
densifying along time.

As we observed the properties of evolving ego network, we proposed a sam-
pling method with forgetting factor for streaming multi-graph networks which
preserves the density of graph and retains the tie strengths between nodes. We
evaluated our method by exploiting the ground truth of original graph vs samples
generated by varying parameter values. Based on the empirical experiments we
prove that our method maintains the importance and efficiency of the network
and decreases the redundancy while preserving most active and recent nodes
from the network.
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