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Abstract. In modern software development, finding and fixing bugs is
a vital part of software development and quality assurance. Once a bug
is reported, it is typically recorded in the Bug Tracking System, and
is assigned to a developer to resolve (bug triage). Current practice of
bug triage is largely a manual collaborative process, which is often time-
consuming and error-prone. Predicting on the basis of past data the
time to fix a newly-reported bug has been shown to be an important tar-
get to support the whole triage process. Many researchers have, there-
fore, proposed methods for automated bug-fix time prediction, largely
based on statistical prediction models exploiting the attributes of bug
reports. However, existing algorithms often fail to validate on multiple
large projects widely-used in bug studies, mostly as a consequence of
inappropriate attribute selection [2]. In this paper, instead of focusing
on attribute subset selection, we explore an alternative promising app-
roach consisting of using all available textual information. The problem
of bug-fix time estimation is then mapped to a text categorization prob-
lem. We consider a multi-topic Supervised Latent Dirichlet Allocation
(SLDA) model, which adds to Latent Dirichlet Allocation a response
variable consisting of an unordered binary target variable, denoting time
to resolution discretized into FAST (negative class) and SLOW (positive
class) labels. We have evaluated SLDA on four large-scale open source
projects. We show that the proposed model greatly improves recall, when
compared to standard single topic algorithms.
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1 Introduction

In recent years, with the increasing complexity of software systems, the task of
software quality assurance has become progressively more challenging. In mod-
ern software development, software repositories are specialized database storing
the output of the development process. The large-scale and partially unstructured
data stored in these facilities are often not fully suited to traditional analysis meth-
ods [27]. A major role is played by finding and fixing bugs, which is a vital part
of software development and quality assurance to such an extent that it has been
estimated that software companies spend over 45 percent of their costs in fixing
bugs [21,27]. The largest and most complex software projects are most often sup-
ported by a specialized database known as Bug Tracking System (BTS), used by
quality assurance personnel and programmers to keep track of software problems
and resolutions. Once a bug is reported, it is typically recorded in the BTS, and
is assigned to a developer to resolve (bug triage). Current practice of bug triage is
largely a manual collaborative process, in that the triager first examines whether
a bug report contains sufficient or duplicated informations, then she/he confirms
the bug and sets severity and priority, and finally decides who has the expertise
in resolving it. Any such process is expected to be costly and inaccurate when the
number of bug reports is large. For example, [12] report that empirical studies on
Eclipse and Mozilla show that 37 %—44 % of bugs have been re-assigned (tossed)
at least once to another developer. As there are many bug reports requiring reso-
lution and potentially many developers working on a large project, it is non-trivial
to assign a bug report to the appropriate developers.

For the reasons above, predicting on the basis of past data the time to fix a
newly-reported bug has been shown to be an important target to support the
whole triage process (and, in particular, to make the assignment more effec-
tive), and hence to help project managers to better estimate software mainte-
nance efforts and improve cost-effectiveness [29]. Broadly speaking, bug fix-time
is defined as the calendar time from the triage of a bug to the time the bug
is resolved and closed as fixed [19]. Many researchers have proposed methods
for automated bug-fix time prediction, largely based on machine learning tech-
niques. Most of existing approaches are building prediction models based on
the attributes of bug reports. For example, [20] used a historical portion of the
Eclipse Bugzilla database. The predictor variables consisted of selected fields
included, at time of confirmation, in the textual description of bugs reports.
Several data mining models were then built and tested, using a nominal target
class based on discretized time to resolution on a logarithmic scale. A logis-
tic regression classifier provided the best classification accuracy of 34.5%. In a
similar fashion, [11] combined the attributes of the initial bug report with post-
submission information. Bugs reports in the training set were classified into fast
and slowly fixed. Not surprisingly, they found that post-submission data of bug
reports improved their prediction model based on decision tree analysis. See also
[29], where further studies are reviewed in greater depth.

Despite these apparently positive findings, [2] showed how existing models
fail to validate on multiple large projects widely-used in bug studies, indicating
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a poor predictive accuracy comprised between 30 % and 49 %. In addition, it
was found that there was no correlation between the probability that a new bug
will be fixed, bug-opener’s reputation and the time it takes to fix a bug. These
findings show that we must be able to identify attributes which are effective
in predicting bug-fix time. On the other side, instead of focusing on attribute
subset selection, an alternative promising approach consists of using all available
textual information. The problem of bug-fix time estimation is then mapped to a
text categorization problem. A new bug report is classified to a set of discretized
time to resolution classes (discretized bug-fix time), based on a classifier which
is trained using historical data.

Traditional text categorization techniques establish the relationship between
a set of predefined categories and their respective documents by analyzing doc-
ument contents. This class of models can be unified under the assumption that
each textual bug report exhibits exactly one probability distribution over strings
drawn from some vocabulary of terms [17]. This assumption is often too limit-
ing to model a large collection of textual bug reports. In standard unsupervised
Latent Dirichlet Allocation (LDA) each word in a document is generated from
a Multinomial distribution conditioned on its own topic, which is a probability
distribution over the terms in the vocabulary representing a particular under-
lying semantic theme [3]. However, as our main objective is to predict bug-fix
time, we consider a supervised Latent Dirichlet Allocation (SLDA) model [4,28],
which adds to LDA a response variable consisting of an unordered binary target
variable, denoting time to resolution discretized into FAST (negative class) and
SLOW (positive class) class labels. We have evaluated SLDA on four large-scale
open source projects (see Sect. 4 for in-depth details). We show that the proposed
model greatly improves recall, when compared to single topic algorithms.

The remainder of the paper is organized as follows. Section 2 describes how
our model collects the data. Section 3 deals with the methods used in our pre-
diction models. Section 4 presents the empirical study and the results. Section 5,
finally, draws the conclusions.

2 Data Collection

Data collection is the first step of bug-fix time prediction process, whose overall
conceptual design is shown in Fig. 1. Our design is largely application indepen-
dent, albeit we will use the open source BTS Bugzilla for the actual imple-
mentation [7] (see also Sect.4 for further details). First, data gathering consists
of selecting only those historical bug records which are sensible to predict dis-
cretized time to resolution of previously unseen bugs. In other words, we select
textual reports of resolved and closed bugs only, whose Status field has been
assigned to VERIFIED, as well as Resolution field has been assigned to FIXED.

As we said before, our approach maps the prediction problem into a text cat-
egorization task. Hence, once the relevant textual bug reports have been selected,
we consider the content of the following fields (which are first extracted and then
re-collapsed into a single text identified by a unique Id, and used as input for
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- Data collection
‘ Bug report selection ‘

‘ Field extraction and re-collapse ‘

Data splitting: /—\
training and test set creation Learning and

l severity prediction
\‘ Test set information filtering ‘ Bug-fixing time
discretization
‘ (SLOWI/FAST)
‘ Pre-processing l

‘ Text pre-processing ‘ Classifier training |

‘ Feature (term) selection ‘ Test set prediction
(severity)
Binary 0/1
‘ Document-term matrix creation TF ‘
TF-IDF [ Accuracy evaluation ‘

Fig. 1. Conceptual design of bug-fix time prediction process.

the subsequent phase described in Subsect. 3.1): Product (a real-world product,
identified by a name and a description, having one or more bugs). Component
(a given subsection of a Product, having one or more bugs). Short_desc (a one-
sentence summary of the problem). First_priority (priority set by the user
who created the report. The default values of priority are from P1, highest, to
P5, lowest). First_severity (severity set by the user who created the report.
This field indicates how severe the problem is, from blocker when the appli-
cation is unusable, to trivial). Reporter (the account name of the user who
created the report). Assigned to (the account name of the developer to which
the bug has been assigned to by the triager, and responsible for fixing the bug).
Days_resolution (the calendar days needed to fix the bug). Priority (priority
set either by the triager or a project manager). Severity (severity set either by
the triager or a project manager). First_comment (the first comment posted by
the user who created the report, which usually consists of a long description of
the bug and its characteristics). Comments (subsequent comments posted by the
Reporter and/or developers endowed with appropriate permissions, which can
edit and change all bugs fields, and comment these activities accordingly).

We discarded a few fields, such as Number_of _activities, CC_list, Status
and Resolution. For example, Number_of activities is an integer value that
would surely be removed during pre-processing steps, required to transform a
raw text into a bag-of-word representation (see Sect. 3.1 and Fig. 2). Both Status
and Resolution have been discarded because these fields have already been used
for bug report selection, and they have always been assigned values VERIFIED
and FIXED respectively. Finally, field CC_1list contains a list of account names
who get mail when the bug changes, and it is has been discarded because it
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has not been assigned any value in the great majority of cases. We also want
to highlight that Days_resolution has been calculated as the number of days
between the date the bug report has been assigned to a developer, and the
date the Resolution field has been assigned to FIXED for the last time. This
datum may be a very inaccurate estimate of the actual time spent on bug fixing,
especially when developers of open source projects are considered (because of
their discontinuous work patterns, for example during the weekend and/or their
free time). Unfortunately, we cannot trace the actual time spent on a bug fixing,
and provide a more accurate estimate expressed in person-hours.

When data collection and field extraction are complete, we randomly split the
dataset into a training and a test dataset (given a fixed split percentage). This
operation must necessarily take place after field extraction, because we have to
filter out all post-submission information from test set. In fact, test instances sim-
ulate newly-opened and previously unseen bugs, and this makes compulsory to
delete some of previously extracted fields that were not actually available before
the bug was assigned. In particular, the deleted fields were Priority, Severity
and Comments. On the contrary, fields First_priority, First_severity were
not deleted, as they have been assigned a value by the user who created the
report.

We want also to highlight that our design envisages that historical bug-
fix times are discretized into two classes, conventionally labelled as SLOW and
FAST. The SLOW labels indicates a discretized bug-fix time above some fixed
threshold in right-tail of the empirical bug-fix time distribution. We also assume
that SLOW indicates positive class, hence SLOW being the target class of our
prediction exercise. In fact, we are interested in increasing the number of true
positives for the positive class. In other words, over-estimation of bug-fix times
can be considered as a less severe error than under-estimation.

3 Methods

3.1 Pre-processing Textual Description of Bug Reports

The forecasting models that we will use to predict bug-fix times are based on
the representation of a document in terms of a bag-of-words. In this simplified
representation, both the grammar and the order of occurrence of the words are
not relevant. It is only relevant whether a term occur or not, as well as how
many times it occurs in a textual description reproducing the bug.

A number of pre-processing steps are therefore necessary to convert the raw
text into a bag-of-words representation. The steps followed in this paper, shown
in Fig. 2, are quite common and well described in the literature on text catego-
rization and Natural Language Processing (NLP; see, for example, [17]). The final
goal is to precisely define a vocabulary of terms V', for example by eliminating
those words that are very commonly used in a given language and focusing on the
important words instead (stop word removal), or reducing inflectional forms to
a common base form and then heuristically complete stemmed words by taking
the most frequent match as completion (stemming and stem completion).
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Two points appears to be particularly interesting and worthy of further eluci-
dation. The first is that probabilistic text modeling is often done ignoring multi-
word expressions that in specific contexts are given specific meanings. This issue
is particularly relevant for textual descriptions of software defects, and ignor-
ing it can lead to sub-optimal outcomes for a numbers of reason that are well
described in [6]. The algorithm we have followed for detecting multi-words is a
modification of a very simple heuristic introduced by [14]. The detection consists
of the following steps:

1. Tokenize the text into bigrams (sequences of two adjacent words) and store
candidate bigrams whose frequency of occurrence in the text is >3.

2. Pass the set of candidate bigrams through a part-of-speech (POS) filter.

3. Only let through the POS filter those part-of-speech patterns that are likely to
be phrases, such as JJINN (Adjective+Noun, singular or mass, using the syn-
tactic annotation scheme implemented by the Penn Treebank Project [18]).
Ten predetermined patterns have been used to identify likely multi-words.

Surprisingly, the proposed algorithm has shown a reasonable accuracy in finding
multi-words of more than two words (results will be published elsewhere).

/ Text pre-processm

[ Convert characters to lower-case | [ Stem completion |
‘ Remove URLs | ‘ Stemeing |
| t
‘ Remove special characters | l Multi-word detection |
| t
[ Remove punctuation marks | [ Remove stop words I
| |

\ Remove numbers |—>{ Remove residual dashes )

Fig. 2. The process of transforming a raw textual bug description into a bag-of-words.

Once text pre-processing has been completed, term selection is often neces-
sary as it may even result in a moderate increase in predictive accuracy, depend-
ing on the classifier used and other factors [25]. In our approach, terms are sorted
(from best to worst) according to their estimated normalized expected mutual
information (NEMI, [17]) with the discretized time to resolution (SLOW/FAST).
We only include terms which have a NEMI greater than the average NEMI, ensur-
ing that terms almost approximately independent with the target class label are
omitted.
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The final pre-processing step consist of building, under different weighting
schemes (see Fig.1), the documents-terms arrays that will be used as inputs
for the classification algorithms described in the following sections. Any global
pre-processing parameters determined on the training data (such the number
of documents that contain a given word) were subsequently applied to the test
documents.

3.2 Prediction of Bug-Fix Times Based on Standard Text
Categorization Models

As we said before, automated approaches to bug-fix time prediction, based
on text-mining and machine-learning techniques, are not new [29]. One com-
mon generative model for a textual content is the Multivariate Bernoulli model
(MB), which generates an indicator for each term of the vocabulary |V|, either
1 indicating presence of the term in the text or 0 indicating absence [17,26].
This amounts to assume that each document is represented as a binary vector
e1v| = (e1,...,ey|) of dimensionality [V|. For each bug report and indepen-
dently of each other, the MB model assumes the following generative process,
based on a Naive Bayes conditional independence assumption:

1. Choose a discrete unordered label variable y (SLOW/FAST) from a discrete
probability distribution.

2. For each word in V (i.e. for ¢ = 1,...,|V]) and independently of each
other, choose a value of the indicator e; from a Bernoulli distribution,
et|y ~ Bernouilli(r;), where m; = P (e; = 1|y) is the probability that the word
represented by e; will occur at least once in any position, in a bug report
labelled with severity y.

It is worth noting that we have suppressed writing the document index d. MB
model implicitly relies on a bag-of-word assumption, and the natural input
used by the model consists of a binary document-term incidence matrix (DTM).
Hence, documents are modeled as a realization of a stochastic process, which is
then reversed by standard machine learning techniques that return maximum-
likelihood estimates of the posterior probabilities of a document (bug) d being
in class y. Such estimates are in turn used for predicting discretized time to
resolution y of newly-opened bugs. Despite its improved performance compared
to the MB model, due to the incorporation of frequency information, we will
not explicitly consider the Multinomial Naive Bayes (MNB) model. Indeed, the
supervised multi-topic model described in some detail in the next section, con-
tains as a special case a supervised unigram model which is largely equivalent
to the MNB model.

As an alternative way of considering the frequency of term occurrence in
a document, we will use the Vector Space model (VS), with documents being
represented as vectors in R!VI [24]. The DTM can be weighted using the term
frequency TF;4 of word ¢ in document d, as well as the term frequency—inverse
document frequency TF-IDF,; = TF;4 x IDF;, which dampens the effects of local
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term-document counts. As usual, the inverse document frequency of word ¢ is
defined as IDF; = log (|D|/DF;), where |D| is the number of documents in the
training collection, and DF; is the number of documents in D that contain the
word t (document frequency). Using the vector-space approach, the documents
of the training set correspond to a labeled set of points in an |V|-dimensional
space. As state-of-the-art vector-based text classification algorithm [13,23], we
will consider in Sect.4 a non-linear Support Vector Machine (SVM) with soft
margin classification.

3.3 Prediction Based on Supervised Latent Dirichlet Allocation

Models introduced so far limits each textual report to a single topic. This
assumption may often be too limiting to model a large collection of textual bug
reports, as any report typically concerns multiple topics and specific sub-issues
in different proportions. As our objective is to discover this hidden thematic
structure, and use it to predict the discretized time to resolution, we consider
Supervised Latent Dirichlet Allocation (SLDA) as introduced in [4,28], which
adds to standard Latent Dirichlet Allocation a target unordered binary variable.

We now briefly introduce the necessary notation to SLDA, as the represen-
tation of textual bug reports is different from that introduced in Sect.3.2. As
before, the target variabile is the unordered binary variable y denoting SLOW
and FAST labels (also in this case, we suppress writing the document index d):

— A document d is a stream of N words, d = (w1, ..., wy). Using superscripts to
denote components, the vth word in |V| is represented as a unit-basis vector
w such that w” =1 and w"* = 0 for u # v.

— For each document we have K underlying semantic themes (topics), f1.x =

(61,.-.,0K), where each i is a |V|-dimensional vector of probabilities over
the elements of V, for k =1,..., K.

- z1.8v = (21,...,2n) is a vector of K-dimensional vectors indicating, for n =
1,..., N, the topic which has generated word w,, in document d. The indicator

z of the k-th topic is represented as a K-dimensional unit-basis vector such
that z¥ =1 and 27 = 0 for j # k.

The topic indicator uniquely selects a probability distribution in 8;.x, as 3,, =
B, when zF = 1. Independently of each other, the generative process of each
pre-processed bug report d is the following:

1. Draw topic proportions from a symmetric Dirichlet distribution over the K-
dimensional simplex, 8|« ~ Dirichletx (a).
2. For each word w,, n =1,..., N, and independently of each other:
(a) Choose a topic from a Multinomial distribution with probabilities 6,
2n |0 ~ Multinomial x (6).
(b) Choose a word from a Multinomial distribution with probabilities depen-
dent on z, and B1.x, Wn|2n, B1.x ~ Multinomialy (5., ).
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3. Draw response variabile y (SLOW/FAST, with SLOW = 1) from a logistic
Generalized Linear Model (GLM) of the form:

o exp(n'z)
ylz1.n,m ~ Bernouilli (1+eXp(7]TZ)> ) (1)

where Z = (1/N) 27]:[:1 zn, 1s the vector of empirical topic frequencies.

In this hierarchical specification, we model discretized bug-fix time as a non-
linear function of the empirical topic frequencies via the linear predictor 'z
(readers unfamiliar with GLMs may profitably consult [9]). A graphical model
representation of SLDA is depicted in Fig. 3, where observable stochastic nodes
are represented as gray circles and latent stochastic variables are white circles.
Parameters «, §1.x and n (white boxes) are treated as unknown fixed hyper-
parameters rather than latent stochastic nodes.

It is apparent from Fig. 3 that the response y and the words share a common
ancestor (the latent topic variables), and hence they are not conditionally inde-
pendent. Documents are generated as a bag-of-words under full word exchange-
ability, and then topics are used to explain the response. Other specifications
are indeed possibile, for example y can be regressed as a nonlinear function of
topic proportions 6, but [4] claim that the predictive performance degrades as
a consequence of the fact the topic probabilistic mass does not directly predicts
discretized bug-fix times.

Posterior inference of latent model variables is not feasible, as the condi-
tional posterior distribution p(6, z1.x|w1.N, Y, @, B1.x,7) has not a closed form.
Consequently, we use a standard variational Bayes (VB) parameter estimation
approach under a mean-field approximation, say ¢(0, z1.n|®), of the conditional
posterior distribution [5,16]. In the variational E-step of the algorithm, the vari-
ational parameters ¢ are optimized to minimize the Kullback-Leibler divergence

. Ol ) x.
\_/
0
d Zdn Wan N, By K

Ya Ipl

Fig. 3. A graphical model representation of Supervised Latent Dirichlet Allocation
(SLDA). Parameters «, $1.x and 7 are treated as unknown hyper-parameters to be
estimated, rather than random variables.
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between ¢(0, z1.5|¢) and the conditional posterior distribution, given the hyper-
parameters «, 81.x and 7. In the M-step, the hyper-parameters are optimized to
maximize the evidence lower bound (ELBO) given the variational parameters.
Let {&, Bk, 77} denote the hyper-parameters of a fitted model. As our main
objective is to apply logistic SLDA to predict discretized bug-fix time of a newly-
new

opened bug, whose words are w}$y, this amounts to approximating the marginal
posterior expectation of the response variable:

E(y"[wiiy, & Bure, 1) = E(u(i 2" wisy , & frx), (2)

with p(772°%) = exp(77 ' 2%°V) /(1+exp(7j ' 2°°)). The identity (2) easily follows
from the law of iterated expectations. Using the multivariate Delta method and
a suitable variational procedure, the RHS of (2) can be easily approximated
(we defer specifics to [4,8]). Of course, if E(y"*™|wS, &, B1.k,7) > 0.5 then
y v = 1(= SLOW).

4 Results

We have obtained bug report information from Bugzilla repositories of four
large open source software projects: Eclipse, Gentoo, KDE and OpenOffice.
Data were automatically extracted from Bugzilla data sources, using a suitable
scraping routine written in PHP /JavaScript/Ajax. Raw textual reports were pre-
processed and analyzed using the R software system [22]. The table below shows
the total number of textual bug reports extracted for each project (n), hav-
ing both Status field assigned to VERIFIED and Resolution field assigned to
FIXED. Next, we deleted some textual reports because of corrupted and unre-
coverable records, or missing XML report, or dimension being too large (the
resulting sample sizes are in column ng). If ny > 1500 (resp.: ny < 1500) we
randomly selected ng = 1500 bug reports (resp.: we retained the whole set of
ng = ng bug reports), in order to train the classifiers and test the proposed
models.

niy n2 n3 ng ns
Eclipse 44435 | 44347 |1 1500 | 1200 | 300
Gentoo 3704 | 2466 | 1500 | 1200 | 300
KDE 1275 1270|1270 | 1016 | 254
Open Office | 3057 | 3057|1500 | 1200 | 300

These subsets were randomly divided into a training and a test part, using
an 80:20 split ratio. The resulting sample sizes are indicated by n4 (training set)
and ns (test set). Before splitting, for each experiment we binned bug reports
into FAST and SLOW using the third quartile gg.75 of the empirical distribution
of bug resolution times. The table below shows the resulting binned distribution.
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We can see that the time needed to fix the bugs exhibits large variations, and
that the underlying continuous-time effort distribution is long-tailed, with a large
percentage of bugs being fixed within a relatively short time.

Eclipse | Gentoo | KDE Open Office
FAST | 0-52 0-42 0-248 0-107
SLOW | 53-3696 | 43-1854 | 249-2188 | 108-2147

As shown below, the SLOW/FAST ratio is approximately preserved after
each dataset is split into a training and a test part. Hence, the two class are
moderately imbalanced in both the training and the test set, with a low ratio of
positive to negative class (as we said before, SLOW identifies the positive class).

ns Training set Test set
SLOW | FAST | ratio SLOW | FAST | ratio
Eclipse 1500 | 299 901 | 25.00% |82 218 | 27.00%
Gentoo 1500 | 298 902 |25.00% |79 221 |26.00%
KDE 1270 | 254 762 |25.00% |67 187 |26.00 %
Open Office | 1500 | 300 900 | 25.00% |65 235 22.00%

As we highlighted in Sect.2, we are interested in increasing the number
of true positives for the positive class, considering over-estimation of bug-fix
times as a less severe error than under-estimation. We used accuracy, preci-
sion, recall and false positive rate (FPR) for measuring the performance of pre-
diction models. Accuracy denotes the proportion of correctly predicted bugs:
Accuracy = (TP+TN)/(TP+FP+TN+FN). Precision denotes the proportion of
correctly predicted SLOW bugs: Precision = TP/(TP+FP). Recall denotes the
proportion of true positives of all SLOW bugs: Recall = TP/(TP+FN). Finally,
false positive rate measure the proportion of false positive of all FAST bugs:
FPR = FP/(FP4+TN). The following classification models were trained over the
training set, and evaluated over the test set:

— Multivariate Bernoulli (MB), with either no posterior class probabilities
smoothing, or Laplace A smoothing parameter respectively set to 1,2,3 [17].

— Support Vector Machines (SVM), with sigmoid kernel and soft-margin clas-
sification, cost parameter C respectively set to 0.1,1,10,100 and precision
parameter vy respectively set to 0.001,0.01,0.1,1 [15].

— Supervised Latent Dirichlet Allocation (SLDA), with number of topics K being
respectively set to 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 50, 100. When K = 1, the
SLDA model becomes essentially equivalent to the Multinomial Naive Bayes
(MNB) model.
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In what follows, we optimize over the test set and show only the best mod-
els (along with the corresponding parameter settings), i.e. the model with the
highest predictive accuracy among the models of the same class. The full result
set is shown below. We look at the first table (Eclipse), as it exhibits a typ-
ical pattern. The highest achievable accuracy with SLDA (K = 25 topics) is
lower than the best achievable accuracies with both MB and SVM. However,
accuracy provides reliable comparisons only when the two target classes have
equal importance. In our setting, we assume that the minority class (SLOW) is
more important, because of its larger impact in terms of cost/effectiveness. If,
consequently, we assume that the main goal is increasing the recall, the logistic
SLDA model has the best performance. FPR increases too, as expected, because
of the larger number of FAST bugs that are classified SLOW under the SLDA
model. However, costs incurred in false positive are generally very low. On the
contrary, both MB and SVM classifiers have high accuracy, but they failed to
correctly predict most of SLOW bugs. On the whole, these result clearly show
that the use of a supervised topic model greatly improves the recall of bug-fix
time prediction.

Eclipse.

Parameters Accuracy | Precision | Recall | FPR
MB |[A=2 0.73 0.60 0.04 0.01
SVM |~ =10.001, C =10 |0.67 0.23 0.09 0.11
SLDA K =25 0.57 0.32 0.48 10.40
Gentoo.

Parameters Accuracy | Precision | Recall | FPR
MB |A=2 0.74 0.50 0.13 0.05
SVM |~ =10.001, C =100 |0.74 0.67 0.03 | 0.00
SLDA | K =30 0.43 0.27 0.70 |0.67
KDE.

Parameters Accuracy | Precision | Recall | FPR
MB |A=2 0.83 0.64 0.79 10.02
SVM |~ =0.001, C =100 |0.60 0.03 0.01 10.19
SLDA | K =40 0.41 0.29 0.84 |0.74
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Open Office.

Parameters Accuracy | Precision | Recall | FPR
MB |A=2 0.78 0.00 0.00 |0.00
SVM |~y =0.001, C =100 |0.58 0.22 0.38 ]0.38
SLDA | K =10 0.51 0.23 0.55 |0.55

5 Discussion and Conclusion

Manual bug triage is expensive both in time and cost. But even more impor-
tantly, manual triage is error-prone due to the large number of daily newly-
opened bugs and the lack of knowledge about all bugs by the developers. We
have, therefore, proposed a novel model for automatic prediction of bug-fix time
of newly opened bugs, in order to support the whole triage process and, in par-
ticular, the assignment of any new bug to a developer who will try to fix it.
Our prediction models use text categorization techniques, mapping each textual
bug description into a bag-of-words after a suitable pre-processing stage. Each
bug in the training data set is classified as SLOW or FAST (discretized time to
resolution). The trained prediction model is then used to predict the discretized
time to resolution of each bug in the test set. Any post-submission information,
which was not actually available before the bug was assigned, has been removed
from the test set. We compared two single-topic supervised learning algorithms,
multivariate Bernoulli Model (MB) and Support Vector Machines (SVM), with
a multi-topic model known as Supervised Latent Dirichlet Allocation (SLDA),
recently introduced in [4].

To evaluate the forecasting accuracy of the proposed predictive model against
that of MB and SVM algorithms, we used bug datasets on bug repositories of
four large open source projects: Eclipse, Gentoo, KDE and OpenOffice. Results
show that the proposed model greatly improves recall, when compared to sin-
gle topic algorithms. On the other hand, the loss of accuracy of our method is
quite significant. However, predictive accuracy provides meaningful and reliable
comparisons only when the two target classes have equal importance. In our
experimental setting the negative class (FAST) plays a minor role. Therefore, we
may assume that the main goal is increasing the recall, that is the true positives
for the positive class (SLOW). In this case, the number of false positives can also
be increased, even though costs incurred in false positives are generally very low.
Finally, a comparison with previously reported literature values shows a marked
improvement of the predictive accuracy of the two single topic algorithms. How-
ever, a direct comparison is not possible and further validation will be needed, as
different software projects were examined, and different attributes and/or parts
of textual bug reports were selected, as well as different pre-processing methods
were involved in extracting the bag-of-words representations.
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In conclusion, the proposed method seems promising for implementing a
large-scale bug-fix time prediction system. In the future, we plan to investigate
the following threatens to internal validity:

— Using the quantile ¢, with a = 0.75 to separate positive and negative instances
is arbitrary. Letting a vary has an impact on both the imbalance ratio and
the predictive accuracy. A sensitivity analysis is therefore needed.

— We need to assess the performance on a larger and independent validation set.
FEach presented method is indeed trained for a number of parameter settings
and tested on the test set, but only the best results are presented. In the
future, the methods will be optimized on a separate validation set, instead of
the test set.

— Another issue consists of identifying the potential outliers of the distribution
of bug-fix times, and using them to filter out the data sets. Many authors
have demonstrated that filtering these outliers can improve the accuracy of
the prediction models (see, for example, [1]).

— Most of defect tracking systems are just ticketing systems, that cannot keep
track of actual person-hours spent to resolve a bug. This threat to internal
validity of bug-fix time prediction models has not been investigated yet. In
the same way, similarities and differences between open and non-open source
software projects need to be investigated further.

Finally, some recent techniques tackle the bug-fix time prediction problem using
a radically different (yet very promising) approach, based on predictive Process
Mining, in which each ticket gives rise to a series of activities viewed as an
instance of some ticket handling process, and which can be handled along with
textual informations and descriptive fields, in order to assign a performance value
to any partial process instance, and monitoring the resolution status during its
enactment as well (see [10]). It is therefore highly desirable to compare (at least
experimentally) our solution with this kind of approach. The future work will
explore this interesting task.
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