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Abstract. We present and evaluate two different methods for building
spatio-temporal features: a propositional method and a method based
on propositionalisation of relational clauses. Our motivating applica-
tion, a regression problem, requires the prediction of the fraction of each
Portuguese parish burnt yearly by wildfires – a problem with a strong
socio-economic and environmental impact in the country. We evaluate
and compare how these methods perform individually and combined
together. We successfully use under-sampling to deal with the high skew
in the data set. We find that combining the approaches significantly
improves the similar results obtained by each method individually.

1 Introduction

Wildfires are an environmental hazard that affects severely most southern Euro-
pean countries, and Portugal in particular. Although nature relies on fire to
rejuvenate the forest, factors such as the introduction of non-indigenous species,
the rise of industrial forestry, rural depopulation, and climate changes have com-
pounded the problem [5], severely affecting the country’s finances and environ-
ment, and sometimes even causing human losses. Given a limited amount of
resources to address wildfires, a better understanding of the factors that lead to
fire events, and namely to severe fire events, is needed.

Toward this goal, data on wildfires and corresponding geographical context
has been continuously collected by several organisations, both at national and
at European level. This is an example of the novel environmental and socio-
economic databases that store data on entities and how these entities occupy
and transform a space while interacting with each other. Besides background
data on the entities or the location, such as a site’s topology or a country’s
administrative units, most data will be about the events of interest.

Given the size and complexity of the data, it would be difficult even for a highly
qualified expert to fully leverage it. Spatio-temporal data mining techniques offer
the promise of finding human-interpretable patterns (e.g., automatically learning
association rules), or of models that can be used to successfully predict unknown
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or future values based on a set of explanatory variables (e.g., regression models to
predict risk of fire). We focus on the latter. Dealing with both spatial and temporal
dimensions with this goal in mind presents numerous challenges as: (i) the dimen-
sions have different properties, (ii) relationships between spatio-temporal objects
are often fuzzy or implicit [1], (iii) multiple levels of granularity and of abstraction
of both dimensions impact results differently [27], and (iv) data is often volumi-
nous making scalability a concern.

Propositional data mining methods work on a single table, often assuming
that each instance in a data set has been independently sampled from the same
underlying distribution. In contrast, multi-relational methods explicitly consider
the complex nature of the data, often extending a corresponding propositional
approach in order to work on multiple tables from a relational database [12].
In [15], Malerba argues that relational approaches are particularly suited to
spatial data mining tasks since they can deal with heterogeneous spatial objects
and naturally represent a wide variety of relationships between them. We believe
the same argument can be made for spatio-temporal tasks.

Regarding wildfires, the goal will be to estimate the percentage of area burnt
(or burn fraction) of a pre-defined unit (in this case, a Portuguese parish) over
periods of one year. Moreover, we would like to differentiate major events, that
are hard to control, from smallish fire events, that are more frequent but have
little impact. To do so, we approach this problem as a regression task.

In order to construct the regression model, we follow the widely used app-
roach of encoding the relevant spatio-temporal information in the form of propo-
sitional features through a pre-processing step. These features can be obtained by
considering spatio and/or temporal properties in the data [6,18] or even learned
through propositional and/or relational techniques. This approach makes it pos-
sible to benefit from standard (propositional) prediction models that are both
efficient and easy to use.

In this work we present and evaluate two different methods for building
spatio-temporal features: a propositional method and a relational method based
on Inductive Logic Programming (ILP). We compare how these methods perform
individually and combined together. We evaluate performance quantitatively and
through the extra knowledge it provides. We also address the high skew in this
data set, i.e., the fact that the most important cases of higher burn fraction are
under-represented in the data, and demonstrate that under-sampling is quite
effective in improving model performance under these conditions.

We proceed to mention some examples of relational and propositional
approaches to spatio-temporal prediction that have already been proposed.
Purely relational approaches include methods based on ILP [16] and the use
of graphical models [4,23]. Propositional approaches include methods based on
clustering [3], combinations of spatial and temporal methods [11], extensions of
time series forecasting techniques such as ARIMA to account for spatial infor-
mation [20] and of spatial techniques such as GWR to transfer across time [2].
Further, propositional and relational approaches have been contrasted before in
a spatial associative classification setting [10].
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In the following section we present the data set we worked with. In Sect. 3
we describe the pre-processing approaches we applied, comparing their results.
Section 4 includes concluding remarks and future research directions.

2 Wildfires in Portugal

We proceed to describe the data set motivating our work. We also discuss the
pre-computation of spatial relationships below.

2.1 Data Set

Our motivating application is the evolution of wildfires across mainland Portu-
gal from 1991 to 2010.1 Spatially, we work at the civil parish level (there are
2882 of them). Our target variable is the percentage of a parish’s area burnt
yearly by wildfires. The variable is non-cumulative, i.e., an area burning multi-
ple times during the year is considered only once. We used 23 other numerical
variables with different temporal granularity as background knowledge (variables
measured only once are considered fixed; see Table 1).

Imbalanced Domain. The values taken by our target variable range from 0 %
(when no wildfire occurred throughout the year) to 99.8 % (see Fig. 1). The
distribution of values is imbalanced in a way that does not correspond to our
preference bias, that is, while we are most interested in accurately predicting
instances of high burn fraction, these cases are under-represented in the data
set. In fact, only about a third of the 57 640 instances have non-zero burn
fractions, while less than 9 % of cases present values of 5 % or above and only
0.5 % of cases have a burn fraction of 40 % or more.

Table 1. Explanatory variables used as background knowledge in our data set.

(%)

Road density
All roads

Fixed

Land cover

Eucalyptus

Fixed

Roads > 6m wide
Tall scrubland Roads < 6m wide

Small scrubland

Census data

Irrigable area
(%)

Decennial
(from 1989)

Broad-leaved forest Meadow area

Pinewood Bovine population density
(ha−1)Urban Ovine population density

Terrain

Maximum altitude
(m)

Caprine population density

Mean altitude Population density (ha−1) Decennial
(from 1991)

Maximum slope Population’s mean age (years)

Mean slope Population of age 65+ (%) Decennial
(from 2001)Housing density (ha−1)

1 Most data for this application (with the exception of census data downloaded
from ine.pt) provided by Dr. João Torres, researcher at CIBIO. Details regarding
data collection can be found in [26].

https://www.ine.pt/xportal/xmain?xpgid=ine_main&xpid=INE
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(a) Mean burn fraction. (b) Maximum burn fraction.

Fig. 1. Mean and maximum percentage of area burnt yearly per parish. Note that they
have different scales. Black lines delineate Portuguese districts.

2.2 Computing Spatial Relationships

Both pre-processing approaches we present require the computation of spatial
relationships in the data set. We made use of the PostGIS spatial extension to
a PostgreSQL database loaded with the shapefiles of the 2882 Portuguese civil
parishes in order to determine spatial neighbourhoods and border parishes.

Defining Neighbourhoods. Neighbourhoods for each parish consist of all
intersecting parishes, calculated using the PostGIS function ST Intersect (pre-
fix ST identifies PostGIS functions).

Neighbour Direction. The relative direction of a neighbour in relation to a ref-
erence parish, O, is taken into consideration in an effort to capture effects of
dominant winds affecting the spread direction of wildfires. This is not a straight-
forward problem, given the heterogeneous shapes presented by parishes. Our
solution is meant to be fast and easily computable. We first compute carto-
graphic azimuths using the parish of interest as reference and each neighbour’s
centroids (calculated with ST Centroid). The azimuth is given clockwise relative
to the north, resulting in the following definition:

neighbour direction =

⎧
⎪⎪⎨

⎪⎪⎩

east if az ∈ [45, 135[ ◦

south if az ∈ [135, 225[ ◦

west if az ∈ [225, 315[ ◦

north if az ∈ ([315, 360] ∪ [0, 45[) ◦
(1)

where az is the result of applying the PostGIS function ST Azimuth to the cen-
troids of a reference parish and one of its neighbours.
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(a) Neighbour direction. (b) Simplified borders.

Fig. 2. On the left, a parish’s neighbourhood divided by cardinal directions. Red dots
represent the parishes’ centroids. The red lines centred at the reference parish, O, divide
the neighbourhood in four directions. According to this division, O has no western
neighbours. A and B are its northern neighbours; E and D, southern neighbours; and
C, an eastern neighbour. On the right, coloured lines define simplified borders between
O and each of its neighbours. (Color figure online)

Issue. The example in Fig. 2a illustrates a problem in our proposal. While it
is clear O shares borders with neighbours A and E in the western direction,
no western neighbour is found since their centroids fall under the northern and
southern subspaces. Our propositional approach mitigates this by the way it fills
in missing spatio-temporal indicators (Sect. 3.2), while the relational approach
relies on the explicit neighbourhood relationship itself (Sect. 3.3).

3 Predicting Wildfires

In the following sections, we define our problem clearly and detail the different
steps involved in each pre-processing methodology, as well as steps common to
both approaches.

3.1 Problem Definition

Predictive data analysis tasks face the problem of approximating an unknown
function Y = f(X1,X2, . . . , Xp) mapping values of a set of predictors or explana-
tory variables, X, into the values of a target variable, Y , where the approximation
is called the model.

In a spatio-temporal setting, the aim is to predict values at different times
and locations. In this work, we aim at forecasting future values given past
information from neighbouring locations in the past. Consider a data set
D = {{y1

1 , x
1
a1

, . . . , x1
p1

}, . . . , {ym
n , xm

an
, . . . , xm

pn
}} where yl

t and xl
it

correspond,
respectively, to the values of the target variable Y and explanatory variables Xi

at geographical location l and time t. The goal is to predict the value of Y at a
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location of interest, s, at a future time, k, given the observed values yl
t and xl

t,
such that t < k.

3.2 Propositional Pre-processing Approach

The pre-processing stage of our propositional approach can be divided into two
steps: calculation of spatio-temporal indicators and imputation of missing data.

Building Spatio-Temporal Indicators. We build two types of indicators:
purely temporal, and spatio-temporal. A purely temporal indicator (or, self-
indicator) is obtained by calculating the Exponential Moving Average (EMA)
of n past values of the target variable for the reference parish in the previous
9 years. We also build spatio-temporal indicators, inspired by the work of [18],
considering historical values of the target variable for direct neighbours located
at each cardinal direction in the previous 5 years. We compute the indicator for
a particular direction in two steps. First, we calculate the EMA (with ratio 2

n+1 )
of the target variable for each neighbour whose centroid falls in that direction.
Then, if there is more than one, a weighted mean of these values is calculated.

Weighing Neighbours. The weights above are designed to roughly approximate
the risk of exposure of a parish to wildfire spread from each neighbour. The
strength of connection between neighbours could be directly measured by the
fraction of the border shared with them. However, meandering borders can easily
increase in length without proportionately increasing the degree of exposure of
the reference parish to wildfires originating in that particular neighbour. There-
fore, we define a simplified border as the maximum distance between any two
points of the intersection using ST MaxDistance (see Fig. 2b). The weight of a
neighbour is the length of its simplified border divided by the sum of the lengths
of the simplified borders of all neighbours in that direction.

Issues. Weighting a neighbour’s EMA in this fashion raises a problem: the cen-
troid of a neighbour may fall in a subspace of a certain direction while most of
its border with the reference parish belongs to another. However, since we do not
have information regarding which portion of a neighbour was burnt (whether it
was close to the border or not), and the level of temporal and spatial granularity
of our data is low, these approximations are still reasonable.

Filling in Missing Data. In order to use standard learning algorithms, we
pre-selected reasonable procedures to fill in missing data. First, independent
spatial-only Inverse Distance Weighting (IDW) (as implemented in [19]) is used
to fill in values missing due to unavailability of spatial data (2.8 % of all cells).
Next, missing values due to heterogeneous temporal granularity (20.6 % of all
cells) are filled in with the latest measurement as there are not enough points
to meaningfully smooth over values. Finally, spatio-temporal indicators missing
due to no neighbour centroids falling within a certain direction (6.8 % of all cells)
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are filled in with zero if the parish borders with the sea/ocean or the average of
the two contiguous directions, otherwise.

3.3 Relational Pre-processing Approach

The relational approach we propose follows three steps: first, we rely on the
clause search mechanism implemented in the Aleph ILP system [22]; we then
propositionalise by associating each clause to a different attribute; last, we con-
struct the attribute examples table. In this table, given an example e and a
clause (attribute) i, e[i] = 1 if the clause is true for the instance, and e[i] = 0
otherwise. This approach has been used before in diverse contexts, including spa-
tial classification [10]. Although Aleph searches for clauses that are optimized to
perform well for binary classification, we hypothesise that standard regression
algorithms such as Support Vector Regression machines (SVRs) can successfully
use the binary features representing interesting clauses to accurately approxi-
mate the numerical values of the target variable.

Background Knowledge and Examples

Explanatory Attributes. In order to use Aleph, each explanatory attribute was
converted into a binary (if fixed) or ternary (if time-varying) Prolog predicate.

Spatial Relationships. Spatial relationships are expressed by the following
predicates: neighbour(Parish, Neighbour) where recursion on Neighbour
is avoided, neighbourDirection(Parish, Neighbour, Direction) where
Direction is defined in Sect. 2.2, and border(Parish, Object) where Object
can take the values sea or spain.

Temporal Relationships. We use the number of years past since a wildfire last
affected a certain parish. This is represented by a pair of predicates: yearsSince
FireLE(Parish, Year, TimeDist) and yearsSinceFireGE(Parish, Year,
TimeDist), which are true if by Year the Parish has suffered a wildfire TimeDist
or less years ago, or TimeDist or more years ago, respectively. We use two defin-
itions, conditioned on TimeDist being a variable: the first holds when TimeDist
in unbound, and is used in Aleph’s saturation step; the second, is always called
with the argument bound to one of the values found during saturation (TimeDist
is a constant).

Additional Predicates. Since Aleph does not deal with numerical attributes
directly, auxiliary predicates were designed. That is, each time-varying attribute
had a corresponding attributeLE(Parish, Year, Value) and attributeGE
(Parish, Year, Value) meaning that the value of attribute in Parish mea-
sured in or before Year is lesser or equal (or greater or equal) to Value. Similar
predicates attributeLE(Parish, Value) and attributeGE(Parish, Value)
were created for fixed attributes.
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Examples. The predicate at the head of clauses is burnt(Parish, Year), where
a positive example is a Parish burnt more than 5 % in a given Year.

Clause Search and Selection. The standard Aleph command induce/0 is not
appropriate in this context. Instead, we devise our own method of clause search
and selection. We set clause cost (used for generalisation on the reduction step)
to be the Fβ-measure defined as

Fβ-measure = (1 + β2) · precision · recall

(β2 · precision) + recall
. (2)

First, we randomly chose an example as the seed for search. We then generate
clauses until a certain threshold is reached. Instead of trying to find a theory
covering all examples, we store each and every clause that has been the best
so far for each saturated example according to our chosen metric. In the style
of Gleaner [13], we experimented with different values of β for the Fβ-measure,
trying 60 random seed examples for each β ∈ {0.75, 0.9, 1.0, 1.1, 1.25}. Note
that this requires that the clause found to be the best so far be reset every
time we change the value of β. By varying β, we hope to add some diversity to
our discovered clauses, while keeping it around 1.0 assigns similar importance to
their precision and recall. We set the Aleph parameters controlling the maximum
number of layers of new variables and nodes to 3 and 7500, respectively.

Propositionalisation. Having found the clauses, a Prolog program converts
the stored clauses into a CSV file with rows corresponding to instances and
columns to clauses. This program is capable of filtering out clauses that are
exact repetitions of others, but cannot filter clauses that are even extremely
similar except for some minor change in a constant numeric literal, for example.

3.4 Common Steps

After the pre-processing methods described in Sects. 3.2 and 3.3, we apply a
re-sampling technique that aims to deal with the imbalanced target domain as
an extra pre-processing step. The learning algorithms used and post-processing
steps are also shared by both approaches.

Re-sampling. Several pre-processing techniques exist to tackle the problem
of imbalanced domains that do not correspond to the user’s preference bias.
Re-sampling techniques are quite effective and have the advantage of having
already been proposed for both classification and regression [9], working equally
well with numerical and categorical attributes. Besides balancing the domain,
under-sampling reduces the dimensionality of the data set by removing instances
of the most common class (or range of values), mitigating scalability issues in
the process. We pre-selected the re-sampling technique for regression proposed
by [25] as implemented in [8]. This method automatically calculates the amount
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(a) Relevance function (full black line)
used for re-sampling technique and perfor-
mance metrics adapted to regression under
imbalanced domains. Note that the thresh-
old of relevance (dashed red line) coincides
with 5% of burnt area. Below, a visual rep-
resentation of instances across the domain
(most are concentrated at 0%).

(b) Contour map of regression
utility. The x-axis shows predicted
values (Ŷ ) for true values (Y ) in
the y-axis. Colouring and contour
lines map the utility of each pre-
diction as defined by the relevance
function φ pictured on the left.

Fig. 3. Relevance function and resulting regression utility map. (Color figure online)

of under-sampling needed to balance the domain, given a user-specified rele-
vance function for the target’s domain and a threshold of relevance below which
instances can be removed. We have settled on the function shown in Fig. 3a with
a relevance threshold of 0.5, corresponding to 5 % of burnt area. This relevance
function is also used for performance evaluation in Sect. 3.5.

Modelling and Post-processing We applied the Random Forest (RF) and
SVR algorithms, as implemented in [14] and [17], respectively, to our transformed
data sets. The predictions were then forced into the range of our target variable.

3.5 Experimental Analysis

The main goal of our experimental analysis is to compare the results obtained
by standard regression models on our data set after a propositional versus a
relational pre-processing approach. We also test if a combination of the two pre-
processing approaches results in improved predictions of burn fraction. We try
to provide insight into the effect of different variables in the results. Further, we
assess the impact of the re-sampling step mentioned in Sect. 3.4.

Experimental Setup Standard metrics such as Mean Squared Error (MSE)
are not well equipped to deal with domains where the user preference bias does
not correspond to the target domain distribution as in our case [9]. Therefore, we
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evaluate the quality of our numeric predictions using F1-measureR, which is the
standard F1-measure (2) calculated using the following definitions of precision
and recall2, adapted to utility-based regression [7],

precisionR =

∑

φ(ŷi)>tR

(1 + ui)

∑

φ(ŷi)>tR

(1 + φ(ŷi))
, recallR =

∑

φ(yi)>tR

(1 + ui)

∑

φ(yi)>tR

(1 + φ(yi))
(3)

where φ is the relevance function (depicted in Fig. 3a), tR is a relevance thresh-
old (set to 0.5), and u is a function of utility of a prediction (defined in [21])
depending on the numeric error of the prediction and the importance of both
the predicted ŷ and true y values (see Fig. 3b). Moreover, we measure the time
spent pre-processing data, training and testing models.

In order to obtain reliable estimates of these metrics, we divide the data
set into 10 pairs of sliding training and test sets, and calculate statistics of the
results over them. We train our methodologies on data for a stretch of 8 years
(23056 instances), and test them in the following 3 years (8646 instances). The
first training set starts in 1991 and the last in 2000.

We repeat the experiments for each pre-processing approach (and their com-
bination) with and without the under-sampling step3. We test for statistical
significance in difference of performance using the Wilcoxon signed-rank test.

Results and Discussion. Tables 2 and 3 summarise the results obtained. For
each setup described above, we only show the results achieving the highest F1-
measureR after grid search parameter optimisation. The propositional and the
relational pre-processing approach both obtain very similar results, behaving
well when the under-sampling step is performed. However, the best results are
obtained by the combination of the two methods, with statistical significance in
terms of F1-measureR (as determined by pairwise comparisons with this app-
roach as baseline). This seems to validate the incorporation of both approaches
when dealing with this kind of data sets, although there is an obvious trade-off
on pre-processing and training time when adopting a relational approach. Note
also, that in terms of recall, this combination of approaches does not work signif-
icantly better than simply applying either approach individually; and in terms of
precision, it is also not significantly better than using a relational approach only.
The fact that the relational approach works so well, with results competitive
with or even better than the propositional approach, confirms our hypothesis
that it is possible to build a good regression model by applying a standard algo-
rithm to a table with a numerical target variable and Boolean features optimised
for classification (of the categorised target variable).

Moreover, it is clear that under-sampling not only greatly improves the pre-
dictive ability of the models, but also decreases the training time needed to build
the model. On average, the under-sampling methodology used reduces the train-

2 Implemented in R package uba (http://www.dcc.fc.up.pt/∼rpribeiro/uba/).
3 Using R package performanceEstimation [24].

http://www.dcc.fc.up.pt/~rpribeiro/uba/
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Table 2. Median (med) and interquartile range (IQR) of results obtained with each
methodology. The best results for each pre-processing method are in italic, while the
best results overall are in bold. The Wilcoxon signed rank test was used to obtain
p-values of the differences in performance with the best approach as baseline (bold
p-values mean that the difference is statistically significant).

PrecisionR RecallR F1-measureR

Method Re-sample Model med±IQR p-val. med±IQR p-val. med±IQR p-val.

Propositional
None

RF 0.70 ± 0.13 (0.002) 0.22 ± 0.13 (0.002) 0.33 ± 0.13 (0.002)
SVR 0.68 ± 0.10 (0.002) 0.49 ± 0.10 (0.002) 0.56 ± 0.10 (0.002)

Under
RF 0.81 ± 0.13 (0.002) 0.67 ± 0.13 (0.002) 0.72 ± 0.13 (0.002)
SVR 0.84 ± 0.07 (0.002) 0.76 ± 0.07 (0.01) 0.80 ± 0.07 (0.002)

Relational
None

RF 0.71 ± 0.12 (0.002) 0.18 ± 0.12 (0.002) 0.29 ± 0.12 (0.002)
SVR 0.68 ± 0.09 (0.002) 0.50 ± 0.09 (0.002) 0.57 ± 0.09 (0.002)

Under
RF 0.80 ± 0.09 (0.002) 0.58 ± 0.09 (0.002) 0.66 ± 0.09 (0.002)
SVR 0.85 ± 0.06 (0.02) 0.76 ± 0.06 (0.04) 0.80 ± 0.06 (0.002)

Propositional
+ Relational

None
RF 0.72 ± 0.11 (0.002) 0.22 ± 0.11 (0.002) 0.33 ± 0.11 (0.002)
SVR 0.70 ± 0.10 (0.002) 0.52 ± 0.10 (0.002) 0.59 ± 0.10 (0.002)

Under
RF 0.80 ± 0.12 (0.002) 0.65 ± 0.12 (0.002) 0.70 ± 0.12 (0.002)
SVR 0.85 ± 0.06 – 0.77 ± 0.06 – 0.81 ± 0.06 –

Table 3. Median and IQR of time taken per observation, in seconds, by various
methodologies. The pre-processing time shown for propositional approaches includes
time spent calculating spatio-temporal indicators and imputing missing data; for rela-
tional approaches, it includes time spent finding clauses using the Aleph system
and converting them to propositional form (but not time spent encoding auxiliary
predicates). Both exclude time spent computing spatial relationships, but include re-
sampling time when appropriate. Since part of the pre-processing was performed on
the data set as a whole, we omit its IQR.

Method Re-sample Model Pre-proc. Training Testing Total time

Propositional
None

RF 2.2e-3 5.8e-1 ± 6e-2 8.0e-4 ± 4e-4 5.8e-1
SVR 1.7e-3 8.5e-3 ± 5e-4 6.7e-4 ± 7e-5 1.1e-2

Under
RF 6.8e-3 2.6e-2 ± 6e-3 3.3e-4 ± 6e-5 3.3e-2
SVR 3.1e-3 1.8e-4 ± 6e-5 2.1e-4 ± 4e-5 3.5e-3

Relational
None

RF 1.7 2.1e-1 ± 7e-2 3.6e-4 ± 7e-5 1.9
SVR 1.7 2.0e-2 ± 1e-2 2.7e-3 ± 6e-4 1.7

Under
RF 1.7 2.2e-2 ± 6e-3 5.0e-4 ± 4e-4 1.7
SVR 1.7 6.0e-4 ± 1e-4 7.0e-4 ± 2e-4 1.7

Propositional
+ Relational

None
RF 1.7 1.5e-1 ± 2e-2 2.8e-4 ± 5e-5 1.9
SVR 1.7 7.0e-2 ± 1e-2 6.0e-3 ± 2e-3 1.8

Under
RF 1.7 1.9e-2 ± 7e-3 3.2e-4 ± 8e-5 1.7
SVR 1.7 1.0e-3 ± 3e-4 1.0e-3 ± 1e-3 1.7
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ing sets to 20 % of their original size, but increases the F1-measureR obtained
by RFs and SVRs by 118 % and 42 %, respectively.

Furthermore, SVRs consistently (and significantly) outperformed RFs. SVR
presented higher susceptibility to parameter tuning, as evidenced by the fact
that, when using default parameters, RF routinely outperformed SVR (these
results are omitted in favour of those obtained after parameter optimisation).

Figure 4 allows us to examine the spatial distribution of results. We should
remark that some parishes have zero or very low numbers of wildfires that exceed
the minimum threshold in the considered time period. In this case, one error may
have a disproportionate impact on our measure, as it can be observed in areas
such as the center-south Alentejo region and highly urbanised areas such as Lis-
bon metro area. The higher average F1-measureR per parish, depicted in Fig. 4a,
is strongly (and positively) correlated with the average historic and neighbour-
hood values of the target variable itself, i.e., with our spatio-temporal indicators.
This is not too surprising considering their higher level of temporal granularity
but, coupled with the fact that they also achieve the highest RF importance
(computed from permuting OOB data), still validates our propositional app-
roach. This strong correlation is closely followed by positive correlations with
mean altitude and slope, percentage of area covered by scrubland and caprine
population density. Negative correlations were topped by mean percentage of
urbanised area, housing, population and road density. We believe the negative
correlations are explained by the very few cases of wildfires in urban regions (our
data set does not include house fires) as discussed above. By examining Fig. 4b,
we can see that although parishes benefiting from the use of each pre-processing
approach on its own differ, they are similarly distributed across regions.

(a) Best F1-measureR. (b) Differences of performance.

Fig. 4. On the left, best average F1-measureR overall per parish (obtained by the
combination of propositional and relational pre-processing approaches). To the right,
the categorised difference of average F1-measureR per parish obtained by the best
propositional only (in the middle) and relational only (on the right) approaches in
relation to the combination of approaches on the left. A negative difference means that
the combination of approaches, on average, performs better in that parish. Note that
these were obtained using under-sampling and SVR.
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Note that the propositional feature space is the same for every training set
(29 explanatory variables), while the number of features used by the relational
approach depends on the number of clauses found, ranging from 39 to 89 binary
features, with a median of 67 features – more than double the amount for the
propositional approach. Below, we present two interesting examples of clauses
found on the first and last training sets, respectively:

burnt ( ParishA , Year ) :−
yearsSinceFireGE ( ParishA , Year , 2 ) ,
ne ighbourDi rec t i on ( ParishA , ParishB , west ) ,
yearsSinceFireGE ( ParishB , 2 ) .

burnt ( ParishA , Year ) :−
maxAltitudeGE ( ParishA , 507) ,
n e i hgbou rd i r e c t i on ( ParishA , ParishB , south ) ,
yearsS inceFireLE ( ParishB , Year , 5 ) .

They can be written as “A parish burned if it has a western neighbour and both
of them hadn’t burnt for at least a year” and “A parish burned if its maximum
altitude was higher than (or equal to) 507m and it has a southern neighbour
that burnt at least once in the last five years”. Both clauses include temporal
predicates as well as information on a parish’s neighbours. For a notion of the
coverage of these clauses, see Fig. 5. The clauses appear, respectively, on the top
30 and top 50 most important features (according to RF importance) when using
under-sampling and a combination of propositional and relational approaches
(top 15 and top 10 if using relational only).

Overall, the propositional and relational approaches obtain very good (and
similar) results. Although the relational approach performs slightly better in
some cases, it requires longer processing times. The results are significantly
improved by combining both strategies, which is interesting.

Fig. 5. Spatial coverage of example relational clauses ordered from left to right. Cov-
erage is defined as the number of years for which only the body of the clause is true
subtracted from the total number of years that the whole clause is true for each parish.
If the body of the clause is always false, the parish is left white.
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4 Conclusion

In order to predict the annual burn fraction of Portuguese parishes, we com-
pared two approaches that encode spatio-temporal information in propositional
form, each using different pre-processing methods, so that standard regression
algorithms can be used. The fully propositional approach builds spatio-temporal
indicators considering simplified borders. The relational one, uses an ILP sys-
tem to find relational clauses that can be transformed into binary features. Both
used a notion of spatio-temporal neighbourhood including spatial direction and
an utility-based re-sampling technique to deal with this imbalanced domain.
Further, we compared each method with a combination of both.

In spite of the features produced by the relational approach having been
optimised for classification, the results obtained by the former method are still
competitive with (and sometimes slightly better than) the propositional app-
roach in this regression task. Propositional features are, however, much faster to
compute. Despite both strategies behaving well after under-sampling, they still
perform significantly worse than their combination.

Future work includes exploration of other propositional clustering-based
approaches (such as [3]) and graphical modelling techniques (such as Markov
Logic Networks), and their application to different data sets. We also plan on
investigating whether our results transfer between different countries.
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