
Toon Calders
Michelangelo Ceci
Donato Malerba (Eds.)

 123

LN
AI

 9
95

6

19th International Conference, DS 2016
Bari, Italy, October 19–21, 2016
Proceedings

Discovery Science

Lecture Notes in Artificial Intelligence 9956

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Toon Calders • Michelangelo Ceci
Donato Malerba (Eds.)

Discovery Science
19th International Conference, DS 2016
Bari, Italy, October 19–21, 2016
Proceedings

123

Editors
Toon Calders
Universiteit Antwerpen
Antwerp
Belgium

Michelangelo Ceci
Università degli Studi di Bari Aldo Moro
Bari
Italy

Donato Malerba
Dipartimento di Informatica
University of Bari “Aldo Moro”
Bari
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-46306-3 ISBN 978-3-319-46307-0 (eBook)
DOI 10.1007/978-3-319-46307-0

Library of Congress Control Number: 2016950906

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

The 19th International Conference on Discovery Science (DS 2016) was held in Bari,
Italy, during October 19–21, 2016. As in previous years, the conference was co-located
with the International Conference on Algorithmic Learning Theory (ALT 2016), which
was already in its 27th year. First held in 2001, ALT/DS has been one of the longest-
running series of co-located events in computer science. The unique combination of
latest advances in the development and analysis of methods for discovering scientific
knowledge, coming from machine learning, data mining, and intelligent data analysis,
as well as their application in various scientific domains, on the one hand, with the
algorithmic advances in machine learning theory, on the other hand, made every
instance of this joint event unique and attractive. This volume contains the papers
presented at the 19th International Conference on Discovery Science, while the papers
of the 27th International Conference on Algorithmic Learning Theory were published
by Springer in a companion volume (LNCS Vol. 9925).

The 19th Discovery Science conference received 60 international submissions. Each
submission was reviewed by at least three committee members. The committee decided
to accept 30 papers. This resulted in an acceptance rate of 50 %. Following the tradition
of the joint Discovery Science and the Algorithmic Learning Theory conferences,
invited talks were shared between the two meetings. There was one shared invited
speaker, John Shawe-Taylor from University College London, who contributed his talk
“Margin Based Structured Output Learning.” The invited talk for DS 2016 was
“Collective Attention on the Web” by Kristian Kersting from the Technical University
of Dortmund, while the ALT invited talk was “Learning About Agents and Mecha-
nisms from Opaque Transactions” by Avrim Blum from Carnegie Mellon University.
Furthermore, two tutorials, one from ALT and one from DS, were shared. For DS, the
tutorial “Perspectives of Feature Selection in Bioinformatics: From Relevance to
Causal Inference” was presented by Gianluca Bontempi from the Université Libre de
Bruxelles, while for ALT the tutorial “How to Estimate the Mean of a Random
Variable?” was given by Gábor Lugosi from Pompeu Fabra University. Abstracts of all
five invited talks and tutorials are included in these proceedings.

We would like to thank all the authors of submitted papers, the Program Committee
members, and the additional reviewers for their efforts in evaluating the submitted
papers, as well as the invited speakers and tutorial presenters. We are grateful to Ronald
Ortner and Hans Ulrich Simon for ensuring the smooth coordination with ALT. We
would also like to thank all the members of the Organizing Committee: Annalisa
Appice, Roberto Corizzo, Claudia d’Amato, Nicola Di Mauro, Stefano Ferilli, Corrado
Loglisci, Gianvito Pio, Francesco Serafino. We are grateful to the people behind
EasyChair for making the system available free of charge. It was an essential tool in the
paper submission and evaluation process, as well as in the preparation of the Springer
proceedings. We are also grateful to Springer for their continuing support of Discovery
Science and for publishing the conference proceedings. A special issue on the topics of

Discovery Science has also been scheduled for the Springer journal Machine Learning,
thus offering the possibility of publishing in this prestigious journal an extended and
reworked version of papers presented at Discovery Science 2016.

The joint event ALT/DS 2016 was organized under the auspices of the University of
Bari “Aldo Moro”. Financial support was generously provided by the Fondazione
Puglia and the Consorzio Interuniversitario Nazionale per l’Informatica (National
Interuniversity Consortium for Informatics, CINI). The event was also supported by the
FP7 project MAESTRA - Learning from Massive, Incompletely annotated, and
Structured Data (grant number ICT-2013-612944) from the European Commission.

Finally, we are indebted to all conference participants, who contributed to make this
momentous event a worthwhile endeavor for all involved.

October 2016 Toon Calders
Michelangelo Ceci

Donato Malerba

VI Preface

Organization

General Chair

Donato Malerba University of Bari “Aldo Moro”, Italy

Program Chairs

Michelangelo Ceci University of Bari “Aldo Moro”, Italy
Toon Calders Universiteit Antwerpen, Belgium

Social Media Chair

Claudia d’Amato University of Bari “Aldo Moro”, Italy

Proceedings Chair

Stefano Ferilli University of Bari “Aldo Moro”, Italy

Web Chair

Francesco Serafino University of Bari “Aldo Moro”, Italy

Publicity Chair

Nicola Di Mauro University of Bari “Aldo Moro”, Italy

Local Arrangements Chairs

Annalisa Appice University of Bari “Aldo Moro”, Italy
Corrado Loglisci University of Bari “Aldo Moro”, Italy
Gianvito Pio University of Bari “Aldo Moro”, Italy
Roberto Corizzo University of Bari “Aldo Moro”, Italy

Program Committee

Annalisa Appice University of Bari “Aldo Moro”, Italy
Albert Bifet Telecom ParisTech, France
Hendrik Blockeel K.U. Leuven, Belgium
Bruno Cremilleux Université de Caen, France
Ivica Dimitrovski Ss. Cyril and Methodius University in Skopje, Macedonia
Saso Dzeroski Jozef Stefan Institute, Slovenia

Floriana Esposito University of Bari “Aldo Moro”, Italy
Peter Flach University of Bristol, UK
Johannes Fürnkranz TU Darmstadt, Germany
Mohamed Gaber Robert Gordon University, UK
Joao Gama University of Porto, Portugal
Dragan Gamberger Rudjer Boskovic Institute, Croatia
Makoto Haraguchi Hokkaido University, Japan
Kouichi Hirata Kyushu Institute of Technology, Japan
Jaakko Hollmén Aalto University School of Science, Finland
Nathalie Japkowicz SITE, University of Ottawa, Canada
Alipio M. Jorge FCUP, University of Porto and LIAAD,

INESC Porto L.A., Portugal
Masahiro Kimura Ryukoku University, Japan
Dragi Kocev Jozef Stefan Institute, Slovenia
Stefan Kramer Johannes Gutenberg University Mainz, Germany
Nada Lavrač Jozef Stefan Institute, Slovenia
Philippe Lenca Telecom Bretagne, France
Gjorgji Madjarov Ss. Cyril and Methodius University in Skopje, Macedonia
Giuseppe Manco ICAR-CNR, Italy
Elio Masciari ICAR-CNR, Italy
Robert Mercer University of Western Ontario, Slovenia
Anna Monreale University of Pisa, Italy
Pance Panov Jozef Stefan Institute, Slovenia
Dino Pedreschi University of Pisa, Italy
Ruggero G. Pensa University of Turin, Italy
Bernhard Pfahringer University of Waikato, New Zealand
Gianvito Pio University of Bari “Aldo Moro”, Italy
Pascal Poncelet LIRMM Montpellier, France
Chedy Raïssi Inria, France
Jan Ramon Inria, France
Chiara Renso KDDLAB, ISTI-CNR, Italy
Kazumi Saito University of Shizuoka, Japan
Tomislav Smuc Rudjer Boskovic Institute, Croatia
Marina Sokolova University of Ottawa and Institute for Big Data Analytics,

Canada
Jerzy Stefanowski Poznan University of Technology, Poland
Einoshin Suzuki Kyushu University, Japan
Herna Viktor University of Ottawa, Canada
Akihiro Yamamoto Kyoto University, Japan
Indre Zliobaite Aalto University, Finland
Blaz Zupan University of Ljubljana, Slovenia

VIII Organization

Additional Reviewers

Massimo Bilancia
Martin Breskvar
Sophie Burkhardt
Juan Colonna
Nicola Di Mauro
Nicola Fanizzi
Khaled Fawagreh
Esther Galbrun
Kambiz Ghazinour
Massimo, Guarascio

Andreas Karwath
Mehdi Kaytoue
Gaël Lejeune
Jurica Levatic
Regis Pires Magalhães
Yoshiaki Okubo
Panagiotis Papapetrou
Ettore Ritacco
Livia Ruback
Hiroto Saigo

Francesco Serafino
Safwan Shatnawi
Nikola Simidjievski
Ricardo Sousa
Martin Strazar
Antonio Vergari
Douglas Woodford
Bernard Zenko

Organization IX

Invited Talks

Margin Based Structured Output Learning

John Shawe-Taylor

Department of Computer Science, University College London Gower Street,
London WC1E6BT, UK

J.Shawe-Taylor@cs.ucl.ac.uk

Abstract. Structured output learning has been developed to borrow strength
across multidimensional classifications. There have been approaches to
bounding the performance of these classifiers based on different measures such
as microlabel errors with a fixed simple output structure. We present a different
approach and analysis starting from the assumption that there is a margin
attainable in some unknown or fully connected output structure. The analysis
and algorithms flow from this assumption but in a way that the associated
inference becomes tractable while the bounds match those attained were we to
use the full structure. There are two variants depending on how the margin is
estimated. Experimental results show the relative strengths of these variants,
both algorithmically and statistically.

Bio. John Shawe-Taylor is a professor at the University College London where he
directs the Centre for Computational Statistics and Machine Learning and heads the
Department of Computer Science. His research has contributed to a number of fields
ranging from graph theory through cryptography to statistical learning theory and its
applications. However, his main contributions have been in the development of the
analysis and subsequent algorithmic definition of principled machine learning algo-
rithms founded in statistical learning theory. He has co-authored two influential text
books on kernel methods and support vector machines. He has also been instrumental
in coordinating a series of influential European Networks of Excellence culminating in
the PASCAL networks.

Collective Attention on the Web

Kristian Kersting

Computer Science Department, TU Dortmund University, 44221 Dortmund,
Germany

kristian.kersting@cs.tu-dortmund.de

Abstract. It’s one of the most popular YouTube videos ever produced, having
been viewed more than 840 million times. It’s hard to understand why this clip
is so famous and actually went viral, since nothing much happens. Two little
boys, Charlie and Harry, are sitting in a chair when Charlie, the younger brother,
mischievously bites Harry’s finger. There’s a shriek and then a laugh. The clip is
called “Charlie Bit My Finger–Again!”

Generally, understanding the dynamics of collective attention is central to
an information age where millions of people leave digital footprints everyday.
So, can we capture the dynamics of collective attention mathematically? Can we
even gain insights into the underlying physical resp. social processes? Is it for
instance fair to call the video “viral” in an epidemiological sense?

In this talk I shall argue that computational methods of collective attention
are not insurmountable. I shall review the methods we have developed to
characterize, analyze, and even predict the dynamics of collective attention
among millions of users to and within social media services. For instance, we
found that collective attention to memes and social media grows and subsides in
a highly regular manner, well explained by economic diffusion models. Using
mathematical epidemiology, we find that so-called “viral” videos show very
high infection rates and, hence, should indeed be called viral. Moreover, the
spreading processes may also be related to the underlying network structures,
suggesting for instance a physically plausible model of the distance distributions
of undirected networks. All this favors machine learning and discovery science
approaches that produce physically plausible models.

This work was partly supported by the Fraunhofer ICON project SoF-
WIReD and by the DFG Collaborative Research Center SFB 876 project A6.

Bio. Kristian Kersting is an Associate Professor in the Computer Science Department at
the Technical University of Dortmund. His main research interests are data mining,
machine learning, and statistical relational artificial intelligence, with applications to
medicine, plant phenotyping, traffic, and collective attention. He gave several tutorials
at top conferences and co-chaired BUDA, CMPL, CoLISD, MLG, and SRL as well as
the AAAI Student Abstract track and the Starting AI Research Symposium (STAIRS).
Together with Stuart Russell (Berkeley), Leslie Kaelbling (MIT), Alon Halevy
(Goolge), Sriraam Natarajan (Indiana) and Lilyana Mihalkova (Google) he cofounded
the international workshop series on Statistical Relational AI. He served as area chair/
senior PC for several top conference and co-chaired ECML PKDD 2013, the premier
European venue for Machine Learning and Data Mining. Currently, he is an action
editor of JAIR, AIJ, DAMI, and MLJ as well as on the editorial board of NGC.

Perspectives of Feature Selection
in Bioinformatics: From Relevance

to Causal Inference

Gianluca Bontempi

Machine Learning Group, Interuniversity Institute of Bioinformatics
in Brussels (IB)2, Université libre de Bruxelles, Bld de Triomphe,

1050 Brussels, Belgium
mlg.ulb.ac.be

Abstract. A major goal of the scientific activity is to model real phenomena by
studying the dependency between entities, objects or more in general variables.
Sometimes the goal of the modeling activity is simply predicting future
behaviors. Sometimes the goal is to understand the causes of a phenomenon
(e.g. a disease). Finding causes from data is particular challenging in bioinfor-
matics where often the number of features (e.g. number of probes) is huge with
respect to the number of samples. In this context, even when experimental
interventions are possible, performing thousands of experiments to discover
causal relationships between thousands of variables is not practical. Dimen-
sionality reduction techniques have been largely discussed and used in bioin-
formatics to deal with the curse of dimensionality. However, most of the time
these techniques focus on improving prediction accuracy, neglecting causal
aspects. This tutorial will introduction some basics of causal inference and will
discuss some open issues: may feature selection techniques be useful also for
causal feature selection? Is prediction accuracy compatible with causal dis-
covery? How to deal with Markov indistinguishable settings? Recent results
based on information theory, and some learned lessons from a recent Kaggle
competition will be used to illustrate the issue.

Bio. Gianluca Bontempi is Full Professor in the Computer Science Department at the
Université Libre de Bruxelles (ULB), Brussels, Belgium, co-head of the ULB Machine
Learning Group and Director of (IB)2, the ULB/VUB Interuniversity Institute of Bioin-
formatics in Brussels. His main research interests are big data mining, machine learning,
bioinformatics, causal inference, predictive modelling and their application to complex
tasks in engineering (forecasting, fraud detection) and life science. He was Marie Curie
fellow researcher, he was awarded in two international data analysis competitions and he
took part to many research projects in collaboration with universities and private com-
panies all over Europe. He is author of more than 200 scientific publications, associate
editor of PLOS One, member of the scientific advisory board of Chist-ERA and IEEE
Senior Member. He is also co-author of several open-source software packages for
bioinformatics, data mining and prediction.

Learning About Agents and Mechanisms
from Opaque Transactions

Avrim Blum

School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA 15213–3891, USA
avrim@cs.cmu.edu

Abstract. In this talk I will discuss some learning problems coming from the
area of algorithmic economics. I will focus in particular on settings known as
combinatorial auctions in which agents have preferences over items or sets of
items, and interact with an auction or allocation mechanism that determines
what items are given to which agents. We consider the perspective of an outside
observer who each day can only see which agents show up and what they get, or
perhaps just which agents’ needs are satisfied and which are not. Our goal will
be from observing a series of such interactions to try to learn the agent pref-
erences and perhaps also the rules of the allocation mechanism.

As an example, consider observing web pages where the agents are
advertisers and the winners are those whose ads show up on the given page. Or
consider observing the input-output behavior of a cloud computing service,
where the input consists of a set of agents requesting service, and the output is a
partition of them into some whose requests are actually fulfilled and the rest that
are not—due to overlap of their resource needs with higher-priority requests.
From such input-output behavior, we would like to learn the underlying struc-
ture. We also consider a classic Myerson single-item auction setting, where from
observing who wins and also being able to participate ourselves we would like
to learn the agents’ valuation distributions.

In examining these problems we will see connections to decision-list
learning and to Kaplan-Meier estimators from medical statistics.

This talk is based on work joint with Yishay Mansour and Jamie Mor-
genstern.

Bio. Avrim Blum is Professor of Computer Science at Carnegie Mellon University. His
main research interests are in Foundations of Machine Learning and Data Mining,
Algorithmic Game Theory (including auctions, pricing, dynamics, and connections to
machine learning), the analysis of heuristics for computationally hard problems, and
Database Privacy. He has served as Program Chair for the IEEE Symposium on
Foundations of Computer Science (FOCS) and the Conference on Learning Theory
(COLT). He was recipient of the Sloan Fellowship, the NSF National Young Inves-
tigator Award, the ICML/COLT 10-year best paper award, and the Herbert Simon
Teaching Award, and is a Fellow of the ACM.

How to Estimate the Mean
of a Random Variable?

Gabor Lugosi

Department of Economics, Pompeu Fabra University,
Ramon Trias Fargas 25–27, 08005, Barcelona, Spain

gabor.lugosi@gmail.com

Abstract. Given n independent, identically distributed copies of a random
variable, one is interested in estimating the expected value. Perhaps surprisingly,
there are still open questions concerning this very basic problem in statistics. In
this talk we are primarily interested in non-asymptotic sub-Gaussian estimates
for potentially heavy-tailed random variables. We discuss various estimates and
extensions to high dimensions. We apply the estimates for statistical learning
and regression function estimation problems. The methods improve on classical
empirical minimization techniques.

This talk is based on joint work with Emilien Joly, Luc Devroye, Matthieu
Lerasle, Roberto Imbuzeiro Oliveira, and Shahar Mendelson.

Bio. Gábor Lugosi is an ICREA research professor at the Department of Economics,
Pompeu Fabra University, Barcelona. His research main interests include the theory of
machine learning, combinatorial statistics, inequalities in probability, random graphs
and random structures, and information theory. He has co-authored monographs on
pattern classification, on online learning, and on concentration inequalities.

Contents

Pattern Mining and Rules

Exceptional Preferences Mining . 3
Cláudio Rebelo de Sá, Wouter Duivesteijn, Carlos Soares,
and Arno Knobbe

Local Subgroup Discovery for Eliciting and Understanding New
Structure-Odor Relationships . 19

Guillaume Bosc, Jérôme Golebiowski, Moustafa Bensafi,
Céline Robardet, Marc Plantevit, Jean-François Boulicaut,
and Mehdi Kaytoue

InterSet: Interactive Redescription Set Exploration. 35
Matej Mihelčić and Tomislav Šmuc

Expect the Unexpected – On the Significance of Subgroups 51
Matthijs van Leeuwen and Antti Ukkonen

Min-Hashing for Probabilistic Frequent Subtree Feature Spaces 67
Pascal Welke, Tamás Horváth, and Stefan Wrobel

Structured Output Prediction

STIFE: A Framework for Feature-Based Classification of Sequences
of Temporal Intervals . 85

Leon Bornemann, Jason Lecerf, and Panagiotis Papapetrou

Approximating Numeric Role Fillers via Predictive Clustering Trees
for Knowledge Base Enrichment in the Web of Data. 101

Giuseppe Rizzo, Claudia d’Amato, Nicola Fanizzi,
and Floriana Esposito

Option Predictive Clustering Trees for Multi-target Regression 118
Aljaž Osojnik, Sašo Džeroski, and Dragi Kocev

HSIM: A Supervised Imputation Method for Hierarchical
Classification Scenario . 134

Leandro R. Galvão and Luiz H.C. Merschmann

http://dx.doi.org/10.1007/978-3-319-46307-0_1
http://dx.doi.org/10.1007/978-3-319-46307-0_2
http://dx.doi.org/10.1007/978-3-319-46307-0_2
http://dx.doi.org/10.1007/978-3-319-46307-0_3
http://dx.doi.org/10.1007/978-3-319-46307-0_4
http://dx.doi.org/10.1007/978-3-319-46307-0_5
http://dx.doi.org/10.1007/978-3-319-46307-0_6
http://dx.doi.org/10.1007/978-3-319-46307-0_6
http://dx.doi.org/10.1007/978-3-319-46307-0_7
http://dx.doi.org/10.1007/978-3-319-46307-0_7
http://dx.doi.org/10.1007/978-3-319-46307-0_8
http://dx.doi.org/10.1007/978-3-319-46307-0_9
http://dx.doi.org/10.1007/978-3-319-46307-0_9

Applications

Predicting Cargo Train Failures: A Machine Learning Approach
for a Lightweight Prototype . 151

Sebastian Kauschke, Johannes Fürnkranz, and Frederik Janssen

Predicting Bug-Fix Time: Using Standard Versus Topic-Based Text
Categorization Techniques . 167

Pasquale Ardimento, Massimo Bilancia, and Stefano Monopoli

Predicting Wildfires: Propositional and Relational Spatio-Temporal
Pre-processing Approaches . 183

Mariana Oliveira, Luís Torgo, and Vítor Santos Costa

Recognizing Family, Genus, and Species of Anuran Using a Hierarchical
Classification Approach . 198

Juan G. Colonna, João Gama, and Eduardo F. Nakamura

Evolution Analysis of Call Ego-Networks . 213
Shazia Tabassum and João Gama

Ensemble Learning

Ensemble Diversity in Evolving Data Streams . 229
Dariusz Brzezinski and Jerzy Stefanowski

Learning Ensembles of Process-Based Models by Bagging of Random
Library Samples . 245

Nikola Simidjievski, Ljupčo Todorovski, and Sašo Džeroski

Early Random Shapelet Forest . 261
Isak Karlsson, Panagiotis Papapetrou, and Henrik Boström

Classification

Shorter Rules Are Better, Aren’t They? . 279
Julius Stecher, Frederik Janssen, and Johannes Fürnkranz

Exploiting Spatial Correlation of Spectral Signature for Training Data
Selection in Hyperspectral Image Classification. 295

Annalisa Appice and Pietro Guccione

A Comparison of Different Data Transformation Approaches in the Feature
Ranking Context . 310

Matej Petković, Panče Panov, and Sašo Džeroski

On Selection Bias with Imbalanced Classes . 325
Gert Jacobusse and Cor Veenman

XX Contents

http://dx.doi.org/10.1007/978-3-319-46307-0_10
http://dx.doi.org/10.1007/978-3-319-46307-0_10
http://dx.doi.org/10.1007/978-3-319-46307-0_11
http://dx.doi.org/10.1007/978-3-319-46307-0_11
http://dx.doi.org/10.1007/978-3-319-46307-0_12
http://dx.doi.org/10.1007/978-3-319-46307-0_12
http://dx.doi.org/10.1007/978-3-319-46307-0_13
http://dx.doi.org/10.1007/978-3-319-46307-0_13
http://dx.doi.org/10.1007/978-3-319-46307-0_14
http://dx.doi.org/10.1007/978-3-319-46307-0_15
http://dx.doi.org/10.1007/978-3-319-46307-0_16
http://dx.doi.org/10.1007/978-3-319-46307-0_16
http://dx.doi.org/10.1007/978-3-319-46307-0_17
http://dx.doi.org/10.1007/978-3-319-46307-0_18
http://dx.doi.org/10.1007/978-3-319-46307-0_19
http://dx.doi.org/10.1007/978-3-319-46307-0_19
http://dx.doi.org/10.1007/978-3-319-46307-0_20
http://dx.doi.org/10.1007/978-3-319-46307-0_20
http://dx.doi.org/10.1007/978-3-319-46307-0_21

A Framework for Classification in Data Streams Using Multi-strategy
Learning . 341

Ali Pesaranghader, Herna L. Viktor, and Eric Paquet

Networks

Anomaly Detection in Networks with Temporal Information 359
Fabrizio Angiulli, Fabio Fassetti, and Estela Narvaez

Accelerating Computation of Distance Based Centrality Measures
for Spatial Networks . 376

Kouzou Ohara, Kazumi Saito, Masahiro Kimura, and Hiroshi Motoda

A Semi-supervised Approach to Measuring User Privacy in Online
Social Networks . 392

Ruggero G. Pensa and Gianpiero Di Blasi

On Using Temporal Networks to Analyze User Preferences Dynamics. 408
Fabíola S.F. Pereira, Sandra de Amo, and João Gama

Kernels and Deep Learning

Soft Kernel Target Alignment for Two-Stage Multiple Kernel Learning 427
Huibin Shen, Sandor Szedmak, Céline Brouard, and Juho Rousu

Unsupervised Anomaly Detection in Noisy Business Process Event Logs
Using Denoising Autoencoders . 442

Timo Nolle, Alexander Seeliger, and Max Mühlhäuser

DeepRED – Rule Extraction from Deep Neural Networks 457
Jan Ruben Zilke, Eneldo Loza Mencía, and Frederik Janssen

Ligand Affinity Prediction with Multi-pattern Kernels 474
Katrin Ullrich, Jennifer Mack, and Pascal Welke

Author Index . 491

Contents XXI

http://dx.doi.org/10.1007/978-3-319-46307-0_22
http://dx.doi.org/10.1007/978-3-319-46307-0_22
http://dx.doi.org/10.1007/978-3-319-46307-0_23
http://dx.doi.org/10.1007/978-3-319-46307-0_24
http://dx.doi.org/10.1007/978-3-319-46307-0_24
http://dx.doi.org/10.1007/978-3-319-46307-0_25
http://dx.doi.org/10.1007/978-3-319-46307-0_25
http://dx.doi.org/10.1007/978-3-319-46307-0_26
http://dx.doi.org/10.1007/978-3-319-46307-0_27
http://dx.doi.org/10.1007/978-3-319-46307-0_28
http://dx.doi.org/10.1007/978-3-319-46307-0_28
http://dx.doi.org/10.1007/978-3-319-46307-0_29
http://dx.doi.org/10.1007/978-3-319-46307-0_30

Pattern Mining and Rules

Exceptional Preferences Mining

Cláudio Rebelo de Sá1,2(B), Wouter Duivesteijn3, Carlos Soares1,
and Arno Knobbe2

1 INESCTEC, Porto, Portugal
claudio.r.sa@inesctec.pt, csoares@fe.up.pt

2 LIACS, Universiteit Leiden, Leiden, The Netherlands
a.j.knobbe@liacs.leidenuniv.nl

3 Data Science Lab and iMinds, Universiteit Gent, Ghent, Belgium
wouter.duivesteijn@ugent.be

Abstract. Exceptional Preferences Mining (EPM) is a crossover
between two subfields of datamining: local pattern mining and prefer-
ence learning. EPM can be seen as a local pattern mining task that finds
subsets of observations where the preference relations between subsets of
the labels significantly deviate from the norm; a variant of Subgroup Dis-
covery, with rankings as the (complex) target concept. We employ three
quality measures that highlight subgroups featuring exceptional prefer-
ences, where the focus of what constitutes ‘exceptional’ varies with the
quality measure: the first gauges exceptional overall ranking behavior,
the second indicates whether a particular label stands out from the rest,
and the third highlights subgroups featuring unusual pairwise label rank-
ing behavior. As proof of concept, we explore five datasets. The results
confirm that the new task EPM can deliver interesting knowledge. The
results also illustrate how the visualization of the preferences in a Pref-
erence Matrix can aid in interpreting exceptional preference subgroups.

1 Introduction

Consider a survey where detailed preferences of sushi types have been collected,
along with demographic details of the respondents. For each example in the
dataset, we have personal details (age, gender, income, etc.) as well as a set of
sushi types, ordered by preference [16]. By mapping the demographic attributes
and unusual preferences, marketeers would be able to target key demographics
where specific sushi types have greater potential.

The study of preference data has been approached from a number of perspec-
tives, grouped under the name Preference Learning (PL) (e.g., as Label Ranking
[3,5,24]). Typically, the aim is to build a global predictive model, such that the
preferences can be predicted for new cases. However, in several areas, such as
marketing, there is also great value in identifying subpopulations whose prefer-
ences deviate from the norm. If some sushi type is markedly underpreferred by
a certain age group or in a certain region, then the vendor can develop specific

c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 3–18, 2016.
DOI: 10.1007/978-3-319-46307-0 1

4 C.R. de Sá et al.

strategies for those groups. Finding coherent groups of customers to focus on is
an invaluable part of promotion strategies.

Arguably the most generic setting for discovering local, supervised deviations
is that of Subgroup Discovery (SD) [18]. The aim of SD is to discover subgroups
in the data for which the target shows an unusual distribution, as compared to
the overall population [18]. SD is generic in the sense that the actual nature of
the target variable can be quite diverse [1,15,23]. In this paper, we develop a
Subgroup Discovery approach that focuses on a deviation target concept repre-
senting preferences over a fixed set of labels.

1.1 Main Contributions

This work provides focus specifically on the discovery of meaningful subgroups
with exceptional preference patterns (see Sect. 4). We propose three quality mea-
sures for this purpose, reflecting different facets of interestingness one might have
about the unusual preferences. All quality measures contrast the ranking of the
labels in the subgroup with the ranking of the labels in the entire dataset; they
differ in the granularity of the measured deviation. A subgroup is deemed inter-
esting by the first quality measure if the overall ranking is exceptional, by the
second quality measure if one particular label behaves exceptionally, and by the
third quality measure if a single pair of labels displays exceptional behavior.
Hence, Exceptional Preferences Mining provides subgroups displaying excep-
tional ranking behavior; different quality measures allow for this exceptional
behavior to either encompass the entire label space, or focus on more local pecu-
liarities.

2 Label Ranking

Label Ranking (LR) studies the problem of learning a mapping from instances
to rankings over a finite number of predefined labels [13]. It can be considered
a variant of the conventional classification problem [4]. However, in contrast to
a classification setting, where the objective is to assign examples to a specific
class, in LR we are interested in assigning a complete preference order of the
labels to every example.

More formally, in classification, given an instance x from the instance space
X, the goal is to predict the label (or class) λ to which x belongs, from a pre-
defined set L = {λ1, . . . , λk}. In Label Ranking, the goal is to order the labels
in L by their association with x. A ranking is a total order over L defined on
the permutation space Ω. A total order can be represented as a permutation π
of the set {1, . . . , k}, such that π(a) is the position of λa in π.

A total order
λπ(1) �

x
λπ(2) �

x
. . . �

x
λπ(k)

is associated with every instance x ∈ X, representing a ranking π ∈ Ω. In cases
where the orders are partial, they are represented as rankings with ties [11].

Exceptional Preferences Mining 5

The goal in label ranking is to learn the mapping X → Ω. The training data
is defined as D, which is a bag of n records of the form x = (a1, . . . , am, π),
where {a1, . . . , am} is set of values from m independent variables A1, . . . ,Am

describing instance x and π is the corresponding target ranking.
Pairwise comparisons have been used to decompose LR or Multi-Label prob-

lems into binary problems [13]. In LR, the most relevant approach is Ranking
by Pairwise Comparisons (RPC) [10], which decomposes the LR problem into
a set of binary classification problems. Then, a learning method is trained with
all examples for which either λi � λj or λj � λi is known [10]. The resulting
predictions are then combined to predict a total or partial ranking [3].

Recently, some approaches have been suggested for mining preferences and
ranks [12,19]. These approaches tackle different problems from the one we pro-
pose in this paper. In [12], the authors suggest an approach to mine the rankings
with association rules that search for subranking patterns, while our approach
relates the ranking patterns with descriptors (otherwise referred to as indepen-
dent variables). From a different perspective, [19] suggests a ranked tiling app-
roach to search for rank patterns, whereas we are interested in the preference
relations derived from the ranks.

3 Subgroup Discovery and Exceptional Model Mining

Subgroup Discovery (SD) [18] is a data mining framework that seeks subsets
(satisfying certain user-specified constraints) of the dataset where something
exceptional is going on. In SD, we assume a flat-table dataset D, which is a bag
of n records of the form x = (a1, . . . , am, t1, . . . , t�). We call {a1, . . . , am} the
descriptors and {t1, . . . , t�} the targets, and we denote the collective domain of
the descriptors by A. We are interested in finding interesting subsets, called sub-
groups, that can be formulated in a description language D. In order to formally
define subgroups, we first need to define the following auxiliary concepts.

Definition 1 (Pattern and coverage). Given a description language D, a
pattern p ∈ D is a function p : A → {0, 1}. A pattern p covers a record x iff
p(a1, . . . , am) = 1.

Patterns induce subgroups, and subgroups are associated with patterns, in the
following manner.

Definition 2 (Subgroup). A subgroup corresponding to a pattern p is the bag
of records Sp ∈ D that p covers:

Sp = {x ∈ D | p (a1, . . . , am) = 1}

For simplicity, we will loosely identify pattern and subgroup with each other.
The exact choice of the description language is left to the domain expert or

analyst. A typical choice is the use of conjunctions of conditions on attributes.

6 C.R. de Sá et al.

Restricting the findings of SD from all subsets to only subgroups that can be
defined in such a way, ensures results of the following form:

Age ≥ 30 ∧ Likes = Salmon Roe is unusual

Restricting the search from subsets to subgroups, combined with a sensible choice
of description language, ensures that SD delivers subgroups that are defined in
terms of attributes of the dataset. This means that the results are delivered in a
form with which dataset domain experts are familiar. In other words, the focus
of SD lies on delivering interpretable results.

Formally, the interestingness of a subgroup can be measured using all infor-
mation available in its associated pattern. In practice, it depends on the task we
are trying to solve. Therefore, we should define one or more quality measures to
assess the interestingness we want to explore.

Definition 3 (Quality Measure). A quality measure is a function ϕ : D → R.

In the most common form of pattern mining, frequent itemset mining [2], inter-
estingness is measured by the frequency of the pattern. Subgroup Discovery [18],
on the other hand, measures interestingness in a supervised form. One designated
target t1 is identified in the dataset, and subgroup interestingness is gauged by an
unusual distribution of that target. Hence, considering that a poll revealed that
the majority of Japanese people like Fatty tuna sushi, an interesting subgroup
could refer to a group of people for which the majority prefers Tuna roll :

Age ≥ 30 ∧ Lives in region = Hokkaido ⇒ Likes = Tuna roll

If instead of a single target, multiple targets t1, . . . , t� are available, and if we
are not interested in finding unusual target distribution, but unusual target
interaction, we can employ Exceptional Model Mining (EMM) [6,7] instead of
SD. EMM is instantiated by selecting two things: a model class and a quality
measure. Typically, a model class is defined to represent the unusual interaction
between multiple targets we are interested in. A specific quality measure that
employs concepts from that model class must be defined to express exactly when
an interaction is unusual and, therefore, interesting.

The target concept at hand in this paper has only one target object t, which
resembles SD. However, that target object is a label ranking π ∈ Ω, as defined
in Sect. 2. Hence it represents unusual interactions between multiple individual
labels, which is more consistent with EMM.

3.1 Traversing the Search Space

Typically, subgroups are found by a level-wise search through attribute space
[21]. We define constraints on single attributes and define the corresponding
subgroups as those records satisfying each one of those constraints.

The actual phenomenon of the data that a given quality measure favors,
depends on the target concept (binary, numeric, preferences, . . .). For very small

Exceptional Preferences Mining 7

subgroups, one easily finds an unusual distribution of the target. To favor larger
subgroups, one defines the quality measure such that it balances the exception-
ality of the target distribution with the size of the subgroup.

SD approaches have been developed for binary, nominal [1] and numeric tar-
get variables [14,15], as well as for targets encompassing multiple attributes [23].
However, none of the previous approaches is able to capture all the sets of pref-
erences that can be derived from rankings within an SD framework.

4 Exceptional Preferences Mining

Exceptional Preferences Mining (EPM) is the search for subgroups with deviat-
ing preferences. Exactly what constitutes an interesting deviation in preferences
is governed by the employed quality measure, and can be inspired by the appli-
cation at hand.

When the number of labels is large, the search for preference patterns can
be hard to analyze and visualize. A real world example is the Sushi dataset [16],
which represents the preferences of 5 000 persons over 10 types of sushi. Even
this relatively modest number of sushi types can be ranked in a large number of
combinations: more than 98% of the 5 000 rankings present in this dataset are
unique. This illustrates why it can be more difficult to directly learn a ranker
that associates a reliable complete ranking for any subset in X when the number
of labels is large.

In EPM, we want to search for strong preference behavior. However, in cases
like the Sushi dataset, it is difficult to get strong total orders, due to the low
number of ranking repetitions. In other words, searching for subgroups where all
types of sushi are consistently ranked in this exact same order can be unfruitful.
For this reason, we also propose lower-granularity measures that focus on one
label versus the others (Labelwise). That is, we look for subgroups where at
least one type of sushi is often preferred to all the others. As an example, if a
subgroups ranks tekka-maki consistently in the top 3 while the majority in the
dataset ranks it in the last 3, this measure will find it to be very interesting. We
also propose a measure of even lower granularity, focusing on label versus label
(Pairwise) preferences. This means that, if most people display a preference
tamago � kappa-maki, a subgroup where most people prefer kappa-maki �
tamago will be deemed interesting by this measure.

Our assumption is that, even though over 98% of the total rankings in the
Sushi dataset are unique, there is plenty of information present in these rankings:
the partial orders and pairwise comparisons can reveal interesting subgroups.

8 C.R. de Sá et al.

4.1 Preference Matrix

Let us define a function, ω, assigning a numeric value to the pairwise comparison
of the labels λ and λ̂:

ω
(
λ, λ̂

)
=

⎧
⎪⎪⎨
⎪⎪⎩

1 if λ � λ̂ (λ preferred to λ̂)
−1 if λ ≺ λ̂ (λ̂ preferred to λ)

0 if λ ∼ λ̂ (λ indifferent to λ̂)
n/a if λ ⊥ λ̂ (λ incomparable to λ̂)

Note that, by definition, ω
(
λ, λ̂

)
= −ω

(
λ̂, λ

)
. We can use ω to represent a

ranking π as a Preference Matrix (PM), Mπ:

Mπ (i, j) = ωπ (λi, λj)

Mπ is, by definition, an antisymmetric matrix with tr (Mπ) = 0. PMs can
natively represent partial or incomplete orders but can also be aggregated to
represent sets of rankings from an entire dataset D or subgroup S. To aggregate
the entries, the mean or the mode can be used.

Table 1. Example dataset D̂. The first column is the only descriptor. The subsequent
four columns represent the preferences among four labels, by providing their ranks. An
alternative representation is presented in the rightmost section of the table.

A1 π Alternative π

λ1 λ2 λ3 λ4

0.1 4 3 1 2 λ3 � λ4 � λ2 � λ1

0.2 3 2 1 4 λ3 � λ2 � λ1 � λ4

0.3 1 4 2 3 λ1 � λ3 � λ4 � λ2

0.4 1 3 2 4 λ1 � λ3 � λ2 � λ4

Aggregation of a PM for Sets of Rankings. The PM of a set of rankings
from a dataset D with n rankings, MD, aggregated with the mean is:

MD (i, j) =
1
n

∑
π∈D

Mπ (i, j)

The PM of the example dataset D̂ (cf. Table 1) is the following:

MD̂ =

⎡
⎢⎢⎣

0 0 0 0.5
0 0 −1 0
0 1 0 1

−0.5 0 −1 0

⎤
⎥⎥⎦

Exceptional Preferences Mining 9

This representation enables easy detection of strong partial order relations in a
set. If row i has all the values very close to 1, then λi is highly preferred in this
group. If entry MD̂ (i, j) = 1 or MD̂ (i, j) = −1, then all rankings in D̂ agree
that λi � λj or λi ≺ λj , respectively.

All the elements of D̂ reveal distinct total preferences, but λ3 is always pre-
ferred to λ2, which is easily verified by checking that MD̂ (3, 2) = 1. In the
ranking representation of D̂, this fact follows from four distinct combinations of
ranks: rank 3 > 1, rank 2 > 1, rank 4 > 2 and rank 3 > 2 (this information is
found in the two columns below λ2 and λ3). Conversely, λ4 is never preferred to
λ3, which is represented by MD̂ (4, 3) = −1. In some cases, the overall trend is
not as clear (e.g. λ1 is preferred to λ4 but not always) and in other cases, there
is no trend at all (e.g. λ1 and λ2).

Representing a set of rankings as a PM has another advantage over the tra-
ditional permutation representation: it enables simple measurement of labelwise
(by rows/columns of the PM) and pairwise (by single entries of the PM) dis-
tances (see Sect. 4.2).

From the PM of a subgroup S, one can derive a new ranking πS . How to
do so is a non-trivial question, which has received a lot of attention in several
research fields with similar types of matrix [13]. The straightforward way is to
sum the rows of the PM and then assign a score to each corresponding label.
Higher values correspond to a relatively more preferred label.

The generation of a PM is basically a pairwise decomposition problem. The
complexity is O (

sk2
)

per subgroup, where s is the size of the subgroup and k
the number of labels in the ranking. Even though any number of labels is theo-
retically permitted in label ranking, in practice the number of labels is usually
smaller than 20. Hence, the generation of PMs should not be an issue in terms
of computational time.

We use a visual representation of PM that is a set of colored tiles (cf. Fig. 1).
Each tile represents an entry of the PM. The entries of a PM can vary from
−1 to 1. The negative entries of the matrix are represented with red tiles, the
positive with green tiles, and 0 is represented in white. The colored tiles fade
out as they get closer to 0.

Fig. 1. PM representation of the set of rankings in D̂ (cf. Table 1). Dark green tiles
represent 1 and dark red tiles respresent −1. (Color figure online)

10 C.R. de Sá et al.

4.2 Characterizing Exceptional Subgroups

The table has now been set to formally define the quality measures for EPM,
which will evaluate how exceptional the preferences are in the subgroups. A
subgroup can be considered interesting both by the amount of deviation (dis-
tance) and by its size (number of records covered by the subgroup, cf. Sect. 3) [9].
Since, reasonable quality measures should take both these factors into account,
we divide the quality measures into two parts: the distance component and the
size component.

QMS = sizeS · distanceS

In order to allow direct comparisons between different quality measures, both
components are normalized to the interval [0, 1]. A common measure for the size
in Subgroup Discovery is

√
s [17]. To normalize, we use the square root of the

fraction of the dataset covered by S: sizeS =
√

s/n.
Before introducing the distance components, let us first define a distance

matrix LS , as the distance matrix between the PMs MS and MD:

LS =
1
2

(MD − MS)

where S ⊆ D (division by 2 limits the distance to the interval [−1, 1]). We can
measure different properties of LS and represent them with a numeric value.
This way we get an indicator of the quality of the distance of preferences for a
subgroup. Consider the subgroup Ŝ1 : A1 ≥ 0.3, which covers the last two cases
from our example dataset D̂. Its PM is:

MŜ1
=

⎡
⎢⎢⎣

0 1 1 1
−1 0 −1 0
−1 1 0 1
−1 0 −1 0

⎤
⎥⎥⎦

The first row clearly reveals that λ1 is always preferred to all other labels in this
subgroup. If we compute the difference matrix LŜ1

we get:

LŜ1
=

⎡
⎢⎢⎣

0 −0.5 −0.5 −0.25
0.5 0 0 0
0.5 0 0 0
0.25 0 0 0

⎤
⎥⎥⎦

The difference matrix LŜ1
shows that the behavior of λ1 is exceptional in Ŝ1.

Only subgroups for which we can infer at least one pairwise preference are
considered interesting in Exceptional Preferences Mining. That is, subgroups
with a PM containing only zeros are not considered interesting.

As we are interested in subgroups with exceptional preferences, we use the
distance matrix LS to measure exceptionality. The distance measures we employ
here typically consider a particular subset of the cells of the distance matrix LS .

Exceptional Preferences Mining 11

Norm. Maximizing the distance of preferences is also maximizing the magnitude
of LS . The most fundamental mathematical way to measure the magnitude of a
vector or matrix is the norm. Hence we can use the Frobenius norm of LS as a
distance measure.

Norm(S) =
√

s/n · ||LS ||F =
√

s/n ·
√√√√

k∑
i=1

k∑
j=1

L (i, j)2

If one is searching for preference deviations in general, one should use the Norm
quality measure, as it considers all the PM entries at the same time. After the
subgroups are found, ideally, we can derive a complete ranking from their PMs.
The overall deviation can be due to one label deviating strongly or from multiple
labels deviating less strongly.

Labelwise. An interesting task in the PL field is the labelwise analysis [3].
Instead of focusing on a whole ranking, it focuses on the preference behavior from
the perspective of individual labels. A data analyst might be interested in finding
if a particular label λ behaves substantially different according to most members
in a subgroup S, compared to its behavior on the overall dataset. Hence, the fact
that only one label behaves differently, disregarding the interaction between the
other labels, can also be interesting. We can measure the distance of each label,
in subgroup S, by computing the norm of the rows from LS . Since in this case
we are interested in exceptionality of only one label, we consider the maximum
value found:

Labelwise(S) =
√

s/n · max
i=1,...,k

1
(k − 1)

k∑
j=1

L (i, j)

Pairwise. Another well-studied task in PL is Pairwise Preferences [13] which
decomposes the preferences into pairs label-vs-label. In situations where there
are not even exceptional labelwise preferences, one can still search for local-
ized preference strongholds. If we are interested in subgroups with, at least one
pair with distinctive preference behavior, we can employ the following quality
measure:

Pairwise(S) =
√

s/n · max
i,j=1,...,k

L (i, j)

This quality measure is the least restrictive of this set: a subgroup is interesting
if one pair of labels interacts unusually, disregarding all other label interactions.

5 Experiments

We incorporate Exceptional Preferences Mining in the Cortana1 software pack-
age [22]. This package delivers a generic framework for SD, implements sev-
eral SD instances, and offers many generic features allowing for different SD
1 http://datamining.liacs.nl/cortana.html.

http://datamining.liacs.nl/cortana.html

12 C.R. de Sá et al.

approaches. The description language consists of logical conjunctions of condi-
tions on single attributes.

Our experiments use a standard beam search approach. Since the Subgroup
Discovery algorithm itself is not the topic of this paper, we will skip over the
algorithmic details, but they can be found elsewhere: the relevant pseudo-code
is given in [6, Algorithm 1]. The most influential parameters are set as follows:
we use a relatively generous search width w (also known as beam width or
beam size) of 100, allowing for a relatively broad (albeit heuristic) search, and a
maximum search depth d of 2, which keeps the resulting subgroups interpretable.
We explore some striking subgroups found with the quality measures on a variety
of datasets, providing evidence of the versatility of our work.

All the findings we present in this paper have gone through the DFD vali-
dation procedure [8] with 100 copies, and all have been found significant at a
significance level of α = 1%.

5.1 Datasets

Statistics regarding the datasets used in this work are shown in Table 2. The
majority are Label Ranking datasets from the KEBI Data Repository at Philipps
University of Marburg [4]. These datasets were adapted from multi-class and
regression problems both from the UCI repository [20] and the Statlog collection
[4]. In the process, the features were normalized, and their names were replaced
by A1, A2, . . . , Am. Therefore, on these datasets, the reported subgroups cannot
be interpreted on the original dataset domain, whereas for general datasets, this
interpretability is a key feature of Exceptional Preference Mining. We choose
to experiment with these datasets anyway, since they are well-known in the
preference learning community.

For illustrating domain-specific interpretation of the results, we experiment
with two further datasets. We adapt the COIL 1999 Competition Data from
UCI [20]. This dataset concerns the frequencies of algae populations in different
environments. We refer to this dataset as Algae. The original COIL dataset
consists of 340 examples, each representing measurements of a sample of water
from different European rivers in different periods. The measurements include
concentrations of chemical substances such as nitrogen (in the form of nitrates,
nitrites and ammonia), oxygen and chlorine. Also the pH, season, river size
and flow velocity are registered. For each sample, the frequencies of 7 types
of algae are also measured. In this work, we consider the algae concentrations
as preference relations by ordering them from larger to smaller concentrations.
Those with 0 frequency are placed in last position and equal frequencies are
represented with ties. Missing values are set to 0.

Our final dataset is the Sushi preference dataset [16], which is composed of
demographic data about 5 000 people and sushi preferences. Each person sorts
a set of 10 different sushi types by preference. The 10 types of sushi, are (a)
shrimp, (b) sea eel, (c) tuna, (d) squid, (e) sea urchin, (f) salmon roe, (g) egg
(h) fatty tuna, (i) tuna roll and (j) cucumber roll. Since the attribute names
were not transformed in this dataset, we can make a richer analysis of it.

Exceptional Preferences Mining 13

Table 2. Dataset details. The column Uπ represents the percentage of unique rankings.

Datasets #Examples #Labels #Attributes Uπ

Cpu-small 8 192 5 6 1%

Elevators 16 599 9 9 1%

Wisconsin 194 16 16 100%

Algae (COIL) 316 7 10 72%

Sushi 5 000 10 10 98%

For all the experiments, all results and statistical tests are completed in less
than 5 min on an Intel Core 2 Duo CPU @ 2.93 GHz with 4 GB RAM.

5.2 Results

We start this section by presenting a discovery which provides an exemplary
demonstration of one advantage of the PM representation.

Elevators Dataset. Figure 2 shows the subgroup with highest score found
with the Norm quality measure in the Elevators dataset. Considering the base
matrix, which has information from all the rankings in the dataset, we conclude
that e, f, g, h have fixed relative positions: e � g � f � h. This information is not
easy to obtain with the usual representations of rankings, but is clearly revealed
in the PM representation. In fact, 13 403 from a total of 16 599 rankings have
e � g � f � h. This illustrates how the visual ranking representation in a PM
can be very useful for supporting predictive methods and for data exploration.
The subgroup, A6 ≥ 0.436, covering 7 048 instances, had a norm of 0.0028. It
shows a distinct behavior between the sets of labels a, b, c, d and the set e, f, g, h.
In the whole data, labels a, b, c, d are a bit more desirable than e, f, g, h. However,
in the subgroup, the latter are clearly preferred to a, b, c, d.

Fig. 2. PM representation of the dataset Elevators (base matrix), the subgroup A6 ≥
0.436 (subgroup matrix) and the difference (difference matrix).

14 C.R. de Sá et al.

Fig. 3. PM representation of the dataset Wisconsin (Base Matrix) and the subgroup
A5 ≤ −0.527 (Subgroup Matrix). (Color figure online)

Wisconsin. Using the Norm quality measure on the Wisconsin dataset, we
obtain 30 subgroups, the 1st-ranked of which (it happens to occur at depth 1 in
the search) is represented in Fig. 3. The base matrix reveals that the dataset
has balanced preferences, by the low intensity of the colored tiles. The red rows
of the PM of subgroup A5 ≤ −0.527 (Subgroup Matrix in Fig. 3) indicate a
strong behavior of the labels f, h and i. The PM reveals that labels f, h, i are
consistently ranked lower than the other labels in this specific subgroup. Since
PMs are antisymmetric, the 3 green columns represent the same phenomena but
from the perspective of the other labels. If we focus on these 3 labels, we can
see that tile (f, h) is white, which means f and h are equivalent. On the other
hand, tiles (i, f) and (i, h) are green, which means that i � f and i � h. If one
had to guess a reliable partial order from this subgroup using only the PM, a
logical choice would be to say that a, b, c, d, e, g, j, k, l,m, n, o, p � i � f, h.

Algae. With the Algae dataset, we obtain results about the concentrations of
algae with the Norm measure. One such example is that during Spring, the
types of algae a, b and c are much more common in rivers than the others. This
can be easily concluded by studying the PM representation of the subgroup

Fig. 4. PM representation of the subgroups Season = Spring (left subgroup matrix)
and Season = Autumn (right subgroup matrix) from the Algae dataset.

Exceptional Preferences Mining 15

Fig. 5. PM representation of the dataset Algae (base matrix) and the subgroup V 10 ≤
59 ∧ V 6 ≤ 11.867 (subgroup matrix), with difference matrix on the right.

(Fig. 4). This subgroup has a norm of 0.010647. On the other hand, we also see
an interesting behavior during the Autumn season, with a norm of 0.01058.

With the Labelwise measure, we find more than 400 subgroups, the best of
which is presented in Fig. 5. The PM clearly reveals the effect of the Labelwise
quality measure: in the subgroup, the label a is strongly preferred over all others,
while the image is much more nuanced over the whole dataset. If we ignore the
label a, the PMs for both the overall dataset and the subgroup are rather bland,
and their difference is not very pronounced. But for this one particular label a,
the behavior on the subgroup is extremely clear-cut, and the Labelwise quality
measure picks up on that effect.

Sushi. With the Labelwise measure, we find 149 subgroups on the Sushi dataset.
We present the best subgroup using this measure in Fig. 6. The subgroup (Males
over 30 years) shows a preference for Sea Urchin, since the majority of men rank
this sushi type in the top 4. By contrast, in the whole population, more than
half rate it between 5th to 10th, and every fifth person rate it in last place.

0.00

0.05

0.10

0.15

0.20

2.5 5.0 7.5 10.0
Ranks of the label

P
ro

po
rt

io
n Population

all

subgroup

Sea Urchin

Fig. 6. Percentage of ranks for Sea Urchin (Sushi dataset) for all individuals in com-
parison to the subgroup (males older than 30 years).

16 C.R. de Sá et al.

Cpu-Small. On the Cpu-small dataset, the subgroup A6 ≥ 0.127 ranks the
best for the Pairwise quality measure. Around 80% of the 2 221 instances of
this subgroup agree that a � d, in contrast to the 30% in the whole dataset of
8 192 instances.

6 Conclusions

We introduce Exceptional Preferences Mining (EPM), a supervised local pattern
mining task where the target concept is a ranking of a fixed set of labels. The
result of this task is a set of subgroups, which are coherent subsets of the dataset
that can be described in terms of a conjunction of few conditions on an attribute,
where the label preferences are exceptional in some sense.

The relevant statistics on a set of preference relations is collected in the cells
of a Preference Matrix (PM). A PM is compiled for the entire dataset, and for
each subgroup under consideration. A subgroup whose PM deviates significantly
from the PM for the whole dataset is then considered to be interesting. We define
three quality measures for EPM that instantiate this concept of ‘interesting’ to
different levels of granularity. The Norm quality measure deems a subgroup
interesting if the full set of preference relations is substantially displaced. The
Labelwise quality measure highlights subgroups where any one label interacts
exceptionally with the other labels, agnostic of how those other labels interact
with each other. The Pairwise quality measure finds a subgroup interesting if any
one pair of labels display exceptional preference relations. Hence, by choosing
the appropriate quality measure, EPM delivers subgroups featuring preference
relations that are exceptional at your preferred scope.

The experiments with the Norm quality measure on the Elevators dataset
illustrate the value of the PM visualization. The PM, as displayed in Fig. 2,
clearly indicates that there are strong relations between a subset of the avail-
able labels. We learn that quite frequently, labels e, f, g, h have fixed relative
positions: e � g � f � h. This information is not easy to obtain with the usual
representations of rankings, but is clearly revealed through the PM visualization.
The experiments with the Labelwise quality measure on the Sushi dataset illus-
trate the relative merit of this quality measure: it focuses on subgroups where one
particular label is exceptionally under- or overappreciated. The subgroup pre-
sented has a penchant for Sea Urchin (cf. Fig. 6). The Pairwise measure shows
its potential on the Cpu-small dataset by identifying a subgroup with strong
exceptional preferences with respect to the pair of labels a and d.

As we argued in Sect. 3, one of the main benefits of a local pattern mining
method such as EPM is that it delivers interpretable results. That means that the
resulting subgroups are ideally suited to instigate real-world policies and actions.
However, due to the employed preprocessing in the KEBI datasets (cf. Sect. 5.1),
interpretation of results on those datasets falters. Only the experiments on the
Algae and Sushi datasets allow a more extensive exploration of interpretable
results. In future work, we would be interested in evaluating EPM on more label
ranking datasets that come with interpretable attributes.

Exceptional Preferences Mining 17

Acknowledgments. This work was supported by the European Union through the
ERC Consolidator Grant FORSIED (project reference 615517). This work was also
financed by the ERDF - European Regional Development Fund through the Opera-
tional Programme for Competitiveness and Internationalisation - COMPETE 2020 Pro-
gramme within project POCI-01-0145-FEDER-006961 and by National Funds through
the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science
and Technology) as part of project UID/EEA/50014/2013.

References

1. Abudawood, T., Flach, P.: Evaluation measures for multi-class subgroup discov-
ery. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML
PKDD 2009, Part I. LNCS (LNAI), vol. 5781, pp. 35–50. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-04180-8 20

2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.: Fast discovery
of association rules. Adv. Knowl. Disc. Data Min. 12, 307–328 (1996)

3. Cheng, W., Henzgen, S., Hüllermeier, E.: Labelwise versus pairwise decomposi-
tion in label ranking. In: LWA 2013, Lernen, Wissen & Adaptivität, Workshop
Proceedings Bamberg, 7–9 October 2013, pp. 129–136 (2013)

4. Cheng, W., Huhn, J.C., Hüllermeier, E.: Decision tree and instance-based learning
for label ranking. In: Proceedings of the 26th Annual International Conference on
Machine Learning, ICML 2009, Montreal, Quebec, Canada, 14–18 June 2009, pp.
161–168 (2009)

5. de Sá, C.R., Soares, C., Knobbe, A.J.: Entropy-based discretization methods for
ranking data. Inf. Sci. 329, 921–936 (2016)

6. Duivesteijn, W.: Exceptional model mining. Ph.D. Thesis, Leiden University (2013)
7. Duivesteijn, W., Feelders, A., Knobbe, A.: Exceptional model mining. Data Min.

Knowl. Disc. 30, 47–98 (2016)
8. Duivesteijn, W., Knobbe, A.J.: Exploiting false discoveries - statistical validation

of patterns and quality measures in subgroup discovery. In: Proceedings of ICDM,
pp. 151–160 (2011)

9. Dzyuba, V., Leeuwen, M.: Interactive discovery of interesting subgroup sets. In:
Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds.) IDA 2013. LNCS, vol. 8207,
pp. 150–161. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41398-8 14

10. Fürnkranz, J., Hüllermeier, E.: Pairwise preference learning and ranking. In:
Lavrač, N., Gamberger, D., Blockeel, H., Todorovski, L. (eds.) ECML 2003. Lecture
Notes in Artificial Intelligence (LNAI), vol. 2837, pp. 145–156. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-39857-8 15

11. Fürnkranz, J., Hüllermeier, E.: Preference Learning, 1st edn. Springer, New York
(2010)

12. Henzgen, S., Hüllermeier, E.: Mining rank data. In: Japkowicz, N., Matwin, S.
(eds.) DS 2014. LNCS (LNAI), vol. 8777, pp. 123–134. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-11812-3 11

13. Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning
pairwise preferences. Artif. Intell. 172(16–17), 1897–1916 (2008)

14. Jin, N., Flach, P., Wilcox, T., Sellman, R., Thumim, J., Knobbe, A.J.: Subgroup
discovery in smart electricity meter data. IEEE Trans. Industr. Inf. 10(2), 1327–
1336 (2014)

http://dx.doi.org/10.1007/978-3-642-04180-8_20
http://dx.doi.org/10.1007/978-3-642-41398-8_14
http://dx.doi.org/10.1007/978-3-540-39857-8_15
http://dx.doi.org/10.1007/978-3-319-11812-3_11

18 C.R. de Sá et al.

15. Jorge, A.M., Pereira, F., Azevedo, P.J.: Visual interactive subgroup discovery with
numerical properties of interest. In: Japkowicz, N., Matwin, S. (eds.) DS 2006.
LNCS (LNAI), vol. 4265, pp. 301–305. Springer, Heidelberg (2006). doi:10.1007/
11893318 31

16. Kamishima, T.: Nantonac collaborative filtering: recommendation based on order
responses. In: Proceedings of KDD, pp. 583–588 (2003)

17. Klösgen, W.: Explora: a multipattern and multistrategy discovery assistant. In:
Advances in Knowledge Discovery and Data Mining, pp. 249–271 (1996)

18. Klösgen, W., Zytkow, J.M. (eds.): Handbook of Data Mining and Knowledge Dis-
covery. Oxford University Press, New York (2002)

19. Van, T., Leeuwen, M., Nijssen, S., Fierro, A.C., Marchal, K., Raedt, L.: Ranked
tiling. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD
2014. LNCS (LNAI), vol. 8725, pp. 98–113. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44851-9 7

20. Lichman, M.: UCI Machine Learning Repository (2013)
21. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge

discovery. Data Min. Knowl. Discov. 1(3), 241–258 (1997)
22. Meeng, M., Knobbe, A.: Flexible enrichment with cortana-software demo. In: Pro-

ceedings of BeneLearn, pp. 117–119 (2011)
23. Umek, L., Zupan, B.: Subgroup discovery in data sets with multi-dimensional

responses. Intell. Data Anal. 15(4), 533–549 (2011)
24. Vembu, S., Gärtner, T.: Label ranking algorithms: a survey. In: Fürnkranz, J.,

Hüllermeier, E. (eds.) Preference Learning, pp. 45–64. Springer, Heidelberg (2010)

http://dx.doi.org/10.1007/11893318_31
http://dx.doi.org/10.1007/11893318_31
http://dx.doi.org/10.1007/978-3-662-44851-9_7
http://dx.doi.org/10.1007/978-3-662-44851-9_7

Local Subgroup Discovery for Eliciting
and Understanding New Structure-Odor

Relationships

Guillaume Bosc1(B), Jérôme Golebiowski3, Moustafa Bensafi4,
Céline Robardet1, Marc Plantevit2, Jean-François Boulicaut1,

and Mehdi Kaytoue1

1 Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, 69621 Lyon, France
guillaume.bosc@insa-lyon.fr

2 Université de Lyon, CNRS, Université Lyon 1, LIRIS, UMR5205,
69622 Lyon, France

3 Université de Nice, CNRS, Institute of Chemistry, Nice, France
4 Université de Lyon, CNRS, CRNL, UMR5292, INSERM U1028, Lyon, France

Abstract. From a molecule to the brain perception, olfaction is a com-
plex phenomenon that remains to be fully understood in neuroscience.
A challenge is to establish comprehensive rules between the physico-
chemical properties of the molecules (e.g., weight, atom counts) and spe-
cific and small subsets of olfactory qualities (e.g., fruity, woody). This
problem is particularly difficult as the current knowledge states that
molecular properties only account for 30 % of the identity of an odor:
predictive models are found lacking in providing universal rules. How-
ever, descriptive approaches enable to elicit local hypotheses, validated
by domain experts, to understand the olfactory percept. Based on a new
quality measure tailored for multi-labeled data with skewed distributions,
our approach extracts the top-k unredundant subgroups interpreted as
descriptive rules description → {subset of labels}. Our experiments on
benchmark and olfaction datasets demonstrate the capabilities of our
approach with direct applications for the perfume and flavor industries.

1 Introduction

Around the turn of the century, the idea that modern, civilized human beings
might do without being affected by odorant chemicals became outdated: the
hidden, inarticulate sense associated with their perception, hitherto considered
superfluous to cognition, became a focus of study in its own right and thus the
subject of new knowledge. It was acknowledged as an object of science by Nobel
prizes (e.g., [2] awarded 2004 Nobel prize in Physiology or Medicine); but also
society as a whole was becoming more hedonistic, and hence more attentive to
the emotional effects of odors. Odors are present in our food, which is a source
of both pleasure and social bonding; they also influence our relations with others
in general and with our children in particular. The olfactory percept encoded in
odorant chemicals contribute to our emotional balance and wellbeing.
c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 19–34, 2016.
DOI: 10.1007/978-3-319-46307-0 2

20 G. Bosc et al.

While it is generally agreed that the physicochemical characteristics of odor-
ants affect the olfactory percept, no simple and/or universal rule governing this
Structure Odor Relationship (SOR) has yet been identified. Why does this odor-
ant smell of roses and that one of lemon? Considering that the totality of the
odorant message was encoded within the chemical structure, chemists have tried
to identify relationships between chemical properties and odors. However, it is
now quite well acknowledged that structure-odor relationships are not bijective.
Very different chemicals trigger a typical “camphor” smell, while a single mole-
cule, the so-called “cat-ketone” odorant, elicit two totally different smells as a
function of its concentration [4]. At best, such SOR rules are obtained for a very
tiny fraction of the chemical space, emphasizing that they must be decomposed
into sub-rules associated with given molecular topologies [5]. A simple, universal
and perfect rule does probably not exist, but instead, a combination of several
sub-rules should be put forward to encompass the complexity of SOR.

In this paper, we propose a data science approach with a view to advance
the state of the art in understanding the mechanisms of olfaction. We create
an interdisciplinary synergy between neuroscientists, chemists and data miners
to the emergence of new hypotheses. Indeed, data-mining methods can be used
to answer the SOR discovery problem, either through the building of predictive
models or through rules discovery in pattern mining. One obstacle to this is that
olfactory datasets are very complex (i.e., several thousand of dimensions, hetero-
geneous descriptors, multi-label, unbalanced classes, and non robust labelling)
and, above all a lack of data-centric methods in neuroscience suitable for this
level of complexity. The main aim of our study is to examine this issue by linking
the multiple molecular characteristics of odorant molecule to olfactory qualities
(fruity, floral, woody, etc.) using a descriptive approach (pattern mining). Indeed,
a data science challenge was recently proposed by IBM Research and Sage [12].
Results suggest difficulties in the prediction of the data for olfactory datasets
in general. The reason is that there is a strong inter- and intra-individual vari-
ability when individuals are asked about the quality of an odor. There are sev-
eral explanations: geographical and cultural origins, each individual repertory of
qualities (linguistic), genetic differences (determining olfactory receptors), trou-
bles such as anosmia (see [3,10]). It appears that designing pure predictive mod-
els remains today a challenge, because it depends on the individual’s genome,
culture, etc. Most importantly, the most accurate methods generally never sug-
gest a descriptive understanding of the classes, while fundamental neurosciences
need descriptive hypotheses through exploratory data analysis, i.e., descriptions
that partially explain SOR. For that, we develop a descriptive approach to make
the results intelligible and actionable for the experts.

The discovery of (molecular) descriptions which distinguish a group of objects
given a target (class label, i.e. odor quality(ies)) has been widely studied in
AI, data mining, machine learning, etc. Particularly, supervised descriptive
rules were formalized through subgroup discovery, emerging-pattern/contrast-
sets mining, etc. [14]. In all cases, we face a set of objects associated to descrip-
tions (which forms a partially ordered set), and these objects are related to one

Local Subgroup Discovery for Understanding Structure-Odor Relationships 21

or several class labels. The strength of the rule (SOR in our application) is evalu-
ated through a quality measure (F1-measure, accuracy, etc.). The issues of multi-
labeled datasets have been deeply studied in the state of the art [15]. However, to
the best of our knowledge, most of existing methods to explore multi-label data
are learning tasks. The existing descriptive approach known as Exceptional Model
Mining (EMM) deals with multi-label data but it only considers them together,
and not separately. Indeed, this method extracts subsets of objects (e.g., odorants)
which distribution on all labels (e.g., odors) is statistically different (i.e., excep-
tional) w.r.t. the distribution of the entire set of objects. However, we aim to focus
on subsets of few labels at a time. Moreover, the experts expect rules highlighting
which values of features result in a subset of labels, and not only to extract rel-
evant features for some labels as feature selection does. Our contributions are as
follows:

– We explain the main problems of existing descriptive rule discovery approaches
for dataset such as olfactory datasets, that are (i) multi-labeled with (ii) an
unbalanced label distribution (i.e., a high variance in the labels occurrences).

– For (i), we consider the enumeration of pairs consisting of a description and a
subset of labels (a variant of redescription mining [9]).

– For (ii), we propose a new measure derived from the F-score but less skewed by
imbalance distribution of labels and that can dynamically consider the label
distributions. We show this fact both theoretically and experimentally.

– We devise an algorithm which explores the search space with a beam-search
strategy. It comes with two major issues that we jointly tackle: Finding the
best cut points of numerical attributes during the exploration, also overcoming
a redundancy among the extracted patterns.

– We thoroughly demonstrate the actionability of the discovered subgroups for
neuroscientists and chemists.

The rest of the paper is organized as follows. We formally define the SOR
discovery problem in Sect. 2 and we show why state-of-the-art methods are not
adapted for this problem. We present our novel approach in Sect. 3 while the
algorithmic details are given in Sect. 4. We report an extensive empirical study
and demonstrate the actionability of the discovered rules in Sect. 5.

2 Problem Formulation

In this section, we formally define our data model as well as its main character-
istics before introducing the problem of mining discriminant descriptive rules in
these new settings. Indeed, we recall after the two most general approaches that
can deal with our problem although only partially, namely subgroup discovery
[14] and redescription mining [9]. We demonstrate this fact and highlight their
weaknesses through an application example.

Definition 1 (Dataset D(O,A, C, class)). Let O and A be respectively a set of
objects (molecules) and a set of attributes (physicochemical properties). The value

22 G. Bosc et al.

Table 1. Toy olfactory dataset.

ID MW nAT nC Quality

1 150.19 21 11 {Fruity}
2 128.24 29 9 {Honey, Vanillin}
3 136.16 24 10 {Honey, Fruity}

ID MW nAT nC Quality

4 152.16 23 11 {Fruity}
5 151.28 27 12 {Honey, Fruity}
6 142.22 27 10 {Fruity}

domain of an attribute a ∈ A is denoted by Dom(a) where a is said numerical if
Dom(a) is embedded with an order relation, or nominal otherwise. Each object
is described by a set of labels from the nominal set Dom(C) by the function
class : O �→ 2Dom(C) that maps the olfactory qualities to each object.

Running example. Let us consider the toy olfactory dataset of Table 1 made
of O = {1, 2, 3, 4, 5, 6} the set of molecules IDS and A the set of 3 of physi-
cochemical attributes giving the molecular weight (MW), the number of atoms
(nAT), and the number of carbon atoms (nC). Each molecule is associated to
one or several olfactory qualities from Dom(C) = {Fruity,Honey, V anillin}.
The assignments of an odor to a molecule is made by domain experts.

Real-life olfactory datasets, instances of this model, show specific character-
istics: (i) high dimensions, (ii) multi-label, (iii) unbalanced classes, and
(iv) non-robust labeling. Indeed, (i) the number of attributes is large, up to
several thousands of physicochemical attributes and a hundred of labels ; (ii)
a molecule takes several labels and (iii) the label distribution is highly unbal-
anced, i.e., with a high variance in the frequency with which the labels occur
in the dataset. Odors like fruity (resp. powdery) are strongly over-represented
(resp. under-represented) (see Fig. 1). Then, (iv) labels (odors) attached to each
molecule are given by experts based on their own vocabulary. However there is
both a high inter- and intra-individual variability concerning the perception of
odors [12], the latter involving more than 400 genes encoding molecular receptors
(whose expressions differ between people). Perception is subject to the context
of the data acquisition phases (questionnaires), cultural elements, etc.

Building an original dataset. One prominent methodological lock in the field
of neuroscience concerns the absence of any large available database (>1000
molecules) combining odorant molecules described by two types of descriptors:
perceptual ones such as olfactory qualities (scent experts defining a perceptual
space of odors), and chemical attributes (chemical space). The dataset provided
by the IBM challenge [12] is a clinical one: i.e., odorant molecules were not
labeled by scent experts. To tackle this issue, the neuroscientists selected a list
of 1,689 odorants molecules described by 74 olfactory qualities in a standardized
atlas [1]. They then described using Dragon 6 software (available on talete.mi.it)
all of these molecules at the physicochemical levels (each odorant molecule was
described by more than 4,000 physicochemical descriptors). As such, and to the
best of our knowledge, the present database, created by neuroscientists, is one
of the very few in the field that enable quantification and qualification of more

http://www.talete.mi.it

Local Subgroup Discovery for Understanding Structure-Odor Relationships 23

than 1,500 molecules at both, perceptual (neurosciences) and physicochemical
(chemistry) levels. The distribution of the 74 olfactory qualities is illustrated in
Fig. 1 (filled bars).

Problem 1 (SOR Problem). Given an olfactory dataset, the aim is to characterize
and describe the relationships between the physicochemical properties of odorant
molecules and their olfactory qualities.

A data-science approach. Answering this problem requires experts of different
domains. The odor space is related to the study of olfaction in neuroscience,
the understanding of the physicochemical space requires chemical skills, and
finally, exploring jointly these two spaces requires data analysis techniques from
computer science. In the latter, we cannot afford to use black box predictive
models as we need intelligible patterns. Second, as olfactory datasets suffer from
a poor label predictability, we cannot use global models to model the dataset
but local models, i.e. subsets of data that are specific to some labels. These
approaches are known as descriptive rule discovery methods [14], divided into two
main trends: subgroup discovery and redescription mining. We introduce these
methods and show their strengths and weaknesses to deal with our problem.

2.1 Subgroup Discovery

Subgroup Discovery (SD) has attracted a lot of attention for two decades under
several vocables and research communities (subgroups, contrast sets, emerging
patterns, etc.) [14,16]. The aim is to find groups of objects, called subgroups,
for which the distribution over the labels is statistically different from that of
the entire set of objects. A subgroup is defined (i) by its extent, i.e. the subset
of objects it covers and (ii) by its intent, a description connecting restrictions on
the attribute domains, such that the intent covers the extent. The intent can be
defined on several languages, e.g. conjunctions of attribute domain restrictions.

Definition 2 (Subgroup). The description of a subgroup is given by d =
〈f1, . . . , f|A|〉 where each fi is a restriction on the value domain of the attribute
ai ∈ A. A restriction is either a subset of a nominal attribute domain, or an
interval contained in the domain of a numerical attribute. The set of objects cov-
ered by the description d is called the support of the subgroup supp(d) ⊆ O. The
set of all subgroups forms a lattice with a specialization/generalization ordering.

Definition 3 (Quality measure). The SD approach hence relies on a quality
measure which evaluates the singularity of the subgroup within the population
regarding a target class function: the class attribute. The choice of the measure
depends on the dataset but also on the purpose of the application [8]. There are
two main kind of quality measures: the first one is used with monolabeled dataset,
e.g., the F-1 measure, the WRAcc measure, the Giny index or the entropy (the
original SD [17]); and the second one is used with multilabeled dataset, e.g., the
Weighted Kullback-Leibler divergence(WKL) as used in EMM [6]).

24 G. Bosc et al.

Fig. 1. Subgroup label distributions with WKL.

Running example. The support of the description d1 = 〈MW ≤ 151.28, 23 ≤
nAT 〉 is {2, 3, 5, 6}. For readability, we omit a restriction fi in a description
if there is no effective restriction on the attribute ai. The description d2 =
〈MW ≤ 151.28, 23 ≤ nAT, 10 ≤ nC〉 is a specialization of d1 (d1 is a generaliza-
tion of d2). Moreover, considering Table 1, WKL(d1) = 4/6 × ((3/4 log2 9/10) +
(1/4 log2 3/2) + (3/4 log2 3/2)) = 0.31. The WRAcc measure of the descriptive
rule d1 → Honey is WRAcc(d1,Honey) = 4/6 × (3/4 − 1/2) = 0.25.

The SD problem. Given a dataset D(O,A, C, class),minSupp, ϕ and k, the
objective is to extract the k best subgroups w.r.t. the measure ϕ, with a support
cardinality higher than a given minSupp.

Limits of SD addressing Problem 1. The existing methods of SD either
target only a single label at a time, or all labels together depending on the
choice of the quality measure. In our application, it is required that a subgroup
could characterize several labels at the same time. Only the WKL measure can
achieve this goal [6]. However, it suffers of the curse of dimensionality: in presence
of a large number of labels (74 odors in our experiments), the subgroups cannot
characterize a small set of odors. This is shown with real data on Fig. 1: the
distribution of labels for the full dataset and for the best subgroup are displayed:
clearly, the subgroup is not characteristic of a few odors. We need thus to consider
not only all the possible subgroups, but all label subsets for each subgroup.
In other settings, this search space is actually considered by a method called
Redescription Mining [9].

2.2 Redescription Mining

Redescription mining (RM) [9] aims at finding two ways of describing a same
set of objects. For that, two datasets are given with different attributes but the
same set of object ID. The goal is to find pairs of descriptions (c, d), one in
each dataset, where supp(c) and supp(d) are similar. The similarity is given by
a Jaccard index between supp(c) and supp(d). The closer to 1 the better the
redescription. If we consider the first dataset as the chemicophysical attributes
and the second as the labels, we can apply RM to find molecular descriptions
and label sets that cover almost the same set of objects.

Local Subgroup Discovery for Understanding Structure-Odor Relationships 25

Running example. Let us consider the dataset of the Table 1 and the
redescription r = (dP , dQ) with dP = 〈MW ≥ 150.19 ∨ nAT = 27〉, dQ =
〈Fruity ∧ (¬Honey)〉. Thus, supp(dP) = {1, 4, 5, 6} and supp(dQ) = {1, 4, 6}
and J(r) = 3

4 = 0.75. Note that RM allows an expressive language with nega-
tions and disjunctions for defining a description.

The RM problem. Given a dataset D(O,A, C, class),minSupp and k, the
objective is to extract the k best redescriptions w.r.t. the Jaccard Index, with a
support cardinality higher than minSupp.

Limits of RM addressing Problem 1. RM gives us an algorithmic basis to
explore the search space composed of all pairs of subsets of objects and subsets
of labels. However, the quality measure used in RM, the Jaccard index, does not
fit exactly what Problem 1 expects. The Jaccard index is symmetric implying
the discovery of almost bijective relationships. Yet, it is widely acknowledged
that the structure-odor relationships are not bijective. Therefore, this measure
is not relevant for unbalanced datasets, which is the case of olfactory datasets.
Thus it is difficult to find descriptions related to an over-represented odor.

As a conclusion, answering Problem 1 can be achieved by exploring the search
space of redescriptions of the form (d, L), with d a description and L a subset of
labels, using any quality measure from subgroup discovery (F1-measure, WRAcc,
KWL, etc.). This however, does not take into account the unbalanced classes
problem. We make this point explicit in the next section and propose a solution.

3 An Adaptive Quality Measure

Existing discriminant descriptive rule methods cannot address Problem1: the
SD generic framework does not explore the correct search space whereas in RM
the quality measure is not adapted for this problem. Problem1 requires a data
mining method that simultaneously explores both the description space and the
search space of the odor labels. For that, we define local subgroups.

Definition 4 (Local subgroup). Given a dataset D(O,A, C, class), a local
subgroup (d, L) takes a description d characterizing a subset of few labels L ⊆
Dom(C) of the class attribute C with 1 ≤ |L| << |Dom(C)|. The support of a
local subgroup is the support of its description: supp(d, L) = supp(d). Note that
supp(L) = {o ∈ O | L ⊆ class(o)}.

The aim is to find out local subgroups (d, L) where the description d is char-
acteristic of the subset of few olfactory qualities L ⊆ Dom(C). For that, we
develop a SD method, that simultaneously explores this double search space.
This method relies on a adaptive quality measure that enables to evaluate the
singularity of the local subgroup (d, L) only for the subset of labels L it tar-
gets. This measure is adaptive for each local subgroup, i.e., it is automatically
adjusted according to the balance of the subset of labels in the dataset.

26 G. Bosc et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250 300 350 400

β(|supp(L)|)

|supp(L)|

xBeta=200, lBeta=60
xBeta=200, lBeta=20
xBeta=110, lBeta=20

Fig. 2. The curves of β(|supp(L)|).

21

3

4

56

Fig. 3. Necessity of an adaptive mea-
sure. (Color figure online)

The original F-Score. Complete surveys help understanding how to choose
the right measure [8]. The generalized version of the WKL1 considers the labels
in the subset L ⊆ Dom(C) as independent and does not look for their co-
occurrences. The WRAcc measure is a gain measure on the precision of the
subgroup and totally ignores the recall. However, we are interested in a measure
that considers both precision (P (d, L) = |supp(d)∩supp(L)|

|supp(d)|) and recall (R(d, L) =
|supp(d)∩supp(L)|

|supp(L)|) of a local subgroup. The F-Score does it:

F (d, L) = (1 + β2) × P (d, L) × R(d, L)

(β2 × P (d, L)) + R(d, L)
(1)

Indeed, objects are described by both attributes and class labels, so F-score
quantifies both the precision and the recall of the support of the description
w.r.t. the support of the class labels.

The adaptive Fβ. However, olfactory datasets involve unbalanced labels, i.e.
the distribution of the labels is quite different from each other: some are over-
represented, and other are under-represented. Thus, we decided to adapt the
F-Score to unbalanced datasets considering the original constant β as a variable
of |supp(L)|: the higher |supp(L)|, the closer to zero β is (the precision in the
F-Score is fostered), and the lower |supp(L)|, the closer to one β is (the F-Score
becomes the harmonic mean of precision and recall). Formally, given two positive
real numbers xβ and lβ , we define the Fβ measure derived from Eq. 1 with β a
variable of |supp(L)| as follows (see also Fig. 2)

β(|supp(L)|) = 0.5 ×
(

1 + tanh

(
xβ − |supp(L)|

lβ

))
(2)

Intuitively, for over-represented labels, since it is difficult to find rules with
high recall and precision, the experts prefer to foster the precision instead of the
recall: they prefer extracting several small subgroups with a high precision than
a huge local subgroup (d, L) with plenty of non-L odorants. In Fig. 3 the red
odorants are over-represented in the dataset, but it is more interesting having
the different local subgroups 1, 2, 3 and 4 with high precision, rather than a
1 The generalized version of the WKL corresponds to the WKL measure restricted to

the subset of labels L ⊆ Dom(C) of the local subgroup (d, L).

Local Subgroup Discovery for Understanding Structure-Odor Relationships 27

single huge local subgroup 5 which precision is much lower. For odorants that
are not over-represented, the measure considers both precision and recall: e.g.,
the local subgroup 5 is possible for the green molecules. The two real numbers
xβ and lβ are set thanks to the characteristics of the dataset. In fact, due to the
distribution δC of the classes in the dataset, fixing xβ = E(δL) and lβ =

√
σ(δL),

where E(X) and σ(X) are respectively the average and the standard deviation
of a random variable X, is sensible considering Problem 1.

The local subgroup discovery problem. Given a dataset D(O,A, C, class),
the adaptive quality measure Fβ , a minimum support threshold minSupp and an
integer k ∈ N

+, the aim is to extract the k best local subgroups (d, L) w.r.t. the
quality measure Fβ with 1 ≤ |L| � |Dom(C)|, such that supp(d, L) ≥ minSupp.

Running example. Considering the dataset of Table 1, with xβ = 3 and
lβ = 1.4, let us discuss the local subgroup (d1, {Fruity}) with d1 = 〈MW ≤
151.28, 23 ≤ nAT 〉. First, β(|supp({Fruity}|) = 0.05 since the Fruity odor
is over-represented (|supp({Fruity})| = 5). We have that Fβ(d1, {Fruity}) =
0.75 and it fosters the precision rather than the recall. Now if we consider
the local subgroup (d1, {Honey, Fruity}): since |supp({Honey, Fruity})| = 2,
β(|supp({Honey, Fruity}) = 0.81 from which it follows that Fβ(d1, {Honey,
Fruity}) = 0.41 because it considers both recall and precision.

4 Mining Local Subgroups

Exploring the search space. The search space of local subgroups is struc-
tured as the product of the lattice of subgroups and the lattice of label subsets,
hence a lattice. Let X be the set of all possible subgroups, and C the set of
labels, the search space is given by X × 2C . Each element of this lattice, called
node or local subgroup hereafter, corresponds to a local subgroup (d, L). Nodes
are ordered with a specialization/generalization relation: the most general local
subgroup corresponds to the top of the lattice and covers all objects, its set of
labels is empty (or composed with labels that occur for –all– the objects). Each
description d can be represented as a set of attribute restrictions: specializing
a description is equivalent to add attribute domain restrictions (i.e. adding an
element for nominal attributes, shrinking an interval to its nearest left or right
value for a numerical attribute, see e.g. [11]).

Due to the exceptional size of the search space, we opt for a beam-search,
starting from the most general local subgroup to the more specialized ones. This
heuristic approach is also used in EMM and RM. It tries to specialize each
local subgroup either by restricting an attribute or by extending subset of class
labels with a new label it has also to characterize as long as the Fβ score is
improved. There are at most |Dom(C)| +

∑
ai∈A |ai|(|ai| + 1)/2 possibilities to

specialize each local subgroup: we can proceed up to |Dom(C)| extensions of
the subset of labels to characterize L and |A| extensions of the description for
which we can build up |ai|(|ai| + 1)/2 possible intervals for numeric attributes.
We choose among those only a constant number of candidates to continue the

28 G. Bosc et al.

exploration (the width of the beam: the beamWidth best subgroups w.r.t. the
quality measure). The search space is also pruned thanks to the anti-monotonic
constraint on support.

Finding the attribute split points. When extending the description of a
subgroup s = (d, L) for a numerical attribute, the beam search exploration looks
for the best cut points that optimize the Fβ score of the resulting subgroup.
Since the value domain of a numerical attribute a is finite (at most |O| different
values), a naive approach would test all the possibilities to find the lower and
the upper bounds for the interval that optimizes Fβ (O(|O|2) complexity). Our
approach, inspired by a state-of-the-art approach [7], only searches for promising
cut points. We define ri = |{o∈supp(s)|a(o)=vi,o∈supp(L)}|

|{o∈supp(s)|a(o)=vi,o/∈supp(L)}| for vi ∈ Dom(a). We say
that a value vi is a strict lower bound if ri > 1 and ri−1 ≤ 1, and a value vi is a
strict upper bound if ri > 1 and ri+1 ≤ 1. The algorithm searches for the best
cut points among the strict lower and upper bounds.

Table 2. Characteristics of the datasets where |O| is the number of objects, |A| the
number of attributes, |C| the number of labels, M1 the average number of labels associ-
ated to an object, and M2, min, max respectively the average, minimum and maximum
number of objects associated to a label.

Dataset |O| |A| |C| M1 M2 min max

B1 7395 243 159 2.4 111.7 51 1042

D1 1689 43 74 2.88 67.26 2 570

D2 1689 243 74 2.88 67.26 2 570

However this approach can return an empty set of cut points, especially
for under-represented subsets of class labels. Experimentally, the beam search
exploration stops very quickly and only over-represented label sets can be output.
For that, we consider the maxBeginningPoints best lower bounds, i.e. value vi

such that 0 < ri ≤ 1, as possible cut points when the original method of Fayyad
et al. [7] does not return any result. By default we set maxBeginningPoints = 5.

Mining diverse significant subgroups. Generally, when a method mixes a
beam search and a top-k approach, the issue of redundancy is clearly an impor-
tant thing to deal with. The risk is to extract a set of top-k local subgroups where
several subgroups are redundant, i.e. that share same restrictions or support. For
that, we implement a process to avoid redundancy during the exploration. Before
adding a local subgroup s in the top-k resulting set, we quantify the redundant
aspect of s w.r.t. each current top-k local subgroup by comparing the restrictions
involved in its description but also the support of these restrictions. Formally, we
compute a penalty score pen(s1, s2) ∈ [0; 3] between two subgroups s1 and s2 by
adding (i) the proportion of common attributes ai involved in effective restric-
tions in both descriptions, and (ii) the values of the Jaccard index between
the intervals [l1, u1] and [l2, u2] for each common attribute in the description,

Local Subgroup Discovery for Understanding Structure-Odor Relationships 29

and (iii) the values of the Jaccard index between supp(s1) and supp(s2). The
algorithm only adds a new local subgroup if the penalty score with all other sub-
groups is less than the threshold maxRedundancy, and if the penalty score is
greater than maxRedundancy the algorithm keeps the subgroup with the higher
quality measure. By default, we fix maxRedundancy to 2.2.

Finally, extracted subgroups have to be statistically significant: considering
a local subgroup (d, L), the support of d and the support of L in the entire
dataset have to be statistically meaningful. If we consider these distributions as
independent, the probability that objects are included in both supports has to
be low. To measure this, we compute the p-value: we test the distribution we
face in the dataset against the null-model hypotheses.

5 Experiments

We experiment with the Bibtex dataset from the well-known Mulan2 library
for learning from multi-label datasets. The characteristics of this dataset are
displayed in Table 2. The labels correspond to keywords the authors had chosen
to their Bibtex entry. This Bibtex dataset is used to validate the method on both
quantitative and qualitative sides because it does not require a deep expertise
to interpret the results. We also used two real-world olfaction datasets. These
datasets D1 and D2 have been derived from the dataset described in Sect. 2.
Table 2 presents the characteristics of these datasets.

Performance study. To evaluate the efficiency of our algorithm, we con-
sider the Bibtex dataset B1 and the two olfaction datasets D1 and D2. Exper-
iments were performed on a 3.10 GHz processor with 8 GB main memory run-
ning Ubuntu 14.04.1 LTS. We vary minSupp, beamWidth and maxOutput
separately and the non-varying parameters are fixed to maxOutput = 100,
beamWidth = 15 and minSupp = 30. Surprisingly, in Fig. 4 (left), the run-
time seems not to vary a lot when increasing the beam width. This is the
same result when decreasing the minimum support threshold in Fig. 4 (right).
This is due to the on-the-fly discretization method that is time-consuming. In

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

2 5 10 15 20 25
 0

 500

 1000

 1500

 2000
Run Time (log-scale (sec)) # Subgroups

beamWidth

Runtime

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.5 1 1.2 1.5 1.8 2 2.5 3
 0

 100

 200

 300

 400

 500
Jaccard of supports # Subgroups

maxRedundancy

Jaccard

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

9 8 7 6 5 4 3 2
 0

 100

 200

 300

 400

 500
Run Time (log-scale (sec)) # Subgroups

minSupp

Runtime

Fig. 4. The runtime and the number of output subgroups varying (left) the beam
width, (middle) maxRedundancy and (right) the minimal support on D1.

2 http://mulan.sourceforge.net.

http://mulan.sourceforge.net

30 G. Bosc et al.

Fig. 5. (left) The precision and the recall of subgroups (d, L) as a function of |supp(L)|
on B1 with the value of β(|supp(L)|). The precision and the recall of the output sub-
groups (d, L) on B1 according to |supp(L)| (color scale) using F1 (middle), Fβ (right).

Fig. 6. The same experiments than those of Figs. 5 but on the dataseet D1.

Fig. 4 (left and right), we observe that even if minSupp increases, the number of
outputted subgroups is constant whereas when beamWidth increases, the num-
ber of extracted subgroups is higher. This is due to the avoiding redundancy
task: when minSupp increases, the quality measure of the new generated local
subgroups is improved, however, they may be redundant compared to other sub-
groups that are therefore removed. When beamWidth increases, the diversity
is increased so the subgroups are less redundant. Figure 4 (middle) depicts the
impact of our avoiding redundancy step. The lower maxRedundancy, the less
similar the support of subgroups, the fewer extracted subgroups.

Validating the adaptive F-measure. Our choice to discover local subgroups
(d, L) with an adaptive Fβ score is well-suited for an olfactory dataset because a
molecule is associated to a few olfactory qualities. For an experiment (the others
highlight similar remarks), we have that 60.6% of subgroups with |L| = 1, 33.8%
of subgroups with |L| = 2 and 5.6% of subgroups with |L| = 3. Figure 6 (left)
depicts the impact of the factor β(|supp(L)|. It displays for each extracted local
subgroup (d, L) the precision and the recall of the descriptive rules d → L as
a function of |supp(L)|, with the curve of the factor β(|supp(L)|). Clearly, it
works as expected: the subgroups for which β(|supp(L)|) is close to 0 foster
the precision rather than the recall, and the subgroup for which β(|supp(L)|) is
close to 1 foster both recall and precision. Figure 6 (right) shows this point in

Local Subgroup Discovery for Understanding Structure-Odor Relationships 31

a different way: it displays the precision and the recall of each output subgroup
(d, L). A color code highlights the size of supp(L): for over-represented labels,
the precision is fostered at the expense of the recall whereas in other cases both
precision and recall are fostered. Comparing to Fig. 6 (middle) which displays
this result with the F1 score, we see that few output subgroups are relative to
over-represented labels (the same applies for the Bibtex dataset B1, see Fig. 5).

Building a dataset for analyzing the olfactory percept. We worked on our
original dataset presented in Sect. 2. For this subsection, we derived 3 datasets by
changing the following conditions. As our approach cannot handle 4, 000 mole-
cular descriptors: we filter out correlated attributes with the Pearson product-
moment correlation coefficient. As a result, attributes with a correlation higher
than 90% (resp 60% and 30%) were removed leaving only 615 (resp. 197 and
79) attributes. We ran our algorithm on these three datasets with the combina-
tions of different parameters: standard F1 score versus our adaptive measure Fβ ;
minSupp = 15 (1%) versus minSupp = 30 (2%): and finally, we experiment
with three different thresholds for the maxRedundancy parameter (0.5, 1.5 and
2.5). All results are available at http://liris.cnrs.fr/olfamining/.

Identification of relevant physicochemical attributes. We consider the
experiment on the dataset with 79 physicochemical properties, when we use the
Fβ score, minSupp = 30, and maxRedundancy = 2.5. A relevant information
for neuroscientists and chemists concerns the physicochemical attributes that
were identified in the descriptive rules. As showed in [13], the sum of atomic van
der Waals volumes, denoted as Sv, is discriminant with regard to the hedo-
nism of an odor, and especially the higher Sv, the more pleasant an odor.
Moreover, the higher the rate of nitrogen atoms (N %), the less pleasant an
odor, consistent with the idea that amine groups (−NH 2) are associated with
bad odors (such as cadaverine or putrescine). Based on this observation, we
find subgroups related to either the Floral or Fruity quality that are charac-
terized by a special range of values with regard to Sv and N %. For exam-
ple, s5 = 〈[27 ≤ nOHs ≤ 37] [6.095 ≤ Sv ≤ 7.871] [4 ≤ N % ≤ 8] [25 ≤ H % ≤ 28], {Floral}〉 and
s6 = 〈[1 ≤ nCsp2 ≤ 1] [2.382 ≤ TPSA(Tot) ≤ 2.483] [4 ≤ N % ≤ 10], {Fruity}〉 are output
subgroups. The quality measure of s5 is 0.91 with a precision of 0.91 and a low
recall of 0.06. For s6, its quality measure is up to 0.87, the same as its precision
and its recall is 0.05. Each of these subgroups contains in its description the
N % attribute associated to a very low percentage, and s5 also includes the Sv
attributes with a range of values that corresponds to its higher values. Note that,
due to the Fβ score, the recall of these subgroups is low because the odors Fruity
and Floral are over-represented in the dataset. In general, the quality Musk is
associated with large and heavy molecules: the molecular weight (MW) of these
molecules is thus high. In the output subgroups, most of those associated to the
musk quality include in their description the MW attribute with high values. For
example, s7 = 〈[5 ≤ nCar ≤ 6] [3.531 ≤ Ui ≤ 3.737] [224.43 ≤ MW ≤ 297.3], {Musk}〉 with a
quality measure of 0.46 (precision: 0.48, recall: 0.37) is about molecules with a
molecular weigh between 224.43 and 297.3. Moreover, when the quality Musk
is combined with the quality Animal, we still have a high molecular weight but

http://liris.cnrs.fr/olfamining/

32 G. Bosc et al.

there are other attributes with specific range of values: s8 = 〈[3.453 ≤ Ui ≤ 3.691]

[238 ≤ MW ≤ 297.3] [32 ≤ nR = Cp ≤ 87] [1 ≤ nCsp2 ≤ 6], {Musk, Animal}〉. This latter
topological attribute is consistent with the presence of double bonds (or so-
called sp2 carbon atoms) within most musky chemical structure, that provides
them with a certain hydrophilicity.

Providing relevant knowledge to solve a theoretical issue in the neu-
roscience of chemo-sensation. We consider the experiment on the dataset
with 615 physicochemical properties, when we use the Fβ score, minSupp = 15,
and maxRedundancy = 0.5. Another important information brought by these
findings to experts lies in the fact the SOR issue should be viewed and explored
through a “multiple description” approach rather than “one rule for one quality”
approach (i.e., bijection). Indeed, a number of odor qualities were described by
very specific rules. For example, 44 % of the molecules described as camphor can
be described by 3 rules physicochemical rules, with a very low rate of false pos-
itives (0.06 %; molecules being described by the physicochemical rule, but not
described perceptively as camphor). Similar patterns were observed for other
qualities: e.g., mint (3 descriptive rules; 32 % of the molecules described as
mint; 0.06 % of false positives), ethereal (3; 35 %; 0 %), gassy (3; 36 %; 0.36 %),
citrus (3; 42 %; 0.24 %), waxy (3; 43 %; 0 %), pineapple (3; 48 %; 0 %), medicinal
(3; 49 %; 0.30 %), honey (4; 54 %; 0.06 %), sour (3; 56 %; 0.36 %). Focusing on
these qualities, this confirms, as stated above, that a universal rule cannot be
defined for a given odorant property, in line with the extreme subtlety of our
perception of smells. For example, looking in more details on the produced rules
for Camphor (see Fig. 7), it appears that one rule is mostly using topological
descriptors, while the second rather uses chemical descriptors. The third rule
has a combination of these two to fulfill the model.

Perspectives in neurosciences and chemistry. The present findings provide
two important contributions to the field of neurosciences and chemo-sensation.
First, although the SOR issue seems to be illusory for some odor qualities, our
approach suggests that there exist descriptive rules for some qualities, and they
also highlight the relevance of some physicochemical descriptors (Sv, MW , etc.).
Second, the present model confirms the lack of bijective (one-to-one) relation-
ship between the odorant and the odor spaces and emphasizes that several sub-
rules should be taken into account when producing structure-odor relationships.
From these findings, experts in neurosciences and chemistry may generate the

Camphor

0.445 SssssC 0.703
2.717 VE1_B(p) 3.232

-0.843 Eig10_AEA(bo) 0.0

0.379 PW3 0.425
11.66 SM09_EA(bo) 12.44

2.29 VE1_D/Dt 3.472
0.0 nRCHO 0.0

164.795 P_VSA_MR_1 282.506
1.225 SpMaxA_EA(ed) 2.25

0.0 SdssC 0.515
3.0 C-001 6.0

0.693 PDI 0.875
0.0 CATS2D_04_AL 2.0

118 1 6

5

6

6

34

Fig. 7. Size of the support of three groups involving the camphor odor.

Local Subgroup Discovery for Understanding Structure-Odor Relationships 33

following new and innovative hypotheses in the field: (i) explaining inter-
individual variability in terms of both behavioral and cognitive aspects of odor
perception, (ii) explaining stability in odor-evoked neural responses and (iii) cor-
relating the multiple molecular properties of odors to their perceptual qualities.

6 Conclusion

Motivated by a problem in neuroscience and olfaction, we proposed an original
subgroup discovery approach to mine descriptive rules characterizing specifi-
cally subsets of class labels, as well as an adaptive quality measure to be able to
characterize both under- and over- represented label subsets. We implemented
its algorithmic counterpart and experimented it with real olfactory datasets.
The powerful interpretability of the results and the information they bring, can
improve the knowledge about the complex phenomenon of olfaction. Applying
such structure/odor model in a dedicated olfactory data-analytics platform will
improve understanding of the effects of molecular structure on the perception of
odorant objects (foods, desserts, perfumes, flavors), enabling product formula-
tion to be optimized with respect to consumers’ needs and expectations.

Acknowledgments. This research is partially supported by the CNRS (Préfute
PEPS FASCIDO) and the Institut rhônalpin des systémes complexes (IXXI).

References

1. Arctander, S.: Perfume and Flavor Materials of Natural Origin, vol. 2. Allured
Publishing Corp., Carol Stream (1994)

2. Buck, L., Axel, R.: A novel multigene family may encode odorant receptors: a
molecular basis for odor recognition. Cell 65(1), 175–187 (1991)

3. Castro, J.B., Ramanathan, A., Chennubhotla, C.S.: Categorical dimensions of
human odor descriptor space revealed by non-negative matrix factorization. PLoS
ONE 8(9), 09 (2013)

4. de March, C.A., Ryu, S., Sicard, G., Moon, C., Golebiowski, J.: Structure-odour
relationships reviewed in the postgenomic era. Flavour Fragr. J. 30(5), 342–361
(2015)

5. Delasalle, C., de March, C.A., Meierhenrich, U.J., Brevard, H., Golebiowski, J.,
Baldovini, N.: Structure-odor relationships of semisynthetic β-santalol analogs.
Chem. Biodivers. 11(11), 1843–1860 (2014)

6. Duivesteijn, W., Feelders, A., Knobbe, A.J.: Exceptional model mining - supervised
descriptive local pattern mining with complex target concepts. Data Min. Knowl.
Discov. 30(1), 47–98 (2016)

7. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued
attributes for classification learning. In: IJCAI (1993)

8. Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning. Springer,
Heidelberg (2012)

9. Galbrun, E., Miettinen, P.: From black and white to full color: extending redescrip-
tion mining outside the Boolean world. Stat. Anal. Data Min. 5(4), 284–303 (2012)

34 G. Bosc et al.

10. Kaeppler, K., Mueller, F.: Odor classification: a review of factors influencing
perception-based odor arrangements. Chem. Senses 38(3), 189–209 (2013)

11. Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Revisiting numerical pattern mining
with formal concept analysis. In: IJCAI, pp. 1342–1347 (2011)

12. Keller, A., Vosshall, L., Meyer, P., Cecchi, G., Stolovitzky, G., Falcao, A., Norel, R.,
Norman, T., Hoff, B., Suver, C., Friend, S.: Dream olfaction prediction challenge
(2015). www.synapse.org/#!Synapse:syn2811262. Sponsors: IFF, IBM Research,
Sage Bionetworks and DREAM

13. Khan, R.M., Luk, C.-H., Flinker, A., Aggarwal, A., Lapid, H., Haddad, R., Sobel,
N.: Predicting odor pleasantness from odorant structure: pleasantness as a reflec-
tion of the physical world. J. Neurosci. 27(37), 10015–10023 (2007)

14. Novak, P.K., Lavrač, N., Webb, G.I.: Supervised descriptive rule discovery: a unify-
ing survey of contrast set, emerging pattern and subgroup mining. J. Mach. Learn.
Res. 10, 377–403 (2009)

15. Tsoumakas, G., Katakis, I., Vlahavas, I.P.: Mining multi-label data. In: Data Min-
ing and Knowledge Discovery Handbook, 2nd edn., pp. 667–685 (2010)

16. van Leeuwen, M., Knobbe, A.J.: Diverse subgroup set discovery. Data Min. Knowl.
Discov. 25(2), 208–242 (2012)

17. Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In:
Komorowski, J., Zytkow, J. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87.
Springer, Heidelberg (1997). doi:10.1007/3-540-63223-9 108

www.synapse.org/#!Synapse:syn2811262
http://dx.doi.org/10.1007/3-540-63223-9_108

InterSet: Interactive Redescription
Set Exploration

Matej Mihelčić1,2(B) and Tomislav Šmuc1

1 Rud̄er Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
{matej.mihelcic,tomislav.smuc}@irb.hr

2 Jožef Stefan International Postgraduate School, Jamova cesta 39,
1000 Ljubljana, Slovenia

Abstract. We propose a novel approach for interactive redescription set
exploration and redescription analysis realized through the tool Inter-
Set. The tool is developed for interaction with possibly large redescrip-
tion sets, produced on large datasets, and it enables better understand-
ing of the underlying data and relations between attribute sets. New
insights from redescription sets can be obtained through three differ-
ent interaction modes based on: (i) similarity of entity occurrence in
redescription support sets, (ii) attribute co-occurence in redescriptions
and (iii) redescription quality measures. These modes provide additional
contextualization, which is a major advantage compared to current state
of the art approaches that allow interactive redescription set explo-
ration, enabling users to obtain new knowledge in the form of interesting
redescription subsets which can be analysed further on the level of indi-
vidual redescriptions.

Keywords: Knowledge discovery · Redescription mining · Redescrip-
tion set · Interactive exploration · Self organising map · Heatmap ·
Crossfilter

1 Introduction

We focus our research on redescription mining [16], a field of data mining with
a specific goal of finding different descriptions (called redescriptions) of similar
groups of entities. These entities are described by one or more sets of Boolean,
categorical or numerical attributes called views which are usually disjoint if more
than one view is used. The benefits of using redescription mining are twofold: it
provides information about groups of entities and means of observing connections
between attributes from one or more different attribute spaces.

1.1 Notation and Definition

Although redescription mining is not limited by the number of views, all current
approaches (including InterSet) work with maximally two distinct views W1 and

c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 35–50, 2016.
DOI: 10.1007/978-3-319-46307-0 3

36 M. Mihelčić and T. Šmuc

W2 with the corresponding sets of variables V1, V2 and the set of entities E.
In this setting, a redescription R is a pair of queries R = (q1, q2) where each
query describes a set of entities by using variables from the set of variables
corresponding to one view. Variables in the queries are logically connected with
conjunction, negation and disjunction operators.
We present one redescription obtained on our use case dataset describing world
countries by using general country information and information about their trad-
ing patterns (fully described in Sect. 3). The redescription R = (q1, q2) contains
two queries q1 and q2 defined as:
q1 : 23.8 ≤ UN YOUTH M ≤ 54.4 ∧ 66.4 ≤ STOCKS ≤ 166.6
q2 : 5.0 ≤ E66 ≤ 6.0 ∧ 4.0 ≤ E88 ≤ 5.0
Variables (UN YOUTH M - percentage of unemployed male youth, STOCKS -
turnover ratio of traded stocks) in q1 and (E66 - the percentage of total export
obtained with medicinal and pharmaceutical products, E88- the percentage of
total export obtained with electrical machinery, apparatus and appliances) in q2
are connected with the conjunction (AND) operator.

A single redescription is typically characterized by three quality measures:
the support, the Jaccard index and the p-value.

The support of a query qi (supp(qi)) is a set of all entities satisfying its condi-
tion. The redescription R = (q1, q2) describes the entity if this entity is in a sup-
port of all queries forming the redescription. All entities described by a redescrip-
tion compose a redescription support set (supp(R) = supp(q1) ∩ supp(q2)).

The intuition behind redescription mining is that queries describing similar
sets of entities provide information about the shared properties of these entities.
Higher similarity among sets of entities represents higher association between
the queries. Thus, it is appropriate to use Jaccard index, defined as J(R) =
|supp(q1)∩supp(q2)|
|supp(q1)∪supp(q2)| , as a measure of redescription accuracy.

The p-value (pval), also used by Galbrun and Miettinen [6], reflects statisti-
cal significance of individual redescription and is computed from the binomial
distribution: pval(R) =

∑|E|
n=|supp(R)|

(|E|
n

)
(p1 · p2)n · (1 − p1 · p2)|E|−n. |E| equals

the number of entities in the dataset and p1, p2 correspond to marginal proba-
bilities of obtaining the query q1 and q2. For a given redescription R = (q1, q2),
pval(R) represents a probability of obtaining a set of a size equal to or larger than
that of supp(R), by combining two random queries with marginal probabilities
corresponding to the marginal probabilities of queries q1 and q2.

We define attr(R) as a set of attributes used in redescription queries
and the attribute Jaccard index of two redescriptions as: attJ(R1, R2) =
|attr(R1)∩attr(R2)|
|attr(R1)∪attr(R2)| . The average attribute Jaccard index of a redescription Ri is

defined as: AvgAJ(Ri) =
2·∑j �=i attJ(Ri,Rj)

n·(n−1) . By analogy, the entity Jaccard index

of two redescriptions is defined as elemJ(R1, R2) = |supp(R1)∩supp(R2)|
|supp(R1)∪supp(R2)| and the

average entity Jaccard index as: AvgEJ(Ri) =
2·∑j �=i elemJ(Ri,Rj)

n·(n−1) . These mea-
sures provide information about the redundancy of a redescription with respect
to entities and attributes.

Interactive Redescription Set Exploration 37

1.2 Related Work

Redescription mining is an unsupervised descriptive task, closely related to
multi-view clustering [3]. Redescription mining in addition to finding interest-
ing groups of entities also provides interpretable rules describing these groups.
It is also related to association rule mining [1,10,22] because both approaches
search for relations between attributes. The main difference is that redescription
mining searches for equivalence relations whereas association rule mining finds
implication relations.

The first approaches developed for redescription mining [15,16,21] used
redescription support and Jaccard index as sole constraints to limit redescription
creation. Statistical significance was later incorporated into redescription mining
process by Gallo et al. [8] to further constrain redescription creation. They pro-
posed to compute the p-value of redescriptions from the binomial distribution.
Recent approaches [6,14,23] incorporate information about statistical signifi-
cance and mostly return smaller sets of redescriptions to the final user, though
the exact number of produced redescriptions varies depending on different algo-
rithm parameters. The goal is to make redescription queries understandable
and non-redundant. These approaches are able to mine redescriptions contain-
ing Boolean, categorical and numerical attributes which extends the capabilities
of previous approaches that only worked with Boolean attributes. Despite the
efforts to create smaller sets of accurate and understandable redescriptions, it
is still hard and time consuming to analyse all produced redescriptions and
their properties. It is even harder to notice potential connections between differ-
ent redescriptions, their support sets and different attributes only by observing
algorithm output files.

For this reason and to allow more customizable exploration process, it is
necessary to develop interactive applications that respond to user inputs and
provide the required information. Zaki and Ramakrishnan [21] developed a con-
sole based application that allows limited user interventions such as finding
attributes describing a given set of entities, finding entities described by a given
set of attributes. It also allows placing constraints on entities and attributes,
Jaccard index and redescription support to allow interaction with exploration
process. Siren [7] is fully interactive redescription mining environment. It allows
mining redescriptions and contains several visualizations of individual redescrip-
tions. The parallel coordinates plot, allows visualizing values of entities from
redescription support, those not contained in the support but described by some
redescription query and other entities not described by either redescription query.
The visualization is useful to observe potential regularities of entity values for
some attribute contained in redescription support. The decision tree visualiza-
tion shows interactions between different queries contained in the redescription
(especially useful to understand redescriptions created by some decision tree
based approach). The entity scatter plot allows comparing values of described
entities based on two different attributes which enables correlation analysis. If
geographical locations are described by redescriptions, the tool is able to repre-
sent the locations described by redescription queries on a map. Each generated

38 M. Mihelčić and T. Šmuc

redescription can be expanded by allowing the tool to improve the accuracy by
adding new attributes to the redescription queries. Redundant redescriptions
can be filtered based on redescription support.

The Siren tool offers many visualizations aimed at analysis of individ-
ual redescriptions. Although very useful, the approach requires users to scroll
through the list of redescriptions examining each individually to get some context
about the described entities and used attributes. By performing such exploration
it is hard to place each redescription in a bigger context (determine redescription
relation with respect to described entities and attributes used in queries). Besides
filtering, there are no mechanisms that allow grouping of different redescriptions
based on their properties that allow exploring parts of redescription space that
are of immediate interest to the user.

Several tools for visualizing and exploring association rules are related to
our work. The Self Organizing Map (SOM) [11] is used by Rojas et al. [5] to
display the spatial distribution of the entities associated with the association
rule on a map. The association rule visualization system for exploratory data
analysis [13] uses scatter plot to visualize rules from the association rule set.
The rules can be explored on the individual level by modifying the rules and
observing comparative bar charts prior and post attribute addition or deletion.
The MIRAGE [20] is a framework for mining, exploring and visualising minimal
association rules. It uses lattice-based visualisation and exploration of minimal
association rules. A user driven and quality oriented visualization for mining
association rules [4] embeds association rules to 3D landscape. It allows users
to select rule subsets, navigate among different subsets and to filter them on
several interestingness measures by using sliders. Multi level spatial association
rules mined by the tool ARES [2] are visualized by using graphs.

1.3 Contributions

We describe the InterSet (Fig. 1), a tool aimed at interactive, comprehensive
exploration and interpretation of redescription sets. The InterSet uses large
diversity and potentially higher level of granularity in the redescription set to
increase the usefulness of the exploration. The exploration can be done based
on: (i) entities described in redescriptions from the redescription set through the
SOM visualization (EC-View), (ii) attributes used in redescriptions to describe
different entities through the heatmap visualization (AI-View) and (iii) quality
measures assigned to individual redescriptions by using cross-filter on multiple
redescription quality criteria (RQ-View). The proposed views allow contextual-
ization, grouping and targeted exploration of different redescriptions.

The tool uses the intuition that the high overlap of entities described by
redescription queries indicates existence of shared properties and possible asso-
ciations between the used attributes. This property is used to build a SOM map
that groups entities based on their membership in support sets of redescrip-
tions contained in a redescription set. Resulting groups potentially share many
common properties and are interesting for exploration. In addition, we obtain
a spatial map of entities based on similarity of their shared properties across

Interactive Redescription Set Exploration 39

Fig. 1. Schematic description of the process that leads to interactive exploration of
redescription sets: (i) Redescription set with one (mandatory) or more (optional)
redescription mining algorithms must be generated, (ii) preprocessing step involves
the use of Self organizing Maps clustering algorithm (optional) and database prepara-
tion (mandatory), necessary to perform (iii) interactive redescription set exploration
with the InterSet tool.

both views. Attribute co-occurrence in redescription queries is used to create a
heatmap of frequent cross-view pairwise attribute associations (as these are com-
monly observed when more than one view is used). The cross-filter visualization
allows obtaining smaller set of redescriptions with some desired properties that
can be explored in more detail. Redescription set obtained in each exploration
view can contain a number of similar redescriptions which can be used to enhance
the analysis. Comparing similar redescriptions allows understanding interactions
between attributes and redescription support or detecting groups of entities with
many common properties. If such level of granularity is not needed, the set can
be reduced by eliminating redescriptions with large entity or attribute overlap,
thus obtaining diverse and compact set with some desired properties. Except
for the general insight into redescription set, the tool allows obtaining specific
knowledge on the level of individual redescriptions. This includes value distrib-
ution analysis of entities contained in redescription support across all attributes
contained in redescription queries and comparison with value distributions of all
entities in the dataset or in some more specific groups, such as attribute numeric
interval. Violin plot, used in the tool, allows visualization of irregular distribu-
tion shapes obtained when disjunction and negation operators occur in queries.
The analysis allows understanding complex queries by transforming them to the
Disjunctive normal form (DNF) which allows exploring parts of queries repre-
sented as clauses. These features complement and deepen the level of insight
provided by the parallel coordinates plot.

40 M. Mihelčić and T. Šmuc

2 Redescription Set Exploration with the Tool InterSet

The InterSet tool (Fig. 1) allows obtaining insight into some properties of the
original data through different visualizations based on redescription set prop-
erties and selecting potentially interesting, non-redundant set of redescriptions
suitable for detailed analysis. The selected set can be saved to a .csv file con-
taining redescription queries and the values of corresponding quality measures.

The following subsections motivate and describe components used in
redescription set exploration process for each exploration view. Tool capabili-
ties are demonstrated on the use case data describing world countries in Sect. 3.

2.1 Entity Based Redescription Set Exploration

Redescription support sets usually do not have strictly hierarchical structure.
Rather, they can be highly overlapping with the level of overlap depending on
the underlying data, number of redescriptions in the redescription set and the
algorithm used to create redescriptions. With such general structure of redescrip-
tion supports, we decided to use the Self Organising Map [11] as it groups entities
based on similarities and embeds similar groups closer together on a 2D visual-
ization map. It allows representing entities from potentially large datasets in a
compact form where each entity is member of only one SOM cluster.

Rather than exploiting entity similarity in the original dataset representation,
as in work from Rojas et al. [5], we utilise the matrix of entity occurrence in a
support set of individual redescriptions from the redescription set to obtain a
map of entities sharing many cross-view properties. For a given redescription set
R such that |R| = n and the original dataset containing m entities, we construct
a m × n matrix A. The rows of A correspond to the entities from the original
dataset, and columns correspond to the redescriptions from the redescription
set. Thus, Aij = 1 if and only if Rj ∈ R describes an entity ei ∈ E.

Fig. 2. The entity based interface of the InterSet tool.

Interactive Redescription Set Exploration 41

The entity based redescription set exploration starts with the SOM map
depicted in Fig. 2, Control (1). The layout of SOM is customizable and can be
easily experimented with. Each hexagon contains a distinct group of entities
and the color of each hexagon reflects the number of entities contained in each
group, displayed on the legend (Control (2)). The average homogeneity of a
cluster, defined as the average Jaccard index between redescription support and
the entities contained in the cluster, can be used as an additional cluster selec-
tion criteria. Selecting a hexagon, red square in Fig. 2, provides more detailed
information about it’s content (Table (7)) and additional controls for in depth
exploration (Table 8, Control 9). By observing information about all entities con-
tained in the selected hexagon (Table (7)) and a Word net (9) displaying words
most commonly used in attribute descriptors contained in redescription queries
describing at least one entity from the SOM cluster, users can determine if it is
of interest to explore all redescriptions describing at least one entity contained
in the selected cluster (Table 8). Redescriptions can be analysed further on the
query and the attribute level (described in Sect. 2.4) where Table (10) provides
information about the entities described by the selected redescription (members
of the SOM cluster being highlighted in green color) and Table (11) provides
additional descriptions of compact attribute codes. It is possible to export (Con-
trol (3)) or filter (Controls (4), (5) and (6)) redescriptions contained in Table (8).
Filtering process (described in Algorithm 1) allows obtaining a set of redescrip-
tions with user defined maximal entity and attribute overlap.

2.2 Attribute Based Redescription Set Exploration

Research in many scientific fields such as biology, pharmacy and medicine
requires discovering relevant associations between variables. Such associations
can be explored with the InterSet by observing frequently co-occurring attributes
in redescription queries (Fig. 3).

The SOM based representation can be applied to attributes used in redescrip-
tion queries similarly as it was applied to entities. The main advantage of using
the SOM is that it reveals interactions of more than two different variables. How-
ever, it is not possible to distinguish between views in such visualization and it
is hard to explore associations between the neighbouring groups of attributes.
The heatmap visualisation enables exploring interactions between all cross-view
attribute pairs and arranging rows and columns based on different criteria which
is the main reason for our choice. The focus is on cross-view relations since these
are usually interesting when exploring similarities based on different contexts,
though the tool can also be used to show all co-occurrence frequencies.

The heatmap (Control (1) in Fig. 3) is a starting point of the attribute
based redescription set exploration. It is represented as a k × s matrix where
rows represent k attributes from the first view and columns s attributes from
the second view. Three initial row-column layouts can be chosen with Con-
trol (2): (1) Ordered by name, (2) Ordered by frequency and (3) Ordered by
co-occurrence. When ordered by name (useful for domain experts), the rows and
columns are sorted by the attribute code, Ordered by frequency layout arranges

42 M. Mihelčić and T. Šmuc

Fig. 3. The attribute based interface of the InterSet tool.

rows and columns of the heatmap to place frequently occurring attributes in
redescription queries closer to the top left corner of the heatmap. Ordered by co-
occurrence layout arranges rows and columns so that it sorts the heatmap diago-
nal in descending order by attribute co-occurrence frequency. This layout allows
finding potentially larger groups of highly connected attributes if co-occurring
in redescription queries. The heatmap is adopted to be used with large number
of attributes by loading smaller submatrices of the potentially large cross-view
attribute matrix, whose rows are all attributes from the first view and columns
all attributes from the second view. The attributes are sorted in descending order
by frequency when loaded into heatmap so that the (row,column) page combi-
nation (1, 1) (Control (3)) contains most frequently occurring attributes from
both views. The user can scroll on two dimensions, visualizing parts of cross-
view attribute space which can be explored further. The gray color denotes the
co-occurrence level of the attribute pair and the table (Control (6)) equivalent
to that from Fig. 2 lists all redescriptions from the redescription set containing
the selected attribute pair in their queries. Analysis of selected redescription is
described in Sect. 2.4 while redescription filtering (Control (4)), (Algorithm 1)
and redescription export (Control (5)) work as described in Sects. 2.1 and 2.3.
Combination of various attribute pair arrangements with redescription explo-
ration and filtering allows better understanding of the attribute interactions.

2.3 Property Based Redescription Set Exploration

The last redescription set exploration view provided in the InterSet tool is based
on redescription properties (quality measures). It enables users to filter the orig-
inal redescription set by using one or more user-defined criteria which results in
smaller, more interesting set, that is easier to explore. The exploration view uses
sliders as in [4], with the important addition of a crossfilter (Control 1 in Fig. 4),

Interactive Redescription Set Exploration 43

which allows instantaneous display of distribution of the filtered set (Control 4)
for all measures and corresponding redescriptions (Table 5). Sliding through the
values of one or more different criteria (Control 4), allows observing changes in
distribution of other criteria which provides information about the underlying
data. The visualization can be efficiently used with redescription sets containing
large number of redescriptions which are much harder to represent with some
other visualization techniques such as parallel coordinate plots.

We use several redescription quality criteria currently used in the literature
and allow adding new ones, such as different interestingness or unexpectedness
criteria, to be used in the filtering process. The crossfilter (Fig. 4, Control 1),
consists of histograms showing value distribution for each criterion used in the
exploration process. Besides previously defined standard redescription quality
measures, we have computed two additional measures: the average entity Jaccard
index (Control (2)) and the average attribute Jaccard index (Control (3)) pre-
sented in Sect. 1.1. These criteria can be used to extract redescriptions describing
(in)frequently described sets of entities or that containing (in)frequent combi-
nation of attributes depending on the crossfilter setting. The selection provides
no guarantees on entity or attribute overlap between pairs of redescriptions in
the newly constructed set. However, filtering (described in Algorithm 1) reduces
this overlap to user defined level (Control 6).

Algorithm 1. The filtering algorithm
Input: Redescription set R, max entity overlap εel, max attribute overlap εat

Output: Filtered redescription set R′

1: procedure Filter
2: criteria ← ((J, desc), (attJ, asc), (supp, desc), (elemJ, asc))
3: R ← sort(R, criteria)
4: for i = 0; i < |R| − 1; i + + do
5: for j = i + 1; j < |R|; j + + do
6: if elemJ(R[i], R[j]) ≥ εel OR attJ(R[i], R[j] ≥ εat) then
7: R ← R.delete(R[j])
8: return R

Criteria array from line 2 in Algorithm 1 contains pairs of redescription quality
criteria and sorting direction: desc - descending, asc - ascending. Redescription
with preferred values of quality criteria is used to eliminate all redescriptions with
unacceptably high entity or attribute Jaccard with the selected redescription.

2.4 Analysing Individual Redescriptions

For detailed redescription analysis, the tool requires redescription queries to
be transformed in the Disjunctive normal form (DNF). This decomposed form
allows analysing distribution of a subset of redescription support described by
each clause in this representation. Since the general goal is to produce short,

44 M. Mihelčić and T. Šmuc

Fig. 4. The InterSet interface based on redescription properties. Initial configuration
is shown in the left and the filtering step in the right part of the Figure.

understandable queries and every formula in Propositional logic can be trans-
formed to an equivalent DNF [12], it is a reasonable and mostly feasible require-
ment aimed at increasing understandability. Depending on the query complexity,
the analysis contain (i) three comparative violin plots if the DNF representation
doesn’t contain disjunction operators (explanation 1, 2, 3 in Fig. 5), (ii) four
plots if the DNF representation contains disjunction operators (explanation 1,
2, 3, 5 in Fig. 5) and (iii) five plots if an attribute occurs in more than one clause
in the DNF representation of a query (explanation 1, 2, 3, 4, 5 in Fig. 5).

Compared to parallel coordinates plot in Siren, our approach allows analysing
value distributions and decomposed queries. Major benefit is it’s invariance to
dataset or redescription support size whereas parallel coordinates plot tend to
have increasing number of possibly overlapping lines making analysis difficult. If
Boolean or categorical values are used, violin plots are replaced with piecharts.

Redescription analysis process is demonstrated on redescription R′ = (q′
1, q

′
2):

q′
1 : ¬ (44.1 ≤ M2 ≤ 198.5 ∧ 15.5 ≤ POP64 ≤ 20.8 ∧ 2.0 ≤ AGR EMP ≤ 20.5)
q′
2 : (0.0 ≤ E/I80 ≤ 0.6 ∧ 0.0 ≤ I34 ≤ 5.0 ∧ 0.0 ≤ E/I83 ≤ 0.6) ∨

(0.0 ≤ E/I80 ≤ 0.3 ∧ 6.0 ≤ I34 ≤ 24.0) ∨ (0.0 ≤ E47 ≤ 1.0 ∧ 0.7 ≤ E/I80 ≤
28.8 ∧ 99.0 ≤ E97 ≤ 100.0). It describes 155 countries with J(R′) = 0.88 and
pval(R′) = 0.0023. The analysis of its queries is demonstrated in Fig. 5.
Query q′

1 is transformed to the equivalent formula in DNF: ¬ (44.1 ≤ M2 ≤
198.5) ∨ ¬ (15.5 ≤ POP64 ≤ 20.8) ∨ ¬ (2.0 ≤ AGR EMP ≤ 20.5). Using
negations splits the value distribution of entities in two parts. For example:
¬ (15.5 ≤ POP64 ≤ 20.8) is equivalent to POP64 < 15.5 ∨ POP64 > 20.8. Query
q′
2 contains three disjunctions, two of which contain attribute I34 (denoted as

Cl1 and Cl2). Value distributions show that first two clauses describe orthogonal
entities with respect to the values of this attribute. It also shows that clause 1
constitutes a backbone of the query describing the largest amount of entities.

Interactive Redescription Set Exploration 45

Fig. 5. Comparative violin plots showing entity value distribution for all attributes
occurring in the selected redescription. The violin plots show entity distribution in
order: (1) entity value distribution for the selected attribute for all entities containing
non-missing values in the dataset, (2) entity distribution for all entities containing non-
missing values in a numeric interval, defined in redescription query, for this attribute,
(3) entity value distribution for all entities contained in redescription support set for
a given attribute, (4) entity value distribution of all entities contained in redescription
support set that are described by at least one clause containing the attribute under
investigation, (5) entity value distribution of all entities contained in the redescription
support set described by a particular clause which contains the analysed variable.

3 Exploring Redescriptions Obtained on the Country
Data

The tool’s capabilities are demonstrated on dataset describing 199 world coun-
tries [9,17,19] by using general country descriptors (demographic descriptors,
unemployment, etc.) as one view and country trading patterns (with the values
of percentage of export (E) and import (I) that a given commodity forms in total
country export or import and the information on the ratio of these values (E/I))
as the other view. All attributes in the dataset contain numerical values.

We used the redescription mining algorithm, presented in [14], to create a set
containing 5448 different redescriptions where some of them, by design, had high
level of similarity. For all R ∈ R, J(R) ≥ 0.5, pval(R) ≤ 0.01 and supp(R) ≥ 10.

The SOM needs to be precomputed and the obtained cluster membership
represents the input to the tool1. In the experiments, we used the R package
kohonen [18] to create the SOM with the 4 × 4 layout. To train it, we used 1000
iterations with the learning rate linearly declining from 0.05 to 0.01.

3.1 Redescription Set Analysis

The results and analysis presented in this Section are obtained with the tool
InterSet, available at www.zel.irb.hr/interset.

1 zel.irb.hr/interset.

www.zel.irb.hr/interset
http://zel.irb.hr/interset

46 M. Mihelčić and T. Šmuc

The largest group of countries contained in the SOM map contains 28 coun-
tries and the smallest group only 3 different countries. The number of redescrip-
tions describing a particular cluster ranges between 612 and 3002. We explore a
SOM cluster with the highest average homogeneity (0.34). This cluster, empha-
sized in Fig. 2 is described with 2737 different redescriptions and contains 11
Western European countries. Portugal and a part of the Eastern, South - Eastern
and Central European countries form a separate cluster with high homogeneity
(>0.2) which is located in the neighbouring cluster. The only other cluster with
homogeneity higher than 0.2 contains 28 different countries mostly located in
Africa and Asia. Majority of countries from the clusters presented in [9] (Table 4)
are grouped together in one of our SOM clusters which tend to contain larger
groups of countries spatially ordered by similarity of their shared properties.

The table containing redescriptions from the selected SOM cluster was sorted
in descending order by Jaccard index and in ascending order by redescription
support to search for accurate redescriptions with possibly homogeneous sup-
port. We selected the third result (Rex = (q′′

1 , q
′′
2)) for in depth analysis:

q′′
1 : −6.9 ≤ MON GR ≤ 6.6 ∧ 17.1 ≤ POP64 ≤ 21.1 ∧ 41.9 ≤ STOC ≤ 166.6
q′′
2 : 4.0 ≤ E24 ≤ 26.0 ∧ 3.0 ≤ I95 ≤ 5.0 ∧ 1.1 ≤ E/I85 ≤ 3.2. This redescrip-

tion describes 10 countries with J(Rex) = 1.0 and pval(Rex) = 6.3 · 10−12. It
describes Austria, Denmark, Finland, France, Germany, Italy, Portugal, Spain,
Sweden and United Kingdom. Portugal, not a member of selected cluster, is
contained in the neighbouring cluster (below). We compare value distribution of
countries described by a redescription to a value distribution of all countries in
the dataset with respect to attributes used in its queries. The described set of
countries tend to have higher values in POP64 (percentage of population aged
65+). The difference is significant, as computed with the Mann-Whitney U test,
with the p-value of 9.05 · 10−7. These countries tend to have smaller values in
MON GR (money and quasi money growth - p = 6.7 · 10−5), higher values in
STOC (stock trade - p = 0.0002), E24 (labour-intensive and resource-intensive
manufactures - p = 0.011), I95 (articles of apparel and clothing accessories -
p = 1.54 · 10−5) and E/I85 (industrial machinery and parts - p = 2.3 · 10−6).
Countries from the selected SOM cluster, with the exception of Switzerland, tend
to have higher values of E/I69 (plastics in primary form - p = 0.0003), E/I83 (spe-
cialised machinery - p = 1.2 · 10−6) and tend to have smaller values in AGR M
(percentage of mail employees working in agriculture - p = 0.0024). A part of
discoveries related to export of technology, manufactures and population para-
meters match those reported in [9], here we present additional observations,
which are a very small subset of information obtainable by the tool.

Attribute associations are, due to finding equivalence relations, an impor-
tant and distinguishing feature of redescription mining. Attributes are ordered
by co-occurrence which reveals high co-occurrence between attributes in the top
left corner of the heatmap (Fig. 3). We explore correlations between all pairs of
attributes contained in the top - left 5 × 5 submatrix. Since the Kolmogorov-
Smirnov test shows that entity values for many attributes contained in this sub-
matrix are not normally distributed, we compute correlation values (presented
in Table 1) by using Spearman’s rho and Kendall’s tau correlation coefficients.

Interactive Redescription Set Exploration 47

Table 1. Spearman’s ρ and Kendall’s τ correlation coefficient of a selected 5×5 cross-
view attribute associations. For each attribute pair, a upper bound of p-values for both
correlation coefficients is displayed below the correlation values.

Sp. ρ/Ken. τ I34 E/I66 E/I83 E/I85 E/I93

MORT 0.62/0.46

< 10−15
−0.66/ − 0.48

< 10−15
−0.65/ − 0.47

< 10−15
−0.63/ − 0.46

< 10−15
−0.43/ − 0.29

< 10−8

CRED COVER −0.52/ − 0.41

< 10−11
0.56/0.45

< 10−15
0.43/0.32

< 10−8
0.48/0.35

< 10−10
0.48/0.36

< 10−10

POP14 0.69/0.52

< 10−15
−0.66/ − 0.46

< 10−15
−0.61/ − 0.42

< 10−15
−0.64/ − 0.45

< 10−15
−0.48/ − 0.33

< 10−10

POP64 −0.64/ − 0.48

< 10−15
0.68/0.48

< 10−15
0.62/0.44

< 10−15
0.66/0.47

< 10−15
0.49/0.33

< 10−10

POP F −0.36/ − 0.25

< 10−5
0.28/0.18

< 10−3
0.35/0.23

< 10−5
0.41/0.27

< 10−7
0.37/0.26

< 10−6

Results in Table 1 show that associations between view 1 attributes: mortality
rate under 5 (MORT), private credit bureau coverage (CRED COVER), per-
centage of population aged 0 to 14 (POP14), percentage of population aged
65+ (POP64) and percentage of female population (POP F) contain statisti-
cally significant correlations with the view 2 attributes: I34 (cereals and cereal
products), E/I66 (medicinal and pharmaceutical products), E/I83 (specialized
machinery), E/I85 (other industrial machinery and part) and E/I93 (furniture
and parts thereof). Many of this correlations might be caused by differences in
country development. A number of developed countries have a high exports of
all mentioned groups of commodities whereas developing countries either com-
pletely rely on the imports of this products or produce it for their own market.
Since these two groups of countries differ in the population characteristics, it is
possible for the correlation patterns as shown in Table 1 to emerge.

The third view is used to locate highly accurate redescriptions describing sub-
sets of countries that are: (a) different than a majority of other redescriptions
with respect to described entities and attributes used in redescription queries
(AvgAJ ≤ 0.05, AvgEJ ≤ 0.1, JS > 0.94), (b) similar to larger number of
other redescriptions with respect to described entities and attributes used in
redescription queries (AvgAJ ≥ 0.1, AvgEJ ≥ 0.15, JS ≥ 0.94). After obtain-
ing each set with the cross-filter, we removed redundant redescriptions sharing
more than 20% entities and 20% attributes. First experiment revealed 11 dif-
ferent redescriptions from which we present several interesting discoveries. The
analysis revealed that 9 different African countries and a neighbouring Asian
country Yemen have a smaller median of percentage of population aged 15 to 64
compared to the median of all countries, these countries also have high export
contribution of textile fibres and their wastes in their total export. A subset
of countries located in different SOM clusters show high export to import con-
tribution ratio of iron, steel and chemical products. Very heterogeneous group
of countries from various continents that share higher export contribution to
import contribution ratio of prefabricated buildings, sanitary, heating and light-
ing fixtures was also discovered. Finally, a group of countries, largely comprised

48 M. Mihelčić and T. Šmuc

of eastern and south eastern European countries share a large import contri-
bution of precious stones and non-monetary gold to their total import. Strict
non-redundancy requirements left only one redescription in the second experi-
ment describing 15 world countries that share many different socio-demographic
and trading properties. The described group shows many characteristics of highly
developed countries: large percentage of population older than 64, smaller per-
centage of rural population, higher money and quasi money (as percentage of
GDP). Part of these countries have larger ratio of export to import contribu-
tion ratio of medicinal and pharmaceutical products, rubber manufactures, and
a part of described countries has a large E/I ratio for other industrial machinery
and parts.

Finding examples as presented in this section would be very time consuming
with Siren because extensive redescription list exploration is required. Support
for reasoning at the level of groups of entities, attribute associations or selecting
groups of redescriptions with specific properties is not available in Siren.

4 Conclusions and Future Work

We have presented a tool that allows exploring potentially large redescription
set obtained by one or more redescription mining approaches. It provides analyt-
ics mechanisms aimed at understanding individual redescriptions and uses the
redescription set to obtain information about the underlying data - revealing
connections and interactions between different entities and attributes. Poten-
tially overlapping redescriptions are used as a tool to enhance the visualizations
and allow high granularity exploration. Entity and property based exploration
supports arbitrary number of data views while the attribute based view is easily
extended by performing pairwise view exploration.

In future work we plan to increase exploration abilities of the tool by enabling
different interactions between exploration views which is needed when faced
with potentially large sets of redescriptions. On the technical side, we will aim
to incorporate the SOM map in exploration process thus removing the need to
train it separately and calling external scripts to feed the data into the database.

Acknowledgement. The authors acknowledge the European Commissions support
through the MAESTRA project (Gr. no. 612944), the MULTIPLEX project (Gr.no.
317532) and support of the Croatian Science Foundation (Pr. no. 9623: Machine Learn-
ing Algorithms for Insightful Analysis of Complex Data Structures).

References

1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discov-
ery of association rules. In: Advances in Knowledge Discovery and Data Mining,
pp. 307–328. American Association for Artificial Intelligence (1996)

2. Appice, A., Buono, P.: Analyzing multi-level spatial association rules through
a graph-based visualization. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005.
LNCS (LNAI), vol. 3533, pp. 448–458. Springer, Heidelberg (2005). doi:10.1007/
11504894 63

http://dx.doi.org/10.1007/11504894_63
http://dx.doi.org/10.1007/11504894_63

Interactive Redescription Set Exploration 49

3. Bickel, S., Scheffer, T.: Multi-view clustering. In: Proceedings of the Fourth IEEE
International Conference on Data Mining, ICDM 2004, pp. 19–26. IEEE Computer
Society, Washington, DC (2004)

4. Blanchard, J., Guillet, F., Briand, H.: A user-driven and quality-oriented visual-
ization for mining association rules. In: Proceedings of the 3rd IEEE International
Conference on Data Mining (ICDM), Melbourne, Florida, USA, pp. 493–496 (2003)

5. Casstilo-Rojas, W., Peralta, A., Meneses, C.: Augmented visualization of associa-
tion rules for data mining. In: Eight Alberto Mendelzon Workshop on Foundations
of Data Management, AMW 2014, Cartagena de Indias, Colombia (2014)

6. Galbrun, E., Miettinen, P.: From black and white to full color: extending redescrip-
tion mining outside the Boolean world. Stat. Anal. Data Min. 5(4), 284–303 (2012)

7. Galbrun, E., Miettinen, P.: Siren: an interactive tool for mining and visualizing
geospatial redescriptions. In: Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2012, pp. 1544–1547.
ACM, New York (2012)

8. Gallo, A., Miettinen, P., Mannila, H.: Finding subgroups having several descrip-
tions: algorithms for redescription mining. In: Proceedings of the SIAM Interna-
tional Conference on data mining (SDM), pp. 334–345. SIAM (2008)

9. Gamberger, D., Mihelčić, M., Lavrač, N.: Multilayer clustering: a discovery exper-
iment on country level trading data. In: Japkowicz, N., Matwin, S. (eds.) DS 2015.
Lecture Notes in Artificial Intelligence (LNAI), vol. 9356, pp. 87–98. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-11812-3 8

10. Hipp, J., Güntzer, U., Nakhaeizadeh, G.: Algorithms for association rule mining -
a general survey and comparison. SIGKDD Explor. Newsl. 2, 58–64 (2000)

11. Kohonen, T., Schroeder, R.M., Huang, T.S.T. (eds.): Self-Organizing Maps, 3rd
edn. Springer-Verlag New York Inc., Secaucus (2001)

12. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View,
1st edn. Springer Publishing Company, Incorporated (2008)

13. Liu, G., Suchitra, A., Zhang, H., Feng, M., Ng, S.K., Wong, L.: Assocexplorer: an
association rule visualization system for exploratory data analysis. In: KDD, pp.
1536–1539. ACM (2012)

14. Mihelčić, M., Džeroski, S., Lavrač, N., Šmuc, T.: Redescription mining with multi-
target predictive clustering trees. In: Ceci, M., Loglisci, C., Manco, G., Masciari, E.,
Ras, Z.W. (eds.) NFMCP 2015. Lecture Notes in Artificial Intelligence (LNAI), vol.
9607, pp. 125–143. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39315-5 9

15. Parida, L., Ramakrishnan, N.: Redescription mining: structure theory and algo-
rithms. In: AAAI, pp. 837–844. AAAI Press/The MIT Press (2005)

16. Ramakrishnan, N., Kumar, D., Mishra, B., Potts, M., Helm, R.F.: Turning cart-
wheels: an alternating algorithm for mining redescriptions. In: Proceedings of the
10Th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2004, pp. 266–275. ACM, New York (2004)

17. UNCTAD: Unctad database (2014). http://unctadstat.unctad.org/
18. Wehrens, R., Buydens, L.M.C.: Self and super-organising maps in R: the kohonen

package. J. Stat. Softw. 21(5) (2007). http://www.jstatsoft.org/v21/i05
19. WorldBank: World bank database (2014). http://data.worldbank.org/
20. Zaki, M.J., Phoophakdee, B.: MIRAGE: A framework for mining, exploring and

visualizing minimal association rules. Technical Report 03-4, Computer Science
Department, Rensselaer Polytechnic Institute (2003)

21. Zaki, M.J., Ramakrishnan, N.: Reasoning about sets using redescription mining.
In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining, KDD 2005, pp. 364–373. ACM, New York (2005)

http://dx.doi.org/10.1007/978-3-319-11812-3_8
http://dx.doi.org/10.1007/978-3-319-39315-5_9
http://unctadstat.unctad.org/
http://www.jstatsoft.org/v21/i05
http://data.worldbank.org/

50 M. Mihelčić and T. Šmuc

22. Zhang, M., He, C.: Survey on association rules mining algorithms. In: Luo, Q. (ed.)
Advancing Computing, Communication, Control and Management. LNEE, vol. 56,
pp. 111–118. Springer, Heidelberg (2010)

23. Zinchenko, T.: Redescription mining over non-binary data sets using decision trees.
Master’s thesis, Universität des Saarlandes Saarbrücken, Germany (2014)

Expect the Unexpected – On the Significance
of Subgroups

Matthijs van Leeuwen1(B) and Antti Ukkonen2(B)

1 Leiden Institute of Advanced Computer Science, Leiden, The Netherlands
m.van.leeuwen@liacs.leidenuniv.nl

2 Finnish Institute of Occupational Health, Helsinki, Finland
antti.ukkonen@ttl.fi

Abstract. Within the field of exploratory data mining, subgroup dis-
covery is concerned with finding regions in the data that stand out with
respect to a particular target. An important question is how to validate
the patterns found; how do we distinguish a true finding from a false dis-
covery? A common solution is to apply a statistical significance test that
states that a pattern is real iff it is different from a random subset.

In this paper we argue and empirically show that this assumption is
often too weak, as almost any realistic pattern language specifies a set
of subsets that strongly deviates from random subsets. In particular, our
analysis shows that one should expect the unexpected in subgroup discov-
ery: given a dataset and corresponding description language, it is very
likely that high-quality subgroups can —and hence will— be found.

1 Introduction

Subgroup Discovery (SD) [7,19] is concerned with finding regions in the data that
stand out with respect to a given target. It has many closely related cousins, such
as Significant Pattern Mining [17] and Emerging Pattern Mining [1], which all
concern the discovery of patterns correlated with a Boolean target concept. The
Subgroup Discovery task is more generic, i.e., it is agnostic of data and pattern
types. For example, the target can be either discrete or numeric [5].

A large number of SD algorithms and quality measures have been proposed
and it is easy to mine thousands or millions of patterns from data. One question
that naturally arises is how to validate these (potential) discoveries: how do we
distinguish a ‘true’ pattern from a ‘fluke’ that is present in the data by chance
and therefore does not represent any true correlation between description and
target? In other words, how do we distinguish true from false discoveries?

Statistical testing for pattern mining has received quite some attention over
the past decade. Webb was one of the pioneers of this topic and pointed out
already in 2007 that the size of the entire pattern space under consideration should
be used as Bonferroni correction factor for multiple hypothesis testing [18]. He
also observed that when the null hypothesis supposes that the consequent of a
rule/pattern is independent of its antedecent, Monte Carlo sampling of the tar-
get variable can be used to generate a null distribution. Almost simultaneously,
Gionis et al. introduced randomisation testing on Boolean matrices [3].
c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 51–66, 2016.
DOI: 10.1007/978-3-319-46307-0 4

52 M. van Leeuwen and A. Ukkonen

Permutation tests [4] are a non-parametric approach to hypothesis testing,
with the main advantage that p-values are computed from simulations instead
of formulas of parametric distributions. This makes them especially suitable
for situations where the null-hypothesis cannot be assumed to have a known
parametric form. As a result, permutation tests have since become fairly popular
in the data mining community and have been used for, e.g., studying classifier
performance [15] and statistical testing for subgroup discovery [2].

More recently, several efficient statistical pattern mining methods have been
proposed, mostly for rule discovery in Boolean matrices. Hämäläinen, for exam-
ple, proposed Kingfisher [6], for efficiently searching for both positive and nega-
tive dependency rules based on Fisher’s exact test. Terada et al. [17] introduced
LAMP, which considers a similar setting but employs a smaller Bonferroni cor-
rection based on the notion of ‘testable patterns’. Recently improvements have
been introduced that make LAMP more efficient [13] and versatile [12].

Expect the Unexpected. The technical assumption underlying most statisti-
cal tests for pattern mining is that of exchangeability of the observations under
the null hypothesis [4]. Simply put, a priori the selection of any subset of the data
is deemed to be equally likely and the observed patterns are tested against this
assumption. In this paper we argue and empirically show that this assumption
is often too weak: in practice almost any pattern language and dataset specify a
set of data subsets that strongly deviates from this assumption.

In particular, we will investigate how likely it is to observe a completely
random subset having a large effect size, i.e., a large deviation from the global
distribution. As we will see, this probability tends to be very small. Next, we
will investigate how likely it is that a given description language, i.e., a set of
possible patterns, contains descriptions having large effect size. As we will see,
this probability tends to be substantially larger. As a result, we conclude that
one should expect the unexpected in pattern mining in general and in subgroup
discovery in particular: given a dataset and a description language, it is very
likely that high-quality subgroups can —and hence will— be found.

One possible conclusion to draw from this is that null-hypothesis significance
testing for individual patterns should be used with caution: although it helps
to eradicate some very obvious false discoveries, the often-used null hypothesis
based on exchangeability may be too weak for the p-values to be useful. Note
that we are not the first to warn for the use of significance-based filtering in
pattern mining [11], but we are the first to analyse and empirically investigate
the effect of the description languages used in pattern mining and their relation
to the null hypothesis that assumes random data subsets.

Section 2 introduces the basics of Subgroup Discovery, after which Sect. 3
presents our approach to quantifying the significance of description languages.
More precisely, we will formalise the odds of observing a pattern having a large
effect size versus observing a random subset having such a large effect size. As
computing these odds exactly is clearly infeasible, we introduce the machinery
required for estimating its two components in Sects. 4 and 5. We present the
empirical analysis in Sect. 6 and conclude in Sect. 7.

Expect the Unexpected – On the Significance of Subgroups 53

2 Subgroup Discovery

A dataset D is a bag of tuples t over the attributes {A1, . . . , Am, Y }, where the
Ai are the description attributes A and Y is the target attribute. Each attribute
has a Boolean, nominal or numeric domain.

A subgroup consists of a description and a corresponding cover. That is,
a subgroup description is a pattern S, i.e., a conjunction of conditions on the
description attributes. Its corresponding subgroup cover is the bag of tuples that
satisfy the pattern defined by predicate S, i.e., C(S) = {t ∈ D | t � S}. We
slightly abuse notation and refer to either the description or its cover using S
(depending on context). We use |S| to denote the size of the cover, also called
coverage. Further, a description language L consists of all possible subgroup
descriptions, parametrised by maximum depth maxdepth, which imposes a max-
imum on the number of conditions that are allowed in a description.

The Subgroup Discovery task is to find the top-k ranking subgroups accord-
ing to some quality measure ϕ : 2Y �→ R, which assigns a score to any individual
subgroup based on its target values. We consider the well-known Weighted Rela-
tive Accuracy (WRAcc), defined as ϕWRAcc(S) =

√|S|(μ(S)−μ), where μ is the
mean of the target variable (restricted to the tuples in the subgroup cover in case
of μ(S)). WRAcc is well-defined for Boolean target attributes by interpreting
the proportion of ones as the mean of Boolean values.

To discover high-quality subgroups, top-down search through the pattern
space is commonly used. Several parameters influence the search, e.g., a mini-
mum coverage threshold requires subgroup covers to consist of at least mincov
tuples and the maxdepth parameter allows to restrict the size of the search space.
During search, the overall top-k subgroups are usually kept as final result.

3 Estimating the Significance of a Description Language

In this section we motivate and formalise the approach that we will take to
empirically investigate the significance of subgroups or, more accurately, their
description languages. For this, we start by making three important observations.

The first observation, which we already mentioned in the Introduction, is
that the null hypotheses of most statistical tests for pattern mining are based
on random subsets of the data. This is also the case for, for example, the target
permutation test proposed by Duivesteijn and Knobbe [2]. The rationale for per-
muting the target attribute is that this will result in datasets with no meaningful
functional relationship between the description attributes and the target. Sub-
groups found in the actual data should have a higher quality than those found
on the permuted data, or otherwise the subgroup is there “by chance”.

We will empirically show, however, that given some ‘non-random’ dataset,
almost any description language corresponds to a set of subsets that is very
different from the set of random subsets, trivially resulting in very low p-values.
Hence, this type of null hypothesis is often too weak and any approach based on
this assumption will render many patterns significant; see, e.g., [2,18].

54 M. van Leeuwen and A. Ukkonen

The second observation is that pattern mining techniques search for the best
patterns present in a given description language. This observation has two imme-
diate consequences. First, one cannot only consider the best found pattern and
treat this as ‘the result’, i.e., as if this were the only observation. Instead, as
Webb observed [18], one has to take into account that all patterns in the descrip-
tion language are (implicitly or explicitly) considered and hence apply multiple
hypothesis correction, for example Bonferroni correction. Second, this also means
that there is essentially no difference between testing (1) a description language
in its entirety and (2) the best patterns that were found using search. We there-
fore deviate from the common approach and investigate the ‘significance’ of
entire description languages rather than that of individual patterns.

Finally, the third observation is that it is key to distinguish —using appro-
priate statistical terms— sample size on one hand and effect size on the other
hand. In case of Subgroup Discovery, this implies distinguishing subgroup cov-
erage from the difference in target distribution between the subgroup and the
dataset. These two quantities are usually combined by the quality measure for
the purpose of ranking the patterns, but —unlike Duivesteijn and Knobbe [2]—
we will treat these strictly separately for our analysis. There are two reasons
for this: (1) quality measures such as Weighted Relative Accuracy are somewhat
arbitrary combinations of coverage and relative accuracy, and using a global
quality threshold may therefore result in somewhat arbitrary decisions, (2) larger
effect sizes are more likely for smaller sample sizes.

Thus, we need to define sample size and effect size. Sample size is simply
subgroup coverage as defined in the previous section. For the purpose of this
paper we base the effect size on WRAcc and hence define it as q(S) = (μ(S) −
μ)/σ, where μ and σ are the mean and standard deviation of the target variable.

3.1 Description Languages and Accessible Subsets

Although patterns are specified by the descriptions that make up a description
language, what really matters for our analysis are the subsets of the data that
these descriptions imply, i.e., their corresponding covers. We therefore introduce
the notion of accessible subsets.

Given a description language L and data D, denote by XL,D the set of all pos-
sible non-empty subgroup covers in D that are accessible using L. More formally,
we define the set of accessible subsets as

XL,D = {E ⊆ D | ∃S ∈ L s.t. C(S) = E, |E| > 0}. (1)

While the precise size of XL,D, i.e., |XL,D|, is data dependent, in general it will
be (much) smaller than 2N , with N = |D|. This leads to another observation:
in most practical cases only a fraction of subsets of D are accessible with L.
For instance, in this paper we define L as all conjunctions of conditions on
the description attributes up to a given number of conditions (maxdepth). This
language can only represent subgroups with a cover that is an intersection of
half-spaces in the feature space of D, the number of which is substantially lower
than 2N for most practical datasets.

Expect the Unexpected – On the Significance of Subgroups 55

In general, the size of XL,D can be regarded as a measure of the expressiveness
of the language L in the database D; it is more informative than the number
of descriptions, as multiple descriptions may imply the same cover. Even more
important for our purposes, however, is that it fully specifies the set of subsets
that one needs to consider in order to determine the significance of a given
combination of description language and dataset.

3.2 On the Significance of Description Languages

Although the task of Subgroup Discovery is to find descriptions of ‘large’ covers
having a ‘large’ effect size, in general all subsets of the data can be associated
with an effect size. Thus, we can introduce notions that quantify how probable it
is to observe a certain effect size in either (1) an accessible or (2) a random subset
and compare these two probabilities. As noted before, this strongly depends on
the sample size, i.e., the number of tuples in the subset. We therefore propose to
compare the collection of accessible subsets with all (random) subsets having the
same size distribution to determine if the description language and data together
specify subgroups having relatively high effect size.

Let us first consider the accessible subsets. Let Xk,L,D denote the set of all
accessible subsets with coverage at least k, i.e., |S| ≥ k. Then, we are interested
in the probability that one such accessible subset has an effect size larger than
θ, i.e., how likely is that event? We will empirically estimate this probability as

Pr(q(S) ≥ θ | Xk,L,D) =
|{S ∈ Xk,L,D | q(S) ≥ θ}|

|Xk,L,D| .

Next we are interested in the same probability, but computed for all possi-
ble subsets while taking the coverage distribution of the accessible subsets into
account. We denote this probability by Pr(q(S) ≥ θ | Dk). Based on our obser-
vations we expect the former probability to be much larger than the latter, as
this would indicate that the description language is ‘significant’ with regard to
the target attribute: it contains subgroups that have larger effect sizes than are
likely to be observed in random subsets.

We formalise the ratio between these two probabilities as the odds, a func-
tion of coverage threshold k, minimum effect size θ, description language L and
dataset D:

odds(k, θ, L,D) =
Pr(q(S) ≥ θ | Xk,L,D)

Pr(q(S) ≥ θ | Dk)
. (2)

Exactly computing the odds is clearly infeasible for any realistic dataset.
In the following two sections we will therefore introduce techniques to estimate
Pr(q(S) ≥ θ) for accessible subsets and for all subsets, respectively.

4 Estimating Pr(q(S) ≥ θ) for Accessible Subsets

We will now introduce a method for estimating the size of XL,D for |S| ≥ k, with
or without constraint on the effect size θ, so that we can estimate Pr(q(S) ≥ θ)

56 M. van Leeuwen and A. Ukkonen

for accessible subsets. For this we build upon the Spectra algorithm [10]; we
next provide a brief description but refer to [10] for the details, as we will focus
on the modifications needed for our current purposes.

The Spectra Algorithm. Spectra is a modification of Knuth’s seminal algo-
rithm [8] for estimating the size of a combinatorial search tree, which is based
on the idea of sampling random paths from the root of the tree to a leaf. Let
d = (d0, . . . , dh−1) denote the sequence of branching factors observed along a
path from the root (on level 0) to a leaf (on level h). The estimate produced by
d, which we call the path estimate, is defined as ê(d) =

∑h
i=1

∏i−1
i=0 di.

Since search trees are rarely regular in practice, Knuth’s algorithm samples a
number of different paths, and uses the average of the ê(d) values as an estimate
of the size of the tree. To use this method for estimating the number of patterns
having coverage ≥ k, we sample a number of paths from the root of the pattern
lattice up to (and including) the frequent/infrequent border, compute the path
estimates, and take the average of these. At every step the branching factor is
given by the number of extensions to the current pattern that are still frequent.
We need to make a small modification though, because the patterns do not
form a tree but a lattice, i.e., each node can be reached via multiple paths. We
therefore end up with the following estimator:

e(d) =
h∑

i=1

1
i!

i−1∏
i=0

di, (3)

which includes the normalisation term 1/i! to account for the i! possible paths
that can reach every node on the ith level.

The Spectra+ Algorithm. We describe two extensions to Spectra that allow
to estimate both |Xk,L,D| and |{S ∈ Xk,L,D | q(S) ≥ θ}|.

First, observe that, in the context of frequent itemset mining, the number
of accessible subsets is equivalent to the number of closed itemsets [16]. We
exploit this observation to estimate |Xk,L,D|: we estimate the number of closed
subgroups, where a subgroup is closed iff there exists no extension that does
not change its cover. Let ci denote an indicator variable for the pattern at level
i that is 1 iff it is closed and 0 otherwise. Then, a variant of Knuth’s original
method can be used to estimate the desired number1:

e(d) =
h∑

i=1

ci+1
1
i!

i−1∏
i=0

di. (4)

Second, observe that q(S) ≥ θ can be considered as another constraint that
can be evaluated for each individual subgroup. Hence, to estimate |{S ∈ Xk,L,D |
q(S) ≥ θ}| we use ci = I{Si is closed ∧ q(Si) ≥ θ} in combination with Eq. 4.
Note that this simple yet effective constraint-based estimator can be used for
many other types of constraints as well.
1 Note that we here use a simpler yet more versatile approach for estimating the

number of closed patterns compared to the one proposed in [10].

Expect the Unexpected – On the Significance of Subgroups 57

Although these modifications maintain the desirable property that the
expected estimate is correct, they do lead to an increase in the variance. This is
due to the larger differences between the possible paths, which would require many
more samples to mitigate. Another potential solution to this problem, one that is
computationally less expensive, is to bias the path samples: instead of choosing
an extension uniformly at random, one can design an alternative sampling distri-
bution for each pattern extension. We consider two such biased samplers:

Frequency-Biased sampler. From all frequent extensions, one is randomly
chosen proportional to coverage. To adjust the estimates accordingly, each
branching factor is now computed as the inverse probability of choosing this
extension, i.e., di =

∑
S∈freq |C(S)|
|C(Si+1)| , where freq is the set of all frequent

extensions considered at level i and Si+1 is the chosen one.
Quality-Biased sampler. The previous sampler has a preference towards sam-

pling larger covers, but this not necessarily imply large effect size. Therefore,
in an effort to more accurately estimate |{S ∈ Xk,L,D | q(S) ≥ θ}| for large
θ, we propose to randomly choose proportional to subgroup quality, i.e.,
WRAcc. The branching factors are modified accordingly: di =

∑
S∈freq ϕ(S)

ϕ(Si+1)
.

5 Estimating Pr(q(S) ≥ θ) for All Subsets

Next we turn our attention to estimating Pr(q(S) ≥ θ) for arbitrary data subsets.
To compute this estimate under the constraint where the random subsets follow
the same size distribution as the accessible subsets, as required above, we first
use Spectra+ to estimate the coverage distribution of accessible subsets using
a number of different values of k. Then, we use the estimators discussed in
this section separately for every value of k, and re-weight the estimates by the
probabilities of the respective k. The final estimate is simply the sum of these.

It is thus enough to define the estimators for a fixed coverage k. First, note
that the probability we are interested in is simply the expected value of the
indicator function I{q(S) ≥ θ}:

Pr(q(S) ≥ θ) = Eunif [I{q(S) ≥ θ}], (5)

where Eunif denotes that the expected value is computed over the uniform distri-
bution of all subsets with coverage k. Next we discuss three different approaches
resulting in four different estimators for Pr(q(S) ≥ θ).

Asymptotic – Normal Approximation. Since we have defined q(S) =
(μ(S) − μ)/σ, where μ and σ are the mean and standard deviation of the tar-
get variable, respectively, a simple but efficient heuristic for Pr(q(S) ≥ θ) is
given by the tail of the standard normal distribution. According to the central
limit theorem, we have

√
kq(S) ∼ N (0, 1), when |S| = k. Let cdf(x) denote the

cumulative density of the standard normal distribution at x. Now we can use
1−cdf(

√
kθ) as an estimate of Pr(q(S) ≥ θ). In the experiments we will call this

the asymptotic estimator.

58 M. van Leeuwen and A. Ukkonen

Naive – Sample Mean. We can also use the sample mean to estimate the
expected value in Eq. 5. Given S1, . . . , SR, a uniformly drawn sample of R subsets
of size k, we have

Pr(q(S) ≥ θ) ≈ R−1
R∑

i=1

I{q(Si) ≥ θ}. (6)

This is guaranteed to be an unbiased and consistent estimate of Pr(q(S) ≥ θ), but
it may require a prohibitively large R when estimating very small probabilities,
because in such cases we are unlikely to find random subsets S with effect size
above θ in a sample of realistic size. In particular, this will happen for large
values of θ. We call this estimator naive when reporting experimental results.

Weighted – Importance Sampling. To obtain good estimates also for large
minimum effect size θ, we resort to importance sampling. The idea of importance
sampling (see e.g. [14]) is to increase the probability of observing the event of
interest, in our case I{q(S) ≥ θ}, and re-weight these when computing the sample
mean so that the resulting expected value is equal to the desired probability. It
is easy to show (see Appendix A.12) that the expected value of the indicator
function under the uniform distribution (Eq. 5) is equal to the expected value of
the indicator function weighted by the coefficient W (S) under a biased sampling
distribution, that is,

Eunif [I{q(S) ≥ θ}] = Ebiased[W (S)I{q(S) ≥ θ}]. (7)

Here W (S) = p(S)
p′(S) , where p(S) and p′(S) are the probabilities to draw S

under the uniform and biased distributions, respectively. Now we can estimate
Ebiased[W (S)I{q(S) ≥ θ}] by drawing S1, . . . , SR according to p′ and computing

R−1
R∑

i=1

W (Si)I{q(Si) ≥ θ}. (8)

Unlike the basic sample mean estimator of Eq. 6, the weighted variant in Eq. 8
can give good estimates with a much smaller R, i.e., we need fewer samples,
provided we have chosen the biased sampling distribution p′ appropriately. We
must thus define both p′, as well as compute the weighting factor W (S).

The Biased Sampling Distribution. We first discuss p′. Since we want to
mainly draw random subsets that have a high q(S), in an ideal situation p′(S) ∝
q(S). A very simple way to achieve an effect similar to this is to draw S using
condition-specific probabilities that are proportional to the target values of the
possible extensions, i.e., all conditions that are considered to be added to the
current description. That is, we use a weighted sampling without replacement
scheme, where the condition weights are proportional to their target values.

2 Non-essential derivations can be found in Appendix at https://anon.to/NA9I9A.

https://anon.to/NA9I9A

Expect the Unexpected – On the Significance of Subgroups 59

More formally, let p′(u) denote the probability to draw the condition u (before
other conditions have been drawn), and define

p′(u) =
t(u)∑
v t(v)

, (9)

where t(·) is the target value of an item. After drawing an item u we set the
probability p′(u) to zero, and renormalise the remaining probabilities to sum
up to 1. This is repeated until we have drawn k items. This will have the effect
that items having a high target value are more likely to be selected into S, and
hence q(S) will be biased towards higher values.

Next we discuss the weighting factor W (S). The problem is that to compute
W (S) exactly we must compute p′(S) (see also Appendix A.2), but no closed
form expression for p′(S) exists under weighted sampling without replacement,
and computing p′(S) exactly is infeasible. Hence we consider two heuristics.

Approximating W (S) by Assuming a Sampling with Replacement
Scheme. As a first approximation, we can consider a scheme that corresponds
to sampling with replacement. In practice we still draw samples without replace-
ment as usual, but compute W (S) = p(S)/p′(S) as if we had used sampling with
replacement. This has the upside that all required probabilities have simple and
easy to compute closed form expressions. In particular, we have p̄(S) = 1

nk for
uniform sampling with replacement, and p̄′(S) =

∏
u∈S p′(u) for weighted sam-

pling with replacement. Given these we can approximate W (S) as

W̄1(S) =

(
nk

∏
u∈S

p′(u)

)−1

(10)

where p′(u) is defined as in Eq. 9. Our first importance sampling estimator, called
W1 below, is thus defined by replacing W (S) in Eq. 8 with W̄1(S) of Eq. 10 above.
This estimator is not guaranteed to converge to the correct expected value, but
the experiments show that it still produces reasonable results.

Approximating W (S) by Sampling Permutations of S. Our second app-
roach to approximate W (S) relies on a different technique. As mentioned above,
the basic problem of computing W (S) exactly under weighted sampling with-
out replacement is that it would require us to consider the probabilities of all
possible permutations in which S could have been drawn. Doing this is clearly
infeasible in practice, as there are k! permutations for sets of size k. However, we
can compute an approximation of W (S) by using only a small sample of permu-
tations (see also Appendix A.3). Concretely, given a sample of Q permutations
of the set S, denoted π1, . . . , πQ, we can estimate W (S) as

W̄2(S) =

(
1
Q

Q∑
i=1

Pr(πi)

)−1

(n − k)!
n!

, (11)

60 M. van Leeuwen and A. Ukkonen

where Pr(πi) is the probability to draw the permutation πi under the weighted
sampling without replacement scheme. Our second importance sampling estima-
tor, called W2, can now be defined by replacing W (S) in Eq. 8 with W̄2(S) of
Eq. 11.

6 Experiments

We here present three experiments, of which the first two concern an assessment
of the sampling accuracy of the estimators introduced in the previous two sec-
tions. After that, we present our empirical analysis of the odds of observing high
effect size subgroups on a selection of datasets.

Table 1 presents the datasets that we use for Experiments 2 and 3, which all
have either a Boolean or a numeric target. Except for Crime and Elections, which
were described in [9], all were taken from the UCI Machine Learning repository3.
On-the-fly discretisation of numeric description attributes was applied, meaning
that 6 equal-size intervals were created upon pattern extension.

Table 1. Datasets according to target type. For each dataset the number of tuples and
the number of discrete resp. numeric description attributes are given.

Dataset Properties Dataset Properties

|D| |disc| |num| |D| |disc| |num|
Boolean target Numeric target

Adult 48842 8 6 Abalone 4177 1 7

Breast cancer 699 0 9 Crime 1994 1 101

Mushroom 8124 22 0 Elections 1846 71 2

Pima 768 0 8 Helsinki 8337 1 22

Spambase 4601 57 0 Housing 506 1 12

Tic-tac-toe 958 9 0 RedWine 1599 0 11

Wages 534 7 3

6.1 Experiment 1: Estimating Pr(q(S) ≥ θ) in All Subsets

We discuss an experiment to compare the four estimators of Pr(q(S) ≥ θ) in all
subsets. One difficulty with this is to generate a target variable so that an exact
ground truth probability can be calculated. It should also be possible to vary
the skew of the resulting distribution, as the estimators may be affected by this.

In this experiment we generate the target variable as follows. Let x denote
a vector of length n. We set the first m elements of x equal to v ≥ 1, and let
the remaining n − m elements of x be equal to 1. That is, let x[1 : m] = v,
and x[(m + 1) : n] = 1. By varying m and v we can adjust the skew, with
3 http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/

Expect the Unexpected – On the Significance of Subgroups 61

lower values of m and higher values of v implying a higher skew. Let μ and σ
denote the mean and standard deviation of x, respectively. The ground truth
probability for a given θ is now given by

Pr(q(S) ≥ θl) =
(

n

k

)−1 k∑
i=k−l

(
m

i

)(
n − m

k − i

)
, (12)

where l = k(v−θσ−μ)
v−1 �, and θl = (((k− l)v+ l)/k−μ)/σ (Appendix A.4). Notice

that since we take the floor when computing l, the resulting probability does not
correspond exactly to the given θ, but matches a value θl that is slightly larger
than θ.

Table 2. Parameter values for synthetic target generation used in Experiment 1. Notice
that values for skew parameter m and subgroup coverage k are given as fractions of
n (the size of the generated target variable). For example, one combination that these
give for n, m and k is n = 2000, m = 0.3 × 2000 = 600, k = 0.05 × 2000 = 100.

Parameter Values Parameter Values

n 1000, 2000, 3000, 4000 k 0.05 × n, 0.10 × n

m 0.1 × n, 0.3 × n, 0.6 × n θ 0.2, 0.4, 0.6, 0.8, 1.0

v 3, 6, 9 R 500

We run all our estimators with all possible parameter combinations shown in
Table 2. For the naive estimator we use 10 × R samples, while W1 and W2 use
both exactly R samples. When estimating with W2 we set Q = 200. To get a fair
comparison between the importance sampling estimators, we use the same set
of R samples for both W1 and W2. Notice that computing the exact probability
may fail due to problems with numerical computation. Such cases are omitted
from consideration. This experiment was run in R 3.34 on Linux.

As estimating small probabilities accurately is difficult, we are mainly inter-
ested in calculating the correct order of magnitude, i.e., the estimates we report
are always base-10 logarithms of Pr(q(S) ≥ θ). We also report the mean absolute
error (MAE) of these over some subsets of the parameter combinations. More-
over, for some inputs one or more of the estimators fail to produce a positive,
non-zero estimate. To get an overview of how prevalent this is, we compute the
recall over all 360 parameter combinations (the two values of R are handled sep-
arately) by considering the fraction of cases where an estimate was obtained of
those where it was possible to compute the exact probability.

An overview of the results is given in Table 3 for R = 500. On the left we
show both MAE (as well as the minimum and maximum error) and recall when
considering all parameter combinations, and on the right we report the same
numbers for cases with θ ≥ 0.6. Larger values of θ are often more interesting in
4 https://www.R-project.org.

https://www.R-project.org

62 M. van Leeuwen and A. Ukkonen

Table 3. Mean absolute error (MAE), minimum and maximum error, and recall of the
estimators for low θ (left side) as well as high values of θ (right side) when R = 500.

Estimator θ ≥ 0 θ ≥ 0.6

MAE (min, max) error Recall MAE (min, max) error Recall

Asymptotic 2.55 (0.004 19.2) 1.00 3.96 (0.035, 19.22) 1.000

Naive 0.18 (0.00, 1.5) 0.26 0.81 (0.677, 0.95) 0.014

W1 2.76 (0.00, 25.8) 0.84 1.61 (0.00, 11.19) 0.743

W2 2.67 (0.00, 30.3) 0.84 0.75 (0.00, 15.73) 0.743

practice, as we will show below when studying Pr(q(S) ≥ θ) in accessible subsets
of real data. We observe that the naive estimator has the lowest MAE in every
case. However, it also has a very low recall, meaning that it only rarely produces a
useful estimate, but if it does, the estimate is rather accurate. (This is of course
what one would expect.) But especially for θ ≥ 0.6 the naive estimator is in
practice useless due to having almost zero recall. The asymptotic estimator, on
the other hand, always has the highest possible recall (=1), while the importance
sampling estimators W1 and W2 fail to calculate a positive non-zero estimate in
about 15 to 25 % of the cases. When θ ≥ 0, the importance sampling estimators
perform roughly at the same level as the asymptotic estimator in terms of MAE.
However, when considering performance for θ ≥ 0.6, we find that the importance
sampling estimators, especially W2, have substantially lower MAE without losing
that much in recall. We conclude that for high values of θ the W2 estimator gives
very good results.

6.2 Experiment 2: Estimating Pr(q(S) ≥ θ) in Accessible Subsets

As explained in Sect. 3, we estimate Pr(q(S) ≥ θ) from two components: (1)
the number of accessible subsets having (q(S) ≥ θ), and (2) the total number
of accessible subsets. We estimate both components using Spectra+. To eval-
uate the estimators we compare them against probabilities based on exhaustive
counts. Although these can be obtained through simply enumerating all patterns
and then counting the number of distinct accessible subsets, this is clearly only
feasible for relatively small datasets and description languages. In the following
we therefore limit our evaluation to datasets and maximum depth settings for
which it was possible to enumerate and count all accessible subsets within a day.

We have introduced three variants of Spectra+: the uniform variant that
uses uniform path sampling, the frequency variant that uses the frequencies of
the refinements to bias the sampling, and the quality variant that uses Weighted
Relative Accuracy to bias the sampling. On the left side of Table 4 we present a
comparison of these three variants when estimating Pr(q(S) ≥ θ) in the datasets.
Top part of the table shows datasets for which the true probability can be com-
puted, bottom part shows cases where only estimates are available. Note that
values of θ vary across datasets, as for some datasets there are fewer high effect

Expect the Unexpected – On the Significance of Subgroups 63

500 1000 1500 2000 2500

-0
.5

-0
.3

-0
.1

0.
0

0.
1

0.
2

num samples

lo
g1

0(
es

tim
/a

ct
ua

l)
abalone
breast

elections
helsinki

mushroom
pima

2 3 4

-0
.4

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

max depth

lo
g1

0(
es

tim
/a

ct
ua

l)

abalone
breast
mushroom

Fig. 1. Estimation accuracy of Pr(q(S) ≥ 0) in accessible subsets using uniform sam-
pling both as a function of the number of path samples (left) and search depth (right)
with those datasets and parameter combinations that we were able to compute the
exact counts by enumerating all accessible subsets.

size subsets than for others. Datasets having a numeric target attribute are
shown in italics. The description language corresponding to a maximum depth
of three is used, and the estimates are computed from 1000 path samples.

We observe that none of the estimators consistently has the highest accuracy.
All tend to catch the correct order of magnitude, with the exception of the
quality-biased sampler that is clearly the least accurate. Based on this we choose
to use the uniform sampling variant for the remaining experiments, as it is
the simplest to implement, and the other approaches do not seem to lead to
substantial practical benefits5 when estimating Pr(q(S) ≥ θ).

Next we investigate the effect of the number of path samples as well as the
maximum search depth on the accuracy of the estimates. For this we compare
estimates obtained using {500, 1000, 1500, 2000, 2500} path samples, as well as
maximum depths of 2, 3, and 4. The estimation accuracy is shown in Fig. 1 for
both cases. As we can see from the results, using more path samples does not
affect the quality of the estimates in most cases. For most data sets the estimator
underestimates the true probability slightly, but the effects are negligible. Given
that we are only interested in correctly estimating the order of magnitude, we use
1000 path samples for all remaining experiments. Similar results can be found for
maximum depth. Increasing maximum depth may increase the factor by which
the path sampling estimator underestimates, but the results are not consistent
across all data sets.

5 We note, however, that for the simpler problem of merely counting accessible subsets
using the frequency-biased sampler may give more accurate results. These results are
omitted due to length restrictions.

64 M. van Leeuwen and A. Ukkonen

Table 4. Estimates of log10(Pr(q(S) ≥ θ)) in accessible subsets (left side) as well as all
subsets (right side) obtained with different estimators for the lowest support threshold
used (0.05|D|) and a maximum search depth of 3. Target: Numeric/Boolean.

Dataset Accessible subsets θ All subsets Odds

Uniform Frequency Quality Exact Asymp Naive W2

Abalone −0.52 −0.50 −0.19 −0.52 0.4 −10 −Inf −9.5 9.0

Abalone −1.71 −1.71 −1.56 −1.74 1.0 −44 −Inf −Inf 42.3

Breast cancer −0.15 −0.13 −0.04 −0.12 0.3 −1.3 −1.3 Fail 1.2

Breast cancer −0.37 −0.34 −0.16 −0.29 1.0 −10 −Inf Fail 9.6

Elections −0.44 −0.60 −0.44 −0.63 0.2 −1.9 −1.7 −22.2 1.3

Elections −1.46 −2.09 −1.51 −1.82 0.5 −6.1 −4.0 −19.3 2.5

Helsinki −0.49 −0.60 −0.16 −0.50 0.4 −20 −Inf −20 19.5

Helsinki −1.08 −1.08 −0.66 −1.16 1.0 −100 −Inf −Inf 98.9

Housing −0.35 −0.34 −0.15 −0.38 0.4 −1.5 −1.5 −1.6 1.2

Housing −1.23 −1.30 −0.94 −1.24 1.0 −8.1 −Inf −6.9 5.7

Mushroom −0.74 −0.26 - −0.27 0.1 −0.9 −0.9 −134 0.2

Mushroom −0.53 −0.76 - −0.55 0.2 −5.1 −Inf −134 4.6

Pima −0.44 −0.47 −0.15 −0.50 0.2 −1.4 −1.6 −Inf 1.2

Pima −1.88 −1.51 −1.36 −1.82 0.8 −7.5 −Inf −Inf 5.6

Adult −0.33 −0.28 −0.19 0.1 −1.0 −1.0 NA 0.7

Adult −1.89 - −2.43 0.2 −32 −Inf NA 30.1

Crime −0.39 −0.35 - 0.1 −1.0 −1.0 −12.4 0.6

Crime −0.76 −0.73 −0.38 0.4 −5.5 −4.5 −11.8 3.7

RedWine −0.33 −0.34 - 0.1 −0.3 −0.3 −0.85 0.0

RedWine −1.25 −1.22 −0.75 0.6 −8.3 −Inf −Inf 7.1

Spambase −0.22 −0.28 −0.02 0.2 −3.4 −3.4 −97 3.2

Spambase −0.86 −1.06 −0.59 1.0 −54 −Inf −97 53.1

Tic-tac-toe −0.28 −0.27 −0.05 0.1 −0.3 −0.3 −9.2 0.0

Tic-tac-toe −1.33 −1.43 −1.06 0.4 −2.8 −3.1 −9.2 1.8

Wages −0.83 −0.78 −0.36 0.4 −2.0 −1.9 −1.9 1.1

Wages −1.99 −2.27 −1.51 1.0 −7.1 −Inf −5.5 3.5

6.3 Experiment 3: The Odds of Finding Patterns Having Large
Effect Sizes

Lastly, we run the estimators for arbitrary subsets on the real data sets, and
compute the odds as defined in Eq. 2. The probability estimates in arbitrary
subsets are shown on the right side of Table 4. We have indicated the most
reliable estimator in bold. Notice that the importance sampling estimator W2

tends to produce bad estimates for small values of θ, as we also observed above. In
general, if the naive estimator produces a non-zero positive estimate, we take this
to be the most reliable value. For small probabilities, however, this will fail, and

Expect the Unexpected – On the Significance of Subgroups 65

we must choose between the asymptotic estimator and W2. We choose W2 over
the asymptotic in situations where the estimators do not deviate substantially.

Finally, we compute the base-10 log odds between (1) the uniform estimator
in accessible subsets and (2) the estimator shown in bold for all subsets. We
can observe that, for all datasets, the probability of observing a high effect size
subgroup is several orders of magnitude higher in the accessible subsets than
what it is in arbitrary subsets having the same size distribution.

7 Conclusions

We have shown that realistic pattern languages contain large numbers of high-
quality subgroups; much more so than can be expected from randomly drawn
subsets. Although maybe not a surprising result on itself, this does have implica-
tions for approaches that aim to eliminate false discoveries. Specifically, statisti-
cal tests often rely on the null hypothesis that any subset of the data is equally
likely, but this assumption is clearly too weak. That is, one should expect the
unexpected in pattern mining: given a dataset and a description language, it is
very likely that high-quality subgroups can —and hence will— be found.

Note that we do not claim that significance testing is unusable in the context
of pattern mining; existing approaches can certainly help to identify obvious
false discoveries. Our analysis does demonstrate, however, that it is of interest
to investigate significance tests for description languages (rather than individual
patterns) that take the inherent structure of accessible subsets into account.

References

1. Dong, G., Zhang, X., Wong, L., Li, J.: CAEP: classification by aggregating emerg-
ing patterns. In: Japkowicz, N., Matwin, S. (eds.) DS 1999. LNCS (LNAI), vol.
1721, pp. 30–42. Springer, Heidelberg (1999). doi:10.1007/3-540-46846-3 4

2. Duivesteijn, W., Knobbe, A.: Exploiting false discoveries - statistical validation of
patterns and quality measures in subgroup discovery. In: Proceedings of the ICDM
2011, pp. 151–160 (2011)

3. Gionis, A., Mannila, H., Mielikäinen, T., Tsaparas, P.: Assessing data mining
results via swap randomization. ACM Trans. Knowl. Discov. Data 1(3), 14 (2007)

4. Good, P.I.: Permutation, Parametric and Bootstrap Tests of Hypotheses, 3rd edn.
Springer, New York (2005)

5. Grosskreutz, H., Rüping, S.: On subgroup discovery in numerical domains. Data
Min. Knowl. Disc. 19(2), 210–226 (2009)

6. Hämäläinen, W.: Kingfisher: an efficient algorithm for searching for both positive
and negative dependency rules with statistical significance measures. Knowl. Inf.
Syst. 32(2), 383–414 (2012)

7. Klösgen, W.: Explora: a multipattern and multistrategy discovery assistant. In:
Advances in Knowledge Discovery and Data Mining, pp. 249–271 (1996)

8. Knuth, D.: Estimating the efficiency of backtrack programs. Math. Comput.
29(129), 122–136 (1975)

http://dx.doi.org/10.1007/3-540-46846-3_4

66 M. van Leeuwen and A. Ukkonen

9. van Leeuwen, M., Knobbe, A.: Non-redundant subgroup discovery in large and
complex data. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M.
(eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6913, pp. 459–474. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23808-6 30

10. van Leeuwen, M., Ukkonen, A.: Fast estimation of the pattern frequency spectrum.
In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014.
LNCS (LNAI), vol. 8725, pp. 114–129. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44851-9 8

11. Lemmerich, F., Puppe, F.: A critical view on automatic significance-filtering in
pattern mining. In: Proceedings of ECMLPKDD 2014 Workshop on Statistically
Sound Data Mining (2014)

12. Llinares-López, F., Sugiyama, M., Papaxanthos, L., Borgwardt, K.M.: Fast and
memory-efficient significant pattern mining via permutation testing. Proc. KDD
2015, 725–734 (2015)

13. Minato, S., Uno, T., Tsuda, K., Terada, A., Sese, J.: A fast method of statistical
assessment for combinatorial hypotheses based on frequent itemset enumeration.
In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014.
LNCS (LNAI), vol. 8725, pp. 422–436. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44851-9 27

14. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
New York (1995)

15. Ojala, M., Garriga, G.C.: Permutation tests for studying classifier performance. J.
Mach. Learn. Res. 11, 1833–1863 (2010)

16. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-
sets for association rules. In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol.
1540, pp. 398–416. Springer, Heidelberg (1999). doi:10.1007/3-540-49257-7 25

17. Terada, A., Okada-Hatakeyama, M., Tsuda, K., Sese, J.: Statistical significance of
combinatorial regulations. Proc. Natl. Acad. Sci. 110(32), 12996–13001 (2013)

18. Webb, G.I.: Discovering significant patterns. Mach. Learn. 68(1), 1–33 (2007)
19. Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In:

Komorowski, J., Zytkow, J. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87.
Springer, Heidelberg (1997). doi:10.1007/3-540-63223-9 108

http://dx.doi.org/10.1007/978-3-642-23808-6_30
http://dx.doi.org/10.1007/978-3-662-44851-9_8
http://dx.doi.org/10.1007/978-3-662-44851-9_8
http://dx.doi.org/10.1007/978-3-662-44851-9_27
http://dx.doi.org/10.1007/978-3-662-44851-9_27
http://dx.doi.org/10.1007/3-540-49257-7_25
http://dx.doi.org/10.1007/3-540-63223-9_108

Min-Hashing for Probabilistic Frequent
Subtree Feature Spaces

Pascal Welke1(B), Tamás Horváth1,2, and Stefan Wrobel1,2

1 Department of Computer Science, University of Bonn, Bonn, Germany
welke@uni-bonn.de

2 Fraunhofer IAIS, Schloss Birlinghoven, Sankt Augustin, Germany

Abstract. We propose a fast algorithm for approximating graph sim-
ilarities. For its advantageous semantic and algorithmic properties, we
define the similarity between two graphs by the Jaccard-similarity of
their images in a binary feature space spanned by the set of frequent
subtrees generated for some training dataset. Since the feature space
embedding is computationally intractable, we use a probabilistic subtree
isomorphism operator based on a small sample of random spanning trees
and approximate the Jaccard-similarity by min-hash sketches. The par-
tial order on the feature set defined by subgraph isomorphism allows for
a fast calculation of the min-hash sketch, without explicitly performing
the feature space embedding. Experimental results on real-world graph
datasets show that our technique results in a fast algorithm. Further-
more, the approximated similarities are well-suited for classification and
retrieval tasks in large graph datasets.

1 Introduction

A common paradigm in distance-based learning is to embed the instance space
into some appropriately chosen feature space equipped by a metric and to define
the dissimilarity between two instances by the distance of their images in the
feature space. In this work we deal with the special case of this paradigm that the
instances are vertex and edge labeled graphs (without any structural restriction),
the feature space is the set of vertices of the d-dimensional Hamming-cube (i.e.,
{0, 1}d) spanned by the elements of a feature set of cardinality d for some d > 0,
and the metric is defined by the Jaccard-distance. This problem class is valid
because any vertex of the d-dimensional Hamming-cube can be regarded as a
set over a universe of cardinality d.

The crucial step of the generic approach above is the appropriate choice of the
feature space. Indeed, the quality (e.g., predictive performance) of this method
applied to some particular problem strongly depends on the semantic relevance of
the features selected, implying that one might be interested in feature languages
of large expressive power. If, however, the features are arbitrary graph patterns
and the (binary) value of a pattern P on a graph G is defined by 1 if and only
if P is a subgraph of G then this approach suffers from severe computational
limitations. Indeed, even in the simple case that P is a path, it is NP-complete
c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 67–82, 2016.
DOI: 10.1007/978-3-319-46307-0 5

68 P. Welke et al.

to decide whether P is a subgraph of G (i.e., whether P is subgraph isomorphic
to G). This implies that the embedding of a graph into the feature space is
computationally intractable if the pattern size is not bounded by some constant.

Our goal in this paper is to use frequent subgraphs as features, without any
structural restriction on the graph class defining the instance space. This is moti-
vated, among others, by the observation that frequent subgraph kernels [3] are
of remarkable predictive performance e.g. on the ligand-based virtual screen-
ing problem [5]. The features, i.e., the set of frequent subgraphs are generated
initially for a training set of graphs. To arrive at a practically fast algorithm,
we restrict the pattern language to trees. This restriction alone is, however,
not sufficient for a polynomial time algorithm for the following reasons: Min-
ing frequent subtrees from arbitrary graphs is computationally intractable [6]
and, as mentioned above, deciding subgraph isomorphism from a tree into a
graph is NP-complete. To overcome these computational limitations, we give up
the demand on the correctness of the pattern matching operator (i.e., subgraph
isomorphism). More precisely, for each training graph we first take a set of k
spanning trees generated uniformly at random, where k is some user specified
parameter, replace each training graph with the random forest obtained by the
vertex disjoint union of its k random spanning trees, and calculate finally the
set of frequent subtrees for this forest database for some user specified frequency
threshold. Clearly, the output of this probabilistic technique is always sound (any
tree found to be frequent by this algorithm is a frequent subtree with respect to
the original dataset), but incomplete (the algorithm may miss frequent subtrees).
Since frequent subtrees in forests can be generated with polynomial delay [7], our
frequent pattern generation algorithm runs in time polynomial in the combined
size of the training dataset D and the set of frequent subtrees generated, as long
as the number k of random spanning trees is bounded by a polynomial of the
size of D.

We follow a similar strategy for the embedding step: For an unseen graph G
and a frequent tree pattern T , we generate a set F of k random spanning trees of
G with the same method as for the frequent pattern mining algorithm and return
1 if T is subgraph isomorphic to F ; 0 otherwise. On the one hand, in this way we
decide subgraph isomorphism from a tree into a graph with one-sided error, as
only a negative answer may be erroneous, i.e., when T is subgraph isomorphic
to G but not to F . On the other hand, this subgraph isomorphism test with
one-sided error can be performed in polynomial time. In a recent paper [12],
we have empirically demonstrated that remarkable predictive performance can
be obtained by the method sketched above. We show in this paper that our
probabilistic algorithm decides subgraph isomorphism from T into G correctly
with high probability if k is chosen appropriately.

Though the method sketched above runs in polynomial time, it is still imprac-
tical for large graphs and/or massive graph datasets for the following rea-
sons: The fastest known algorithm for subtree isomorphism into forests runs
in O

(
n2.5/ log n

)
time [9]. Although this is polynomial, it is prohibited even for

datasets with a few hundred thousands of small graphs [12]. A second reason is

Min-Hashing for Probabilistic Frequent Subtree Feature Spaces 69

the high dimensionality of the feature space, resulting in practically infeasible
time and space complexity. Running time and memory can, however, be signif-
icantly reduced by using min-hashing [1], an elegant probabilistic technique for
the approximation of the Jaccard-similarity. Given a binary feature vector f and
a permutation π of f , the method is based on calculating the min-hash value
hπ(f), i.e., the position of the first occurrence of 1 in the permuted order of f .

For the feature set formed by the set of all paths up to a constant length, min-
hashing has already been applied for graph similarity estimation by performing
the embedding explicitly [11]. We show for the more general case of tree patterns
of arbitrary length that for a feature vector f and permutation π, hπ(f) can be
computed without calculating f . On the one hand, we can utilize the fact that we
are interested in the first occurrence of a 1 in the order of π; once we have found
it, we can stop the calculation, as all patterns after hπ(f) are irrelevant for min-
hashing. Beside this straightforward speed-up of the algorithm, the computation
of the min-hash can further be accelerated utilizing the facts that a tree pattern
T need not be evaluated if T or a subtree of T has already been considered for
this or another permutation. These facts allow us to define a linear order on the
patterns to be evaluated and to avoid redundant subtree isomorphism tests.

Our experimental results clearly demonstrate that using our technique, the
number of subtree isomorphism tests can dramatically be reduced with respect
to the min-hash algorithm performing the embedding explicitly. It is natural to
ask how the predictive performance of the approximate similarities compares to
the exact ones. We show that even for a few random spanning trees per chem-
ical compound, remarkable precisions of the active molecules can be obtained
by taking the k nearest neighbors of an active compound for k = 1, . . . , 100 and
that these precision values are close to those obtained by the full set of frequent
subtrees. In a second experimental setting, we analyze the predictive power of
support vector machines using our approximate similarities and show that it
compares to that of state-of-the-art related methods. The stability of our incom-
plete probabilistic technique is explained by the fact that a subtree generated
by our method is frequent not only with respect to the training set, but, with
high probability, also with respect to the set of spanning trees of a graph.

The rest of the paper is organized as follows. In Sect. 2 we collect the nec-
essary notions and sketch the min-hashing technique. In Sect. 3 we present our
algorithm for calculating min-hashing in probabilistic tree feature spaces. In
Sect. 4 we report our empirical results and conclude finally in Sect. 5 along with
mentioning some interesting problems for future work.

2 Notions

In this section we collect the necessary notions and fix the notation. The set
{1, . . . , n} will be denoted by [n] for all n ∈ N. The following basic concepts
from graph theory are standard (see, e.g., [4]). An undirected (resp. directed)
graph G is a pair (V,E), where V (vertex set) is a finite set and E (edge set)
is a subset of the family of 2-subsets of V (resp. E ⊆ V × V). Unless otherwise

70 P. Welke et al.

stated, by graphs we mean undirected graphs. An unrooted (or free) tree is a
connected graph that contains no cycle. For simplicity, we restrict the description
of our method to unlabeled graphs, by noting that all concepts can naturally be
generalized to labeled graphs.

Among the classical embedding (or pattern matching) operators, subgraph
isomorphism is the most widely used one in pattern mining. For this reason,
in the next section we will present our method for subgraph isomorphism and
discuss potential generalizations to other embedding operators in Sect. 5. Let
G1 = (V1, E1) and G2 = (V2, E2) be graphs. They are isomorphic if there exists
a bijection ϕ : V1 → V2 with {u, v} ∈ V1 if and only if {ϕ(u), ϕ(v)} ∈ V2 for
all u, v ∈ V1. G1 is subgraph isomorphic to G2, denoted G1 � G2, if G2 has
a subgraph isomorphic to G1; G1 ≺ G2 denotes that G1 � G2 and G1 is not
isomorphic to G2. It is a well-known fact that subgraph isomorphism is NP-
complete. This negative result holds even for the case that the patterns are
restricted to trees.

For any graph class H containing no two isomorphic graphs, (H,�) is a
poset. Since H will be finite for our case, we represent (H,�) by a directed
graph (H, E) with (H1,H2) ∈ E if and only if H1 � H2 and there is no H ∈ H
with H1 ≺ H ≺ H2 for all H1,H2 ∈ H.

We will also use concepts and algorithms from frequent subgraph mining. For
any graph class H (the pattern class), finite set D of graphs, and for any frequency
threshold θ ∈ (0, 1], a pattern H ∈ H is frequent if |{G ∈ D : H � G}| ≥ θ|D|.
Given H, D, and θ, the problem of frequent subgraph mining is to generate
all patterns from H that are frequent. This listing problem is computationally
intractable [6]. It follows from the proof of this negative result that the problem
remains intractable if H is restricted to trees.1 If, however, D is restricted to
forests then frequent subgraphs (i.e., subtrees) can be generated with polynomial
delay [7].

We will measure the similarity between two graphs by the Jaccard-similarity
of their images in the Hamming-cube {0, 1}|F| spanned by the elements of some
finite feature set F . The binary feature vectors can then be regarded as the
characteristic vectors of subsets of F . Given two feature vectors f1 and f2

representing the sets S1 and S2, respectively, we define their similarity by the
Jaccard-similarity of S1 and S2, i.e., by

SimJaccard(f1,f2) := SimJaccard(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

with SimJaccard(∅, ∅) := 0 for the degenerate case. As long as the feature vectors
are low dimensional (i.e., |F| is small), the Jaccard-similarity can quickly be
calculated. If, however, they are high dimensional, it can be approximated with

1 We note that the crucial property implying the negative complexity result in [6]
is not necessarily the intractability of subgraph isomorphism; there are cases when
efficient frequent subgraph mining is possible even for NP-hard pattern matching
operators [7].

Min-Hashing for Probabilistic Frequent Subtree Feature Spaces 71

the following fast probabilistic technique based on min-hashing [1]: For a per-
mutation π of F and feature vector f , define hπ(f) to be the index of the first
entry with value 1 in the permuted order of f . One can show that the following
correspondence holds for the feature vectors f1 and f2 above (see [1] for the
details):

SimJaccard(S1, S2) = Pr [hπ(f1) = hπ(f2)] ,

where the probability is taken by selecting π uniformly at random from the set of
permutations of F . This allows for the following approximation of the Jaccard-
similarity between f1 and f2: Generate a set π1, . . . , πK of permutations of the
feature set uniformly at random and return K ′/K, where K ′ is the number of
permutations πi with hπi

(f1) = hπi
(f2). The approximation of the Jaccard-

distance with min-hashing results in a fast algorithm if the embedding into the
feature space can be computed quickly.

3 Efficient Min-Hash Sketch Computation

In this section we present our method for approximating the similarity between
two graphs. We define this similarity by the Jaccard-similarity of their binary
feature vectors for its advantageous semantic and algorithmic properties. The
underlying feature space is spanned by a certain set of frequent tree patterns
fixed in advance. More precisely, given a finite training set D of graphs and a
frequency threshold θ ∈ (0, 1], in a preprocessing step we first generate a subset F
of the set of frequent subtrees of D. Clearly, F is finite. It will span the Hamming
feature space {0, 1}|F| and serve as the universe for the Jaccard-similarity. Given
F and two graphs G1, G2, the similarity Sim(G1, G2) between G1 and G2 is then
defined by

Sim(G1, G2) := SimJaccard (f1,f2) ,

where fi is the characteristic vector of the set {T ∈ F : T � Gi}. The preprocess-
ing step and the above definition of similarity raise the following three compu-
tational problems:

(P1) The Frequent Subtree Mining Problem: Given a finite set D of graphs and
a frequency threshold θ ∈ (0, 1], generate the set of all trees that are frequent
in D.

(P2) The Subtree Isomorphism Problem: Given a tree T and a graph G, decide
whether or not T � G.

(P3) Computing the Jaccard-similarity: Given two binary feature vectors f1 and
f2 as defined above, compute SimJaccard(f1,f2).

Since we have no restrictions on D and G, problems (P1) and (P2) are compu-
tationally intractable. In particular, unless P = NP, the frequent subtree mining
problem cannot be solved in output polynomial time [6] and deciding whether a
tree is subgraph isomorphic to a graph is NP-complete. Regarding (P3), as |F|
is typically some large set, computing the Jaccard-similarity makes the above
algorithmic definition practically infeasible if a huge number of similarity queries
must be evaluated.

72 P. Welke et al.

3.1 Probabilistic Tree Patterns

We first focus on problems (P1) and (P2). To overcome the complexity limita-
tions of these two problems, we follow our approach described in [12] and give
up the demand on the completeness of (P1) and on the correctness of the sub-
tree isomorphism test for (P2), and use the following probabilistic technique: We
replace each graph in D for problem (P1) and G for problem (P2) by a set of its
k spanning trees generated uniformly at random. For an empirical evaluation of
this method, the reader is referred to [12]; a probabilistic justification together
with an appropriate choice of k is given below. According to this probabilistic
technique, a tree T will be found as frequent in D (P1) if it is a subtree of at least
θ|D| forests, each formed by the vertex disjoint union of the k random spanning
trees. Similarly, T will be found to be subgraph isomorphic to G (P2) if T is
subgraph isomorphic to the forest of G formed by the vertex disjoint union of
the k random spanning trees generated for G.

Regarding (P1), the probabilistic technique above results in a sound, but
incomplete algorithm. Indeed, any tree found to be frequent by the mining algo-
rithm in the forest dataset obtained is a frequent tree in D, but we have no
guarantee that all frequent trees of D will be generated. Thus, our technique
may ignore frequent tree patterns. Regarding (P2), we decide subtree isomor-
phism by one-sided error: If T is subgraph isomorphic to any of the k spanning
trees of G then T is subgraph isomorphic to G; otherwise T may or may not be
subgraph isomorphic to G.

Fig. 1. The function 1 − (1 − μ)k for different values of k.

The rationale behind our probabilistic technique is as follows. For a graph G,
let S(G) be the set of spanning trees of G. Let μ ∈ (0, 1]. A tree T is μ-important
in G if |{S ∈ S(G) : T � S}|

|S(G)| ≥ μ.

Thus, the probability that a μ-important tree in G is subtree isomorphic to a
spanning tree of G generated uniformly at random is at least μ. Notice that

Min-Hashing for Probabilistic Frequent Subtree Feature Spaces 73

μ = 1 for any subtree of the forest formed by the set of bridges of G (i.e., by
the edges that do not belong to any cycle in G). Let Sk(G) denote a sample of
k spanning trees of G generated independently and uniformly at random. Then

Pr [∃S ∈ Sk(G) such that T � S] ≥ 1 − (1 − μ)k. (1)

The bound in (1) implies that for any graph G and μ-important tree pattern T
in G for some μ ∈ (0, 1], and for any δ ∈ (0, 1),

Pr [∃S ∈ Sk(G) such that T � S] ≥ 1 − δ

whenever
k ≥ ln δ

ln(1 − μ)

(see, also, Fig. 1 for the function 1 − (1 − μ)k for different values of k). Thus,
if k is appropriately chosen, we have a probabilistic guarantee in terms of the
confidence parameter δ that all μ-important tree patterns will be considered
with high probability. As an example, we need less than 20 random spanning
trees to correctly process a 0.15-important tree pattern with probability at least
0.95. Clearly, a smaller value of μ results in a larger feature set.

3.2 Fast Min-Hashing for Tree Patterns

We now turn to problem (P3) of computing the Jaccard-similarity between two
binary feature vectors corresponding to the set F of tree patterns generated in
the preprocessing step. More precisely, given a set F of trees that index our full
feature space and two graphs G1, G2, we want to answer similarity queries of
the form Sim(G1, G2) by calculating SimJaccard(f1,f2), where fi is the binary
feature vector representing the set of trees from F that are subgraph isomorphic
to the forest formed by the vertex disjoint union of the k random spanning trees
generated for Gi (i = 1, 2). Instead of using the naive brute-force algorithm, i.e.,
calculating first the explicit embedding of Gi into the feature space and comput-
ing then the exact value of SimJaccard(f1,f2), we follow Broder’s probabilistic
min-hashing technique [1] sketched in Sect. 2.

Min-hashing was originally applied to text documents using q-shingles as
features (i.e., sequences of q contiguous tokens for some q ∈ N), implying that one
can calculate the explicit embedding in linear time by shifting a window of size q
through the document to be embedded. In contrast, a naive algorithm embedding
a graph with n vertices into the feature space corresponding to F would require
O

(|F|n2.5/ log n
)

time by using the fastest subtree isomorphism algorithm [9],
which is practically infeasible for large-sized feature sets. Another important
difference between the two applications is that while the set of q-shingles for text
documents forms an anti-chain (i.e., the q-shingles are pairwise incomparable),
subgraph isomorphism induces a natural partial order on F . The transitivity of
subgraph isomorphism allows us to safely ignore features from F that do not
influence the outcome of min-hashing, resulting in a much faster algorithm.

74 P. Welke et al.

More precisely, in the preprocessing step, directly after the generation of
F , we generate K random permutations π1, . . . , πK : F → [|F|] of F (see [2]
for the details) and fix them for computing the min-hash values that will be
used for similarity query evaluations (cf. Sect. 2). Since the computation of the
embeddings is the most expensive operation, we can allow preprocessing time and
space that is polynomial in the size of the pattern set F . Therefore, we explicitly
compute and store π1, . . . , πK , and do not apply any implicit representations of
them. This is particularly true, as we compute F explicitly in the preprocessing
step and spend time that is polynomial in F anyway.

For a graph G and permutation π of F , let

hπ(G) = argmin
T∈F

{π(T) : T � G} .

The sketch of G with respect to π1, . . . , πK is then defined by2

Sketchπ1,...,πK
(G) = (hπ1(G), . . . , hπK

(G)).

The rest of this section is devoted to the following problem: Given π1, . . . , πK

and G as above, compute Sketchπ1,...,πK
(G). The first observation that leads

to an improved algorithm computing Sketchπ1,...,πK
(G) is that for any i ∈ [K],

πi may contain trees that can never be the first matching patterns according to
πi, for any query graph G. Indeed, suppose we have two patterns T1, T2 ∈ F
with T1 � T2 and πi(T1) < πi(T2). Then, for any query graph G, either

1. T1 � G and hence T2 cannot be the first matching pattern in πi or
2. T1 �� G and hence, by the transitivity of subgraph isomorphism, we have

T2 �� G as well.

For both cases, T2 will never be the first matching pattern according to πi and can
therefore be omitted from this permutation. Algorithm1 implements this idea
for a single permutation π of F . The proof of the following result is immediate
from the remarks above:

Lemma 1. Let σ = 〈T1, . . . , Tl〉 be the output of Algorithm1 for a permutation
π of F . Then, for any graph G,

hπ(G) = argmin
Ti∈σ

{i : Ti � G}.

Algorithm 1 runs in time O (|F|). Loop 5 can be implemented by a DFS that
does not recurse on the visited neighbors of a vertex. In this way, each edge of
F is visited exactly once during the algorithm.

We now turn to the computation of Sketchπ1,...,πK
(G). A straightforward

implementation of calculating Sketchπ1,...,πK
(G) for the evaluation sequences

2 In practice, we do not store the patterns in Sketchπ1,...,πK (G) explicitly. Instead,
we define some arbitrary total order on F and represent each pattern by its position
according to this order.

Min-Hashing for Probabilistic Frequent Subtree Feature Spaces 75

Input: directed graph F = (F , E) representing a poset (F , �) and permutation π of
F

Output: evaluation sequence σ = 〈T1, . . . , Tl〉 ∈ F l for some 0 < l ≤ |F| with π(Ti) <
π(Tj) for all 1 ≤ i < j ≤ l

1: init σ := empty list
2: init visited(T) := 0 for all T ∈ F
3: for all T ∈ F in the order of π do
4: if visited(T) = 0 then
5: for all T ′ ∈ F (including T) that are reachable from T in F do
6: set visited(T ′) := 1
7: append T to σ
8: return σ

Algorithm 1: Poset-Permutation-Shrink

σ1, . . . , σK computed by Algorithm 1 for π1, . . . , πK just loops through each eval-
uation sequence, stopping each time the first match is encountered. This strategy
can further be improved by utilizing the fact that a pattern T may be evalu-
ated redundantly more than once for a graph G, if T occurs in more than one
permutation before or as the first match. Lemma 2 below formulates necessary
conditions for avoiding redundant subgraph isomorphism tests.

Lemma 2. Let G be a graph, F = (F , E) be a directed graph representing a
poset (F ,�), and let σ1, . . . , σK be the evaluation sequences computed by Algo-
rithm1 for the permutations π1, . . . , πK of F . Let A be an algorithm that correctly
computes Sketchπ1,...,πK

(G) by evaluating subgraph isomorphism in the pattern
sequence Σ = 〈σ1[1], . . . , σK [1], σ1[2], . . . , σK [2], . . .〉. Then A remains correct if
for all i ∈ [K] and j ∈ [|σi|], it skips the evaluation of σi[j] � G whenever one
of the following conditions holds:

1. σi[j′] � G for some j′ ∈ [j − 1],
2. there exists a pattern T before σi[j] in Σ such that σi[j] � T and T � G,
3. there exists a pattern T before σi[j] in Σ such that T � σi[j] and T �� G.

Proof. If Condition 1 holds then the min-hash value for permutation πi has
already been determined. If σi[j] � T and T � G then σi[j] � G by the tran-
sitivity of subgraph isomorphism.For the same reason, if T � σi[j] and T �� G
then σi[j] �� G. Hence, if Condition 2 or 3 holds then A can infer the answer to
σi[j] � G without explicitly performing the subgraph isomorphism test.

Algorithm 2 computes the sketch for a graph G along the conditions formu-
lated in Lemma 2. It maintains a state for all T ∈ F defined as follows: 0 encodes
that T � G is unknown, 1 that T � G, and −1 that T �� G.

Theorem 1. Algorithm2 is correct, i.e., it returns Sketchπ1,...,πK
(G). Fur-

thermore, it is non-redundant, i.e., for all patterns T ∈ F , it evaluates at most
once whether or not T � G.

76 P. Welke et al.

Input: graph G, directed graph F = (F , E) representing a poset (F , �) and K
evaluation sequences σ1, . . . , σK computed by Algorithm 1 for the permutations
π1, . . . , πK of F

Output: Sketchπ1,...,πK (G)

1: init sketch := [⊥, . . . , ⊥]
2: init state(T) := 0 for all T ∈ F
3: for i = 1 to |F| do
4: for j = 1 to K do
5: if |σj | ≥ i ∧ sketch[j] = ⊥ then
6: if state[σj [i]] 	= 0 then
7: if state[σj [i]] = 1 then sketch[j] = σj [i]
8: else if σj [i] � G then
9: sketch[j] = σj [i]

10: for all T ′ ∈ F (including T) that can reach T in F do
11: set state(T ′) := 1
12: else
13: for all T ′ ∈ F (including T) that are reachable from T in F do
14: set state(T ′) := −1
15: return sketch

Algorithm 2: Min-Hash Sketch

Proof. The correctness is immediate from Lemmas 1 and 2. Regarding non-
redundancy, suppose T � G has already been evaluated for some pattern T ∈ F
with T = σi[j]. Then, as T � T , for any σi′ [j′] = T after σi[j] in Σ either
Condition 2 or 3 holds and hence T � G will never be evaluated again.

Once the sketches are computed for two graphs G1, G2, their Jaccard similar-
ity with respect to F can be approximated by the fraction of identical positions
in these sketches. (The similarity of G1 and G2 with Sketchπ1,...,πK

(G1) =
Sketchπ1,...,πK

(G2) = (⊥, . . . ,⊥) is defined by 0.)

4 Experimental Evaluation

We have conducted experiments on several real-world datasets. Since our method
is restricted to connected graphs, disconnected graphs have been omitted. To
obtain the feature sets of probabilistic tree patterns, we have applied the method
in [12] to a randomly sampled subset of 10% of the graphs in each dataset. We
have restricted the maximum size of a tree pattern to 10 vertices, as this bound
seemed optimal for the predictive/ranking performance for all chemical datasets
used in our experiments by noting that our method is not restricted to constant-
sized tree patterns. The same observation is reported in [11]. We have empirically
investigated (i) the speed measured by the number of subtree isomorphism tests
performed, (ii) the quality of our method for the retrieval of positive molecules
in the highly skewed NCI-HIV dataset, and (iii) the predictive performance of
support vector machines using a kernel function based on similarity measure.

Min-Hashing for Probabilistic Frequent Subtree Feature Spaces 77

Datasets: We have used the chemical graph datasets MUTAG, PTC, DD, NCI1,
and NCI109 obtained from http://www.di.ens.fr/∼shervashidze/, and NCI-HIV
from https://cactus.nci.nih.gov/. MUTAG is a dataset of 188 connected com-
pounds labeled according to their mutagenic effect on Salmonella typhimurium.
PTC contains 344 connected molecular graphs, labeled according to the carcino-
genicity in mice and rats. DD consists of 1, 187 protein structures, of which 1, 157
are connected. Labels differentiate between enzymes and non-enzymes. NCI1
and NCI109 contain 4, 110 resp. 4, 127 compounds of which 3, 530 resp. 3, 519
are connected. Both are balanced sets of chemical molecules labeled according
to their activity against non-small cell lung cancer (resp. ovarian cancer) cell
lines. NCI-HIV consists of 42, 687 compounds of which 39, 337 are connected.
The molecules are annotated with their activity against the human immunodefi-
ciency virus (HIV). In particular, they are labeled by “active” (A), “moderately
active” (M), or “inactive” (I). While the first five datasets have a balanced class
distribution, the class distribution of NCI-HIV is heavily skewed: Only 329 mole-
cules (i.e., less than 1%) are in class A, 906 in class M, and the remaining 38, 102
in class I.

Before going into the details, we first note that the similarities obtained by
our method approximate the exact Jaccard-similarities quite closely on average.
On a sample of roughly 1,500 graphs from the NCI-HIV dataset, the exact
Jaccard similarities based on the full set of frequent trees and the similarities
based on our min-hashing method showed a mean-squared-error of at most 0.005
for sketch size K = 32 and for an average Jaccard-similarity of 0.1396. For space
limitations, we omit a detailed discussion of these results.

4.1 Speed-Up

The main goal of our method is to reduce the number of subgraph isomorphism
tests during the computation of the min-hash sketch for a graph. We now show
the effectiveness of our method from this aspect. To this end, we have compared
our method given in Algorithm2 not only with the brute-force explicit embed-
ding, but also with the following naive embedding algorithm utilizing the partial
order on the feature set F : Given the poset (F ,�) as a directed graph F and
a graph G, we traverse F starting at the vertices with in-degree 0. If a pattern
T does not match G, we prune away all patterns reachable from T in F . In this
way, we obtain the complete feature set of G with respect to F and compute
the min-hash sketch accordingly. It is important to note that our algorithm may
perform more subgraph isomorphism tests than the naive algorithm; this is due
to the fact that, in contrast to the naive algorithm, we do not traverse F sys-
tematically. We leave a detailed discussion for the long version of this paper.
We have compared our algorithm also with the naive method above in terms of
the number of subgraph isomorphism tests performed. Table 1 shows the aver-
age number of subtree isomorphism tests per graph together with the pattern
set size, for different datasets and parameters. The last four columns are the
results of our algorithm for sketch size K = 32, 64, 128, 256, respectively. It can
be seen that our algorithm (MH32–MH256) performs dramatically less subtree

http://www.di.ens.fr/~shervashidze/
https://cactus.nci.nih.gov/

78 P. Welke et al.

isomorphism tests than the brute-force one requiring |F| and outperforms also
the naive algorithm in almost all cases. For example, on DD for k = 10 and
θ = 10%, the naive algorithm evaluates subtree isomorphism for 11,006 pat-
terns per graph on average, which is roughly one third of the total pattern set
(|F|), while our method evaluates subtree isomorphism 345 times on average for
sketch size 32, ranging up to 2190 times for sketch size 256. In general, the naive
algorithm performs 4 (resp. 1.7) times as many subtree isomorphism tests as our
method for K = 32 (resp. K = 256). This is a significant improvement in light
of the speed O

(
n2.5/ log n

)
of the fastest subtree isomorphism algorithm [9].

Table 1. Average number of subtree isomorphism test per graph for several datasets
with varying number k of sampled spanning trees and frequency thresholds θ. The
table reports |F| and the average number of subtree isomorphism tests evaluated by
the naive method and by Algorithm 2 for K = 32, 64, 128, 256 (last four columns).

Dataset k θ |F| naive MH32 MH64 MH128 MH256

MUTAG 5 10 % 452 206.38 49.93 68.24 96.12 127.42

MUTAG 10 10 % 543 244.11 42.77 63.77 90.57 125.39

MUTAG 15 10 % 562 254.86 45.39 65.96 94.87 133.91

MUTAG 20 10 % 573 260.18 55.34 76.32 105.15 135.11

PTC 5 10 % 1,430 321.04 70.07 102.62 121.12 156.12

PTC 5 1 % 9,619 734.79 236.31 327.27 475.35 611.92

PTC 10 10 % 1,566 354.20 79.63 108.59 109.44 147.91

PTC 20 10 % 1,712 376.65 17.60 25.81 31.49 39.62

DD 5 10 % 8,111 3,547.22 260.47 486.09 846.09 1,374.76

DD 10 10 % 18,137 6,670.93 317.82 568.23 1,072.58 1,936.42

DD 20 10 % 33,100 11,005.49 344.59 653.66 1,242.03 2,190.15

NCI1 5 10 % 1,819 431.19 89.12 137.75 185.22 221.21

NCI1 5 1 % 21,306 900.68 615.62 920.17 1,227.52 1,378.18

NCI1 20 10 % 2,441 557.70 115.07 183.54 220.14 255.58

NCI109 5 10 % 2,182 462.62 115.62 170.43 206.23 254.70

NCI109 5 1 % 19,099 886.06 532.38 727.15 1057.18 1,348.27

NCI109 20 10 % 2,907 598.36 110.42 175.76 226.07 284.92

4.2 Positive Instance Retrieval

In this section we evaluate the performance of our approach in terms of preci-
sion for retrieving similar molecules for a given active compound in the NCI-HIV
dataset. We use a simple setup to evaluate the quality of the min-hash based sim-
ilarity in comparison to the exact Jaccard similarity as well as to the similarities
obtained by the path min-hash kernel [11].

Min-Hashing for Probabilistic Frequent Subtree Feature Spaces 79

For each molecule of class A (i.e., “active”), we retrieve its i nearest neigh-
bors (excluding the molecule itself) from the dataset and take the fraction of the
neighbors of class A. This measure is known in the Information Retrieval commu-
nity as precision at i. As a baseline, a random subset of molecules from NCI-HIV
is expected to contain less than 1% of active molecules due to the highly skewed
class distribution. In contrast, all methods show a drastically higher precision
for the closest up to 100 neighbors on average.

Fig. 2. Average fraction of “active” molecules among the i nearest neighbors of positive
molecules in NCI-HIV dataset for path min-hash [11], exact Jaccard-similarity for
frequent probabilistic tree patterns, and for our method with K = 64.

Figure 2 shows the average precision at i (taken over all 329 active molecules)
for i ranging from 1 to 100. The number k of sampled spanning trees per graph,
as well as the frequency threshold θ has a strong influence on the quality of our
method. To obtain our results, we have sampled 5 (resp. 20) spanning trees for
each graph and used a random sample of 4, 000 graphs to obtain pattern sets
for thresholds θ = 10% and θ = 0.5% respectively. We plot the min-hash-based
precision for the four feature sets obtained in this way by our algorithm as a
function of i for sketch size K = 64. We have compared this to the precision
obtained by the exact Jaccard-similarity for θ = 10% and k = 5 as well as to the
precision obtained by path min-hash [11], both for the same sketch size K = 64.

The average precision obtained by using the exact Jaccard-similarities is
slightly better than that of path min-hash. While our method performs com-
parably to path min-hash for θ = 0.5% and k = 5, for θ = 0.5% and k = 20
spanning trees it outperforms all other methods.

We were able to compute the precisions for the exact Jaccard-similarity nei-
ther for θ = 1% nor for k = 20 sampled spanning trees. The Python imple-
mentation we used to calculate the similarity computations for exact Jaccard-
similarity was not able to deal with the high dimensionality of the feature space,
independently of the sparsity of the feature vectors. This indicates that the space
required to compute the Jaccard-similarity is crucial for high-dimensional feature
spaces.

80 P. Welke et al.

4.3 Predictive Performance

In this section we empirically analyze the predictive performance of our method.
The Jaccard-similarity induces a positive semi-definite kernel on sets, also known
as a special case of the Tanimoto kernel (see, e.g., [8]). Interestingly, its approx-
imation based on min-hashing is a kernel as well. Hence, we can use the tree
pattern sets, resp. the min-hash sketches together with these two kernels in a
support vector machine to learn a classifier. We have used 5-fold cross-validation
and report the average area under the ROC curve obtained for the datasets
MUTAG, PTC, DD, NCI1, and NCI109. We omit the results with NCI-HIV
because LibSVM was unable to process the Gram matrix for this dataset. We
note, however, that our algorithm required less than 10 (resp. 26) min for sketch
size K = 32 (resp. K = 256) for computing the Gram matrix for the full set of
NCI-HIV, while this time was 5.5 h for the exact Jaccard-similarity. The runtimes
of the preprocessing step (3 min) are not counted for both cases.

To this end, we have fixed the number of random spanning trees per graph
to k = 5 (resp. k = 20) and sampled 10% of the graphs in a dataset to obtain
the probabilistic frequent subtree patterns of up to 10 vertices. We report the
results for the frequency threshold of θ = 10% for our min-hash method (MH*)
with sketch sizes K varying between 32 and 256, as well as for the exact Jaccard
similarity (Jaccard) based on the same feature set. A lower frequency threshold
is practically unreasonable e.g. for MUTAG, as it contains only 188 compounds.
We have compared the results obtained with our previous results in [12] that
use a radial basis function kernel on the probabilistic subtree features (PSK)
and with the frequent subgraph kernel (FSG) [3] using the full set of frequent
connected subgraphs of up to 10 vertices with respect to the full datasets (i.e., not
only for a sample of 10%). We also report results of the Hash Kernel (HK) [10],
which uses count-min sketching on sampled induced subgraphs up to size 9 to
answer similarity queries.

Table 2. AUC values for our method (MH) for sketch sizes K = 32, 64, 128, 256, k = 5
spanning trees per graph, and frequency threshold θ = 10% to obtain the feature
set. “n/a” indicates that the authors of [10] did not provide results for the respective
datasets.

θ Method MUTAG PTC DD NCI1 NCI109

10 % MH32 87.84 58.97 77.58 77.36 77.48

10 % MH64 87.73 58.68 79.91 78.04 79.54

10 % MH128 87.59 56.97 82.07 79.94 79.94

10 % MH256 87.78 57.18 83.58 80.76 81.72

10 % Jaccard 89.04 57.72 85.38 82.28 82.41

10 % PSK 84.22 54.17 84.67 79.09 78.05

10 % FSG 87.34 56.76 82.20 81.66 81.55

HK 93.00 62.70 81.00 n/a n/a

Min-Hashing for Probabilistic Frequent Subtree Feature Spaces 81

Table 2 shows the results for frequency threshold θ = 10% and k = 5 sampled
spanning trees per graph. Jaccard and MH256 outperform PSK and even FSG
on all datasets. On all datasets, except for PTC, the quality increases with the
sketch size K. While HK is the best by a comfortable margin on MUTAG, the
contrary is true for MH256, PSK, and Jaccard on DD. Most notably, MH usually
outperforms PSK even for smaller sketch sizes and in many cases even the full
frequent subgraph kernel FSG, while still being computable on DD, which has
an enormous number of frequent patterns (compare Sect. 4.1). Note that the full
datasets were used to generate the feature sets for PSK and FSG.

We also conducted experiments for k = 20 sampled spanning trees. For iden-
tical frequency threshold, the AUC improved by 3% on MUTAG, while only
slightly changing for the other datasets.

5 Concluding Remarks

Algorithms 1 and 2 computing the min-hash sketches for a given tree pattern
set and for subtree isomorphism can easily be adapted to any finite pattern set
and pattern matching operator (e.g., homomorphism) if the pattern matching
operator induces a pre-order on the pattern set. While the number of evaluations
of the pattern matching operator can drastically be reduced in this way, the
complexity of the algorithm depends on that of the pattern matching operator.

The one-sided error of our probabilistic subtree isomorphism test seems to
have no significant effect on the experimental results. This raises the question
whether we can further relax the correctness of subtree isomorphism obtaining
an algorithm that runs in at most subquadratic time without any significant
negative effect on the predictive/retrieval performance.

References

1. Broder, A.Z.: On the resemblance and containment of documents. In: Proceedings
of the Compression and Complexity of Sequences, pp. 21–29. IEEE (1997)

2. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent
permutations. J. Comput. Syst. Sci. 60(3), 630–659 (2000)

3. Deshpande, M., Kuramochi, M., Wale, N., Karypis, G.: Frequent substructure-
based approaches for classifying chemical compounds. Trans. Knowl. Data Eng.
17(8), 1036–1050 (2005)

4. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th
edn. Springer, Heidelberg (2012). http://dblp.dagstuhl.de/rec/bib/books/daglib/
0030488

5. Geppert, H., Horváth, T., Gärtner, T., Wrobel, S., Bajorath, J.: Support-vector-
machine-based ranking significantly improves the effectiveness of similarity search-
ing using 2D fingerprints and multiple reference compounds. J. Chem. Inf. Model.
48(4), 742–746 (2008)

6. Horváth, T., Bringmann, B., Raedt, L.: Frequent hypergraph mining. In: Inoue,
K., Ohwada, H., Yamamoto, A. (eds.) ILP 2006. LNCS (LNAI), vol. 4455, pp.
244–259. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73847-3 26

http://dblp.dagstuhl.de/rec/bib/books/daglib/0030488
http://dblp.dagstuhl.de/rec/bib/books/daglib/0030488
http://dx.doi.org/10.1007/978-3-540-73847-3_26

82 P. Welke et al.

7. Horváth, T., Ramon, J.: Efficient frequent connected subgraph mining in graphs
of bounded tree-width. Theor. Comput. Sci. 411(31–33), 2784–2797 (2010)

8. Ralaivola, L., Swamidass, S.J., Saigo, H., Baldi, P.: Graph kernels for chemical
informatics. Neural Netw. 18(8), 1093–1110 (2005)

9. Shamir, R., Tsur, D.: Faster subtree isomorphism. J. Algorithms 33(2), 267–280
(1999). doi:10.1006/jagm.1999.1044

10. Shi, Q., Petterson, J., Dror, G., Langford, J., Smola, A.J., Vishwanathan, S.V.N.:
Hash kernels for structured data. J. Mach. Learn. Res. 10, 2615–2637 (2009)

11. Teixeira, C.H.C., Silva, A., Meira Jr., W.: Min-hash fingerprints for graph kernels:
a trade-off among accuracy, efficiency, and compression. J. Inf. Data Manag. 3(3),
227–242 (2012)

12. Welke, P., Horváth, T., Wrobel, S.: Probabilistic frequent subtree kernels. In:
Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2015.
LNCS (LNAI), vol. 9607, pp. 179–193. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-39315-5 12

http://dx.doi.org/10.1006/jagm.1999.1044
http://dx.doi.org/10.1007/978-3-319-39315-5_12
http://dx.doi.org/10.1007/978-3-319-39315-5_12

Structured Output Prediction

STIFE: A Framework for Feature-Based
Classification of Sequences of Temporal Intervals

Leon Bornemann1(B), Jason Lecerf2, and Panagiotis Papapetrou3

1 Freie Universität Berlin, Berlin, Germany
leon.bornemann13@gmail.com

2 Institut National des Sciences Appliquées Lyon, Lyon, France
3 Department of Computer and Systems Sciences,

Stockholm University, Stockholm, Sweden

Abstract. In this paper, we study the problem of classification of
sequences of temporal intervals. Our main contribution is the STIFE
framework for extracting relevant features from interval sequences to
build feature-based classifiers. STIFE uses a combination of basic sta-
tic metrics, shapelet discovery and selection, as well as distance-based
approaches. Additionally, we propose an improved way of computing the
state of the art IBSM distance measure between two interval sequences,
that reduces both runtime and memory needs from pseudo-polynomial
to fully polynomial, which greatly reduces the runtime of distance based
classification approaches. Our empirical evaluation not only shows that
STIFE provides a very fast classification time in all evaluated scenarios
but also reveals that a random forests using STIFE achieves similar or
better accuracy than the state of the art k-NN classifier.

1 Introduction

Sequences of temporal intervals are ubiquitous in a wide range of application
domains including sign language transcription [12], human activity monitoring,
music informatics [10], and healthcare [3]. Their main advantage over traditional
discrete event sequences is that they comprise events that are not necessarily
instantaneous, but may have a time duration. Hence, sequences of temporal
intervals can be encoded as a collection of labeled events accompanied by their
start and end time values. It becomes apparent that in such sequences events
may overlap with other events forming various types of temporal relations [12].

Examples. An example of such a sequence is depicted in Fig. 1, consisting of
seven event intervals that have various time durations. Note that each event may
occur several times in the sequence (e.g., events 0 and 1). Hence, a sequence
of temporal intervals can be seen as a series of event labels (y axis) that can
be active or inactive at a particular time point (x axis). Such sequences can
appear in various application areas. One example is sign language [12]. A sen-
tence expressed in signs consists of multiple, different gestures (e.g., head-shake,
eyebrow-raise) or speech tags (e.g., noun, wh-word), which may have a time

c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 85–100, 2016.
DOI: 10.1007/978-3-319-46307-0 6

86 L. Bornemann et al.

Fig. 1. Example of a sequence of temporal intervals: on the y axis we have five events,
labeled as {0, 1, 2, 3, 4}, while on the x axis we can see the time points measured in
seconds.

duration and can start at potentially different points in time. Another example
is healthcare [3]. A sequence may correspond to a series of different types of
treatments (events) for a particular patient. Treatments typically have a time
duration and a patient could potentially be exposed to multiple treatments con-
currently. An interesting and at the same challenging task involving sequences
of temporal intervals is that of classification. For example, the correct classifica-
tion of sign language videos can lead to the discovery of associations of certain
types of expressions (labels) with various temporal combinations of gestural or
grammatical events (features). Moreover, the extraction of certain combinations
of treatments (features) may assist in the proper identification of adverse drug
events (labels).

Previous research in the area of classification of sequences of temporal inter-
vals has been limited to k-NN classifiers. Towards this direction, two state-of-the-
art distance measures have been proposed, Artemis [5] and IBSM [6]. The first
one quantifies the similarity between two sequences by measuring the fraction of
temporal relations shared between them using a bipartite graph mapping, while
ignoring their individual time duration. The second measure maps sequences of
temporal intervals to vectors, where each time point is characterized by a binary
vector indicating, which events are active at that particular time point. While
the results obtained by both k-NN classifiers are promising, such classifiers still
suffer from the fact that they consider only global trends or features in the data
while ignoring local distinctive properties that may have a detrimental effect in
predictive performance. Additionally the classification time of any k-NN classifier
will always be at least linear to the size of the training set, while the computa-
tional cost of the chosen distance measure may severely impact the total runtime
(e.g., Artemis is a distance measure with cubic computational complexity).

In this paper, we approach the problem of classification of sequences of tem-
poral intervals by focusing on feature-based classifiers. Hence, the challenge is
to identify and extract useful features from the sequences that could be then be
used as input to traditional feature-based classifiers.

Contributions. Our main contributions can be summarized as follows: (1)
we propose STIFE (Sequences of Temporal Intervals Feature Extraction

STIFE: A Framework for Feature-Based Classification 87

Framework), a novel framework for feature extraction from sequences of tem-
poral intervals, and discuss its runtime complexity; (2) we present an improved
method for calculating the IBSM distance, hence substantially reducing both run-
time and memory requirements; (3) we provide an extensive empirical evaluation
using eight real datasets as well as synthetic data, in which we compare our novel
methods against the state-of-the-art.

2 Related Work

While arguably an understudied research area, sequences of temporal intervals
have attracted some attention within the areas of data mining and databases.
The first attempts at using sequences of temporal intervals mainly focused on
simplifying the data without losing too much information. For example Lin et
al. [8] show a way to mine maximal frequent intervals, but while doing so the
different dimensions of the intervals were discarded. Another common form of
simplification is to map sequences of temporal intervals to temporally ordered
events without considering the actual duration of the intervals [1].

A large variety of Apriori-based techniques [2,7,9] for finding temporal pat-
terns, episodes, and association rules on interval-based event sequences have been
proposed. In addition, more advanced candidate generation techniques and tree-
based structures have been employed by various methods [11–13], which apply
efficient pruning techniques, thus reducing the inherent exponential complex-
ity of the mining problem, while a non-ambiguous event-interval representation
is defined by [14] that considers start and end points of event sequences and
converts them to a sequential representation. The main weakness of performing
such mapping is the fact that the candidate generation process becomes more
cumbersome while introducing redundant patterns.

An approach for mining patterns of temporal intervals without perform-
ing any mapping to instantaneous events has been proposed by Papapetrou
et al. [12]. The authors of this paper applied unsupervised learning methods
to sequences of temporal intervals. In particular the Apriori algorithm for min-
ing frequent item-sets had been adapted to fit sequences of temporal intervals.
Subsequent to that, similarity of sequences of temporal intervals became more
popular and has been looked at quite a bit. Robust similarity measures allow the
use of sequences of temporal intervals as a data-basis for a lot of applications,
some of them being similarity search, clustering and classification through k-NN
classifier. It started with [5], where the authors propose two different similar-
ity measures. The first one maps sequences of temporal intervals to time series
data, the second one uses the temporal relations to construct and use a bipartite
graph. This approach has been improved through different data representation
and more robust similarity measures in [6].

With the transformation from sequences of temporal intervals to time series
data being explored, it is unsurprising that also finding the longest common sub-
pattern (LCSP) in sequences of temporal intervals has recently been considered.
Finding the longest common subsequence (LCS) is a classic problem for time

88 L. Bornemann et al.

series data and finding the LCSP can be seen as its equivalent counterpart for
sequences of temporal intervals. The problem of finding the LCSP was intro-
duced in [4], where the authors prove its NP-hardness, introduce approximation
algorithms as well as upper bounds.

3 Background

Let Σ define the alphabet of all possible events, i.e., the different types of inter-
vals. A temporal interval is defined as: I = (d, s, e) where d ∈ Σ is an event
label, and s, e ∈ N

+ are the start and end times of the event interval, with e ≥ s.
Given an event interval I = (d, s, e), we will sometimes denote d, s and e as
I.d, I.s and I.e, respectively.

A sequence of temporal intervals S is defined as an ordered multi-set of tem-
poral intervals: S = {I1, ..., Im}. Note that it is allowed for multiple event inter-
vals of the same label to overlap in a sequence. Further, a dataset of sequences
of temporal intervals is denoted as D.

The original IBSM method [6] represents a sequence S in a |Σ| × length(S)
matrix called event tables, where length(S) is the duration of the sequence (e.g.
the time value at which the last interval stops). We briefly repeat the most
important definitions next.

Definition 1. Active Interval. Given a sequence S, an Interval I ∈ S and a
point of time t, I is called active at point of time t if I.s ≤ t ≤ I.e.

Definition 2. Event Table. Given a sequence S, its Event Table ET is defined
as a |Σ| × length(S) matrix. The value of ET (d, t) is the number of Intervals
in S of dimension d that are active at point of time t. When we speak of the
length of an event table we refer to the length of its corresponding sequence:
length(ET) = length(S).

For the rest of this paper we assume that all sequences are of the same length,
since this makes the definition of the distance measure easier. Note that this is
not a big constraint, since sequences of smaller length can be interpolated to
sequences of bigger length, by using linear interpolation. This was also suggested
in the original definition of IBSM. The original distance between two event tables
of the same length (number of columns) is called the IBSM-Distance.

Definition 3. IBSM-Distance. Given two event tables A and B where
length(A) = length(B) = z the IBSM-Distance is defined as

IBSM(A,B) =

√√√√
|Σ|∑
d=1

z∑
t=1

(A(d, t) − B(d, t))2

To counteract the large size of the event tables the authors suggest sampling
methods which improve computation time but come at the cost of accuracy for
the 1-NN classifier.

STIFE: A Framework for Feature-Based Classification 89

4 Compressed IBSM

The key idea of compressing IBSM without losing information is to reduce the
size of the event table by only considering the points during which the value of
a row can change, which are the start and end times of an event interval I ∈ S.

Definition 4. Time Axis. Given a sequence S, let T = {t1, ..., tk} be the sorted
set of the start and end times of all intervals I ∈ S. We call T the time axis
of S.

Given a time axis T = {t1, t2, ..., tk} of sequence S we know according to
the definition that ti < ti+1 for i ∈ {1, ..., k − 1}. It is clear that for all t ∈
{1, .., length(S)} where ti < t < ti+1: column t of the event table is equal to
column ti. Note that k ≤ 2m always holds, since k can at most be 2m but may
be less since intervals in S can have the same start or end time. This allows us to
just store the columns for all t ∈ T and the other columns are implicitly given.
We call the optimized form compressed event tables.

Definition 5. Compressed Event Table (CET). Given a sequence S and
its time axis T = {t1, t2, ..., tk} we define CET as the compressed event table
of S as a |Σ| × |T | matrix where CET (d, ti) is the number of intervals in S of
dimension d that are active at point of time ti.

Table 1. Uncompressed
event table

1 2 3 4 5 6 7 8 9

D1 1 1 1 0 0 0 0 0 0

D2 0 0 0 0 1 1 1 1 0

Table 2. Compressed
event table

1 4 5 9

D1 1 0 0 0

D2 0 0 1 0

Tables 1 and 2 present the different representations for a simple, small exam-
ple. The distance between two compressed event tables can be calculated as
follows:

Definition 6. IBSM distance for Compressed Event Tables. Given two
compressed event tables A and B with time axis TA = {ta1, ..., tak} and
TB = {tb1, ..., tbp}, where tak = tbp (sequences have the same length) let
T = {t1, ..., tr} = TA ∪ TB be the merged time axis (still ordered). Then we
define the distance between the two compressed event tables as

Dist(A,B) =

√√√√
|Σ|∑
d=1

|T |∑
j=1

E(A(d, IA(tj)), B(d, IB(tj))) · δ(j) (1)

90 L. Bornemann et al.

where

IA(t) = max({i|ti ∈ TA ti ≤ t})
IB(t) = max({i|ti ∈ TB ti ≤ t})

E(a, b) = (a − b)2

δ(j) =

{
tj+1 − tj if j < |T |
1 otherwise

The distance calculation now looks more complicated but the approach is
straightforward. The squared error E is calculated for each cell of the table and
is multiplied by the amount of time that the value would have been repeated in
the old IBSM representation (δ). IA and IB are functions that map a point of
time of the merged time axis T to the correct column index of their respective
compressed event tables.

Given this definition, it is clear that given two sequences the event tables
can be computed in Θ(m · (log(m) + |Σ|)). We need Θ(m · log(m)) to create the
sorted time axis. Given two event tables the distance computation is linear to
the number of cells in each table, which is Θ(|Σ|·m). This is a clear improvement
compared to the old Θ(|Σ| · length(S)), which is, as already mentioned, pseudo-
polynomial.

5 Feature-Based Classification Through STIFE

While improving the performance of the distance measure is the key to improve
the classification time of k-NN classifiers it can not address their overall disad-
vantage in classification time, which is that it will always be at least linear to
the size of the training database. This can become problematic if the database
is a huge size and classification of new instances is time critical. The rather
broad application domain of real-time analysis of data-streams would be such
an example.

Many feature based classifiers offer a classification time that is better than
linear to the size of the database, such as decision trees or random forests. Thus
if one is able to extract informative features from sequences of temporal intervals
one could use these feature based classifiers to further improve classification time.
An additional motivation besides time efficiency is that k-NN classifiers also
have other drawbacks compared to feature based classifiers, such as sensitivity
to outliers or units of measurements. Feature based classifiers might also yield
better accuracy in some cases, depending of course on the usefulness of the
extracted features.

In order to extract useful features we propose a novel method which we call
the STIFE (Sequences of Temporal Intervals Feature Extraction) framework.
The rest of this section gives a detailed explanation of the framework.

STIFE: A Framework for Feature-Based Classification 91

5.1 STIFE Framework Components

Given a number of sequences as a training database, the main challenge of the
framework is to explore and find features, which help to classify the training
database. To do so we propose the STIFE Framework, which consists of three
parts: (I) Static metrics, (II) Shapelet extraction and selection, and (III) Distance
to class-cluster center.

Static metrics are simple, basic mappings that map one sequence to a set of
features independent of the other sequences in the database S. The other two
parts are dynamic, which means they consider the whole (training) database to
extract the features that are particularly helpful to classify the sequences of that
specific database. Subsects. 5.2, 5.3 and 5.4 describe the parts of the framework
in detail. Afterwards Subsect. 5.5 summarizes the framework’s time and memory
complexity for training and classification.

5.2 I - Static Metrics

Let S = {I1, ..., Im} be a sequence in which the intervals are sorted by start
time, and in case of a tie by end time. We define the following basic metrics that
will serve as static features:

– Duration: Im.e
– Earliest start: I1.s
– Majority dimension: The dimension d that occurs in most intervals I ∈ S.
– Interval count: |S|
– Dimension count: |{I.d|I ∈ s}|
– Density:

∑
I∈S I.e − I.s

– Normalized density: Density divided by the duration of the sequence.
– Max. overlapping intervals: Maximum number of overlapping intervals.
– Max. overlapping interval duration: The duration of the period with the high-

est number of overlapping intervals.
– Normalized max. overlapping interval duration: Max. overlapping interval

duration divided by the duration of the sequence.
– Pause time: The total duration with no active dimension interval.
– Normalized pause time: Pause time divided by the duration of the sequence.
– Active time: The reverse of pause time.
– Normalized active time: Active time divided by the duration of the sequence.

These static metrics provide a very basic method to obtain some features.
They are simple to understand, fast to compute and require little memory
compared to the original training database. After sorting the intervals of the
sequence all of these metrics can be calculated in either Θ(1) or Θ(m). Thus
the overall runtime complexity of extracting static features from the database
is Θ(n · m · log(m)). Only Θ(n) additional memory is needed, since the number
of static features is constant. The time to extract the features for an unseen
sequence Snew is Θ(m · log(m)).

92 L. Bornemann et al.

5.3 II - Shapelet Extraction and Selection

Shapelets are commonly defined as interesting or characteristic small subse-
quences of a larger sequence. The idea of shapelets has already been explored in
the context of time-series data and has also been used as a tool for classification
of time series data. Thus it is natural to also consider shapelets as candidates for
features of sequences of temporal intervals. In this paper we will restrict ourselves
to the shapelets of size 2 which are in the following referred to as 2-shapelets. To
be able to define a 2-shapelet of a sequence of temporal intervals we must first
define a few prerequisites such as temporal relationships between two intervals:

Definition 7. Time Equality Tolerance. We define ε ∈ N
+ as the maximum

tolerance which time values may differ from each other to still be considered as
equal from a view point of temporal relationships. Since the value of ε can be
quite domain specific we do not specify a fixed value here.

Given the time equality tolerance we can define temporal relationships between
temporal intervals:

Definition 8. Temporal Relationship. Let A and B be two intervals with the
following property: A.s−ε ≤ B.s (B does not start before A). Then we define the
set of possible temporal relationships as R= {meet, match, overlap, leftContains,
contains, rightContains, followedBy}. Their individual definition is visualized in
Fig. 2.

These temporal relations for event intervals have already been used in the
context of distance measures for sequences of temporal intervals on multiple
occasions [5,6]. Note that for an ordered pair of event intervals exactly one of
these relations applies, meaning the temporal relationship of two event intervals
is unambiguous. Based on this, a 2-shapelet can be defined.

Definition 9. 2-shapelet. Given a sequence S and two temporal intervals
A,B ∈ S we define a 2-shapelet as sh = (A.d,B.d, r) where r ∈ R is the

Fig. 2. The 7 temporal relations between an ordered pair of event intervals (A,B)

STIFE: A Framework for Feature-Based Classification 93

Algorithm 1. Extract and select all shapelet features
Require: Let S = {S1, ..., Sn} be the sequences, Σ be the set of dimensions and k the

number of features to keep.
SM ←new n × (7 · |Σ|2) matrix
for i = 1 to n do

for (A, B) ∈ {(A, B) | A, B ∈ S ∧ A.s − ε ≤ B.s} do
r ← temporal relationship of (A, B)
j ← compute column index of shapelet (A.d, B.d, r)
SM [i, j] ← SM [i, j] + 1

end for
end for
gains ←new (7 · |Σ|2) array
for j = 1 to 7 · |Σ|2 do

gains[col] ← information gain of column j of SM
end for
featureIndices ← new List
for j = 1 to 7 · |Σ|2 do

if gains[j] is in the top k of gains then
featureIndices.add(j)

end if
end for
delete all columns of SM except for featureIndices
return SM

temporal relationship between the two intervals. In other words a two-shapelet
(d1, d2, r) says, that there are two intervals in S of the respective dimensions d1
and d2 that have the temporal relationship r.

All 2-shapelets of a sequence S can be found by simply determining the
relationships of all pairs of intervals (A,B), where A,B ∈ S and B does not
occur before A. The idea for the resulting features is simply to treat the num-
ber of occurences of each 2-shapelet as a feature of the sequence. This will
result in exactly |Σ| · |Σ| · |R| = 7 · |Σ|2 possible features which is a swiftly
increasing function of the number of dimensions. Thus it is necessary to perform
feature selection afterwards which we do by information gain. Information gain
is a measure of how much information is stored in an attribute with regard to
the class label distribution and is commonly used when building decision trees.
The formula is explained in detail in [15]. Since information gain is defined on
categorical features and the number of shapelet occurrences in a sequence are
numeric attributes, it is necessary to discretize them. We use the information
gain of the best binary split (meaning the feature −→a is discretized to a vector of
boolean values according to −→a ≤ x for the x ∈ N that yields the highest infor-
mation gain). The algorithm for the shapelet feature extraction is roughly sum-
marized in Algorithm 1. To count all 2-shapelet occurences a n×7 · |Σ|2 matrix is
used (one row per sequence). For each sequence all correctly ordered pairs need
to be looked at, which amounts to the runtime Θ(m2) per sequence, thus the

94 L. Bornemann et al.

runtime for the shapelet occurence counting is Θ(n · m2). Memory requirement
is Θ(n · |Σ|2).

Calculating the information gain of a numeric attribute needs Θ(n · log(n)).
This is done for each feature, which means the total runtime of feature selection
via information gain is Θ(n · log(n) · |Σ|2). Memory remains at Θ(n · |Σ|2).
Thus, putting the two steps together we arrive at Θ(n · (m2 + log(n) · |Σ|2)) for
runtime and Θ(n · |Σ|2) memory to execute shapelet extraction and select the
best shapelets as features. Calculating the occurences of the selected 2-shapelets
for a new sequence takes Θ(m2) time in the worst case since once again all its
correctly ordered interval pairs need to be considered. Note that this is always
independent of |Σ|, since a constant number of shapelets are selected in the
feature selection step.

5.4 III - Distance to Class-Cluster Center

Our approach here is inspired by the k-medoids clustering algorithm. Since clus-
tering is an approach that is used in unsupervised learning and we are in the
supervised case (e.g. we have data with class labels) it is unnecessary to actually
execute the clustering algorithms. Instead we can just assume that we have the
clusters given by the class-labels of the training data and simply extract the
medoids of each class-cluster.

Given the medoids of each class-cluster, these will then be used as reference
points and the distance to them will result in features. As a distance measure
we choose the IBSM distance over ARTEMIS, since the compressed way of cal-
culating it as introduced by us has a better runtime than ARTEMIS and 1-NN
classifiers using IBSM yield better accuracy which leads us to believe that it is
the more suitable distance measure. Given the distance measure we formulate
the algorithm for distance based feature extraction in Algorithm2.

Since the class labels (and thus cluster labels) are given, the clustering takes
Θ(n) time. Afterwards we need to calculate the medoid of each cluster and
subsequently calculate the distance to those for all training sequences. Assuming
the number of classes is constant we know that the size of each cluster can be
Θ(n) but the number of clusters is constant. For each cluster all compressed event
tables (see Sect. 3) and their pairwise distances (Θ(n2)) need to be computed
and stored. Thus the runtime and memory complexity of finding the distances
to all class-cluster medoids is Θ(n2 · m · (|Σ| + log(m))) time and Θ(n2 · m · |Σ|)
memory. The online feature extraction requires Θ(m · (|Σ| + log(m))) time and
Θ(m · |Σ|) memory.

5.5 Runtime and Memory Complexity Overview

When analyzing runtime and memory complexity of the STIFE framework, the
two interesting measures are training time and classification time. Extracting
and selecting the features based on the training data adds to the classifier’s
training time. Since the framework can be used with any feature based classifier

STIFE: A Framework for Feature-Based Classification 95

Algorithm 2. Calculate all medoids and extract the distance to those as features
Require: Let S = {S1, ..., Sn} be the sequences, k the number of classes and D :

S × S �→ R
+ a distance measure for sequences

FM ←new n × k matrix
for c = 1 to k do

S(c) ← {Sj | Sj ∈ S ∧ class(Sj) = c}
DM ←new |S(k)| × |S(k)| matrix
for (Si, Sj) ∈ {(Si, Sj) | Si, Sj ∈ S(k) ∧ i ≤ j} do

DM [i, j] ← D(Si, Sj)
DM [j, i] ← DM [i, j]

end for
min ← ∞
minI ← −1
for i = 1 to |S(c)| do

dist ← row i of DM
if sum(dist) ≤ min then

min ← sum(dist); minI ← i
end if

end for
for i = 1 to n do

d ← D(S[i], S(c)[minI]); FM [i, c] ← d
end for

end for
return FM

we will use CTT (n) to describe the classifier training time and CTM(n) to
describe the classifier memory need for training.

For an unseen sequence, feature extraction is performed before the classifier
can be applied. We will use the term CCT (n) to describe the classifier classifica-
tion time and CCM(n) for the classifier classification memory need. The exact
training and classification runtime and memory complexities have already been
mentioned in the respective subsections. Table 3 presents upper bounds for the
whole framework.

Table 3. Upper bounds for memory and runtime complexity of STIFE.

Task Upper bound for complexity

Training Time O(m2 · n2 · |Σ|2 + CTT (n))

Training Memory O(m · n2 · |Σ|2 + CTM(n))

Classification Time O(m · log(m) + m · |Σ| + CCT (n))

Classification Memory O(m · |Σ| + CCM(n))

It can be observed that the biggest influencing factor besides the size of the
database is the number of dimensions |Σ|. How many dimensions actually exist

96 L. Bornemann et al.

in a data-set is once again dependent on the domain. If the number of dimensions
is very high, the memory requirement of the shapelet extraction and selection
step might not be practical (it is using an n×7 · |Σ|2 matrix). Since however the
matrix is usually sparse, memory need could be reduced by using appropriate
implementations.

6 Empirical Evaluation

Our evaluation consists of two parts. In Subsect. 6.1 we analyze classification
time and accuracy for real-life data-sets and in Subsect. 6.2 we conduct experi-
ments with synthetic data to analyze the individual performance of the proposed
methods for specific parameter settings. The STIFE framework, classifiers and
distance measures were implemented in java1. When evaluating STIFE, we used
the random forest implementation of Weka.

6.1 Real Data-Sets

For our empirical evaluation we used eight publicly available data sets. Some
basic information about each data set is given in Table 4. Note that many of these
data-sets come from different domains, which is very relevant when judging the
general applicability of classification algorithms based on the evaluation results.

Table 4. Basic properties of the data sets

Data-set Size test &
Training

of classes max # of intervals (m) |Σ| duration

ASL-BU 873 9 40 216 5901

ASL-BU-2 1839 7 93 254 14968

AUSLAN2 200 10 20 12 30

BLOCKS 210 8 12 8 123

CONTEXT 240 5 148 54 284

HEPATITIS 498 2 592 63 7555

PIONEER 160 3 89 93 80

SKATING 530 6 143 41 6829

The data-sets were evaluated for three classifiers using 10-fold cross valida-
tion. The three evaluated classifiers are 1-NN using the uncompressed (original)
IBSM distance [6], 1-NN using our novel method of calculating the IBSM dis-
tance, in the following called compressed IBSM, and a random forest using the
STIFE framework, in the following called STIFE-RF. For STIFE-RF the Time

1 Implementation available at: https://github.com/leonbornemann/stife.

https://github.com/leonbornemann/stife

STIFE: A Framework for Feature-Based Classification 97

Table 5. Mean accuracy for 1-NN using the IBSM distance measure and a random
forest using STIFE for feature extraction

Data-set STIFE + Random forest accuracy [%] IBSM accuracy [%]

ASL-BU 91.75 89.29

ASL-BU-2 87.49 76.92

AUSLAN2 47.00 37.50

BLOCKS 100 100

CONTEXT 99.58 96.25

HEPATITIS 82.13 77.52

PIONEER 98.12 95.00

SKATING 96.98 96.79

Table 6. Mean classification time for 1-NN using the IBSM and compressed IBSM
distance as well as a random forest using STIFE for feature extraction

Data-set STIFE + Random forest [ms] Compressed IBSM [ms] IBSM [ms]

ASL-BU 0.48 8.04 331.33

ASL-BU-2 0.47 22.46 1968.85

AUSLAN2 0.46 0.16 0.23

BLOCKS 0.15 0.07 0.15

CONTEXT 0.33 1.69 2.47

HEPATITIS 0.38 9.55 154.96

PIONEER 0.10 0.68 0.78

SKATING 0.18 4.36 97.31

Equality Tolerance (ε) as defined in Subsect. 5.3 was set to 5 and the amount
of shapelet features to keep was set to 75. Furthermore the number of trees was
set to 500 and the number of features per tree was set to

√
f , where f is the

number of extracted features.
The results for the accuracy are presented in Table 5. Since both IBSM and

compressed IBSM calculate the exact same distance value, both 1-NN classifiers
also return the same accuracy which is why we only report one of them. The
results for accuracy show that the random forest using STIFE is on par or better
than the state of the art 1-NN classifier. Especially on data-sets that seem to be
harder to classify (bold in the table) our novel method clearly beats the state of
the art IBSM classifier.

When evaluating accuracy the ASL-BU and ASL-BU-2 were treated in a
special manner, since they are multi-labeled data-sets, which means that each
sequence can have multiple class-labels. This presents a difficulty when evalu-
ating classifier accuracy. Since we introduce a novel method (Random forest +
STIFE) we want to show that it is at least on par with the state of the art 1-NN

98 L. Bornemann et al.

classifiers. Thus we chose a method of evaluation that is more lenient towards the
1-NN classifiers. For both classifiers we eliminated all sequences from the train-
ing database that have no class label. Subsequently we modified the training
database for the random forest: we copy each sequence once for each of its class-
labels and assign each copy exactly one class label. Example: If the sequence S
has class labels {1, 2, 3}, the training database for the random forest will contain
three instances of S with different class labels: {(S, 1), (S, 2), (S, 3)}. The train-
ing database of the 1-NN classifier remains unaltered (except for the removal of
unlabeled sequences). Subsequently we redefine accuracy in the following: If a
test sequence S has class labels A and a classifier predicts a set of class labels
P , we say that the sequence was correctly classified, if A∩P 	= ∅. Note that this
is a definition that favors the 1-NN classifiers, since they will output all class
labels of the nearest neighbour, while the random forest can only output exactly
one class label. The fact that the random forest using SITFE still achieves bet-
ter accuracy for both data-sets, although being at a disadvantage gives strong
evidence that it may be superior to the 1-NN classifiers.

Table 6 reports the classification time of each of the three classifiers. The
results show that compressed IBSM is always faster than IBSM. As expected
due to the nature of the algorithms, the speedup is most significant for data-sets
that contain high-duration sequences, namely ASL-BU, ASL-BU-2, HEPATITIS
and SKATING. The runtime of our second approach, the random forest, while
not always being faster is a lot more stable. It never exceeded a classification
time of 1 millisecond for all of the data-sets.

6.2 Synthetic Data

There are four different parameters that are relevant for the classification runtime
of the three studied classifiers. These are the size of the training database (n),
the number of intervals per sequence (m), the number of dimensions (|Σ|) and
the maximal duration of a sequence. In order to study their individual effects
on the classification runtime we randomly generated sequences with fixed values
for 3 of the four parameters while varying the fourth one. In order to study
the impact of a parameter in a scenario close to reality we set each of the fixed
parameters to the upper median of the eight data-sets described in 6.1. That
way the fixed parameters that are kept constant reflect a “normal” task. The
upper medians are: n = 498, m = 93, |Σ| = 63, duration = 5901. The results
are depicted in Fig. 3. The plotted curves confirm that both compressed IBSM
and STIFE-RF are independent of the sequence duration, as opposed to the
original IBSM distance. Furthermore, compressed IBSM is faster than IBSM
in all evaluated scenarios except for a very high number of intervals (given a
fixed duration). On top of that STIFE-RF scales much better with the size of
the training database (n) and the number of dimensions (|Σ|) than both 1-NN
classifier. Lastly the plots show clearly that STIFE-RF is extremely fast in all
scenarios: It’s classification time never exceeds 3 ms, which makes its plotted
curves look constant.

STIFE: A Framework for Feature-Based Classification 99

Fig. 3. Classifier performance for different parameters

7 Conclusions

Our main contribution in this paper is the formulation of the STIFE framework,
a novel method that maps a sequence to a constant number of features, which
can be used for classification. In addition, we presented an improved way of
calculating the IBSM distance measure that reduces runtime and memory from
the original pseudo-polynomial Θ(|Σ|× length(S)) to the fully polynomial Θ(m ·
(log(m) + |Σ|)). Our experimental evaluation on real and synthetic datasets
showed that the STIFE framework using the random forest classifier outperforms
the state-of-the-art 1-NN classifier using IBSM and compressed IBSM in terms
of both classification accuracy and classification runtime. Directions for future
work include the investigation of more elaborate feature selection techniques for
selecting shapelets. Another direction is to compare the simple clustering by class
of the distance based part of the framework to actual clustering methods and
see if actually executing the k-medoids clustering algorithm results in medoids
to which the distance is a more discriminative feature.

References

1. Giannotti, F., Nanni, M., Pedreschi, D.: Efficient mining of temporally annotated
sequences. In: Proceedings of the 6th SIAM Data Mining Conference, vol. 124, pp.
348–359 (2006)

2. Höppner, F., Klawonn, F.: Finding informative rules in interval sequences. In:
Hoffmann, F., Hand, D.J., Adams, N., Fisher, D., Guimaraes, G. (eds.) IDA
2001. LNCS, vol. 2189, pp. 125–134. Springer, Heidelberg (2001). doi:10.1007/
3-540-44816-0 13

http://dx.doi.org/10.1007/3-540-44816-0_13
http://dx.doi.org/10.1007/3-540-44816-0_13

100 L. Bornemann et al.

3. Kosara, R., Miksch, S.: Visualizing complex notions of time. Stud. Health Technol.
Inform. 84, 211–215 (2001)

4. Kostakis, O., Gionis, A.: Subsequence search in event-interval sequences. In: Pro-
ceedings of the 38th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pp. 851–854. ACM (2015)

5. Kostakis, O., Papapetrou, P., Hollmén, J.: ARTEMIS: assessing the similar-
ity of event-interval sequences. In: Gunopulos, D., Hofmann, T., Malerba, D.,
Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6912, pp. 229–244.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-23783-6 15

6. Kotsifakos, A., Papapetrou, P., Athitsos, V.: IBSM: interval-based sequence match-
ing. In: Proceedings of SIAM Conference on Data Mining, pp. 596–604 (2013)

7. Laxman, S., Sastry, P., Unnikrishnan, K.: Discovering frequent generalized episodes
when events persist for different durations. IEEE Trans. Knowl. Data Eng. 19(9),
1188–1201 (2007)

8. Lin, J.L.: Mining maximal frequent intervals. In: Proceedings of the ACM Sympo-
sium on Applied Computing, pp. 624–629 (2003)

9. Mooney, C., Roddick, J.F.: Mining relationships between interacting episodes. In:
Proceedings of the 4th SIAM International Conference on Data Mining (2004)

10. Pachet, F., Ramalho, G., Carrive, J.: Representing temporal musical objects and
reasoning in the MusES system. J. New Music Res. 25(3), 252–275 (1996)

11. Papapetrou, P., Kollios, G., Sclaroff, S., Gunopulos, D.: Discovering frequent
arrangements of temporal intervals. In: Proceedings of IEEE International Con-
ference on Data Mining, pp. 354–361 (2005)

12. Papapetrou, P., Kollios, G., Sclaroff, S., Gunopulos, D.: Mining frequent arrange-
ments of temporal intervals. Knowl. Inf. Syst. 21, 133–171 (2009)

13. Winarko, E., Roddick, J.F.: Armada - an algorithm for discovering richer relative
temporal association rules from interval-based data. Data Know. Eng. 63(1), 76–90
(2007)

14. Wu, S.Y., Chen, Y.L.: Mining nonambiguous temporal patterns for interval-based
events. IEEE Trans. Knowl. Data Eng. 19(6), 742–758 (2007)

15. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text catego-
rization. ICML 97, 412–420 (1997)

http://dx.doi.org/10.1007/978-3-642-23783-6_15

Approximating Numeric Role Fillers
via Predictive Clustering Trees for Knowledge

Base Enrichment in the Web of Data

Giuseppe Rizzo(B), Claudia d’Amato, Nicola Fanizzi, and Floriana Esposito

LACAM – Universitá degli Studi di Bari Aldo Moro,
Via Orabona 4, 70125 Bari, Italy

{giuseppe.rizzo1,claudia.damato,nicola.fanizzi,
floriana.esposito}@uniba.it

Abstract. In the context of the Web of Data, plenty of properties may
be used for linking resources to other resources but also to literals that
specify their attributes. However the scale and inherent nature of the
setting is also characterized by a large amount of missing and incor-
rect information. To tackle these problems, learning models and rules for
predicting unknown values of numeric features can be used for approxi-
mating the values and enriching the schema of a knowledge base yielding
an increase of the expressiveness, e.g. by eliciting SWRL rules. In this
work, we tackle the problem of predicting unknown values and deriv-
ing rules concerning numeric features expressed as datatype properties.
The task can be cast as a regression problem for which suitable solu-
tions have been devised, for instance, in the related context of RDBs. To
this purpose, we adapted learning predictive clustering trees for solving
multi-target regression problems in the context of knowledge bases of the
Web of Data. The approach has been experimentally evaluated showing
interesting results.

1 Introduction

The Web of Data represents a novel vision of the Semantic Web [1], where a
wealth of data and vocabularies offers properties used for linking resources to
other resources but also to literals that specify their attributes. However, the Web
of Data is also affected by a large amount of missing and the wrong informa-
tion owing to its scale and its distributed nature. In particular, numeric features
that are exploited to model various aspects of the real world (such as physical
measurements, ratings and scores, etc.), usually represented in RDF/OWL as
datatype properties. When their values for given resources are not explicitly pro-
vided in the datasets, they can hardly be derived even resorting to reasoning
services. Moreover, such values may be merely incorrect.

Data mining approaches to the specific data representation and semantics
(e.g. see [2]) can both fill these information gaps and detect the errors through
the induction of predictive models to extend the factual knowledge and to pro-
vide so called non standard reasoning services [3]. In addition, when methods
c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 101–117, 2016.
DOI: 10.1007/978-3-319-46307-0 7

102 G. Rizzo et al.

derived from symbolic approaches are employed, it is possible to directly target
the representation languages that are the theoretical formalism for the Web of
Data. As a result, such methods allow to obtain new axioms/rules that can be
potentially integrated in the knowledge bases increasing their expressiveness and
by avoiding the complexity problems deriving from the employment of Inductive
Logic Programming (ILP) methods [4].

In this context, it should be noted that an individual in a knowledge base
like DBPedia is characterized by lots of properties whose values can be approxi-
mated by inducing models like terminological regression trees [5]. However, learn-
ing separate models may be a bottleneck in terms of execution times because it
requires more training and prediction steps: the same set of instances has to be
considered more times for solving each learning problem. To overcome these lim-
itations, solutions based on a multi-target approach [6] to regression problems
can be investigated. Specifically, in this paper, we propose a solution devised
along the predictive clustering framework [7], which combines elements of the
clustering and predictive models. Specifically, we are interested in the so-called
predictive clustering trees [8], which generalizes the decision tree models to seek
for homogeneous clusters of observations for which a predictive model can be
associated. Such models estimate the values of the target properties at the same
time but no one targets Description Logics representation languages.

Therefore, the main contribution of this paper is a framework for the induc-
tion of a new extension of tree models which combines predictive clustering
trees and terminological regression trees that can be exploited to determine
inductively the value of datatype properties with numeric ranges. This is a fun-
damental additional service which can complement other non-standard ones and
can be the basis for solutions to more complex problems, e.g. ranking based on
multiple criteria and detection of wrong numeric fillers. An empirical evaluation
proves the effectiveness of such models.

The rest of the paper is organized as follows: the next section gives an
overview about the literature concerning the datatype properties value prediction
problem and the multi-target regression problem; Sect. 3 introduces the basics
concerning Description Logics representation languages; Sect. 4 illustrates the
algorithms for inducing predictive clustering trees for multi-target regression,
estimating the target values and deriving rules; in Sect. 5 the empirical evalua-
tion performed for assessing the feasibility of the approach is reported; finally,
Sect. 6 concludes by proposing further extensions.

2 Related Works

The problem of numeric prediction in the Web of Data have been solved by
inducing terminological regression trees [5], which derive from terminological
decision trees, proposed instance-classification models [9] in Description Logics
(DLs) [3], and also from First Order Logic Regression Trees, implemented in
the Tilde system [10] (for solving regression problems with clausal knowledge
bases). However, a terminological regression tree is a model adopted to solve

Approximating Numeric Role Fillers via Predictive Clustering Trees 103

a single-target regression problem in the context of the Web of Data: similarly
to terminological decision trees, each inner node contains a concept description
in Description Logics while the leaf nodes contain the approximated property
values. The induction of such trees exploits a refinement operator to generate
the concepts that will be installed as a node [5,9].

So far, to the best of our knowledge, terminological regression trees repre-
sented the only example of a model for solving the problem being compliant to
the Web of Data representation languages while the literature regarding solu-
tions for datasets in attribute-value or equivalent propositional representation
languages is rich (see [11] for a survey). The proposed solutions can be roughly
categorized as: (a) problem transformation methods (or local methods) that
transform the multi-output problem into independent single-target problems to
be solved using a simpler regression algorithm; (b) algorithm adaptation meth-
ods (or big-bang methods) that adapt a specific single-target method to directly
handle multi-output data sets. These methods are more challenging since they
usually aim at predicting the multiple targets and at modeling and interpreting
the dependencies among these targets.

Other methods proposed in the literature which inspired the approach pro-
posed in this paper are the predictive clustering methods [12], which have been
employed successfully in the context of bioinformatics for solving structured pre-
diction problems [13], hierarchical classification [8] and image retrieval [14].

3 Basics

The basic notions about Description Logics are shortly recalled to introduce the
notation adopted in the illustration of the learning problem and of the methods
(which are intended for the datasets and vocabularies in the Web of Data).

In Description Logics (DLs) [3], a domain is modeled through primitive con-
cepts (classes) and roles (relations), which can be used to build complex descrip-
tions regarding individuals (instances, objects), by using specific operators that
depend on the adopted language. A knowledge base is a couple K = (T ,A) where
the TBox T contains axioms concerning concepts and roles (typically subsump-
tion axioms such as C � D) and the ABox A contains assertions, i.e. axioms
regarding the individuals (C(a), resp. R(a, b)). The set of individuals occurring
in A is denoted by Ind(A). The specific representation language can be extended
in order to support concrete domains D such as boolean, string and, to our
purpose, numerical domains. They can be used to define role assertions in the
form R(a, v) where v ∈ D.

The semantics of concepts/roles/individuals is defined through interpreta-
tions. An interpretation is a couple I = (ΔI , ·I) where ΔI is the domain of the
interpretation and ·I is a mapping such that, for each individual a, aI ∈ ΔI , for
each concept C, CI ⊆ ΔI and for each role R, RI ⊆ ΔI × ΔI . The semantics
of complex descriptions descends from the interpretation of the primitive con-
cepts/roles and of the operators employed, depending on the adopted language.
I satisfies an axiom C � D (C is subsumed by D) when CI ⊆ DI and an

104 G. Rizzo et al.

assertion C(a) (resp. R(a, b)) when aI ∈ CI (resp. (aI , bI) ∈ RI). I is a model
for K iff it satisfies each axiom/assertion α in K, denoted with I |= α. When α
is satisfied w.r.t. these models, we write K |= α.

We will be interested in the instance-checking inference service: given an
individual a and a concept description C determine if K |= C(a). Due to the
Open World Assumption (OWA), answering to a class-membership query is more
difficult w.r.t. Inductive Logic Programming (ILP) settings where the closed-
world reasoning is the standard. Indeed, one may not be able to prove the truth
of either K |= C(a) or K |= ¬C(a), as there may be possible to find different
interpretations that satisfy either cases. For representing the rules, we adopt the
Semantic Web Rule Language (SWRL) [15], extending the set of OWL axioms
of a given ontology with Horn-like rule.

Definition 1 (Atoms and SWRL Rule). Given a KB K, An atom is
a unary or binary predicate of the form Pc(s), Pr(s1, s2), sameAs(s1, s2) or
differentFrom(s1, s2), where the predicate symbol Pc is a concept in K, Pr is
a role name in K, s, s1, s2 are terms. A term is either a variable (denoted by
x, y, z) or a constant (denoted by a, b, c) standing for an individual name or data
value.

A SWRL rule is an implication between an antecedent (body) and a conse-
quent (head) of the form: B1 ∧ B2 ∧ . . . Bn → H1 ∧ · · · ∧ Hm,
where B1 ∧ · · · ∧ Bn is the rule body and H1 ∧ · · · ∧ Hm is the rule head. Each
B1, . . . , Bn,H1, . . . Hm is an atom.

The rules can be generally called multi-relational rules since multiple binary
predicates Pr(s1, s2) with different role names of K could appear in a rule. The
intended meaning of a rule is: whenever the conditions in the antecedent hold, the
conditions in the consequent must also hold. A rule having more than one atom
in the head can be equivalently transformed, due to the safety condition into
multiple rules, each one having the same body and a single atom in the head. We
will consider, w.l.o.g., only SWRL rules (hereafter just “rules”) with one atom
in the head. Differently from the Horne clauses adopted in logic programming,
note that the OWA holds.

4 Predictive Clustering Trees for Multi-target Regression
in DL Knowledge Bases

4.1 The Problem

In a regression problem, the objective is to approximate analytic function on the
grounds of available training instances and predict approximately their correct
values.

An even more general problem aims at predicting the correct values w.r.t.
various properties: this is known as multi-target regression. Formally, in the con-
text of DL knowledge bases the problem can be defined as follows:

Approximating Numeric Role Fillers via Predictive Clustering Trees 105

Given:
– a knowledge base K = (T ,A);
– the target functional roles Ri, 1 ≤ i ≤ t, ranging on the domains Di,
– a training set Tr ⊆ Ind(A) for which the numeric fillers are known,

Tr = {a ∈ Ind(A) | Ri(a, vi) ∈ A, vi ∈ Di, 1 ≤ i ≤ t}
Build a regression model for {Ri}ti=1, i.e. a function h : Ind(A) → D1 ×· · ·×Dt

such that it minimizes a loss function over Tr.

A possible loss function may be based on the mean square error : L(h,Tr) =∑t
i=i MSE[v̂i, vi], with v̂ = h(a) and ∀ i ∈ {1, . . . , t} : K |= Ri(a, vi).

4.2 The PCT Model

In this section, we aim at tackling the regression problem introduced in the
Sect. 4.1 by solving a predictive clustering problem through a predictive cluster-
ing tree (PCT). A PCT can be derived from a hierarchical clustering model [16],
where each cluster is associated to a (multi-target) local model that minimizes a
loss function w.r.t. the training instances in the cluster. The nodes of the PCT
can be regarded as quadruples with: (1) a (conjunctive) DL test concept; (2)
a prototype vector v̂ where each v̂i represents the value (computed via a local
regression model) predicting the filler vi for Ri; (3) the references to the two
sub-trees T.left and T.right (possibly null) corresponding to the branches for
the test outcomes. Figure 1 reports a simple PCT that might be induced from
a knowledge base concerning movie domain. Each intermediate node contains
a concept description that is used as a test in the prediction phase. Each leaf
contains a prediction made using a local regression model, i.e. a prototype vector
with the target values. In particular, the first element of the vector stands for
the rating of a movie while the second value denotes the estimate of the taking
of same movie. Each edge corresponds to the result of an instance check-test
either on a concept or its complement.

Comedy

Comedy � ∃starring.Actor

v̂ = (8.45, 9810666) v̂ = (5.38, 4200000)

¬Comedy � ¬Horror

v̂ = (4.7, 4200000) v̂ = (8.6, 4930000)

Fig. 1. A simple regression tree for multiple predictions in the movie domain

4.3 The Methods

The procedure for inducing PCTs and for estimating the values of some target
functional roles ranging on concrete domains (datatype properties) are described
in the following.

106 G. Rizzo et al.

Training. Given the set of individuals Tr, a PCT is produced by means of a
recursive strategy, which is implemented by the procedure inducePCT shown in
Algorithm 1 (to be started with inducePCT(Tr;)). The algorithm resembles
the procedure adopted for inducing similar tree-based models for classification [9]
and regression [5] problems. The procedure for PCTs employs a generic stop
condition (base case of the recursion) that may be customized according to the
specific learning problem (function stop). In the sequel, we will consider two
stop conditions to our purpose: (1) the number of individuals routed to the node
is below some threshold ; (2) the maximum number of levels was exceeded, to
avoid complex models. If either condition is satisfied, the node will be a leaf and
a local regression model w.r.t. the prototype v̂ is determined according to values
of the instances sorted to that node (e.g. by averaging on each component or
more complex ones). If no individuals are routed to the child node, the regression
models are inherited from the parent node and used to compute the prototype.

The recursive case requires the generation of a new concept description that
will be used for the tests at that node. As subsumption is a quasi-ordering over
the space of possible concepts, a downward refinement operator ρ can be used
to map the current concept C onto a set S of specializations C ′, C ′ � C [17].
In this case the refinement operator derives from the one adopted in [9] and
it specializes a concept C in conjunctive normal form in various possible ways:
(1) adding an atomic concept (or its complement) as a conjunct; (2) adding
a general existential restriction (or its complement) as a conjunct; (3) adding
a general universal restriction (or its complement) as a conjunct; (4) replacing
a sub-description Ci in the scope of an existential restriction in C with one
of its refinements; (5) replacing a sub-description Ci in the scope of a univer-
sal restriction with one of its refinements; Note that the cases of (4) and (5)
are recursive. The proposed refinement operator performs a sort of random sam-
pling from the (very large) space of specializations and it is biased towards small
numbers of recursive calls. Then, the best test concept E∗ ∈ S is determined
by selectBestTestConcept according to a purity measure and finally it is
installed in the current node. Stemming from the original TRT models, the selec-
tion of the best concept is made according to a criterion of variance reduction:
VR(E,Tr) = Var(Tr) −

(
|Ps|
|Tr| Var(Ps) + |Ns|

|Tr| Var(Ns)
)

where the variance Var(·)
is computed as the RMSE on the standardized target values for the input set
of instances, while Ps and Ns are the set of instances with, resp., positive and

Algorithm 1. The routines for inducing a PCT

1 inducePCT(Tr : training set; C : concept): PCT

2 begin

3 T ← new PCT

4 v̂ ← localRegModel(D) {local prototype}
5

6 if stop(Tr) = true then

7 {base case − leaf node}
8 T ← 〈null, v̂, null, null〉;
9 else

10 {recursive case}

11 S ← ρ(C)

12 E∗ ← selectBestTestConcept(S, Tr)

13 〈Ps, Ns, Us〉 ← partition(Tr, E∗)

14 T.left ← inducePCT(Ps ∪ Us, E∗)

15 T.right ← inducePCT(Ns ∪ Us, ¬E∗)

16 T ← 〈E∗, v̂, T.left, T.right〉
17

18 return T

19 end

Approximating Numeric Role Fillers via Predictive Clustering Trees 107

Algorithm 2. Prediction of target values

1 predict(a : individual; T : PCT) : D1 × · · · × Dt

2 begin

3 N ← root(T);

4

5 while ¬leaf(N, T) do

6 〈C, v̂, T.left, T.right〉 ← inode(N)

7 if K |= C(a) then

8 N ← root(T.left)

9 else if K |= ¬C(a) then

10 N ← root(T.right)

11 else

12 return v̂ ; {internal node prototype}
13

14 〈 , v̂, null, null〉 ← inode(N) {leaf case}
15 return v̂ ;

16 end

negative outcomes w.r.t. the candidate test concept E. After the assessment of
the best concept E∗, the individuals are partitioned (by partition) to follow
the left or right branch according to the result of the instance-check w.r.t. E∗.
Note that a training example a is replicated in both children in case both E∗(a)
and ¬E∗(a) are satisfiable w.r.t. K. The set of such individuals is denoted by Us.
This strategy is applied recursively until the instances routed to a node satisfy
the stopping condition.

Prediction. After a PCT is produced, predictions can be made relying on
the resulting model. The related procedure, sketched in Algorithm2, works as
follows.

Given the individual for which the prediction is made and the tree T , the
procedure predict returns a target variable according to the leaf reached from
the root in a path down the tree. Specifically, the algorithm traverses recursively
the PCT performing an instance check w.r.t. the test concept contained in each
visited node: let a ∈ Ind(A) the input individual and C the test concept installed
in the current node, if K |= C(a) (resp. K |= ¬C(a)) then the left (resp. right)
branch is followed. If neither branch can be followed i.e. a definite classification
w.r.t. C cannot determined, the algorithm will return the output of the regression
model installed into the current node, the prototype v̂ . Alternatively, to simplify,
this case can be assimilated with the non-membership case, that is, equivalent
to considering K
|= C(a) for the right-branch test. The service routines root,
leaf and inode are employed, respectively to get the root node of a given PCT,
to test whether a node is a leaf for a tree, and to select the node content.

Deriving Rules from PCTs. Similarly to decision trees, where each node in
a path from the root to a leaf-node may be used to build a concept descrip-
tion, it is possible to derive a list of rules from a PCT. This trade-off between
comprehensibility and effectiveness of the regression models may be regarded as
an advantage over purely statistical models that are black boxes, not suitable
for human inspection (or even modification). The procedure deriveRules (see
Algorithm 3), explores all the paths leading to leaf-nodes which will constitute
the consequents; for each path, an antecedent is formed by tracking back the
paths from each leaf and collecting the intermediate test concepts. In this way,
each path yields a different rule with a conjunctive antecedent that represents a
local (partial) definition of the target functions.

108 G. Rizzo et al.

5 Experiments

In this section, we illustrate the experiments aiming at assessing the effectiveness
of the proposed approach both on some small publicly available ontologies and
knowledge bases extracted from the Linked Data Cloud.

5.1 Experimental Settings

Algorithms Setup. We compared the predictive models induced according to
the approach described in this paper to some other approaches: terminological
regression trees (TRTs), induced for solving the target regression problems sep-
arately and two further methods, the k-nearest neighbor regressor and the multi-
target linear regression model [11]. The algorithm for growing PCTs requires the
value of the depth of the trees as a parameter. In our experiments this value was
set to 10, 15, 20, and 30. In the case of the TRTs two parameters control the
growth of the trees are required, namely θ and m [5], resp. a threshold for the
purity criterion and the number of instances that are routed to a leaf node. We
used the default settings for them, i.e. θ = 0.5 and m = 5. For the propositional
models, the choice of a feature set characterizing the individuals of the knowledge
base is required to determine a similarity measure. In this case, the vectors were
built by using the membership w.r.t. atomic concepts in the knowledge base are
employed as feature set. Binary features were considered: the i-th value denotes
if for an individual a ∈ Ind(A), C(a) is satisfiable. For the k-NN regression, the
Euclidean distance is employed and the neighborhood size k was set to log |Tr|.

Preparing Learning Problems on Small Ontologies. The effectiveness of
PCTs was evaluated on the datatype properties prediction tasks1. We consid-
ered various datasets extracted from publicly available Web ontologies2: BCO,
a medical ontology; geopolitical that models information concerning coun-
tries in terms of latitude, longitude, population etc.; monetary, an ontology for
modeling domain related currencies and mutagenesis, an OWL porting of the

Algorithm 3. Deriving rules from PCTs

1 deriveRules (T : PCT, C : parent concept): rule

set

2 Let x be a variable name

3 N ← root(T)

4 if leaf(N) then

5 〈null, v̂, null, null〉 ← inode(N)

6 for i ← 1 to t do

7 r ← (C(x) → Ri(x, v̂i(x)))

8 L ← [r]

9 else

10 〈D, M, T.left, T.right〉 ← inode(N)

11 L.left ← deriveRules(T.left; C(x) ∧ D(x))

12 L.right ← deriveRules(T.right; C(x) ∧ ¬D(x))

13 L ← L.left + L.right

14 return L

1 The source code and the benchmarks are available at: http://github.com/
Giuseppe-Rizzo/DLPredictiveClustering.

2 The ontologies are available also at: http://www.inf.unibz.it/tones/index.php
(BCO, monetary), https://datahub.io/dataset (geopolitical), https://github.
com/AKSW/DL-Learner/tree/develop/examples/mutagenesis (mutagenesis).

http://github.com/Giuseppe-Rizzo/DLPredictiveClustering
http://github.com/Giuseppe-Rizzo/DLPredictiveClustering
http://www.inf.unibz.it/tones/index.php
https://datahub.io/dataset
https://github.com/AKSW/DL-Learner/tree/develop/examples/mutagenesis
https://github.com/AKSW/DL-Learner/tree/develop/examples/mutagenesis

Approximating Numeric Role Fillers via Predictive Clustering Trees 109

Table 1. Small ontologies employed in the experiments

Ontology DL language Concepts Roles Data properties Individuals

BCO ALCIF(D) 196 22 3 112

geopolitical SHIN (D) 12 6 89 312

monetary ALCIF(D) 323 247 74 2466

mutagenesis AL(D) 86 5 6 14145

well-known dataset employed for testing ILP algorithms. The details concerning
the datasets, in terms of the numbers of classes, object and datatype properties,
and individuals are reported in Table 1. The learning task for each dataset was
the prediction of the (approximate) fillers for numeric datatype properties. For
these datasets, we ignored the datatype properties that could contribute few
examples. As a result, for each dataset, we tackled problems that consider a cer-
tain number of properties which span from 2 to 4 properties. Table 2 illustrates
the properties, their range and the number of individuals employed as exam-
ples We used the 0.632 bootstrap procedure as the design of the experiments
to determine an estimate of the Root Mean Squared Error (RMSE) that is the
root squared error computed on the test set and averaged w.r.t. the number of
datatype properties.

Preparing Learning Problems on Linked Data Datasets. We considered
datasets extracted from DBPedia by means of a crawler: the individuals and
the considered target properties are retrieved by properly formulating SPARQL

Table 2. Target properties ranges, number of individuals employed in the learning
problem

Ontology Properties Range |Tr|
BCO hasDuration [1.0, 3.75] 63

hasValue [0.66, 1.2]

geopolitical hasMaxLatitude [12.2, 107.3] 222

hasMinLatitude [−22.34, 55.43]

hasMaxLongitude [−87.83, 107.7]

hasMinLongitude [−58.44, 176.13]

monetary ageOfMajorityFemale [0, 21] 472

ageOfMajorityMale [0, 21]

mutagenesis act [−3.92, 2.62] 4794

charge [−0.398, 0.8608]

logp [01.56, 07.13]

lumo [−2.87, −0.937]

110 G. Rizzo et al.

Table 3. Datasets extracted from DBPedia

Datasets Expr. Axioms #Classes #Properties #Ind.

Fragm. #1 ALCO 17222 990 255 12053

Fragm. #2 ALCO 20456 425 255 14400

Fragm. #3 ALCO 9070 370 106 4499

Table 4. Ranges, number of individuals employed in the learning problem on DBPedia

Datasets Properties Range |Tr|
Fragm. #1 elevation [−654.14, 19.00] 10000

populationTotal [0.0, 2255]

Fragm. #2 areaTotal [0, 16980.1] 10000

areaUrban [0.0, 6740.74]

areaMetro [0, 652874]

Fragm. #3 height [0, 251.6] 2256

weight [−63.12, 304.25]

queries to the DBPedia endpoint. The resources resulting from the previous
step were employed as seeds in order to start the crawling process: the RDF
graph was traversed and the crawler retrieved all the immediate neighbors and
the related schema information (direct classes and their super-classes). All the
extracted knowledge have been used for building ontologies whose characteristics
are summarized in Table 3. In the experiments various learning problems were
considered. In the case of Fragm. #1, the experiment aim at predicting the
values for individuals that are instance of Geographical Information. The exper-
iments with Fragm. #2 aim at predicting areas for instances of the concept
Populated Place. Finally, the third dataset was considered to determine the val-
ues for individuals that are instance of the class Person. Table 4 illustrates the
properties, their range and the number of individuals employed as training/test
examples We used the 10-fold cross validation procedure as the design of the
experiments to determine, unlike the experiments on small ontologies, an esti-
mate of the Relative Root Mean Squared Error (RRMSE) averaged w.r.t. the
number of datatype properties. This allows to evaluate the performance of the
induced models without using normalization factors to consider the different
ranges of the properties.

5.2 Outcomes and Discussion

Discussion About Small Ontologies. A first consideration regards the target
properties: we note that the property values spanned wide ranges (see Table 2).
Rare cases in which the filler is the maximum value observed in the knowledge
base can be regarded as exceptions (a sort of outliers), especially for the datasets

Approximating Numeric Role Fillers via Predictive Clustering Trees 111

Table 5. Outcomes: RMSE averaged over the number of the replications (and standard
deviations)

Ontology PCT TRT k-NN LR

BCO 0.0277 ± 0.01 0.0356 ± 0.01 0.0472 ± 0.01 0.0554 ± 0.01

geopolitical 0.0284 ± 0.01 0.03561 ± 0.03 0.057 ± 0.03 0.06 ± 0.02

monetary 7.52 ± 0.15 8.46 ± 0.07 7.53 ± 0.17 7.78 ± 0.34

mutagenesis 0.0445 ± 0.07 0.0637 ± 0.03 0.0547 ± 0.02 0.0647 ± 0.05

Table 6. Comparison in terms of RMSE between PCTs and other models for each
property.

Ontology PCT TRT k-NN LR

BCO hasDuration 0.0291 0.0302 0.0450 0.0308

hasValue 0.0263 0.0400 0.0494 0.0800

Geopolitical hasMaxLatitude 0.0341 0.054 0.054 0.06

hasMinLatitude 0.0425 0.04312 0.053 0.061

hasMaxLongitude 0.0256 0.03251 0.052 0.063

hasMinLongitude 0.0351 0.01421 0.057 0.06

monetary ageOfMajorityFemale 8.64 8.56 8.36 8.56

ageOfMajorityMale 6.36 8.36 6.64 7

mutagenesis act 0.0445 0.07 0.0645 0.0647

charge 0.0446 0.065 0.053 0.0652

logp 0.3445 0.07 0.045 0.0654

lumo 0.5 0.071 0.053 0.0642

with limited numbers of examples for the target properties. Table 5 reports the
results of the experiments. In the experiments, we noticed that the RMSE for
PCTs did not change significantly when the value of the parameter for controlling
the growth was increased. Hence, in Table 5 reports results observed with the
value set to 10.

As regards the comparison between PCTs and the other models, we noted
that the former generally performed better than the latter, in terms of RMSE,
particularly for the tests involving larger training sets like the case of mone-
tary. Conversely, in the case of datasets with smaller training sets like BCO and
geopolitical, the performance is rather similar to the one observed using the
model based on single TRTs. Throughout the empirical evaluation, PCTs outper-
formed k-NN and LR. In the case of k-NN, the poor performance might be due
number of dimensions of the representation which may have affected the Euclid-
ean distance that was employed. Conversely, the better performance of k-NN
w.r.t. the LRs (exploiting the same feature set) was likely due to the locality
principle characterizing instance-based methods: the choice of the neighborhood

112 G. Rizzo et al.

tended to exclude spurious individuals that were considered by the LRs. As
a result, LR models were more error-prone than those induced by the k-NN.
A Friedman statistical test with significance level of α = .05 for each dataset
showed a statistical significant difference with an average p-value of p = 0.0432
In the case of BCO and geopolitical, we noticed that the refinement oper-
ator was crucial because it tended to generate candidates that differed from
those obtained for the various single-target regression models. Finally, in the
case of Monetary and mutagenesis datasets, we obtained again larger val-
ues through PCTs w.r.t. TRTs. Similarly to the experiments with BCO, this
improvement is due to concept description installed as intermediate node of a
PCT that led to minimize the error. On the other hand, the concepts employed
in the single-target regression model w.r.t. a certain property led to predictive
models whose intermediate concepts were different w.r.t. the ones installed in
PCTs. In addition, we observed that the values for the individuals w.r.t. the
properties considered in the experiments are quite similar. This suggests that
no outliers were observed. In this way, the RMSE obtained through PCTs was
low. For all datasets employed in the experiments, we noticed that the perfor-
mance was stable in terms of standard deviation. This is due to the overlaps
between training sets in many repeated runs of the bootstrap procedure. The
effectiveness of the proposed approach is also confirmed by the results reported
in Table 6. The table illustrates the RMSE separately for each target property:
PCTs outperformed the other models employed in the experiments also when
the results are not averaged w.r.t. the properties.

As regards the efficiency of the proposed solution, the time required for induc-
ing and for exploiting PCTs (see Table 7) for solving the learning problem on a
personal workstation was, in general, less than the total amount of time required
to induce and to predict all the TRTs. On the other hand, the time for running k-
NN and LR spans from few seconds to less than 10 min. Besides, Table 7 shows
that the elapsed times tends to increase almost linearly w.r.t. the number of
available individuals. Instead, the execution times of TRTs show a similar trend
both w.r.t. the training set size and the number of target properties. For instance,
if one considers Geopolitical,the training and test phases w.r.t. TRTs lasts
almost six times more than the one required by PCTs. While these differences
were rare in the experiments with BCO, which was a small dataset, the gap
of efficiency was broader in the experiments with Monetary, and mutagen-
esis. The different performance was likely due to: the maximum depth of the
PCTs, the number of instances, and the reasoning service adopted for splitting
the instances that are sorted to the various recursive calls. Indeed, the time
required for training the models increases more than proportionally to the num-
ber of levels (see Table 8). This was affected by the lengths of complex concept
description installed in some nodes: the instance check test performed on each
training individual w.r.t. more complex concepts requires more time than tests
performed on simpler ones. As a result, the instance check test represented a
bottleneck for the scalability of the algorithm. Obviously k-NN and LR required
smaller amount of time because no specific reasoning services were necessary
during the training phase.

Approximating Numeric Role Fillers via Predictive Clustering Trees 113

Table 7. Elapsed times (secs) of the models in the first experiment. For TRTs, the
times for each induced tree are also reported

Ontology PCT TRT k-NN LR

BCO hasDuration 70.36

hasValue 73.14

Total 75.4 143.6 40.5 30.35

Geopolitical hasMaxLatitude 183

hasMinLatitude 146

hasMaxLongitude 93

hasMinLongitude 95

Total 132 510 72 45

monetary ageOfMajorityFemale 325

ageOfMajorityMale 430

Total 353 755 123 76

mutagenesis act 235

charge 126

logp 256

lumo 375

Total 540 978 231 124

Table 8. Training time for inducing the PCTs w.r.t. the maximal depth of the trees

Ontology Depth

10 15 20 30

BCO 75.3 89 135 176

Geopolitical 132 265 272 350

monetary 353 460 729 824

mutagenesis 540 752 1113 1650

A final remark to be discussed regards the quality of the models induced
through the PCT learning algorithms. In the training phase, we noticed several
cases in which most of the instances tended to be sorted down the right branch
with fewer individuals routed to left one, which indicates that the selected test
concepts where poor at capturing really divisive features on the data. This can be
regarded as a sort of small disjunct problem occurring in classification problems.
This issue was likely due the complexity of the concepts installed as a test. A
more complex concept can be regarded as a constraint that can be hard to be sat-
isfied by the individuals occurring in a knowledge base. For example, if a refine-
ment is obtained by applying several existential restrictions, the new concept
can be very specific so that no known individual can be assigned as its instance.

114 G. Rizzo et al.

This means that the algorithm for growing PCTs routed the instances to the
right branch.

Discussion About Linked Data Datasets. Also in these new experiments,
we noted that the property values spanned wide ranges (see Table 4). For some
properties, there were only few individuals with either the maximum or the
minimum value for the target properties. Such individuals can be considered
as spurious, likely due to the errors introduced in the process of knowledge
extraction required to build DBPedia.

The evaluation confirmed the same results obtained on the small ontologies.
Firstly, we noted a lower RRMSE of PCTs than the one obtained with other
models, particularly for Fragm. #1 and Fragm. #2. Again, this difference
was statistical significant according to a Friedman test with significance level
of α = .05 (average p-value of p = 0.0341). This may be likely due to the
largest number of concepts available in the knowledge base that produced more
discernible tests than the ones obtained in the experiments with Fragm. #3.
The comparison between the outcomes obtained through PCTs and TRTs sug-
gests that the quality of the models proposed in this paper have some benefits
from the employment of a multi-target selection criterion also in the case of
Web of Data datasets. In particular, the standardization required for computing
the heuristic played a crucial role: it mitigated the presence of aforementioned
individuals having abnormal values that were routed to the node, which may
represent one of the main cause for large errors. The standardization adjusted
the error computation favoring the selection of concept descriptions producing
even splits of the individuals sorted to the node. As in the previous experiments,
PCTs outperformed k-NN and LR. In the case of k-NN, the largest number of
concepts adopted as features have affected the Euclidean distance adopted in
the experiments. In addition, the k-NN ruled out the spurious individuals. This
explains the improved performance w.r.t. the LR model. (Table 9)

Table 9. RRMSE averaged on the number of runs

Datasets PCT TRT k-NN LR

Fragm. #1 0.42 ± 0.05 0.63 ± 0.05 0.65 ± 0.02 0.73 ± 0.02

Fragm. #2 0.25 ± 0.001 0.43 ± 0.02 0.53 ± 0.00 0.43 ± 0.02

Fragm. #3 0.24 ± 0.05 0.36 ± 0.2 0.67 ± 0.10 0.73 ± 0.05

The time required for inducing and exploiting PCTs (see Table 10) was quite
limited w.r.t. the number of individuals adopted as datasets. Also in this new
evaluation, the time for training/test phase through PCTs was less than the
total amount of time required to induce and to predict the fillers through all
the TRTs. Particularly, the time required for solving each learning problem by
inducing each TRT was approximately equal to the time needed for growing and

Approximating Numeric Role Fillers via Predictive Clustering Trees 115

exploiting a PCT. k-NN and LR were more efficient than the other models with
execution times spanning from few seconds to less than 5 min. This result strictly
depends on the different representation languages targeted by the algorithms:
while PCTs and TRTs induction methods tries to learn models directly from
DL knowledge bases exploiting the TBox as a background knowledge and the
reasoning services instead of using propositionalization methods.

Qualitative Evaluation of the Rules. Due to the importance of DBPedia
for the Web of Data, we discuss the quality of the rules derived from PCTs. In
general, the fragment extracted with the crawling process DBPedia contains
various concept names but not concept definitions. This affected the refinement
process occurring during the learning of PCTs. The refinement operator adopted
for generating the candidate concepts to use as tests tended to prefer special-
izations that introduces only concept names and its complement rather than
existential and universal restrictions. In this case, the sparseness of the role
assertions contained in the knowledge base did not allow adding useful existen-
tial/universal restrictions in order to split well the instances. Some interesting
rules derived from the induction of PCTs are reported below. As an example,
we reported some rules derived from the experiments with Fragm #3:

Person(x) ∧ Athlete(x) ∧ AmericanFootballPlayer(x) → height(x, 195.4)
Person(x) ∧ Athlete(x) ∧ AmericanFootballPlayer(x) → weight(x, 113.5)
Person(x)∧Athlete(x)∧¬(AmericanFootballPlayer)(x)∧SoccerPlayer(x) → height(x, 187)
Person(x)∧Athlete(x)∧¬(AmericanFootballPlayer)(x)∧SoccerPlayer(x) → weight(x, 87.5)

The rules reported above can be used to determine that American football players
are (usually) taller than soccer players while American football players’ weight
is larger than soccer players’one and,in general, there is a correlation between
the kind of athlete and some physical features such as height and weight. Similar
rules were obtained also in the experiments with Fragm #1. In particular, in the

Table 10. Comparison in terms of elapsed times (secs) between PCTs and other models

Datasets PCT TRT k-NN LR

Fragm #1 elevation 2454.3

populationTotal 2353.0

Total 2432 4807.3 547.6 234.5

Fragm #2 areaTotal 2256.0

areaUrban 2345.0

areaMetro 2345.2

Total 2456 6946.2 546.2 235.7

Fragm #3 height 743.5

weight 743.4

Total 743.3 1486.9 372.3 123.5

116 G. Rizzo et al.

experiments with Fragm #1 the rules showed negative correlations between the
values of the properties elevation and populationTotal likely due to the fact that
places with a high elevation (e.g. mountain villages) may be less populated than
other places with a low elevation. In the perspective of an ontology engineer, the
rules may be potentially evaluated and along the directions of understandability
and body coverage. The first one can be evaluated in terms of length of the rules,
i.e. the number of atoms that composes the rule (including also the head of the
rule). The second one is the number of individuals in a knowledge base satisfying
the antecedent of a SWRL rules. Such metrics can be integrated in an ontology
repairing tool to provide a mechanism for ranking the induced rules.

6 Conclusion and Further Extensions

In this work, we tackled the problem of predicting numeric values for datatype
properties through a solution based on the predictive clustering approach that
descends from terminological regression trees [5]. Unlike other multi-relational
data mining methods our approach target directly the representation languages
that back the Web of Data. The outcomes of the experiments are promising: the
models are effective and efficient and, in addition, useful rules can be derived
from them. The method can be extended along various directions. Firstly, it
may integrate to further refinement operators such as those available in other
concept learning tools [18]. Then, we can extend the experiments by considering
further datasets with a large number of numeric properties. A further extension
concerns the employment of further criteria for selecting the best concept and
the application of pruning strategies. Finally, we plan to consider linear functions
[19] in place of constant vectors at leaf nodes, leading to model trees.

Acknowledgments. This work fulfills the objectives of the PON 02005633489339
project “Puglia@Service - Internet-based Service Engineering enabling Smart Ter-
ritory structural development” funded by the Italian Ministry of University and
Research (MIUR).

References

1. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space.
Synthesis Lectures on the Semantic Web. Morgan & Claypool, Palo Alto (2011)

2. Rettinger, A., Lösch, U., Tresp, V., d’Amato, C., Fanizzi, N.: Mining the semantic
web. Data Min. Knowl. Discov. 24, 613–662 (2012)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.
(eds.): The Description Logic Handbook, 2nd edn. Cambridge University Press,
Cambridge (2007)

4. Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics.
In: Cussens, J., Frisch, A. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59.
Springer, Heidelberg (2000). doi:10.1007/3-540-44960-4 3

5. Fanizzi, N., d’Amato, C., Esposito, F., Minervini, P.: Numeric prediction on OWL
knowledge bases through terminological regression trees. Int. J. Semant. Comput.
6, 429–446 (2012)

http://dx.doi.org/10.1007/3-540-44960-4_3

Approximating Numeric Role Fillers via Predictive Clustering Trees 117

6. Breiman, L., Friedman, J.: Predicting multivariate responses in multiple linear
regression. J. Roy. Stat. Soc. 59, 3–54 (1997)

7. Ženko, B., Džeroski, S., Struyf, J.: Learning predictive clustering rules. In: Bonchi,
F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 234–250. Springer,
Heidelberg (2006). doi:10.1007/11733492 14

8. Struyf, J., Džeroski, S., Blockeel, H., Clare, A.: Hierarchical multi-classification
with predictive clustering trees in functional genomics. In: Bento, C., Cardoso,
A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI), vol. 3808, pp. 272–283. Springer,
Heidelberg (2005). doi:10.1007/11595014 27

9. Fanizzi, N., d’Amato, C., Esposito, F.: Induction of concepts in web ontologies
through terminological decision trees. In: Balcázar, J.L., Bonchi, F., Gionis, A.,
Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6321, pp. 442–457.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15880-3 34

10. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees.
Artif. Intell. 101, 285–297 (1998)

11. Borchani, H., Varando, G., Bielza, C., Larrañaga, P.: A survey on multi-output
regression. WIREs: Data Min. Knowl. Discov. 5, 216–233 (2015)

12. Aho, T., Ženko, B., Džeroski, S., Elomaa, T.: Multi-target regression with rule
ensembles. J. Mach. Learn. Res. 13, 2367–2407 (2012)

13. Kocev, D., Vens, C., Struyf, J., Dzeroski, S.: Tree ensembles for predicting struc-
tured outputs. Pattern Recogn. 46, 817–833 (2013)

14. Dimitrovski, I., Kocev, D., Loskovska, S., Džeroski, S.: Fast and scalable image
retrieval using predictive clustering trees. In: Fürnkranz, J., Hüllermeier, E.,
Higuchi, T. (eds.) DS 2013. LNCS (LNAI), vol. 8140, pp. 33–48. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40897-7 3

15. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: a semantic web rule language combining OWL and RuleML. Technical
report (2004). https://www.w3.org/Submission/SWRL/

16. Blockeel, H., DeRaedt, L., Ramon, J.: Top-down induction of clustering trees. In:
Proceedings of ICML1998, pp. 55–63. Morgan Kaufmann (1998)

17. Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the
ALC description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.)
ILP 2007. LNCS (LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78469-2 17

18. Lehmann, J.: DL-learner: learning concepts in description logics. J. Mach. Learn.
Res. 10, 2639–2642 (2009)

19. Appice, A., Džeroski, S.: Stepwise induction of multi-target model trees. In: Kok,
J.N., Koronacki, J., Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.)
ECML 2007. LNCS (LNAI), vol. 4701, pp. 502–509. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-74958-5 46

http://dx.doi.org/10.1007/11733492_14
http://dx.doi.org/10.1007/11595014_27
http://dx.doi.org/10.1007/978-3-642-15880-3_34
http://dx.doi.org/10.1007/978-3-642-40897-7_3
https://www.w3.org/Submission/SWRL/
http://dx.doi.org/10.1007/978-3-540-78469-2_17
http://dx.doi.org/10.1007/978-3-540-74958-5_46

Option Predictive Clustering Trees
for Multi-target Regression

Aljaž Osojnik1,2(B), Sašo Džeroski1,2, and Dragi Kocev1,2

1 Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
{aljaz.osojnik,saso.dzeroski,dragi.kocev}@ijs.si

2 International Postgraduate School, Jožef Stefan Institute, Ljubljana, Slovenia

Abstract. Decision trees are one of the most widely used predictive
modelling methods primarily because they are readily interpretable and
fast to learn. These nice properties come at the price of predictive perfor-
mance. Moreover, the standard induction of decision trees suffers from
myopia: A single split is chosen in each internal node which is selected
in a greedy manner; hence, the resulting tree may be sub-optimal. To
address these issues, option trees have been proposed which can include
several alternative splits in a new type of internal nodes called option
nodes. Considering all of this, an option tree can be also regarded as
a condensed representation of an ensemble. In this work, we propose to
extend predictive clustering trees for multi-target regression by consider-
ing option nodes, i.e., learn option predictive clustering trees (OPCTs).
Multi-target regression is concerned with learning predictive models for
tasks with multiple continuous target variables. We evaluate the pro-
posed OPCTs on 11 benchmark MTR datasets. The results reveal that
OPCTs achieve statistically significantly better predictive performance
than a single PCT. Next, the performance is competitive with that of
bagging and random forests of PCTs. Finally, we demonstrate the poten-
tial of OPCTs for multifaceted interpretability and illustrate the poten-
tial of inclusion of domain knowledge in the tree learning process.

Keywords: Multi-target regression · Option trees · Interpretable
models · Predictive clustering trees

1 Introduction

Supervised learning is one of the most widely researched and investigated areas
of machine learning. The goal in supervised learning is to learn, from a set of
examples with known class, a function that outputs a prediction for the (scalar-
valued) class of a previously unseen example. However, in many real life problems
of predictive modelling the output (i.e., the target) is structured, e.g., is a vector
of class values of a tuple of target variables. There can be dependencies between
the class values/targets (e.g., they can be organized into a tree-shaped hierarchy
or a directed acyclic graph) or some internal relations between the class values
(e.g., as in sequences).
c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 118–133, 2016.
DOI: 10.1007/978-3-319-46307-0 8

Option PCTs for Multi-target Regression 119

In this work, we concentrate on the task of predicting multiple continuous
variables. Examples thus take the form (xi,yi), where xi = (xi1, . . . , xik) is a
vector of k input variables and yi = (yi1, . . . , yit) is a vector of t target variables.
This task is known under the name of multi-target regression (MTR) [1] (also
known as multi-output or multivariate regression). MTR is a type of structured
output prediction task which has applications in many real life problems, where
we are interested in simultaneously predicting multiple continuous variables.
Prominent examples come from ecology and include predicting the abundance
of different species living in the same habitat [2] and predicting properties of
forests [3,4]. Due to its applicability to a wide range of domains, this task is
recently gaining increasing interest in the research community.

Several methods for addressing the task of MTR have been proposed [1,5].
These methods can be categorized into two groups of methods [6]: (1) local
methods, that predict each of the target variable separately and then combine
the individual model predictions to get the overall model prediction and (2)
global methods, that predict all of the variables simultaneously (also known as
‘big-bang’ approaches). In the case of local models, for a domain with t target
variables one needs to construct t predictive models – each predicting a sin-
gle target. The prediction vector (that consists of t components) of an unseen
example is then obtained by concatenating the predictions of the multiple single-
target predictive models. Conversely, in the case of global models, for the same
problem, one needs to construct only one model. In this case, the prediction
vector of an unseen example is obtained by passing the example through the
model and getting its (complete) prediction.

In the past, several researchers proposed methods for solving the task of
MTR directly and demonstrated their effectiveness [1,4,7–9]. The global meth-
ods have several advantages over the local methods. First, they exploit and use
the dependencies that exist between the components of the structured output
in the model learning phase, which can result in better predictive performance.
Next, they are typically more efficient: it can easily happen that the number of
components in the output is very large (e.g., predicting the bioactivity profiles
of compounds described with their quantitative structure activity relationships
on a large set of proteins), in which case executing a basic method for each
component is not feasible. Furthermore, they produce models that are typically
smaller than the sum of the sizes of the models built for each of the components.

The state-of-the-art methods for MTR are based on tree and ensemble learn-
ing [1,5]. Trees for MTR (from the predictive clustering framework) inherit the
properties of regression trees: they are interpretable models, but the learning
them is greedy. The performance of the trees is significantly improved when
they are used in an ensemble setting [1,7]. However, the myopia, i.e., greediness,
of the tree construction process can lead to learning sub-optimal models. One
way to alleviate this is to use a beam-search algorithm for tree induction [10],
while another approach is to introduce option splits in the nodes [11,12].

In this work, we propose to extend predictive clustering trees (PCTs) for
MTR towards option trees, hence we propose to learn option predictive clustering

120 A. Osojnik et al.

trees (OPCTs). An option tree can be seen as a condensed representation of an
ensemble of trees which share a common substructure. More specifically, the
heuristic function for split selection can return multiple values that are close to
each other within a predefined range. These splits are then used to construct an
option node. For illustration, see Fig. 1.

The remainder of this paper is organized as follows. Section 2 proposes the
algorithm for learning option PCTs for MTR. Next, Sect. 3 outlines the design of
the experimental evaluation. Section 4 continues with a discussion of the results.
Finally, Sect. 5 concludes and provides directions for further work.

2 Option Predictive Clustering Trees

The predictive clustering trees framework views a decision tree as a hierarchy
of clusters. The top-node corresponds to one cluster containing all data, which
is recursively partitioned into smaller clusters while moving down the tree. The
PCT framework is implemented in the CLUS system [13], which is available for
download at http://clus.sourceforge.net.

Option predictive clustering trees (OPCT) extend the usual PCT frame-
work, by introducing option nodes into the tree building procedure outlined in
Algorithm 1. Option decision trees were first introduced as classification trees
by Buntine [11] and then analyzed in more detail by Kohavi and Kunz [12].
Ikonomovska et al. [14] analyzed regression option trees in the context of data
streams.

The major motivation for the introduction of option trees is to address the
myopia of the top-down induction of decision trees (TDIDT) algorithm [15].
Viewed through the lens of the predictive clustering framework, a PCT is a non-
overlapping hierarchical clustering of the whole input space. Each node/subtree
corresponds to a clustering go a subspace and prediction functions are placed in
the leaves, i.e., lowest clusters in the hierarchy. An OPCT, however, allows the
construction of an overlapping hierarchical clustering. This means that, at each
node of the tree several alternative hierarchical clusterings of the subspace can
appear instead of a single one.

When using an OPCT for prediction on a new example, we produce the
prediction by aggregating over the predictions of the alternative subtrees (over-
lapping clusters) the example may encounter. However, as not all parts of the tree
(hierarchical clustering) are necessarily overlapping, the example may encounter
only nonoverlapping (sub)clusters. In that case, we produce the prediction as we
would with a regular PCT.

When using TDIDT to construct a predictive clustering tree, and in particu-
lar when splitting a leaf, all possible splits are evaluated by using a heuristic and
the best one is selected. However, other splits may have very similar heuristic
values. The best split could be selected over another split as a consequence of
noise or of the sampling that generated the data. In this case, selecting a differ-
ent split could be optimal. To address this concern, the use of option nodes was
proposed [12].

http://clus.sourceforge.net

Option PCTs for Multi-target Regression 121

An option node is introduced into the tree when it would be hard to determine
the best split, i.e., when the best splits have similar heuristic values. When
this occurs, instead of selecting only the best split, we select several of them.
Specifically, we select up to 5 splits s, called options, that satisfy the following

Heur(s)
Heur(sbest)

≥ 1 − ε · dlevel,

where sbest is the best split, ε determines how similar the heuristics must be,
d ∈ [0, 1] is a decay factor and level is the level in the tree of the node we are
attempting to split. After we have determined the candidate splits, we intro-
duce an option node whose children are split nodes obtained by using the
selected splits, i.e., an option node contains options as its children. Selecting
more than 5 options is possible, vbut, uses exponentially more resources and is
not advised [12].

As usual, we define the level of a node to be the number of its ancestor nodes,
however, we do not count option nodes. This is motivated by the predictive
clustering viewpoint, i.e., the option nodes only mark that there are overlapping
clusters and not that there is an additional level of clustering.

The use of a decay factor makes the selection criterion more stringent in the
lower nodes of the tree. The intuition behind this is that higher up, the split

Algorithm 1. The top-down induction algorithm for option PCTs.
Procedure OptionPCT
Input: A dataset E, parameter ε, decay factor d, current tree level l
Output: An option predictive clustering tree

candidates = FindBestTests(E, 5)
if |candidates| > 0 then

if |candidates| = 1 or l > 2 then
(t∗, h∗, P∗) = candidates[0]
for each Ei ∈ P∗ do

treei = OptionPCT(Ei, ε, d, l + 1)
return node(t∗,

⋃
i{treei})

else
(t∗

0, h
∗
0, P∗

0) = candidates[0]
nodes = {}
for each (t∗

i , h
∗
i , P∗

i) ∈ candidates do

if
h∗
i

h∗
0

≥ 1 − ε · dl then

for each Ej ∈ P∗
i do

treej = OptionPCT(Ej , ε, d, l + 1)
nodes = nodes ∪ {node(t∗,

⋃
j{treej})}

if |nodes| > 1 then
return option node(nodes)

else
return nodes[0]

else
return leaf(Prototype(E))

122 A. Osojnik et al.

selection is more important and a larger error would be inferred by introducing
a non-optimal split. However, as we get deeper into the tree, the use of a non-
optimal split would make decreasing impact. This intuition also allows us to
prohibit the use of option nodes on levels 3 and greater, which severely mitigates
the problem of combinatorial explosion.

When using a small ε, e.g., ε = 0.1, we are selecting only options whose
heuristics are within 10% of the best split. However, the use of larger ε, in the
extreme case even ε = 1, can also be motivated through the success of methods
such as random forests and ensembles of extremely randomized trees. Allowing
the selection of options whose heuristics are considerably worse than the heuristic
of the best split, might not necessarily reduce the performance of the tree, but
actually increase it.

Once an OPCT is built, we want to use it for prediction. If we reiterate
the methodology described above in a tree-prediction setting, we could say the
following. In a regular PCT, it is simple to produce a prediction for a new
example. It is sorted into a leaf (according to the splits of the tree) where a
prediction is made by using a prototype function. When traversing an example
through an OPCT, we behave the same when we encounter a split or leaf node. If
we traverse an example to an option node, however, we clone the example for each
of the options and traverse one of the copies down each of the options. This means
that in an option node an example is (by proxy of its copies) traversed to multiple
leaves, where multiple predictions are produced. To obtain a single prediction
in an option node, we aggregate the obtained predictions. When addressing
multi-target regression this is generally done by averaging all the predictions per
target.

An option tree is usually seen a single tree, however, it can also be interpreted
as a compact representation of an ensemble. To generate the ensemble of the
embedded trees, we start recursively from the root node and move in a top-down
fashion. Each time we encounter an option node we copy the tree above (and
in “parallel”) for each of the options and replace the option node with only the
option, i.e., single split. This produces one tree for each option while removing
the option node in question. We repeat this procedure on all of the generated
trees until we are left with no option nodes. This is illustrated in Fig. 1. For this
reason, we will sometimes refer to option trees as pseudo-ensembles.

On the other hand, a given OPCT is a direct extension of the PCT that
would be learned on the same data. By definition, whenever we introduce an
option node, we include the best split (in terms of the heuristic)1. In regular
construction of PCTs, this is the only split we consider. Consequently, the PCT
is embedded in the OPCT. Specifically, we can extract it, if we, in a top-down
fashion, only select the best option in each option node.

Let’s consider a full option node, i.e., one where we have the full 5 options.
Let’s assume that there are no option nodes further down in the tree. Since we
have 5 options and no options lower in the tree, we have a total of 5 embedded

1 Not only is the best split included, other splits are compared to it to determine their
inclusion in the option tree.

Option PCTs for Multi-target Regression 123

trees. Now, let’s consider the size of the embedded ensemble, when we add two
such nodes under a split node, i.e., each leaf of a split node was extended into a
full option node. To construct an embedded tree we can now choose one of the 5
options when the test is satisfied and one of 5 options when it is not. This results
in 25 different embedded trees. It can easily be inferred, that to calculate the
number of embedded trees for an option node we need just to sum up the number
of embedded trees for each of its options. In a (binary) split node, however, we
multiply the numbers of embedded trees of the subtree that satisfies the split
and of the subtree that doesn’t, to obtain the total number of embedded trees.

Given the construction constraints described above, we know that option
nodes with up to 5 options can appear only on the first three levels, i.e., levels
0, 1 and 2. If we now consider a full option tree, we calculate a maximum of
(52 · 5)2 · 5 = 57 = 78125 embedded trees. However, many of these trees overlap
to a large extent.

Note that a given example will not traverse the entire tree. For example, in
Fig. 1, if an example reaches S1 and is traversed into the left child L1, the same
result would happen in both the first and second embedded tree. The example
is “agnostic” of any option nodes in the right child of S1. Therefore, in a general
option tree, a given example will visit only up to 53 = 125 leaves, as it will only
traverse down one side of the tree in each split node.

In other words, there are a maximum of 125 different predictions that would
be aggregated in order to obtain the final prediction of an option tree constructed
this way. This can be compared to a single tree, where only 1 prediction will be
made for each example, or to a tree ensemble, where 1 prediction would be
made for each member of the ensemble and then aggregated to produce the final
prediction.

3 Experimental Design

To evaluate the performance and efficiency of the OPCT method, we construct
OPCTs by using different values for the algorithms’ parameters, as well as stan-
dard PCTs and ensembles of PCTs. We first present the benchmark datasets
used for evaluation of the methods and then give the specific experimental setup:
parameter instantiations and evaluation measures.

3.1 Data Description

The 11 datasets with multiple continuous targets used in this study come mainly
from the domain of ecological modelling. Table 1 outlines the properties of the
datasets. This selection contains datasets with various number of examples
described with different numbers of attributes. For more details on the datasets,
we refer the reader to the referenced literature.

124 A. Osojnik et al.

3.2 Experimental Setup

We use 10-fold cross-validation to estimate the predictive performance of the
used methods. We assess the predictive performance of the algorithms using
several evaluation measures. In particular, since the task we consider is that
of MTR, we employed three well known measures: the correlation coefficient
(CC), root mean squared error (RMSE) and relative root mean squared error
(RRMSE). We present here only the results in terms of RRMSE, but similar
conclusions hold for the other two measures. Finally, the efficiency of the pro-
posed methods is measured with the time needed to construct a model and the
size of the models (in terms of total number of leaf nodes available for making a
prediction).

(a)

O1

S1

L1 O2

S2

L2 L3

S3

S4

L4 L5

L6

S5

L7 L8

S6

L9 S7

L10 L11

(b)

S1

L1 S2

L2 L3

S1

L1 S3

S4

L4 L5

L6

S5

L7 L8

S6

L9 S7

L10 L11

Fig. 1. An option tree (a) and the ensemble of its embedded trees (b). Oi are option
nodes, Sj split nodes and Lk leaf nodes.

Option PCTs for Multi-target Regression 125

We parameterize OPCTs by selecting values for the parameters ε and d.
When ε = 1, there are no constraints on the heuristic value of the selected splits
with regards to the best test. However, since only the 5 best splits are selected,
the risk that a split which would decrease the predictive performance would
be selected is relatively low. This setting most resembles the ensemble setting,
where greater variation is desired. If we were to select ε = 0, the resulting
OPCT would almost always directly coincide with a regular PCT, as no split
would likely reach exactly the same heuristic value as the best split. Hence, the
only way an option node would be induced is if two splits had the exact same
heuristic value. This configuration is not of interest, so for ε we consider the
values {0.1, 0.2, 0.5, 1.0}, corresponding in order from the most stringent to the
least stringent construction criterion.

As discussed above, the higher in the tree an option node is induced, the
higher the variation in the learned subtrees. Induction of option nodes in lower
levels of the tree not only contributes to the combinatorial explosion of the
number of trees (and consequently the use of resources), but also generates less
variation in the predictions, since the subtrees affected cover a smaller number
of examples. Hence, we wish to curtail the number of options induced in option
nodes lower in the tree. If we select a decay factor of d = 1, the depth of the
option node induction will have no impact, while selecting a decay factor of 0.5
will effectively double the effective heuristic requirement ε · dl at each level. For
example, for ε = 0.5 and d = 0.5, the requirement would be 0.5 at the root level,
0.25 at the first level and 0.125 at the third level. We use the following values
of the decay factor: {0.5, 0.9, 1}, these are the most to the least constrictive in
terms of the construction of the OPCT.

Table 1. Properties of the datasets with multiple continuous targets (regression
datasets): N is the number of instances, |D|/|C| the number of descriptive attributes
(discrete/continuous), and T the number of target attributes.

Name of dataset N |D|/|C| T

Collembola [16] 393 8/39 3

EDM [17] 154 0/16 2

Forestry-Kras [3] 60607 0/160 11

Forestry-Slivnica-LandSat [18] 6218 0/150 2

Forestry-Slivnica-IRS [18] 2731 0/29 2

Forestry-Slivnica-SPOT [18] 2731 0/49 2

Sigmea real [19] 817 0/4 2

Soil quality [2] 1944 0/142 3

Vegetation clustering [20] 29679 0/65 11

Vegetation condition [4] 16967 1/39 7

Water quality [21] 1060 0/16 14

126 A. Osojnik et al.

Note that, on a given dataset, all of the values of ε and d could produce
the same OPCT, if the splits have very similar heuristic values, e.g., there could
always be 5 splits that are within 10% ·dl of the heuristic value of the best split.
Therefore, the evaluation of how ε and d affect both the predictive performance
and efficiency must by design be evaluated on multiple datasets. The parame-
terized version of the OPCT method for a given ε and d is denoted OPCTeεdd,
e.g., OPCTe0.5d0.9.

Next, we define the parameter values used in the algorithms for construct-
ing single PCTs and ensembles of PCTs. The multi-target PCTs are obtained
using F-test pruning. This pruning procedure uses the exact Fisher test to check
whether a given split/test in an internal node of the tree results in a reduction
in variance that is statistically significant at a given significance level. If there
is no split/test that can satisfy this, then the node is converted to a leaf. An
optimal significance level was selected by using internal 3-fold cross validation,
from the following values: 0.125, 0.1, 0.05, 0.01, 0.005 and 0.001.

We consider two ensemble learning techniques: bagging [22] and random
forests [23]. These are the most widely used tree-base ensemble learning meth-
ods. The construction of both ensemble methods takes as an input parameter the
size of the ensemble, i.e., number of base predictive models to be constructed.
We constructed ensembles with 100 base predictive models [1]. Furthermore,
the random forests algorithm takes as input the size of the feature subset that
is randomly selected at each node. For this purpose, we apply the logarithmic
function of the number of descriptive attributes �log2 |D|� + 1, as recommended
by Breiman [23].

In order to assess the statistical significance of the differences in performance
of the studied algorithms, we adopt the recommendations by Demšar [24] for
the statistical evaluation of the results. In particular, we use the Friedman test
for statistical significance. Afterwards, to detect where statistically significant
differences occur (i.e., between which algorithms), we use the Nemenyi post-hoc
test to compare all the methods among each other.

We present the results from the statistical analysis with average ranks dia-
grams. The diagrams plot the average ranks of the algorithms and connect those
whose average ranks differ by less than a given value, called critical distance.
The critical distance depends on the level of the statistical significance (set in
our case to 0.05). The difference in performance of the algorithms connected
with a line is not statistically significant at the given significance level.

4 Results and Discussion

We discuss the results from the experimental evaluation along three major
dimensions. First, we select the optimal parameter values for the construction
of OPCTs. Second, we compare the performance of OPCTs with a single PCT
and ensembles of PCTs. The comparison is performed on their predictive power,
time consumption and size of the produced models. Third, we examine the inter-
pretability of OPCTs in juxtaposition to PCTs.

Option PCTs for Multi-target Regression 127

12 11 10 9 8 7 6 5 4 3 2 1

OPCTe1d1

OPCTe1d0.9

OPCTe0.5d1

OPCTe0.5d0.9

OPCTe1d0.5

OPCTe0.2d1OPCTe0.5d0.5

OPCTe0.2d0.9

OPCTe0.1d1

OPCTe0.2d0.5

OPCTe0.1d0.9

OPCTe0.1d0.5

Critical Distance = 2.16942

Fig. 2. Average rank diagram (in terms of predictive performance) for OPCTs obtained
with different values of the parameters ε (e) and d.

4.1 Parametrization of OPCTs

In Fig. 2, we depict the performance of the different OPCTs obtained by using
the experimental design outlined above. We can note that lower values for both
the parameters leads to performance degradation. This is somewhat expected,
because by imposing more stringent values, we are forcing the algorithm not to
introduce option nodes, hence the obtained OPCTs are small. On the opposite
side of the spectrum, we have the OPCTs obtained with larger values for the
parameters. These achieve the best predictive performance and the correspond-
ing OPCTs are large.

We can also observe that the ε parameter has a stronger influence on the
performance than d. Namely, the OPCTs constructed with selecting 0.1 and 0.2
as values for ε (no matter the value of d) are the ones with the weakest predictive
power. Furthermore, we can also note that the larger values for d also lead to
better predictive performance. The best predictive performance is obtained when
setting both parameters to 1. Such a setting produces large OPCTs and requires
the most time to construct the OPCTs. All in all, we can recommend the use
of two instantiations of the OPCT algorithm: OPCTe1d1 (ε = 1, d = 1) and
OPCTe0.5d1 (ε = 0.5, d = 1). These two variants represent the parameters for
the best performance and the trade-off between predictive power and efficiency,
respectively.

4.2 Predictive Performance and Efficiency

Figure 3 shows the results of the statistical evaluation of the predictive perfor-
mance of the proposed OPCT method in comparison to a single PCT and ensem-
bles of PCTs. We can first note that both OPCTs (OPCTe1d1 and OPCTe0.5d1)
achieve statistically significantly better predictive performance than the single
PCT. Second, there is no statistically significant difference in the performance
of the ensemble methods and the OPCTs. Furthermore, the two ensemble meth-
ods are bounded by the two OPCT variants: the best performing method is the

128 A. Osojnik et al.

5 4 3 2 1

OPCTe1d1

BaggingPCTs

RForestPCTs

OPCTe0.5d1PCT

Critical Distance = 0.794152

Fig. 3. Comparison of OPCTs predictive performance of OPCTs to the competing
methods: average rank diagram in terms of predictive performance.

OPCTe1d1, followed by Bagging of PCTs, Random forests of PCTs, and the
OPCTe0.5d1 method.

Next, we compare the methods in terms of their efficiency. First of all, learn-
ing PCTs is the most efficient method both in terms of time needed for model
construction and model size. More specifically, single PCT models are statisti-
cally significantly smaller than all of the other models and are obtained statisti-
cally significantly faster than Bagging of PCTs and OPCTe1d1.

If we focus on the efficiency of the OPCT models, OPCTe1d1 is the least
efficient: it produces models with largest numbers of leaves and takes the most
time for model construction. Recall that this is due to the fact that, in the worst
case, OPCTe1d1 is actually a condensed representation of what amounts to 125
PCTs. We also note that reducing the value of the ε parameter to 0.5 yields
smaller models that are constructed faster than both bagging and random forests
of PCTs. All in all, OPCTe0.5d1 offers the best trade-off between predictive
performance and efficiency and should be considered for further use. However,
if a given task requires the best predictive performance then one should use
OPCTe1d1 (Fig. 4).

4.3 Interpretability of OPCTs

OPCTs, as well as option trees in general, offer a much higher degree of inter-
pretability than ensemble methods. This is expressed through both the fact that
the “ensemble” of an option tree is represented in a compact form, i.e., a single
tree, as well as the fact that many of the embedded trees overlap. Additionally,
the regular PCT that would be learned from the same data is always present in
the OPCT, as described in Sect. 2. A PCT and an OPCT learned on the EDM
dataset, and their relations are illustrated in Fig. 5.

Providing a domain expert with an option tree gives them a lot of choices
with regards to the model. They can observe the selected options and attempt
to determine which of the selected options were selected due to their actual

Option PCTs for Multi-target Regression 129

5 4 3 2 1

PCT

OPCTe0.5d1

RForestPCTsOPCTe1d1

BaggingPCTs

Critical Distance = 1.83922

5 4 3 2 1

PCT

RForestPCTs

BaggingPCTs

OPCTe0.5d1

OPCTe1d1

Critical Distance = 1.69183

(a) Time efficiency (b) Size efficiency

Fig. 4. Comparison of the efficiency of OPCTs to that of the competing methods as
measured by the time needed to learn a model and the size of the models (number of
leaf nodes).

importance as opposed to the sampling of the dataset or other artifacts of the
data. If they are able to discard all but one of the options in each of the option
nodes, we can collapse the OPCT into a single tree, specifically a PCT, which
corresponds not only to the data, but also to the knowledge of the domain expert.
In terms of the predictive clustering framework, this means selecting only one of
the overlapping hierarchical clusters when multiple clusters are presented. This
approach also has the advantage that the domain expert need not be available
for interaction when the model is learned, but can assess the OPCT and chose
the preferred options later on.

This process can also be looked at through a different lens. As we have
introduced option trees (in part) to address myopia, by considering more options
and later deciding on only one of them in each option node, we are essentially
“looking ahead” of just the one split and utilizing, in the case of the domain
expert, additional domain knowledge.

However, instead of using domain knowledge by proxy of interaction with a
domain expert, we could also collapse the learned OPCT to a single PCT by
using additional unseen data, i.e., by calculating an unbiased estimate of the
predictive performance of the different options present in the OPCT. Since the
collection and preparation of additional data examples could be expensive to the
point of infeasibility, we could introduce a modified experimental setup. Part of
the training data could be separated into a validation set which would not be
used for the initial learning of the OPCT, but would be utilized to determine
which of the selected options, and consequently embedded trees, has the best
predictive performance. We would then collapse the OPCT into a PCT according
to this validation set, after which we would test the obtained PCT on the test
set. In this scenario, we could not only study the effect of myopia by comparing
the collapsed OPCT to a PCT learned on the entire training dataset, but also
observe the effect of averaging multiple predictions on the predictive performance
by comparing the collapsed PCT and the original (pseudo-ensemble) OPCT.

130 A. Osojnik et al.

(a
)

B
S
M

B
M

e
a
n
T

>
0
.7

7

I
S
M

I
M

e
a
n
T

>
2
.0

C
S
M

C
M

e
a
n
T

>
5
.1

8

A
S
M

A
M

e
a
n
T

>
−

4
.6

3

.
.
.

0
,
1

I
L
D

I
S
D

e
v
T

>
0
.3

8

0
,

−
0
.1

.
.
.

−
0
.8

3
3
,

−
0
.1

6
7

A
S
M

A
M

e
a
n
T

>
−

4
.6

9

A
S
D

A
S
D

e
v
T

>
0
.0

6

A
L
D

A
S
D

e
v
T

>
0
.0

6

0
.9

4
7
,
0
.0

5
3

0
,
0

0
,
1

C
L
M

C
M

e
a
n
T

>
5
.6

4

C
L
D

C
S
D

e
v
T

>
0
.1

5

0
.0

3
8
,
0
.9

2
3

0
,
0

0
.1

1
1
,
0
.2

2
2

(b
)

O
N

B
S
M

B
M

e
a
n
T

>
0
.7

7

I
S
M

I
M

e
a
n
T

>
2
.0

C
S
M

C
M

e
a
n
T

>
5
.1

8

.
.
.

.
.
.

−
0
.8

3
3
,

−
0
.1

6
7A
S
M

A
M

e
a
n
T

>
−

4
.6

9

.
.
.

.
.
.

C
S
M

C
M

e
a
n
T

>
5
.1

8

A
S
M

A
M

e
a
n
T

>
−

4
.6

9

.
.
.

.
.
.

A
S
M

A
M

e
a
n
T

>
−

4
.5

1

.
.
.

.
.
.

L
M

B
M

e
a
n
T

>
0
.7

9

.
.
.

.
.
.

F
ig
.
5
.

A
re

g
u
la

r
P

C
T

(a
)

a
n
d

a
n

O
P

C
T

(b
)

le
a
rn

ed
o
n

th
e

E
D

M
d
a
ta

se
t.

T
h
e

le
ft

ch
il
d

o
f

a
sp

li
t

n
o
d
e

co
rr

es
p
o
n
d
s

to
th

e
su

b
tr

ee
w

h
er

e
th

e
te

st
is

sa
ti

sfi
ed

.
N

o
te

th
a
t

th
e

re
g
u
la

r
P

C
T

is
in

cl
u
d
ed

in
th

e
O

P
C

T
a
s

th
e

su
b
tr

ee
en

cl
o
se

d
in

th
e

d
a
sh

ed
re

ct
a
n
g
le

.

Option PCTs for Multi-target Regression 131

5 Conclusions

In this work, we propose an algorithm for learning option predictive clustering
trees (OPCTs) for the task of multi-target regression (MTR). In contrast to
standard regression, where the output is a single scalar value, in MTR the output
is a data structure – a tuple/vector of continuous variable values. We consider
learning of a global model, i.e., of a single model that predicts all of the target
variables simultaneously.

More specifically, we propose OPCTs to address the myopia of the standard
greedy PCT learning algorithm. OPCTs have the possibility to construct option
nodes, i.e., nodes with a set of alternative sub-nodes, each containing a different
split. These option nodes are constructed in the cases when the heuristic scores
of the candidate splits are close to each other. Furthermore, OPCTs, and option
trees in general, can be regarded as a condensed representation of an ensemble
of trees.

The proposed method was experimentally evaluated on 11 benchmark MTR
datasets. We first determined the optimal parameters of the algorithm. The
results show that both parameters that control the number of option nodes (the
range of heuristic scores considered ε and the decay factor d) need larger values
to achieve better predictive performance. We then compared the performance of
learning OPCTs (in terms of predictive power and efficiency) to the induction of
standard PCTs and to two ensemble learning methods, i.e., bagging and random
forests of PCTs.

The evaluation revealed that OPCTs yield statistically significantly better
predictive performance than a single PCT. Next, the predictive performance of
the OPCTs is not statistically significantly different than that of the other two
ensemble methods, but OPCT with ε and d set to 1 achieves the best predictive
performance on average. Moreover, in terms of efficiency, an OPCT with ε set to
0.5 and d set to 1 is faster to learn that the ensemble models and the OPCT with
ε and d set to 1T. Finally, through an example, we illustrated the interpretability
of the constructed OPCTs: they offer a multifaceted view on the data at hand.

We plan to extend this work along several directions. First of all, we will
evaluate the OPCTs in the single tree context, i.e., we will use the induction of
OPCTs as a beam-search algorithm for tree induction. Next, we will evaluate
the influence of the two parameters at a more fine grained resolution. Finally,
we will extend the algorithm towards other output types, i.e., machine learning
tasks, such as multi-label classification, hierarchical multi-label classification and
time series prediction.

Acknowledgments. We acknowledge the financial support of the European Commis-
sion through the grants ICT-2013-612944 MAESTRA and ICT-2013-604102 HBP, as
well as the support of the Slovenian Research Agency through a young researcher grant
and the program Knowledge Technologies (P2-0103).

132 A. Osojnik et al.

References

1. Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Tree ensembles for predicting struc-
tured outputs. Pattern Recogn. 46(3), 817–833 (2013)

2. Demšar, D., Džeroski, S., Larsen, T., Struyf, J., Axelsen, J., Bruns-Pedersen, M.,
Krogh, P.H.: Using multi-objective classification to model communities of soil.
Ecol. Model. 191(1), 131–143 (2006)

3. Stojanova, D., Panov, P., Gjorgjioski, V., Kobler, A., Džeroski, S.: Estimating veg-
etation height and canopy cover from remotely sensed data with machine learning.
Ecol. Inform. 5(4), 256–266 (2010)

4. Kocev, D., Džeroski, S., White, M., Newell, G., Griffioen, P.: Using single- and
multi-target regression trees and ensembles to model a compound index of vegeta-
tion condition. Ecol. Model. 220(8), 1159–1168 (2009)

5. Tsoumakas, G., Spyromitros-Xioufis, E., Vrekou, A., Vlahavas, I.: Multi-target
regression via random linear target combinations. In: Calders, T., Esposito, F.,
Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8726, pp.
225–240. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44845-8 15

6. Bakır, G.H., Hofmann, T., Schölkopf, B., Smola, A.J., Taskar, B., Vishwanathan,
S.V.N.: Predicting Structured Data. Neural Information Processing. The MIT
Press, Cambridge (2007)

7. Kocev, D., Ceci, M.: Ensembles of extremely randomized trees for multi-target
regression. In: Japkowicz, N., Matwin, S. (eds.) DS 2015. LNCS (LNAI), vol. 9356,
pp. 86–100. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24282-8 9

8. Struyf, J., Džeroski, S.: Constraint based induction of multi-objective regression
trees. In: Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 3933, pp. 222–233.
Springer, Heidelberg (2006). doi:10.1007/11733492 13

9. Appice, A., Džeroski, S.: Stepwise induction of multi-target model trees. In: Kok,
J.N., Koronacki, J., Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.)
ECML 2007. LNCS (LNAI), vol. 4701, pp. 502–509. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-74958-5 46

10. Kocev, D., Struyf, J., Džeroski, S.: Beam search induction and similarity con-
straints for predictive clustering trees. In: Džeroski, S., Struyf, J. (eds.) KDID
2006. LNCS, vol. 4747, pp. 134–151. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75549-4 9

11. Buntine, W.: Learning classification trees. Stat. Comput. 2(2), 63–73 (1992)
12. Kohavi, R., Kunz, C.: Option decision trees with majority votes. In: Proceedings of

the 14th International Conference on Machine Learning, ICML 1997, pp. 161–169.
Morgan Kaufmann Publishers Inc., San Francisco (1997)

13. Blockeel, H., Struyf, J.: Efficient algorithms for decision tree cross-validation. J.
Mach. Learn. Res. 3, 621–650 (2002)

14. Ikonomovska, E., Gama, J., Ženko, B., Džeroski, S.: Speeding-up hoeffding-based
regression trees with options. In: Proceedings of the 28th International Conference
on Machine Learning, ICML 2011, pp. 537–544 (2011)

15. Breiman, L., Friedman, J., Olshen, R., Stone, C.J.: Classification and Regression
Trees. Chapman & Hall/CRC, Boca Raton (1984)

16. Kampichler, C., Džeroski, S., Wieland, R.: Application of machine learning tech-
niques to the analysis of soil ecological data bases: relationships between habitat
features and Collembolan community characteristics. Soil Biol. Biochem. 32(2),
197–209 (2000)

http://dx.doi.org/10.1007/978-3-662-44845-8_15
http://dx.doi.org/10.1007/978-3-319-24282-8_9
http://dx.doi.org/10.1007/11733492_13
http://dx.doi.org/10.1007/978-3-540-74958-5_46
http://dx.doi.org/10.1007/978-3-540-75549-4_9
http://dx.doi.org/10.1007/978-3-540-75549-4_9

Option PCTs for Multi-target Regression 133

17. Karalič, A.: First order regression. Ph.D. thesis, Faculty of Computer Science,
University of Ljubljana, Ljubljana, Slovenia (1995)

18. Stojanova, D.: Estimating forest properties from remotely sensed data by using
machine learning. Master’s thesis, Jožef Stefan IPS, Ljubljana, Slovenia (2009)

19. Demšar, D., Debeljak, M., Džeroski, S., Lavigne, C.: Modelling pollen dispersal of
genetically modified oilseed rape within the field. In: The Annual Meeting of the
Ecological Society of America, p. 152 (2005)

20. Gjorgjioski, V., Džeroski, S., White, M.: Clustering analysis of vegetation data.
Technical report 10065, Jožef Stefan Institute (2008)

21. Džeroski, S., Demšar, D., Grbović, J.: Predicting chemical parameters of river
water quality from bioindicator data. Appl. Intell. 13(1), 7–17 (2000)

22. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
23. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
24. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.

Learn. Res. 7, 1–30 (2006)

HSIM: A Supervised Imputation Method
for Hierarchical Classification Scenario

Leandro R. Galvão(B) and Luiz H.C. Merschmann

Computer Science Department, Federal University of Ouro Preto, Ouro Preto, Brazil
leandrodvmg@gmail.com, luizhenrique@iceb.ufop.br

Abstract. The missing value imputation process can be defined as a
preprocessing step that fills missing values of attributes in incomplete
datasets. Nowadays, the problem of incomplete datasets in the hierar-
chical classification scenario must be solved using unsupervised missing
value imputation methods due to the lack of supervised methods to deal
with the hierarchical context. Thus, in this work, we propose and eval-
uate a supervised missing value imputation method for datasets used
in hierarchical classification problems in which the classes are organized
into tree structure. Experiments were performed on incomplete datasets
to evaluate the effect of the proposed missing value imputation method
on classification performance when using a global hierarchical classifier.
The results showed that, using the proposed method for dealing with
missing attribute values, it provided higher classifier predictive perfor-
mance than other unsupervised missing value imputation methods.

Keywords: Missing attribute value imputation · Hierarchical classifi-
cation · Data mining

1 Introduction

The technological advances in the last decades have allowed the production and
storage of a huge amount of data related to different types of applications. The
transformation of this data in useful, valid and understandable information is
essential. However, this is not an easy task, requiring automated strategies to
analyse the data [1]. Thus, the Knowledge Discovery from Data (KDD) process
adopted for this purpose is basically composed by three main steps: data pre-
processing, data mining and results validation.

The missing value imputation process can be defined as a preprocessing step
that fills missing values of attributes in incomplete datasets [2]. Attribute’s miss-
ing value can occur in a dataset for several reasons, such as filling failure, omis-
sion of data by respondents in survey questions or even a failure on the sensor
responsible to collect the data. Missing values can make the manipulation of
datasets more complex and reduce the efficiency of data mining algorithms [3].

Classification is a data mining task that aims to identify an instance’s class
through its characteristics [1]. Different types of classification problems can be
c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 134–148, 2016.
DOI: 10.1007/978-3-319-46307-0 9

HSIM: A Supervised Imputation Method 135

found in the literature, each one with its own complexity level [4]. In flat classifi-
cation problems each instance is assigned to a class, in which classes do not have
relationships to each other. Nevertheless, there are more complex classification
problems, known as hierarchical classification problems, in which the classes are
hierarchically organized.

Several application domains such as text categorization [5,6], protein func-
tion prediction [7,8], music genre classification [9,10], image classification [11,12]
and emotional speech classification [13] can benefit from hierarchical classifica-
tion techniques, since the classes to be predicted are naturally organized into
class hierarchies. Despite of some works have ignored the class hierarchy and
performed predictions considering only leaf node classes (flat classification app-
roach), hierarchical classification methods are overall better than flat classifi-
cation methods when solving hierarchical classification problems [4]. Therefore,
hierarchical classification is a research topic that certainly deserves attention.

In literature, it is possible to find several works that deal with missing
attribute values. Expectation Maximization and KNNImpute are examples of
popular methods often used to handle missing attribute values [14–16]. Since
they are unsupervised methods (ignore the target class values), they can be
applied to datasets used in flat or hierarchical classification scenario. Thus, in
hierarchical classification context, due to the lack of suitable supervised miss-
ing value imputation methods (able to take into account the class relationships
in the target problem), the researchers are limited to use unsupervised miss-
ing value imputation techniques. [17–19] are examples of works that have used
an unsupervised missing value imputation method for hierarchical classification
context.

Therefore, in this work, we fill this gap by presenting and evaluating a super-
vised missing value imputation method for datasets for hierarchical classification
task. Experiments performed on incomplete datasets using a global hierarchical
classifier showed that the method proposed to deal with missing attribute values
provided higher classifier predictive performance than other popular unsuper-
vised missing value imputation methods.

2 Background

2.1 Hierarchical Classification

Several classification problems are available in literature wherein the huge major-
ity of them deals with the flat classification scenario. In flat classification prob-
lems there is no relationship among the classes. However, there are more complex
classification problems where the classes are hierarchical organized as a tree or
DAG (Direct Acyclic Graph). This group of problems is known as hierarchical
classification problems [4].

Hierarchical classification methods can be analysed according to different
aspects. The first aspect is related to the hierarchical structure the method is
able to deal with. The classes can be hierarchically organized in a tree or DAG
(Direct Acyclic Graph) structure. The main difference between these structures

136 L.R. Galvão and L.H.C. Merschmann

Fig. 1. (a) Class hierarchy structured as tree; (b) Class hierarchy structured as DAG.

is related to the number of parents of a class. The tree structure restricts each
class to possess only one parent class. However, in the DAG structure a class
(node) is allowed to have more than one parent class. Figure 1 presents a tree and
a DAG example, where the nodes represent the classes and the edges indicate a
relationship between them.

The second aspect is related to the prediction depth of the method. Thus,
hierarchical classification problems can either be organized in mandatory leaf
node prediction (MLNP) or non-mandatory leaf node prediction (NMLNP). In
the mandatory leaf node prediction, the output of a classifier is always a class
represented by a leaf node of the class hierarchy. For the non-mandatory leaf node
prediction, the most specific class predicted by the classifier can be represented
by a node at any level (internal or leaf) of the class hierarchy.

The third aspect refers to the number of different paths in the hierarchy a
method can assign to a given instance. This aspect defines two different types
of problems: single path of labels (SPL) and multiple path of labels (MPL).
Single path problems restrict each instance to be assigned to at most one path
of predicted labels whilst multiple path problems allow an instance to be assigned
to multiple paths of predicted labels.

Finally, the fourth aspect concerns how the hierarchical structure is handled
by the method. In [4], three approaches are listed: flat classification, which do not
take into account the class hierarchy and performs predictions considering only
the leaf node classes; local model approaches, when a group of flat classifiers
are employed; and global model approaches, when a single classifier is built
considering the class hierarchy as a whole.

Several works in literature consist of proposals to modify existing flat clas-
sifiers to cope with the entire class hierarchy in a single step and, therefore,
creating global classifiers. Some examples of modifications of traditional flat
classification algorithms are: HC4.5 [20] and HLC [21] (modified versions of the
C4.5), Global Model Naive Bayes (modified version of the Naive Bayes) [22],

HSIM: A Supervised Imputation Method 137

Clus-HMC (based on Predictive Cluster Trees) [23,24] and hAnt-Miner (adap-
tation of Ant-Miner algorithm) [25]. Given the relevance of global classifiers to
the hierarchical classification scenario, one can see that it is important the devel-
opment of preprocessing techniques to deal with the class hierarchy as a whole.
Thus, in this work, we propose a supervised missing value imputation method
for datasets used by global hierarchical classifiers.

2.2 Missing Value Imputation

Missing value imputation can be defined as the estimation of values based on the
analysis of the known values of the attribute [26]. The missing values in data can
be the result of failure during the data collection process, accidental removal of
values or refusal to answer questions in surveys used to collect data. Whatever
the reasons, missing attribute values can pose an obstacle for classification and
other data mining tasks.

The missing value imputation methods can be categorized according to dif-
ferent criteria [2]. Methods that use the target class values during the imputation
process are categorized as supervised, while methods that ignore the target class
values are categorized as unsupervised. While univariate methods impute miss-
ing values on each attribute for each instance based on observed values for other
instances on same attribute, multivariate methods impute missing values on each
attribute for each instance based on observed values for same instance on other
attributes.

The strategies used to impute missing attribute values vary from simple
statistical algorithms like mean imputation to more complex approaches based
on predictive models.

Mean imputation, one of the easiest ways to impute missing values, works
by replacing each missing value with mean of observed values of that attribute
for other instances. Despite its simplicity, this method changes the distribution
of attribute, producing different kinds of bias.

Expectation Maximization [27] algorithm is a popular method to impute
missing attribute values. It is an iterative refinement method that assumes the
data are distributed based on a parametric model with unknown parameters.
Basically, in each iteration, it estimates missing values and parameters model.
After parameters model initialization, it has an Expectation step, where a miss-
ing attribute value for an instance i is substituted by its expected value computed
from the estimates for parameters model and observed values for same instance
i on other attributes. Then, in the Maximization step, parameters model are
updated in order to maximize the complete data likelihood. These two steps are
iteratively repeated until convergence is obtained. The Expectation Maximiza-
tion method is categorized as unsupervised and multivariate.

KNNImpute [15] is another widely used method to impute missing attribute
values. In short, it selects the k nearest instances (neighbours) from dataset
instances with known value in the attribute to be imputed. Aiming at finding
the nearest neighbours a distance measure (e.g., Euclidean distance) must be
adopted. Then, the missing attribute value is replaced by a value calculated from

138 L.R. Galvão and L.H.C. Merschmann

the k selected neighbours. Usually, mode (for categorical data) and mean (for
continuous data) are used to compute the replacement value. The KNNImpute
method is categorized as unsupervised and multivariate.

3 Proposed Method

The missing value imputation method proposed in this work will be referenced
as Hierarchical Supervised Imputation Method (HSIM). The HSIM is a super-
vised method able to deal with datasets containing classes hierarchically orga-
nized in a tree structure.

The motivation behind the HSIM is to take into account the class hierarchy to
impute missing attribute values. In short, whenever there are no known attribute
values for the instances associated to a particular class, the main idea of the
proposed method is replacing each missing value with mean (for continuous
data) or mode (for categorical data) of observed values of that attribute for
other instances associated to a class descendant or ascendant of the class of the
instance containing the missing value.

An example is now presented to illustrate the operation of the proposed
method. Consider the incomplete dataset shown in Table 1, where the instances
2, 7, 9 and 13 contain missing value for attribute F . For each of these instances,
a different strategy is adopted by HSIM to impute missing attribute value.

Note that instance 2 is associated to the class R.2, that is also the class
associated to other instances (3, 6 and 10) containing observed values of the
attribute F . In this case, the missing value is substituted by the average of the

Table 1. Incomplete dataset

ID F Class attribute

1 0.15 R.1.1

2 ? R.2

3 3.41 R.2

4 4.12 R.2.1

5 0.22 R.1.2

6 3.5 R.2

7 ? R.1

8 0.34 R.1.2

9 ? R.3.1.1

10 4.1 R.2

11 1.6 R.3.1

12 1.55 R.3

13 ? R.4

14 1.71 R.3.1

HSIM: A Supervised Imputation Method 139

three observed values (3.41, 3.5 and 4.1) of the instances associated to the same
class of the instance containing the missing value (R.2). Thus, the attribute value
of instance 2 is imputed as 3.67.

In the case of instance 7, where the missing value is associated to the class R.1,
since there are no other instances associated to that class, the missing value is
imputed with the average of the observed values (0.15, 0.22 and 0.34) of instances
associated to descendant classes of the class associated to the instance containing
the missing value. Thus, the attribute value of the instance 7 is imputed as 0.24.

The previous strategies are not applicable to the case of instance 9, as the
missing value is associated to the class R.3.1.1, which is not associated to any
other dataset instance and neither is an ascendant class of any class associated
to an instance with observed value of the attribute F . Then, the missing value
is replaced with mean of the observed values (1.6, 1.55 and 1.71) of instances
associated to ascendant classes of the class associated to the instance containing
the missing value. Thus, the attribute value of the instance 9 is imputed as 1.62.

Finally, instance 13 has a missing value associated to the class R.4, which
is not associated to any other dataset instance and neither is an ascendant or
descendant class of any class associated to an instance with observed value of the
attribute F . Then, the missing value is replaced with mean of observed values
of attribute F for all other instances. In this example, the attribute value of the
instance 13 is imputed as 2.07.

Table 2 shows the complete dataset achieved after application of the HSIM on
the incomplete dataset presented in Table 1. In this table, the imputed attribute
values are highlighted in bold. The steps of the proposed method described in
the Algorithm 1 are detailed next.

Algorithm 1 describes the steps of the proposed method. First, HSIM receives
as input a dataset represented by an M × N matrix, where M is the num-
ber of instances and N is the total number of attributes (predictive attributes
and class attribute). In addition, we consider that the last matrix column is
the class attribute. By scanning the data matrix (lines 1 and 2), whenever a
missing value for attribute j in instance i is found (line 3), four empty vec-
tors (sameClass, descendantClass, ascendantClass and differentClass) are
initialized (lines 4, 5, 6 and 7). Then, all known values for attribute j asso-
ciated to the same class of the instance i (line 10) are stored in the vector
sameClass (line 11). Similarly, all known values for attribute j associated
to a class descendant of the class of the instance i (line 12) are stored in
the vector descendantClass (line 13). In the same way, all known values for
attribute j associated to a class ascendant of the class of the instance i (line 14)
are stored in the vector ascendantClass (line 15). The remaining known val-
ues for attribute j associated to a class non-descendant and non-ascendant of
the class of the instance i are stored in the vector differentClass (line 17).
After, if the vector sameClass has some element, the average or mode of the
sameClass elements is used to impute the missing value (lines 23 and 25). Oth-
erwise, if the vector descendantClass is not empty, the average or mode of the
descendantClass elements is used to impute the missing value (lines 29 and 31).

140 L.R. Galvão and L.H.C. Merschmann

Table 2. Complete dataset

ID F Class attribute

1 0.15 R.1.1

2 3.67 R.2

3 3.41 R.2

4 4.12 R.2.1

5 0.22 R.1.2

6 3.5 R.2

7 0.24 R.1

8 0.34 R.1.2

9 1.62 R.3.1.1

10 4.1 R.2

11 1.6 R.3.1

12 1.55 R.3

13 2.07 R.4

14 1.71 R.3.1

Alternatively, when sameClass and descendantClass vectors are empty, if the
vector ascendantClass is not empty, the average or mode of the ascendantClass
elements is used to impute the missing value (lines 35 and 37). Finally, when-
ever sameClass, descendantClass and ascendantClass vectors are empty, the
average or mode of the differentClass elements is used to impute the missing
value (lines 41 and 43).

4 Computational Experiments

4.1 Datasets and Experimental Setup

Computational experiments were carried out on incomplete datasets to evaluate
the effect of the proposed missing value imputation method on classification per-
formance when using a global hierarchical classifier. Thus, the proposed method
(HSIM) was compared against the following popular unsupervised missing value
imputation methods: Mean Imputation (MI), Expectation Maximization (EM)
and KNNImpute. Since there are no supervised missing value imputation meth-
ods proposed in literature for hierarchical classification context, we consider that
it is fair to have a comparison of proposed method against unsupervised meth-
ods, given that they can be directly applied for datasets used in hierarchical
classification scenario.

While KNNImpute algorithm was implemented in C++ programming lan-
guage, for MI and EM, the experiments were executed using the WEKA [28]

HSIM: A Supervised Imputation Method 141

Algorithm 1. HSIM
Input: DB matrix ; //Incomplete Dataset
Output: DB full matrix ; //Complete Dataset

1: for j = 1; j < N − 1; j + + do
2: for i = 1; i <= M ; i + + do
3: if DB[i][j] == “?” then
4: sameClass ← ∅
5: descendantClass ← ∅
6: ascendantClass ← ∅
7: differentClass ← ∅
8: for k = 1; k <= M ; k + + do
9: if k �= i and DB[k][j] �= “?” then
10: if DB[k][N] == DB[i][N] then

11: sameClass.insert(DB[k][j]);

12: else if isDescendant(DB[k][N], DB[i][N]) then

13: descendantClass.insert(DB[k][j]);
14: else if isAscendant(DB[k][N], DB[i][N]) then
15: ascendantClass.insert(DB[k][j]);

16: else

17: differentClass.insert(DB[k][j]);
18: end if

19: end if

20: end for
21: if size(sameClass) > 0 then

22: if is continuous(j) then
23: DB full[i][j] = average(sameClass);

24: else

25: DB full[i][j] = mode(sameClass);
26: end if
27: else if size(descendantClass) > 0 then
28: if is continuous(j) then
29: DB full[i][j] = average(descendantClass);

30: else
31: DB full[i][j] = mode(descendantClass);

32: end if

33: else if size(ascendantClass) > 0 then
34: if is continuous(j) then

35: DB full[i][j] = average(ascendantClass);

36: else

37: DB full[i][j] = mode(ascendantClass);
38: end if
39: else

40: if is continuous(j) then

41: DB full[i][j] = average(differentClass);

42: else
43: DB full[i][j] = mode(differentClass);
44: end if
45: end if

46: else
47: DB full[i][j] = DB[i][j]

48: end if

49: end for

50: end for

142 L.R. Galvão and L.H.C. Merschmann

implementations, named ReplaceMissingValues and EMImputation, respec-
tively. For KNNImpute, the experiments were conducted by varying the parame-
ter k (number of nearest instances considered to impute missing values) between
10 % and 50 % of the number of instances in the dataset, in increments of 10 %.
Since the best results were obtained for k = 10%, it was adopted to obtain the
results presented here. For EM, WEKA’s default parameters were used.

Experiments were conducted by running both the proposed and the baseline
methods on 8 bioinformatics datasets related to gene functions of yeast. In these
datasets, the predictor attributes include the following types of bioinformatics
data: secondary structure, phenotype, homology, sequence statistics, and expres-
sion. In addition, the classes to be predicted are hierarchically organized in a tree
structure. The datasets, initially presented in [20], were multi-label data. Since
in this work we focus on single path label scenario, before running the miss-
ing value imputation algorithms, the datasets were converted into single label
data by choosing one class for each instance. This process consisted of selecting,
for each instance, the more frequent class in the original dataset. HSIM imple-
mentation and the single label datasets are available at https://github.com/
leandrodvmg/HSIM. Table 3 provides the main characteristics of the datasets
used in the experiments. This table shows, for each dataset, its number of pre-
dictive attributes, number of instances, number of classes at each hierarchy level
(1st/2nd/3rd/4th/5th/6th levels), percentage of instances containing at least one
missing attribute value and percentage of missing data in the M × P matrix,
where M is the number of instances and P is the total number of predictive
attributes.

After all datasets were processed by both the proposed and the baseline
missing value imputation methods, the imputation quality was measured by
running a global hierarchical classifier on these datasets. However, before run-
ning the classifier, as in [7,9,29], an unsupervised discretization algorithm based
on equal-frequency binning (using 20 bins) was applied to continuous attributes.

Table 3. Characteristics of the datasets

Dataset # Attributes # Instances # Classes per level % Incomplete
instances

% Missing
values

Categorical /
Continuous

CellCycle 0 / 77 3758 8/37/73/46/25/2 93.45 5.57

Church 1 / 26 3756 8/37/72/47/25/2 61.76 9.65

Eisen 0 / 79 2425 5/26/55/34/22/2 75.45 1.93

Expr 4 / 547 3780 8/37/73/46/26/2 100.00 8.90

Gasch1 0 / 173 3765 8/37/73/46/26/2 86.34 2.27

Gasch2 0 / 52 3780 8/37/73/46/26/2 61.15 3.55

Sequence 5 / 473 3920 8/37/73/46/26/2 0.66 0.01

SPO 3 / 77 3704 8/37/73/46/26/2 99.43 2.28

https://github.com/leandrodvmg/HSIM
https://github.com/leandrodvmg/HSIM

HSIM: A Supervised Imputation Method 143

The Global-Model Naive Bayes (GMNB) [22], an extension of the flat classifier
Naive Bayes to deal with hierarchical classification problems, was the global hier-
archical classifier adopted in these experiments. It makes possible predictions at
any level of the class hierarchy. In order to evaluate the predictive performance of
the hierarchical classifier GMNB, we used the 10-fold cross validation method [1]
and the hierarchical F-measure, an adaptation of the flat F-measure customized
for hierarchical classification scenario. For each dataset, the same ten folds were
used in the evaluation of the GMNB classifier.

4.2 Computational Results

As mentioned earlier, the objective of experiments was to compare the hierarchi-
cal classifier performances when running on datasets preprocessed using different
missing value imputation methods. More specifically, the HSIM method was com-
pared against each one of the baseline methods (Mean Imputation, Expectation
Maximization and KNNImpute). Therefore, for each dataset, in order to deter-
mine if there is a statistically significant difference between the F-measures of
the GMNB classifier when running on the dataset preprocessed by HSIM and by
other baseline method, we have used the Wilcoxon’s Signed-Rank Test (two-sided
test) with Bonferroni adjustment on the results as we are making many-to-one
comparisons [30]. This statistical test was applied with 95 % of confidence level.

Experimental results are shown in Table 4 for each dataset listed in the first
column. This table shows, from the second to fifth column, the average hierar-
chical F-measure (hF) achieved by GMNB classifier (with standard deviation in
parentheses) when running on each dataset preprocessed by the missing value
imputation methods Mean Imputation (MI), Expectation Maximization (EM),
KNNImpute (KNN) and HSIM, respectively. In bold we mark the best result
achieved for each dataset. In addition, the � symbol after an hF value indicates
that the difference between that baseline method and HSIM holds statistical
significance. Finally, the last row of the table summarizes the results of statisti-
cal test, i.e., for each baseline method, it is presented the number of times the
HSIM outperformed the baseline method by providing a better GMNB classifier
performance.

From results presented in Table 4 it is possible to observe that for most of
datasets the GMNB classifier achieved higher predictive performance when the
dataset was preprocessed using the proposed HSIM. In 6 out of 8 datasets,
HSIM obtained significantly better results than MI and, in the remaining two
datasets there was no statistically significant difference between the two methods.
EM is outperformed by HSIM, with statistical significance, in 5 out of 8 datasets
and, in the remaining datasets, the difference between the methods was not
statistically significant. Finally, HSIM outperformed KNNImpute in 7 out of 8
datasets with statistical significance and, in the remaining dataset there was no
statistically significant difference between the methods. It is also interesting to
note that, in 5 out of 8 datasets, the HSIM outperformed all baseline methods
by providing significantly better GMNB predictive performance. For only one

144 L.R. Galvão and L.H.C. Merschmann

Table 4. Experimental Results

Dataset MI + GMNB
hF (std. error)

EM + GMNB
hF (std. error)

KNN + GMNB
hF (std. error)

HSIM + GMNB
hF (std. error)

CellCycle 15.57 (2.00) � 15.91 (1.13) � 16.00 (1.70) � 27.17 (2.17)

Church 8.42 (1.20) � 8.31 (1.17) � 8.26 (0.95) � 13.10 (1.41)

Eisen 20.59 (2.23) 20.56 (1.66) 20.06 (1.36) � 21.88 (1.68)

Expr 19.62 (1.84) � 20.27 (1.27) � 20.20 (1.51) � 45.64 (2.32)

Gasch1 18.29 (1.30) � 18.47 (2.06) � 18.22 (1.61) � 22.97 (1.86)

Gasch2 15.37 (1.30) � 15.44 (1.35) � 15.44 (1.65) � 19.55 (1.78)

Sequence 18.73 (1.13) 18.95 (1.48) 18.76 (1.15) 18.75 (1.15)

SPO 13.37 (1.03) � 13.22 (1.13) 13.37 (1.03) � 14.36 (0.76)

HSIM wins 6 5 7

dataset (Sequence) HSIM was statistically equivalent to all baseline imputation
methods.

When analysing the results showed in Table 4 and the percentage of miss-
ing values in datasets presented in Table 3, it is interesting to note that HSIM
improves the most over the other methods on datasets with large percentage of
missing values. Besides, the unique dataset (Sequence) where HSIM does not
outperform any baseline method has very small percentage (0.01 %) of missing
values.

In order to contribute to understand the results presented in Table 4, in the
graphs of Fig. 2, it is presented the distribution of missing value per attribute
as well as information on the predictive power of the attributes for classification
purpose. The hierarchical Symmetrical Uncertainty (SUH), originally proposed
in [31] to deal with feature selection for hierarchical classification problems, was
adopted as measure of predictive power of each attribute. A higher SUH indicates
better predictive power. In these graphs, the bars represent the percentage of
missing value of each attribute while the solid and dashed lines correspond to
SUH of the attributes without missing value imputation and with missing value
imputation using HSIM, respectively.

From the graphs presented in Fig. 2, we can observe that for most of datasets
(6 out of 8) the predictive power (according to SUH) of several attributes
improved after missing value imputation process using HSIM. These graphs show
that the missing value imputation does not necessarily imply higher predictive
power of attributes, since it depends on the quality of imputation. Nevertheless,
even for datasets where only a few attributes had their predictive power increased
after missing value imputation process (e.g., Church dataset), it is possible to
verify the improvement of the predictive performance of the GMNB classifier.

HSIM: A Supervised Imputation Method 145

Fig. 2. Percentage of missing values and predictive power for each attribute with miss-
ing data.

5 Conclusion

In data mining applications, incomplete datasets is a very common situation.
Since many classification algorithms are sensitive to missing attribute values,
they can pose an obstacle for classification and other data mining tasks. Although
several methods for substituting the missing values can be found in the literature,
to the best of our knowledge, for hierarchical classification scenario, there are
no supervised methods to deal with the hierarchical context. Therefore, in this
work, we proposed and evaluated a supervised missing value imputation method
for datasets used in the hierarchical classification problems.

146 L.R. Galvão and L.H.C. Merschmann

The proposed method, named HSIM, takes into account the class relation-
ships in the target problem to impute missing attribute values. The main idea of
HSIM is replacing each missing value with mean or mode of observed values of
that attribute for other instances associated to a class descendant or ascendant of
the class of the instance containing the missing value. This procedure is adopted
whenever there are no known attribute values for the instances associated to a
particular class.

The evaluation of the proposed method was conducted on 8 bioinformatics
datasets by comparing it against the following popular unsupervised missing
value imputation methods: Mean Imputation, Expectation Maximization and
KNNImpute. As the objective was to evaluate the effect of the proposed missing
value imputation method on classification performance when using a global hier-
archical classifier, the imputation quality was measured by running the global
hierarchical classifier, known as Global-Model Naive Bayes, on datasets pre-
processed by aforementioned imputation methods.

In our experiments, for most of datasets, the hierarchical classifier achieved
the best predictive performance when the dataset was preprocessed using the
proposed HSIM. Considering the Wilcoxon’s Signed-Rank statistical test with
Bonferroni correction, the HSIM outperformed all baseline imputation methods
(by providing significantly better GMNB predictive performance) in 5 out of
8 datasets. In the remaining three datasets, HSIM reached results statistically
equivalent or better than baseline methods. Therefore, we conclude that the
proposed missing value imputation method has shown good performance in the
hierarchical classification context.

As future work we intend to evaluate the performance of the method proposed
in this work in other application domains, such as image classification, music
genre classification and text categorization. We also intend to extend the HSIM
to deal with hierarchical multi-label classification scenario.

Acknowledgements. This research was partially supported by CNPq, FAPEMIG,
UFOP, and by individual grants from CAPES.

References

1. Han, J., Kamber, M.: Data Mining: Concepts and Techniques: Concepts and Tech-
niques. Elsevier, Amsterdam (2011)

2. Little, R.J., Rubin, D.B.: Statistical Analysis with Missing Data. Probability and
Statistics, vol. 1, 2nd edn. Wiley, New York (2002)

3. Schafer, J.L., Graham, J.W.: Missing data: our view of the state of the art. Psychol.
Methods 7(2), 147 (2002)

4. Silla Jr., C.N., Freitas, A.A.: A survey of hierarchical classification across different
application domains. Data Min. Knowl. Disc. 22(1–2), 31–72 (2011)

5. Qiu, X., Huang, X., Liu, Z., Zhou, J.: Hierarchical text classification with latent
concepts. In: Proceedings of the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies: Short Papers, vol. 2, pp.
598–602. Association for Computational Linguistics (2011)

HSIM: A Supervised Imputation Method 147

6. Dollah, R.B., Aono, M.: Classifying biomedical text abstracts based on hierarchical
‘concept’ structure. World Acad. Sci. Eng. Technol. Int. J. Comput. Electr. Autom.
Control Inf. Eng. 5(2), 178–183 (2011)

7. Campos Merschmann, L.H., Freitas, A.A.: An extended local hierarchical classifier
for prediction of protein and gene functions. In: Bellatreche, L., Mohania, M.K.
(eds.) DaWaK 2013. LNCS, vol. 8057, pp. 159–171. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40131-2 14

8. Valentini, G.: Hierarchical ensemble methods for protein function prediction. ISRN
Bioinf. 2014 (2014)

9. Silla, C.N., Freitas, A.A.: Novel top-down approaches for hierarchical classification
and their application to automatic music genre classification. In: 2009 IEEE Inter-
national Conference on Systems, Man and Cybernetics, SMC 2009, pp. 3499–3504.
IEEE (2009)

10. Ariyaratne, H.B., Zhang, D.: A novel automatic hierachical approach to music
genre classification. In: 2012 IEEE International Conference on Multimedia and
Expo Workshops (ICMEW), pp. 564–569. IEEE (2012)

11. Binder, A., Kawanabe, M., Brefeld, U.: Efficient classification of images with tax-
onomies. In: Zha, H., Taniguchi, R., Maybank, S. (eds.) ACCV 2009. LNCS, vol.
5996, pp. 351–362. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12297-2 34

12. Kramer, G., Bouma, G., Hendriksen, D., Homminga, M.: Classifying image galleries
into a taxonomy using metadata and wikipedia. In: Bouma, G., Ittoo, A., Métais,
E., Wortmann, H. (eds.) NLDB 2012. LNCS, vol. 7337, pp. 191–196. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31178-9 20

13. Le, B.V., Bang, J.H., Lee, S.: Hierarchical emotion classification using genetic
algorithms. In: Proceedings of the Fourth Symposium on Information and Com-
munication Technology, pp. 158–163. ACM (2013)

14. Van Hulse, J., Khoshgoftaar, T.M.: Incomplete-case nearest neighbor imputation
in software measurement data. Inf. Sci. 259, 596–610 (2014)

15. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R.,
Botstein, D., Altman, R.B.: Missing value estimation methods for dna microarrays.
Bioinformatics 17(6), 520–525 (2001)

16. Rahman, M.G., Islam, M.Z.: IDMI: a novel technique for missing value imputa-
tion using a decision tree and expectation-maximization algorithm. In: 2013 16th
International Conference on Computer and Information Technology (ICCIT), pp.
496–501. IEEE (2014)

17. Bi, W., Kwok, J.T.: Multi-label classification on tree-and dag-structured hierar-
chies. In: Proceedings of the 28th International Conference on Machine Learning
(ICML 2011), pp. 17–24 (2011)

18. Sun, Z., Zhao, Y., Cao, D., Hao, H.: Hierarchical multilabel classification with
optimal path prediction. Neural Process. Lett., 1–15 (2016)

19. Cerri, R., Barros, R.C., de Carvalho, A.: Hierarchical classification of gene
ontology-based protein functions with neural networks. In: IEEE International
Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2015)

20. Clare, A., King, R.D.: Predicting gene function in saccharomyces cerevisiae. Bioin-
formatics 19(suppl 2), ii42–ii49 (2003)

21. Chen, Y.L., Hu, H.W., Tang, K.: Constructing a decision tree from data with
hierarchical class labels. Expert Syst. Appl. 36(3), 4838–4847 (2009)

22. Silla, C.N., Freitas, A.A.: A global-model naive bayes approach to the hierarchical
prediction of protein functions. In: 2009 Ninth IEEE International Conference on
Data Mining, ICDM 2009, pp. 992–997. IEEE (2009)

http://dx.doi.org/10.1007/978-3-642-40131-2_14
http://dx.doi.org/10.1007/978-3-642-12297-2_34
http://dx.doi.org/10.1007/978-3-642-31178-9_20

148 L.R. Galvão and L.H.C. Merschmann

23. Blockeel, H., Schietgat, L., Struyf, J., Džeroski, S., Clare, A.: Decision trees
for hierarchical multilabel classification: a case study in functional genomics. In:
Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI),
vol. 4213, pp. 18–29. Springer, Heidelberg (2006). doi:10.1007/11871637 7

24. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for
hierarchical multi-label classification. Mach. Learn. 73(2), 185–214 (2008)

25. Otero, F.E.B., Freitas, A.A., Johnson, C.G.: A hierarchical classification ant
colony algorithm for predicting gene ontology terms. In: Pizzuti, C., Ritchie,
M.D., Giacobini, M. (eds.) EvoBIO 2009. LNCS, vol. 5483, pp. 68–79. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-01184-9 7

26. Brown, M.L., Kros, J.F.: Data mining and the impact of missing data. Ind. Manag.
Data Syst. 103(8), 611–621 (2003)

27. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.), 1–38 (1977)

28. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

29. Borges, H.B., Silla, C.N., Nievola, J.C.: An evaluation of global-model hierarchical
classification algorithms for hierarchical classification problems with single path of
labels. Comput. Math. Appl. 66(10), 1991–2002 (2013)

30. Japkowicz, N., Shah, M.: Evaluating Learning Algorithms. Cambridge University
Press, Cambridge (2011)

31. Dias, T.N., Merschmann, L.H.C.: Adaptação da medida incerteza simétrica para a
seleção de atributos no contexto de classificação hierárquica monorrótulo. In: Anais
do Encontro Nacional de Inteligência Artificial e Computacional, Natal, RN, Brazil,
pp. 142–149 (2015)

http://dx.doi.org/10.1007/11871637_7
http://dx.doi.org/10.1007/978-3-642-01184-9_7

Applications

Predicting Cargo Train Failures: A Machine
Learning Approach for a Lightweight Prototype

Sebastian Kauschke1(B), Johannes Fürnkranz2, and Frederik Janssen1

1 Knowledge Engineering Group, Telecooperation Group,
TU Darmstadt, Darmstadt, Germany

{kauschke,janssen}@ke.tu-darmstadt.de
2 Knowledge Engineering Group, TU Darmstadt, Darmstadt, Germany

fuernkranz@ke.tu-darmstadt.de

Abstract. In cargo transportation, reliability is a crucial issue. In the
case of railway traffic, the consequences of locomotive failure are not lim-
ited to the affected machine, but are propagated through the railway net-
work and may affect public transport as well. Therefore it is desirable to
predict and avoid failures. In order to do this, constant monitoring of the
trains’ systems and measurement of the relevant variables is required, but
often not implemented. In this paper we leverage the existing technology
of the 185 locomotive series and build a layered model for power converter
failure prediction that can be applied without additional technology. We
train instance anomaly detectors based on the pattern structure of the
locomotives’ diagnostic messages from historical data records. For this
purpose we selected rule and decision tree learning because they can
be easily implemented in the existing software, whereas more complex
classifiers would require costly software adaptations. In order to predict
a time series of instances, we construct a meta classification layer. We
then evaluate our model on the data of 180 locomotive tours by leave
one out classification. The results show that the meta classifier improves
classification accuracy, which will allow us to use this technology in a
fielded prototype installation without disturbing daily operations.

1 Introduction

DB Schenker Rail started the TechLok project in 2011 with the goal to discover
underlying processes of specific failures to implement counter-measures. One of
the research directions is Predictive Maintenance (PM). PM targets the sub-
stitution of existing maintenance processes by adaptive maintenance intervals
that respect the actual state of the equipment. In order to benefit from PM, a
constant monitoring and recording of the machine status data is required, and
prediction models for various systems have to be built. In [2] we evaluated the
process of building such a model based on another failure type. In this paper we
are focussing on the power converter, a unit converting high-voltage electricity
from the power lines to be used to drive the electric train motors.

Usually in PM, historical data is used to train a model of either the standard
behaviour of the machine, or—if enough example cases have been recorded—a
c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 151–166, 2016.
DOI: 10.1007/978-3-319-46307-0 10

152 S. Kauschke et al.

model of the deviant behaviour before the failure. These models are then used
on new data to determine whether the machine is operating within standard
parameters, or, in the second case, if the operating characteristics are similar to
the failure scenario. If the model is trained properly, it will give an alarm in due
time. An overview of various PM methods is given in [6]. In our use case, the
machines are cargo trains. These trains are pulling up to 3000 tons of cargo, so
a lot of parts are prone to deterioration effects.

In this paper we will present a method to predict power converter failure
(PCF) based on 40 recorded historical events of this type. PCF causes the train to
break down and is costly in repair. Previous attempts at predicting PCF showed
that a prediction horizon of multiple days was not possible. By thorough analy-
sis together with engineers and domain experts we concluded, that this type of
failure has a short prediction horizon. Hence, we try predicting PCF in an online
manner such that we use the historical data to simulate a live-environment and
live-prediction. We analyse complete tours of locomotives containing the inci-
dents (incident tours) as well as normal tours (non-incident tours) and build
a two-level prediction method. The classifier is trained with a classical offline
method. The classification phase takes place in an online setting (which we sim-
ulate here), where a steadily increasing incoming information stream about the
tour has to be classified. This distinguishes our method from related methods
(e.g. direct classification methods like [11] or multi-instance methods [8]) which
deal with a complete set of information.

Caused by the limits of the existing data collection systems and our goal
to create a prototype installation of our method, the resulting method has to
be implemented in a script language. Therefore we chose to aim for easy-to-
implement classifiers like decision trees or rule learners. The system will be
implemented to generate trust in the method first, before making the effort
to thoroughly integrate it into the existing database environment.

This paper is organized as follows. Section 2 gives an introduction to the
data and the process of creating instances to train a classifier upon. In Sect. 3
we describe the data analysis and our conclusions thereof, which leads us to
building the classification model in Sect. 4. Finally, we set up the experiment
(Sect. 5), show the results in Sect. 6 and give a conclusion in Sect. 7.

2 Data Retrieval and Preparation

In this section we will give an insight to the locomotive data and show how we
create instances for machine learning from them.

2.1 Diagnostic Data

Diagnostic data is collected on the locomotive in the form of a logfile, in which
all events occurring in the various systems of the locomotive are recorded. In
total, there are 6909 different event types, the so called diagnostic messages (DM).
Diagnostic messages can contain status information, warnings or specific error
messages.

Predicting Cargo Train Failures 153

Table 1. Examples of diagnostic messages in their raw format

train code from to environment

185004 4003 1394442136 1394443101 D3BA1C00500000000000000B00000000000E8053

185004 4003 1393940175 1394792657 4FB11C00500002000000000BE00000005019005B

A set of system variables, the so called environment, which are encoded as
strings (see Table 1), is attached to each DM. The variables are not monitored
periodically, but only recorded when a DM occurs, since the whole system is
event-based. Which variables are encoded depends on the diagnostic message
that was recorded. This implies that some variables will be recorded rarely and
sometimes not for hours or days. Overall, there are 2291 system variables avail-
able: Booleans, numeric values like temperature or pressure and system states
of certain components (encoded as numeric values).

The diagnostic messages have two timestamps (Table 1), one for when the
code occurred first (from), and one for when it disappeared (to). This was orig-
inally designed for status reporting messages that last a certain period. Most
codes only occur once, so they do not have a timespan, others can last up to
days. For example, code 8703 (Battery Voltage On) is always recorded when the
train has been switched on, and lasts until the train is switched off again. We
use it to determine the start and end of tours.

2.2 Converting Diagnostic Data to Instances

In our pursuit to classify tours in an online scenario with live data, we decide
to keep the overhead for data transformation into our desired form as small
as possible. Therefore we look at each DM as a boolean value, which is either
active or inactive for any specific point in time. In the historical data this can
be decided based on the from and to values that are set for each DM.

With this information, we create status vectors for each relevant point in
time for each tour, where relevant is defined as a point where the status vector
changes compared to the one before (see Table 2 as an example, Ci is the state of
a DM). We could create such vectors in arbitrary or fixed intervals, at maximum
once a second (that is the finest granularity in the data). Fixed intervals could
generate multiple identical instances, because state changes occur sparsely, so
we use arbitrary intervals and generate an instance on every status change.
As environment variables we use temperature readings that are relevant to our
prediction problem, e.g. temperature values that are dependent on the outside
temperature. The outside temperature was considered as interesting and relevant
by the engineering experts.

Preparing the data this way, we receive a set of instances per tour. The size
of this set depends on the duration and the circumstances. A locomotive being
taxied might generate a high number of messages in a short time, whereas a loco-
motive moving for hours in the same direction may not generate many messages.

154 S. Kauschke et al.

Table 2. Example of status vectors as binary instances with relevant changes

Instance \ Code C1 C2 C3 C4 ... Cn−2 Cn−1 Cn Temp1 Temp2

Instance 1 1 0 0 1 ... 0 1 0 ? ?

Instance 2 1 1 0 1 ... 0 1 0 17.5 18.3

Instance 3 0 1 0 1 ... 0 1 0 ? ?

As a result we see a high variance in temporal density of diagnostic messages. We
will analyse the behaviour of the tour data we generated this way in Sect. 3.

2.3 The Learning Problem

Given by the historic data is a set of tours S, where each tour consists of data
from a single locomotive. Tours of a locomotive are non-overlapping in time. The
set of tours S consists of the set of incident tours F and the set of non-incident
tours N . A tour s has Ns instances Is,n which depict the state of the locomotive
at a certain timestamp Ts,n. Two instances from the same tour never have iden-
tical timestamps. Ls ε {normal, incident} denotes the label of each tour. LIs,n
denotes the label of each instance n in tour s, where LIs,n ε {negative, positive}.

The online approach we are pursuing causes the situation to be as such:
During the course of a tour, instances will be recorded and the instance set x for
the tour will grow. The classifier CI predicts the instance classes LIs,n of the
instances of x.

Based on the results of CI, a classifier CT has to make a decision if the
tour is normal or a potential incident. Preferably, the classifier can decide if the
tour is an incident before the actual failure occurs, so that a person can react
accordingly. In this work, we pursue the following goals:

Learn an instance classifier function CI such that CI(Is,n) = LIs,n from the
instance data of all other tours {S \ s}.

Learn a tour classifier function CT such that CT (x) = Ls from the instance
data of all other tours {S \ s}.

Select an optimal CT so that the prediction takes place ahead of the actual
failure.

In the following sections we will elaborate on the historic data and illustrate
the problems that arise with it.

3 Tour Analysis

In our historic data we find a total of 90038 tours with a length of at least
100 km and a duration of 2 to 48 h. We assume tours with less duration/length
are often not tours with actual payload and might show a different behaviour
that we want to avoid learning. These tours contain 40 recorded cases of power

Predicting Cargo Train Failures 155

converter failure, which is the failure type we want to predict. We refer to these
tours as incident tours. All other tours without this specific failure occurrence
are non-incident tours. In this section, we will give a short analysis over the
instances’ temporal behaviour.

3.1 Temporal Behaviour of Events in Tours

In Fig. 1 we show a 10 min excerpt from the diagnostic data that was recorded
on a locomotive. Each mark represents the occurrence of a message. As stated
before, a message only occurs when a change is detected or notification/warning
issued in one of the locomotives’ systems.

Start End

Fig. 1. Visualised instance distribution of a 10min tour excerpt

Unfortunately, the event-based character of the data poses a problem for our
given task of online failure prediction. Since we are depending on information
about the state of the machine—which in this case might change drastically
before getting a new status reading in the form of a DM—we might not be
able to give accurate predictions. The example (Fig. 1), shows gaps between the
instances, although we selected a gratuitous example with 65 instances in 10 min.
In less optimal cases there might be hours between two instances.

In Tables 3 and 4 we show the differences in behaviour of incident tours and
non-incident tours. We can see, that the latter have significantly fewer instances
per hour, which increases the average distance between instances. One intuitive
explanation of this behaviour would be that locomotives that are about to fail
issue more diagnostic messages. On the other hand it might be a random effect
caused by the low number of incident tours these numbers are based on.

Table 3. Incident tour statistics (based on 40 tours longer than 2 h)

Incident tours Instances/h Duration Average instance distance

Average 34 11.8 h 147 s

StdDev 22.3 16.2 h 87 s

The difference in average duration seems counter-intuitive. The incident
tours should be shorter because they are aborted prematurely by the failure.
The higher standard deviation shows that this value is misleading in this regard,
so we can not make further assumptions based on these values.

156 S. Kauschke et al.

Table 4. Non-incident tour statistics (based on 90038 tours from 2 to 48 h)

Non-incident tours Instances/h Duration Average instance distance

Average 22.6 9.8 h 232 s

StdDev 10.9 5.1 h 114 s

4 Building a Classification Model

In this section we propose a two-level approach for classifying tours in an online
manner. We will train a classifier based on the instances, and then introduce a
meta classifier to combine individual predictions to an assessment of the entire
tour. First we describe the labelling process we used for our supervised learning
approach. After that, we elaborate on intermediate results that we obtained
by applying the learned models on the data and build the meta classifier for
tour-level classification based on the observations of the results.

4.1 Labelling with Variable Window Size

Since the data is unlabelled we only have information about when the inci-
dent happened. To train the classifier, we need to artificially generate positive
instances to learn upon. This is a crucial aspect with influence on the quality of
the resulting classifier. We use a modified version of the labelling method sug-
gested by Létourneau et al. [4]. This method uses a windowed labelling approach:
We label the instances such that they are labelled positive in a window before
the failure occurs, and negative otherwise (cf. Sect. 2.3). Because we do not know
which the indicative instances are or how they are different from non-indicative
instances, we define an integer w as the duration of this window, the so called
warning epoch (see Fig. 2). We will determine the value of w experimentally by
applying the values shown in Table 5 (Window size).

Negative
Positive
Failure

Fig. 2. The labels assigned to instances of an exemplary incident tour

As stated before, we are looking at a failure that has a very short prediction
horizon, meaning that the selection of the positive instances is crucial to the suc-
cess of the method. Otherwise our classifier will not be able to build an adequate
model. The number of positive instances depends on the size of the labelling win-
dow w. We analysed the quantity of labelled instances in the incident tours by
using window sizes from 60 to 9600 s and a setting with all instances of the tour

Predicting Cargo Train Failures 157

Table 5. Analysis of positive instances in 40 incident tours without failure instance

Window size 60 s 150 s 300 s 600 s 1200 s 2400 s 4800 s 9600 s All

Number pos. instances 18 48 78 113 230 538 1298 2677 10903

Avg pos. inst. per tour 0.45 1.2 2 2.8 5.8 13.5 32.5 66.9 273

in order to determine plausible values for w. In this table, we excluded the actual
instance of the moment the failure happened. By including this instance we gain
one more positive instance per tour. In Sect. 5 we will use both variants to make
sure we do not permit the classifiers to gain information from this instance.

We are dealing with a heavily skewed dataset in terms of positive and negative
instance numbers since we have very few incidents but a large number of normal
tours. As shown in Fig. 3 and Table 5, we see that for the lower end of the window
size spectrum, e.g. 60 and 150 s, we receive low numbers of positive instances, so
that some of the tours contribute no instances to train the classifier upon. The
all setting enlarges the window to cover every instance in a tour. With this few
instances to train upon, we expect poor classification performance from the mod-
els trained with these parametrisations in the evaluation. Only at the largest win-
dow size of 9600 s every tour contributes at least one instance to the training set.

0 5 10 15 20 25 30 35 40
0

50

100

150

Incident Tours 1-40

L
ab
el
le
d
ite
m
s

60 s 150 s 300 s 600 s 1200 s 2400 s 4800 s 9600 s

Fig. 3. Incident tours - labelled items w.r.t. window size (seconds)

By training the classifier this way, we do not expect to achieve a perfect
classifier, but rather create an anomaly detector that can be deployed with little
effort on the given systems. More complex anomaly detection methods are avail-
able in the form of e.g. One-class SVM [5], but they can not be implemented in
this proof of concept prototype.

4.2 Instance Level Classification

After we constructed the models by the procedure given in Sect. 4.1, we apply
them on the given tour data. Since the model is trained to recognize the instances

158 S. Kauschke et al.

0

1

T
1

0

1

T
2

0

1

T
3

0

1

T
4

0 50 100 150 200 250 300 350 400 450 500
0

1

Instance number

T
5

Fig. 4. Instance level classification behaviour in tours: principal types (Incident at 500)

right before the failure, and we assume those instances show a different behaviour
than while operating normally, it will classify instances as positive when they
match the pattern of the almost-failure instances. In an ideal scenario, the model
would classify tour instances as negative, and switch to positive when nearing
the point of failure, much like the data it has been trained with.

Unfortunately, this behaviour occurred rarely when we applied the model
(Sect. 5.3). Instead, the model would give predictions like those shown in Fig. 4.
We found five principal types of behaviour when inspecting the classification
results of a sample of tours.

– T1 - The classifier gives constant positive results when nearing the point of
failure.

– T2 - Spontaneous spikes give hints on faulty behaviour, but there is no con-
sistency.

– T3 - A cluster of spikes, or multiple clusters, with variances in density/length.
– T4 - A positive phase is followed by a negative phase.
– T5 - Purely negative, no indication is given.

If we want to make a prediction for a complete tour based on the results of
the instance level classifier CI, we can do this in a naive way by assuming
that CT = CI. Therefore if an instance is classified as positive, the tour will be
classified as incident. If the classified tour is an actual incident, the types T1-T4
would give true positive results, and a false negative in case of T5.

Besides the classification of incident tours, we also classified non-incident
tours using the same model. Unfortunately, the behaviours shown in Fig. 4
could also be observed there, although T1-T4 occurred less often. The naive
method would create false positives in cases T1-T4 when making predictions
for the whole tour. To solve this on the instance level, we need more precisely

Predicting Cargo Train Failures 159

trained models. This issue was anticipated: with only 40 examples of PCF, a
well-performing generalised model was not to be expected.

Depending on the parametrisation of the model, types T1 and T4 did not
occur at all in our sample set of non-incident tours. Behaviour type T2 on the
other hand occurred frequently. We will propose an advanced meta classifier to
prevent these occurrences from creating false positives and improve tour-level
classification in the next section.

4.3 Tour-Level Meta Classification

In this section we will propose two methods for the meta-layer of the predic-
tion process. The baseline tour classifier SimpleDirect, and a method which will
improve tour-classification performance beyond the limitations of SimpleDirect.

The SimpleDirect Tour Classifier. We use the SimpleDirect (SD) method
as a baseline tour classification method. The classifier SD is defined such that
it uses an instance classifier CI. If CI classifies an instance as positive, SD will
classify the tour as incident.

The instance classifier gives us an indication based on a single instance as
class: either positive (as in: failure is likely) or negative. It is un-intuitive to base
the classification of a whole tour on a single instance. We would rather look at a
certain number of instances and make the decision on multiple results of instance
classifications. We present a naive approach to this problem which improves on
the SimpleDirect schema.

Meta Classification by Percentage Threshold. This method requires a
threshold t = positive/total to be surpassed to predict the incident label for the
whole tour. Instance level classification is applied separately to the instances in
the order of their arrival time, and the result is used to calculate the threshold.
The method requires a minimum number of seen instances w.r.t. the threshold
ratio. This has the positive effect that it reduces false positives in the case of
T2-type instance classifications, but it also limits the classifier to make a very
early decision caused by the necessity of a minimum of seen instances. We will
take this into account when evaluation the performance in Sect. 6.

In order to measure the performance of our tour meta classifiers, we will use
the following metrics besides the usual candidates such as Hits (true positives),
Misses (false negatives), true negatives and false positives:

– Time to failure (TTF): Remaining time delta (seconds) between the moment
of the classifier declaring a tour as incident and the actual incident.

– Aggregated time to failure (aTTF): TTF averaged over all correctly classified
incident tours.

– Minimum time to failure (mTTF): minimum TTF in all correctly classified
incident tours.

160 S. Kauschke et al.

These metrics have to be regarded in combination to sort out useful para-
metrisations and find the best-performing combinations of instance classifier and
tour-level meta classifier. It is important to detect as many incidents in advance
as possible, but it is also important to generate a low number of false positives
in order to avoid unnecessary maintenance cost.

5 Experimental Setup

In the following, we will introduce the classifiers, elaborate on the methods we
used to help improve the problem with imbalanced classes, explain our chosen
evaluation method and state all variants of the tour-level meta classifier we used.
Finally, we will explain the evaluation method.

5.1 Parametrisation of the Classifiers

Our goal is to create a lightweight prototype installation of the prediction sys-
tem, which means we have to rely on classifiers that can be implemented on
the given systems. We decided to go with two basic classifiers, JRIP (as the
WEKA [10] implementation of the RIPPER rule learning algorithm [1]) and J48
(WEKA implementation of C4.5 decision tree learner [7]). A ruleset or a deci-
sion tree is easy to implement on a system that only allows a low-level scripting
language, and therefore the right choice for our endeavours. Furthermore, they
allow for easy interpretability. This is especially useful for the engineers to draw
conclusions from the learned rules or trees and helps justify or discard a model.

5.2 Sampling and Balancing

As a result of the labelling process explained in Sect. 4.1 we have a set of instances
with a highly skewed class imbalance. Training a classifier on this kind of data
might give suboptimal results, because classifiers will focus on the majority class
(and subsequently be correct more than 99 % of the time). We will apply the
following techniques in order to improve classifier performance:

– Subsampling with the SpreadSubsample1 filter from WEKA
– Class-weight balancing with the ClassBalancer2 filter from WEKA.

Subsampling rebuilds the training set, such that a certain ratio between the
rarest and the most frequent class is realised. For example we use this to create
a 15:1 spread ratio of negative to positive class. Of course by this measure the
number of negative instances in the training set will be reduced, which might
have an influence on learning the class in some classifiers.

1
http://weka.sourceforge.net/doc.stable/weka/filters/supervised/instance/SpreadSubsample.
html.

2
http://weka.sourceforge.net/doc.dev/weka/filters/supervised/instance/ClassBalancer.html.

http://weka.sourceforge.net/doc.stable/weka/filters/supervised/instance/SpreadSubsample.html
http://weka.sourceforge.net/doc.stable/weka/filters/supervised/instance/SpreadSubsample.html
http://weka.sourceforge.net/doc.dev/weka/filters/supervised/instance/ClassBalancer.html

Predicting Cargo Train Failures 161

Class-weight balancing adjusts the instance weights in the data set, so that
all classes have the same total weight. Both, JRip and J48 support weighted
instances. This is not the case for all classifiers implemented in WEKA.

We used both of the classifiers with their default WEKA configuration. The
default configurations provide solid classification performance, which we can
later optimise, but at the moment we will concentrate on the other parameters.

5.3 Leave One Tour Out Evaluation

Our data consists of all 40 incident tours, and we add a random sample of 140
non-incident tours from our pool of tours that have a duration of more than 2 h
and 100 km.

For evaluation we use a leave-one-out cross-validation method, i.e. we train
the model on 179 tours and apply it to the remaining one, for each of the 180
tours. This method is a version of the leave one batch out method described
in [3], which leaves a batch of instances out of the training data. In our case,
a batch consists of all instances from the left-out tour. We want the maximum
possible number of incident tours in the training set, so that the classifier has the
best chance to learn a proper model. By this we assure that at least 39 incident
tours are in each training set, which gives the best possible conditions for the
classifier.

At the instance level, the 40 incident tours contribute 10903 and the 140 non-
incident tours 27512 instances to the train/test data. The number of positive
instances depends on the w value.

5.4 Variants

We used the following parameters and values in combination to find the optimal
result:

The labelled Data. We used the process described in Sect. 4.1 in two variants.
The first variant excludes the instance that contained the actual failure, the
second includes it.

Labelling Windows. We used 7 labelling window sizes as described in Sect. 4.1
from 300 s to 9600 s and a version that labels all instances, in order to empir-
ically find the optimal window.

Class Balancing. For balancing we used Subsampling (see Sect. 5.2) in 3 variants
with spread-factors of 15, 30 and 50, Class-weight balancing and a variant
with no balancing.

Tour-level. In order to classify complete tours we applied the percentage threshold
(see Sect. 4.3) in 9 variants (2, 5, 7, 10, 15, 20, 30, 40 and 50% threshold)
as well as SimpleDirect (1 hit in total). Since the result is determined by this
parameter in combination with the instance level classifier we used a wide
spread of values.

162 S. Kauschke et al.

As stated before, we used both J48 and JRip as classifiers, resulting in a total
of 1400 combinations of parameters. For each of these combinations we applied
the leave-one-tour out evaluation method, resulting in around 10700 h computing
time for the complete evaluation. Unfortunately, caused by time constraints, we
were not able to compute multiple runs with different sample sets of non-incident
tours.

6 Experiment Results

In this section, we will describe the baseline of our experiment, show the results
we achieved, and compare the enhanced meta classifier to the SimpleDirect
baseline.

6.1 The Accuracy Baseline

Since we are targeting the classification of tours and have no related method to
use as a baseline, the ratio of the tour classes will be the starting point. We are
using a dataset with 40 incident tours and 140 non-incident tours, so a classifier
that always chooses the majority class would achieve an accuracy of 77.7%,
albeit with no true positives.

6.2 Relevant Results

Due to the amount of parameter combinations we will not be able to show all
results here, instead we show a pre-filtered set based on the criterion, that the
mTTF should never be zero, which would mean that a tour was classified based
on the last instance in the tour, and be of no practical use. Furthermore, we sort
the remaining results by the overall false positives and then the true positives.
We want as few false positives as possible, but at the same time a maximum
of true positives. After the filtering we are left with 824 resulting classification
variants.

Caveat. In our evaluation we assume that false positives are costly. Unfortu-
nately we do not know the real cost of PCF and false alarms, so we can not
base our findings on it. With over 90000 tours in our dataset, even a 1 % false
positive rate would lead to 900 locomotives having to be checked. Therefore we
want to find a method that creates little to no false alarms. We also asked the
people that will have to use this system, and they would rather work with a
method that has a higher confidence and less hits than a classifier that creates
many false alarms.

The results (Table 6) are ranked by the criteria mentioned above. The
columns contain the following information:

1. Rk : Rank as determined by our sorting criteria
2. f.I.: Dataset contains the failure instance (f.I.= 1) or not (f.I.= 0)

Predicting Cargo Train Failures 163

3. Window: Size of the specific labelling window
4. Classifier : The classifier used
5. Balancing : Balancing method (Subsampling, Classweight balancing or

None)
6. Meta Classifier : Parametrisation of the meta classifier, or SimpleDirect (SD)
7. Accuracy : Percent correctly classified instances
8. aTTF : Average TTF in correctly classified incident tours in hours
9. mTTF : Minimum TTF in correctly classified incident tours in minutes

10. TP, TN, FP, FN : True positive, true negative, false positive and false neg-
ative tours

Table 6 shows that we can achieve multiple combinations with no false posi-
tives. Only from rank 50 onwards some false positives occur. On the top ranks
we have a maximum of 12.5 % (5 of 40) true positives. Although this does not
seem impressive at first sight, with an expensive failure like the PCF this can
be a valuable asset used for cost reduction. All the methods we selected show
an average time-to-failure high enough for a person to react. Only in the worst
case (mTTF of Rk. 12) the reaction time could be too short to react.

As far as the optimal labelling window is concerned, the best performing con-
figurations were built on the 2400 s window size. Although we can not precisely
determine why this works best, we assume it’s a combination of the number of
instances and the relevance of the instances they cover. Most of the top results

Table 6. Top results with mTTF > 0 ordered by FP asc, TP desc

Rk f.I Window Classifier Balanc. Meta Accur. aTTF mTTF TP TN FP FN

1 0 2400 J48 subs50 5perc 80.56 5.85 h 125.9 m 5 140 0 35

2 0 2400 J48 subs50 7perc 80.56 5.70 h 113.7 m 5 140 0 35

3 0 2400 J48 5perc 80.00 7.33 h 135.9 m 4 140 0 36

4 0 2400 J48 7perc 80.00 7.20 h 123.2 m 4 140 0 36

5 0 2400 J48 subs50 10perc 80.00 5.41 h 70.6 m 4 140 0 36

6 1 2400 J48 subs30 30perc 79.44 7.04 h 63.3 m 4 140 0 36

7 0 2400 JRip subs50 2perc 79.44 8.24 h 142.1 m 3 140 0 37

8 0 2400 JRip 2perc 79.44 8.50 h 141.2 m 3 140 0 37

9 0 2400 J48 10perc 79.44 7.58 h 99.4 m 3 140 0 37

10 1 1200 J48 subs30 30perc 79.44 6.75 h 63.3 m 3 140 0 37

11 0 2400 J48 20perc 79.44 6.43 h 63.3 m 3 140 0 37

12 1 2400 JRip 20perc 78.89 5.79 h 1.0 m 3 140 0 38

13 1 300 J48 subs50 10perc 78.89 12.36 h 266.0 m 2 140 0 38

14 1 300 J48 subs50 5perc 78.89 12.35 h 264.1 m 2 140 0 38

15 0 600 JRip subs50 10perc 78.89 8.61 h 140.6 m 2 140 0 38

...

50 1 2400 JRip subs30 7perc 80.00 16.39 h 138.1 m 6 139 1 35

51 1 2400 JRip subs30 10perc 79.44 18.32 h 135.8 m 5 139 1 36

52 1 2400 J48 subs15 30perc 79.44 8.15 h 63.3 m 5 139 1 36

53 1 2400 JRip 2perc 79.44 5.89 h 37.2 m 5 139 1 36

164 S. Kauschke et al.

Table 7. Top 5 results with mTTF > 0 and SimpleDirect meta classifier

Rk f.I Window Classifier Balanc. Meta Accur. avgTTF minTTF TP TN FP FN

228 0 600 J48 subs50 SD 78.33 10.76 h 28.8 m 5 136 4 35

505 0 1200 J48 subs15 SD 72.22 8.28 h 33.5 m 13 117 23 27

688 0 all J48 SD 52.78 12.62 h 51.3 m 37 58 82 3

711 1 600 J48 SD 22.78 11.88 h 53.7 m 40 0 140 0

712 1 600 JRip SD 22.78 11.88 h 53.7 m 40 0 140 0

also include some version of the SpreadSubsample filter, but the variants without
balancing are not far behind (e.g. Rk.1 and Rk.3). All of the top results perform
above baseline in terms of accuracy, although not by much.

We can also see that the tour-level meta classification increases the classifi-
cation performance compared to SimpleDirect (Table 7). The first configuration
that uses SimpleDirect is ranked on position 228 in the results. It performs mar-
ginally above baseline in terms of accuracy (78.33%) but some false positives are
present. The further SimpleDirect variants achieve even lower ranked positions,
having even more false positives.

The percentage threshold method has the disadvantage that it has to gather
a certain number of instances before it can make a decision. Naturally, we assume
it would be slower in making decisions compared to SimpleDirect. As we see in
Tables 6 and 7, this is not completely true. Based on the aTTF value, it seems
that the meta classifier is slower. But when we compare the—more crucial—
mTTF value, the meta classifier outperforms SimpleDirect. We attribute this to
the fact that the SimpleDirect results are based on smaller labelling windows
(600, 1200 s), which changes the behaviour of the instance classification.

6.3 Improvement by Percentage Threshold Meta Classifier

An example of how the tour-level classifier improves the performance can be seen
in Table 8. Using SimpleDirect the instance classifier produces false alarms. By
utilising the meta classifier with a 7 % positive instance threshold we are able to
completely avoid false positives and still achieve 5 true positives.

Table 8. Example of improvements through percentage threshold metaclassification

TP TN FP FN Accuracy

SimpleDirect 40 0 140 0 22.2 %

7% threshold 5 140 0 35 80.56%

Predicting Cargo Train Failures 165

7 Conclusions and Outlook

We have created the basis for an easy-to-implement prediction prototype that
can be realised even on systems with limited capabilities. In our case, a decision
tree with a meta classifier built on top shows good recognition performance, while
creating no false positives on our dataset. This is especially useful to create trust
in the method among the engineers and people that are supposed to use it on
daily basis.

The next step will be the realisation of the prototype, but we also plan further
enhancements that we could not yet incorporate into the process:

– Finetuning of the labelling windows
– Parameter optimisation of the classifier models
– Replacing the meta classifier with a learned model
– Using ensembles of instance level classifiers and tour level classifiers

At the moment we apply fixed labelling windows to all tours. This might not
yield the optimal result for each of the tours. It is likely that we have to decide
upon other criteria to improve the labelling, in order to train a better instance-
level classifier. Also, the tour-classification is naive at the moment. We will try
to learn another classification model on the output of the instance-level classifier
w.r.t. the tour class, so that the results can be improved and we achieve more
hits and less false alarms. Further improvements could be achieved by combining
multiple classifiers and their decisions on the instance as well as the tour level.
Finally, we will also apply more complex learning algorithms on the data. While
the practical use may be limited at the moment, it is useful to see if the results
can be improved.

Further approaches would include treating this problem as a multi-instance
problem [8], especially regarding the question, if the online character of this
situation can be handled in a multi-instance setting. Another way of approaching
the topic would be via pattern learning [9], e.g. by discovering sequences of
diagnostic messages that lead to failure.

Acknowledgments. This work has been co-funded by the DB Schenker Rail project
“TechLok” and by the LOEWE initiative (Hessen, Germany) within the NICER project
[III L 5-518/81.004].

References

1. Cohen, W.W.: Fast effective rule induction. In: Proceedings of the Twelfth Inter-
national Conference on Machine Learning, pp. 115–123 (1995)

2. Kauschke, S., Schweizer, I., Janssen, F.: On the challenges of real world data in
predictive maintenance scenarios: a railway application. In: Görg, S., Müller, G.,
Bergmann, R. (eds.) Proceedings of the LWA 2015 Workshops: KDML, FGWM,
IR, and FGDB, pp. 121–132. CEUR Workshop Proceedings, October 2015

3. Kubat, M., Holte, R.C., Matwin, S.: Machine learning for the detection of oil spills
in satellite radar images. Mach. Learn. 30(2–3), 195–215 (1998)

166 S. Kauschke et al.

4. Létourneau, S., Famili, F., Matwin, S.: Data mining for prediction of aircraft com-
ponent replacement. IEEE Intell. Syst. Jr. - Special Issue on Data Mining 14,
59–66 (1999)

5. Martinez-Rego, D., Fontenla-Romero, O., Alonso-Betanzos, A.: Power wind mill
fault detection via one-class v-svm vibration signal analysis. In: Proceedings of
International Joint Conference on Neural Networks (2011)

6. Peng, Y., Dong, M., Zuo, M.J.: Current status of machine prognostics in condition-
based maintenance: a review. Int. J. Adv. Manufact. Technol. 50(1–4), 297–313
(2010)

7. Ross Quinlan, J.: C4. 5: Programs for Machine Learning. Morgan Kaufman Pub-
lishers, Inc., San Francisco (1993)

8. Sipos, R., Fradkin, D., Moerchen, F., Wang, Z.: Log-based predictive maintenance.
In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1867–1876. ACM (2014)

9. Vaarandi, R., et al.: A data clustering algorithm for mining patterns from event
logs. In: Proceedings of the 2003 IEEE Workshop on IP Operations and Manage-
ment (IPOM), pp. 119–126 (2003)

10. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann, San Francisco (2005)

11. Zaluski, M., Létourneau, S., Bird, J., Yang, C.: Developing data mining-based
prognostic models for cf-18 aircraft. J. Eng. Gas Turbines Power 133(10), 101601
(2011)

Predicting Bug-Fix Time: Using Standard
Versus Topic-Based Text Categorization

Techniques

Pasquale Ardimento1(B), Massimo Bilancia2, and Stefano Monopoli3

1 Department of Informatics, University of Bari Aldo Moro,
Via Orabona, 4, 70125 Bari, Italy
pasquale.ardimento@uniba.it

2 Ionian Department of Law, Economics and Environment,
University of Bari Aldo Moro, Via Lago Maggiore angolo Via Ancona,

74121 Taranto, Italy
massimo.bilancia@uniba.it

3 Everis Italia S.p.A., Via Gustavo Fara, 26, 20124 Milano, Italy
stefano.monopoli@everis.com

Abstract. In modern software development, finding and fixing bugs is
a vital part of software development and quality assurance. Once a bug
is reported, it is typically recorded in the Bug Tracking System, and
is assigned to a developer to resolve (bug triage). Current practice of
bug triage is largely a manual collaborative process, which is often time-
consuming and error-prone. Predicting on the basis of past data the
time to fix a newly-reported bug has been shown to be an important tar-
get to support the whole triage process. Many researchers have, there-
fore, proposed methods for automated bug-fix time prediction, largely
based on statistical prediction models exploiting the attributes of bug
reports. However, existing algorithms often fail to validate on multiple
large projects widely-used in bug studies, mostly as a consequence of
inappropriate attribute selection [2]. In this paper, instead of focusing
on attribute subset selection, we explore an alternative promising app-
roach consisting of using all available textual information. The problem
of bug-fix time estimation is then mapped to a text categorization prob-
lem. We consider a multi-topic Supervised Latent Dirichlet Allocation
(SLDA) model, which adds to Latent Dirichlet Allocation a response
variable consisting of an unordered binary target variable, denoting time
to resolution discretized into FAST (negative class) and SLOW (positive
class) labels. We have evaluated SLDA on four large-scale open source
projects. We show that the proposed model greatly improves recall, when
compared to standard single topic algorithms.

Keywords: Bug triage · Bug-fix time prediction · Text categorization ·
Supervised topic models · Supervised Latent Dirichlet Allocation (SLDA)

The authors equally contributed to this paper.

c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 167–182, 2016.
DOI: 10.1007/978-3-319-46307-0 11

168 P. Ardimento et al.

1 Introduction

In recent years, with the increasing complexity of software systems, the task of
software quality assurance has become progressively more challenging. In mod-
ern software development, software repositories are specialized database storing
the output of the development process. The large-scale and partially unstructured
data stored in these facilities are often not fully suited to traditional analysis meth-
ods [27]. A major role is played by finding and fixing bugs, which is a vital part
of software development and quality assurance to such an extent that it has been
estimated that software companies spend over 45 percent of their costs in fixing
bugs [21,27]. The largest and most complex software projects are most often sup-
ported by a specialized database known as Bug Tracking System (BTS), used by
quality assurance personnel and programmers to keep track of software problems
and resolutions. Once a bug is reported, it is typically recorded in the BTS, and
is assigned to a developer to resolve (bug triage). Current practice of bug triage is
largely a manual collaborative process, in that the triager first examines whether
a bug report contains sufficient or duplicated informations, then she/he confirms
the bug and sets severity and priority, and finally decides who has the expertise
in resolving it. Any such process is expected to be costly and inaccurate when the
number of bug reports is large. For example, [12] report that empirical studies on
Eclipse and Mozilla show that 37 %–44 % of bugs have been re-assigned (tossed)
at least once to another developer. As there are many bug reports requiring reso-
lution and potentially many developers working on a large project, it is non-trivial
to assign a bug report to the appropriate developers.

For the reasons above, predicting on the basis of past data the time to fix a
newly-reported bug has been shown to be an important target to support the
whole triage process (and, in particular, to make the assignment more effec-
tive), and hence to help project managers to better estimate software mainte-
nance efforts and improve cost-effectiveness [29]. Broadly speaking, bug fix-time
is defined as the calendar time from the triage of a bug to the time the bug
is resolved and closed as fixed [19]. Many researchers have proposed methods
for automated bug-fix time prediction, largely based on machine learning tech-
niques. Most of existing approaches are building prediction models based on
the attributes of bug reports. For example, [20] used a historical portion of the
Eclipse Bugzilla database. The predictor variables consisted of selected fields
included, at time of confirmation, in the textual description of bugs reports.
Several data mining models were then built and tested, using a nominal target
class based on discretized time to resolution on a logarithmic scale. A logis-
tic regression classifier provided the best classification accuracy of 34.5 %. In a
similar fashion, [11] combined the attributes of the initial bug report with post-
submission information. Bugs reports in the training set were classified into fast
and slowly fixed. Not surprisingly, they found that post-submission data of bug
reports improved their prediction model based on decision tree analysis. See also
[29], where further studies are reviewed in greater depth.

Despite these apparently positive findings, [2] showed how existing models
fail to validate on multiple large projects widely-used in bug studies, indicating

Predicting Bug-Fix Time 169

a poor predictive accuracy comprised between 30 % and 49 %. In addition, it
was found that there was no correlation between the probability that a new bug
will be fixed, bug-opener’s reputation and the time it takes to fix a bug. These
findings show that we must be able to identify attributes which are effective
in predicting bug-fix time. On the other side, instead of focusing on attribute
subset selection, an alternative promising approach consists of using all available
textual information. The problem of bug-fix time estimation is then mapped to a
text categorization problem. A new bug report is classified to a set of discretized
time to resolution classes (discretized bug-fix time), based on a classifier which
is trained using historical data.

Traditional text categorization techniques establish the relationship between
a set of predefined categories and their respective documents by analyzing doc-
ument contents. This class of models can be unified under the assumption that
each textual bug report exhibits exactly one probability distribution over strings
drawn from some vocabulary of terms [17]. This assumption is often too limit-
ing to model a large collection of textual bug reports. In standard unsupervised
Latent Dirichlet Allocation (LDA) each word in a document is generated from
a Multinomial distribution conditioned on its own topic, which is a probability
distribution over the terms in the vocabulary representing a particular under-
lying semantic theme [3]. However, as our main objective is to predict bug-fix
time, we consider a supervised Latent Dirichlet Allocation (SLDA) model [4,28],
which adds to LDA a response variable consisting of an unordered binary target
variable, denoting time to resolution discretized into FAST (negative class) and
SLOW (positive class) class labels. We have evaluated SLDA on four large-scale
open source projects (see Sect. 4 for in-depth details). We show that the proposed
model greatly improves recall, when compared to single topic algorithms.

The remainder of the paper is organized as follows. Section 2 describes how
our model collects the data. Section 3 deals with the methods used in our pre-
diction models. Section 4 presents the empirical study and the results. Section 5,
finally, draws the conclusions.

2 Data Collection

Data collection is the first step of bug-fix time prediction process, whose overall
conceptual design is shown in Fig. 1. Our design is largely application indepen-
dent, albeit we will use the open source BTS Bugzilla for the actual imple-
mentation [7] (see also Sect. 4 for further details). First, data gathering consists
of selecting only those historical bug records which are sensible to predict dis-
cretized time to resolution of previously unseen bugs. In other words, we select
textual reports of resolved and closed bugs only, whose Status field has been
assigned to VERIFIED, as well as Resolution field has been assigned to FIXED.

As we said before, our approach maps the prediction problem into a text cat-
egorization task. Hence, once the relevant textual bug reports have been selected,
we consider the content of the following fields (which are first extracted and then
re-collapsed into a single text identified by a unique Id, and used as input for

170 P. Ardimento et al.

Fig. 1. Conceptual design of bug-fix time prediction process.

the subsequent phase described in Subsect. 3.1): Product (a real-world product,
identified by a name and a description, having one or more bugs). Component
(a given subsection of a Product, having one or more bugs). Short desc (a one-
sentence summary of the problem). First priority (priority set by the user
who created the report. The default values of priority are from P1, highest, to
P5, lowest). First severity (severity set by the user who created the report.
This field indicates how severe the problem is, from blocker when the appli-
cation is unusable, to trivial). Reporter (the account name of the user who
created the report). Assigned to (the account name of the developer to which
the bug has been assigned to by the triager, and responsible for fixing the bug).
Days resolution (the calendar days needed to fix the bug). Priority (priority
set either by the triager or a project manager). Severity (severity set either by
the triager or a project manager). First comment (the first comment posted by
the user who created the report, which usually consists of a long description of
the bug and its characteristics). Comments (subsequent comments posted by the
Reporter and/or developers endowed with appropriate permissions, which can
edit and change all bugs fields, and comment these activities accordingly).

We discarded a few fields, such as Number of activities, CC list, Status
and Resolution. For example, Number of activities is an integer value that
would surely be removed during pre-processing steps, required to transform a
raw text into a bag-of-word representation (see Sect. 3.1 and Fig. 2). Both Status
and Resolution have been discarded because these fields have already been used
for bug report selection, and they have always been assigned values VERIFIED
and FIXED respectively. Finally, field CC list contains a list of account names
who get mail when the bug changes, and it is has been discarded because it

Predicting Bug-Fix Time 171

has not been assigned any value in the great majority of cases. We also want
to highlight that Days resolution has been calculated as the number of days
between the date the bug report has been assigned to a developer, and the
date the Resolution field has been assigned to FIXED for the last time. This
datum may be a very inaccurate estimate of the actual time spent on bug fixing,
especially when developers of open source projects are considered (because of
their discontinuous work patterns, for example during the weekend and/or their
free time). Unfortunately, we cannot trace the actual time spent on a bug fixing,
and provide a more accurate estimate expressed in person-hours.

When data collection and field extraction are complete, we randomly split the
dataset into a training and a test dataset (given a fixed split percentage). This
operation must necessarily take place after field extraction, because we have to
filter out all post-submission information from test set. In fact, test instances sim-
ulate newly-opened and previously unseen bugs, and this makes compulsory to
delete some of previously extracted fields that were not actually available before
the bug was assigned. In particular, the deleted fields were Priority, Severity
and Comments. On the contrary, fields First priority, First severity were
not deleted, as they have been assigned a value by the user who created the
report.

We want also to highlight that our design envisages that historical bug-
fix times are discretized into two classes, conventionally labelled as SLOW and
FAST. The SLOW labels indicates a discretized bug-fix time above some fixed
threshold in right-tail of the empirical bug-fix time distribution. We also assume
that SLOW indicates positive class, hence SLOW being the target class of our
prediction exercise. In fact, we are interested in increasing the number of true
positives for the positive class. In other words, over-estimation of bug-fix times
can be considered as a less severe error than under-estimation.

3 Methods

3.1 Pre-processing Textual Description of Bug Reports

The forecasting models that we will use to predict bug-fix times are based on
the representation of a document in terms of a bag-of-words. In this simplified
representation, both the grammar and the order of occurrence of the words are
not relevant. It is only relevant whether a term occur or not, as well as how
many times it occurs in a textual description reproducing the bug.

A number of pre-processing steps are therefore necessary to convert the raw
text into a bag-of-words representation. The steps followed in this paper, shown
in Fig. 2, are quite common and well described in the literature on text catego-
rization and Natural Language Processing (NLP; see, for example, [17]). The final
goal is to precisely define a vocabulary of terms V , for example by eliminating
those words that are very commonly used in a given language and focusing on the
important words instead (stop word removal), or reducing inflectional forms to
a common base form and then heuristically complete stemmed words by taking
the most frequent match as completion (stemming and stem completion).

172 P. Ardimento et al.

Two points appears to be particularly interesting and worthy of further eluci-
dation. The first is that probabilistic text modeling is often done ignoring multi-
word expressions that in specific contexts are given specific meanings. This issue
is particularly relevant for textual descriptions of software defects, and ignor-
ing it can lead to sub-optimal outcomes for a numbers of reason that are well
described in [6]. The algorithm we have followed for detecting multi-words is a
modification of a very simple heuristic introduced by [14]. The detection consists
of the following steps:

1. Tokenize the text into bigrams (sequences of two adjacent words) and store
candidate bigrams whose frequency of occurrence in the text is ≥3.

2. Pass the set of candidate bigrams through a part-of-speech (POS) filter.
3. Only let through the POS filter those part-of-speech patterns that are likely to

be phrases, such as JJNN (Adjective+Noun, singular or mass, using the syn-
tactic annotation scheme implemented by the Penn Treebank Project [18]).
Ten predetermined patterns have been used to identify likely multi-words.

Surprisingly, the proposed algorithm has shown a reasonable accuracy in finding
multi-words of more than two words (results will be published elsewhere).

Fig. 2. The process of transforming a raw textual bug description into a bag-of-words.

Once text pre-processing has been completed, term selection is often neces-
sary as it may even result in a moderate increase in predictive accuracy, depend-
ing on the classifier used and other factors [25]. In our approach, terms are sorted
(from best to worst) according to their estimated normalized expected mutual
information (NEMI, [17]) with the discretized time to resolution (SLOW/FAST).
We only include terms which have a NEMI greater than the average NEMI, ensur-
ing that terms almost approximately independent with the target class label are
omitted.

Predicting Bug-Fix Time 173

The final pre-processing step consist of building, under different weighting
schemes (see Fig. 1), the documents-terms arrays that will be used as inputs
for the classification algorithms described in the following sections. Any global
pre-processing parameters determined on the training data (such the number
of documents that contain a given word) were subsequently applied to the test
documents.

3.2 Prediction of Bug-Fix Times Based on Standard Text
Categorization Models

As we said before, automated approaches to bug-fix time prediction, based
on text-mining and machine-learning techniques, are not new [29]. One com-
mon generative model for a textual content is the Multivariate Bernoulli model
(MB), which generates an indicator for each term of the vocabulary |V |, either
1 indicating presence of the term in the text or 0 indicating absence [17,26].
This amounts to assume that each document is represented as a binary vector
e1:|V | = (e1, . . . , e|V |) of dimensionality |V |. For each bug report and indepen-
dently of each other, the MB model assumes the following generative process,
based on a Näıve Bayes conditional independence assumption:

1. Choose a discrete unordered label variable y (SLOW/FAST) from a discrete
probability distribution.

2. For each word in V (i.e. for t = 1, . . . , |V |) and independently of each
other, choose a value of the indicator et from a Bernoulli distribution,
et|y ∼ Bernouilli(πt), where πt = P (et = 1|y) is the probability that the word
represented by et will occur at least once in any position, in a bug report
labelled with severity y.

It is worth noting that we have suppressed writing the document index d. MB
model implicitly relies on a bag-of-word assumption, and the natural input
used by the model consists of a binary document-term incidence matrix (DTM).
Hence, documents are modeled as a realization of a stochastic process, which is
then reversed by standard machine learning techniques that return maximum-
likelihood estimates of the posterior probabilities of a document (bug) d being
in class y. Such estimates are in turn used for predicting discretized time to
resolution y of newly-opened bugs. Despite its improved performance compared
to the MB model, due to the incorporation of frequency information, we will
not explicitly consider the Multinomial Näıve Bayes (MNB) model. Indeed, the
supervised multi-topic model described in some detail in the next section, con-
tains as a special case a supervised unigram model which is largely equivalent
to the MNB model.

As an alternative way of considering the frequency of term occurrence in
a document, we will use the Vector Space model (VS), with documents being
represented as vectors in R

|V | [24]. The DTM can be weighted using the term
frequency TFtd of word t in document d, as well as the term frequency–inverse
document frequency TF-IDFtd = TFtd × IDFt, which dampens the effects of local

174 P. Ardimento et al.

term-document counts. As usual, the inverse document frequency of word t is
defined as IDFt = log (|D|/DFt), where |D| is the number of documents in the
training collection, and DFt is the number of documents in D that contain the
word t (document frequency). Using the vector-space approach, the documents
of the training set correspond to a labeled set of points in an |V |-dimensional
space. As state-of-the-art vector-based text classification algorithm [13,23], we
will consider in Sect. 4 a non-linear Support Vector Machine (SVM) with soft
margin classification.

3.3 Prediction Based on Supervised Latent Dirichlet Allocation

Models introduced so far limits each textual report to a single topic. This
assumption may often be too limiting to model a large collection of textual bug
reports, as any report typically concerns multiple topics and specific sub-issues
in different proportions. As our objective is to discover this hidden thematic
structure, and use it to predict the discretized time to resolution, we consider
Supervised Latent Dirichlet Allocation (SLDA) as introduced in [4,28], which
adds to standard Latent Dirichlet Allocation a target unordered binary variable.

We now briefly introduce the necessary notation to SLDA, as the represen-
tation of textual bug reports is different from that introduced in Sect. 3.2. As
before, the target variabile is the unordered binary variable y denoting SLOW
and FAST labels (also in this case, we suppress writing the document index d):

– A document d is a stream of N words, d = (w1, . . . , wN). Using superscripts to
denote components, the νth word in |V | is represented as a unit-basis vector
w such that wν = 1 and wu = 0 for u �= ν.

– For each document we have K underlying semantic themes (topics), β1:K =
(β1, . . . , βK), where each βk is a |V |-dimensional vector of probabilities over
the elements of V , for k = 1, . . . ,K.

– z1:N = (z1, . . . , zN) is a vector of K-dimensional vectors indicating, for n =
1, . . . , N , the topic which has generated word wn in document d. The indicator
z of the k-th topic is represented as a K-dimensional unit-basis vector such
that zk = 1 and zj = 0 for j �= k.

The topic indicator uniquely selects a probability distribution in β1:K , as βzn
≡

βk when zk
n = 1. Independently of each other, the generative process of each

pre-processed bug report d is the following:

1. Draw topic proportions from a symmetric Dirichlet distribution over the K-
dimensional simplex, θ|α ∼ DirichletK(α).

2. For each word wn, n = 1, . . . , N , and independently of each other:
(a) Choose a topic from a Multinomial distribution with probabilities θ,

zn|θ ∼ MultinomialK(θ).
(b) Choose a word from a Multinomial distribution with probabilities depen-

dent on zn and β1:K , wn|zn, β1:K ∼ Multinomial|V |(βzn
).

Predicting Bug-Fix Time 175

3. Draw response variabile y (SLOW/FAST, with SLOW ≡ 1) from a logistic
Generalized Linear Model (GLM) of the form:

y|z1:N , η ∼ Bernouilli

(
exp(η�z)

1 + exp(η�z)

)
, (1)

where z = (1/N)
∑N

n=1 zn is the vector of empirical topic frequencies.

In this hierarchical specification, we model discretized bug-fix time as a non-
linear function of the empirical topic frequencies via the linear predictor η�z
(readers unfamiliar with GLMs may profitably consult [9]). A graphical model
representation of SLDA is depicted in Fig. 3, where observable stochastic nodes
are represented as gray circles and latent stochastic variables are white circles.
Parameters α, β1:K and η (white boxes) are treated as unknown fixed hyper-
parameters rather than latent stochastic nodes.

It is apparent from Fig. 3 that the response y and the words share a common
ancestor (the latent topic variables), and hence they are not conditionally inde-
pendent. Documents are generated as a bag-of-words under full word exchange-
ability, and then topics are used to explain the response. Other specifications
are indeed possibile, for example y can be regressed as a nonlinear function of
topic proportions θ, but [4] claim that the predictive performance degrades as
a consequence of the fact the topic probabilistic mass does not directly predicts
discretized bug-fix times.

Posterior inference of latent model variables is not feasible, as the condi-
tional posterior distribution p(θ, z1:N |w1:N , y, α, β1:K , η) has not a closed form.
Consequently, we use a standard variational Bayes (VB) parameter estimation
approach under a mean-field approximation, say q(θ, z1:N |φ), of the conditional
posterior distribution [5,16]. In the variational E-step of the algorithm, the vari-
ational parameters φ are optimized to minimize the Kullback-Leibler divergence

Fig. 3. A graphical model representation of Supervised Latent Dirichlet Allocation
(SLDA). Parameters α, β1:K and η are treated as unknown hyper-parameters to be
estimated, rather than random variables.

176 P. Ardimento et al.

between q(θ, z1:N |φ) and the conditional posterior distribution, given the hyper-
parameters α, β1:K and η. In the M-step, the hyper-parameters are optimized to
maximize the evidence lower bound (ELBO) given the variational parameters.

Let {α̃, β̃1:K , η̃} denote the hyper-parameters of a fitted model. As our main
objective is to apply logistic SLDA to predict discretized bug-fix time of a newly-
opened bug, whose words are wnew

1:N , this amounts to approximating the marginal
posterior expectation of the response variable:

E(ynew|wnew
1:N , α̃, β̃1:K , η̃) = E(μ(η̃�znew)|wnew

1:N , α̃, β̃1:K), (2)

with μ(η̃�znew) = exp(η̃�znew)/(1+exp(η̃�znew)). The identity (2) easily follows
from the law of iterated expectations. Using the multivariate Delta method and
a suitable variational procedure, the RHS of (2) can be easily approximated
(we defer specifics to [4,8]). Of course, if E(ynew|wnew

1:N , α̃, β̃1:K , η̃) > 0.5 then
ynew ≡ 1(≡ SLOW).

4 Results

We have obtained bug report information from Bugzilla repositories of four
large open source software projects: Eclipse, Gentoo, KDE and OpenOffice.
Data were automatically extracted from Bugzilla data sources, using a suitable
scraping routine written in PHP/JavaScript/Ajax. Raw textual reports were pre-
processed and analyzed using the R software system [22]. The table below shows
the total number of textual bug reports extracted for each project (n1), hav-
ing both Status field assigned to VERIFIED and Resolution field assigned to
FIXED. Next, we deleted some textual reports because of corrupted and unre-
coverable records, or missing XML report, or dimension being too large (the
resulting sample sizes are in column n2). If n2 > 1500 (resp.: n2 ≤ 1500) we
randomly selected n3 = 1500 bug reports (resp.: we retained the whole set of
n3 = n2 bug reports), in order to train the classifiers and test the proposed
models.

n1 n2 n3 n4 n5

Eclipse 44435 44347 1500 1200 300

Gentoo 3704 2466 1500 1200 300

KDE 1275 1270 1270 1016 254

Open Office 3057 3057 1500 1200 300

These subsets were randomly divided into a training and a test part, using
an 80:20 split ratio. The resulting sample sizes are indicated by n4 (training set)
and n5 (test set). Before splitting, for each experiment we binned bug reports
into FAST and SLOW using the third quartile q0.75 of the empirical distribution
of bug resolution times. The table below shows the resulting binned distribution.

Predicting Bug-Fix Time 177

We can see that the time needed to fix the bugs exhibits large variations, and
that the underlying continuous-time effort distribution is long-tailed, with a large
percentage of bugs being fixed within a relatively short time.

Eclipse Gentoo KDE Open Office

FAST 0–52 0–42 0–248 0–107

SLOW 53–3696 43–1854 249–2188 108–2147

As shown below, the SLOW/FAST ratio is approximately preserved after
each dataset is split into a training and a test part. Hence, the two class are
moderately imbalanced in both the training and the test set, with a low ratio of
positive to negative class (as we said before, SLOW identifies the positive class).

n3 Training set Test set

SLOW FAST ratio SLOW FAST ratio

Eclipse 1500 299 901 25.00 % 82 218 27.00 %

Gentoo 1500 298 902 25.00 % 79 221 26.00 %

KDE 1270 254 762 25.00 % 67 187 26.00 %

Open Office 1500 300 900 25.00 % 65 235 22.00 %

As we highlighted in Sect. 2, we are interested in increasing the number
of true positives for the positive class, considering over-estimation of bug-fix
times as a less severe error than under-estimation. We used accuracy, preci-
sion, recall and false positive rate (FPR) for measuring the performance of pre-
diction models. Accuracy denotes the proportion of correctly predicted bugs:
Accuracy = (TP+TN)/(TP+FP+TN+FN). Precision denotes the proportion of
correctly predicted SLOW bugs: Precision = TP/(TP+FP). Recall denotes the
proportion of true positives of all SLOW bugs: Recall = TP/(TP+FN). Finally,
false positive rate measure the proportion of false positive of all FAST bugs:
FPR = FP/(FP+TN). The following classification models were trained over the
training set, and evaluated over the test set:

– Multivariate Bernoulli (MB), with either no posterior class probabilities
smoothing, or Laplace λ smoothing parameter respectively set to 1, 2, 3 [17].

– Support Vector Machines (SVM), with sigmoid kernel and soft-margin clas-
sification, cost parameter C respectively set to 0.1, 1, 10, 100 and precision
parameter γ respectively set to 0.001, 0.01, 0.1, 1 [15].

– Supervised Latent Dirichlet Allocation (SLDA), with number of topics K being
respectively set to 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 50, 100. When K = 1, the
SLDA model becomes essentially equivalent to the Multinomial Näıve Bayes
(MNB) model.

178 P. Ardimento et al.

In what follows, we optimize over the test set and show only the best mod-
els (along with the corresponding parameter settings), i.e. the model with the
highest predictive accuracy among the models of the same class. The full result
set is shown below. We look at the first table (Eclipse), as it exhibits a typ-
ical pattern. The highest achievable accuracy with SLDA (K = 25 topics) is
lower than the best achievable accuracies with both MB and SVM. However,
accuracy provides reliable comparisons only when the two target classes have
equal importance. In our setting, we assume that the minority class (SLOW) is
more important, because of its larger impact in terms of cost/effectiveness. If,
consequently, we assume that the main goal is increasing the recall, the logistic
SLDA model has the best performance. FPR increases too, as expected, because
of the larger number of FAST bugs that are classified SLOW under the SLDA
model. However, costs incurred in false positive are generally very low. On the
contrary, both MB and SVM classifiers have high accuracy, but they failed to
correctly predict most of SLOW bugs. On the whole, these result clearly show
that the use of a supervised topic model greatly improves the recall of bug-fix
time prediction.

Eclipse.

Parameters Accuracy Precision Recall FPR

MB λ = 2 0.73 0.60 0.04 0.01

SVM γ = 0.001, C = 10 0.67 0.23 0.09 0.11

SLDA K = 25 0.57 0.32 0.48 0.40

Gentoo.

Parameters Accuracy Precision Recall FPR

MB λ = 2 0.74 0.50 0.13 0.05

SVM γ = 0.001, C = 100 0.74 0.67 0.03 0.00

SLDA K = 30 0.43 0.27 0.70 0.67

KDE.

Parameters Accuracy Precision Recall FPR

MB λ = 2 0.83 0.64 0.79 0.02

SVM γ = 0.001, C = 100 0.60 0.03 0.01 0.19

SLDA K = 40 0.41 0.29 0.84 0.74

Predicting Bug-Fix Time 179

Open Office.

Parameters Accuracy Precision Recall FPR

MB λ = 2 0.78 0.00 0.00 0.00

SVM γ = 0.001, C = 100 0.58 0.22 0.38 0.38

SLDA K = 10 0.51 0.23 0.55 0.55

5 Discussion and Conclusion

Manual bug triage is expensive both in time and cost. But even more impor-
tantly, manual triage is error-prone due to the large number of daily newly-
opened bugs and the lack of knowledge about all bugs by the developers. We
have, therefore, proposed a novel model for automatic prediction of bug-fix time
of newly opened bugs, in order to support the whole triage process and, in par-
ticular, the assignment of any new bug to a developer who will try to fix it.
Our prediction models use text categorization techniques, mapping each textual
bug description into a bag-of-words after a suitable pre-processing stage. Each
bug in the training data set is classified as SLOW or FAST (discretized time to
resolution). The trained prediction model is then used to predict the discretized
time to resolution of each bug in the test set. Any post-submission information,
which was not actually available before the bug was assigned, has been removed
from the test set. We compared two single-topic supervised learning algorithms,
multivariate Bernoulli Model (MB) and Support Vector Machines (SVM), with
a multi-topic model known as Supervised Latent Dirichlet Allocation (SLDA),
recently introduced in [4].

To evaluate the forecasting accuracy of the proposed predictive model against
that of MB and SVM algorithms, we used bug datasets on bug repositories of
four large open source projects: Eclipse, Gentoo, KDE and OpenOffice. Results
show that the proposed model greatly improves recall, when compared to sin-
gle topic algorithms. On the other hand, the loss of accuracy of our method is
quite significant. However, predictive accuracy provides meaningful and reliable
comparisons only when the two target classes have equal importance. In our
experimental setting the negative class (FAST) plays a minor role. Therefore, we
may assume that the main goal is increasing the recall, that is the true positives
for the positive class (SLOW). In this case, the number of false positives can also
be increased, even though costs incurred in false positives are generally very low.
Finally, a comparison with previously reported literature values shows a marked
improvement of the predictive accuracy of the two single topic algorithms. How-
ever, a direct comparison is not possible and further validation will be needed, as
different software projects were examined, and different attributes and/or parts
of textual bug reports were selected, as well as different pre-processing methods
were involved in extracting the bag-of-words representations.

180 P. Ardimento et al.

In conclusion, the proposed method seems promising for implementing a
large-scale bug-fix time prediction system. In the future, we plan to investigate
the following threatens to internal validity:

– Using the quantile qa with a = 0.75 to separate positive and negative instances
is arbitrary. Letting a vary has an impact on both the imbalance ratio and
the predictive accuracy. A sensitivity analysis is therefore needed.

– We need to assess the performance on a larger and independent validation set.
Each presented method is indeed trained for a number of parameter settings
and tested on the test set, but only the best results are presented. In the
future, the methods will be optimized on a separate validation set, instead of
the test set.

– Another issue consists of identifying the potential outliers of the distribution
of bug-fix times, and using them to filter out the data sets. Many authors
have demonstrated that filtering these outliers can improve the accuracy of
the prediction models (see, for example, [1]).

– Most of defect tracking systems are just ticketing systems, that cannot keep
track of actual person-hours spent to resolve a bug. This threat to internal
validity of bug-fix time prediction models has not been investigated yet. In
the same way, similarities and differences between open and non-open source
software projects need to be investigated further.

Finally, some recent techniques tackle the bug-fix time prediction problem using
a radically different (yet very promising) approach, based on predictive Process
Mining, in which each ticket gives rise to a series of activities viewed as an
instance of some ticket handling process, and which can be handled along with
textual informations and descriptive fields, in order to assign a performance value
to any partial process instance, and monitoring the resolution status during its
enactment as well (see [10]). It is therefore highly desirable to compare (at least
experimentally) our solution with this kind of approach. The future work will
explore this interesting task.

References

1. AbdelMoez, W., Kholief, M., Elsalmy, F.M.: Improving bug fix-time prediction
model by filtering out outliers. In: 2013 The International Conference on Techno-
logical Advances in Electrical, Electronics and Computer Engineering (TAEECE),
pp. 359–364 (2013)

2. Bhattacharya, P., Neamtiu, I.: Bug-fix time prediction models: can we do better?
In: Proceeding of the 8th Working Conference on Mining Software Repositories,
MSR 2011, pp. 207–210. ACM Press, New York (2011)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

4. Blei, D.M., McAuliffe, J.D.: Supervised topic models. In: NIPS (2007)
5. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for

statisticians, pp. 1–33 (2016). http://arxiv.org/abs/1601.00670

http://arxiv.org/abs/1601.00670

Predicting Bug-Fix Time 181

6. Boyd-Graber, J., Mimno, D., Newman, D.: Care and feeding of topic models: prob-
lems, diagnostics, and improvements. In: Airoldi, E.M., Blei, D., Erosheva, E.A.,
Fienberg, S.E. (eds.) Handbook of Mixed Membership Models and Their Applica-
tions. CRC Press, Boca Raton (2014)

7. The Bugzilla Team: Bugzilla Documentation 5.0.3+ (2016). https://www.bugzilla.
org/docs/

8. Chang, J., Blei, D.M.: Hierarchical relational models for document networks. Ann.
Appl. Stat. 4(1), 124–150 (2010)

9. Dobson, A.J., Barnett, A.: An Introduction to Generalized Linear Models: Chap-
man & Hall/CRC Texts in Statistical Science, 3rd edn. Taylor & Francis (2008)

10. Folino, F., Guarascio, M., Pontieri, L.: An approach to the discovery of accurate and
expressive fix-time prediction models. In: Hammoudi, S., Maciaszek, L., Teniente, E.,
Camp, O., Cordeiro, J. (eds.) ICEIS 2015. LNBIP, vol. 241, pp. 108–128. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-22348-3 7

11. Giger, E., Pinzger, M., Gall, H.: Predicting the fix time of bugs. In: Proceedings of
the 2nd International Workshop on Recommendation Systems for Software Engi-
neering, RSSE 2010, pp. 52–56. ACM Press, New York (2010)

12. Hu, H., Zhang, H., Xuan, J., Sun, W.: Effective bug triage based on historical
bug-fix information. In: 2014 IEEE 25th International Symposium on Software
Reliability Engineering, pp. 122–132. IEEE (2014)

13. Joachims, T.: Text categorization with support vector machines: learning with
many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS,
vol. 1398, pp. 137–142. Springer, Heidelberg (1998). doi:10.1007/BFb0026683

14. Justeson, J.S., Katz, S.M.: Technical terminology: some linguistic properties and
an algorithm for identification in text. Nat. Lang. Eng. 1(01), 9–27 (1995)

15. Karatzoglou, A., Meyer, D., Hornik, K.: Support vector machines in R. J. Stat.
Softw. 15(1), 1–28 (2006)

16. Lakshminarayanan, B., Raich, R.: Inference in supervised latent Dirichlet allo-
cation. In: 2011 IEEE International Workshop on Machine Learning for Signal
Processing, pp. 1–6 (2011)

17. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, New York (2008)

18. Marcus, M., Kim, G., Marcinkiewicz, M.A., MacIntyre, R., Bies, A., Ferguson,
M., Katz, K., Schasberger, B.: The Penn Treebank: annotating predicate argu-
ment structure. In: Proceedings of the Workshop on Human Language Technology,
pp. 114–119. Association for Computational Linguistics, Stroudsburg (1995)

19. Marks, L., Zou, Y., Hassan, A.E.: Studying the fix-time for bugs in large open
source projects. In: Proceedings of the 7th International Conference on Predictive
Models in Software Engineering, Promise 2011, pp. 1–8. ACM Press, New York
(2011)

20. Panjer, L.D.: Predicting eclipse bug lifetimes. In: Fourth International Workshop
on Mining Software Repositories, MSR 2007: ICSE Workshops 2007, pp. 29–32.
IEEE, Washington, DC (2007). doi:10.1109/MSR.2007.25

21. Pressman, R.S., Maxim, B.R.: Software Engineering: A Practitioner’s Approach,
8th edn. McGraw-Hill Higher Education (2014)

22. Core Team, R.: R: A language and environment for statistical computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2016). https://www.R-project.
org/

23. Rennie, J.D.M., Shih, L., Teevan, J., Karger, D.R.: Tackling the poor assumptions
of Näıve Bayes text classifiers. In: Proceedings of the Twentieth International Con-
ference on Machine Learning (ICML-2003), Washington DC, pp. 616–662 (2003)

https://www.bugzilla.org/docs/
https://www.bugzilla.org/docs/
http://dx.doi.org/10.1007/978-3-319-22348-3_7
http://dx.doi.org/10.1007/BFb0026683
http://dx.doi.org/10.1109/MSR.2007.25
https://www.R-project.org/
https://www.R-project.org/

182 P. Ardimento et al.

24. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Commun. ACM 18(11), 613–620 (1975)

25. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput.
Surv. 34(1), 1–47 (2002)

26. Wilbur, W.J., Kim, W.: The ineffectiveness of within-document term frequency in
text classification. Inf. Retr. 12(5), 509–525 (2009)

27. Xuan, J., Jiang, H., Hu, Y., Ren, Z., Zou, W., Luo, Z., Wu, X.: Towards effective
bug triage with software data reduction techniques. IEEE Trans. Knowl. Data Eng.
27(1), 264–280 (2015)

28. Zhang, C., Kjellström, H.: How to supervise topic models. In: Agapito, L.,
Bronstein, M.M., Rother, C. (eds.) ECCV 2014, Part II. LNCS, vol. 8926, pp.
500–515. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16181-5 39

29. Zhang, J., Wang, X., Hao, D., Xie, B., Zhang, L., Mei, H.: A survey on bug-report
analysis. Sci. China Inf. Sci. 58(2), 1–24 (2015)

http://dx.doi.org/10.1007/978-3-319-16181-5_39

Predicting Wildfires

Propositional and Relational Spatio-Temporal
Pre-processing Approaches

Mariana Oliveira1,2(B), Lúıs Torgo1,2, and Vı́tor Santos Costa1,2

1 DCC – Faculdade de Ciências, Universidade Do Porto, Porto, Portugal
mariana.r.oliveira@inesctec.pt

2 INESC TEC, Porto, Portugal

Abstract. We present and evaluate two different methods for building
spatio-temporal features: a propositional method and a method based
on propositionalisation of relational clauses. Our motivating applica-
tion, a regression problem, requires the prediction of the fraction of each
Portuguese parish burnt yearly by wildfires – a problem with a strong
socio-economic and environmental impact in the country. We evaluate
and compare how these methods perform individually and combined
together. We successfully use under-sampling to deal with the high skew
in the data set. We find that combining the approaches significantly
improves the similar results obtained by each method individually.

1 Introduction

Wildfires are an environmental hazard that affects severely most southern Euro-
pean countries, and Portugal in particular. Although nature relies on fire to
rejuvenate the forest, factors such as the introduction of non-indigenous species,
the rise of industrial forestry, rural depopulation, and climate changes have com-
pounded the problem [5], severely affecting the country’s finances and environ-
ment, and sometimes even causing human losses. Given a limited amount of
resources to address wildfires, a better understanding of the factors that lead to
fire events, and namely to severe fire events, is needed.

Toward this goal, data on wildfires and corresponding geographical context
has been continuously collected by several organisations, both at national and
at European level. This is an example of the novel environmental and socio-
economic databases that store data on entities and how these entities occupy
and transform a space while interacting with each other. Besides background
data on the entities or the location, such as a site’s topology or a country’s
administrative units, most data will be about the events of interest.

Given the size and complexity of the data, it would be difficult even for a highly
qualified expert to fully leverage it. Spatio-temporal data mining techniques offer
the promise of finding human-interpretable patterns (e.g., automatically learning
association rules), or of models that can be used to successfully predict unknown

We thank Dr. João Torres for providing the data we worked with.

c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 183–197, 2016.
DOI: 10.1007/978-3-319-46307-0 12

184 M. Oliveira et al.

or future values based on a set of explanatory variables (e.g., regression models to
predict risk of fire). We focus on the latter. Dealing with both spatial and temporal
dimensions with this goal in mind presents numerous challenges as: (i) the dimen-
sions have different properties, (ii) relationships between spatio-temporal objects
are often fuzzy or implicit [1], (iii) multiple levels of granularity and of abstraction
of both dimensions impact results differently [27], and (iv) data is often volumi-
nous making scalability a concern.

Propositional data mining methods work on a single table, often assuming
that each instance in a data set has been independently sampled from the same
underlying distribution. In contrast, multi-relational methods explicitly consider
the complex nature of the data, often extending a corresponding propositional
approach in order to work on multiple tables from a relational database [12].
In [15], Malerba argues that relational approaches are particularly suited to
spatial data mining tasks since they can deal with heterogeneous spatial objects
and naturally represent a wide variety of relationships between them. We believe
the same argument can be made for spatio-temporal tasks.

Regarding wildfires, the goal will be to estimate the percentage of area burnt
(or burn fraction) of a pre-defined unit (in this case, a Portuguese parish) over
periods of one year. Moreover, we would like to differentiate major events, that
are hard to control, from smallish fire events, that are more frequent but have
little impact. To do so, we approach this problem as a regression task.

In order to construct the regression model, we follow the widely used app-
roach of encoding the relevant spatio-temporal information in the form of propo-
sitional features through a pre-processing step. These features can be obtained by
considering spatio and/or temporal properties in the data [6,18] or even learned
through propositional and/or relational techniques. This approach makes it pos-
sible to benefit from standard (propositional) prediction models that are both
efficient and easy to use.

In this work we present and evaluate two different methods for building
spatio-temporal features: a propositional method and a relational method based
on Inductive Logic Programming (ILP). We compare how these methods perform
individually and combined together. We evaluate performance quantitatively and
through the extra knowledge it provides. We also address the high skew in this
data set, i.e., the fact that the most important cases of higher burn fraction are
under-represented in the data, and demonstrate that under-sampling is quite
effective in improving model performance under these conditions.

We proceed to mention some examples of relational and propositional
approaches to spatio-temporal prediction that have already been proposed.
Purely relational approaches include methods based on ILP [16] and the use
of graphical models [4,23]. Propositional approaches include methods based on
clustering [3], combinations of spatial and temporal methods [11], extensions of
time series forecasting techniques such as ARIMA to account for spatial infor-
mation [20] and of spatial techniques such as GWR to transfer across time [2].
Further, propositional and relational approaches have been contrasted before in
a spatial associative classification setting [10].

Predicting Wildfires 185

In the following section we present the data set we worked with. In Sect. 3
we describe the pre-processing approaches we applied, comparing their results.
Section 4 includes concluding remarks and future research directions.

2 Wildfires in Portugal

We proceed to describe the data set motivating our work. We also discuss the
pre-computation of spatial relationships below.

2.1 Data Set

Our motivating application is the evolution of wildfires across mainland Portu-
gal from 1991 to 2010.1 Spatially, we work at the civil parish level (there are
2882 of them). Our target variable is the percentage of a parish’s area burnt
yearly by wildfires. The variable is non-cumulative, i.e., an area burning multi-
ple times during the year is considered only once. We used 23 other numerical
variables with different temporal granularity as background knowledge (variables
measured only once are considered fixed; see Table 1).

Imbalanced Domain. The values taken by our target variable range from 0 %
(when no wildfire occurred throughout the year) to 99.8 % (see Fig. 1). The
distribution of values is imbalanced in a way that does not correspond to our
preference bias, that is, while we are most interested in accurately predicting
instances of high burn fraction, these cases are under-represented in the data
set. In fact, only about a third of the 57 640 instances have non-zero burn
fractions, while less than 9 % of cases present values of 5 % or above and only
0.5 % of cases have a burn fraction of 40 % or more.

Table 1. Explanatory variables used as background knowledge in our data set.

(%)

Road density
All roads

Fixed

Land cover

Eucalyptus

Fixed

Roads > 6m wide
Tall scrubland Roads < 6m wide

Small scrubland

Census data

Irrigable area
(%)

Decennial
(from 1989)

Broad-leaved forest Meadow area

Pinewood Bovine population density
(ha−1)Urban Ovine population density

Terrain

Maximum altitude
(m)

Caprine population density

Mean altitude Population density (ha−1) Decennial
(from 1991)

Maximum slope Population’s mean age (years)

Mean slope Population of age 65+ (%) Decennial
(from 2001)Housing density (ha−1)

1 Most data for this application (with the exception of census data downloaded
from ine.pt) provided by Dr. João Torres, researcher at CIBIO. Details regarding
data collection can be found in [26].

https://www.ine.pt/xportal/xmain?xpgid=ine_main&xpid=INE

186 M. Oliveira et al.

(a) Mean burn fraction. (b) Maximum burn fraction.

Fig. 1. Mean and maximum percentage of area burnt yearly per parish. Note that they
have different scales. Black lines delineate Portuguese districts.

2.2 Computing Spatial Relationships

Both pre-processing approaches we present require the computation of spatial
relationships in the data set. We made use of the PostGIS spatial extension to
a PostgreSQL database loaded with the shapefiles of the 2882 Portuguese civil
parishes in order to determine spatial neighbourhoods and border parishes.

Defining Neighbourhoods. Neighbourhoods for each parish consist of all
intersecting parishes, calculated using the PostGIS function ST Intersect (pre-
fix ST identifies PostGIS functions).

Neighbour Direction. The relative direction of a neighbour in relation to a ref-
erence parish, O, is taken into consideration in an effort to capture effects of
dominant winds affecting the spread direction of wildfires. This is not a straight-
forward problem, given the heterogeneous shapes presented by parishes. Our
solution is meant to be fast and easily computable. We first compute carto-
graphic azimuths using the parish of interest as reference and each neighbour’s
centroids (calculated with ST Centroid). The azimuth is given clockwise relative
to the north, resulting in the following definition:

neighbour direction =

⎧⎪⎪⎨
⎪⎪⎩

east if az ∈ [45, 135[◦

south if az ∈ [135, 225[◦

west if az ∈ [225, 315[◦

north if az ∈ ([315, 360] ∪ [0, 45[) ◦
(1)

where az is the result of applying the PostGIS function ST Azimuth to the cen-
troids of a reference parish and one of its neighbours.

Predicting Wildfires 187

(a) Neighbour direction. (b) Simplified borders.

Fig. 2. On the left, a parish’s neighbourhood divided by cardinal directions. Red dots
represent the parishes’ centroids. The red lines centred at the reference parish, O, divide
the neighbourhood in four directions. According to this division, O has no western
neighbours. A and B are its northern neighbours; E and D, southern neighbours; and
C, an eastern neighbour. On the right, coloured lines define simplified borders between
O and each of its neighbours. (Color figure online)

Issue. The example in Fig. 2a illustrates a problem in our proposal. While it
is clear O shares borders with neighbours A and E in the western direction,
no western neighbour is found since their centroids fall under the northern and
southern subspaces. Our propositional approach mitigates this by the way it fills
in missing spatio-temporal indicators (Sect. 3.2), while the relational approach
relies on the explicit neighbourhood relationship itself (Sect. 3.3).

3 Predicting Wildfires

In the following sections, we define our problem clearly and detail the different
steps involved in each pre-processing methodology, as well as steps common to
both approaches.

3.1 Problem Definition

Predictive data analysis tasks face the problem of approximating an unknown
function Y = f(X1,X2, . . . , Xp) mapping values of a set of predictors or explana-
tory variables, X, into the values of a target variable, Y , where the approximation
is called the model.

In a spatio-temporal setting, the aim is to predict values at different times
and locations. In this work, we aim at forecasting future values given past
information from neighbouring locations in the past. Consider a data set
D = {{y1

1 , x
1
a1

, . . . , x1
p1

}, . . . , {ym
n , xm

an
, . . . , xm

pn
}} where yl

t and xl
it

correspond,
respectively, to the values of the target variable Y and explanatory variables Xi

at geographical location l and time t. The goal is to predict the value of Y at a

188 M. Oliveira et al.

location of interest, s, at a future time, k, given the observed values yl
t and xl

t,
such that t < k.

3.2 Propositional Pre-processing Approach

The pre-processing stage of our propositional approach can be divided into two
steps: calculation of spatio-temporal indicators and imputation of missing data.

Building Spatio-Temporal Indicators. We build two types of indicators:
purely temporal, and spatio-temporal. A purely temporal indicator (or, self-
indicator) is obtained by calculating the Exponential Moving Average (EMA)
of n past values of the target variable for the reference parish in the previous
9 years. We also build spatio-temporal indicators, inspired by the work of [18],
considering historical values of the target variable for direct neighbours located
at each cardinal direction in the previous 5 years. We compute the indicator for
a particular direction in two steps. First, we calculate the EMA (with ratio 2

n+1)
of the target variable for each neighbour whose centroid falls in that direction.
Then, if there is more than one, a weighted mean of these values is calculated.

Weighing Neighbours. The weights above are designed to roughly approximate
the risk of exposure of a parish to wildfire spread from each neighbour. The
strength of connection between neighbours could be directly measured by the
fraction of the border shared with them. However, meandering borders can easily
increase in length without proportionately increasing the degree of exposure of
the reference parish to wildfires originating in that particular neighbour. There-
fore, we define a simplified border as the maximum distance between any two
points of the intersection using ST MaxDistance (see Fig. 2b). The weight of a
neighbour is the length of its simplified border divided by the sum of the lengths
of the simplified borders of all neighbours in that direction.

Issues. Weighting a neighbour’s EMA in this fashion raises a problem: the cen-
troid of a neighbour may fall in a subspace of a certain direction while most of
its border with the reference parish belongs to another. However, since we do not
have information regarding which portion of a neighbour was burnt (whether it
was close to the border or not), and the level of temporal and spatial granularity
of our data is low, these approximations are still reasonable.

Filling in Missing Data. In order to use standard learning algorithms, we
pre-selected reasonable procedures to fill in missing data. First, independent
spatial-only Inverse Distance Weighting (IDW) (as implemented in [19]) is used
to fill in values missing due to unavailability of spatial data (2.8 % of all cells).
Next, missing values due to heterogeneous temporal granularity (20.6 % of all
cells) are filled in with the latest measurement as there are not enough points
to meaningfully smooth over values. Finally, spatio-temporal indicators missing
due to no neighbour centroids falling within a certain direction (6.8 % of all cells)

Predicting Wildfires 189

are filled in with zero if the parish borders with the sea/ocean or the average of
the two contiguous directions, otherwise.

3.3 Relational Pre-processing Approach

The relational approach we propose follows three steps: first, we rely on the
clause search mechanism implemented in the Aleph ILP system [22]; we then
propositionalise by associating each clause to a different attribute; last, we con-
struct the attribute examples table. In this table, given an example e and a
clause (attribute) i, e[i] = 1 if the clause is true for the instance, and e[i] = 0
otherwise. This approach has been used before in diverse contexts, including spa-
tial classification [10]. Although Aleph searches for clauses that are optimized to
perform well for binary classification, we hypothesise that standard regression
algorithms such as Support Vector Regression machines (SVRs) can successfully
use the binary features representing interesting clauses to accurately approxi-
mate the numerical values of the target variable.

Background Knowledge and Examples

Explanatory Attributes. In order to use Aleph, each explanatory attribute was
converted into a binary (if fixed) or ternary (if time-varying) Prolog predicate.

Spatial Relationships. Spatial relationships are expressed by the following
predicates: neighbour(Parish, Neighbour) where recursion on Neighbour
is avoided, neighbourDirection(Parish, Neighbour, Direction) where
Direction is defined in Sect. 2.2, and border(Parish, Object) where Object
can take the values sea or spain.

Temporal Relationships. We use the number of years past since a wildfire last
affected a certain parish. This is represented by a pair of predicates: yearsSince
FireLE(Parish, Year, TimeDist) and yearsSinceFireGE(Parish, Year,
TimeDist), which are true if by Year the Parish has suffered a wildfire TimeDist
or less years ago, or TimeDist or more years ago, respectively. We use two defin-
itions, conditioned on TimeDist being a variable: the first holds when TimeDist
in unbound, and is used in Aleph’s saturation step; the second, is always called
with the argument bound to one of the values found during saturation (TimeDist
is a constant).

Additional Predicates. Since Aleph does not deal with numerical attributes
directly, auxiliary predicates were designed. That is, each time-varying attribute
had a corresponding attributeLE(Parish, Year, Value) and attributeGE
(Parish, Year, Value) meaning that the value of attribute in Parish mea-
sured in or before Year is lesser or equal (or greater or equal) to Value. Similar
predicates attributeLE(Parish, Value) and attributeGE(Parish, Value)
were created for fixed attributes.

190 M. Oliveira et al.

Examples. The predicate at the head of clauses is burnt(Parish, Year), where
a positive example is a Parish burnt more than 5 % in a given Year.

Clause Search and Selection. The standard Aleph command induce/0 is not
appropriate in this context. Instead, we devise our own method of clause search
and selection. We set clause cost (used for generalisation on the reduction step)
to be the Fβ-measure defined as

Fβ-measure = (1 + β2) · precision · recall

(β2 · precision) + recall
. (2)

First, we randomly chose an example as the seed for search. We then generate
clauses until a certain threshold is reached. Instead of trying to find a theory
covering all examples, we store each and every clause that has been the best
so far for each saturated example according to our chosen metric. In the style
of Gleaner [13], we experimented with different values of β for the Fβ-measure,
trying 60 random seed examples for each β ∈ {0.75, 0.9, 1.0, 1.1, 1.25}. Note
that this requires that the clause found to be the best so far be reset every
time we change the value of β. By varying β, we hope to add some diversity to
our discovered clauses, while keeping it around 1.0 assigns similar importance to
their precision and recall. We set the Aleph parameters controlling the maximum
number of layers of new variables and nodes to 3 and 7500, respectively.

Propositionalisation. Having found the clauses, a Prolog program converts
the stored clauses into a CSV file with rows corresponding to instances and
columns to clauses. This program is capable of filtering out clauses that are
exact repetitions of others, but cannot filter clauses that are even extremely
similar except for some minor change in a constant numeric literal, for example.

3.4 Common Steps

After the pre-processing methods described in Sects. 3.2 and 3.3, we apply a
re-sampling technique that aims to deal with the imbalanced target domain as
an extra pre-processing step. The learning algorithms used and post-processing
steps are also shared by both approaches.

Re-sampling. Several pre-processing techniques exist to tackle the problem
of imbalanced domains that do not correspond to the user’s preference bias.
Re-sampling techniques are quite effective and have the advantage of having
already been proposed for both classification and regression [9], working equally
well with numerical and categorical attributes. Besides balancing the domain,
under-sampling reduces the dimensionality of the data set by removing instances
of the most common class (or range of values), mitigating scalability issues in
the process. We pre-selected the re-sampling technique for regression proposed
by [25] as implemented in [8]. This method automatically calculates the amount

Predicting Wildfires 191

(a) Relevance function (full black line)
used for re-sampling technique and perfor-
mance metrics adapted to regression under
imbalanced domains. Note that the thresh-
old of relevance (dashed red line) coincides
with 5% of burnt area. Below, a visual rep-
resentation of instances across the domain
(most are concentrated at 0%).

(b) Contour map of regression
utility. The x-axis shows predicted
values (Ŷ) for true values (Y) in
the y-axis. Colouring and contour
lines map the utility of each pre-
diction as defined by the relevance
function φ pictured on the left.

Fig. 3. Relevance function and resulting regression utility map. (Color figure online)

of under-sampling needed to balance the domain, given a user-specified rele-
vance function for the target’s domain and a threshold of relevance below which
instances can be removed. We have settled on the function shown in Fig. 3a with
a relevance threshold of 0.5, corresponding to 5 % of burnt area. This relevance
function is also used for performance evaluation in Sect. 3.5.

Modelling and Post-processing We applied the Random Forest (RF) and
SVR algorithms, as implemented in [14] and [17], respectively, to our transformed
data sets. The predictions were then forced into the range of our target variable.

3.5 Experimental Analysis

The main goal of our experimental analysis is to compare the results obtained
by standard regression models on our data set after a propositional versus a
relational pre-processing approach. We also test if a combination of the two pre-
processing approaches results in improved predictions of burn fraction. We try
to provide insight into the effect of different variables in the results. Further, we
assess the impact of the re-sampling step mentioned in Sect. 3.4.

Experimental Setup Standard metrics such as Mean Squared Error (MSE)
are not well equipped to deal with domains where the user preference bias does
not correspond to the target domain distribution as in our case [9]. Therefore, we

192 M. Oliveira et al.

evaluate the quality of our numeric predictions using F1-measureR, which is the
standard F1-measure (2) calculated using the following definitions of precision
and recall2, adapted to utility-based regression [7],

precisionR =

∑
φ(ŷi)>tR

(1 + ui)

∑
φ(ŷi)>tR

(1 + φ(ŷi))
, recallR =

∑
φ(yi)>tR

(1 + ui)

∑
φ(yi)>tR

(1 + φ(yi))
(3)

where φ is the relevance function (depicted in Fig. 3a), tR is a relevance thresh-
old (set to 0.5), and u is a function of utility of a prediction (defined in [21])
depending on the numeric error of the prediction and the importance of both
the predicted ŷ and true y values (see Fig. 3b). Moreover, we measure the time
spent pre-processing data, training and testing models.

In order to obtain reliable estimates of these metrics, we divide the data
set into 10 pairs of sliding training and test sets, and calculate statistics of the
results over them. We train our methodologies on data for a stretch of 8 years
(23056 instances), and test them in the following 3 years (8646 instances). The
first training set starts in 1991 and the last in 2000.

We repeat the experiments for each pre-processing approach (and their com-
bination) with and without the under-sampling step3. We test for statistical
significance in difference of performance using the Wilcoxon signed-rank test.

Results and Discussion. Tables 2 and 3 summarise the results obtained. For
each setup described above, we only show the results achieving the highest F1-
measureR after grid search parameter optimisation. The propositional and the
relational pre-processing approach both obtain very similar results, behaving
well when the under-sampling step is performed. However, the best results are
obtained by the combination of the two methods, with statistical significance in
terms of F1-measureR (as determined by pairwise comparisons with this app-
roach as baseline). This seems to validate the incorporation of both approaches
when dealing with this kind of data sets, although there is an obvious trade-off
on pre-processing and training time when adopting a relational approach. Note
also, that in terms of recall, this combination of approaches does not work signif-
icantly better than simply applying either approach individually; and in terms of
precision, it is also not significantly better than using a relational approach only.
The fact that the relational approach works so well, with results competitive
with or even better than the propositional approach, confirms our hypothesis
that it is possible to build a good regression model by applying a standard algo-
rithm to a table with a numerical target variable and Boolean features optimised
for classification (of the categorised target variable).

Moreover, it is clear that under-sampling not only greatly improves the pre-
dictive ability of the models, but also decreases the training time needed to build
the model. On average, the under-sampling methodology used reduces the train-

2 Implemented in R package uba (http://www.dcc.fc.up.pt/∼rpribeiro/uba/).
3 Using R package performanceEstimation [24].

http://www.dcc.fc.up.pt/~rpribeiro/uba/

Predicting Wildfires 193

Table 2. Median (med) and interquartile range (IQR) of results obtained with each
methodology. The best results for each pre-processing method are in italic, while the
best results overall are in bold. The Wilcoxon signed rank test was used to obtain
p-values of the differences in performance with the best approach as baseline (bold
p-values mean that the difference is statistically significant).

PrecisionR RecallR F1-measureR

Method Re-sample Model med±IQR p-val. med±IQR p-val. med±IQR p-val.

Propositional
None

RF 0.70 ± 0.13 (0.002) 0.22 ± 0.13 (0.002) 0.33 ± 0.13 (0.002)
SVR 0.68 ± 0.10 (0.002) 0.49 ± 0.10 (0.002) 0.56 ± 0.10 (0.002)

Under
RF 0.81 ± 0.13 (0.002) 0.67 ± 0.13 (0.002) 0.72 ± 0.13 (0.002)
SVR 0.84 ± 0.07 (0.002) 0.76 ± 0.07 (0.01) 0.80 ± 0.07 (0.002)

Relational
None

RF 0.71 ± 0.12 (0.002) 0.18 ± 0.12 (0.002) 0.29 ± 0.12 (0.002)
SVR 0.68 ± 0.09 (0.002) 0.50 ± 0.09 (0.002) 0.57 ± 0.09 (0.002)

Under
RF 0.80 ± 0.09 (0.002) 0.58 ± 0.09 (0.002) 0.66 ± 0.09 (0.002)
SVR 0.85 ± 0.06 (0.02) 0.76 ± 0.06 (0.04) 0.80 ± 0.06 (0.002)

Propositional
+ Relational

None
RF 0.72 ± 0.11 (0.002) 0.22 ± 0.11 (0.002) 0.33 ± 0.11 (0.002)
SVR 0.70 ± 0.10 (0.002) 0.52 ± 0.10 (0.002) 0.59 ± 0.10 (0.002)

Under
RF 0.80 ± 0.12 (0.002) 0.65 ± 0.12 (0.002) 0.70 ± 0.12 (0.002)
SVR 0.85 ± 0.06 – 0.77 ± 0.06 – 0.81 ± 0.06 –

Table 3. Median and IQR of time taken per observation, in seconds, by various
methodologies. The pre-processing time shown for propositional approaches includes
time spent calculating spatio-temporal indicators and imputing missing data; for rela-
tional approaches, it includes time spent finding clauses using the Aleph system
and converting them to propositional form (but not time spent encoding auxiliary
predicates). Both exclude time spent computing spatial relationships, but include re-
sampling time when appropriate. Since part of the pre-processing was performed on
the data set as a whole, we omit its IQR.

Method Re-sample Model Pre-proc. Training Testing Total time

Propositional
None

RF 2.2e-3 5.8e-1 ± 6e-2 8.0e-4 ± 4e-4 5.8e-1
SVR 1.7e-3 8.5e-3 ± 5e-4 6.7e-4 ± 7e-5 1.1e-2

Under
RF 6.8e-3 2.6e-2 ± 6e-3 3.3e-4 ± 6e-5 3.3e-2
SVR 3.1e-3 1.8e-4 ± 6e-5 2.1e-4 ± 4e-5 3.5e-3

Relational
None

RF 1.7 2.1e-1 ± 7e-2 3.6e-4 ± 7e-5 1.9
SVR 1.7 2.0e-2 ± 1e-2 2.7e-3 ± 6e-4 1.7

Under
RF 1.7 2.2e-2 ± 6e-3 5.0e-4 ± 4e-4 1.7
SVR 1.7 6.0e-4 ± 1e-4 7.0e-4 ± 2e-4 1.7

Propositional
+ Relational

None
RF 1.7 1.5e-1 ± 2e-2 2.8e-4 ± 5e-5 1.9
SVR 1.7 7.0e-2 ± 1e-2 6.0e-3 ± 2e-3 1.8

Under
RF 1.7 1.9e-2 ± 7e-3 3.2e-4 ± 8e-5 1.7
SVR 1.7 1.0e-3 ± 3e-4 1.0e-3 ± 1e-3 1.7

194 M. Oliveira et al.

ing sets to 20 % of their original size, but increases the F1-measureR obtained
by RFs and SVRs by 118 % and 42 %, respectively.

Furthermore, SVRs consistently (and significantly) outperformed RFs. SVR
presented higher susceptibility to parameter tuning, as evidenced by the fact
that, when using default parameters, RF routinely outperformed SVR (these
results are omitted in favour of those obtained after parameter optimisation).

Figure 4 allows us to examine the spatial distribution of results. We should
remark that some parishes have zero or very low numbers of wildfires that exceed
the minimum threshold in the considered time period. In this case, one error may
have a disproportionate impact on our measure, as it can be observed in areas
such as the center-south Alentejo region and highly urbanised areas such as Lis-
bon metro area. The higher average F1-measureR per parish, depicted in Fig. 4a,
is strongly (and positively) correlated with the average historic and neighbour-
hood values of the target variable itself, i.e., with our spatio-temporal indicators.
This is not too surprising considering their higher level of temporal granularity
but, coupled with the fact that they also achieve the highest RF importance
(computed from permuting OOB data), still validates our propositional app-
roach. This strong correlation is closely followed by positive correlations with
mean altitude and slope, percentage of area covered by scrubland and caprine
population density. Negative correlations were topped by mean percentage of
urbanised area, housing, population and road density. We believe the negative
correlations are explained by the very few cases of wildfires in urban regions (our
data set does not include house fires) as discussed above. By examining Fig. 4b,
we can see that although parishes benefiting from the use of each pre-processing
approach on its own differ, they are similarly distributed across regions.

(a) Best F1-measureR. (b) Differences of performance.

Fig. 4. On the left, best average F1-measureR overall per parish (obtained by the
combination of propositional and relational pre-processing approaches). To the right,
the categorised difference of average F1-measureR per parish obtained by the best
propositional only (in the middle) and relational only (on the right) approaches in
relation to the combination of approaches on the left. A negative difference means that
the combination of approaches, on average, performs better in that parish. Note that
these were obtained using under-sampling and SVR.

Predicting Wildfires 195

Note that the propositional feature space is the same for every training set
(29 explanatory variables), while the number of features used by the relational
approach depends on the number of clauses found, ranging from 39 to 89 binary
features, with a median of 67 features – more than double the amount for the
propositional approach. Below, we present two interesting examples of clauses
found on the first and last training sets, respectively:

burnt (ParishA , Year) :−
yearsSinceFireGE (ParishA , Year , 2) ,
ne ighbourDi rec t i on (ParishA , ParishB , west) ,
yearsSinceFireGE (ParishB , 2) .

burnt (ParishA , Year) :−
maxAltitudeGE (ParishA , 507) ,
n e i hgbou rd i r e c t i on (ParishA , ParishB , south) ,
yearsS inceFireLE (ParishB , Year , 5) .

They can be written as “A parish burned if it has a western neighbour and both
of them hadn’t burnt for at least a year” and “A parish burned if its maximum
altitude was higher than (or equal to) 507m and it has a southern neighbour
that burnt at least once in the last five years”. Both clauses include temporal
predicates as well as information on a parish’s neighbours. For a notion of the
coverage of these clauses, see Fig. 5. The clauses appear, respectively, on the top
30 and top 50 most important features (according to RF importance) when using
under-sampling and a combination of propositional and relational approaches
(top 15 and top 10 if using relational only).

Overall, the propositional and relational approaches obtain very good (and
similar) results. Although the relational approach performs slightly better in
some cases, it requires longer processing times. The results are significantly
improved by combining both strategies, which is interesting.

Fig. 5. Spatial coverage of example relational clauses ordered from left to right. Cov-
erage is defined as the number of years for which only the body of the clause is true
subtracted from the total number of years that the whole clause is true for each parish.
If the body of the clause is always false, the parish is left white.

196 M. Oliveira et al.

4 Conclusion

In order to predict the annual burn fraction of Portuguese parishes, we com-
pared two approaches that encode spatio-temporal information in propositional
form, each using different pre-processing methods, so that standard regression
algorithms can be used. The fully propositional approach builds spatio-temporal
indicators considering simplified borders. The relational one, uses an ILP sys-
tem to find relational clauses that can be transformed into binary features. Both
used a notion of spatio-temporal neighbourhood including spatial direction and
an utility-based re-sampling technique to deal with this imbalanced domain.
Further, we compared each method with a combination of both.

In spite of the features produced by the relational approach having been
optimised for classification, the results obtained by the former method are still
competitive with (and sometimes slightly better than) the propositional app-
roach in this regression task. Propositional features are, however, much faster to
compute. Despite both strategies behaving well after under-sampling, they still
perform significantly worse than their combination.

Future work includes exploration of other propositional clustering-based
approaches (such as [3]) and graphical modelling techniques (such as Markov
Logic Networks), and their application to different data sets. We also plan on
investigating whether our results transfer between different countries.

Acknowledgements. We would like to thank Dr. João Torres for providing most
of the data we worked with. This work is financed by the ERDF European Regional
Development Fund through the Operational Programme for Competitiveness and Inter-
nationalisation - COMPETE 2020 Programme within project POCI-01-0145-FEDER-
006961, and by National Funds through the FCT Fundação para a Ciência e a
Tecnologia (Portuguese Foundation for Science and Technology) as part of project
UID/EEA/50014/2013.

References

1. Andrienko, G., Malerba, D., May, M., Teisseire, M.: Mining spatio-temporal data.
J. Intell. Inf. Syst. 27(3), 187–190 (2006). doi:10.1007/s10844-006-9949-3

2. Appice, A., Ceci, M., Malerba, D., Lanza, A.: Learning and transferring geograph-
ically weighted regression trees across time. In: Atzmueller, M., Chin, A., Helic,
D., Hotho, A. (eds.) MSM/MUSE 2011. LNCS, vol. 7472, pp. 97–117. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-33684-3 6

3. Appice, A., Pravilovic, S., Malerba, D., Lanza, A.: Enhancing regression models
with spatio-temporal indicator additions. In: Baldoni, M., Baroglio, C., Boella, G.,
Micalizio, R. (eds.) AI*IA 2013. LNCS, pp. 433–444. Springer, Heidelberg (2013).
doi:10.1007/978-3-319-03524-6 37

4. Barber, C., Bockhorst, J., Roebber, P.: Auto-regressive HMM inference with
incomplete data for short-horizon wind forecasting. In: NIPS, pp. 136–144 (2010)

5. Bassi, S., Kettunen, M., Kampa, E., Cavalieri, S.: Forest Fires: Causes and Con-
tributing Factors in Europe. European Parliament, Brussels (2008)

http://dx.doi.org/10.1007/s10844-006-9949-3
http://dx.doi.org/10.1007/978-3-642-33684-3_6
http://dx.doi.org/10.1007/978-3-319-03524-6_37

Predicting Wildfires 197

6. Bilgili, M., Sahin, B., Yasar, A.: Application of artificial neural networks for the
wind speed prediction of target station using reference stations data. Renew. Energ.
32(14), 2350–2360 (2007). doi:10.1016/j.renene.2006.12.001

7. Branco, P.: Re-sampling approaches for regression tasks under imbalanced
domains. Master’s thesis, University of Porto (2014)

8. Branco, P., Ribeiro, R.P., Torgo, L.: UBL: utility-based learning (2014). R package
version 0.0.1

9. Branco, P., Torgo, L., Ribeiro, R.P.: A survey of predictive modelling under imbal-
anced distributions. CoRR abs/1505.01658 (2015)

10. Ceci, M., Appice, A.: Spatial associative classification: propositional vs struc-
tural approach. J. Intell. Inf. Syst. 27(3), 191–213 (2006). doi:10.1007/
s10844-006-9950-x

11. Cheng, T., Wang, J.: Integrated spatio-temporal data mining for forest fire predic-
tion. Trans. GIS 12(5), 591–611 (2008). doi:10.1111/j.1467-9671.2008.01117.x

12. Dzeroski, S.: Multi-relational data mining: an introduction. SIGKDD Explor. 5(1),
1–16 (2003). doi:10.1145/959242.959245

13. Goadrich, M., Oliphant, L., Shavlik, J.W.: Gleaner: creating ensembles of first-
order clauses to improve recall-precision curves. Mach. Learn. 64(1–3), 231–261
(2006). doi:10.1007/s10994-006-8958-3

14. Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3),
18–22 (2002)

15. Malerba, D.: A relational perspective on spatial data mining. IJDMMM 1(1), 103–
118 (2008). doi:10.1504/IJDMMM.2008.022540

16. McGovern, A., Gagne, D.J., Williams, J.K., Brown, R.A., Basara, J.B.: Enhanc-
ing understanding and improving prediction of severe weather through spa-
tiotemporal relational learning. Mach. Learn. 95(1), 27–50 (2014). doi:10.1007/
s10994-013-5343-x

17. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F.: Misc Functions
of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU
Wien (2014). R package version 1.6-4

18. Ohashi, O., Torgo, L.: Wind speed forecasting using spatio-temporal indicators.
In: ECAI, pp. 975–980 (2012). doi:10.3233/978-1-61499-098-7-975

19. Pebesma, E.J.: Multivariable geostatistics in S: the gstat package. Comput. Geosci.
30(7), 683–691 (2004). doi:10.1016/j.cageo.2004.03.012

20. Pravilovic, S., Appice, A., Malerba, D.: An intelligent technique for forecasting
spatially correlated time series. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio,
R. (eds.) AI*IA 2013. LNCS, pp. 457–468. Springer, Heidelberg (2013). doi:10.
1007/978-3-319-03524-6 39

21. Ribeiro, R.P.: Utility-based regression. Ph.D. thesis, University of Porto (2011)
22. Srinivasan, A.: The Aleph Manual. University of Oxford, Oxford (2007)
23. Thompson, C.S., Thomson, P.J., Zheng, X.: Fitting a multisite daily rainfall model

to New Zealand data. J. Hydrol. 340(1), 25–39 (2007). doi:10.1016/j.jhydrol.2007.
03.020

24. Torgo, L.: An infra-structure for performance estimation and experimental com-
parison of predictive models in R. CoRR abs/1505.01658 (2014)

25. Torgo, L., Ribeiro, R.P., Pfahringer, B., Branco, P.: SMOTE for regression. In:
Pereira, F., Machado, P., Costa, E., Cardoso, A. (eds.) EPIA 2015. LNCS, vol.
9273, pp. 378–389. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40669-0 33

26. Torres, J.: Patterns and drivers of wildfire occurrence and post-fire vegetation
resilience across scales in Portugal. Ph.D. thesis, University of Porto (2014)

27. Yao, X.: Research issues in spatio-temporal data mining. In: Workshop on Geospa-
tial Visualization and Knowledge Discovery, UCGIS, pp. 18–20 (2003)

http://dx.doi.org/10.1016/j.renene.2006.12.001
http://dx.doi.org/10.1007/s10844-006-9950-x
http://dx.doi.org/10.1007/s10844-006-9950-x
http://dx.doi.org/10.1111/j.1467-9671.2008.01117.x
http://dx.doi.org/10.1145/959242.959245
http://dx.doi.org/10.1007/s10994-006-8958-3
http://dx.doi.org/10.1504/IJDMMM.2008.022540
http://dx.doi.org/10.1007/s10994-013-5343-x
http://dx.doi.org/10.1007/s10994-013-5343-x
http://dx.doi.org/10.3233/978-1-61499-098-7-975
http://dx.doi.org/10.1016/j.cageo.2004.03.012
http://dx.doi.org/10.1007/978-3-319-03524-6_39
http://dx.doi.org/10.1007/978-3-319-03524-6_39
http://dx.doi.org/10.1016/j.jhydrol.2007.03.020
http://dx.doi.org/10.1016/j.jhydrol.2007.03.020
http://dx.doi.org/10.1007/978-3-642-40669-0_33

Recognizing Family, Genus, and Species
of Anuran Using a Hierarchical

Classification Approach

Juan G. Colonna1(B), João Gama2, and Eduardo F. Nakamura1

1 Institute of Computing (Icomp), Federal University of Amazonas (UFAM),
Avenida General Rodrigo Octávio 6200, Manaus, AM 69077-000, Brazil

{juancolonna,nakamura}@icomp.ufam.edu.br
2 Laboratory of Artificial Intelligence and Decision Support (LIAAD), INESC Tec,

Campus da FEUP, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
jgama@fep.up.pt

Abstract. In bioacoustic recognition approaches, a “flat” classifier is
usually trained to recognize several species of anuran, where the number
of classes is equal to the number of species. Consequently, the complexity
of the classification function increases proportionally to the amount of
species. To avoid this issue we propose a “hierarchical” approach that
decomposes the problem into three taxonomic levels: the family, the
genus, and the species level. To accomplish this, we transform the orig-
inal single-label problem into a multi-dimensional problem (multi-label
and multi-class) considering the Linnaeus taxonomy. Then, we develop
a top-down method using a set of classifiers organized as a hierarchical
tree. Thus, it is possible to predict the same set of species as a flat clas-
sifier, and additionally obtain new information about the samples and
their taxonomic relationship. This helps us to understand the problem
better and achieve additional conclusions by the inspection of the con-
fusion matrices at the three levels of classification. In addition, we carry
out our experiments using a Cross-Validation performed by individuals.
This form of CV avoids mixing syllables that belong to the same speci-
mens in the testing and training sets, preventing an overestimate of the
accuracy and generalizing the predictive capabilities of the system. We
tested our system in a dataset with sixty individual frogs, from ten dif-
ferent species, eight genus, and four families, achieving a final Micro- and
Average-accuracy equal to 86 % and 62 % respectively.

1 Introduction

Amphibians are directly affected by environmental changes [3,4]. This observa-
tion has motivated many researchers to monitor the decline of amphibian popu-
lations through time and use it as an indicator of environmental problems [1,13].
Among all amphibian species that may be monitored anuran (frogs and toads)
are preferred, because these have a semi-permeable skin which makes them sen-
sitive to aquatic and terrestrial conditions [19]. Nowadays, the most widely used
c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 198–212, 2016.
DOI: 10.1007/978-3-319-46307-0 13

Recognizing Family, Genus, and Species of Anuran 199

method to monitor frog populations takes advantage of the vocalization capa-
bility to apply acoustics surveys [20,25]. However, manual application of these
acoustic surveys requires many human and economic resources, as well as expert
knowledge, being difficult to apply in remote tropical areas of the Amazon rain-
forest. Therefore, our goal is to develop an Automatic Calls Recognition (ACR)
system to monitor frog populations automatically and in a less invasive man-
ner using acoustic sensors. The general idea consists of treating the challenge of
anuran monitoring as a species recognition task using their calls and Machine
Learning (ML) techniques [6,7,14,28].

In bioacoustics most of the related works deal with the species recognition
problem using “flat” classifiers, where each instance belongs to one class (or
species name in this case), and there is no hierarchical relationship between the
classes [7,12,18,22,27,28]. This work we addressed the problem of anuran species
recognition through their calls using a “hierarchical” classifier that considers its
family and genus taxonomy. For this purpose, the family and genus information
of each species was added as new labels, transforming the original problem with a
single label into a multi-dimensional approach, i.e., a problem where the outputs
are multi-class and multi-label.

The hierarchical approach allows us to test three hypothesis:

(i) the decomposition of the main problem into three levels of small hierar-
chically related problems, in which the results may improve compared to a
normal flat classifier;

(ii) this configuration allows us to understand the relationship between the
misclassifications and the acoustic proximity of the species, and their tax-
onomy, into feature space; and

(iii) the method has better predictive capabilities for new individuals that were
not present in the original training set.

Thus, the two main contributions in this work are: a customization of the existing
hierarchical models, specially adapted to the anuran species taxonomy; and the
advantages of this model in our bioacoustics application context.

In order to test the first hypothesis we introduce our hierarchical system in
Sect. 5. To accomplish this, we give a detailed explanation about how this app-
roach can reduce the complexity of the model from a feature space point of view
and, consequently, simplify the decision function. To test the second hypothesis
we compare the confusion matrix of each classification level, i.e., family, genus,
and species levels in Sect. 7. To test the third hypothesis we carry all of our exper-
iments using Cross-Validation (CV) by individuals (or specimens) as explained
in Sect. 6.3. The results and conclusion are supported by the calculation of the
Micro- and Average-accuracy by level (see Sects. 6.4, 7 and 8).

In addition (Sect. 4) we also discuss how hierarchical models were applied
to the anuran recognition task (particularly the prediction of frogs and toads
species) and, in general, to the bioacoustics problems, in which a hierarchi-
cal relationship between the labels could be modeled. Finally, we would like
to emphasize that our work is the first one regarding the combination of a

200 J.G. Colonna et al.

hierarchical approach together with a CV procedure by individuals using the
Linnaeus taxonomy.

2 Motivation for Using a Hierarchical Approach

Anura is the name of an order in the Amphibia class of animals that includes
frogs and toads. According to recent reports there are more than 6600 different
species of anuran in the world, classified into 56 families and several genus [9].
The anuran diversity in the tropical areas of South America is the greatest, con-
centrating approximately 70 % on the global biodiversity of amphibians [16]. In
order to develop a flat classifier we need to train it with the number of classes
equal to the number of species that we intend to recognize. Therefore, the com-
plexity of the decision function increases with the number of classes, becoming
an intractable problem in certain scenarios. A hierarchical approach can alle-
viate this problem by decomposing the classification function in several levels,
similarly to a decision tree. Thus, we use the well known Linnaeus taxonomy
to construct a system with three levels: family, genus, and species (see Sect. 5).
With this, every time we go down through the tree to another level, the output
space of possible solutions is simplified.

3 Fundamentals

In order to understand the methodology adopted in this work, two concepts are
described in this section: how a bioacoustic recognition framework works, and
how to create a hierarchical classification approach.

3.1 Bioacoustics Systems

Anuran call classification systems are traditionally composed of three main steps
with different purposes (see Fig. 1). Formally, the input bioacoustic signal X =
{x1, x2, · · · , xN} is a time series of length N , in which its values represent the
acoustics pressure levels (or amplitude). A syllable xk = {xt, xt+1, · · · , xt+n} is
a subset of n consecutive signal values. Thus, the pre-processing step segments
the signal X by identifying the beginning and the endpoints of xk (Fig. 2(a)) [6].

After the syllable extraction we need to represent each xk by a set of features,
commonly called Low Level Descriptors (LLDs). The most frequent LLDs are the
Mel-Frequency Spectral Coefficients (MFCCs). The MFCCs perform a spectral
analysis based on a triangular filter-bank logarithmically spaced in the frequency

Fig. 1. An automatic call recognition system (ACR).

Recognizing Family, Genus, and Species of Anuran 201

domain (Fig. 2(b)) [7,21]. The feature extraction using the MFCCs allows to
represent any syllable by a set of coefficients (MFCC(xk) → ck), i.e., X →
{(c1, si), (c2, si), . . . , (ck, si)}, where each ck = [c1, c2, . . . , cl] is a feature vector
with l coefficients, and si is the species name (or label). The representation of
xk through ck is more robust, more compact, and easier to recognize, compared
to use raw data.

Fig. 2. A framework for automatic frog’s calls recognition.

Finally, the challenge is how to assign the species name to a new syllable by
using the MFCC values. This is a supervised classification task and is performed
by the last step of the system. For this purpose several ML algorithms could
be applied to create and train a model f(·) with capabilities to predict new
incoming samples, i.e., given an unknown c estimates the most probable label
by evaluating f(c) → si, where S = {s1, s2, . . . , si} is the set of species names.

3.2 Review of Hierarchical Classification Approaches

Hierarchical methods are widely used to solve multi-label problems in which
the classes have an inherent taxonomy structure, i.e., an instance that belongs
to a subclass, naturally belongs to its higher level classes. These methods help
to simplify complex multi-class problems transforming these into a multi-label
approach by considering the hierarchical relationship between the labels. For
instance, every time we go down in a level of the hierarchy, the number of
possible solutions is reduced, simplifying the decision function, as showed by
Fig. 5. There are two common models to describe the hierarchical relationships
between the classes: (a) trees, and (b) Direct Acyclic Graphs (DAG). A tree
structure connects a set of leaf nodes to a single parent node forming several
subtrees not interconnected on the same level. A DAG is a more flexible structure
allowing the leafs to have more than one parent node [8]. In our approach we
adopted the tree structure, due to the taxonomic constraints of our problem, in
which every species can belong to just one genus class and one family class at
the same time.

202 J.G. Colonna et al.

Order

f1 f2

s1 s2

g1 g2

s3 s4

g3

s5

Order

f1 f2

s1 s2

g1 g2

s3 s4

g3

s5

Order

f1 f2

s1 s2

g1 g2

s3 s4

g3

s5

)c()b()a(

Fig. 3. Different manners to create a hierarchical classifier combining flat classifiers.
From top-to-down levels: f stands for family, g for genus, and s for species.

Figure 3 illustrates three different approaches commonly used to construct
a multi-label hierarchical tree from a set of flat classifiers. These are: (1) one
classifier per node, (2) one classifier per parent node, and (3) one classifier per
level [24]. These trees may be imbalanced depending on the taxonomic structure
of the problem. The classifiers inside the nodes should be trained separately
and assembled after that. During the prediction phase the strategy adopted
to determine the class of a new sample is top-down. This strategy starts from
the top nodes performing the corresponding predictions and goes down until it
reaches a leaf node in the last hierarchical level. Thus, the decision results in a
unique relationship between the set of predicted labels. An obvious disadvantage
associated with this top-down approach is the error propagation from the higher
levels of the tree. However, this approach is well suited for the context of species
recognition where the number of classes is too high to train a flat classifier.
Moreover, the configuration shown in Fig. 3(b) fits better the characteristics of
our problem presented in Fig. 4.

4 Related Works

Several authors have already studied the problem of recognition and classification
of anuran species through their calls. Among these Huang et al. [14] and Colonna
et al. [7] studied the best acoustics features to recognize different species. Jaafar
et al. [17] and Colonna et al. [6] focused on comparing some syllable extrac-
tion procedures as a pre-processing step. Finally, Ribas et al. [22] and Colonna
et al. [5] evaluated the possibility of embedding a classifier into the nodes of
a wireless sensor network (WSN). However, little effort was made to link the
hierarchical taxonomy of the species with an automatic classification system.
The hierarchical taxonomic organization of the species is a standard approach
in ecology since it was defined in 1935 by Carl Linnaeus.

Gingras et al. [11] formulated the hypothesis that anuran species which are
phylogenetically or taxonomically close have more similar calls. To test this
hypothesis the authors developed a three-parameter model using the mean values
of dominant frequency, the variation coefficient of root-mean square energy, and
spectral flux of the signals. Calls from 142 species belonging to four genera were

Recognizing Family, Genus, and Species of Anuran 203

analyzed and classified applying a logistic regression model, a Support Vector
Machine (SVM), a k-Nearest Neighbors (kNN), and a Gaussian Mixture Model
(GMM), achieving an accuracy of approximately 70 %. During the test different
specimens (or individuals) were used for training and testing in order to prove
the generalization capabilities of the model.

An acoustic feature extraction and a comparative analysis of these features,
for developing a hierarchical classification technique of Australian frog calls, was
proposed by Xie et al. [29]. This work studies which acoustics features should be
used in each classification level, considering the taxonomy information separated
in three levels: family, genus and species. The contribution was a correlation
method, able to select the better features for each level, but the final classifica-
tion was addressed as three separate problems using SVM. The levels were not
integrated into one single approach leaving two open questions: (1) how to inte-
grate these classifiers in one single method capable of reducing the complexity
by taking advantage of the hierarchical taxonomy, and (2) how to handle the
disagreement between the levels.

The technique called Balance-Guaranteed Optimized Tree with Reject option
(BGOTR) is a hierarchical classification system including the reject option. This
was developed by Phoenix et al. [15] for fish image recognition using underwater
cameras. In this system a multi-class classifier and a feature selection are built
together into a hierarchical tree, and this is optimized to maximize the classifica-
tion accuracy by grouping the classes based on their inter-class similarities. The
rejection option is performed after the hierarchical classification by applying a
Gaussian Mixture Model (GMM) to fit the distribution of the features in the
images. Despite the interesting results the authors highlight that this approach
does not consider the taxonomy of the problem. Indeed, this method was not
developed for a multi-label purpose, and therefore it is not possible to evaluate
the similarities between family, genus and species.

An evaluation on different hierarchical approaches applied to the bird species
recognition was performed by Sillas et al. [23]. The authors compared three
different approaches: a flat classification where the class hierarchy is disregarded,
one classifier per parent node (see Fig. 3), and one global approach where a
single algorithm is used to predict classes at any level of the hierarchy based
on Global-Model Hierarchical Classification Naive Bayes (GMNB). Moreover,
an extension of the metrics Precision, Recall, and F-measure was introduced,
tailored to the hierarchical classification scenario. The results show that the
hierarchical approaches outperform flat classifiers when the number of species is
large, and that the labels can be organized in an adequate hierarchy.

To the best of our knowledge, no study has yet been published integrating
the family, the genus, and the species labels of anuran in one unique hierarchical
approach, to be solved as a multi-dimensional problem and, at the same time,
performing a CV by individuals (or specimens) to test the model generalization
capabilities.

204 J.G. Colonna et al.

5 Proposed Approach

The phylogenetic taxonomy aims to organize animals into hierarchical categories.
Using this pre-defined organization for anuran, we can build our hierarchical
classification system adding two extra labels to the original dataset (g and f):

Dataset =

⎡
⎢⎢⎢⎣

c1 = [c1, c2, . . . , cl], s, g, f
c2 = [c1, c2, . . . , cl], s, g, f

...
...

...
...

ck = [c1, c2, . . . , cl], sj , gi, fm

⎤
⎥⎥⎥⎦

with these new labels we have turned our multiclass problem with a single label
into a multi-label and multi-class problem (MM). This MM is a generalization
of the common multi-label problems, where the classes are binary in each col-
umn. This MM problems are also called Multi-dimensional problems because the
output is composed by a tuple of labels [2], which are three in our case.

This is possible because there is a unequivocal relationship between the
species names and its genus and family names. That is, a subset S0 = {s1, . . . sp}
of species belongs to a singular genus (S ⊆ gm), while a subset of genus
G0 = {g1, . . . , gm, . . . , gp} also belongs to a particular family (G ⊆ fm) such
that fm ⊆ F 0. Therefore, any sj is from G0 and F 0 without ambiguity. Thus,
if a flat classifier correctly predicts a particular species, the system is effectively
predicting not only the species at the last level, but also the genus and the family
classes at the first two levels together.

With this concept we can apply reverse engineering and develop a hierarchical
top-down approach as shown in Fig. 3(b). Our hierarchical tree is represented in
Fig. 4. An example of problem simplification by the hierarchical decomposition
using an example with two attributes is shown in Fig. 5. As we can note, in the
beginning all the samples belong to two families (or classes). After the family
classification, the problem is reduced and consequently simplified by the simple
decomposition of the feature space, in which only the samples of the first family
remain. This process is repeated until the last classification level is reached (the
species label). Thus, the class of a leaf node is used to estimate the label of new
samples.

A remarkable advantage of this approach is that we do not have to perform
every classification for some branches in all levels. This is the main advantage
of the customization based on Linnaeus taxonomy and the reason why we chose
the approach described in Fig. 3(b). For instance, if the first classifier assigns
the Bufonidae label to a new sample at the top level, it is not necessary to
continue classifying the remaining levels, because there are no more splits for
this branch. Therefore, the genus label Rhinella and the species label Rhinella
granulosa are assigned automatically. The remaining settings of our approach
are detailed in Sect. 6.

Recognizing Family, Genus, and Species of Anuran 205

Fig. 4. Species tree. From Top-to-Down levels: Order, Family, Genus and Species. The
stands for node ID.

Family 1

Family 2

f1

f2Level 1

f1

f2Level 2

Genus 1

Genus 2

f1

f2Level 3

Species 1

Species 2

Fig. 5. Problem decomposition stages when performing the hierarchical classification
from top to down described by an example of prune training data.

6 Methodology Description

In order to develop our hierarchical method, the first step is to obtain the family
and genus labels for each sample of our dataset. For this, we used the taxon-
omy information available at [9]. The dataset description, the classifier setting,
the validation procedure and the metrics used are described in the following
subsections.

6.1 Dataset Description

The dataset used in our experiments is summarized in Table 1. It has 10 differ-
ent species, 60 specimens and 5998 syllables1. These records were collected in
situ under real noise conditions. Some species are from the Federal University
of Amazonas, others from Mata Atlântica, Brazil and the last from Córdoba,
Argentina. These recordings were stored in wav format with 44.1 kHz of sam-
pling frequency and 32 bit, which allows us to analyze signals up to 22.05 kHz.
From each extracted syllable, 24 MFCCs were calculated by using 44 triangular
filters and these coefficients were normalized between −1 ≤ cl ≤ 1 (see Sect. 3.1).
For the segmentation and syllable extraction tasks we based our approach on
1 Available at https://goo.gl/61IoXc.

https://goo.gl/61IoXc

206 J.G. Colonna et al.

Table 1. Species Dataset. The s and the k stands for the number of specimens and
the amount of syllables respectively.

Family Genus Species s k

Leptodactylidae Leptodactylus Leptodactylus fuscusa 4 222

Adenomera Adenomera andreaea 8 496

Adenomera hylaedactylab 11 3049

Hylidae Dendropsophus Hyla minutab 11 229

Scinax Scinax ruberb 5 96

Osteocephalus Osteocephalus oophagusa 3 96

Hypsiboas Hypsiboas cinerascensa 4 429

Hypsiboas cordobaec 4 702

Bufonidae Rhinella Rhinella granulosaa 5 135

Dendrobatidae Ameerega Ameerega trivittatab 5 544
aAmazonas, bMata Atlântica, cCórdoba.

the work of Colonna et al. [6], however using only the energy of the signal in a
batch mode setting2. Finally, the frame size was 0.0464 s with 66 % of overlap to
obtain a good energy-time resolution.

6.2 Node Classifier Description

In our experiments we chose kNN with k = 3 as the base classifier for the parent
nodes. As kNN is considered a subspace technique, then the predicted result is
the similarity between the samples in the feature space and consequently, the
acoustics similarity of the syllable’s frequencies. Besides that, in all parent nodes
we decomposed the multiclass model f(·) into a combination of smaller binary
models f ′(·) applying the One-against-One (1A1) procedure [10]. After that, the
result of each binary model was combined by using the majority voting rule. This
decomposition technique reduces the complexity of each sub-problem compared
to the multiclass approach.

6.3 Special Type of Cross-Validation

Because we are dealing with a supervised problem, and we want to consider
the generalization capabilities of the system, we need to apply a cross-validation
(CV) procedure to estimate the expected error in a real situation. With k-CV
the original dataset is split into k disjoint folds, and for each one the conditional
error (ek) is estimated training the model f(·) with k-1 folds. Thus, this proce-
dure is repeated k times and the expected generalized error can be obtained by
averaging ek. When the information of the individuals (or specimens) is omit-
ted, we may fall into a situation in which the split could leave syllables of the

2 The segmentation code is available at http://goo.gl/vjVQ2c.

http://goo.gl/vjVQ2c

Recognizing Family, Genus, and Species of Anuran 207

same individuals in the testing and training sets. This causes an overestimate on
the accuracy. To overcome this problem, we consider the specimen information
during the k-CV fold splitting, i.e., we leave all the syllables that belong to the
same specimen together, avoiding mixing them in the testing and training sets.
To accomplish this we introduce an extra label with the record ID that will only
be considered during the k-CV split. Thus, we assume that the generalization
error will be more realistic, because we are training with one specimen to predict
a different one.

6.4 Performance Measure (Average-Accuracy)

Diverse species of anuran have different syllable rates (amount of syllables per
unit time) in their calls. This is a particular vocalization characteristic of each
anuran species. Therefore, an unequal number of samples could be retrieved from
each record producing an unbalanced dataset [6]. This is a secondary problem
that affects the classical accuracy measure. Thus, a classification model that
always predicts the species with the higher number of samples might have a
high accuracy, even in the extreme case of losing all syllables from the other
classes. To overcome this matter we suggest to use the average-accuracy instead
of the traditional micro-accuracy [6,26]. It means, the final accuracy value is
calculated as the average accuracy of each species individually as:

Average-Acc =
1
m

m∑
i=1

Acci =
1
m

m∑
i=1

tpi
ki

, (1)

where Acci is the accuracy per row i of confusion matrix, m the total number
of rows, tpi are the true positives, and ki the total number of syllables per row.

7 Experiments and Results

The structure of our hierarchical approach was introduced in Fig. 4. The first
parent node corresponds to the order (Anura) and is responsible for the clas-
sification of the samples into four family classes (column 1 in Table 1). In the
second level (the family level) the parent nodes are trained with the genus labels
that correspond to each particular family. Thus, the family branches are able to
predict their owns genus labels. The last prediction takes place at the genus level
being responsible for predicting their owns species names, as shown by their leaf
nodes. With this configuration we can obtain a confusion matrix per level, i.e.:
one matrix for the family labels (Table 2), one for the genus labels (Table 3), and
one for the species labels (Table 4).

The rows of the Tables 2, 3 and 4 are the Ground Truth (GT) labels and
the columns indicate the predicted labels. The main diagonal corresponds to
the number of hits. From these matrix we can obtain the micro- and average-
accuracy by level. The last column of each matrix (Acc) is the accuracy
by class, from which we can get the average-accuracy averaging the values

208 J.G. Colonna et al.

Table 2. Confusion matrix of family level with kNN (k = 3). Last column (Acc) is the
accuracy of each column.

Bufonidae Dendrobatidae Hylidae Leptodactylidae Acci

Bufonidae 43 0 21 71 0.31

Dendrobatidae 27 488 0 29 0.89

Hylidae 3 0 1465 84 0.94

Leptodactylidae 16 36 322 3393 0.90

Table 3. Confusion matrix of genus level with kNN (k = 3). Legend: (a) Adenomera,
(b) Ameerega, (c) Dendropsophus, (d) Hypsiboas, (e) Leptodactylus, (f) Osteocephalus,
(g) Rhinella, and (h) Scinax. Last column (Acc) is the accuracy of each column.

a b c d e f g h Acci

a 3186 36 18 61 58 184 0 2 0.90

b 23 488 0 0 6 0 27 0 0.90

c 51 0 123 35 0 0 0 20 0.54

d 7 0 0 1117 0 6 0 1 0.99

e 15 0 20 14 134 21 16 2 0.60

f 7 0 0 48 4 34 3 0 0.35

g 8 0 0 9 63 0 43 12 0.32

h 15 0 50 11 0 0 0 20 0.21

Table 4. Confusion matrix of species level with kNN (k = 3). Legend: (a) Adenomera
andreae, (b) Adenomera hylaedactyla, (c) Ameerega trivittata, (d) Hyla minuta, (e) Hypsi-
boas cinerascens, (f) Hypsiboas cordobae, (g) Leptodactylus fuscus, (h) Osteocephalus
oophagus, (i) Rhinella granulosa, and (j) Scinax ruber. Last column (Acc) is the accu-
racy of each column.

a b c d e f g h i j Acci

a 156 0 35 2 61 0 58 184 0 0 0.31

b 0 3030 1 16 0 0 0 0 0 2 0.99

c 23 0 488 0 0 0 6 0 27 0 0.90

d 3 48 0 123 3 32 0 0 0 20 0.54

e 1 6 0 0 415 0 0 6 0 1 0.97

f 0 0 0 0 0 702 0 0 0 0 1.00

g 1 14 0 20 0 14 134 21 16 2 0.60

h 7 0 0 0 48 0 4 34 3 0 0.35

i 8 0 0 0 6 3 63 0 43 12 0.32

j 0 15 0 50 9 2 0 0 0 20 0.21

Recognizing Family, Genus, and Species of Anuran 209

Table 5. Results summary. G stands for the accuracy gains compared to the naive
baseline approach for each case.

Level

Family G (%) Genus G (%) Species G (%)

Micro-Baseline 0.63 0.59 0.51

Micro-Acc 0.90 +0.27 0.86 +0.27 0.86 +0.35

Average-Baseline 0.25 0.13 0.10

Average-Acc 0.76 +0.51 0.60 +0.48 0.62 +0.52

of this column. A summary of the results is presented in Table 5. For the
micro-accuracy case (Micro-Acc) the baseline values are given by a naive classi-
fier which always chooses the most numerous classes (Micro-Baseline), and for
the average-accuracy (Average-Acc) the baseline values are given by a naive
classifier that always chooses a label randomly (Average-Baseline).

Just analyzing the confusion matrix at the family level, we can note that
Bufonidae family lost about 70 % of the samples, in which almost 50 % fall in
the class Leptodactylidae. That means, the Bufonidae family seems to find it
hard to recognize in the presence of Leptodactylidae. However, the opposite case
is not equally true. This means that the samples of the Bufonidae family are
probably surrounded by samples of the Leptodactylidae in the feature space. A
similar conclusion can be achieved analyzing the genus and the species levels.
For instance, several samples of the Scinax were confused with Adenomera, Den-
dropsophus and Hypsiboas. Inside the Adenomera genus, hylaedactyla was the only
confused species with the Scinax ruber.

Previously, we highlighted that we are carrying out a cross-validation by
specimens, therefore we can infer that different individuals of the Leptodactylidae
family share high similarities or regularities between them in the feature space.
The same is valid for the Hylidae family. Therefore, we are able to recognize
better the specimens that belong to these species and, consequently, they are
good candidates to use them in a monitoring acoustic project.

In addition, we performed a similar test by species using only one flat classifier
with the same configurations used for the nodes of the tree (that is, 1A1 and
kNN with k = 3). In this test the Micro-accuracy was 0.85 and the Average-
accuracy was 0.61 achieving results comparable to our approach. However, with
our approach we can obtain several complementary information related to the
taxonomy. Unfortunately, our dataset is not big enough to be able to observe
the gains of the hierarchical classification at the last level.

8 Conclusion

We presented a hierarchical classification approach for frog species recognition
using their calls and the biological taxonomy information. The main algorithmic
contribution is how to prune the training data using a tree customized structure,

210 J.G. Colonna et al.

i.e., after the high level class is decided, the number of class options in the lower
levels are reduced.

First, we transform the original multiclass problem with a single label into
a multidimensional problem adding the genus and family labels. It allows us
to understand and investigate with greater depth the relationship between the
samples and their taxonomy. Our hierarchical system is able to decompose and
simplify this multidimensional problem into smaller subproblems avoiding the
disadvantages of flat classifiers in this application context. In addition we present
the confusion matrices and the Micro-accuracy and Average-accuracy at the
three levels of the decomposition, useful to understand the nature of our problem
and the relationship between the samples.

The combination of the phylogenetic taxonomy together with the cepstral
frequency coefficients and the proximity obtained through the kNN classifier,
enables us to notice the bioacoustics similarities between different species from
a classification point of view. We can conclude that the species Adenomera
hylaedactyla and Hypsiboas cinerascens are clearly recognizable in the presence
of other species, and therefore are good candidates for an automatic acoustic
monitoring program. We would like to emphasize that these two species belong
to different families and genus confirming that our hierarchical strategy is indeed
advantageous for this type of application. Another interesting fact is that the
species Hypsiboas cordobae, which belongs to another country, far away from the
tropical area, is easy to recognize.

However, one major drawback in most of the hierarchical classification
approaches is the error propagation. Unfortunately, each level of the hierar-
chical tree could have some misclassifications that will compound the final error
when we go down through the tree. As a result, practical applications usually
require corrections to eliminate the confusing cases, especially when the database
is imbalanced or when the hierarchy is deeper and composed from many levels,
i.e., the accuracy decreases when the number of levels increases. As future work,
in order to handle this problem, we propose the development of a hierarchical
tree with a soft decision strategy based on the posterior probabilities of each
level. With this, we intend to correct the misclassifications of the highest levels
using the confidence of the lower levels.

Acknowledgments. Juan G. Colonna gratefully acknowledge to National Council
of Technological and Scientific Development (CNPq, Brazil) by the PhD fellowship.
Eduardo F. Nakamura acknowledge to FAPEAM by the support granted through the
Anura Project (FAPEAM/CNPq PRONEX 023/2009). We also thank to professors
Marcelo Gordo and the biologist Celeste Salineros for the help with the recordings.

This work was supported by the research project “TEC4Growth-Pervasive Intel-
ligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-
FEDER-000020”, financed by the North Portugal Regional Operational Programme
(NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through
the European Regional Development Fund (ERDF) and by European Commission
through the project MAESTRA (Grant number ICT-2013-612944).

Recognizing Family, Genus, and Species of Anuran 211

References

1. Adams, M.J., Miller, D.A.W., Muths, E., Corn, P.S., Grant, E.H.C., Bailey, L.L.,
Fellers, G.M., Fisher, R.N., Sadinski, W.J., Waddle, H., Walls, S.C.: Trends in
amphibian occupancy in the United States. PLoS One 8(5), 1–5 (2013)

2. Borchani, H., Larrañaga, P., Gama, J., Bielza, C.: Mining multi-dimensional
concept-drifting data streams using Bayesian network classifiers. Intell. Data Anal.
20(2), 257–280 (2016)

3. Carey, C., Alexander, M.A.: Climate change and amphibian declines: is there a
link? Divers. Distrib. 9(2), 111–121 (2003)

4. Cole, E.M., Bustamante, M.R., Reinoso, D.A., Funk, W.C.: Spatial and temporal
variation in population dynamics of andean frogs: effects of forest disturbance and
evidence for declines. Glob. Ecol. Conserv. 1, 60–70 (2014)

5. Colonna, J.G., Cristo, M.A.P., Nakamura, E.F.: A distribute approach for clas-
sifying anuran species based on their calls. In: 22nd International Conference on
Pattern Recognition (2014)

6. Colonna, J.G., Cristo, M.A.P., Salvatierra, M., Nakamura, E.F.: An incremental
technique for real-time bioacoustic signal segmentation. Expert Syst. Appl. 42(21),
7367–7374 (2015)

7. Colonna, J.G., Ribas, A.D., dos Santos, E.M., Nakamura, E.F.: Feature subset
selection for automatically classifying anuran calls using sensor networks. In: Inter-
national Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, June 2012

8. Freitas, A.A., Carvalho, A.C.P.L.F.: A tutorial on hierarchical classification with
applications in bioinformatics. In: Taniar, D. (ed.) Research and Trends in Data
Mining Technologies and Applications, Chap. 7, pp. 175–208. Idea Group Publish-
ing (2007)

9. Frost, D.R.: Amphibian species of the world: an online reference. Electronic Data-
base accessible at http://goo.gl/3WRZhx, April 2016. American Museum of Nat-
ural History, New York, USA

10. Fürnkranz, J.: Round Robin rule learning. In: Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML 2001, pp. 146–153 (2001)

11. Gingras, B., Fitch, W.T.: A three-parameter model for classifying anurans into
four genera based on advertisement calls. J. Acoust. Soc. Am. 133(1), 547–559
(2013)

12. Han, N.C., Muniandy, S.V., Dayou, J.: Acoustic classification of Australian anurans
based on hybrid spectral-entropy approach. Appl. Acoust. 72(9), 639–645 (2011)

13. Houlahan, J.E., Findlay, C.S., Schmidt, B.R., Meyer, A.H., Kuzmin, S.L.: Quan-
titative evidence for global amphibian population declines. Nature 404(6779),
752–755 (2000)

14. Huang, C.J., Yang, Y.J., Yang, D.X., Chen, Y.J.: Frog classification using machine
learning techniques. Expert Syst. Appl. 36(2), 3737–3743 (2009)

15. Huang, P.X.: Hierarchical classification system with reject option for live fish recog-
nition. In: Fisher, R.B., et al. (eds.) Fish4Knowledge: Collecting and Analyzing
Massive Coral Reef Fish Video Data. Intelligent Systems Reference Library, vol.
104, pp. 141–159. Springer, Switzerland (2016)

16. IUCN. Geographic patterns, April 2016. http://goo.gl/nq2qt7. The IUCN Red List
of Threatened Species

17. Jaafar, H., Ramli, D.A.: Automatic syllables segmentation for frog identification
system. In: 9th International Colloquium on Signal Processing and Its Applications
(CSPA), pp. 224–228. IEEE (2013)

http://goo.gl/3WRZhx
http://goo.gl/nq2qt7

212 J.G. Colonna et al.

18. Jaafar, H., Ramli, D.A., Rosdi, B.A.: Comparative study on different classifiers
for frog identification system based on bioacoustic signal analysis. In: Proceedings
of the 2014 International Conference on Communications, Signal Processing and
Computers (2014)

19. King, V.: A study of the mechanism of water transfer across frog skin by a compar-
ison of the permeability of the skin to deuterated and tritiated water. J. Physiol.
200(2), 529–538 (1969)

20. Marques, T.A., Thomas, L., Martin, S.W., Mellinger, D.K., Ward, J.A., Moretti,
D.J., Harris, D., Tyack, P.L.: Estimating animal population density using passive
acoustics. Bio. Rev. 88(2), 287–309 (2013)

21. Rabiner, L., Schafer, R.: Introduction to digital speech processing. Found. Trends
Sign. Process. 1, 1–194 (2007)

22. Ribas, A.D., Colonna, J.G., Figueiredo, C.M.S., Nakamura, E.F.: Similarity clus-
tering for data fusion in wireless sensor networks using k-means. In: International
Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE, June 2012

23. Silla, C.N., Kaestner, C.A.A.: Hierarchical classification of bird species using their
audio recorded songs. In: International Conference on Systems, Man, and Cyber-
netics (SMC), pp. 1895–1900. IEEE, October 2013

24. Silla Jr., C.N., Freitas, A.A.: A survey of hierarchical classification across different
application domains. Data Min. Knowl. Discov. 22(22), 31–72 (2011)

25. Da Silva, F.R.: Evaluation of survey methods for sampling anuran species richness
in the neotropics. S. Am. J. Herpetology 5(3), 212–220 (2010)

26. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for
classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009)

27. Vaca-Castaño, G., Rodriguez, D.: Using syllabic mel cepstrum features and k-
nearest neighbors to identify anurans and birds species. In: 2010 IEEE Workshop
on Signal Processing Systems (SIPS), pp. 466–471 (2010)

28. Xie, J., Towsey, M., Truskinger, A., Eichinski, P., Zhang, J., Roe, P.: Acoustic
classification of australian anurans using syllable features. In: IEEE Tenth Interna-
tional Conference on Intelligent Sensors, Sensor Networks and Information Process-
ing (ISSNIP 2015). IEEE (2015)

29. Xie, J., Zhang, J., Roe, P.: Acoustic features for hierarchical classification of aus-
tralian frog calls. In: 10th International Conference on Information, Communica-
tions and Signal Processing (2015)

Evolution Analysis of Call Ego-Networks

Shazia Tabassum(B) and João Gama

LIAAD, Inesctec, University of Porto, Porto, Portugal
up201402360@fe.up.pt, jgama@fep.up.pt

Abstract. With the realization of networks in many of the real world
domains, research work in network science has gained much attention
now-a-days. The real world interaction networks are exploited to gain
insights into real world connections. One of the notion is to analyze
how these networks grow and evolve. Most of the works rely upon the
socio centric networks. The socio centric network comprises of several ego
networks. How these ego networks evolve greatly influences the structure
of network. In this work, we have analyzed the evolution of ego networks
from a massive call network stream by using an extensive list of graph
metrics. By doing this, we studied the evolution of structural properties
of graph and related them with the real world user behaviors. We also
proved the densification power law over the temporal call ego networks.
Many of the evolving networks obey the densification power law and the
number of edges increase as a function of time. Therefore, we discuss a
sequential sampling method with forgetting factor to sample the evolving
ego network stream. This method captures the most active and recent
nodes from the network while preserving the tie strengths between them
and maintaining the density of graph and decreasing redundancy.

Keywords: Evolving networks · Evolution analysis · Call networks ·
Densification · Ego-networks · Forgetting factor

1 Introduction

Enormous streams of graphs are generated by some of the real-time applica-
tions, at a speed of millions of nodes and billions of edges per day. Such social
streams provide an abstraction of interactions between real world social enti-
ties or individuals. Studying the structural properties of these streams enables
powerful insights and extrapolations of real world. Space and time complexity
is one of the challenging issues related to analyzing these streams. Networks
representing real world social structures are usually temporal and evolving. The
rapidly changing and evolving structure of these graphs, calls for an exigency
of latest and up to date results. Processing the real-time network stream as it
arrives, is one of the best solutions for the above problem. Therefore, we employ
the stream processing approach to process enormous data. Some of the social
network analysis methods that can be applied over streams of graphs are given
in [12]. Furthermore, we use a streaming ego network approach over a telecom-
munications’ call graph stream of temporal edge/calls’ as in [14].
c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 213–225, 2016.
DOI: 10.1007/978-3-319-46307-0 14

214 S. Tabassum and J. Gama

An ego network is based on the relationships of a single node called “ego”
with the other nodes in a social network. An ego can represent an individual,
entity, object or organization. All the other nodes related to ego in the network
are called alters. An ego network maps the relationships of an ego with alters and
also between themselves. In the recent work [4] by Google.com, the authors argue
that it is possible to address important graph mining tasks by analyzing the ego-
nets of a social network and performing independent computations on them. The
studies made by Everett and Borgatti [5] indicate that the local ego betweenness
is highly correlated with the betweenness of the actor in the complete network.
In [17] Wellman describes an ego network as a personal network. The author
explains that the importance of local ties becomes apparent by redefining the
composition of personal community networks in terms of the number of contacts
(interactions) that egos have with the active members of the networks instead
of the traditional procedure of counting the number of ties (relationships). In
this work, we analyze the evolution of ego networks by using a bunch of social
network analysis metrics.

We also discuss the growth pattern of our ego networks. In [8] the authors
discussed how large graphs evolve over time. They stated a densification power
law which is followed by these networks. In our work, we test the densification
power law over the temporal ego networks of call graph stream and observe that
it obeys the densification power law and follows the similar properties of large
graphs. We also consider the properties of real world graphs depicted by [1,2,
10,16] such as diameter, path length etc.

As we observe the call ego networks satisfy the densification power law and
the number of edges grow superlinearly to the number of nodes, the evolving
graphs can get humongous in no time. There are a few sampling strategies dis-
cussed in [14] for sampling real time streaming graphs, but none of them preserve
the tie strengths between nodes in the network. Nevertheless, there are no sam-
pling techniques designed for ego networks to preserve the tie strengths, while
maintaining the active and most recent nodes. Now the obvious question is, how
do we capture the ego network of an evolving multi-graph stream over time with
least possible edges, while preserving the structure, properties and efficiency of an
ego network? For which, we proposed a streaming ego network sampling method
using a forgetting factor [13]. The proposed method is suitable for dynamically
evolving multi-graphs. We use this method over a real world temporal stream
of edges/calls to generate a sample stream in real time. Our results show that
the proposed method preserves tie strengths in the networks. We also show that
our method decreases redundancy in the network while preserving the impor-
tance of ego. We measure the importance and efficiency of network using some
socio-metrics. We evaluate our method by comparing the samples generated by
varying parametric values, with the original ego network. The proposed method
can also be implemented over a socio-centric network.

The following paper is organized as follows: In Sect. 2 we discuss some related
works. In Sect. 3, we described our call network data and the metrics we used in
our experiments in Sect. 4. We proved the densification power law for our evolving

Evolution Analysis of Call Ego-Networks 215

ego networks in Sect. 5. In Sect. 6, we analyzed the properties and structure of
evolving call ego network. Further in Sect. 7, we proposed a sampling method
for ego network multi graph streams with forgetting factor. Sections 8 and 9, we
evaluated the above method by comparing the samples with the original network.

2 Related Work

The concept of ego networks was discussed by L.C. Freeman in [6], where he
described an ego network as a social network, built around a particular social
unit called ego. In [17] Wellman discusses the importance of local ties in per-
sonal networks. In [3] Burt studied the affects, gaps and relationships between
the neighborhood of a node, referring them as structural holes. He also intro-
duced metrics to evaluate an efficient-effective network which strives to optimize
structural holes in order to maximize information benefits.

Most of the research works in this field are carried out by analyzing the
structure and growth pattern of evolving socio centric networks and evolutionary
nature of socio centric graphs [1,2,8,10,11,16]. Nevertheless, there are few works
which studied the structure of ego networks [3,6,7,13,15]. To the best of our
knowledge, this is the first work about analyzing the evolution of ego networks.
We would analyze the evolution of ego network for 31 days using an extensive
list of graph level and node level metrics.

[9] proposed an ego-centric network sampling approach for viral marketing
applications. The authors employed a variation of forest fire algorithm for sam-
pling ego network. They compared the degree and clustering coefficient distrib-
utions of sampled ego networks with the original ego network. In this work, we
discuss an edge based sampling method with forgetting factor over an evolving
ego network stream of temporal edges.

3 Description of Call Network Data

Telecommunications’ call graphs are one of the massive streams of calls generated
in real-time. We made use of such anonymised temporal call stream of 31 days
available from a service provider. The network data stream is generated a speed
of 10 to 280 calls per second around mid-night and mid-day. On an average
we have 12.4 million calls made by 4 million subscribers per day. Streaming
approach is highly feasible for this kind of rapidly evolving data.

From the above massive stream of calls for 31 days, we built the ego networks
by selecting egos with five different properties. The first ego network egonet1 is
built by selecting an ego with a degree equal to average degree of network.
The egonet2 with an ego of highest in-degree centrality of graph and is also
the node with highest eigen vector centrality of graph. The egonet3 and egonet4
with highest betweenness centrality and lowest out-degree centrality respectively
for enhancing the diversity of ego networks. We built these ego networks by
accumulating all the adjacent edges of ego and their adjacent edges i.e. a network
of radius 2. We generated the ego network streams from a call network stream

216 S. Tabassum and J. Gama

of 400 million calls made by 12 million subscribers on an aggregated scale. In
order to avoid duplicated number of edges as it is a multi-graph, we maintained
unique edges between any pair of nodes in the network and map them onto a
weighted graph.

4 Metrics for Evaluating Ego Networks

In this section we discuss an extensive list of graph metrics we would use in
the later sections to analyze the densification of call ego-network, to analyze the
evolution of structural, topological and behavioral properties of call ego network
and to evaluate the proposed sampling method of forgetting factor. We exploit
these properties at graph level and node level.

4.1 Graph Level Metrics

We studied the properties of ego network graphs using average degree, average
weighted degree, density, diameter and average path length.

Additionally for evaluating evolving samples using our proposed method, we
compared the degree distributions of the samples at the end of 31 days with
the original network using kolmogorov-Smirnov test. We use the D-statistics
from the test and also p-values to evaluate our null hypothesis (H0) that our
sampled ego networks follow the same distribution as the original ego network.
The degree distributions of the networks is obtained by counting the frequency
of each degree d in the network. The frequency of each degree d is given by the
number of nodes with degree d in the network snapshots at the end of 31 days.

We compared the effective size and efficiency of samples with that of ego net-
work using ego metrics introduced by Burt in [3]. Effective size of the ego network
(ES) is the number of alters that an ego has, minus the average number of ties
that each alter has to other alters. In the simplest form, for an undirected ego
network of radius 1, the effective size can be given with the Eq. 1. Efficiency
(EF) of an ego network is the proportion of ego’s ties to its neighborhood that
are “non-redundant.” Efficiency is the normalized form of effective network size
(Eq. 2). Therefore, it is a good measure for comparing ego networks of differ-
ent sizes.

ES = na −
∑na

a=1(da − 1)
na

(1)

EF =
ES

na
(2)

where na is the number of alters in the ego network and da is the degree of
an alter a.

4.2 Node Level Metrics

The node level centrality metrics discussed in the later sections are Degree,
Weighted Degree, Closeness (CC), and Eigen Vector Centralities (EVC). We
also explored the Eccentricity and Clustering Coefficient of the ego.

Evolution Analysis of Call Ego-Networks 217

5 Densification Law for Evolving Call Ego-Network

In [8] the authors studied the temporal evolution of, number of nodes vs number
of edges. Besides, the authors employed the measures of average out degree to
ascertain the densification law proposed by them. They validated that, most of
these graphs densify over time, with the number of edges growing super-linearly
to the number of nodes and their average degree increases. They investigated
the above properties in an evolving citation graph, autonomous systems graph
and affiliation graph. The authors stated that as the graphs evolve over time,
they follow the relation given by the Eq. 3.

e(t) ∝ n(t)a (3)

where e(t) and n(t) denote the number of edges and nodes of the graph at
time t, and a is an exponent that generally lies strictly between 1 and 2. The
authors refer to such a relation as a densification power law, or growth power
law where the number of edges grow super-linearly to the number of nodes. The
authors also show that the average degree of these graphs gradually increases.
With this justification the authors prove that the graphs densify over time. In
this section we investigate the densification power law (DPL) over the temporal
stream of call ego network by depicting a densification power law plot (DPL plot)
for the number of nodes n(t) and the number of edges e(t) at each timestamp t.
In our experiments, we used a time stamp of one day.

We used the four temporal evolving ego networks from the call/edge stream
as described in Sect. 3. We grabbed the snapshots of ego networks at the end
of each day and calculated the number of nodes and edges. Figure 1 shows the
DPL plots for the call ego networks. As the slope of the line in a log-log plot
gives the exponent in a power law relation, in the figure discussed above, we
derived the lines obeying power relation with the best fits of 0.99 and 1.0 with
their respective points. Therefore, the slope of these lines gives the densification
exponents as a = 1.03, 1.1, 1.08, and 1.05 (in Fig. 1a, b, c and d respectively)
which shows a super-linear growth of edges over nodes. Hence, we deduce that
the ego networks of a call network also follow the densification power law as many
other socio centric networks, with the number of edges growing super linearly to
the number of nodes with their respective exponents a.

We consider the average degree of ego networks per time stamp, which is
plotted in Fig. 2. We see that the average degree of graphs for Fig. 2b and d (ego
network of highest in-degree centrality node and highest eigen vector centrality
of graph) is gradually increasing. Average degree of graphs in Figs. 2a and c
are is slightly increasing with the evolution. From the above experiments with
the densification power law and the average degree, we see that the graphs are
densifying. Hence we require sampling techniques in real-time to analyze such
enormous evolving data.

218 S. Tabassum and J. Gama

(a) egonet1 evolution for 31 days,
slope a=1.03

(b) egonet2 evolution for 31 days,
slope a=1.10

(c) egonet3 evolution for 31 days,
slope a=1.11

(d) egonet4 evolution for 31 days,
slope a=1.06

Fig. 1. DPL plot for temporal call ego networks

(a) egonet1 evolution (b) egonet2 evoltuion

(c) egonet3 evolution (d) egonet4 evolution

Fig. 2. Average degree evolution in temporal call ego networks for 31 days

Evolution Analysis of Call Ego-Networks 219

6 Evolution Analysis of a Temporal Ego-Network

In this section, we have analyzed the evolution of the ego network (egonet1)
over a period of one month using the metrics mentioned in Sect. 4. As described
in earlier section, we have constituted the adjacent nodes of an ego and their
adjacent nodes in the ego network as the stream progresses for a month. Then
we took snapshots of the ego network per equal intervals of time stamp i.e. one
day in our case. To investigate the evolving structure and properties of a call ego
network, we undertook a piecemeal structural analysis of network by employing
the following metrics per day i.e. average degree, average weighted degree, Den-
sity, Diameter and Average Path Length and derive some empirical observations.
We also made use of a bunch of centrality metrics to study the importance of
ego in the network and compare the position of ego during evolution, they are
Degree, Weighted degree, Closeness (CC), and Eigen vector centralities (EVC).
We also explored the Eccentricity and Clustering coefficient of the ego.

Fig. 3. Degree vs weighted degree of ego network

Figure 3 plots the degree vs weighted degree of the ego in the ego network
over a log log plot. The equation of the line that best fits our temporal data
points is given in the figure. The slope of the line is given as 1.22 which shows
a power relation between degree and weighted degree of a node. Therefore, we
can say that the weighted degree of the node is growing superlinearly over its
degree. The above analysis demonstrates a social behavior, that the people are
more interested in maintaining their old relationships or friends than making
new friends. However they also show interest in making new pals.

Figure 4 depicts the graph metrics and node metrics over the evolving ego
network. When considering node metrics we see that the CC and eccentricity
of the ego increases with the evolution but the EVC remains constant, as the
ego remains the important person in the network with highest betweenness cen-
trality. The betweenness centrality of the ego also increases with the function of
network size.

Figure 5 displays the call ego network of a particular ego for day 1 and final
accumulated network on day 31. The ego is represented with the red dot in
the center. The figure illustrates the evolution of network for one month from

220 S. Tabassum and J. Gama

Fig. 4. Metrics over temporal call ego network

timestamp 1 to timestamp 31. We maintained the tie strengths between the
nodes by mapping the multi graph to a weighted graph.

7 Sampling Ego Network with Forgetting Factor (SEFF)

In this method, we sample edges from a stream of temporal network. We start
by building the ego network of a specific ego and begin to scrape together all
the adjacent ties to the ego and their adjacent ties. We do this by using a set for
storing adjacent nodes. For every recurring edge, we increment the edge weight
of the corresponding edge by maintaining a hash table. We impose a forgetting
factor over edges, following successive grace periods. In our experiments, we use
a grace period of 1 day. This means we apply the forgetting factor over the ego
network as soon as the stream enters a new day, i.e. we forget the old edges each
of a kind (i.e. edges between a pair of nodes), by some fixed percentage defined
by the forgetting factor. The forgetting factor is given by two parameters, an
attenuation factor α and a threshold θ. Where 0 < α < 1 and also 0 < θ < 1.
After every grace period or update time t the tie strength between two nodes is
given by the Eq. 4.

wt = wt + (1 − α)wt−1 (4)

where wt is the tie strength between any two nodes in the ego network at
time t. After every successive grace period, we decrease the edge weight by α and
consequently remove the alter/alters adjacent to the corresponding edge, as the
edge weight decreases than the threshold value θ. When α = 1 we have a maxi-
mum forgetting i.e. we forget the whole network except the network of current
day. When α = 0 we get the original network. If the removed edge corresponds
to an alter adjacent to the ego, we remove the adjacent edge and the alter, and
all the second level alters adjacent to the alter itself, if the above condition is

Evolution Analysis of Call Ego-Networks 221

Fig. 5. Evolution of a call ego network

satisfied. If we forget a second level edge, not having a direct connection to ego
then we only forget the corresponding node. Following this strategy, we can have
most active alters in the ego network at the end of each day.

8 Evaluation Methodology

In order to evaluate our method SEFF discussed in Sect. 7, we applied it over
a real world streaming call Graph G of 31 days by randomly choosing an ego
e and generating a sample stream of depth d = 2 at any point of flow. This
was done by generating six real time sample streams, where each sample stream
Si is generated by different combinations of α ∈ {0.9, 0.8, 0.7, 0.5} and θ ∈
{0.1, 0.2, 0.3, 0.4, 0.5} discussed in Sect. 7. For investigating the above sample
streams, we captured their snapshots of sample streams at the end of 31 days
each. Each snapshot S31

i ⊂ G. Beforehand, we took a snapshot G31
e of original

ego network stream Ge of e (where d(Ge) = 2) at the end of 31 days from the
socio-centric call graph G. Each sample graph S31

i ⊂ G31
e . We then compared the

conclusive sample snapshots S31
i where 1 ≤ i ≤ 6, with the original ego network

snapshot G31
e by employing metrics discussed in Sect. 4. We use Kalmogorov-

Smirnoff test to compare the degree distributions of the original network with
that of samples. Conclusively, we derive some conclusions about the properties
preserved by the sample networks.

9 Experimental Evaluation

The call networks are the special application scenario for employing our method
as these networks are multi-graphs with more than one edge between two users,
representing the strength of their relationship unlike a social network based on
friendship and, follower and followee relations, where there is a single binomial
relation between two nodes. However, the proposed method can be applied to

222 S. Tabassum and J. Gama

(a) (b)

(c) (d)

Fig. 6. Metrics over ego networks with and without forgetting factor

networks with binomial relationships as it forgets edges and eventually forgets
nodes. SEFF method is also appropriate for sampling weighted networks.

We selected an arbitrary user “ego” from the real world call/edge stream
described in Sect. 3 and start building the ego network of ego with a two step
neighborhood, i.e. by acquiring the neighbors of ego and the neighbor of neigh-
bors of ego. We take a snapshot of the ego network at the end of 31 days stream.
Using the same ego we start constructing the sample ego networks (using SEFF)
gradually as the stream flows for 31 days. For which, we have used six different
combinations of α and θ corresponding to six different samples depicted in Fig. 6.
The figure also plots the values of computed metrics discussed in Sect. 4 over the
conclusive sampled ego networks and the original ego network.

Figure 6(a) shows the number of nodes and the number of edges in the above
described ego networks. We observe that the number of nodes gradually decrease
with the increasing forgetting factor. For an attenuation value of 0.5 and thresh-
old value of 0.5 we forget 50 % of the edges per day, between two adjacent nodes.
This shows we always have the most active nodes with the increased forgetting
factor. We also observed that, the number of edges decrease in greater proportion
than the number of nodes, Almost reaching equal for the highest forgetting fac-
tor in the illustration. This exhibits that the proposed SEFF method decreases
redundant edges.

We also compare the degree distributions of the original ego network with
the samples generated by using SEFF method at the end of 31 days. We applied

Evolution Analysis of Call Ego-Networks 223

Table 1. Comparison of degree distributions using KS-Test

Samples α = 0.1,
θ = 0.1

α = 0.1,
θ = 0.2

α = 0.1,
θ = 0.4

α = 0.2,
θ = 0.2

α = 0.3,
θ = 0.3

α = 0.5,
θ = 0.5

D-stat 0.146 0.138 0.173 0.146 0.191 0.096

p-value 0.114 0.124 0.065 0.182 0.105 0.724

Fig. 7. Degree distributions of ego networks at the end of 31 days with and without
forgetting factor

Kolmogorov–Smirnov test to compare the degree distributions of the samples
with the original network. The D-statistics and P-values of tests are given in
the Table 1. The p-values are computed using exact method. The significance
level used for the comparisons is 5 %, i.e. α = 0.5. The results show that all the
sampled distributions follow the distribution of original graph. We also observe
that the value of θ has a greater impact on the similarity of distributions, than
α in the SEFF method. We can see the pictorial representation of the degree
distributions of the original graph and sample graphs in Fig. 7.

Figure 6(b) depicts metrics over the ego networks. The diameter of the graphs
varies with the inclusion and removal of the connecting nodes from the ego
network. It depends on the network of ego selected. Average degree and the
average path length decreases with the increasing forgetting, this shows that the
networks shrink with increased forgetting. The SEFF method has a noticeable
effect over the weighted degree of graphs.

The degree and weighted degree of the ego are plotted in Fig. 6(c). Both the
values decreased with the increased forgetting, while the drop in weighted degree
is higher, this suggests that when we increased forgetting we decreased the tie
strengths but relatively maintained the ties. In Fig. 6(d) we see that the eccentric-
ity has a similar effect of diameter in the ego network graphs. This corresponds
to the conceptual relation between diameter and eccentricity. Closeness of the
ego with alters also decreased gradually with the increased forgetting factor. The
clustering coefficient of ego is too low to compare. The eigen vector centrality
portrays the important node in the network. SEFF preserves the importance of
ego along side forgetting.

224 S. Tabassum and J. Gama

Fig. 8. Efficiency and effective size of ego networks

Figure 8 illustrates the effective size and efficiency of the ego networks. There
is negligible difference in the effective size of samples. Efficiency of the network
indicates the impact of ego in the network. In the given figure we can observe
that the efficiency of the network is maintained through out the samples using
SEFF. The measure of effective size of the network is not normalized with the
size of network, therefore it decreases with the average number of ties that each
alter has to other alters.

10 Conclusions

In this work, we analyzed the evolution of ego network for a period of one
month. We exploited the structural properties of network and related them with
the natural behavior of users. We also proved the densification law over the ego
networks of call graphs for a period of one month and found that the graphs are
densifying along time.

As we observed the properties of evolving ego network, we proposed a sam-
pling method with forgetting factor for streaming multi-graph networks which
preserves the density of graph and retains the tie strengths between nodes. We
evaluated our method by exploiting the ground truth of original graph vs samples
generated by varying parameter values. Based on the empirical experiments we
prove that our method maintains the importance and efficiency of the network
and decreases the redundancy while preserving most active and recent nodes
from the network.

Acknowledgments. This work was partly supported by the European Commission
through MAESTRA (ICT-2013-612944) and the Project TEC4Growth - Pervasive
Intelligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-
0145-FEDER-000020 is financed by the North Portugal Regional Operational Pro-
gramme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement. Shazia
Tabassum is financed by the ERDF – European Regional Development Fund through
the Operational Programme for Competitiveness and Internationalisation - COMPETE
2020 Programme within project (POCI-01-0145-FEDER-006961), and by National

Evolution Analysis of Call Ego-Networks 225

Funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Founda-
tion for Science and Technology) as part of project UID/EEA/50014/2013. The authors
also thank WeDo Business for providing the data.

References

1. Albert, R., Jeong, H., Barabási, A.-L.: Internet: diameter of the world-wide web.
Nature 401(6749), 130–131 (1999)

2. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., Wiener, J.: Graph structure in the web. Comput. Netw. 33(1),
309–320 (2000)

3. Burt, R.S.: Structural Holes: The Social Structure of Competition. Harvard Uni-
versity Press, Cambridge (2009)

4. Epasto, A., Lattanzi, S., Mirrokni, V., Sebe, I.O., Taei, A., Verma, S.: Ego-net
community mining applied to friend suggestion. Proc. VLDB Endowment 9(4),
324–335 (2015)

5. Everett, M., Borgatti, S.P.: Ego network betweenness. Soc. Netw. 27(1), 31–38
(2005)

6. Freeman, L.C.: Centered graphs and the structure of ego networks. Math. Soc. Sci.
3(3), 291–304 (1982)

7. Hanneman, R.A., Riddle, M.: Introduction to social network methods (2005)
8. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws,

shrinking diameters and possible explanations. In: Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge Discovery in Data Mining,
pp. 177–187. ACM (2005)

9. Ma, H.H., Gustafson, S., Moitra, A., Bracewell, D.: Ego-centric network sampling
in viral marketing applications. In: Ting, I.-H., Wu, H.-J., Ho, T.-H. (eds.) Mining
and Analyzing Social Networks. SCI, vol. 288, pp. 35–51. Springer, Heidelberg
(2010)

10. Milgram, S.: The small world problem. Psychol. Today 2(1), 60–67 (1967)
11. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2),

167–256 (2003)
12. Sarmento, R., Oliveira, M., Cordeiro, M., Tabassum, S., Gama, J.: Social network

analysis of streaming call graphs. In: Japkowicz, N., Stefanowski, J. (eds.) Big
Data Analysis: New Algorithms for a New Society. Studies in Big Data, vol. 16,
pp. 239–261. Springer, Switzerland (2016)

13. Tabassum, S., Gama, J.: Sampling ego-networks with forgetting factor. In: IEEE
Workshop on High Velocity Mobile Data Mining (2016, in press)

14. Tabassum, S., Gama, J.: Sampling massive streaming call graphs. In: ACM Sym-
posium on Advanced Computing, pp. 923–928 (2016)

15. Tabassum, S., Gama, J.: Social network analysis of mobile streaming networks. In:
IEEE Conference on Mobile Data Mining, Ph.d. Forum (2016, in press)

16. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393(6684), 440–442 (1998)

17. Wellman, B.: Are personal communities local? A dumptarian reconsideration. Soc.
Netw. 18(4), 347–354 (1996)

Ensemble Learning

Ensemble Diversity in Evolving Data Streams

Dariusz Brzezinski(B) and Jerzy Stefanowski

Institute of Computing Science, Poznan University of Technology,
ul. Piotrowo 2, 60–965 Poznan, Poland

{dariusz.brzezinski,jerzy.stefanowski}@cs.put.poznan.pl

Abstract. While diversity of ensembles has been studied in the context
of static data, it has not still received such research interest for evolv-
ing data streams. This paper aims at analyzing the impact of concept
drift on diversity measures calculated for streaming ensembles. We con-
sider six popular diversity measures and adapt their calculations to data
stream requirements. A comprehensive series of experiments reveals the
potential of each measure for visualizing ensemble performance over time.
Measures highlighted as capable of depicting sudden and virtual drifts
over time are used as basis for detecting changes with the Page-Hinkley
test. Experimental results demonstrate that the κ interrater agreement,
disagreement, and double fault measures, although designed to quantify
diversity, provide a means of detecting changes competitive to that using
classification accuracy.

Keywords: Classifier ensemble · Diversity measure · Data stream ·
Concept drift · Drift detection

1 Introduction

Recent decades have increased interest in collecting big data, which resulted
in new challenges for data storage and processing. Apart from their massive
volumes, these demanding data sources are also characterized by the speed at
which data is passed to analytical systems. These properties are especially rele-
vant when data are continuously generated in the form of data streams.

Compared to static data, classification in streams implies new requirements
for algorithms, such as constraints on memory usage, restricted processing time,
and one scan of incoming examples [5,6]. An even more challenging aspect of
analyzing streaming data is that learning algorithms often act in dynamic, non-
stationary environments, where the data and target concepts change over time.
This phenomenon, called concept drift, deteriorates the predictive accuracy of
classifiers, as the instances the models were trained on differ from the current
data. Examples of real-life concept drifts include spam categorization, weather
predictions, monitoring systems, financial fraud detection, and evolving customer
preferences; for their review see, e.g. [8,11,20].

Since typical batch learning algorithms for supervised classification are not
capable of fulfilling the aforementioned data stream requirements, several new
c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 229–244, 2016.
DOI: 10.1007/978-3-319-46307-0 15

230 D. Brzezinski and J. Stefanowski

learning algorithms have been introduced [5,6]. They are based on using slid-
ing windows to manage memory and provide a forgetting mechanism, sampling
techniques, drift detectors, and new online algorithms. Out of several propos-
als, ensemble methods play an important role. Ensembles of classifiers are quite
naturally adapted to non-stationary data streams, as they are capable of incor-
porating new data by either introducing a new component or updating existing
components. Forgetting of outdated knowledge can be implemented by remov-
ing components that perform poorly at a given moment or by continuously
adapting component weights accordingly to performance on recent data. Classi-
fier ensembles for streaming data are typically divided into block-based (batch-
incremental) and online (instance-incremental) approaches, depending on the
way they process incoming examples.

Most of the existing experimental studies on stream classifiers focus on pre-
dictive abilities and computational costs of ensembles in several scenarios of
concept drifts [3]. However, in earlier research on batch ensembles for static
data, several researchers were also interested in the diversity of ensembles, which
is usually calculated as the degree in which component classifiers make differ-
ent decisions for a single case [12]. Some authors hypothesize that high predic-
tive accuracy and diversity among component classifiers should be related. As
a result, many researchers considered special techniques for: visualizing diver-
sity [13], selecting the most diverse ensemble [10], or using diversity measures to
prune a large pool of component classifiers [1,9,13].

On the other hand, such interest in diversity measures is not so visible
in research on data stream ensembles. As ensemble components are typically
learned form different parts of the data stream, potentially referring to different
concept distributions, most researchers claim that they are diversified but do
not measure it directly [18]. There have been rare attempts at directly promot-
ing diversity during classifier training [14,16,19], yet once again diversity over
time was not reported in these studies. Notably, Minku et al. [14] discuss the
impact of diversity on online ensemble learning and reactions to drift by modi-
fying the Poisson distribution used in Online Bagging. However, doing so they
only measure accuracy of the modified ensemble, not its diversity.

In this paper, we analyze the more general problem of measuring ensemble
diversity in evolving data streams. More precisely, we are interested in answering
the following research questions, which are not answered by previous works:

1. Which commonly used diversity measures can be calculated for streams
processed: in blocks, incrementally, incrementally with forgetting?

2. How is ensemble diversity affected by concept drifts? Does diversity change
over time?

3. Do incremental component classifiers enhance or degrade diversity, compared
to batch component classifiers?

4. Can diversity measures be used as additional information during classifier
training or drift detection?

To answer the above questions, in the following sections we perform a review
of the most popular diversity measures known from static learning, analyze the

Ensemble Diversity in Evolving Data Streams 231

possibility of calculating these measures online, and perform a comprehensive
series of experiments to evaluate the use of each measure for visualizing and
detecting various types of concept-drift.

2 Related Work

2.1 Ensemble Diversity Measures

To the best of our knowledge, there have been no proposals of specialized ensem-
ble diversity measures for changing data streams. Therefore, we will analyze the
use of diversity measures known from static learning in streaming scenarios.
For this purpose, we selected six popular definitions of diversity based on the
comprehensive review done by Ludmila Kuncheva [12].

To illustrate the calculation of each measure, we will consider the joined
outputs of two component classifiers Ci and Cj shown in Table 1. The table
presents proportions of correct/incorrect answers of one of or both components,
thus, the total of all the cell values a+ b+ c+d = 1. An ensemble of L classifiers
will produce L(L − 1)/2 pairwise diversity values based on such tables. To get a
single value we average across all pairs.

Table 1. The 2 × 2 ensemble component relationship table with probabilities [12]

Ci correct Ci wrong

Cj correct a b

Cj wrong c d

The six analyzed diversity measures are: disagreement (D), Kohavi-Wolpert
variance (KW), double fault (DF), interrater agreement (κ), Yule’s Q statistic
(Q), and coincident failure diversity (CFD). The definitions of all the measures,
using values from Table 1, are presented in Eqs. 1–6. Note that we use shorter
equivalents of definitions given by primary authors, to make measure descriptions
shorter. For a broader discussion on ways of computing each measure, please
review [12].

Di,j = b + c (1)

KW =
L − 1
2L

Dav (2)

DFi,j = d (3)

κ = 1 − 1
2p̄(1 − p̄)

Dav (4)

Qi,j =
ad − bc

ad + bc
(5)

232 D. Brzezinski and J. Stefanowski

CFD =

{
0, p0 = 1;

1
1−p0

∑L
i=1

L−i
L−1pi, p0 < 1.

(6)

The disagreement measure D (1) is equal to the probability that two classifiers
will disagree on their decision. It is worth noting that for binary classification the
true label of an example is not needed to determine if components disagree. The
Kovavi-Wolpert variance KW (2) is inspired by the variance of the predicted
class label across different training sets that were used to build the classifier.
However, here we use the property that KW differs from the averaged disagree-
ment Dav by a coefficient. Double fault DF (3) counts the number of times both
classifiers make mistakes, whereas κ (4) measures the level of agreement between
classifiers, where p̄ is the arithmetic mean of the components’ classification accu-
racy. The Q statistic (5) varies between −1 and 1, where components that tend
to recognize the same objects correctly will have positive values and compo-
nents which tend to classify different examples incorrectly will have negative
values. Finally, CFD (6) is a measure that originates from software reliability,
and achieves its best value of 1 when all misclassifications are unique. In Eq. (6),
pi denotes the probability that exactly i out of L components fail on a randomly
chosen input.

2.2 Stream Classifiers and Drift Detectors

As an increasingly important data mining technique, data stream classifica-
tion has been widely studied by different communities; a detailed survey can
be found in [5,6]. In our study, we focus on representatives of block-based and
online ensembles. As an example of that first category, we will use the Accu-
racy Updated Ensemble (AUE) [3], which creates a new component with each
block of examples and adds it to the ensemble, incrementally trains previously
created components, and weights (evaluates) components according to their per-
formance on the newest data block. As an example of online ensemble learning,
we will use Online Bagging [15], which incrementally updates components with
each incoming example and makes a final prediction with simple majority voting.
The sampling, crucial to batch bagging, is performed incrementally by present-
ing each example to a component k times, where k is defined by the Poisson
distribution.

In this paper, we investigate ensemble diversity measures not only as a means
of visualizing ensemble and stream characteristics, but also as a basis for drift
detection. For this purpose, we modify the Page-Hinkley (PH) test [7], how-
ever, generally other drift detection methods could also have been adapted [8].
The PH test considers a variable mt, which measures the accumulated dif-
ference between observed values e (originally error estimates) and their mean
till the current moment ēt, decreased by a user-defined magnitude of allowed
changes δ: mt =

∑t
i=1 (ei − ēt − δ). After each observation et, the test checks

whether the difference between the current mt and the smallest value up to
this moment min(mi, i = 1, . . . , t) is greater than a given threshold λ. If the

Ensemble Diversity in Evolving Data Streams 233

difference exceeds λ, a drift is signaled. In this paper, we propose to use the
studied diversity measures as the observed value.

3 Calculating Diversity Measures for Streaming Data

We will discuss the possibility of calculating ensemble diversity measures in three
basic stream processing scenarios: in blocks, incrementally, and prequentially [6].

Block-based processing is the most natural framework for calculating diver-
sity measures, as examples arrive in portions (chunks) of sufficient size. Thus,
one can recalculate ensemble diversity on each incoming data block in a similar
way as for static data. We note that each of the presented measures is based
on individual component predictions and their summary in the form of pair-
wise component relationships presented in Table 1. Therefore, for a data block
of d examples and L ensemble components, measures 1–6 can be computed in
O(d · L2) time and O(d · L) memory. Since d and L are user-defined constants,
this resolves to constant time and memory per block, therefore, the analyzed
measures can be successfully used in block processing.

Incremental calculation assumes that a measure can be computed based only
on a summary of all previous examples and a single new example. This is slightly
less trivial, however, if we monitor the number of processed examples and update
a, b, c, d counts with each instance, each of the measures considered in this study
can be calculated for a new example in O(L2) time and O(L2) memory.

Finally, if a stream is subject to changes, one may be interested in calculating
diversity measures prequentially, that is, incrementally with forgetting [4,7]. Two
basic approaches to calculating values with forgetting are used: sliding windows
and fading factors [7]. Sliding windows provide a way of limiting the amount of
analyzed examples by retaining a set of only d most recent examples at each time
point. Fading factors, on the other hand, discount older information across time
by multiplying the previous summary by a factor and adding a new value com-
puted on the incoming example. Sliding windows resemble data blocks updated
after each example, and can be similarly used to calculate diversity measures
with forgetting. Furthermore, due to the fact that all of the analyzed measures
are based on counts, all of the measures can be also computed using fading fac-
tors. For this purpose, it suffices to calculate the fading sum Sx,α(t) and fading
increment Nα(t) from a stream of objects x at time t [7]:

Sx,α(t) = xt + α × Sx,α(t − 1)
Nα(t) = 1 + α × Nα(t − 1)

where x can be counts of any of the values a, b, c, d from Table 1. For example,
if dt is 1 when both components misclassify an example, then double fault can
be calculated as DFα(t) = Sd,α(t)/Nα(t). As with incremental computation,
the prequential calculation of any of the analyzed diversity measures for a new
example requires O(L2) time and O(L2) memory.

To sum up, all the considered diversity measures can be computed on
blocks, incrementally, and prequentially, while fulfilling limited time and memory

234 D. Brzezinski and J. Stefanowski

requirements of stream processing. As we are interested in using these diversity
measures on concept-drifting data, in the following sections we will visualize and
analyze diversity calculated prequentially. To the best of our knowledge, this is
the first study of diversity measures from this perspective.

4 Experimental Study

We performed two basic groups of experiments, one visualizing and comparing
diversity measures over time, and another assessing the possibility of using them
as a basis for drift detection. In the first group, we tested two different ensem-
ble classifiers: Online Bagging (Bag) and Accuracy Updated Ensemble (AUE).
Bag was chosen as an online approach, whereas AUE represents block-based
ensembles. As component classifiers we compared: Naive Bayes (NB), Linear
Perceptron (P), Decision trees (J48), and Hoeffding Trees (HT). For the second
group of experiments, we compared drift detectors using Online Bagging with
HT components.

All the algorithms and evaluation methods were implemented in Java as
part of the MOA framework [2]. The experiments were conducted on a machine
equipped with a dual-core Intel i7-2640M CPU, 2.8 Ghz processor and 16 GB of
RAM. For all the experiments, base learners where parametrized with default
values proposed in MOA.

4.1 Datasets

In experiments showcasing visualizations of diversity measures over time, we
used 2 real and 10 synthetic datasets1. For the real-world datasets it is difficult
to precisely state when drifts occur. In particular, Airlines (Air) is a large,
balanced dataset, which encapsulates the task of predicting whether a given
flight will be delayed and no information about drifts is available. However,
the second real dataset (PAKDD) was intentionally gathered to evaluate model
robustness against performance degradation caused by market gradual changes
and was studied by many research teams [17].

Additionally, we used the MOA framework [2] to generate 10 artificial data-
sets with different types of concept drift. The SEA generator [16] was used
to create a stream without drifts (SEAND), as well as three streams with sud-
den changes and constant 1:1 (SEA1), 1:10 (SEA10), 1:100 (SEA100) class imbal-
ance ratios. Similarly, the Hyperplane generator [18] was used to simulate three
streams with different class ratios, 1:1 (Hyp1), 1:10 (Hyp10), 1:100 (Hyp100), but
with a continuous incremental drift rather than sudden changes. Streams with
subscripts 10 and 100 were created to assess measures in the presence of class
imbalance, which usually remains undetected by classification accuracy [4]. We
also tested the performance of the analyzed measures in the presence of very
short, temporary changes in a stream (RBF) created using the RBF generator [2].
1 Source code, test scripts, and generator parameters available at:

http://www.cs.put.poznan.pl/dbrzezinski/software.php.

http://www.cs.put.poznan.pl/dbrzezinski/software.php

Ensemble Diversity in Evolving Data Streams 235

Apart from data containing real drifts, we additionally created four streams
with virtual drifts, i.e., class distribution changes over time. SEARC contains
three sudden class ratio changes (1:1/1:100/1:10/1:1), whereas HypRC simulates
a continuous ratio change from 1:1 to 1:100 throughout the stream. All the
synthetic datasets, apart from RBF, contained 5–10 % examples with class noise.

For experiments assessing diversity measures as potential drift detectors, we
created 7 synthetic datasets using the SEA (SEA), RBF (RBF), Random Tree
(RT), and Agrawal (Agr) generators [2]. Each dataset tested for a single reaction
(or lack of one) to a sudden change. SEANoDrift contained no changes, and
should not trigger any drift detector, while RT involved a single sudden change
after 30 k examples. The Agr1, Agr10, Agr100 datasets also contained a single
sudden change after 30 k examples, but had a 1:1, 1:10, 1:100 class imbalance
ratio, respectively. Finally, SEARatio included a sudden 1:1/1:100 ratio change
after 10 k examples and RBFBlips contained two short temporary changes, which
should not trigger the detector. The main characteristics of all the datasets are
given in Table 2.

Table 2. Characteristic of datasets

Dataset #Inst #Attrs Class ratio Noise #Drifts Drift type

SEAND 100 k 3 1:1 10 % 0 None

SEA1 1 M 3 1:1 10 % 3 Sudden

SEA10 1 M 3 1:10 10 % 3 Sudden

SEA100 1 M 3 1:100 10 % 3 Sudden

Hyp1 500 k 5 1:1 5 % 1 Incremental

Hyp10 500 k 5 1:10 5 % 1 Incremental

Hyp100 500 k 5 1:100 5 % 1 Incremental

RBF 1 M 20 1:1 0 % 2 Blips

SEARC 1 M 3 1:1/1:100/1:10/1:1 10 % 3 Virtual

HypRC 500 k 3 1:1 → 1:100 5 % 1 Virtual

Air 539 k 7 1:1 - - Unknown

PAKDD 50 k 30 1:4 - - Unknown

Elec 45 k 8 1:1 - - Unknown

KDDCup 494 k 41 1:4 - - Unknown

SEANoDrift 20 k 3 1:1 10 % 0 None

Agr1 40 k 9 1:1 1 % 1 Sudden

Agr10 40 k 9 1:10 1 % 1 Sudden

Agr100 40 k 9 1:100 1 % 1 Sudden

RT 40 k 10 1:1 0 % 1 Sudden

SEARatio 40 k 3 1:1/1:100 10 % 1 Virtual

RBFBlips 40 k 20 1:1 0 % 0 Blips

236 D. Brzezinski and J. Stefanowski

4.2 Diversity Analysis over Time

In our first group of experiments, we plotted diversity measures (1–6) over 2
real and 10 synthetic datasets with various types of drift. The measures where
prequentially calculated on a sliding window of d = 1000 examples for Bag and
AUE. Both ensemble classifiers where tested with NB, P, J48, and HT compo-
nent classifiers. For subsequent plots, we also changed the number of component
classifiers k ∈ {2, 3, 4, 5, 7, 10, 15, 25, 50}. By changing the mentioned parameters,
we are interested in assessing the influence of:

– the type of visualized diversity measure,
– type of drift occurring in the stream,
– number of component classifiers,
– type of component base learner,
– ensemble adaptation procedure.

A set of plots depicting disagreement (D) measured on Bag with different
base learners and varying number of components is presented in Fig. 1. Due
to the overwhelming number of subplots, we only present a full figure for D,
however, a report containing plots of all the analyzed measures, for both Bag
and AUE, is available online.2

Looking at Fig. 1, one can notice that D changes over time, and does so
differently for each dataset (grid column). Moreover, subplots within one col-
umn are similar to each other. As grid rows represent the number of ensemble
components, this shows that, for a given dataset, changes in diversity are not
very sensitive to the ensemble size. This pattern was true for all the analyzed
diversity measures.

Since the shape of each single diversity plot was very similar for varying
ensemble sizes, in Fig. 2 we visually compare all the measures for Bag with
fixed k = 10 components. The first two rows in Fig. 2 present prequentially
calculated accuracy [7] and the area under the ROC curve (AUC) [4] as reference
metrics, and measures CFD, D, DF , κ, KW , Q, in consecutive rows. The plot
clearly showcases that the analyzed diversity measures differ from each other.
For example, CFD is very sensitive to ensemble changes, whereas D, DF , and
KW have relatively smooth plots. It is also worth noticing that D and KW
have plots of identical shape, yet on different y-axis scales. This is expected as
looking at Eqs. (1) and (2), one can notice that KW is a scaled version of D.
Additionally, it is worth pointing out that some of the measures seem to depict
sudden (D, DF , κ) and class ratio changes (κ, CFD) over time. This suggests,
that some of the analyzed measures could be monitored over time to signal drifts
or problems with the performance of an ensemble.

Figure 3 presents disagreement D of Bag and AUE with k = 10 components
on a dataset with sudden changes (SEA1). This pair of plots shows that AUE,
which periodically replaces existing components with new classifiers, showcases
high variability over time. Furthermore, Fig. 3 gives a closer look at the impact of

2 http://www.cs.put.poznan.pl/dbrzezinski/software/DiversityInStream.html.

http://www.cs.put.poznan.pl/dbrzezinski/software/DiversityInStream.html

Ensemble Diversity in Evolving Data Streams 237

using different component base learners. The Naive Bayes (NB) algorithm does
not promote diversity among components and does not depict diversity changes
over time. The Hoeffding Tree (HT) and Perceptron (P) are much better at
depicting changes over time due to their incremental nature. Finally, batch deci-
sion trees (J48) are only applicable to block-based ensembles. These properties
were shared by all the analyzed plots.

In the following section, we will take a closer look at the possibility of detect-
ing drifts using ensemble diversity measures.

4.3 Drift Detection Using Diversity Measures

The second group of experiments involved using the PH test to detect drifts
based on changes in prequential accuracy and diversity measures. To compare
all the analyzed metrics, we used sliding window sizes (1000–5000) and PH
test parameters (λ = 100, δ = 0.1) as proposed in [7]. Table 3 presents the
number of missed versus false detection counts, with average delay time for
correct detections; subscripts in column names indicate the PH test window size.
The results refer to total counts and means over 10 runs of streams generated
with different random seeds.

First, we note that two diversity measures, Q and KW , are missing from
Table 3. We omitted these two measures from the presentation, because the drift
detector never triggered for these measures. That means that for datasets with
drifts Q and KW always had 10 missed detections and 0 false alarms. Thus, our
first observation is that Q and KW are not good candidates for drift monitors,
at least when using the PH Test. One explanation of this fact may be that the
Kohavi-Wolpert variance KW is a measure with a small range of values, which
most probably makes it difficult for the detector to trigger. The Q statistic, on
the other hand, puts common misclassifications and correct answers on two ends
of its scale, this way introducing difficulties for the used PH Test.

Another outlying measure is CFD. The Coincident Failure Diversity is very
susceptible to small changes in the ensemble, causing a very large number of false
alarms. Therefore, just as Q and KW , CFD is not a good choice of monitored
value when detecting drifts using the PH Test.

The remaining three measures (κ, DF , D) showcase good drift detection
properties. Particularly, κ offers detection rates comparable to those of prequen-
tial accuracy with smaller delay. Additionally, κ successfully detected 9 out of
10 class ratio changes, whereas accuracy did not detect any of them. DF and
D have slightly more missed detections and are slower at signaling changes.
However, it is worth noting that for binary classification problems, D has the
potential of working in unlabeled or partially labeled stream settings. This opens
an interesting option for future research, and might mean that if predictions of
components start to disagree in an unusual way, we may be able to observe
sudden changes even without true labels of incoming examples.

238 D. Brzezinski and J. Stefanowski

A
ir

H
yp

 R
C

H
yp

 1
H

yp
 1

0
H

yp
 1

00
PA

KD
D

RB
F

SE
A

 N
D

SE
A

 R
C

SE
A

 1
SE

A
 1

0
SE

A
 1

00

0.
0

0.
2

0.
4

0.
6

0.
0

0.
2

0.
4

0.
6

0.
0

0.
2

0.
4

0.
6

0.
0

0.
2

0.
4

0.
6

0.
0

0.
2

0.
4

0.
6

0.
0

0.
2

0.
4

0.
6

0.
0

0.
2

0.
4

0.
6

0.
0

0.
2

0.
4

0.
6

0.
0

0.
2

0.
4

0.
6

2 3 4 5 7 10 15 25 50

Pr
oc

es
se

d
in

st
an

ce
s

Disagreement

Co
m

po
ne

nt
H

T
J4

8
N

B
P

F
ig
.
1
.
D

is
a
g
re

em
en

t
v
is

u
a
li
za

ti
o
n
s

o
n

a
ll

th
e

a
n
a
ly

ze
d

d
a
ta

se
ts

fo
r

B
a
g

w
it

h
k

∈
{2

,3
,4

,5
,7

,1
0
,1

5
,2

5
,5

0
}c

o
m

p
o
n
en

ts

Ensemble Diversity in Evolving Data Streams 239

A
ir

H
yp

 R
C

H
yp

 1
H

yp
 1

0
H

yp
 1

00
PA

KD
D

RB
F

SE
A

 N
D

SE
A

 R
C

SE
A

 1
SE

A
 1

0
SE

A
 1

00

0.
4

0.
6

0.
8

1.
0

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

0.
0

0.
1

0.
2

0.
3

0.
0

0.
2

0.
4

0.
6

0.
25

0.
50

0.
75

1.
00

0.
00

0.
05

0.
10

0.
15 0.

4

0.
6

0.
8

1.
0

Accuracy AUC CFD Disagreement DoubleFault Kappa KohaviWolpert Q_statistic

Pr
oc

es
se

d
in

st
an

ce
s

Diversity Measure Value

Co
m

po
ne

nt
H

T
J4

8
N

B
P

F
ig
.
2
.
P
er

fo
rm

a
n
ce

a
n
d

d
iv

er
si

ty
m

ea
su

re
v
is

u
a
li
za

ti
o
n
s

o
n

a
ll

th
e

a
n
a
ly

ze
d

d
a
ta

se
ts

fo
r

B
a
g

w
it

h
k

=
1
0

co
m

p
o
n
en

ts

240 D. Brzezinski and J. Stefanowski

0.00

0.05

0.10

0.15

0.0 × 10
+0

2.5 × 10
+5

5.0 × 10
+5

7.5 × 10
+5

1.0 × 10
+6

Processed instances

D
is

a
g

re
e

m
e

n
t

Component
HT
J48
NB
P

(a) Bag

0.0

0.1

0.2

0.0 × 10
+0

2.5 × 10
+5

5.0 × 10
+5

7.5 × 10
+5

1.0 × 10
+6

Processed instances

D
is

a
g

re
e

m
e

n
t

Component
HT
J48
NB
P

(b) AUE

Fig. 3. Comparison of disagreement D visualizations of Bag and AUE with k = 10
components for a stream with sudden changes (SEA1)

Ensemble Diversity in Evolving Data Streams 241

Table 3. Number of missed and false detections (in the format missed:false) obtained
using the PH test with prequential accuracy and diversity measures. Mean delays of
correct detections are given in parenthesis, where (-) means that the detector was not
triggered or the dataset did not contain any change.

Acc1k Acc2k Acc3k Acc4k Acc5k

SEANoDrift 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)

Agr1 0:0 (946) 0:0 (1614) 0:0 (2265) 0:0 (2920) 0:0 (3582)

Agr10 0:5 (805) 1:6 (1287) 0:1 (1685) 0:1 (2197) 0:1 (2909)

Agr100 4:13 (1416) 4:11 (1706) 5:13 (2637) 4:10 (3035) 4:9 (3748)

RT 6:0 (1851) 7:0 (2414) 7:0 (3428) 8:0 (3656) 8:0 (4514)

SEARatio 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-)

RBFBlips 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)

κ1k κ2k κ3k κ4k κ5k

SEANoDrift 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)

Agr1 0:0 (608) 0:0 (986) 0:0 (1352) 0:0 (1719) 0:0 (2082)

Agr10 0:6 (453) 1:8 (648) 5:8 (757) 1:7 (1115) 1:8 (1810)

Agr100 10:10 (-) 8:3 (596) 9:3 (1945) 9:3 (2769) 9:1 (3558)

RT 5:0 (1456) 6:0 (2057) 6:0 (2890) 6:0 (3809) 6:0 (4851)

SEARatio 1:0 (1073) 1:0 (1976) 1:0 (2874) 1:0 (3755) 1:0 (4635)

RBFBlips 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)

DF 1k DF 2k DF 3k DF 4k DF 5k

SEANoDrift 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)

Agr1 0:0 (1200) 0:0 (2112) 0:0 (3051) 0:0 (4019) 0:0 (5027)

Agr10 0:3 (881) 0:1 (1387) 0:1 (1938) 0:1 (2727) 0:1 (3817)

Agr100 10:10 (-) 10:5 (-) 10:5 (-) 10:5 (-) 10:5 (-)

RT 6:0 (2125) 8:0 (2092) 8:0 (2881) 8:0 (3688) 8:0 (4561)

SEARatio 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-)

RBFBlips 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)

D1k D2k D3k D4k D5k

SEANoDrift 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)

Agr1 1:0 (1582) 1:0 (2342) 1:0 (3154) 1:0 (4008) 1:0 (4909)

Agr10 9:1 (3120) 9:1 (3885) 9:0 (4704) 9:0 (5580) 9:0 (6464)

Agr100 7:12 (3693) 8:8 (2337) 8:4 (4818) 9:3 (2991) 9:3 (4272)

RT 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-)

SEARatio 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-) 10:0 (-)

RBFBlips 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-) 0:0 (-)

CFD1k CFD2k CFD3k CFD4k CFD5k

SEANoDrift 0:176 (-) 0:120 (-) 0:80 (-) 0:59 (-) 0:41 (-)

Agr1 0:580 (281) 0:284 (558) 0:176 (1449) 0:121 (1903) 0:93 (1386)

Agr10 0:516 (506) 0:267 (908) 0:181 (741) 0:131 (1919) 0:102 (1673)

Agr100 0:190 (1242) 0:187 (1085) 0:148 (1294) 0:113 (2463) 0:95 (2073)

RT 0:676 (218) 0:330 (531) 0:213 (810) 0:152 (1117) 0:117 (1972)

SEARatio 1:218 (2501) 0:158 (1483) 0:114 (3152) 0:100 (2402) 0:80 (2067)

RBFBlips 0:533 (-) 0:260 (-) 0:170 (-) 0:120 (-) 0:100 (-)

242 D. Brzezinski and J. Stefanowski

5 Conclusions and Outlook

Diversity is often perceived as one of the most important characteristics of
ensemble classifiers. However, even though ensembles are among the most often
proposed approaches for concept-drifting streams, up till now ensemble diver-
sity measures have not been thoroughly studied in the context of time-evolving
data. In this paper, we reviewed diversity measures known from static data, and
analyzed the possibility of calculating them on blocks, incrementally, and pre-
quentially. Additionally, a comprehensive series of experiments was performed
to evaluate the use of each measure for visualizing and detecting various types
of concept-drift.

Regarding the first question posed in the introduction, we can state that all
six of the analyzed measures can be adapted to data stream requirements and
computed according to three basic processing paradigms: on consecutive blocks,
incrementally, and prequentially. We find the answer to the second question much
more interesting. Visualizations of diversity measures calculated on streams with
various types of drifts have shown that ensemble diversity visibly changes over
time. In particular, we were able to highlight κ interrater agreement, double
fault, disagreement, and coincident failure diversity, as measures that were able
to depict sudden changes. Additionally, it is worth noting that diversity of the
tested ensembles was generally low in terms of absolute values, which might
signal that there is still pending research in the field of adaptive ensembles.

The third research question raised the problem of using incremental versus
batch classifiers as ensemble components. Our results show that incremental base
learners have greater potential for depicting diversity over time. In particular,
Hoeffding trees and linear perceptrons were better at visualizing changes over
time than batch decision trees and the Naive Bayes algorithm. We also noticed
differences between using an adaptive ensemble that only updates existing com-
ponents and one that periodically creates new components. The latter, repre-
sented in our experiment by the Accuracy Updated Ensemble exhibits slightly
higher but also much more variable diversity. Surprisingly, one of the most com-
monly tuned ensemble parameters, the number of components, showcased little
impact on diversity plots over time.

Finally, we were interested whether diversity measures can be used to detect
concept drifts. A separate set of experiments employing the Page-Hinkley test
showed that κ interrater agreement, double fault, and disagreement are capable
of detecting sudden changes. In particular, κ was capable of detecting changes
equally effectively as accuracy, with smaller delays. Moreover, contrary to accu-
racy, κ was capable of detecting class ratio changes.

Observations made in this study open several lines of future research. Draw-
ing parallels from static ensembles, diversity measures could be used to prune
large ensembles online. Moreover, the complementary nature of various diver-
sity and performance measures suggests it might be worth investigating ideas of
combining multiple detectors, which would monitor more than one metric. It is
also worth recalling that for binary classification the true label of an example
is not needed to calculate disagreement. Thus, there might be a possibility of

Ensemble Diversity in Evolving Data Streams 243

using disagreement to detect sudden drifts in partially labeled streams, where
supervised detectors cannot be applied. Finally, data stream characteristics call
for new specialized diversity measures and visualizations. For example, one could
take into account differences in component age when calculating pairwise diver-
sity measures or visualize the variability of disagreement among component pairs
by using whiskers or box plots.

Acknowledgments. The authors’ research was funded by the Polish National Science
Center under Grant No. DEC-2013/11/B/ST6/00963. Dariusz Brzezinski acknowledges
the support of an FNP START scholarship.

References

1. Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: A new ensemble
diversity measure applied to thinning ensembles. In: Windeatt, T., Roli, F. (eds.)
MCS 2003. LNCS, vol. 2709, pp. 306–316. Springer, Heidelberg (2003). doi:10.
1007/3-540-44938-8 31

2. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive online analysis.
J. Mach. Learn. Res. 11, 1601–1604 (2010)

3. Brzezinski, D., Stefanowski, J.: Reacting to different types of concept drift: the
accuracy updated ensemble algorithm. IEEE Trans. Neural Netw. Learn. Syst.
25(1), 81–94 (2014)

4. Brzezinski, D., Stefanowski, J.: Prequential AUC for classifier evaluation and drift
detection in evolving data streams. In: Appice, A., Ceci, M., Loglisci, C., Manco,
G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2014. LNCS (LNAI), vol. 8983, pp.
87–101. Springer, Heidelberg (2015). doi:10.1007/978-3-319-17876-9 6

5. Ditzler, G., Roveri, M., Alippi, C., Polikar, R.: Learning in nonstationary environ-
ments: a survey. IEEE Comp. Intell. Mag. 10(4), 12–25 (2015)

6. Gama, J.: Knowledge Discovery from Data Streams. Chapman and Hall, Boca
Raton (2010)

7. Gama, J., Sebastião, R., Rodrigues, P.P.: On evaluating stream learning algo-
rithms. Mach. Learn. 90(3), 317–346 (2013)

8. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A surveyon
concept drift adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014)

9. Giacinto, G., Roli, F.: An approach to the automatic design of multiple classifier
systems. Pattern Recogn. Lett. 22(1), 25–33 (2001)

10. Giacinto, G., Roli, F.: Design of effective neural network ensembles for image clas-
sification purposes. Image Vis. Comput. 19(9–10), 699–707 (2001)

11. Krempl, G., Zliobaite, I., Brzezinski, D., Hüllermeier, E., Last, M., Lemaire, V.,
Noack, T., Shaker, A., Sievi, S., Spiliopoulou, M., Stefanowski, J.: Open challenges
for data stream mining research. SIGKDD Explorations 16(1), 1–10 (2014)

12. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-
Interscience, Hoboken (2004)

13. Margineantu, D.D., Dietterich, T.G.: Pruning adaptive boosting. In: Procreedings
of 14th International Conference on Machine Learning, pp. 211–218 (1997)

14. Minku, L.L., White, A.P., Yao, X.: The impact of diversity on online ensemble
learning in the presence of concept drift. IEEE Trans. Knowl. Data Eng. 22(5),
730–742 (2010)

http://dx.doi.org/10.1007/3-540-44938-8_31
http://dx.doi.org/10.1007/3-540-44938-8_31
http://dx.doi.org/10.1007/978-3-319-17876-9_6

244 D. Brzezinski and J. Stefanowski

15. Oza, N.C., Russell, S.J.: Experimental comparisons of online and batch versions of
bagging and boosting. In: Proceedings of 7th ACM SIGKDD International Con-
ference on Knowledge Discovery Data Mining, pp. 359–364 (2001)

16. Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classi-
fication. In: Proceedings of 7th ACM SIGKDD International Conference on Knowl-
edge Discovery Data Mining, pp. 377–382 (2001)

17. Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.B.: PAKDD data mining
competition (2009)

18. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using
ensemble classifiers. In: Proceedings of 9th ACM SIGKDD International Confer-
ence on Knowledge Discovery Data Mining, pp. 226–235 (2003)

19. Woźniak, M.: Application of combined classifiers to data stream classification. In:
Saeed, K., Chaki, R., Cortesi, A., Wierzchoń, S. (eds.) CISIM 2013. LNCS, vol.
8104, pp. 13–23. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40925-7 2

20. Zliobaite, I., Pechenizkiy, M., Gama, J.: An overview of concept drift applications.
In: Japkowicz, N., Stefanowski, J. (eds.) Big Data Analysis: New Algorithms for a
New Society, Studies in Big Data, vol. 16, pp. 91–114. Springer, Heidelberg (2016)

http://dx.doi.org/10.1007/978-3-642-40925-7_2

Learning Ensembles of Process-Based Models
by Bagging of Random Library Samples

Nikola Simidjievski1,2(B), Ljupčo Todorovski3, and Sašo Džeroski1,2

1 Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
{nikola.simidjievski,saso.dzeroski}@ijs.si

2 Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
3 Faculty of Administration, University of Ljubljana, Ljubljana, Slovenia

ljupco.todorovski@fu.uni-lj.si

Abstract. We propose a new method for learning ensembles of process-
based models for predictive modeling of dynamic systems from data
and knowledge. Previous work has shown that ensembles based on sam-
pling data (i.e., bagging), significantly improve predictive performance of
process-based models. However, this improvement comes at the cost of
a substantial computational overhead needed for learning. On the other
hand, methods for constructing ensembles based on sampling knowledge
(i.e., random library samples, RLS) allow for efficient learning ensembles
of process-based models, while maintaining their long-term predictive
performance. This paper aims at checking the conjecture whether the
combination of these methods has a potential for further performance
improvements. The proposed method, bagging of random library sam-
ples for learning ensembles of process-based models combines the afore-
mentioned approaches in terms of sampling both data and knowledge.
We apply the method to and evaluate its performance on a set of auto-
mated predictive modeling tasks in two lake ecosystems from data and
library of knowledge for modeling population dynamics. The experimen-
tal results serve both to identify the optimal design decisions regarding
the proposed method as well as to asses its predictive ability. The results
show that such ensembles outperform single process-based model, but
also outperform each of the two methods for learning ensembles from
data samples (bagging) and knowledge samples (RLS).

1 Introduction

Mathematical models of dynamic systems are constructed and employed to recre-
ate, simulate and/or predict the behavior of dynamic systems under various
conditions [12]. The twin pillars of every approach to modeling dynamics are
(1) structure identification and (2) parameter estimation. The former addresses
the task of establishing a suitable model structure in terms of defining the com-
ponents that are involved in the system and how they interact (commonly for-
malized as ordinary differential equations, ODEs). Parameter estimation, given
a model structure, deals with approximating the constant parameters and the
initial values of the variables in the model. Frequently used approach to modeling
c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 245–260, 2016.
DOI: 10.1007/978-3-319-46307-0 16

246 N. Simidjievski et al.

dynamic systems is theoretical (knowledge-driven) modeling. A domain expert
derives a proper structure of the model based on an extensive knowledge about
the system at hand. Measured data are then used to estimate the (constant)
parameters in the model. The alternative approach, i.e. empirical (data-driven)
modeling, uses measured data in a trial-error process to search for such a com-
bination of model structure/parameters that best fit the measurements.

Equation discovery, a sub-field of machine learning, joins the previous two
approaches of modeling, by studying methods for learning both model struc-
ture and parameter values from observations [11,19]. The most recent approach,
referred to as process-based modeling [6,18], combines heuristic search methods
with parameter estimation techniques to simultaneously tackle the tasks of struc-
ture identification and parameter estimation. While the search methods explore
the space of candidate model structures defined by a library of domain knowl-
edge, the parameter estimation techniques aim at finding optimal values of the
constant parameters for each candidate structure and evaluate its fit against the
measured data. The utility of process-based modeling has been demonstrated in
a variety of tasks ranging from modeling population dynamics in aquatic systems
[3,20] to systems biology [9,16]. However, these applications focus primarily on
establishing explanatory models of the system at hand. Typically, the obtained
models are simulated and analyzed on the same data used for learning them,
thus their ability to predict the systems’ behavior is limited, i.e., evaluating
their generalization error has not even been considered nor evaluated.

The main focus of this study is improving the predictive performance of
process-based models (PBMs) by constructing ensembles. Recent studies [13,14]
have introduced ensembles in the context of PBMs. The former study addresses
the task of learning ensembles of PBMs by sampling data instances. The pro-
posed method for bagging of PBMs yields a significant gain in predictive per-
formance over a single PBMs. However, such ensembles suffer from substantial
computational overhead when learning them [14]. In contrast, the latter study
focuses on efficient learning of ensembles of PBMs by sampling data features.
Here, the ensemble constituents are learned from the whole data set using sam-
ples of the knowledge library. This is in contrast to bagging, where ensemble con-
stituents are being learned on data samples using the same knowledge library
(or feature space). The results of the performed experiments show that these
efficient ensembles also significantly outperform single PBMs in accurately pre-
dicting long-term behavior of dynamic systems, however they can not match the
performance of bagging.

In this paper we propose a novel method for learning ensembles of PBMs
which combines the afore-mentioned approaches to constructing ensembles in
terms of sampling both data instances and domain knowledge. We conjecture
that the novel method for learning ensembles besides outperforming single PBMs
in terms of long-term predictive performance, will also perform better than both
individual ensemble methods of bagging and by sampling the library of domain
knowledge. To validate this conjecture we perform an empirical evaluation of
the implemented method on the task of modeling and predicting population

Learning Ensembles of Process-Based Models by Bagging 247

dynamics in two aquatic ecosystems. This empirical evaluation will allow us to
identify the most appropriate design decisions within the algorithm for learning
such ensembles. It will also allow us to compare the predictive performance of the
new method to the performance of the existing methods for learning ensembles
of PBMs by bagging and sampling the library of domain knowledge.

This work is closely related to that of [5], where an ensembles of PBMs is con-
structed by fusing the most frequent structure fragments of the individual base
models learned from different data samples. The results show that the result-
ing ensemble still provides a process-based explanation of the observed system
structure, while being more robust in terms of over-fitting. Note, however, that
authors estimate the out-of-sample error of the models, by taking random sub-
samples of the observed time-series data and removing them from the training
data. Therefore, the ability of such ensemble to generalize outside the time span
of the training data has not been considered. In a similar context, the work of [1]
also is related since it tackles the tasks of predictive modeling of (discrete) non-
linear dynamic systems with machine learning approaches. Here, the modeling
problem is first transformed into a non-linear regression approximation problem
which is subsequently tackled by learning fuzzy linear model trees and ensem-
bles of fuzzy linear model trees. The results show that the ensembles improve the
performance over the single fuzzy linear trees. Note that, this study focuses on
short-term (one-step ahead) prediction of discrete-time dynamic systems, where
the value of the time series in the next time-point is predicted, as opposed to
long-term prediction of continuous non-linear dynamic systems.

The remainder of the paper is organized as follows. In the next section,
we provide overview of the process-based modeling paradigm. Section 3 intro-
duces the novel method for learning ensembles of process-based models. Next,
in Sect. 4 we present the experimental setup for evaluating the proposed method
and present the results in Sect. 5. Finally, the last section concludes the paper
and suggests directions for further work.

2 Process-Based Modeling

The process-based modeling paradigm aims at constructing models which con-
tain a high-level conceptual structure and a low-level mathematical formulation
which allows for making predictions. Process-based models integrate domain-
specific modeling knowledge and data into explanatory models of the observed
systems. A process-based model consists of two types of components: entities
and processes. Entities represent the state of the system. They incorporate the
variables and the constants related to the components of the modeled system.
The entities are involved in complex interactions represented by the processes.
Each process includes specifications of how entities interact in terms of processes
alternatives and sub-processes.

The entities and processes represent specific components and interactions
observed in the particular system at hand. To elucidate such specific enti-
ties and processes, the process-based modeling approach allows for a higher-
level representation of knowledge in terms of entity and process templates.

248 N. Simidjievski et al.

These serve as placeholders for general properties and definitions of the model-
ing components. The template entities and processes are hierarchically organized
together into a library of components that defines the space of modeling alter-
natives for modeling a specific dynamic system.

More specifically, the entity templates define the constant parameters and
incorporate the general definitions of variables in terms of their roles, initial
values, ranges and aggregation function. The role specifies whether a partic-
ular variable is modeled (endogenous) or used as a forcing term in the system
(exogenous). The initial value of a variable denotes the state of the system in the
initial time point, which is a required input for a model simulation. The aggre-
gation function specifies how the influence of multiple processes is combined for
a particular entity. On the other hand, the processes templates include specifi-
cations of the entity templates that interact, in terms of (process) constants and
algebraic/ordinary differential equations. In sum, the templates provide general
modeling recipes for any instantiation to specific components or interactions,
which in turn allow for a high-level qualitative conceptualization of a model to
be translated into a low-level quantitative mathematical formalization which can
be simulated.

The task of learning PBMs is comprised of two sub-tasks: (i) instantiating
the library of entity and process templates and (ii) estimating the parameters in
the resulting model structures to fit the measured data. The algorithm for learn-
ing PBMs (presented in Algortihm 1) takes three inputs: (1) a library of domain
knowledge, (2) an incomplete model and (3) measured data. Given the library of
model components the former sub-task is formulated as a combinatorial search
problem. Taking the incomplete model into account, one can instantiate the tem-
plate entities and processes from the library into a set of specific components
(entities and processes) to be included in the PBM. The incomplete model repre-
sents modeling assumptions in terms of expected logical structure of the model,
which limits the search space of the possible and plausible model structures, i.e.,
combinations of model structures. Some of the combinations can be rejected as
implausible, due to their inconsistency with the incomplete model in terms of
presence or absence of certain processes.

Algorithm 1. Outline of the generic algorithm for learning process-based
models from knowledge and data.
Input: library, data, incompleteModel
Output: modelList

1 components ← instantiate(library, incompleteModel)
2 foreach structure ∈ enumerate(components, incompleteModel) do
3 modelEq ← compileToEquation(structure)
4 {model, error} ← parameterEstimation(modelEq, data)
5 modelList ← modelList

⋃{model, error}
end

6 modelList ←rank(modelList, error)

Learning Ensembles of Process-Based Models by Bagging 249

The latter sub-task, i.e., estimating the model’s parameters is formulated as
an optimization task. Each of the candidate model structures considered during
the search task is compiled into a system of equations, for which a parameter
estimation task is solved to obtain values of the model parameters that best
fit the measured data. The parameter estimation process is based on the meta-
heuristic optimization framework that implements a number of global optimiza-
tion algorithms. The objective function usually considered for such problems is
minimizing the discrepancy between the model simulation and the observed sys-
tem behavior. Finally, the output of the algorithm is a set of complete models
sorted according to their performance, i.e., the difference error between the sim-
ulation and the measured data, where the highest ranked model is considered as
an output.

Algortihm 1 presents an outline of a generic algortihm for learning PBMs.
In this study, we use ProBMoT [20], a recent process-based modeling tool which
allows for complete modeling, parameter estimation, and simulation of PBMs.
ProBMoT is employed as the learning algorithm for inducing base PBMs, i.e.,
learning the constituents of the process-based ensemble models.

Figure 1 depicts an exemplary output of a process-based modeling algortihm
addressing the task of modeling population dynamics (of a phytoplankton concen-
tration) in a simple aquatic ecosystem. More specifically the toy system represents
a cyclic relationship involving a primary producer (phytoplankton, abbrev. phyto)
that grows by feeding on nutrients (nitrogen and phosphorous), the concentra-
tions of which are influenced by the environment (temperature) and the process
of respiration. Figure 1 (top) presents a model of such a system in a qualitative
process-based modeling formalism. Given that only the concentration of the phy-
toplankton is modeled, the respective entity phyto is defined as an endogenous
variable whereas the rest of the variables (corresponding to the other three enti-
ties of nitro , phos and env) are exogenous. The interactions of these entities
are then specified by four processes. For example, the process Growth defines the
interaction between the phytoplankton and the two nutrients of nitrogen (nitro)
and phosphorous (phos). In terms of mathematical formulation such a high-level
representation of a dynamic system is compiled into a system of algebraic and
ordinary differential equations adequate for simulation. Figure 1 (middle) provides
the quantitative formulation of the PBM presented above, where pc(t), phc(t) and
nc(t) correspond to the concentration variables of the entities of phyto , phos and
nitro , respectively. The environmental temperature is denoted with T , and the
growth rate of the phytoplankton with gRate.

These equations can then be fully simulated, which results in a trajectory that
allows for further analyses of the modeled system. Figure 1 (bottom) presents
the simulation of phytoplankton concentration obtained from the PBM. Here
we used real measurements from [3] for the exogenous variables involved in the
system (nutrients and temperature) and for estimating the parameters of the sys-
tem. The resulting simulation spans the time period of approximately one year,
excluding the period when real measurements were not available. The DATA
trajectory (represented by a dashed line) represents real measurements that can
be used for a visual assessment of the PBM performance.

250 N. Simidjievski et al.

Fig. 1. A process-based model (top) of population dynamics compiled to ODE (middle)
and its simulation (bottom) in a simple lake ecosystem.

3 Bagging of Random Library Samples

The algorithm for learning ensembles of PBMs with the bagging of random
library samples (BRLS) method is presented in Algorithm2. It takes four inputs:
a library of domain knowledge (lib), a dataset consisting of training data (DT)

Learning Ensembles of Process-Based Models by Bagging 251

and validation data (DV), an incomplete model (incompleteModel) and an inte-
ger k denoting how many ensemble constituents are to be generated.

At each iteration (out of k), the algorithm learns a PBM from different
samples of the training data and the library. For the task of randomly sampling
data instances, BRLS borrows some ideas from bagging for regression tasks,
however it distinctively differs in one important aspect. The difference relates
to the temporal ordering of the training data, which here has to be retained in
each data sample. To achieve this, we implement sampling by retaining the order
of the instances by introducing a weight for each instance (time-point) that is
provided as part of the data (line 4 in Algorithm2). The weight corresponds to
the number of times the instance has been selected in the process of sampling
with replacement. Instances that have not been selected (the ones with weight
0) are simply omitted from the sample.

To take into account the weights when learning a model from the sample,
we implement the weighted root mean squared error (WRMSE) as an objective
function in the process of parameter estimation in ProBMoT:

WRMSE(m) =

√√√√
∑N

t=0 ωt(yt − ŷt)2∑N
t=0 ωt

, (1)

where yt and ŷt correspond to the measured and simulated values (simulating the
base model m) of the system variable y at time point t, N denotes the number
of instances in the data sample, and ωt denote the weight of the data instance
at time point t.

On the other hand, for the task of sampling the library (line 3 in Algo-
rithm2) we relate to the well-known ensemble method for sampling data fea-
tures, i.e., the Random Subspace Method (RSM) [10]. In the realm of process
based modeling, we can think of the feature space as being defined by the model
components instantiated from the process templates. This space of components
is determined by the number of process alternatives defined in the library of

Algorithm 2. Constructing ensemble of PBMs by bagging of random
library samples
Input: lib, {DT , DV }, incompleteModel, k
Output: Ensemble

1 Ensemble ← ∅ /* set of base models */

2 for i = 1 to k do
3 libS ← sampleLib(lib) /* randomly sample the library lib */

4 DS ← sampleData(DT) /* randomly sample the training set DT */

5 modelListi ← probmot(libS , DS , incompleteModel)
6 bestModeli ← rank(modelListi, DV)

7 βi ←confidence(bestModeli, DV)

8 Ensemble ← Ensemble
⋃ {bestModeli, βi}

end

252 N. Simidjievski et al.

domain knowledge. Therefore, randomly sampling data features in the context
of the traditional RSM, is analogous to generating random samples of the library
of domain knowledge by randomly sampling (excluding) process alternatives
from the original library. The sampling algorithm takes as input the complete
library and enumerates all the process templates defining more than one mod-
eling choice. In turn, for each process template on the list, it takes a random
sample of the available modeling choices to be included in the sampled library.
Note that the library sampling does not assume a uniform distribution of sam-
ples: the probability of a library sample is proportional to the size of the induced
space of candidate models. In particular, the probability of a library sample libS
of the whole library lib equals:

P (libS) =
|LS |∑

Li∈P(L)

|Li|
, (2)

where L and LS ⊆ L correspond to the sets of candidate models induced by lib
and libS (for a given incomplete model specification), respectively. Moreover, | · |
denotes set cardinality and P(L) denotes the powerset of L, i.e., the set of all
the possible subsets of L1.

The output of a modeling task, when using ProBMoT, is a list of PBMs,
which is a posteriori sorted according to their performance (line 5 in Algo-
rithm2). Depending on the input in the method, this ranking can be based
either on the performance on a separate validation data set DV , or on the train-
ing sample (if DV == DT). The highest ranked model from each modeling task
i (out of k) denoted as bestModeli, is selected to be an ensemble constituent in
the output Ensemble.

Once the ensemble constituent set has been populated, the question then
arises as to how the individual predictions are to be combined into a single
prediction. In this context, for obtaining the output of an ensemble of PBMs
the different model simulations from each base model are combined time-point-
wise: The combination is performed by well known schemes usually applied in
the case of aggregating numeric values, such as averaging, median and their
weighted variants [14]. Note that, each ensemble constituent is paired with its
own confidence β - an indicator of the performance of the base models, used for
the weighted combination schemes.

4 Experimental Design

4.1 Data

The data originates from two real-world aquatic ecosystems: Lake Bled in
Slovenia and Lake Zurich in Switzerland. The measurements for Lake Bled, per-
formed by the Slovenian Environment Agency, consist of physical, chemical and
1 Note that the sampling procedure does not require for generation of the power set

P(L).

Learning Ensembles of Process-Based Models by Bagging 253

biological data for the period from 1996 to 2002. All the measurements were
performed once a month and depth-averaged for the upper 10 m of the lake. To
obtain daily approximations, the data was interpolated with a cubic spline algo-
rithm and daily samples were taken from the interpolation [3]. Lake Zurich data
comprises measurements performed by the Water Supply Authority of Zurich in
the period from 1996 to 2002. The measurements, taken once a month, include
profiles of physical, chemical and biological variables from 19 different sites. They
were weight averaged to the respective epilimnion (upper ten meters) and hyp-
ilimnion (bottom ten meters) depths. The data was interpolated with a cubic
spline algorithm and daily samples were taken from the interpolation [8].

We use the same structure of population dynamics model in both aquatic
ecosystems. It includes a single equation (ODE) for a system variable represent-
ing the phytoplankton biomass. The exogenous variables include the concentra-
tion of zooplankton Daphnia hyalina, dissolved inorganic nutrients of nitrogen,
phosphorus, and silica, as well as two input variables representing the environ-
mental influence of water temperature and global solar radiation (light).

For each aquatic ecosystem, we used seven data sets corresponding to the
last seven years of available measurements. Five of these were used (one at a
time) for training the base-models, one was used for validating the models in the
process of selecting the ensemble constituents, and one was used to measure the
predictive performance of the learned models and ensembles. In each learning
experiment, we take a single (year) training data set, learn a single model or an
ensemble using the training and the validation data set, and test the predictive
performance of the learned models on the test data set. We therefore perform 10
experiments. In the tables which report the results, the cases are labeled with
the labels 1–5 corresponding to the training data set using in the experiments,
where, e.g., Bled 3 denotes the Lake Bled data set for the third year (i.e., 1998).

4.2 Modeling Knowledge

In the experiments we use the library of domain knowledge for modeling popu-
lation dynamics in aquatic ecosystems, presented by [20]. This library is based
on the previous work of [2]. The library of domain knowledge, combined with
the modeling assumptions (incomplete model), results in 27216 candidates for
both of the lakes.

Note, however, an important difference between the setup of the bagging
method and the experiments performed with the rest two methods of RLS and
BRLS. In the last two, we use the whole library of domain knowledge as described
previously. The use of such library is prohibitive for bagging, due to the high
computational overhead considering the large space of candidate models in each
learning iteration. To address this issue, we use a simplified version of the original
library that results in 128 candidates for both lakes. We carefully prepared the
simplified library, omitting only modeling alternatives (process templates) that
are rarely observed to be among the top-ranked models in the single-model
experiments with ProBMoT.

254 N. Simidjievski et al.

4.3 Experimental Setup

ProBMoT implements the Differential Evolution (DE) [15] method for para-
meter estimation. In the experiments the DE parameters were set as follows:
a population size of 50, strategy rand/1/bin, differential weight (F) and the
crossover probability (Cr) of 0.6. The limit on the number of evaluations of the
objective function is 1000 per parameter. The particular choice of parameters
setting of DE is based on previous studies of the sensitivity of DE for estimating
parameters of PBMs [17].

For simulating the ODEs, we used the CVODE simulator [7] with absolute
and relative tolerances set to 10−3. Full simulation in our experimental evaluation
is performed with the CVODE package, a general-purpose ODE solver that
uses linear multistep variable-coefficient methods for integration. Here, we use
the backward differentiation method combined with Newton iteration and a
preconditioned Krylov method.

To evaluate the predictive performance of a given model m, we use the mea-
sure of relative root mean squared error (ReRMSE) [4], defined as:

ReRMSE (m) =

√√√√
∑N

t=0(yt − ŷt)2∑N
t=0(ȳ − ŷt)2

,

where N denotes the number of measurements in the test data set, yt and ŷt
correspond to the measured and predicted2 value of the system variable y at
time point t, and ȳ denotes the mean value of y in the test data set. Note
that the usual root mean squared error is observed here relative to the standard
deviation of the system variable in the test data, thus allowing us to compare the
errors of models for different system variables with measured values. Given the
performance metrics we also compute average ranks (averaged over all test data
sets) of model’s performance, however we do not perform statistical analyses of
the results due to small number of test data sets.

To properly assess the predictive performance of the proposed method for
learning ensembles, in our last set of experiments we compare it to two other
methods for constructing ensembles of PBMs. These methods include learning
ensembles by sampling data instances and sampling domain knowledge, i.e.,
bagging and random library samples (RLS). Following the findings of [13,14]
the ensembles learned with bagging and RLS include 25 and 10 constituents,
respectively. The constituents are chosen based on their performance on a sepa-
rate validation set and combined by averaging their predictions. These settings
were chosen by following a similar experimental setup that we use in this paper
to select the appropriate design choices for learning ensembles with bagging of
random library samples.

2 Predictions are obtained by simulating the model m on the test (and not the vali-
dation) set.

Learning Ensembles of Process-Based Models by Bagging 255

5 Results

First, we explore the effects of the decisions related to the design of the proposed
ensemble learning method. In particular, we aim at deciding upon an appropriate
approach to selecting ensemble constituents, the optimal number thereof and the
optimal way of combining their predictions. Second, we compare the predictive
performance of the bagging-of-random-library-samples ensembles with the per-
formance of single models, bagging ensembles and ensembles based on random
library samples.

The first design choice in an algorithm for learning ensembles of PBMs is
related to the way of selecting the ensemble constituents. Recall that in each
iteration, the highest ranked model is selected to be an ensemble constituent.
ProBMoT ranks candidate models with respect to their performance on the
training set. Alternatively, to avoid overfitting, models can be ranked according
to their performance on a separate validation data set. We compare these two in
a set of experiments using ensembles with 5, 10, 25 and 50 constituents whose
predictions are averaged.

Table 1 shows that using a validation set to select ensemble constituents is
better. More specifically, the upper part of the table presents the results of
the comparison of the predictive performance (ReRMSE on the testing set),
where as the lower part presents the comparisons of the descriptive performance
(ReRMSE on the training set) of the different ensembles. The average ranks
are reported at the bottom of each subtable. The results in the lower subtable
confirms our conjecture that this is due to overfitting. Ensembles comprising of
base models selected based on the performance on the training data exhibit sub-
stantially better descriptive/training performance than the ones selected based
on their performance on a separate validation dataset.

Another important decision regarding the optimal number of ensemble con-
stituents is also presented in the table. Moreover, when comparing the predictive
performance of the ensembles with different sizes (i.e., 5, 10, 25, 50), the ensem-
ble comprised with 25 constituents selected on a separate validation set lead
to the best performance (avg. rank 3.85). Finally, we focus on the design deci-
sion concerning the most appropriate scheme for combining the simulations of
the base models in the ensemble. We compare the performance of four methods
commonly used in learning ensembles of regression models: average, median,
weighted average, and weighted median. Table 2 reports on the comparison of
the predictive performances of the four methods for combining 25 base-model
simulations. It can be observed that on average the median combining scheme
for aggregation performs best.

In sum, based on the performed experiments we make the following design
decisions. First, the ensemble constituents are chosen based on their performance
on a separate validation set, as they exhibit better performance than the ones
chosen based on their performance on the original training data set. Second, the
ensembles should consist of relatively small number (25) of base models whose
predictions should be combined using median. In the last set of experiments,

256 N. Simidjievski et al.

Table 1. Comparison of the predictive performance(top)(ReRMSE on the testing set)
and descriptive performance (bottom)(ReRMSE on the training set) of the two methods
for choosing ensemble constituents (V=validation, T=training). Bold typeface is used
to mark the best-performing method for a given case (table row).

Case Ens.5-V Ens.10-V Ens.25-V Ens.50-V Ens.5-T Ens.10-T Ens.25-T Ens.50-T

Bled1 1.142 1.113 1.101 1.126 1.122 1.045 1.071 1.077

Bled2 1.248 1.238 1.237 1.214 1.304 1.248 1.268 1.259

Bled3 0.967 0.912 0.946 0.898 0.972 0.706 0.750 0.766

Bled4 0.805 0.811 0.767 0.804 0.718 0.809 0.737 0.757

Bled5 0.585 0.628 0.627 0.667 0.561 0.579 0.601 0.618

Zurich1 0.925 1.004 1.461 1.218 1.282 1.130 1.087 1.133

Zurich2 0.794 0.825 0.844 0.885 1.285 1.074 0.946 1.234

Zurich3 0.877 0.934 0.901 0.897 2.511 1.611 1.183 1.073

Zurich4 1.035 1.034 1.005 1.007 1.028 1.054 1.074 1.058

Zurich5 1.017 1.009 0.999 0.999 1.590 1.389 1.271 1.216

Avg. Ranks 4.05 4.30 3.85* 4.05 5.80 4.55 4.50 4.90

Case Ens.5-V Ens.10-V Ens.25-V Ens.50-V Ens.5-T Ens.10-T Ens.25-T Ens.50-T

Bled1 0.288 0.257 0.263 0.264 0.178 0.177 0.174 0.177

Bled2 0.242 0.302 0.268 0.279 0.148 0.153 0.150 0.156

Bled3 0.382 0.374 0.362 0.371 0.260 0.260 0.258 0.274

Bled4 0.408 0.402 0.359 0.374 0.268 0.273 0.256 0.263

Bled5 0.344 0.341 0.321 0.314 0.151 0.166 0.150 0.152

Zurich1 0.492 0.502 0.562 0.543 0.429 0.373 0.343 0.345

Zurich2 0.625 0.581 0.594 0.587 0.461 0.468 0.448 0.454

Zurich3 0.796 0.790 0.806 0.807 0.716 0.672 0.636 0.645

Zurich4 0.792 0.776 0.777 0.779 0.723 0.718 0.702 0.710

Zurich5 0.773 0.763 0.759 0.758 0.512 0.501 0.491 0.493

Avg. Ranks 7.2 6.2 6.2 6.4 3.15 3.2 1.1* 2.55

we use these algorithm settings for learning ensembles with bagging of random
library samples.

Having made the design decisions for learning ensembles of PBMs, we here
focus on testing our central hypothesis that ensembles improve the predictive
performance of PBMs. To this end, we compare the predictive performance of
the proposed method for construing ensembles with the one of single PBMs and
ensembles constructed with bagging and RLS, individually.

Table 3 depicts the comparison of predictive performance and the average
ranks, averaged over ten data sets. The results show that the proposed ensem-
bles substantially outperform single PBMs. More specifically, the BRLS method
outperforms the single model in 8 out of 10 cases. Moreover, in 4 cases out of
these 10, BRLS is the best performing algorithm, overall. This result confirms
the central hypothesis of this paper that ensembles of PBMs, more specifically
ensembles learned with BRLS, improve the predictive performance over single

Learning Ensembles of Process-Based Models by Bagging 257

Table 2. Comparison of the predictive performance of the BRLS method with 25
constituents combined by four different methods. Bold typeface is used to mark the
best-performing mehod for a given case (table row).

Case Average Weighted Average Median Weighted Median

Bled1 1.101 1.095 1.091 1.089

Bled2 1.237 1.241 1.262 1.262

Bled3 0.946 0.901 0.995 0.985

Bled4 0.767 0.746 0.728 0.731

Bled5 0.627 0.621 0.604 0.606

Zurich1 1.461 1.422 0.889 0.898

Zurich2 0.844 0.833 0.8 0.792

Zurich3 0.901 0.898 0.913 0.922

Zurich4 1.005 1.005 1.01 1.01

Zurich5 0.999 1.011 1.004 1.006

Avg. ranks 2.75 2.45 2.3* 2.5

Table 3. Comparison of the predictive performance of a single model with that of
ensembles of process-based models learned with Bagging, Random Library Samples
and Bagging of Random Library Samples. Bold typeface is used to mark the best-
performing mehod for a given case (table row).

Case Single Bagging Random Library Bagging of Random

Model Samples Library Samples

Bled1 5.184 1.068 1.103 1.091

Bled2 0.938 1.11 1.143 1.262

Bled3 1.042 0.968 0.794 0.995

Bled4 2.84 0.76 0.75 0.728

Bled5 0.842 0.859 0.858 0.604

Zurich1 0.744 0.78 0.797 0.889

Zurich2 1.323 0.881 0.948 0.8

Zurich3 29.463 0.939 0.881 0.913

Zurich4 27.593 0.96 1.011 1.01

Zurich5 1.489 1.37 1.13 1.004

Avg. Ranks 3.2 2.2 2.5 2.1*

PBMs. Note, however, that their predictive performance is also slightly better
than the performance of the other two methods for learning ensembles of PBMs,
which on average ranks them at the top, followed by bagging and RLS.

258 N. Simidjievski et al.

6 Conclusion

In this paper, we address the task of learning ensembles of process-based models
via bagging of random library samples. We design, implement and evaluate a
new method for learning ensembles by sampling both the data and the library
of knowledge. This method for learning ensembles is the major contribution of
our paper, since it improves the predictive performance of the state-of-the-art
methods for learning PBMs and ensembles, thereof.

First, it improves the state-of-the art of learning ensembles of PBMs with
a new, robust and accurate method based on sampling both data and domain
knowledge. The proposed method most often leads to models with better predic-
tive performance as compared to the models obtained with the state-of-the-art
ensemble methods of bagging and RLS. We conjecture that this is due to the
ability of the BRLS method to constraint the estimation bias (as an artifact from
RLS) as well as to reduce the variance (as an artifact from bagging). Second, it
mainly contributes to the area of ecological modeling. The results of the exper-
imental evaluation confirm our central hypothesis that ensembles constructed
with BRLS provide more accurate predictions of concentrations of species in
an aquatic ecosystems than a single PBM. This is a significant improvement of
predictive performance over the state-of-the-art models of population dynamics,
which, while focusing on providing an accurate explanation of the behavior of
the observed system, struggle to achieve a satisfactory performance at predicting
population dynamics over a long periods [3].

While our empirical study is limited to the domain of aquatic ecosystems, i.e.
modeling population dynamics in two lake ecosystems, the proposed approach to
learning ensembles of PBMs is general enough to be applied to any other domain
and to any other type of models of dynamic systems. An immediate continua-
tion of the work presented here is to investigate the generality of the proposed
methodology and extend the scope of learning ensembles of PBMs of population
dynamics to other aquatic domains. Next, we plan to investigate whether the
findings of this paper are also consistent when applied in an artificial setting, for
predictive tasks of synthetic dynamic systems. Finally, we also intend to analyze
the applicability of proposed methodology to different scientific domains, such
as systems biology and systems neuroscience. Here, however, an additional chal-
lenge lies in developing a suitable and extensive library of domain knowledge
and obtaining valid measurements of the systems.

When learning ensembles, there is a trade-off between the predictive perfor-
mance of the ensemble and its interpretability. Considering this issue, we plan to
follow ideas from [5] and improve our methodology by incorporating understand-
able structure into the resulting ensemble. A similar direction involves improv-
ing the ensembles comprehensibility by computing and visualizing each feature’s
(processes) contribution (in terms of information difference, log-odds ratio or
probabilities difference) in the resulting ensemble [21].

Learning Ensembles of Process-Based Models by Bagging 259

References

1. Aleksovski, D., Kocijan, J., Džeroski, S.: Ensembles of fuzzy linear model trees for
the identification of multi-output systems. IEEE Trans. Fuzzy Syst. 24(4), 916–929
(2015)

2. Atanasova, N., Todorovski, L., Džeroski, S., Kompare, B.: Constructing a library
of domain knowledge for automated modelling of aquatic ecosystems. Ecol. Model.
194(1–3), 14–36 (2006)

3. Atanasova, N., Todorovski, L., Džeroski, S., Remec, R., Recknagel, F., Kompare,
B.: Automated modelling of a food web in Lake Bled using measured data and a
library of domain knowledge. Ecol. Model. 194(1–3), 37–48 (2006)

4. Breiman, L., Friedman, J.H., Stone, C.J., Olshen, R.A.: Classification and Regres-
sion Trees. Chapman & Hall, London (1984)

5. Bridewell, W., Asadi, N.B., Langley, P.W., Todorovski, L.: Reducing overfitting in
process model induction. In: Proceedings of the 22nd International Conference on
Machine Learning, ICML 2005, pp. 81–88. ACM, New York (2005)

6. Bridewell, W., Langley, P.W., Todorovski, L., Džeroski, S.: Inductive process mod-
eling. Mach. Learn. 71, 1–32 (2008)

7. Cohen, S.D., Hindmarsh, A.C.: CVODE, a stiff/nonstiff ODE solver in C. J. Com-
put. Phys. 10(2), 138–143 (1996)

8. Dietzel, A., Mieleitner, J., Kardaetz, S., Reichert, P.: Effects of changes in the
driving forces on water quality and plankton dynamics in three swiss lakes – long-
term simulations with BELAMO. Freshw. Biol. 58(1), 10–35 (2013)

9. Džeroski, S., Todorovski, L.: Modeling the dynamics of biological networks from
time course data. In: Choi, S. (ed.) Systems Biology of Signaling Networks. Systems
Biology, pp. 275–295. Springer, New York (2010)

10. Ho, T.K.: The random subspace method for constructing decision forests. IEEE
Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

11. Langley, P.W., Simon, H.A., Bradshaw, G., Zytkow, J.M.: Scientific Discovery:
Computational Explorations of the Creative Processes. The MIT Press, MA (1987)

12. Ljung, L.: System identification - Theory for the User. Prentice-Hall, Upper Saddle
River (1999)

13. Simidjievski, N., Todorovski, L., Džeroski, S.: Predicting long-term population
dynamics with bagging and boosting of process-based models. Expert Syst. Appl.
42(22), 8484–8496 (2015)

14. Simidjievski, N., Todorovski, L., Džeroski, S.: Modeling dynamic systems with
efficient ensembles of process-based models. PLoS ONE 11(4), 1–27 (2016)

15. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

16. Tanevski, J., Todorovski, L., Džeroski, S.: Learning stochastic process-based mod-
els of dynamical systems from knowledge and data. BMC Syst. Biol. 10(1), 30
(2016)

17. Taškova, K., Šilc, J., Atanasova, N., Džeroski, S.: Parameter estimation in a non-
linear dynamic model of an aquatic ecosystem with meta-heuristic optimization.
Ecol. Model. 226, 36–61 (2012)

18. Todorovski, L., Bridewell, W., Shiran, O., Langley, P.W.: Inducing hierarchical
process models in dynamic domains. In: Veloso, M.M., Kambhampati, S. (eds.)
Proceedings of the 20th National Conference on Artificial Intelligence, NCAI 2005,
pp. 892–897. AAAI Press, Pittsburgh (2005)

260 N. Simidjievski et al.

19. Todorovski, L., Džeroski, S.: Integrating domain knowledge in equation discovery.
In: Džeroski, S., Todorovski, L. (eds.) Computational Discovery of Scientific Knowl-
edge. LNCS (LNAI), vol. 4660, pp. 69–97. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-73920-3 4

20. Čerepnalkoski, D., Taškova, K., Todorovski, L., Atanasova, N., Džeroski, S.: The
influence of parameter fitting methods on model structure selection in automated
modeling of aquatic ecosystems. Ecol. Model. 245(0), 136–165 (2012)

21. Štrumbelj, E., Kononenko, I.: An efficient explanation of individual classifications
using game theory. J. Mach. Learn. Res. 11, 1–18 (2010)

http://dx.doi.org/10.1007/978-3-540-73920-3_4
http://dx.doi.org/10.1007/978-3-540-73920-3_4

Early Random Shapelet Forest

Isak Karlsson(B), Panagiotis Papapetrou, and Henrik Boström

Department of Computer and Systems Sciences, Stockholm University,
Stockholm, Sweden

{isak-kar,panagiotis,henrik.bostrom}@dsv.su.se

Abstract. Early classification of time series has emerged as an increas-
ingly important and challenging problem within signal processing, espe-
cially in domains where timely decisions are critical, such as medical
diagnosis in health-care. Shapelets, i.e., discriminative sub-sequences,
have been proposed for time series classification as a means to capture
local and phase independent information. Recently, forests of randomized
shapelet trees have been shown to produce state-of-the-art predictive per-
formance at a low computational cost. In this work, they are extended to
allow for early classification of time series. An extensive empirical inves-
tigation is presented, showing that the proposed algorithm is superior to
alternative state-of-the-art approaches, in case predictive performance is
considered to be more important than earliness. The algorithm allows for
tuning the trade-off between accuracy and earliness, thereby supporting
the generation of early classifiers that can be dynamically adapted to
specific needs at low computational cost.

1 Introduction

Early classification of time series has emerged as an increasingly important
task [19], especially in domains where timely decisions are critical, such as med-
ical diagnoses in health-care. Consider, for example, the task of screening patients
for heart-related diseases, where physicians are commonly investigating the elec-
trocardiogram (ECG) of patients. In the context of early prediction, the goal
here is to as early as possible detect whether the condition of a patient requires
special attention or not. In this case there is a trade-off between earliness, i.e.,
how early the prediction can be made, and accuracy, i.e., the rate of correct
assessments. For medical diagnosis, both earliness and accuracy is important,
however, false positives, i.e., the classifier incorrectly predicts that the patient
is ill, are less dangerous than false negatives, i.e., the classifier incorrectly pre-
dicts that the patient is healthy. It should, however, be note that the former
errors still incur a cost, e.g., by requiring unnecessary additional investigations.
To address these types of classification problems, a plethora of early time series
methods have been proposed in the literature, e.g., based on boosting [11], early
distinctive shapelets [25], nearest neighbour classification [23], myoptic decision
making [5] and reliable early classification [15].

To the best of our knowledge, the earliest mentioning of early time series
classification is given by [19], where they describe time-series segments with
c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 261–276, 2016.
DOI: 10.1007/978-3-319-46307-0 17

262 I. Karlsson et al.

relative statements, such as increasing or decreasing. These statements are sub-
sequently feeded to an ensemble learner for processing. By considering unavail-
able segments as missing data, the proposed method is able to make predictions
early [19]. Furthermore, one of the first definitions of early classification of tem-
poral sequences appears in [23], where it is defined as making predictions as
early as possible while maintaining an expected accuracy [23]. In that work, a
set of frequent features which are both frequent and early are selected. From the
selected features, a decision tree (or rule set) with a user specified accuracy in
each branch or rule is constructed. The trees are subsequently used to make pre-
dictions such that an (incomplete) input sequence is matched with all branches
(or rules) and a classification is given once the user supplied accuracy level is
achieved [23].

Since time-series are numerical and not discrete, as assumed by [23], another
approach based on early k -nearest neighbor under any suitable distance measure
is proposed by [24,26]. In that work, the k -nearest neighbor classifier is extended
with a training phase to determine how early an accurate classification can be
made using the concept of minimum prediction length (MPL). It is noted, how-
ever, that this method has two major drawbacks: (1) the method may overfit
the training set if the set contains few and non-uniformly sampled instances; and
(2) the requirement of stability in MPL may be too restrictive, which, in some
cases, inhibits early classification. To overcome these limitations, [24] investigates
various clustering based approaches, concluding that these methods improve
the earliness without sacrificing accuracy. Another, approach for early classifi-
cation based on probabilistic classifiers [15], which, similar to the MPL-based
approaches, estimates the earliest reliable time point for prediction, outperform
the nearest neighbour approaches by utilizing a Gaussian process classifier.

Shapelets [27] have, recently, emerged as important primitives for time series
classification [9,10]. A shapelet is a phase-independent, i.e., location invariant,
sub-sequence of a longer time-series used as a local primitive for classification.
In this setting, the idea is to find the closest matching position within each
time-series to a shapelet and use the distance between them as a discrimina-
tory feature. For traditional time series classification, several approaches have
been proposed, e.g., shapelet-based decision trees [27], logical combinations of
shapelets [16] and shapelet-based transformations [10,14]. For early classifica-
tion of time series, [8] presents an approach based on early distinctive shapelets
[25], which is able to provide the uncertainty of each class at each time step and
issue a prediction once the uncertainty drops below a user specified threshold.

One limiting factor of shapelet-based classifiers is their relatively high compu-
tational cost [27] and comparatively low classification accuracy compared to, e.g.,
learning shapelets [9] or similarity-based approaches, such as dynamic time warp-
ing [1]. To overcome some of these limitations, forests of shapelet trees (RSF)
[12] have been put forward as competitive and accurate alternative. Although
the RSF algorithm is unable to provide early classification, random shapelets,
i.e., short discriminatory subsequences, are by nature well-suited for early clas-
sification, since the full time series is not required at prediction time.

Early Random Shapelet Forest 263

In this work, two novel approaches are presented that extend the random
shapelet forest algorithm to support early classification of time series. In addi-
tion, a novel approach for triggering early classification is presented, which is
based on out-of-bag (OOB) performance estimates, providing a computation-
ally less costly alternative to the cross-validated triggering function outlined
in [15]. The purpose of this study is, hence, to empirically evaluate how these
approaches affect the predictive performance of the forest when performing early
classification. More specifically, we explore the trade-off between accuracy, i.e.,
the fraction of correctly classified instances, and the earliness, i.e., the fraction
of time-points required before making a prediction.

In summary, the main contributions of this paper include: (1) the intro-
duction of a novel method for early classification using decision forests based on
shapelets; (2) an optimization of the cross-validated triggering function based
on out-of-bag estimates of reliability; and (3) an extensive empirical evaluation
of the proposed approach compared to several state-of-the-art algorithms. In
the next section, we formalize early classification and present related work. In
Sect. 3, we present the proposed approach and in Sect. 4, we present the results
from an empirical investigation of the proposed approach compared to several
state-of-the-art methods. Finally, in Sect. 5, we summarize the main conclusions
an outline directions for future work.

2 Background

The problem studied in this paper is early time series classification, and our
focus is on the Random Shapelet Forests (RSF) [12] in this context. Specifically,
the task is, given a set of time-evolving variables ordered by time and sampled
at fixed and regular intervals of length m, we want to infer a single model from a
training set consisting of completely evolved variables that is able to predict the
(correct) class labels of previously unseen time-evolving time series examples as
early and accurately as possible.

A time series T = {T1, . . . , Tm} of length m is a time-evolving variable mea-
sured at m regular time points, such that Ti ∈ R, ∀i ∈ {1, . . . , m}. Given a time
series T of length m and a time point t ≤ m, we can define the corresponding
incomplete time series T t = {T1, . . . , Tt} that contains all measurements from
the first time point up until t. In time series classification, we assume that we
have a collection of n time series X = {(T1, y1), . . . , (Tn, yn)} which defines a
training set, where each time series is labeled with a label yi ∈ Y and Y is a
finite set of class labels. For notational simplicity, we here assume that every time
series in the dataset has the same length and the same number of dimensions.
In the framework, we assume that the training set X has been used to train a
classification function F (T) which is able to output a class label for an incom-
plete time series and a trigger function R(T t) which indicates whether or not
to allow an early classification. To illustrate, the early classification framework
is outlined in Algorithm 1.

264 I. Karlsson et al.

Algorithm 1. The early classification framework, consisting of an incoming
time series T , a classification function F and a trigger function R.
1: procedure predict-early(T , F , R)
2: while true do
3: assign the most recent time series data to T t

4: if R(T t) is true then
5: return F (T t)
6: end if
7: t ← t + 1
8: end while
9: end procedure

2.1 Related Work

In general, most time-series classifiers relies on instance based classification meth-
ods such as, e.g., nearest neighbours under various distance measures of which
the most common and simplest is the Euclidean norm [7]. To improve accuracy,
elastic distance measures, such as Dynamic Time Warping (DTW) [1] or its
constrained version (cDTW) [22] and longest common sub-sequences (LCSS),
that allow for localized distortion, have been proposed. Dynamic time warping,
for example, finds the optimal match between two sequences by allowing non-
linearity in the distance calculation. By regularization using e.g., a band [18] the
search performance and generalization behavior of k-NN can be improved [7].

Currently, most available early classifiers follow the framework outlined in
Algorithm 1, the major differences being the selection of the trigger function,
i.e., R and the choice of algorithm for implementing the incomplete hypothesis
function F . For example, in [24,26] the trigger function R relies on estimating
the MPL, i.e., the earliest time for which a reliable prediction can be made.
The algorithm proposed in [24,26] is based on the l-length prefix-space of the
time series, where, for a given time series, the algorithm finds the smallest l
such that for any length k < l ≤ m, the nearest neighbors in the k, . . . , l prefix
is not different from the nearest neighbors in the L-spaces. The authors define
this as the minimum prediction length (MPL). Hence, the nearest neighbor algo-
rithm in the l:th prefix-space is used to make a classification if and only if the
nearest neighbor has a MPL of at most l, otherwise the prediction is postponed
until more data has arrived [24]. To improve predictive performance and avoid
overfitting, [24] proposed an alternative method in which a clustering approach
is utilized. This method is known as early classification on time series (ECTS).
Early classification based on probabilistic classification, which uses the accuracy
for each class to estimate a point in time when an early classification can be
made, is proposed by [15]. In this framework, the minimum prediction length is
estimated separately for each class using the cross-validation error for Gaussian
process models built using separate time slices, providing one of the strongest
early classification algorithms [15]. Both the ECTS and ECDIRE algorithms require
several models be constructed (one for each time step). For the nearest neighbor

Early Random Shapelet Forest 265

based model, the computational cost is negligible [24], for ECDIRE, however, this
imposes an additional cost, which is also amplified by the cost of repeated cross-
validation to estimate the threshold [15]. This contrasts to the method proposed
in this work, by which a single model is built and evaluated using the OOB
instances, hence, decreasing this cost significantly.

Since similarity-based early time-series classifiers cannot be interpreted by
domain practitioners, an approach based on early distinctive shapelets (EDSC)
was proposed in [25]. In this approach, shapelets that are both distinctive, i.e.,
separate the classes, and appear early in the time-series are iteratively selected
until the union of shapelets cover at least a predefined fraction of the time
series, or until the number of shapelets exceeds a user defined threshold [25].
To issue a classification, the shapelets are scanned in order of importance and a
classification is made once a shapelet is matched. Somewhat similarly, [8] defines
an effective method for providing uncertainty measures for EDSC [25], providing
the certainty of each class at each time step, triggering a prediction once a
predefined certainty threshold is met. Recently it has also been noted that most
early time-series classifiers are myopic, i.e., the prediction time is greedily chosen.
To overcome this, a non-myopic early sequence classifier is proposed in [5], which
balances the expected gain in accuracy with the cost of delaying the prediction.
This process, however, require that we are given a misclassification cost function
associated with each time point and a monotonically increasing cost function
associated with each time-point [5].

2.2 Random Shapelet Forests

As briefly introduced earlier, shapelets are local, phase independent sub-
sequences of time series. Originally, shapelets have been introduced as local
primitives for classification, where the idea is to find the closest matching posi-
tion within each data series to a particular shapelet and use this similarity as a
discriminatory feature [27]. The first shapelet classifier [27] embedded the extrac-
tion algorithm in a decision tree learning algorithm, achieving competitive clas-
sification accuracy. To improve the classification accuracy further and reduce
learning time, an algorithm for generating ensembles of randomized shapelet
trees was presented in [12]. In general, ensemble methods rely on the combined
voting of several, relatively weak, models which all performs better than random
guessing and makes somewhat independent errors [3]. In the random shapelet
forest, randomization in the weak models is introduced both in the selection of
training instances and in the selection of shapelet to use at each node. The first
is achieved by generating a bootstrap sample, i.e., bagging [2], of instances. Bag-
ging works by randomly selecting instances with replacement, duplicating some
and excluding others. The process results in two subsets, where each shapelet
tree is built using the larger in-bag instances and an unbiased estimate of the
running performance is given by the OOB instances [3]. The second randomiza-
tion works by evaluating a random sample of shapelets at each node [12].

The random shapelet forest construction algorithm consists of two parts:
ensemble creation and tree generation, where the former algorithm requires one

266 I. Karlsson et al.

parameter; the number of shapelet trees to generate (p), and the latter requires
the number of shapelets to examine at each split (r). In the ensemble part, p
trees are constructed from an in-bag sample drawn with replacement from the
training set, X. The shapelet tree construction algorithm, which can be run in
parallel for each bootstrap replicate, starts by selecting r random shapelets and,
using their distances, computes an impurity measure1 which ranks the shapelets
in decreasing order of importance. Finally, the shapelet that reduces error the
most if split upon is selected. The instances are subsequently partitioned into
two subsets according to the selected shapelet and distance threshold, i.e., one
subset for those instances with a distance less than the found threshold and
one for those with a distance greater than the threshold. The tree generation
continues to recursively build sub-trees until each node is pure, i.e., instances of
only one class remains. The complete algorithm is outlined in [12].

3 Early Random Shapelet Forests

One approach to support early classification of a random shapelet forest (RSF)
is to build one forest per accumulated time instant t and assess the earliest time
where a classification can be made using cross-validation, similar to the approach
presented by [15]. This approach is, however, computationally costly and requires
a large number of models to be built and evaluated. To overcome this limitation,
the main idea here is that since many of the randomly sampled shapelets of each
tree will be shorter than the incomplete time series only the prediction function
must be modified. Hence, there is no modifications to the training procedure of
the complete forest. Instead, the classification function, F , is modified to support
incomplete time series classification, i.e., allow F (T t) where t ≤ 1. This works
since many of the randomly selected shapelets in the construction phase will have
a length l < m, and be usable for classification of time series of length tm < l.
It is, however, unclear what action should be taken if tm > l, i.e., what action
to take if the shapelet is longer than the current incomplete time series. In this
study, two approaches are investigated to allow the RSF prediction function to
support incomplete time-series classification using weight propagation (WERSF)
and class proximities (PERSF). Additionally, to avoid costly operations such as
cross-validation [15] to identify the time instant, t∗, after which a particular class
can reliably be predicted, we here present a class conditional trigger function
(Algorithm 4) based on out-of-bag estimated precision.

Weight-propagated eRSF. The first investigated strategy for performing
incomplete time series classification using a RSF is based on the idea that when
making predictions with a random shapelet tree and a shapelet is encountered
that is longer than the current incomplete series for which a prediction is to be
made, then a similar procedure to how missing values are handled in standard
decision trees [17] should be employed. More concretely, given an incomplete time
series T t, and a random shapelet tree STi, let T t traverse the tree according to

1 In this study the information gain [17,27] is used.

Early Random Shapelet Forest 267

Algorithm 2. Predict the probability of each class label for an incomplete time
series using weight propagation (WERSF).
1: procedure wersf(e, T t, ω)
2: if e is a leaf node then
3: return the leaf class probability distribution weighted by ω
4: end if
5: assign the shapelet and distance threshold of node e to S and τ respectively
6: if S is shorter than T t then
7: recursively visit a branch depending on dist(T t, S) propagating ω
8: end if
9: find the relative frequency of instances in each branch as ωleft and ωright

10: pleft ← wersf(eleft, T t, ωleft)
11: pright ← wersf(eright, T t, ωright)
12: return pleft + pright

13: end procedure

Algorithm 2 initialized with ω = 1 and the root node ei of tree. In the algorithm,
a prediction is made once a leaf node is reached, in which case the local class
distribution, weighted by ω, is returned. If the current shapelet, S, is longer than
T t both branches are inspected, recursively propagating the relative frequencies
of instances in the left, ωleft, and right, ωright, node as new weights. The recur-
sively weighted relative frequencies are returned as a sum of the right and left
probability distributions. If the current shapelet is shorter than the incomplete
time series, the algorithm continues by inspecting either the left or right branch
depending on the minimum distance between S and T t compared the nodes
distance threshold.

Hence, Algorithm 2 returns a probability distribution over the possible class
labels using the local class distributions in the reached leaf nodes, each weighted
by the probability of a particular path. In the extreme case that all tree nodes
consists of shapelets longer than the given incomplete time series, then the a
priori class distribution is assigned. In the other extreme case that all tree nodes
consists of shapelets shorter than the given time series, then the class distrib-
ution in the leafs are returned. Otherwise, the algorithm returns a probability
distribution weighted by the nodes used for prediction. We call this algorithm
WERSF.

Proximity eRSF. Instead of discarding shapelets longer than the incomplete
time series, the second investigated approach utilizes the available information,
i.e., the overlap between the current shapelet and the incomplete time series,
by finding the class centroid with the shortest mean distance to the shapelet
and select the most probable path based on the prevalence of the found class in
the left or right child nodes. More specifically, given an incomplete time series
T t and a random shapelet tree STi and its root node ei, Algorithm 3 returns
the local class distribution if the current node is a leaf node. Otherwise, if the
shapelet S associated with the current node is longer than the time series T t,
the overlapping Euclidean distance between the shapelet and the time series is

268 I. Karlsson et al.

Algorithm 3. Predict the probability of each class label for an incomplete time
series using class proximites (PERSF).
1: procedure persf(e, T t)
2: if e is a leaf node then
3: return the leaf class probability distribution
4: end if
5: assign the shapelet and distance threshold of node e to S and τ respectively
6: if S is shorter than T t then
7: recursively visit a branch depending on dist(T t, S)
8: end if
9: compute the overlapping distance between T t and S as d

10: find the mean distance between S and the instances of each class c ∈ Y as Dc

11: find the class c with the smallest absolute difference, min
c∈Y

(‖d − Dc‖)

12: find the branch with highest relative frequency of class c as ebest
13: return persf(ebest, T t)
14: end procedure

computed and compared to the mean distance of each time series of each class
to the threshold. The algorithm continues by finding the class that minimizes
this distance and subsequently selects the branch in which this class has highest
prevalence among the subset of training examples reaching the node. If the time
series is longer than the shapelet, the algorithm continues by inspecting the right
or left branch depending on the sub-sequence distance. The main rational for
this approach is, similar to how missing values are treated using surrogate splits
[21], that the most probable branch is the one where time series are maximally
proximate. We call this approach PERSF.

Finally, the prediction of an incomplete time series using RSF is given by the
maximum sum of probabilities from the individual trees, i.e., using distributional
summation [20]. More specifically, given the trees ST1, . . . , STp and an incom-
plete time series T t, the summed probabilities is given by 1

p

∑p
i=1 F (STi, T t),

where F is determined by either WERSF or PERSF and the final prediction ŷ is
given by the label with the highest probability.

Out-of-bag estimated early classification. To determine the point in time
when the final prediction should be made, we modify the algorithm proposed
by [15] to instead of utilizing a cross-validation estimated early classification
threshold, utilize the less costly out-of-bag estimate provided by the RSF. More
specifically, given a set of predetermined prediction time stamps, E, and a col-
lection of random shapelet trees, ST1, . . . , STp and a prediction function F (here
either WERSF or PERSF), the point in time, t∗, when to make the final predic-
tion is determined using the out-of-bag precision for each time step and class.
Algorithm 4, starts by computing the OOB precision and minimum probability
margin for each class and time step and subsequently finds the earliest time
step for a particular class where all subsequent time steps has a higher precision
than the precision of the full time series weighted by a specified constant w.

Early Random Shapelet Forest 269

Algorithm 4. Algorithm for finding the earliest reliable time point for each
class using the out-of-bag instances.
1: procedure estimate-reliability-threshold({ST1, . . . , STp}, X, w)
2: for each class c ∈ Y do
3: for each time step t ∈ E do
4: estimate the OOB precision of class c for time step t as Pt

c

5: estimate the minimum probability margin of class c for time step t as
Mt

c = min
yc∈Y

P (yc|T t) − max
y �=yc

P (y|T t)

6: end for
7: end for
8: for each class c ∈ Y do
9: find the earliest time point t∗c where each Pt′

c , . . . ,P1
c are above wP1

c

10: end for
11: return P and M
12: end procedure

At prediction time of an incomplete time series, of size t̂, a prediction is only
made if t∗ŷ ≤ t̂ and M t̂

ŷ ≤ P (ŷ|T t̂)−max
y �=ŷ

P (y|T t̂), where ŷ is the prediction [15].

4 Experiments

In this section, the general empirical methodology is outlined together with the
experimental design protocol for evaluating the predictive performance and earli-
ness of RSF using the proposed prediction functions, WERSF and PERSF, compared
to state-of-the-art approaches based on nearest neighbors [24] and probabilistic
classifiers [15].

4.1 Experimental Setup

In supervised time series classification, the most common measure of classifier
performance is the accuracy (or error rate), i.e., the fraction of (in)correctly
labeled instances, cf. [14,27]. For early time series classification, we are not only
interested in the accuracy of different methods, but also in how early a classifi-
cation can be made. The most frequent measure for assessing this is the earli-
ness, i.e., the fraction of time-points required before classification, cf. [5,25,26].
Although these measurements can provide insights in isolation, one should, how-
ever, take into account the trade-off between accuracy and earliness, which is
not captured when employing the measures separately. To overcome this limita-
tion, [4] proposes a way of evaluating the two conflicting properties: prediction
quality Q and prediction earliness E. The authors propose that a significance
test is performed over multiple datasets, independently for both measures. One
can, thus, conclude if there is any statistically significant difference between the
methods under Q or E. In this framework, a classifier is considered better if it
improves one objective without degrading the other. More specifically, a classi-
fier is considered superior to another classifier if it is significantly better with

270 I. Karlsson et al.

respect to one of the criteria and not significantly worse with respect to the
other [4]. In this definition, Q can be any suitable measure of predictive perfor-
mance, including e.g., area under the ROC curve or accuracy; similarly E can
be any measure of how early a prediction is made, where the simplest is the
average prediction time. In this work, we opt for using accuracy as a measure of
predictive performance and average prediction time as a measure of earliness.

Both the RSF algorithm and the early prediction framework requires a few
parameters to be set. First, RSF requires: p the number of random shapelet
trees; r the number of shapelets; and second, the trigger function requires: w
the fraction of the full precision to be used as an early classification threshold.
Since the purpose of this paper is not to evaluate the predictive performance
of different parameter configurations, we here avoid searching for the optimal
parameter configuration by setting: p = 100 trees, r = 100 random shapelets
and weighting the full precision by w = 0.9. To evaluate different values for w,
cross-validation accuracy on the training set is investigated in Fig. 2.

A widely accepted procedure for testing for significant differences with respect
to a single measure, such as classification accuracy, when comparing a number
of classifiers over several datasets, is the non-parametric Friedman test based on
the ranks of each method per datasets [6]. To detect if there are any pair-wise
differences between classifiers, we employ a Nemenyi post-hoc test. In the case of
early classification, the null hypothesis of no difference can be stated as: there is
no significant difference in predictive performance nor in average prediction time.
Furthermore, for the purpose of the empirical comparison, the complete set of
available datasets are selected from the UCR time series repository [13], with the
main motivation being that these datasets are frequently used in studies involv-
ing state-of-the-art approaches to which the proposed algorithms is compared
[15,24]. To improve reproducability, we utilize the already provided training and
testing split when computing the evaluation metrics. Note, however, that the
results for different precision multipliers (w) are computed using 10-fold cross
validation on the training split. The included datasets represents a wide range of
tasks such as: image outline classification (e.g., OSULeaf), motion classification
(e.g., Gun Point) and sensor classification (e.g., NIFECG Thorax1) with different
characteristics (from 16 to 1, 800 training instances) and different lengths (from
24 to 1, 882 measurements). Finally, the proposed algorithms are compared to
two state-of-the-art early classifiers: the reliable early classification time series
(ECDIRE [15]) algorithm and the early classification of time series (ECTS [24])
algorithm.

4.2 Empirical Evaluation

A summary of the results for all datasets and algorithms is given in Table 1. Sta-
tistical tests for determining if the predictive performance and average prediction
time differ significantly from what can be expected under the null hypothesis are
undertaken by comparing the performance ranks of the algorithms. As can be
seen in Table 1, one of the proposed methods, WERSF, has the highest average
accuracy of 0.81, compared to 0.71 and 0.73 for ECTS and ECDIRE, respectively,

Early Random Shapelet Forest 271

which is also confirmed by the average rank. By inspecting the ranks for accu-
racy, one can see that WERSF and PERSF are ranked the highest (with an approx-
imate average rank of 2), while ECTS and ECDIRE are ranked lowest (with an
approximate average rank of 3). According to the Friedman test, the accuracy
ranks deviates, at p < 0.01, significantly from what can be expected under the
null hypothesis of no difference for these algorithms and datasets. To investi-
gate if there are any significant differences between pairs of algorithms when
considering classification accuracy, a post-hoc Nemenyi test is performed (see
Fig. 1 (left)). The post-hoc test reveals that at the p = 0.05 level, the ECTS and
ECDIRE algorithms are significantly less accurate than both the PERSF and WERSF
algorithms. For ECTS and ECDIRE, no significant differences can be identified for
these datasets. If we partition the algorithms into groups for p < 0.05, we can,
hence, identify two groups: PERSF and WERSF are significantly more accurate than
ECDIRE and ECTS.

Fig. 1. Comparison of pair-wise Nemenyi test for the accuracy (left) and earliness
(right) of all classifiers over all datasets in Table 1. Classifiers that are not significantly
different at p = 0.05 are connected.

Considering the second performance metric, average prediction time, the pro-
posed methods perform worse than the alternative methods. As can be seen in
Table 1, ECDIRE can provide predictions after, on average, inspecting only 50 %
of the measurements, while both PERSF and WERSF require roughly 80 % of mea-
surements and ECTS require approximately 70 %. This is also confirmed by the
average ranks, where ECDIRE is ranked highest (with an average rank of 1.4),
ECTS ranked second and PERSF and WERSF ranked third. A Friedman test, again,
reveals that the differences are significantly deviating from what can be expected
under the null hypothesis of no difference in earliness. The Nemenyi post-hoc test
reveals that there is a significant difference between ECDIRE and ECTS, WERSF and
PERSF. Again, if we partition the algorithms into groups based on earliness, we
see that there are two main groups: ECDIRE is significantly earlier than alterna-
tive methods. In terms of both performance metrics, and the Pareto optimality,
we can see that the only significant difference we can detect is that between
ECDIRE and ECTS, where the former is able to provide predictions significantly
more early while not being significantly less accurate. For the other methods, the
number of observations again do not allow for reaching any conclusions regard-
ing the relative performance. We can, however, in Fig. 2 see that for alternative

272 I. Karlsson et al.

Table 1. Predictive performance, as measured by accuracy and earliness, for all com-
pared approaches. The highest accuracy and lowest earliness are highlighted.

Dataset Accuracy Earliness

ECDIRE ECTS WERSF PERSF ECDIRE ECTS WERSF PERSF

50words 0.53 0.57 0.67 0.69 0.40 0.73 0.94 0.93

Adiac 0.55 0.40 0.71 0.73 0.38 0.59 0.95 0.96

Beef 0.50 0.50 0.70 0.60 0.68 0.77 0.98 0.92

CBF 0.89 0.85 0.97 0.99 0.29 0.77 0.51 0.67

ChlorineConcentration 0.56 0.62 0.65 0.65 0.14 0.66 1.00 1.00

CinC ECG torso 0.81 0.87 0.81 0.83 0.50 0.58 0.96 0.99

Coffee 0.96 0.75 0.96 0.89 0.82 0.84 0.85 0.92

Cricket X 0.57 0.56 0.77 0.76 0.48 0.72 0.87 0.91

Cricket Y 0.63 0.63 0.76 0.74 0.36 0.66 0.92 0.94

Cricket Z 0.60 0.59 0.76 0.75 0.46 0.68 0.86 0.88

DiatomSizeReduction 0.80 0.80 0.76 0.79 0.24 0.15 0.79 0.87

ECG200 0.91 0.89 0.83 0.84 0.90 0.60 0.81 0.92

ECGFiveDays 0.60 0.62 1.00 1.00 0.21 0.64 0.89 0.85

FaceAll 0.87 0.76 0.75 0.76 0.57 0.64 0.85 0.89

FaceFour 0.61 0.82 0.99 0.74 0.22 0.72 0.79 0.86

FacesUCR 0.74 0.71 0.87 0.86 0.59 0.87 0.90 0.91

fish 0.81 0.75 0.93 0.90 0.55 0.61 0.74 0.81

Gun Point 0.91 0.87 1.00 0.99 0.32 0.47 0.82 0.79

Haptics 0.44 0.37 0.45 0.48 0.87 0.94 1.00 0.94

InlineSkate 0.26 0.33 0.36 0.37 0.34 0.85 0.92 0.96

ItalyPowerDemand 0.93 0.94 0.95 0.95 0.72 0.79 0.95 0.97

Lighting2 0.54 0.70 0.54 0.67 0.09 0.89 0.05 0.83

Lighting7 0.48 0.58 0.71 0.71 0.20 0.87 0.93 0.94

MALLAT 0.78 0.85 0.92 0.92 0.45 0.69 0.79 0.86

MedicalImages 0.74 0.68 0.69 0.69 0.21 0.54 0.99 0.99

MoteStrain 0.80 0.88 0.94 0.94 0.12 0.79 0.85 0.77

NIFECG Thorax1 0.89 0.81 0.90 0.89 0.64 0.78 0.89 0.94

NIFECG Thorax2 0.93 0.88 0.92 0.93 0.57 0.77 0.89 0.93

OliveOil 0.40 0.90 0.90 0.90 0.30 0.87 0.92 0.91

OSULeaf 0.52 0.49 0.82 0.81 0.48 0.77 0.87 0.83

SonyAIBORobotSurface 0.83 0.69 0.88 0.82 0.62 0.68 0.72 0.54

SonyAIBORobotSurfaceII 0.74 0.85 0.90 0.85 0.18 0.55 0.54 0.57

StarLightCurves 0.95 0.15 0.96 0.95 0.53 0.82 0.63 0.54

SwedishLeaf 0.87 0.78 0.90 0.91 0.46 0.76 0.89 0.93

Symbols 0.81 0.81 0.71 0.18 0.45 0.51 0.80 0.05

(Continued)

Early Random Shapelet Forest 273

Table 1. (Continued)

Dataset Accuracy Earliness

ECDIRE ECTS WERSF PERSF ECDIRE ECTS WERSF PERSF

synthetic control 0.96 0.88 0.98 0.97 0.62 0.88 0.76 0.81

Trace 0.77 0.74 1.00 1.00 0.42 0.51 0.78 0.79

Two Patterns 0.87 0.86 0.95 0.95 0.99 0.87 0.86 0.88

TwoLeadECG 0.81 0.73 0.99 0.99 0.69 0.64 0.78 0.78

uWaveGestureLibrary X 0.77 0.73 0.78 0.76 0.74 0.86 0.93 0.92

uWaveGestureLibrary Y 0.70 0.63 0.71 0.71 0.97 0.86 0.95 0.91

uWaveGestureLibrary Z 0.71 0.65 0.72 0.72 0.76 0.85 0.92 0.92

wafer 0.97 0.99 0.89 0.94 0.11 0.44 0.05 0.05

WordsSynonyms 0.52 0.59 0.54 0.52 0.66 0.83 0.94 0.92

yoga 0.85 0.81 0.79 0.80 1.00 0.69 0.85 0.80

Rank 2.90 3.18 1.88 2.04 1.40 2.20 3.10 3.30

Average 0.73 0.71 0.81 0.80 0.50 0.71 0.82 0.83

PERSF WERSF

0.65

0.70

0.75

0.80

0.85

0.90
0.92

0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0

Early Prediction Threshold

A
cc

u
ra

cy
/
E

a
rl

in
es

s

Accuracy

Earliness

Full Accuracy

Fig. 2. Evolution of the earliness and accuracy (10-fold cross-validation on the training
set) for different multipliers (w) of the full precision.

precision multipliers, the average accuracy for WERSF can exceed that of ECDIRE
without having significantly lower early classification time.

To investigate the effect of the early prediction multiplier w, the earliness
and accuracy for the proposed methods are computed using cross-validation on
the training set. In Fig. 2, we see the evolution of early classification accuracy
and earliness (solid lines) compared to the full time series accuracy (dashed line)
for both PERSF (left) and WERSF (right). As seen in Fig. 2, the prediction time
and accuracy increases, as expected, with an increasing precision multiplier. For
WERSF, we can also see that when setting the w parameter to be maximally
conservative (w = 1), the accuracy approaches the accuracy of the complete
time series classifier for both methods. Furthermore, we can also see that the
precision threshold seems to, on average, empirically lower bound the accuracy

274 I. Karlsson et al.

of the forest on the full time series, indicating that the threshold indeed functions
as expected and provide means for trading accuracy for earliness or vice versa.

5 Concluding Remarks

In this paper, we have proposed and investigated a novel approach for early time
series classification using the random shapelet forest together with two predic-
tion functions and an out-of-bag estimated reliablity threshold. The proposed
approach utilizes less computational resources than alternative methods, since
a single classifier is built utilizing the full time series, with a modified predic-
tion function that allow for early classification. Depending on how the weighting
parameter (w) is set, accuracy vs. earliness can be balanced in different ways.
An extensive empirical evaluation, in which w was optimized towards accuracy,
showed that the proposed approach (in two different instantiations) could lead to
significantly higher predictive performance. On the other hand, for this optimiza-
tion criterion, the improved accuracy came with an associated cost of reduced
earliness. By tuning the parameter differently, earliness can be improved (at the
cost of accuracy). It should be noted that the underlying model, i.e., the random
shapelet forest, does not need to be re-trained even if another trade-off is to be
employed. The approach hence provides a convenient framework for investigat-
ing and evaluating various trade-offs between accuracy and earliness at a low
computational cost.

For future work, alternative approaches for triggering an (early) prediction
could be investigated. Since the minimum prediction length seems to outperform
the proposed method in terms of prediction time, one could, e.g., consider meth-
ods based on MPL of reversed nearest neighbours together with the proposed
classification function. In addition, a large scale empirical evaluation could be
undertaken to investigate the performance of early classification methods for
both univariate and multivariate time series. Finally, future work could also
include investigating alternative approaches for early classification in which the
process is able to at any time-point guarantee a user supplied confidence in the
classification, e.g., employing confidence predictions.
Source code. The source code for replicating the experiments is available at
the supporting website (https://people.dsv.su.se/∼isak-kar/ersf/).

Acknowledgments. This work was partly supported by project High-Performance
Data Mining for Drug Effect Detection at Stockholm University, funded by the Swedish
Foundation for Strategic Research (IIS11-0053).

References

1. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time
series. In: KDD Workshop, vol. 10, pp. 359–370. Seattle, WA (1994)

2. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

https://people.dsv.su.se/~isak-kar/ersf/

Early Random Shapelet Forest 275

4. Dachraoui, A., Bondu, A., Cornuéjols, A.: Evaluation protocol of early classifiers
over multiple data sets. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K.
(eds.) ICONIP 2014. LNCS, vol. 8835, pp. 548–555. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-12640-1 66

5. Dachraoui, A., Bondu, A., Cornuéjols, A.: Early classification of time series as a non
myopic sequential decision making problem. In: Appice, A., Rodrigues, P.P., Costa,
V.S., Soares, C., Gama, J., Jorge, A. (eds.) ECML PKDD 2015. LNCS (LNAI), vol.
9284, pp. 433–447. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23528-8 27

6. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

7. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and
mining of time series data: experimental comparison of representations and dis-
tance measures. Proc. VLDB Endowment 1(2), 1542–1552 (2008)

8. Ghalwash, M.F., Radosavljevic, V., Obradovic, Z.: Utilizing temporal patterns for
estimating uncertainty in interpretable early decision making. In: Proceedings of
the 20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 402–411. ACM (2014)

9. Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning time-series
shapelets. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 392–401. ACM (2014)

10. Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time
series by shapelet transformation. Data Min. Know. Discovery 28(4), 851–881
(2014)

11. Ishiguro, K., Sawada, H., Sakano, H.: Multi-class boosting for early classification
of sequences. In: Proceedings of the British Machine Vision Conference, pp. 24.1–
24.10. BMVA Press (2010). doi:10.5244/C.24.24

12. Karlsson, I., Papapetrou, P., Boström, H.: Forests of randomized shapelet
trees. In: Gammerman, A., Vovk, V., Papadopoulos, H. (eds.) SLDS 2015.
LNCS (LNAI), vol. 9047, pp. 126–136. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-17091-6 8

13. Keogh, E., Zhu, Q., Hu, B., Hao, Y., Xi, X., Wei, L., Ratanamahatana, C.A.:
The UCR time series classification/clustering homepage (2015). www.cs.ucr.edu/
∼eamonn/time series data/

14. Lines, J., Davis, L.M., Hills, J., Bagnall, A.: A shapelet transform for time series
classification. In: Proceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 289–297. ACM (2012)

15. Mori, U., Mendiburu, A., Keogh, E., Lozano, J.A.: Reliable early classification
of time series based on discriminating the classes over time. Data Min. Knowl.
Discovery, 1–31 (2016)

16. Mueen, A., Keogh, E., Young, N.: Logical-shapelets: an expressive primitive for
time series classification. In: Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1154–1162. ACM (2011)

17. Quinlan, J.R.: C4.5: Programs for Machine Learning. Elsevier (1993)
18. Ratanamahatana, C.A., Keogh, E.: Everything you know about dynamic time

warping is wrong. In: 3rd Workshop on Mining Temporal and Sequential Data, pp.
22–25 (2004)

19. Rodrıguez, J.J., Alonso, C.J., Boström, H.: Boosting interval based literals. Intell.
Data Anal. 5, 245–262 (2001)

20. Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1–2), 1–39 (2010)
21. Rokach, L., Maimon, O.: Top-down induction of decision trees classifiers-a survey.

IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 35(4), 476–487 (2005)

http://dx.doi.org/10.1007/978-3-319-12640-1_66
http://dx.doi.org/10.1007/978-3-319-23528-8_27
http://dx.doi.org/10.5244/C.24.24
http://dx.doi.org/10.1007/978-3-319-17091-6_8
http://dx.doi.org/10.1007/978-3-319-17091-6_8
www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/

276 I. Karlsson et al.

22. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. Trans. ASSP 26, 43–49 (1978)

23. Xing, Z., Pei, J., Dong, G., Yu, P.S.: Mining Sequence Classifiers for Early Predic-
tion, pp. 644–655 (2008)

24. Xing, Z., Pei, J., Philip, S.Y.: Early classification on time series. Knowl. Inf. Syst.
31(1), 105–127 (2012)

25. Xing, Z., Pei, J., Philip, S.Y., Wang, K.: Extracting interpretable features for early
classification on time series. In: SDM, vol. 11, pp. 247–258. SIAM (2011)

26. Xing, Z., Pei, J., Yu, P.S.: Early prediction on time series: a nearest neighbor
approach. In: Proceedings of the 21st International Jont Conference on Artifical
Intelligence, pp. 1297–1302. Morgan Kaufmann Publishers Inc. (2009)

27. Ye, L., Keogh, E.: Time series shapelets: a new primitive for data mining. In:
Proceedings of the 15th ACM SIGKDD. ACM (2009)

Classification

Shorter Rules Are Better, Aren’t They?

Julius Stecher, Frederik Janssen, and Johannes Fürnkranz(B)

Technische Universität Darmstadt, Knowledge Engineering, Darmstadt, Germany
jlstecher@gmail.com, {janssen,juffi}@ke.tu-darmstadt.de

Abstract. It is conventional wisdom in inductive rule learning that
shorter rules should be preferred over longer rules, a principle also known
as Occam’s Razor. This is typically justified with the fact that longer
rules tend to be more specific and are therefore also more likely to overfit
the data. In this position paper, we would like to challenge this assump-
tion by demonstrating that variants of conventional rule learning heuris-
tics, so-called inverted heuristics, learn longer rules that are not more
specific than the shorter rules learned by conventional heuristics. More-
over, we will argue with some examples that such longer rules may in
many cases be more understandable than shorter rules, again contradict-
ing a widely held view. This is not only relevant for subgroup discovery
but also for related concepts like characteristic rules, formal concept
analysis, or closed itemsets.

1 Introduction

It is conventional wisdom in machine learning that shorter explanations are
better. Occam’s Razor, “Entia non sunt multiplicanda sine necessitate”1, is often
cited as support for this principle. Typically, it is understood as “given two
explanations of the data, all other things being equal, the simpler explanation is
preferable” [2].

There are many plausible reasons why shorter explanations should be pre-
ferred, among them that simpler theories are easier to falsify, that there are
fewer simpler theories than complex theories, so the a priori chances that a
simple theory fits the data are lower, or that simpler rules tend to be more gen-
eral, cover more examples and their quality estimates are therefore statistically
more reliable. While it is well-known that striving for simplicity often yields
better predictive results—mostly because pruning or regularization techniques
help to avoid overfitting—the exact formulation of the principle is still subject
to debate [3], and several cases have been observed where more complex theories
perform better [1,17,22].

Much of this debate focuses on the aspect of predictive accuracy. When it
comes to understandability, the idea that simpler rules are more comprehensible
is typically unchallenged. In this paper, we will argue that this is not necessarily
the case and motivate this argument with several examples of well-known con-
cepts in inductive rule learning, such as characteristic rules, formal concepts and
1 Entities should not be multiplied beyond necessity.

c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 279–294, 2016.
DOI: 10.1007/978-3-319-46307-0 18

280 J. Stecher et al.

closed itemsets (Sect. 2). We will then present a subgroup discovery algorithm
that is based on a classification learner using inverted heuristics (Sect. 3) and
show quantitative and qualitative results that aim at demonstrating that a rule
learner with a bias towards learning longer rules does not necessarily produce
worse rules (Sect. 4).

2 Understandability and Rule Length

In this section, we try to relate the length of the learned rules to their under-
standability—a very elusive concept which we use in an intuitive sense, without
being able to give a precise definition, let alone a quantitative characterization.

Inductive rule learning is typically concerned with learning a set of rules that
discriminate positive from negative examples [6]. For this task, a bias towards
simplicity is necessary because for a contradiction-free training set, it is trivial to
find a rule set that perfectly explains the training data, simply by converting each
example to a maximally specific rule that covers only this example. Obviously,
although the resulting rule set is clearly within the hypothesis space, it is not
useful because it essentially corresponds to rote learning and does not generalize
to unseen examples. Essentially for this reason, Mitchell [16] has noted that
learning and generalization need a bias in order to avoid such elements of the
version space.

Despite this necessity of a bias for simplicity, we argue that simpler rules
are not necessarily more understandable, not even if all other things (such as
coverage) are equal. Already Michalski [15] has noted that there are two different
kinds of rules, discriminative and characteristic. Discriminative rules can quickly
discriminate an object of one category from objects of other categories. A simple
example is the rule

elephant :- trunk.

which states that an animal with a trunk is an elephant. The rule provides
a simple but effective rule for recognizing the target class among all animals.
However, it does not provide a very clear picture on properties of the elements
of the target class. For example, from the above rule, we do not understand that
elephants are also very large and heavy animals with a thick grey skin, tusks
and big ears.

Characteristic rules, on the other hand, try to capture all properties that are
common to the objects of the target class. A rule for characterizing elephants
could be

heavy, large, grey, bigEars, tusks, trunk :- elephant.

Note that here the implication sign is reversed: we list all properties that are
implied by the target class, i.e., by an animal being an elephant. From the point
of understandability, characteristic rules are often preferable to deterministic
rules. For example, in a customer profiling application, we would prefer to not
only list a few characteristics that discriminate one customer group from the
other, but would be interested in all characteristics of each customer group.

Shorter Rules Are Better, Aren’t They? 281

Characteristic rules are very much related to formal concept analysis [8,23].
Informally, a concept is defined by its intent (the description of the concept,
i.e., the conditions of its defining rule) and its extent (the instances that are
covered by these conditions). A formal concept is then a concept where both
the extension and the intension are maximal, i.e., a concept where no conditions
can be added without reducing the number of covered examples. In Michalski’s
terminology, a formal concept is both discriminative and characteristic, i.e., a
rule where the head is equivalent to the body.

It is well-known that formal concepts correspond to closed itemsets in associ-
ation rule mining, i.e., to maximally specific itemsets [21]. Closed itemsets have
been mined primarily because they are a unique and compact representative of
equivalence classes of itemsets, which all cover the same instances [24]. However,
while all itemsets in such an equivalence class are equivalent with respect to their
support, they may not be equivalent with respect to their understandability or
interestingness.

Consider, e.g., the infamous {diapers, beer} itemset that is commonly used
as an example for a surprising finding in market based analysis. A possible
explanation for this finding is due to young family fathers who are sent to shop
for their youngster and have to reward themselves with a six-pack. However,
if we consider that a young family may not only need beer and diapers, the
closed itemset of this particular combination may also include baby lotion,
milk, porridge, bread, fruits, vegetables, cheese, sausages, soda, etc. In
this combination, diapers and beer appear to be considerably less surprising,
although the same set of customers may buy these sets of items. Conversely, an
association rule beer :- diapers with an assumed confidence of 80 % appears
considerably less interesting if we learn that 80 % of all customers buy beer,
i.e., if its lift is equal to one.

These examples should help to motivate that the complexity of rules may
have an effect on the understandability and plausibility of a rule, even in cases
where a simpler and a more complex rule cover the same number of examples,
but that it is not necessarily the case that shorter rules are more understandable.
In the remainder of the paper, we will look at examples of rules that are learned
from a pair of rule learning algorithms, one using a conventional heuristic that
aims at finding maximally discriminative conditions, and one using inverted
heuristics, which aim at finding longer rules that resemble characteristic rules.

3 Inverted Heuristics for Supervised Descriptive Rule
Induction

In this section, we will explain the subgroup discovery algorithm that we used,
and highlight its differences to the covering algorithm used in previous experi-
ments with inverted heuristics [20]. Section 3.1 will briefly recapitulate the under-
lying base concepts before we explain the modifications for subgroup discovery
in Sect. 3.2.

282 J. Stecher et al.

3.1 Inverted Heuristics

In [20], we have proposed to differentiate between rule selection and rule refine-
ment heuristics in top-down separate-and-conquer rule learning, as opposed to
using the same heuristic for both phases of the algorithm as conventional rule
learning algorithms do [4,6]. While conventional heuristics match the bottom-
up procedure of rule selection, we have argued that it can be beneficial for the
top-down specialization of the rule refinement process to use heuristics reflecting
this difference.

(a) Laplace heuristic (b) inverted Laplace heuristic

Fig. 1. Visualization of the coverage space isometrics of conventional and inverted
Laplace.

More specifically, we have taken a look at the Laplace- family of heuristics
(namely precision, Laplace and the m-Estimate), all of which operate from a
bottom-up perspective, differing only in the origin of their coverage space iso-
metrics [5]. By creating an inverted counterpart for each of these heuristics, we
were able to obtain new heuristics that better reflect the top-down nature of
the rule refinement process in theory, as well as exhibit some interesting proper-
ties in practice. This is illustrated in Fig. 1, which shows that the isometrics of
conventional Laplace heuristic hLap rotate around the point (−1,−1) below the
origin, whereas their counter-parts for the inverted Laplace 4Lap rotate around
the point (N + 1, P + 1) above the upper right corner. This point represents the
empty, unconstrained rule, which has no conditions and covers all examples, and
is therefore the starting point for a top-down refinement process.

While conventional heuristics of the Laplace-type tend to focus on consis-
tency in rule refinement, mainly rewarding the early exclusion of false positives,
their top-down counterparts instead try to maintain completeness by preserving
coverage of true positives. One of the properties we deem relevant to the field
of subgroup discovery is the refinement process taking smaller steps in coverage
space without critically impacting the readability of the resulting rules. Conse-
quently, we had observed that this results in rules that resemble characteristic
rules instead of the conventionally learned discriminative rules. For example,
Fig. 2 shows the two best rules that have been found for the mushroom dataset
with the conventional Laplace heuristic hLap (top) and the inverted Laplace

Shorter Rules Are Better, Aren’t They? 283

Fig. 2. The two best rules learned for the class poisonous in the mushroom dataset.

heuristic 4Lap (bottom). Although both rules cover approximately the same
number of examples and would thus be about equal according to most qual-
ity measures, the former consists only of a single condition, whereas the latter
has five conditions, which clearly makes a difference in the understandability of
the rule.

Note that not all heuristics can be inverted. For example, the isometric lines
of weighted relative accuracy (WRA), which is frequently used in subgroup dis-
covery, are parallel to the diagonal of the coverage space, so that their inverted
version coincides with the original heuristic.

In [20], we dealt with a rule selection and refinement selection in a conven-
tional covering algorithm, and showed that their use tends to increase predictive
accuracy, even though longer rules are learned. In this paper, we will focus on
the use of inverted heuristics in a simple subgroup discovery algorithm based on
Michalski’s AQ family [14]. After introducing this algorithm in the next section,
we will proceed by showing some of the properties of the learned rules and
take a look at a couple of exemplary rules that highlight the characteristics and
potential use of inverted heuristics in descriptive rule discovery.

3.2 Algorithm

The rules found with conventional covering algorithms are not ideal results for
subgroup discovery, because rules are learned in order, and all examples that are
covered by a rule are removed before subsequent rules are learned. Thus, each
found rule (except the first one) has been learned and evaluated on a subset of the
data. Subgroup discovery algorithms such as CN2-SD [12,13] try to alleviate this
problem by resorting to weighted covering, where instead of removing covered
examples their weight is reduced so that they have less influence on the learning
of subsequent rules.

In this work, we adopt a similar but somewhat different strategy, which is
based on Michalski’s AQ family [14]. (cf. Algorithm 1). Unlike traditional cover-
ing algorithms, we do not remove covered instances from the data but instead
keep an internal list of instances that have not yet been covered. This list is
initialized with all positives instances.

A rule is then learned by selecting a random uncovered example, and by
restricting the possible attribute values in the rule refinement step to those
present in this instance. By doing so, coverage of this instance is guaranteed

284 J. Stecher et al.

Algorithm 1. Procedure SeCo-AQR

Data: Instances (labeled examples), classLabel
Result: unordered ruleset R

1 R = empty unordered set of rules
2 C = Concept (list of instances with class = classLabel)
3 c = RandomSelection(C)
4 while positive examples left in C do
5 Rule r = FindBestRule(Instances, c, classLabel)
6 forall instance in C do
7 if Covers(r, instance) then
8 remove instance from C

9 c = RandomSelection(C)
10 R = R ∪ r

11 return R

(while the rule can still cover other instances, both of the same as well as of other
classes). Single rules are learned from the restricted set of conditions in essentially
the same way as in [20] (Algorithm 2). The algorithm uses two heuristic functions,
one for evaluating rule refinements and one for evaluating rule selection. These
heuristics may be identical, but we advocate the use of inverted heuristics for rule
refinement. The key difference to the covering and weighted covering approaches
is that in this way, each rule is evaluated independently on the entire set of
examples and not in the context of previously learned rules.

After a rule has been learned (see Algorithm 2), all covered examples are
marked as such, and a new instance is selected from the remaining uncovered
examples until none remain (all instances are covered by at least one rule). In
addition, note that no stopping criteria or pruning methods were used at all,
limiting the learning process only to the basic underlying algorithm and most
importantly, the heuristics being used in both the selection and refinement steps.

4 Experiments

In this section, we compare statistics of rules learned with conventional and
inverted heuristics with respect to rule length, number of rules and conditions
and coverage information. The used algorithms will be denoted by the pair of
heuristic functions (hselection,hrefinement) they use. For example, (hLap,4Lap) uses
conventional Laplace for rule selection, and inverted Laplace for rule refinement,
whereas (hm,hm) uses the conventional m-estimate in both cases. We always set
the parameter m = 22.446 as has been empirically determined in [10].

4.1 Data

Table 1 shows the datasets that we use in our study. They consist of two medical
datasets that have been previously used in subgroup discovery [7,11], and a

Shorter Rules Are Better, Aren’t They? 285

Algorithm 2. Procedure FindBestRule

Data: Instances (labeled examples), c (random positive Instance), classLabel
Result: best rule rbest covering at least c

1 rbest = rref = ∅
2 bestValue = SelectionHeuristic(rbest)
3 repeat
4 refinements = RefineRule(Instances, rref, c, classLabel)
5 forall refinements r′ do
6 evaluation = RefinementHeuristic(r′)

7 rref = best refinement w.r.t. evaluation
8 if SelectionHeuristic(rref) ≥ bestValue then
9 rbest = rref

10 bestValue = SelectionHeuristic(rbest)

11 until no refinements left;
12 return rbest

Table 1. Number of classes (C), examples (E), and attributes(A) of the used datasets.

Dataset C E A Dataset C E A

coronary heart disease 5 238 39 brain ischemia 2 300 28

deptmts-dbpedia-type 3 100 82 regions-dbpedia-type 3 26 40

deptmts-dbpedia-data 3 100 189 regions-dbpedia-data 3 26 149

deptmts-dbpedia-qrel 3 100 10041 regions-dbpedia-qrel 3 26 4608

regionWithLGD 3 27 334 regions-eurostat 3 26 16

number of datasets that have been generated from the Semantic Web with the
Explain-A-LOD tool [18]. The latter group has been chosen because some of
them contain large numbers of sparsely populated attributes, which, as we will
discuss in Sect. 4.6, poses interesting problems for the use of inverted heuristics.

The coronary heart disease dataset [7] consists of 238 patients that have five
different heart-disease-related diagnoses.

The brain ischemia dataset [11] contains the records of 300 patients of the
Intensive Care Unit of the Department of Neurology in the University Hospital
Center Zagreb, Croatia, where the task is to discriminate between patients with
a positive computer tomography test for brain stroke and patients with a normal
CT test.

The remaining datasets try to explain unemployment rates in France, on the
level of regions or départements [19]. Each dataset has the same examples, with
class values discretized into high, medium, and low using equal frequency dis-
cretization. They differ with respect to the information that has been extracted
from the Semantic Web to be used as features in the prediction task. For data, all
direct data values have been extracted from DBpedia for each region, for type all
types for particular regions, and for qrel all qualified relations where the region

286 J. Stecher et al.

Table 2. Average rule length and (in parantheses) total number of rules and total
number of conditions of the learned rules.

Dataset Standard (., .) (hLap, .)

hLap hm hWRA 4Lap 4Prec

coronary heart disease 2.73 (64/175) 5.03 (31/156) 3.24 (17/55) 9.78 (54/528) 10.26 (61/626)

brain ischemia 2,76 (46/127) 3.33 (33/110) 2.00 (13/26) 7.46 (56/418) 7.09 (55/390)

average (medical data) 2.75 4.18 2.62 8.62 8.68

deptmts-dbpedia-data 1.96 (45/88) 2.72 (29/79) 2.94 (16/47) 6.36 (42/267) 6.77 (43/291)

deptmts-dbpedia-qrel 1.13 (53/60) 2.85 (22/77) 10.80 (15/162) 21.75 (4/87) 23.33 (3/70)

deptmts-dbpedia-type 2.08 (12/25) 2.20 (10/22) 2.00 (7/14) 3.25 (12/39) 3.75 (12/45)

regions-dbpedia-data 1.54 (13/20) 1.89 (9/17) 2.13 (8/17) 3.00 (12/36) 3.42 (12/41)

regions-dbpedia-qrel 1.08 (13/14) 2.00 (7/14) 2.50 (6/15) 3.75 (4/15) 5.00 (3/15)

regions-dbpedia-type 2.36 (14/33) 2.71 (7/19) 2.71 (7/19) 3.92 (12/47) 4.17 (12/50)

regions-eurostat 1.46 (13/19) 1.67 (6/10) 1.67 (6/10) 3.36 (11/37) 3.58 (12/43)

regionWithLGD 1.06 (16/17) 2.30 (10/23) 4.33 (6/26) 6.60 (5/33) 7.75 (4/31)

average (region data) 1.58 2.29 3.64 6.50 7.22

occurs as an object. The datasets withLGD include information extracted from
Linked Geo Data, and eurostat all data values from Eurostat. The latter two are
only available for regions, whereas the first three are available for both regions
and départements. All features generally have an open world semantics, i.e., the
two values of a binary feature should be interpreted as true and unknown.

4.2 Rule Complexities

Table 2 shows the average rule lengths learned by three conventional heuristics, as
well as two that use the Laplace-heuristic for selection, and an inverted heuristic
for refinement. Our expectation is confirmed considering the two algorithms
using inverted heuristics, (hLap,4Prec) and (hLap,4Lap), learn the longest rules
by a fair margin. Generally, use of (hLap,hLap) and (hWRA,hWRA) will result
in more general rules, where the former will learn many very short rules, and
the latter will learn a considerably lower number of rules that exhibit similar
length characteristics. Interestingly, the number of rules learned by the standard
algorithm (hm,hm) is usually found between the two aforementioned algorithms,
while the number of conditions is considerably higher, leading to a greater rule
length average that still does not match the rule lengths produced by the two
inverted variants.

4.3 Rule Coverage

Of course, learning longer rules by itself is not a noteworthy result. What makes
it interesting is that these longer rules are nevertheless not more specific in
the sense that they cover fewer examples. Table 3 shows the average cover-
age (number of examples explained by a single rule), including both false and
true positives. Again, (hLap,hLap) is surpassed by both modified algorithms,

Shorter Rules Are Better, Aren’t They? 287

Table 3. Average number of examples (both true and false positives) covered by a
rule.

Dataset Standard (., .) (hLap, .)

hLap hm hWRA 4Lap 4Prec

coronary heart disease 10.53 32.87 68.00 18.52 19.33

brain ischemia 37.11 82.09 155.85 44.14 46.71

average (medical data) 23.82 57.48 111.93 31.33 33.02

deptmts-dbpedia-data 5.09 13.41 32.38 6.62 6.79

deptmts-dbpedia-qrel 3.47 8.22 20.40 33.00 33.30

deptmts-dbpedia-type 42.25 54.80 72.71 42.42 42.42

regions-dbpedia-data 2.69 6.22 9.88 3.42 3.33

regions-dbpedia-qrel 2.61 6.00 7.17 8.00 8.67

regions-dbpedia-type 4.14 11.00 11.00 5.00 5.00

regions-eurostat 3.46 8.00 8.00 4.72 4.50

regionWithLGD 2.38 5.10 7.50 8.40 9.00

average (region data) 8.26 14.09 21.13 13.95 14.13

which use the same selection heuristic but an inverted refinement heuristic, by a
fair margin w.r.t. average coverage. This behaviour was what we expected based
on our previous results [20].

Weighted relative accuracy (WRA) is a heuristic that is commonly used in
subgroup discovery but is known to overgeneralize in a predictive setting [10].
Consequently, (hWRA,hWRA) exhibits very large coverage values, with a high
amount of both true and false positives, corresponding to its very short aver-
age rule length. A possible explanation is that especially in multiclass datasets,
where usually P << N for any given class, WRA tends to penalize the exclu-
sion of true positives relatively early in the learning process, thus sticking with a
relatively short best rule found w.r.t. selection heuristic. Algorithms with sepa-
rated heuristics have the advantage of not evaluating entire rules with the same
heuristic function used to evaluate single conditions, thus working bottom-up in
the selection step, and top-down in the refinement step.

The m-estimate (hm,hm) is an interesting case, because w.r.t. to rule lengths,
it lies between the traditional Laplace heuristics and the modified algorithms
using split heuristics, while at the same time maintaining a high coverage without
a large fraction of false positives. From the rule statistics alone, the m-Estimate
seems to be a strong contender for the best rule quality (meaning high coverage
combined with long descriptive rules) produced for subgroup discovery; it is thus
necessary to take an in-depth look at the actual subgroups described by the
rules of both (hm,hm) as well as the two split-heuristics variants (hLap,4Prec) or
(hLap,4Lap) to determine the potential utility of inverted heuristics in subgroup
discovery. We will highlight some of the differences further below in Sect. 4.5.

288 J. Stecher et al.

Table 4. Average number of rules covering a single example. Since every example must
be covered by at least one rule, this value is always greater than or equal to one.

Dataset Standard (., .) (hLap, .)

hLap hm hWRA 4Lap 4Prec

coronary heart disease 2.84 4.28 4.86 4.2 4.95

brain ischemia 5.69 9.03 6.75 8.24 8.56

average (medical data) 4.27 6.66 5.81 6.22 6.76

deptmts-dbpedia-data 2.29 3.89 5.18 2.78 2.92

deptmts-dbpedia-qrel 1.84 2.22 3.06 1.32 1.00

deptmts-dbpedia-type 5.07 5.48 5.09 5.09 5.09

regions-dbpedia-data 1.35 2.15 3.04 1.57 1.54

regions-dbpedia-qrel 1.31 1.62 1.65 1.23 1.00

regions-dbpedia-type 2.23 2.96 2.96 2.31 2.31

regions-eurostat 1.73 1.85 1.85 2.00 2.08

regionWithLGD 1.41 1.89 1.67 1.56 1.33

average (region data) 2.15 2.76 3.06 2.23 2.16

4.4 Rule Overlap

We also evaluated the rule overlap, i.e., how many rules cover any given example
on average (cf. Table 4). Every example is covered by at least one rule—either
because the example was explicitly selected as a random seed example, or because
one of the rules learned from a different seed example covered this example.

In direct comparison to their counterpart using the same selection heuris-
tic, rules learned by (hLap,4Prec) or (hLap,4Lap) seem to overlap more (a char-
acteristic also exhibited by (hm,hm) and (hWRA,hWRA)), resulting in two or
more rules covering the same example. This is especially the case with the med-
ical datasets (brain ischemia and coronary heart disease). These datasets cover
both a binary-class as well as a multiclass case and provide a sufficient num-
ber of samples, which is not the case with some of the region datasets, most
notably deptmts-dbpedia-qrel and regions-dbpedia-qrel. The algorithms making
use of inverted heuristics for the most part learned just a single rule for each
class on these two datasets. This is due to the sparse encoding of these data, so
that in many cases, an entire class can be covered with just one rule consisting
of a conjunction of many zero values from such sparse attributes.

4.5 Example Rules

In this section we will compare some of the rules learned with conventional and
with inverted heuristics. In order to reduce influence from a possibly bad random
pick for the seed examples, we will always list the three best rules learned for a
class as estimated by the rule selection heuristic. The conditions of the rules are

Shorter Rules Are Better, Aren’t They? 289

shown in the order in which they have been learned, which also highlights some
differences between the algorithms.

We will primarily focus on a comparison of (hLap,4Lap) with (hWRA,hWRA)
and (hm,hm) because the latter two seem to produce the best results among the
conventional heuristics, and (hLap,4Lap) and (hLap,4Prec) behave very similarly,
so that it is usually sufficient to look at the output of one of these two. A detailed
semantic interpretation is beyond the scope of the paper and the expertise of its
author, so we will focus on rule properties like rule length and coverage. With
each rule, we will also show the number of positive and negative examples that
are covered by this rule.

Fig. 3. Three best rules learned for class 1 in the coronary heart disease dataset.

Figure 3 shows the three best rules learned for a specific class in coronary
heart disease. Not unexpectedly, it can be seen that the conventional heuristics
position learn rules with different characteristics. Laplace has a preference for
more specific, pure rules, whereas WRA has a preference for more general but
possibly impure rules. This is consistent with previous results which showed that
Laplace has a tendency to overfit, whereas WRA tends to over-generalize [10].
As the m-estimate may be viewed as a parametrized trade-off between these

290 J. Stecher et al.

two extremes [5], it not surprisingly learns rules that have a somewhat higher
coverage than those learned by Laplace, but less coverage than those learned with
WRA, and, conversely, purer rules than those learned by WRA, but less pure
than those of Laplace. The use of inverted heuristics (Fig. 3(d)) results in rules
that have about the same coverage as those learned with the m-estimate, but
are considerably longer and purer. Considering the lower coverage combined with
the relatively short rules of the (hLap,hLap), the conventional Laplace heuristic
cannot match the quality of its inverted variant.

Fig. 4. Three best rules learned for the class ischemia in the brain ischemia dataset
including true and false positives.

Figure 4 shows another exemplary comparison, this time on the brain
ischemia dataset. Again we obtain high coverage rules with both (hm,hm) as
well as (hWRA,hWRA). The difference is that on this dataset, the algorithm vari-
ant (hLap,4Lap) appears to generate considerably more descriptive rules without
significant coverage loss: the two best rules cover almost as many examples,
yet they include attributes not referenced by the rules learned by the standard
algorithms. All algorithms seem to associate the Barthel index (b.i.), a 0-100
scale to measure performance in activities of daily living, as well as the fibrino-
gen value (fibrin.), where healthy values are between 2.0 and 3.7, with a brain
stroke. However, the rules found by (hLap,4Lap) appear to offer more insight. For
instance, they refer to the diastolic blood pressure (denoted as rrrrdyast.., nor-
mally below 89 mmHg), the total cholesterol value (referred to as chol., normally
between 3.6 and 5.0 mmol/L) as well as the age of the patient. None of these are
referenced by the rules learned with standard configurations. More notably, the
value ranges covered by the conditions found in the rules learned by our modified
variant seem to be semantically interesting: according to the best rules found, a
brain stroke is related to old age, a relatively high diastolic blood pressure and
a cholesterol value out of the healthy value range. While we are not experts in
the medical domain, this information does seem to carry some relevance, and it
was not included by the unmodified algorithms.

Shorter Rules Are Better, Aren’t They? 291

Fig. 5. Best rules learned for class low unemployment in the regions-eurostat dataset
including true and false positives.

In Fig. 5 we look at rules learned for the low unemployment class in the
regions-eurostat dataset. Most notably, both weighted relative accuracy as well
as the m-Estimate will learn a rule with relatively high coverage (including false
positives) consisting of two conditions. Using (hLap,4Lap) we eliminate an equal
amount of false and true positives, reducing the total coverage somewhat, but
adding potentially semantically interesting attribute queries. For instance, while
all algorithms appear to associate a low unemployment rate with a large total
land use as well as a certain percent of population working in RnD (possi-
bly describing a metropolitan area), some additional info is included with the
more specialized rules produced by the latter algorithm, such as a good medical
infrastructure (above 8 hospital beds per 100 inhabitants) and information on
power generation, disposable income and population growth. This seems plausi-
ble although it would require domain knowledge in order to evaluate it properly.

4.6 Inverted Heuristics and Sparse Data

A particularly interesting dataset is deptmts-dbpedia-qrel, where we can see that
inverted heuristics learn rules that have 20 or more conditions whereas con-
ventional heuristics learn rules with 10 or fewer conditions (Table 2). On the
other hand, these rules cover considerably more examples than the other cases
(Table 3). Because of this, all positive examples are often only covered with a
single rule (Table 4).

The reason for this lies in the fact that this dataset has a very large number
of attributes compared to the instance count (A >> E), which results in some
interesting properties of the output rules when using an inverted heuristic for
refinement purposes. We have already shown that inverted refinement heuristics
will cause the rule construction process to prefer completeness over consistency,
i.e. such algorithm configurations will avoid excluding true positives early on,
instead attempting to take smaller steps in coverage space. Because the afore-
mentioned datasets are encoded in the WEKA [9] sparse ARFF format where

292 J. Stecher et al.

Fig. 6. A long rule learned for class low unemployment in the deptmts-dbpedia-qrel
dataset using (hLap, 4Lap)

missing values have to be explicitly encoded as such, a substantial number of
attribute values will be zero for every data point. As these are then common to
all instances of this class, inverted heuristics will tend to add them to the rule,
as can be seen from the rule shown in Fig. 6. Each of these conditions will barely
exclude any instances and can thus be steered towards maintaining completeness
while only slowly improving consistency. This will result in substantially longer
rules than their standard counterparts have learned. Learning such a rule will
often cover the entire concept (positive class) with just one rule by excluding all
false positives in tiny steps.

However, in this case, the semantic quality of these longer rules is indeed
questionable because they essentially focus on listing all properties that are not
known to be the case for a departément with low unemployment rate. Many of
them will also be the case for other regions, but this particular conjunction is
only true for this group, as the high number of covered positive examples and
the fact that no negatives are covered shows.

5 Conclusions

The main message that we would like to communicate with this position paper
is that shorter rules are not necessarily preferable to longer rules. While previous
work [20] has already demonstrated this in a quantitative evaluation for a pre-
dictive setting, this paper focusses on the descriptive quality of the found rules.
Rules may have the same or very similar statistical properties (like amount of
covered examples) but may vary considerably with respect to the number and
nature of the conditions that are included in the rule formation, and, in conse-
quence, with respect to their understandability.

On a more technical side, we were able to show that the use of inverted heuris-
tics will produce longer descriptive rules in a variety of medical and Semantic
Web datasets. Rules learned by weighted relative accuracy, a measure commonly
used in subgroup discovery, show a somewhat higher coverage, but also include
a substantial fraction of false positives. On the other hand, rules learned with
inverted heuristics exhibit a substantially lower false positive count with only
slightly lower total coverage and considerably longer rules. It is interesting to note
that the m-Estimate would include only a very small number of false positives

Shorter Rules Are Better, Aren’t They? 293

while covering more true positives than the rules created by the inverted algo-
rithm variants, which always exclude all false positives.

We also observed a potential disadvantage of inverted heuristics on sparse
datasets. Given their preference for maintaining completeness, these heuristics
will often learn a single rule per class on sparse data, covering all true positives
and no false positives, only by adding a large number of conditions that state
properties that are not true for examples of this class, each excluding only a few
false positives.

When taking a look at the semantics of the learned rules, the most interest-
ing trait of inverted heuristics in subgroup discovery is that the most significant
subgroups often query interesting attributes in addition to those included by the
other algorithm configurations. This behaviour was most apparent concerning
the brain ischemia medical dataset, where attributes and associated values that
make sense in a semantic context (brain strokes being related to old age, high
cholesterol and high blood pressure) were only found in the best rules learned
by one of the inverted algorithm variants. To make a concluding statement con-
cerning the usefulness of our approach in descriptive rule discovery, it would
be necessary to conduct a proper evaluation from experts in the application
domains, with the goal of estimating the semantic value of the attribute queries
contained in the found rules.

Acknowledgements. We would like to thank Dragan Gamberger, Nada Lavrač, and
Heiko Paulheim for letting us play with their data.

References

1. Bensusan, H.: God doesn’t always shave with Occam’s Razor - learning when
and how to prune. In: Nédellec, C., Rouveirol, C. (eds.) Proceedings of the 10th
European Conference on Machine Learning (ECML 1998), pp. 119–124 (1998)

2. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s Razor. Inf.
Process. Lett. 24, 377–380 (1987)

3. Domingos, P.: The role of Occam’s Razor in knowledge discovery. Data Min. Knowl.
Discovery 3(4), 409–425 (1999)

4. Fürnkranz, J.: Separate-and-conquer rule learning. Artif. Intell. Rev. 13(1), 3–54
(1999)

5. Fürnkranz, J., Flach, P.A.: ROC ’n’ rule learning - towards a better understanding
of covering algorithms. Mach. Learn. 58(1), 39–77 (2005)

6. Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning. Springer,
Heidelberg (2012)

7. Gamberger, D., Lavrač, N.: Active subgroup mining: a case study in coronary heart
disease risk group detection. Artif. Intell. Med. 28(1), 27–57 (2003)

8. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations.
Springer, Heidelberg (1999)

9. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)

10. Janssen, F., Fürnkranz, J.: On the quest for optimal rule learning heuristics. Mach.
Learn. 78(3), 343–379 (2010)

294 J. Stecher et al.

11. Kralj, P., Lavrač, N., Gamberger, D., Krstačić, A.: Contrast set mining through
subgroup discovery applied to brain ischaemina data. In: Zhou, Z.-H., Li, H., Yang,
Q. (eds.) PAKDD 2016. LNCS (LNAI), vol. 4426, pp. 579–586. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-71701-0 61

12. Kralj Novak, P., Lavrač, N., Webb, G.I.: Supervised descriptive rule discovery: a
unifying survey of contrast set, emerging pattern and subgroup mining. J. Mach.
Learn. Res. 10, 377–403 (2009)

13. Lavrač, N., Kavšek, B., Flach, P., Todorovski, L.: Subgroup discovery with CN2-
SD. J. Mach. Learn. Res. 5, 153–188 (2004)

14. Michalski, R.S.: On the quasi-minimal solution of the general covering problem. In:
Proceedings of the 5th International Symposium on Information Processing (FCIP
1969), pp. 125–128, Bled, Yugoslavia (1969)

15. Michalski, R.S.: A theory and methodology of inductive learning. Artif. Intell.
20(2), 111–162 (1983)

16. Mitchell, T.M.: The Need for Biases in Learning Generalizations. Technical report,
Computer Science Department, Rutgers University, New Brunswick, MA (1980)

17. Murphy, P.M., Pazzani, M.J.: Exploring the decision forest: an empirical investi-
gation of Occam’s Razor in decision tree induction. J. Artif. Intell. Res. 1, 257–275
(1994)

18. Paulheim, H., Fürnkranz, J.: Unsupervised generation of data mining features
from linked open data. In: Proceedings of the International Conference on Web
Intelligence and Semantics (WIMS 2012) (2012)

19. Ristoski, P., Paulheim, H.: Analyzing statistics with background knowledge from
linked open data. In: Proceedings of the 1st International Workshop on Semantic
Statistics (SemStats-2013). CEUR workshop proceedings, Sydney, Australia (2013)

20. Stecher, J., Janssen, F., Fürnkranz, J.: Separating rule refinement and rule selection
heuristics in inductive rule learning. In: Calders, T., Esposito, F., Hüllermeier, E.,
Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8726, pp. 114–129. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44845-8 8

21. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg
concept lattices with Titanic. Data Knowl. Eng. 42(2), 189–222 (2002)

22. Webb, G.I.: Further experimental evidence against the utility of Occam’s Razor.
J. Artif. Intell. Res. 4, 397–417 (1996)

23. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht-Boston
(1982)

24. Zaki, M.J., Hsiao, C.J.: CHARM: an efficient algorithm for closed itemset mining.
In: Grossman, R.L., Han, J., Kumar, V., Mannila, H., Motwani, R. (eds.) Proceed-
ings of the 2nd SIAM International Conference on Data Mining (SDM-02), pp.
457–473. Arlington, VA (2002)

http://dx.doi.org/10.1007/978-3-540-71701-0_61
http://dx.doi.org/10.1007/978-3-662-44845-8_8

Exploiting Spatial Correlation of Spectral
Signature for Training Data Selection
in Hyperspectral Image Classification

Annalisa Appice1,2(B) and Pietro Guccione3

1 Dipartimento di Informatica, Università Degli Studi di Bari Aldo Moro,
via Orabona, 4, 70126 Bari, Italy

annalisa.appice@uniba.it
2 Consorzio Interuniversitario Nazionale per l’Informatica - CINI, Bari, Italy
3 Dipartimento di Ingegneria Elettrica ed Informazione, Politecnico di Bari,

via Orabona, 4, 70125 Bari, Italy
guccione@poliba.it

Abstract. Supervised classification is commonly used to produce a the-
matic map from hyperspectral data. A classifier is learned from training
pixels and used to assign a known class (theme) to each pixel (imagery
data example). However, supervised classification requires a sufficient
number of representative training samples to be accurate. These samples
are usually selected by expert visual inspection or field survey. Conse-
quently, collecting representative samples is a very challenging task due
to the high cost of true sample selecting and labeling. This paper intro-
duces an unsupervised learning schema, where the most suitable pixels
to train the classifier are selected via image segmentation. This reduces
the expert effort required for choosing training samples. In our proposal,
clustering is performed by accounting for the property of spatial correla-
tion of pixel-level spectral information, so that thematic objects can be
retrieved via unsupervised learning and representative training data can
be sampled throughout clusters. Experimental results highlight that the
pixel classification accuracy outperforms the results of a random selec-
tion scheme.

1 Introduction

Remote sensing is attracting growing interest in applications such as urban plan-
ning, agriculture, forestry and monitoring [1]. Recent advances in hyperspectral
imaging technology allow nowadays the simultaneous measurement of hundreds
of spectral bands for each image pixel. This high spectral resolution increases the
possibility of more accurate classification of materials of interest in the spectral
domain. In this scenario, hyperspectral image classification can be performed, in
order to produce thematic maps from hyperspectral data.

A thematic map represents the Earth’s surface objects. Its construction
implies that themes or categories, selected for the map, are distinguished in the
remotely sensed image. Classification assigns a known class (theme) to each pixel
c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 295–309, 2016.
DOI: 10.1007/978-3-319-46307-0 19

296 A. Appice and P. Guccione

(imagery data example). Every pixel is expressed with a vector space model that
represents the spectral signature as a vector of numeric features (namely spectral
features) and is also associated with a specific position in a uniform grid, which
describes the spatial arrangement of the scene. It is assigned a certain (possibly
unknown) spectral response, i.e. class label.

The automatic classification of hyperspectral data is not a trivial task. It is
made complex by the high cost of true sample labeling coupled with the high
number of spectral features. The human-supervised effort needed to collect only
few labeled imagery pixels, properly distributed among the classes, makes the
definition of the proper training set for learning an imagery classifier still an
open challenge [19]. On the other hand, the low number of collected ground
truth labels, compared to the high number of spectral features (also known as
Hughes’s phenomenon [11]), is not always sufficient for a reliable estimate of the
classifier parameters.

In the last decades, Support Vector Machines (SVMs) have been widely
investigated in hyperspectral classification, in order to deal with Hughes’s phe-
nomenon. In fact, they address large feature spaces and produce solutions from
sparsely labeled data [15]. In alternative, dimensionality reduction techniques
have been adopted, in order to mitigate Hughes’s phenomenon as the dimension-
ality of the spectral data is high [23]. In any case, in these studies, training pixels
are still picked randomly over the remotely sensed data. Therefore, they can lie
in non interesting areas and consequently some classes can be missed. Even
the most recent studies, that investigate active learning in hypersectral classi-
fication (e.g. [17,18]), start learning from an initial pool of randomly selected,
initial training samples. However, from the classifier point of view, the most rep-
resentative samples should be smartly identified and labeled by the expert, in
order to construct training set where all classes are appropriately represented.
At the same time, the expert action is expected to be minimized in the labeling
of the training samples.

To the best of our knowledge, the problem of automatically and smartly
selecting optimal training samples for learning an accurate classifier has attracted
a few attention in remotely sensed imaging literature. Rajadell et al. [20] have
recently authored a seminal study in this field. This study presents an unsu-
pervised learning scheme, namely clustering, to sample the representative pix-
els, that are manually labeled from the expert and used to learn the classi-
fier. A clustering model is constructed on the spectral signature of a remotely
sensed image as a means to identify the imagery pixels that potentially belong to
the same (unknown) theme. By accounting for the discovered clustering model,
training pixels can be selected to be properly distributed among clusters. Under
the hypothesis that the clustering model is accurate (i.e. every cluster actually
groups pixels belonging to the same (unknown) theme), selecting training pix-
els throughout clusters may contribute to properly distribute training sample
among the various thematic objects hidden in the remotely sensed data.

In this paper, we advance on this idea by leveraging the power of the expected
spatial correlation of the spectral signature, in order to improve the clustering

Exploiting Spatial Correlation of Spectral Signature 297

accuracy and, consequently, the ability of selecting properly distributed, suitable
training pixels. In particular, we propose to accommodate the spatial autocor-
relation of the spectral signature into the clustering process as, in this way,
new accuracy can be gained when detecting thematic objects over the remotely
sensed data.

The paper is organized as follows. The next section illustrates the motivations
and contributions of this study. Section 3 introduces basic concepts of this study,
while Sect. 4 illustrates the proposed unsupervised learning scheme. Section 5
describes the data sets, the experimental setup and reports the results. Finally,
in Sect. 6 some conclusions are drawn and future work is outlined.

2 Motivations and Contributions

The spatial correlation of the spectral signature refers to the relation (or depen-
dence) between spectral signatures of pixels due to their spatial proximity. Intu-
itively, spatial correlation means that the features for a specific pair of points
are more (less) similar than would be expected for a random pair of points [12].
In the case of hyperspectral images of geographical areas, spatial correlation
exists in the positive form, as there is a slowly progressive spatial variation in
the spectral signature [13]. This means that by picturing the spatial variation
of the observed features in a map, we may observe regions where the distrib-
ution of values is smoothly continuous, with some boundaries possibly marked
by sharp discontinuities. These discontinuities are due to the bounds of the the-
matic objects. The analysis of the property of spatial correlation of spectral data
poses specific issues.

One issue is that most of the models that represent and learn data with
spatial autocorrelation are based on the assumption of spatial stationarity. This
means that possible significant variabilities in correlation dependencies through-
out the sensed space are overlooked. The variability could be caused by a dif-
ferent underlying latent structure of the space, which varies among its portions
in terms of scale of values or density of measures. As pointed out by [2], when
correlation varies significantly throughout space, it may be more accurate to
model the dependencies locally rather than globally.

Another issue is that the spatial correlation analysis is frequently decou-
pled from the multivariate analysis. In this case, a learning process accounts for
the spatial correlation of univariate data, while dealing with distinct variables
separately. Ignoring complex interactions among multiple variables may over-
look interesting insights into the correlation of potentially related variables at
any site [4]. Based upon this idea, a multivariate view of the concept of spatial
correlation is presented in [3]. For each variable, the spatial dependence of the
measured univariate data is computed as the variance of the local indicator of
the spatial correlation. Hence, the multivariate analysis is performed by explor-
ing the mean of the variance of the local spatial correlation computed on the
separate variables.

In this paper, we develop an approach to modeling non stationary spatial
correlation of hyperspectral data by using partition-based clustering techniques.

298 A. Appice and P. Guccione

Clusters of pixels that share a similar spectral signature at nearby locations
are identified. During clustering, the spatial correlation is coupled with a mul-
tivariate analysis by accounting for the spatial dependence of data and their
multivariate dissimilarity, simultaneously [8]. This is done by minimizing a clus-
ter cost function of the local indicators of the spatial correlation computed for
hyperspectral data of pixels partitioned in the same cluster. Finally, training
pixels are sampled to be properly distributed among these clusters.

The specific contributions in this paper are:

1. the investigation of the property of spatial autocorrelation in the hyperspec-
tral signature of remotely sensed data;

2. the development of an unsupervised example selection schema that accom-
modates a local indicator of the spatial autocorrelation property of spectral
signature into the clustering process as, in this way, more representative train-
ing examples can be chosen throughout the detected clusters to be manually
labeled for supervised classification.

3 Basic Concepts

Introductory concepts of this study include hyperspectral data, local indicators
of spatial autocorrelation and partition-based clustering.

3.1 Hyperspectral Data

Let D be a hyperspectral imagery dataset, that is, a set of pixels (examples).
Every pixel represents a region of around a few square meters of the Earth’s
surface (i.e. it is a function of the sensor’s spatial resolution). It is associated
with the spatial coordinates XY , as well as with the m-dimensional vector of
spectral features S = S1, S2, . . . , Sm. Every spectral feature Si is a numeric
feature that expresses how much radiation is reflected, on average, across the
pixel region, at the i-th band of the considered spectral profile. Pixels of D are
labeled according to an unknown target function, whose range is a finite set of
classes C = {C1, C2, . . . , Ck}. Every class Ci represents a distinct theme (i.e.
type of Earth’s surface). In general, pixels are equally distributed in space over
a regular grid, so that a hyperspectral dataset can be represented by a matrix.
Thus, the spatial coordinate X is associated with the row index, while the spatial
coordinate Y is associated with the column index of the matrix. Based on this
premise, let p(x, y) be a pixel located at the (x, y) row-column position of the
imagery matrix. A spatial neighborhood is a set of pixels q (task-relevant pixels)
surrounding p (target pixel) in the matrix. In the imagery analysis literature,
spatial neighborhoods frequently have a square shape [19], although alternative
shapes like a circle or a cross can be also considered. Formally, let R be a positive,
integer-valued radius, the square-shaped spatial neighborhood N (p,R) of pixel
p is the set of imagery pixels q(x + I, y + J), so that −R ≤ I, J ≤ +R.

Exploiting Spatial Correlation of Spectral Signature 299

3.2 Local Indicators of Spatial Autocorrelation

Local indicators look for “local patterns” of spatial dependence within the study
region (see [5] for a survey). They return one value for each sampled location of a
variable; this value expresses the degree to which that location is part of a spatial
cluster. Widely speaking, a local indicator of spatial autocorrelation allows us
to discover deviations from global patterns of spatial association, as well as
hot spots like local clusters or local outliers. Several local indicators of spatial
autocorrelation are formulated in the literature. In particular, the standardized
Getis and Ord local GI∗ [10] is a local indicator of spatial autocorrelation, which
has gained wide acceptance in the literature coupled with the cluster analysis
[3,10]. It is formulated as follows:

GI∗(i) =
1√√√√√ S2

n−1

⎛
⎝n

n∑
j=1,j �=i

λ(ij)2 − Λ(i)2

⎞
⎠

⎛
⎝

n∑
j=1,j �=i

λijz(j) − z Λ(i)

⎞
⎠, (1)

where λ(ij) is a spatial (Gaussian or bi-square) weight between the locations

of i and j, Λ(i) =
n∑

j=1,j �=i

λ(ij) and S2 =

n∑
j=1

(z(j) − z)2

n . A positive value for

GI∗(i) indicates clusters of high values around i, while a negative value for
GI∗(i) indicates clusters of low values around i.

3.3 Partition-Based Clustering

A partition-based clustering algorithm can be considered, in order to partition n
imagery pixels around k representative medoids (i.e. representative pixels of the
image). These medoids are selected so that total dissimilarity of all pixels to their
nearest medoid is minimal. As a partition-based algorithm, we consider PAM
(Partitioning Around Medioids, see [21,24] for details). Our choice is motivated
by the fact that it accepts dissimilarity data (i.e. a dissimilarity matrix collecting
the dissimilarities computed between each pair of pixels), which are the sole
required data input to determine the clusters. It uses a greedy search which
may not find the optimum solution, but it is faster than exhaustive search. It is
robust to the presence of noise and outliers. It includes an algorithm to select
initial medoids. Therefore, unlike partition-based clustering algorithms (such as
k-means and k-medoids), PAM doe not need initial random guesses for the cluster
centers, at the cost of a mild additional complexity [16].

More specifically, the considered algorithm inputs: an integer k, that is, the
number of clusters to discover and a |n| × |n| dissimilarity matrix D, where
diss(pi, pj) = diss(pj , pi) measures the “difference” or dissimilarity between pixels
pi ∈ D and pj ∈ D. It outputs a clustering pattern P(C), that is, a set of

300 A. Appice and P. Guccione

k clusters C1, C2, . . . , Ck, such that: ∅ /∈ P(C),
⋃

Ci∈P(C)
Ci = D and ∀ Ci, Cj ∈

P(C),with i �= j, then Ci ∩ Cj = ∅.
In particular, PAM can be used to partition the geo-located pixels D around

a subset of medoid pixels M = {m1, . . . ,mk} ⊂ {p1, p2, . . . , pn} = D, which
minimize the objective function:

n∑
i=1

min
�=1,2,...,k

diss(pi,m�). (2)

The search for the medoid set M takes the form of the steepest ascent hill
climber, beginning with a deterministic building phase in which a “reasonable”
initial set of k medoids is constructed. In each iteration of the subsequent swap
phase, PAM attempts to improve the set of selected medoids and, therefore, to
increase the quality of the clustering. This is done by selecting pairs (pi,mj) ∈
(D − M) × M that produce the best decrease in the objective function when
their roles are switched. Each pi ∈ D is assigned to the cluster corresponding to
the nearest medoid ml ∈ M.

4 Learning Process

We describe a two-phased learning process (see Fig. 1) that comprises a spatial-
aware unsupervised phase (clustering) and a supervised phase (classification).
The entire process inputs the unclassified hyperspectral image D, the number of
expected classes k and the percentage p% of imagery pixels of D to be manually
labeled by the expert for the inductive process. The dataset D is the set on n
pixels. For each pixel, both the spatial coordinates XY and the spectral signature
S are known (see details in Sect. 3.1); the class C is unknown. The process
outputs a classified map of the entire image, where each imagery pixel is assigned
to a specific class of the class set C.

Initially, the unsupervised phase is performed, in order to identify a few
representative training samples, which are manually labeled by the expert. It is
four-stepped:

1. For every imagery pixel pi ∈ D, for every spectral attribute Sh ∈ S,
the local standardized Getin and Ord indicator of spatial autocorrelation,
namely GI∗(pi, Sh), is computed according to Formula 1 (see the definition
in Sect. 3.2). To explore the spatial autocorrelation structure of the spectral
signatures, we consider square neighborhoods with radius R (see the definition
in Sect. 3.1) and define the spatial weights λij (see Formula 1) as follows:

λij =

{
1

d(pi,pj)
if pj ∈ N (pi, R)

0 otherwise
, (3)

where d(pi, pj) is the Euclidean distance computed between spatial coordi-
nates of imagery pixels pi and pj (see details in Sect. 3.1). We note that this

Exploiting Spatial Correlation of Spectral Signature 301

Fig. 1. Two-phased learning schema: unsupervised phase (clustering) to identify rep-
resentative training samples, which are manually labeled by the expert, and supervised
phase (classification) to learn a classifier, which is used to automatically label the
imagery pixels.

weighting schema, that is commonly used in spatial data mining, is coherent
with the Tobler’s first Law of Geography [25] as it contributes to consider the
near neighbors more autocorrelated than the distant ones.

2. For every pair of pixels (pi, pj), the dissimilarity diss(pi, Pj , GI∗) is computed
as the Eucludean distance between the local indicator of the spatial autocor-
relation of the spectral signatures associated to both pi and pj , respectively.
Formally

diss(pi, pj , GI∗) =
∑

Sh∈S

(GI∗(pi, Sh) − GI∗(pj , Sh))2 (4)

We note that, in this way, we are able to construct the n × n spatial-aware
dissimilarity matrix DGI∗ , where DGI∗(i, j) = diss(pi, pj , GI∗).

3. The PAM algorithm (see details in Sect. 3.3) processes the spatial-aware dis-
similarity matrix DGI∗ , in order to group n imagery pixels of D into k clus-
ters P(C) = {C1, C2, . . . , Ck}. As the clustering phase is performed on the
local indicators of the spatial autocorrelation of the spectral signature of the
imagery pixels in D, it reasonable that the detected clusters would group
pixels exhibiting similar signatures at close locations.1

4. For each detected cluster Ci ∈ P(C), p% of the imagery pixels clustered in
Ci are randomly sampled. These pixels are manually labeled by the expert,
that assigns each sampled pixel pi ∈ sample(Ci, p%) to one class of Ci ∈ C.
Therefore, this operation allows us to construct the labeled training set L ⊆
D =

⋃
Ci∈P(C)

randomSample(Ci, p%), that is spanned on S×C. The unlabeled

set is U = D − L, that is spanned on S.

1 This expected property of the presented clustering procedure is, empirically, inves-
tigated in Sect. 5.2 of this study.

302 A. Appice and P. Guccione

Subsequently, the supervised phase is performed, in order to learn a classifier,
which is used to automatically classify the remaining unlabeled imagery pixels.
It is two-stepped:

1. A multi-class classifier is learned via inductive learning from L.
2. For each unlabeled pixel pi ∈ U , the learned classifier is used to automatically

assign a class to pi.

In this way, the classification map of the entire image can be, finally, con-
structed via an intelligent selection of a few representative examples for manual
labeling and their use in the induction of an accurate classifier, that can be used
to derive an automatic classification of the remaining pixels.

5 Empirical Study

The presented learning process is evaluated by considering two benchmark
hyperspectral images, namely Indian Pines and Pavia University (http://www.
grss-ieee.org/community/technical-committees/data-fusion/data-sets/). These
data sets are selected for the following reasons: (1) They have a high spatial
resolution. (2) They contain rich spectral information (100–200 bands) and a
high number of classes (9–16 classes). (3) They correspond to different scenarios.
(4) Ground truths are available for these data. Additionally, they are considered
benchmark data in hyperspectral image classification (e.g. [19]).

The empirical study is performed, in order to seek answers to the following
questions:

1. Is clustering performed by accounting for the dissimilarity defined on the local
spatial autocorrelation of the spectral signature more accurate than clustering
performed by accounting for the dissimilarity defined on the spectral signature
(see Sect. 5.2)?

2. How does the accuracy of the classification change by deciding to sample
training pixels randomly throughout the imagery clusters rather than ran-
domly throughout the full image (see Sect. 5.3)?

Before we proceed to present the empirical results (see Subsects. 5.2 and 5.3),
we provide a description of the datasets used (see Subsect. 5.1).

5.1 Hyperspectral Data

AVIRIS Indian Pines was obtained by the Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) sensor over the Indian Pines region in Northwestern Indi-
ana in 1992. The image contains 220 spectral bands, but 20 spectral bands have
been removed due to the noise and water absorption phenomena. The spatial res-
olution is of 20 m and the spatial size is of 145 ×145 pixels, which are classified into
16 mutually exclusive classes (see Fig. 2(a)). This data set represents a very chal-
lenging land-cover classification scenario, in which the primary crops of the area
(mainly corn and soybeans) were very early in their growth cycle, with only about

http://www.grss-ieee.org/community/technical-committees/data-fusion/data-sets/
http://www.grss-ieee.org/community/technical-committees/data-fusion/data-sets/

Exploiting Spatial Correlation of Spectral Signature 303

5 % canopy cover [19]. Discriminating among the major crops under these circum-
stances can be a very difficult task. This scenario is also made more complex by
the imbalanced number of available labeled pixels per class.

ROSIS Pavia University was obtained by the Reflective Optics System Imaging
Spectrometer (ROSIS) sensor during a flight campaign over the Engineering
School at the University of Pavia, in 2003. Water absorption bands were removed,
and the original 115 bands were reduced to 103 bands. It has a spatial resolution
of 1.3 m. The image has a spatial size of 610 × 340 pixels, which are classified
into 9 classes (see Fig. 2(d)).

Indian Pines

(a) Ground truth (b) PAM+GI* (c) PAM

Pavia University

(d) Ground truth (e) PAM+GI* (f) PAM

Fig. 2. The AVIRIS data of Indian Pines and the ROSIS data of Pavia University:
ground truths ((a) and (d)), clusters detected by PAM+GI* ((b) and (e)) and clusters
detected by PAM ((c) and (f)). Clusters are detected with number of clusters k equal
to the actual number of distinct classes in the ground truths of the image (i.e. k = 16
for Indian Pinese and k = 9 for Pavia University).

5.2 Clustering Performance Analysis

We compare the quality of clusters discovered by the spatial clustering (denoted
as PAM + GI*) described in Sect. 4 and dealing with the property of spatial
autocorrelation with the quality of clusters discovered by the baseline, tradi-
tional clustering (denoted as PAM) performed by neglecting the spatial autocor-
relation. In this study, for each pixel p, for each spectral attribute S, the local

304 A. Appice and P. Guccione

standardized Getis and Ord indicator GI∗(p, S) is computed on the square-
shaped spatial neighborhood N (p,R) with R = 5. On the other hand, the com-
petitor PAM processes dissimilarity data that represent the Euclidean distance
straightly computed between the imagery spectral signatures.

The quality of clusters is measured in terms of clustering purity [14]. This
metric is computed by assigning each cluster to the class that is most frequent in
the cluster, and then the accuracy of this assignment is measured by counting the
number of correctly assigned pixels and dividing by number of imagery pixels.
Purity is measured in the range [0,1]. The higher the purity, the more accurate
the clustering model.

The clustering model is discovered by ranging the number of detected clusters
between k, k−1 and k+1 with k the number of actual classes in the ground truths
of the image. Purity results are reported in Table 1. Collected results confirm the
effectiveness of the spatial-aware methodology, presented in this study, which
accounts for the local spatial autocorrelation of the spectral signatures when
clustering the imagery pixels. In particular, the purity of the clusters detected
by PAM+GI* is, in general, greater than the purity of the clusters detected by
PAM. This result is confirmed by the spatial distribution of the clustered pixels.
In particular, we analyze the clustering maps built by both PAM+GI* (see
Figs. 2(b) and (e)) and PAM (see Figures Figs. 2(c) and (f)) when the detected
number of cluster is equal to the actual number of classes (k = 16 for Indian Pines
and k = 9 for Pavia University) in the dataset. These maps show that PAM+GI*
can, effectively, take advantage of the presented spatial-aware methodology. It
gains accuracy when discriminating objects of interest on the map, by reducing
visibly the salt-and-pepper distribution of the clustered pixels throughout the
image.

Table 1. Clustering analysis (AVIRIS data of Indian Pines and ROSIS data of Pavia
University): purity of clusters discovered by PAM+GI* and PAM (baseline) by varying
the number of detected clusters between k − 1, k (actual number of distinct classes in
the ground truths of the image) and k + 1 with k = 16 for Indian Pines and k = 9 for
Pavia University. The highest purity is in bold.

Algorithm Indian Pines Pavia University

k-1 k k+1 k-1 k k+1

PAM+GI* 0.596 0.583 0.590 0.707 0.753 0.755

PAM 0.536 0.568 0.554 0.747 0.744 0.730

5.3 Classification Performance Analysis

We compare the performance of the classifier induced with the cluster-based
construction of the training set to the performance of the classifier induced with
the baseline random-based construction of the training set. For the cluster-based
construction of the training set, we consider the imagery clusters discovered by

Exploiting Spatial Correlation of Spectral Signature 305

PAM+GI* with k (number of clusters) equal to the number of real classes in
the considered dataset. We randomly select p% representative training pixels
throughout the discovered clusters (see details in Sect. 4). Differently, for the
random-based construction of the training set, we randomly select p% represen-
tative training pixels throughout the entire image (this corresponds to consider
all imagery pixels grouped in a single cluster).

We perform this analysis by generating training labeled sets with p% vary-
ing among 2.5 %, 5 %, 10 % and 20 %. Ten training trials have been generated
with both the cluster-based approach and the random-based approach for each
value p%. For each trial, the classification step is performed by resorting to the
inductive Support Vector Machine (SVM) [7]. This choice is motivated by several
studies reported in the literature (e.g. [6,9,19]), which show that inductive SVMs
are applied to hyperspectral image classification with great success, outperform-
ing several other inductive classifiers. As the hyperspectral classification problem
is a multi-class problem, we learn multi-class SVMs with the “one-against-all”
strategy. SVMs are learned with the Gaussian kernel rule, while parameters are
optimally selected according to a grid-search method and a three-fold cross val-
idation of the labeled set.

Table 2. Classification analysis (AVIRIS data of Indian Pines and ROSIS data of
Pavia University): average accuracy (AA), overall accuracy (OA) and Cohen’s kappa
coefficient κ (mean ± standard deviation) of multi-class SVMs learned by considering
the 2.5 %, 5 %, 10 % and 20 % of the ground truth as the labeled set of the inductive
phase. Representative training samples are generated for 10 trials by resorting to both
the random-based approach (RANDOM) and the cluster-based approach (PAM+GI*).
Accuracy metrics are computed on the unlabeled part of each trial. The highest accu-
racy is in bold.

Labeled set% Indian Pines Pavia Univerisity

RANDOM PAM+GI* RANDOM PAM+GI*

AA 2.5 % .5103± 0185 .5901± .0187 .8473± .0213 .8590± .0144

5 % .6119± .0178 .6831± .0120 .8778± .0030 .8834± .0065

10 % .7124± .1400 .7942± .0218 .8866± .0040 .8979± .0011

20 % .8163± .0100 .8527± .0084 .8942± .0019 .9024± .0045

OA 2.5 % .6361± .0097 .6956± .0079 .8843± .0077 .9010± .032

5 % .7190± .0189 .7621± .0066 .9072± .0046 .9154± .0010

10 % .8062± .0051 .8218± .0043 .9159± .0028 .9241± .0010

20 % .8573± .0032 .8671± .0019 .9254± .0023 .9306± .0017

κ 2.5 % .6108± .0261 .6377± .0144 .8452± .0110 .8676± .0042

5 % .6775± .0213 .7271± .0078 .8759± .0063 .8871± .0014

10 % .7844± .0088 .7878± .0099 .8877± .0037 .8988± .0014

20 % .8370± .0036 .8482± .0022 .8984± .0009 .9076± .0023

306 A. Appice and P. Guccione

The classification performance is evaluated in terms of accuracy of the subse-
quent classification process. The accuracy of the classification phase is measured
in terms of overall accuracy (OA), average accuracy (AA) and Cohen’s kappa
coefficient (κ) [22] computed on the unlabeled part. The metrics are averaged on
the various trials and standard deviation is computed. These metrics are selected
as they are, usually, considered by the hyperspectral image classification com-
munity. For each accuracy metric (OA, AA, as well as κ), the higher the metric,
the more accurate the classifier. In particular, these metrics are defined in terms
of elements xij of the error matrix associated to the classified imagery pixels.
Each element xij denotes the number of imagery pixels with ground truth cj ,
which are labeled with class ci. C is the number of distinct classes in the image.
Let us consider xi =

∑
i

xii, xi+ =
∑

j

xij , x+j =
∑

i

xij and N =
∑

i

∑
j

xij .

Then, OA = xi

N AA = 1
C

∑
i

xii

X+i
κ =

Nxi −
∑

i

xi+x+i

N2 − ∑
i xi+x+i

.

Accuracy results are reported in Table 2 for all values of p%, while the
classification maps constructed in one trial with p% = 10% are shown in
Figs. 3(b) and (c) for Indian Pines and Figs. 3(e) and (f) for Pavia University.
Collected results highlight that the classification accuracy achieved by using the
spatial-aware cluster-based selection approach, in order to smartly sample the

Indian Pines

(a) Ground truth (b) Cluster sampling (c) Random sampling

Pavia University

(d) Ground truth (e) Cluster sampling (f) Random sampling

Fig. 3. The AVIRIS data of Indian Pines and the ROSIS data of Pavia University:
ground truths ((a) and (d)), classification maps computed with the cluster-based strat-
egy ((b) and (e)) and random-base strategy ((c) and (f)).Classification maps are con-
structed with training sets collecting p% = 10% of imagery pixels).

Exploiting Spatial Correlation of Spectral Signature 307

representative training samples outperforms the accuracy of classifiers learned
from fully random sampled labeled sets. This accuracy performance can be
observed independently on the labeled set size, although the ability of smartly
selecting representative samples for labeling contributes to achieve the higher
classification performance in the most critical cases, i.e. when fewer samples are
labeled by the expert for the inductive process. This is confirmed by the analysis
of the ratio of the AA of the classifier computed with the cluster-based app-
roach on the AA of the classifier computed with the random-based approach
(see Fig. 4(a) for Indian Pines and Fig. 4(b) for Pavia University). We note that
the lower the size of the labeled set (i.e. 2.5 % sampled examples for training),
the higher the ratio (i.e. the accuracy improvement).

(a) Indian Pines (b) Pavia University

Fig. 4. The AVIRIS data of Indian Pines and the ROSIS data of Pavia University: the
ratio (Y axis) of the AA of the classifier computed with the cluster-based approach
on the AA of the classifier computed with the random-based approach by varying the
labeled set size (X axis).

6 Conclusion

This paper addresses the challenging problem of smartly sampling the optimal
representative training pixels of an hyperspectral image. Sampled pixels are man-
ually labeled by the expert and processed via an inductive learning process, in
order to automatically derive accurate classifications of unlabeled pixels in the
image. We describe a learning approach that, novelly, accounts for the property
of spatial autocorrelation of the spectral data, in order to sample the repre-
sentative training samples. In particular, we propose to resort to unsupervised
learning, namely clustering, in order to detect the thematic objects of a map.
Representative training pixels are then sampled throughout the discovered clus-
ters/objects, in order to avoid missing classes in the training set. To improve the
quality of the discovered thematic objects, clusters are computed by considering
the local indicators of the spatial autocorrelation (i.e. stardardized Getis and
Ord) of the spectral data. This allows us the detect clusters of pixels, which
exhibit similar spectral signature at near locations, that is, a plausible charac-
terization of thematic objects. The empirical study proves that the consideration
of the spatial autocorrelation improves the accuracy of detected clusters and, in
general, the presented sampling methodology outperforms the traditional ran-
dom sampling methodology, which is, commonly, adopted in the hyperspectral

308 A. Appice and P. Guccione

image classification literature. Some directions for further work are still to be
explored. Choosing the correct number of classes(/clusters) to be considered dur-
ing the unsupervised learning phase is an open problem. In the present study,
we have assumed that the number of classes is known apriori. Estimating this
number in an unsupervised setting requires further investigations. In addition,
the smart selection of examples for labeling is a crucial step of active learning,
where this selection is repeated during the iterative process. We can explore new
active learning algorithms that apply a combination of clustering and local indi-
cators of the spatial correlation of the spectral signature, in order to determine
representative examples for the active labeling. On the other hand, it would be
interesting to investigate the use some big data technologies (e.g. MapReduce)
in the design of the proposed algorithm, in order to be able to evaluate the per-
formances when large volume of hypersepctral data are processed via specific
parallel processing architectures.

Acknowledgments. Authors thank Giuseppe Lorusso for his support in developing
the algorithm presented. This work is carried out in partial fulfillment of the research
objectives of the European project “MAESTRA - Learning from Massive, Incompletely
annotated, and Structured Data (Grant number ICT-2013-612944)” funded by the
European Commission, as well as the ATENEO 2012 project “Mining Complex Pat-
terns” and the ATENEO 2014 project “Mining of network data” funded by University
of Bari “Aldo Moro”.

References

1. Ablin, R., Sulochana, C.: A survey of hyperspectral image classification in remote
sensing. Int. J. Adv. Res. Comput. Commun. Eng. 2(8), 2986–3000 (2013)

2. Angin, P., Neville, J.: A shrinkage approach for modeling non-stationary relational
autocorrelation. In: Proceedings of 8th IEEE International Conference on Data
Mining, pp. 707–712. IEEE Computer Society (2008)

3. Appice, A., Malerba, D.: Leveraging the power of local spatial autocorrelation in
geophysical interpolative clustering. Data Min. Knowl. Discov. 28(5–6), 1266–1313
(2014)

4. Bailey, T., Krzanowski, W.: An overview of approaches to the analysis and mod-
elling of multivariate geostatistical data. Math. Geosci. 44(4), 381–393 (2012).
http://dx.doi.org/10.1007/s11004-011-9360-7

5. Boots, B.: Local measures of spatial association. Ecoscience 9(2), 168–176 (2002)
6. Chen, C., Li, W., Su, H., Liu, K.: Spectral-spatial classification of hyperspectral

image based on kernel extreme learning machine. Remote Sens. 6(6), 5795–5814
(2014)

7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

8. Dray, S., Jombart, T.: Revisiting guerry’s data: introducing spatial constraints in
multivariate analysis. Ann. Appl. Stat. 5(4), 2278–2299 (2011)

9. Fauvel, M., Tarabalka, Y., Benediktsson, J., Chanussot, J., Tilton, J.: Advances in
spectral-spatial classification of hyperspectral images. Proc. IEEE 101(3), 652–675
(2013)

http://dx.doi.org/10.1007/s11004-011-9360-7

Exploiting Spatial Correlation of Spectral Signature 309

10. Getis, A., Ord, J.K.: The analysis of spatial association by use of distance statistics.
Geogr. Anal. 24(3), 189–206 (1992)

11. Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans.
Inf. Theor. 14(1), 55–63 (1968)

12. Legendre, P.: Spatial autocorrelation: trouble or new paradigm? Ecology 74(6),
1659–1673 (1993)

13. Li, M., Zang, S., Zhang, B., Li, S., Wu, C.: A review of remote sensing image
classification techniques: the role of spatio-contextual information. Eur. J. Remote
Sens. 47, 389–411 (2014)

14. Manning, C., Raghavan, P., Schutze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

15. Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images
with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790
(2004)

16. Mondal, B., Choudhury, J.: A comparative study on k means and pam algorithm
using physical characters of different varieties of mango in india. Int. J. Comput.
Appl. 5(78), 21–24 (2013)

17. Pasolli, E., Melgani, F., Tuia, D., Pacifici, F., Emery, W.J.: SVM active learning
approach for image classification using spatial information. IEEE Trans. Geosci.
Remote Sens. 52(4), 2217–2233 (2014)

18. Pasolli, E., Yang, H.L., Crawford, M.M.: Active-metric learning for classification of
remotely sensed hyperspectral images. IEEE Trans. Geosci. Remote Sens. 54(4),
1925–1939 (2016)

19. Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-
Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M.,
Tilton, J.C., Trianni, G.: Recent advances in techniques for hyperspectral image
processing. Remote Sens. Environ. 113(Supplement 1(0)), S110–S122 (2009)

20. Rajadell, O., Garcia-Sevilla, P., Dinh, V.C., Duin, R.P.W.: Semi-supervised hyper-
spectral pixel classification using interactive labeling. In: 2011 3rd Workshop on
Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHIS-
PERS), pp. 1–4 (2011)

21. Reynolds, A., Richards, G., de la Iglesia, B., Rayward-Smith, V.: Clustering rules: a
comparison of partitioning and hierarchical clustering algorithms. J. Math. Modell.
Algorithms 5(4), 475–504 (2006)

22. Richards, J.A.: Remote Sensing Digital Image Analysis: An Introduction, 2nd edn.
Springer, New York (1993)

23. Stearns, S.D., Wilson, B.E., Peterson, J.R.: Dimensionality reduction by optimal
band selection for pixel classification of hyperspectral imagery. In: Proceedings of
the SPIE, Applications of Digital Image Processing XVI, vol. 2028, pp.118–127
(1993)

24. Struyf, A., Hubert, M., Rousseeuw, P.: Clustering in an object-oriented environ-
ment. J. Stat. Softw. 1(4), 1–30 (1997)

25. Tobler, W.: A computer movie simulating urban growth in the Detroit region.
Econ. Geogr. 46(2), 234–240 (1970)

A Comparison of Different Data Transformation
Approaches in the Feature Ranking Context

Matej Petković1,2(B), Panče Panov1, and Sašo Džeroski1,2,3

1 Jožef Stefan Institute, Jamova Cesta 39, Ljubljana, Slovenia
{matej.petkovic,pance.panov,saso.dzeroski}@ijs.si

2 Jožef Stefan International Postgraduate School,
Jamova Cesta 39, Ljubljana, Slovenia

3 CIPKeBiP, Jamova Cesta 39, Ljubljana, Slovenia

Abstract. Due to the omnipresence of high-dimensional datasets, fea-
ture selection and ranking are very important steps in data preprocessing.
In this work, we propose three transformations for real-valued features.
The transformations are based on estimating the probability densities
of the features. Originally, we propose modified distance measures for
the ReliefF algorithm, which is one the most prominent feature ranking
algorithms. To enable their comparison with the other feature ranking
algorithms, we present data transformations that are mathematically
equivalent to the modified distance measures. Finally, we evaluate our
proposed transformations used in combination with several feature rank-
ing methods on a set of benchmark datasets.

1 Introduction

In predictive modeling, we frequently encounter high-dimensional problems. One
approach for dealing with the high-dimensional input space of a dataset S, is
to perform feature selection. First, we find the subset F of those features that
influence the target the most. Then, a predictive model is built from the filtered
dataset, using only the features from the set F . Another case when feature selec-
tion comes in handy is when a machine learning expert works in collaboration
with a domain expert: Predictive models such as decision trees, are easier to
understand and interpret when a small number of features is used.

Due to the omnipresence of high-dimensional datasets, there is a plethora
of methods for feature selection, including filter, wrapper and embedded meth-
ods [3]. Some of these methods directly select a feature subset, while others,
called filter methods, sort the features with respect to some relevance mea-
sure, i.e., compute a feature ranking, and then select a set of top-ranked fea-
tures [21]. The filter methods are usually the simplest and the fastest, since
they directly evaluate the relevance of each feature. In addition, there is a large
number of methods based on correlation and information theory. These include
Info Gain and ReliefF [15]. Wrapper methods, explore the space of all possible
feature subsets, guided by a classifier’s performance on the current subset of fea-
tures. Finally, in embedded methods, the feature selection is part of the learning
process [21].
c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 310–324, 2016.
DOI: 10.1007/978-3-319-46307-0 20

A Comparison of Different Data Transformation Approaches 311

Each feature selection method can have some limitations. For example, Reli-
efF can have a problem with estimating the relevance of numeric features [15].
Recursive feature elimination via support vector machines [11] can face a prob-
lem when the classes are not well separated, when the models we learn through
the procedure are weak, and the ranking is sub-optimal.

In the context of predictive modelling, it is often advisable to scale or smooth
the data [13] when the features are numeric and take values from different ranges.
Such transformations can boost the performance of the predictive model. In
addition, some probability-distribution-based modifications of a dataset can be
equivalently described as a modification of the distance measure used in the
algorithm itself, as is the case with ReliefF.

We will transform a dataset with two different goals. In the first case, we will
transform the dataset, then apply feature ranking, and finally, build predictive
model using the modified dataset. In the second case, we will transform the
dataset just to obtain a better feature ranking and then proceed to build a
predictive model with the selected features, and using them as they appear in
the original dataset.

In this paper, we compare two known transformations, used by Cao and
Obradovic [7], with a kernel-estimation-based transformation. For the considered
transformations, we investigate whether the first possibility leads to a better
predictive model and whether the second possibility leads to better rankings.
Additionally, we investigate which combination of a feature ranking method and
a data transformation method works the best.

This paper is organized as follows. In Sect. 2, we give a description of the
related work, including the ReliefF algorithm. In Sect. 3, we describe our con-
tributions, i.e., the proposed feature transformations used within ReliefF. In
Sect. 4, the experimental design is fully described. In Sect. 5, the experimental
results are given. Finally, in Sect. 6, we present the conclusions and further work.

2 Background and Related Work

In this section, we give a description of the background that serves as the basis
for our work. First, we describe the notation used throughout the paper and
formalize the feature ranking task. Then, we proceed to the description of the
ReliefF algorithm. Finally, we describe the transformations of the feature space.

2.1 Preliminaries

Notation. In this work, we assume that the elements (data examples or
instances) r = (x, y) ∈ S consist of a descriptive part x and a target value y.
The descriptive part is a vector of n feature values xi, which are either numeric
or nominal. In the first case, the domain of feature xi is a subset of R, whereas
in the latter, xi can take values from an arbitrary finite set. We will use the
notation ri = xi for the input values and ry for the target value. Finally, we
assume a nominal target, i.e., a classification task.

312 M. Petković et al.

Feature ranking. As briefly mentioned in Sect. 1, feature ranking can be seen
as a special case of feature selection. It applies when the dimension n of the
input space is too high for a predictive model to be built, when we want to
discard redundant features, or when understandability of the model is of high
importance.

One way to obtain the subset F of all features X , is to apply a feature ranking
algorithm. The input for a feature ranking algorithm is a dataset S, whereas the
output is the list

R = [xi1 , xi2 , . . . , xin
] (1)

where R is ordered by decreasing relevance of the features xij
. The main part

of such an algorithm is a relevance measure r, which maps features xi to a
relevance score r(xi). After computing the relevance scores for all the features,
we can select only features xij

for 1 ≤ j ≤ k, where k is a predefined number.

2.2 Feature Ranking with ReliefF

The ReliefF algorithm is considered as one of the best feature ranking algorithms.
Its predecessor Relief [14] can handle only binary target variables, while ReliefF
[15] can handle an arbitrary nominal target. In the following, we first give the
motivation which Relief builds upon, and then, a detailed description.

Suppose we are given two instances, r and s, which are near to each other. If
they belong to the same class, the distance between the values ri and si should
also be (relatively) small. Otherwise, feature xi cannot have a large influence
on the target. On the other hand, if r and s belong to different classes and
the distance between ri and si is noticeable, we should consider the feature xi

relevant, since a change in its values is associated to a change in the target.
Another important aspect of Relief(F) is that the differences between the

nearest neighbours are compared. To capture the feature interactions without
explicitly considering all possible pairs of features, one can slightly perturb an
instance and inspect how the feature values change locally. Since the nearest
neighbour of an instance is its slightest known perturbation in a dataset, in
ReliefF we consider the differences between neighbouring pairs.

The distance between the values ri and si is defined as

di(r, s) =

{
1[ri = si] : xi discrete
|ri−si|
Mi−mi

: xi numeric
(2)

where 1 is the indicator function, and Mi and mi are the maximal and minimal
value of xi in the dataset. The nearest neighbours are computed with respect to
the distance d(r, s) =

∑
i di(r, s).

In Algorithm 1, we present the pseudocode of the standard version of ReliefF.
In the pseudocode, given an instance r, other instances are referred to as hits
if they are in the same class as r, and as misses otherwise. The input of the
algorithm consists of a dataset S, a number of iterations J , and a number of
nearest neighbours k. The latter is used to increase the robustness. The output

A Comparison of Different Data Transformation Approaches 313

Algorithm 1. ReliefF(S, J , k) [15]
1: w ← vector of n zeros
2: for j = 1, 2, . . . , J do
3: r ← randomly chosen record from S
4: h1, . . . ,hk ← k nearest hits
5: for all c ∈ Y \{ry} do
6: mc;1, . . . ,mc;k ← k nearest misses of class c
7: end for
8: for i = 1, 2, . . . , m do
9: wi ← wi +

∑
c�=ry

P (c)
1−P (ry)

∑k
�=1 di (mc;�, r) /Jk −∑k

�=1 di (h�, r) /Jk

10: end for
11: end for
12: return w

of the algorithm is a vector of feature weights w. The larger the weight, the
higher the importance of the feature.

2.3 Transformations of the Feature Space

Normalization and z-score. The two most widely used methods for trans-
formation of numeric variables are normalization and z-score. In the case of
normalization, we linearly transform the feature values xi, so that xi ∈ [0, 1]:
xi �→ xi−mi

Mi−mi
, where Mi = maxr∈S ri and mi = minr∈S ri. In the case of z-

score, the feature xi is looked upon as a random variable and is standardized,
so that the new mean E[xi] and the variance Var[xi] equal (approximately)
zero and one respectively: z(xi) = (xi − μi)/σi, where μi = (

∑
r∈S ri)/|S|

and σ2
i = (

∑
r∈S(ri − μi)2)/(|S| − 1) are unbiased estimates for the mean and

the variance of xi. If the number of examples in the dataset is small, the esti-
mated values of mean and variance can considerably differ from the real values,
i.e., the z-scores can be easily affected by outliers. As mentioned by Cao and
Obradovic [7], the same holds for normalization. The second, possibly undesired
property of the new scores, is that their values can be unbounded.

Transformation with CDF. If we want to have bounded values of numeric
features, transforming the feature xi via its cumulative distribution function
(CDF) F is more desirable, since F maps all real numbers onto the interval
[0, 1]: F (t) = P (xi < t) =

∫ t

−∞ f(t)dt. Here, f is the probability density func-
tion (PDF). It is also well known that the random variable F (xi) is distributed
uniformly on the interval [0, 1]. Cao and Obradovic [7] argue that this could lead
to a better predictive model, since the feature values that are originally close to
each other, become more distant after the transformation.

Empirical CDF. The problem in the case of feature transformation with CDF
is that the distribution, hence the CDF of xi, is unknown. To overcome this, the
empirical CDF (ECDF) can be used. This is a step function, defined as

314 M. Petković et al.

F̂ (t) =
∑
r∈S

1[ri ≤ t], (3)

where 1 is the indicator function. Even though ECDF is not a continuous func-
tion, it possesses some favorable properties, since the Glivenko–Cantelli theorem
assures that ECDF converges to CDF uniformly, as the number of observations
grows [6,10]. However, in the case of high dimensional microarray datasets (used
in our experiments later on), the number of data examples can be rather small
and the data can be noisy [3]. Consequently, in this case the ECDF might not
be the best approximation of the CDF.

Sigmoid function. Bowling et al. [5] report that the sigmoid function s(t) =
1/(1 + exp(−t)) can be used as an accurate approximation of the CDF of the
standard normal distribution [5]. Since normality cannot be usually assumed,
Cao and Obradovic [7] allow for a generalized sigmoid function, defined as

sG(t) =
1

ν
√

1 + Q exp(−B(t − M))
. (4)

The low number of the parameters (Q, B, M and ν) prevents overfitting. This
is the reason why fitting the curve (4) is more robust than using the ECDF (3).
The (locally) optimal generalized sigmoid curve si

G for feature xi is computed
with respect to the loss function

�(sG) =
∑
r∈S

∣∣∣F̂xi
(ri) − sG(ri)

∣∣∣
2

, (5)

where F̂xi
is the ECDF of the feature xi. To optimize the parameters, we can

use gradient descent algorithm.

3 Using Different Data Transformation Approaches
with the ReliefF Algorithm

In this section, we propose three novel modifications of the ReliefF algorithm,
where we modify the distance measure (2). The first two are based on transfor-
mations using the ECDF and the generalised sigmoid function, whereas the third
is based on kernel density estimation (KDE). Next, we show how these modi-
fications of a dataset are equivalent to the three modifications of the ReliefF
algorithm. The section concludes with a description of the implementation.

3.1 Proposed ReliefF Modifications

ECDF and sigmoid. Motivated by Cao and Obradovic [7], who compared the
ECDF (3) and generalized sigmoid function (4) transformations of data in the
context of predictive modeling, we propose the modifications ReliefFecdf and
ReliefFsigmoid. For ReliefFecdf, we define

di(r, s) =
∣∣∣F̂xi

(ri) − F̂xi
(si)

∣∣∣ , (6)

A Comparison of Different Data Transformation Approaches 315

whereas for ReliefFsigmoid, we have

di(r, s) =
∣∣si

G(ri) − si
G(si)

∣∣ . (7)

Note that the distances (6) and (7) already map to the interval [0, 1]. These two
distance measures can be seen as the measures that take into account the distri-
bution of xi, since CDF Fxi

and its approximation si
G are part of the definition

of di. The next transformation is related to these two, but instead on CDF, it is
based on probability density function (PDF).

KDE. The goal of KDE is to find a good approximation of the PDF fxi
of the

feature xi. When we obtain a KDE approximation f̂xi
, we define the distance

di(r, s) =
∣∣∣∣
∫ si

ri

f̂xi
(t)dt

∣∣∣∣ . (8)

It is important to note two facts. First, in the ideal case, when one of the functions
Fxi

and fxi
(hence both) is known, the definitions (6) and (8) are the same, since

PDF is the derivative of CDF. The second, maybe more important fact is, that
the modification (8) is not biased against or towards any distribution, since the
following theorem can be proven.

Theorem. Let X and Y be two i.i.d. random variables with PDF f . The dis-
tribution of Z =

∣∣∣∫ Y

X
f(t)dt

∣∣∣ does not depend on f .

Additionally, we can see that in the ideal case, when we will replace f̂xi
by fxi

,
the definitions (2) and (8) coincide for the uniformly distributed xi.

To be able to approximate f and compute the integral (8) efficiently,
we restrict ourselves to a parametric family of Gaussian mixtures f̂(t) =∑K

k=1 αkNμk,σk
(t), which are a good compromise between the favourable com-

putational properties of the normal distribution and the number of degrees of
freedom of a distribution. Here, the kernel functions are defined as normal densi-
ties Nμk,σk

, and the prior probabilities αk > 0 add up to 1. Since the estimation
of the parameters of a Gaussian mixture is a hard problem to approach ana-
lytically, we could use the popular expectation-maximization (EM) algorithm of
Dempster et al. [8]. This is an iterative algorithm that provably converges to the
locally optimal solution (see [22]).

However, when we used the EM-algorithm in our previous work [18], where
we modified ReliefF in order to alleviate its underestimation of numeric features
as compared to nominal ones, we faced some issues: the number of kernels K
cannot be easily determined in an automated fashion, the rate of convergence
can be low, and there is a strong dependence of the obtained values on the
initialization of the parameters. Hence, we rather use the following form of KDE
estimate

f̂i(t) =
1

|S|
∑
r∈S

1
hi

N

(
t − ri

hi

)
, (9)

316 M. Petković et al.

where N = N1,0 is the standard normal kernel. The optimal bandwidth h∗
i that

is at the end plugged in (9) is found by the algorithm of Botev et al. [4].
Once we have f̂i, we should find an efficient and accurate approximation

of the integral (8). It suffices to find an approximation of the standard normal
CDF. Abramowitz and Stegun [2] give a list of useful approximations, among
which we choose the one denoted with 7.1.26. It is of the form F̂ (x) = 1 −
exp(−x2)

∑5
k=1 ak/(1 + px)k and has an error smaller than 1.8 · 10−7.

3.2 Equivalent Data Transformations

Since we want to compare ReliefF and its modifications of ReliefF to two other
feature ranking algorithms (SVM-RFE and IG that will be described later on),
we do not use the modified versions of ReliefF directly. We rather transform
the dataset and then apply the algorithms. This makes the three algorithms
comparable, while the results of ReliefF remain intact.

ECDF and sigmoid. The modifications that correspond to the ECDF (6) and
sigmoidal (7) version of the distance are rather straight-forward: We simply use
the formulas (3) and (4).

KDE. The modification in the case of KDE is a bit more complex. For an arbi-
trary CDF F and a corresponding PDF f , it holds that F (b)−F (a) =

∫ b

a
f(t)dt.

Hence, if we apply the transformation ri �→ ∫ ri

−∞ f̂xi
dt, then the absolute differ-

ence between two transformed values of feature xi equals (8).
However, the time complexity for transforming the feature xi (if h∗

i is given),
is O(|S|2), since we could not find any better approaches than evaluating the |S|-
term sum (9) in |S| points (e.g., Fast Fourier Transform [19] needs only O(n log n)
time to evaluate a polynomial of degree n in n points) directly. Nevertheless, the
time complexity of ReliefKDE remains the same (provided that computing h∗

i

does not take a considerable amount of time), since the time complexity of the
original ReliefF is already O(|S|2 n), if the usual value J = |S| is used.

3.3 Implementation

For transforming the datasets by using ECDF and KDE, we used the stan-
dard Python library and the numpy module. The ECDF transformation is imple-
mented in a straight-forward way. For the KDE transformation, we used Lewis’s
implementation [16] of the algorithm of Botev et al. [4] for finding the optimal
bandwidth.

For the sigmoid transformation, we used Octave’s function fminunc, where we
optimized the function (5), starting from the initial values, as suggested by Cao
and Obradovic [7]. The Jacobian matrix was also a part of the input. However,
it turns out that this initialization can lead to a solution (Q̂, M̂ , B̂, ν̂) that is far
from optimal. The main problem was the value ν̂, which was sometimes quite
large or even Inf. Since limν→∞ ν

√|x| = 1, for all x, this caused a degenerated
sigmoid function. In that case, we found the optimal ν̂∗ for a fixed (Q̂, M̂ , B̂)
(using fminunc), and then repeated the first step, starting from (Q̂, M̂ , B̂, ν̂∗).

A Comparison of Different Data Transformation Approaches 317

4 Experimental Design

In this section, we describe the experimental design. First, we discuss the exper-
imental questions we want to answer. Next, we describe the algorithms and the
datasets used in the experiments. Finally, we describe the evaluation measures
and experimental procedure.

Experimental questions. Our experimental design is constructed in such a
way to answer several lines of inquiry. (1) We want to see if the transformation
of the input dataset helps to obtain better performance in a feature ranking
context as compared to the use of the original data. (2) We want to examine
whether it is better to compute the feature ranking on the transformed or the
original dataset. (3) We want to compare the different combinations of dataset
transformations and ranking algorithms, in terms of ranking quality.

Algorithms. In this paper, we consider and compare three different types of
feature ranking algorithms. These include ReliefF, Info Gain and Recursive Fea-
ture Elimination via Support Vector Machines (SVM-RFE) [11]. All three rank-
ing algorithms were used together with three dataset transformation methods
(ECDF, KDE, sigmoid), resulting in nine different ranking/transformation pairs.
Since we already described the ReliefF algorithm in Sect. 2.2, here we just briefly
describe the other two algorithms.

Info Gain (IG) is a fast and well known feature ranking algorithm, where
the relevance of a nominal feature is defined with the formula r(xi) = H(y) −
H(y | xi), where H is the Shannon entropy. If the feature is numeric, it is first
discretized. Since all transformations ϕ of the datasets are monotonic functions
(a ≥ b ⇒ ϕ(a) ≥ ϕ(b)), we do not expect that there will be many considerable
differences among the transformations for the case of IG due to the discretization.

Recursive Feature Elimination via Support Vector Machines (SVM-RFE)
builds SVM models by using linear kernels. The procedure starts with using
the complete set of features C = X to train a model on a given dataset. Thus,
we obtain the normal n and the bias b of the hyperplane that defines the deci-
sion rule y(x) = sign(xn − b). Since the features xi, for which |ni| is small, do
not have much influence on y(x), we can consider them to be irrelevant. Hence,
we eliminate the feature xi = argminj |nj | from our dataset and recursively call
the procedure on the reduced set of features C \ {xi}. After n = |X| steps, we
obtain a ranking: the later the feature is eliminated, the greater its importance.
Optionally, we can discard more than one feature at time. In that case, the
features that are discarded at the same step, have the same importance. We
use Weka’s implementation [12] of the three considered feature ranking algo-
rithms. For ReliefF and IG, the default parameter values are used. For SVM-
RFE, percentToEliminatePerIteration was set to 10 and percentTreshold
was set to 50 (if the number of features is greater than 50, we eliminate 10% of
the current features; we eliminate one feature otherwise).

Datasets. We considered 28 datasets from the UCI repository [17], where the
number of features ranges between 4 and 279, and the number of instances ranges

318 M. Petković et al.

between 131 and 5000, see Table 1. These datasets come from various domains,
but are rather small in terms of the number of features, hence we included
ten high-dimensional cancer gene expression data sets [1], where only numeric
features are present (see Table 2).

Table 1. Description of small datasets (name, number of features and instances). The
sets, on which the SVM-RFE algorithm could not be run, are marked in bold.

dataset features instances

arrhythmia 279 452

australian 14 690

balance 4 625

biodeg-p1-discrete 31 328

biodeg-p2-discrete 61 328

contraceptive 9 1473

diabetes 8 768

diatoma vulgare-t14200 9 1060

dis 28 3772

diversity all 86 292

1316ohce

german 20 1000

4129ssalg

heart 13 270

dataset features instances

heart-c 13 303

heart-h 13 294

hepatitis 19 155

hypo 25 3163

image 19 2310

ionosphere 34 351

iris 4 150

reuma-1 22 462

reuma-2 16 462

sea cucumber-leuco 10 128

sonar 60 208

water all 80 292

waveform 21 5000

wine 13 178

Evaluation measures. For the evaluation of the rankings, we follow the
methodology developed by Slavkov [20]. An algorithm for feature relevance esti-
mation produces a feature ranking R (1). We define Xj , 1 ≤ j ≤ n, as sets of
j topmost features. For each j, we build a predictive model for a data set S,
considering only the features from Xj . Let αj denote the accuracy of the j-th
model. The points (|Xj |, αj) form a feature addition curve. We can also consider
the features from the complement of Xj (denoted X C

j). The numbers ᾱj denote
the accuracy of these models and the points (|X C

j |, ᾱj) form a feature removal
curve. Both types of curves are illustrated in Fig. 1, where we show the results
for the ReliefF and Info Gain rankings on the original version of the Arrhythmia
dataset.

The motivation behind the two-fold approach is the following. For higher
αj ’s and lower ᾱj ’s, more relevant features are positioned at the beginning of
the ranking R and less relevant features are positioned at its end. To evaluate
the quality of the ranking, we define

α = (
∑

j

wjαj)/w ᾱ = (
∑

j

wn−j+1ᾱj)/w and δ = (α − ᾱ)/2 (10)

where w =
∑

j wj . In our experiments, we choose wj = 1/j. A good ranking
should have high α- and low ᾱ-score, hence δ rewards rankings with quickly
increasing α’s and punishes rankings with slowly decreasing ᾱ’s.

A Comparison of Different Data Transformation Approaches 319

Table 2. Description of big datasets (name, number of features and instances).

Name #features #instances

amlPrognosis 12625 54

bladderCancer 5724 40

breastCancer 12625 24

childhoodAll 8280 110

cmlTreatment 12625 28

dlbcl 7070 77

leukemia 5174 72

mll 12533 72

prostate 12533 102

srbct 2308 83

Experimental procedure. For each original dataset, we create its 3 trans-
formed variants (ECDF, KDE and sigmoid). To increase the stability of the
results, 10-times 10-fold cross-validation is used.

First of all, we randomly partition the dataset into 10 folds. Then, these
folds are used for each of the four versions on the dataset (the original and the
three transformed). For each test fold, a feature ranking is computed on the
complementary group of the nine training folds. Then, the predictive models
from the previous section are built, as described above (for feature subsets of
different size) using linear support vector machines (SMO in Weka). We build
those models on the current version of the dataset and on its original version (in
line with the experimental questions). Each of the two groups of models is than
evaluated on the corresponding test fold.

After performing the 10-times 10-fold cross-validation, the confusion matri-
ces of the models from the different iteration steps are averaged. Using the

Fig. 1. Feature addition/removal curves for the set Arrhythmia (original version),
obtained from the ReliefF and Info Gain rankings. The α (a) and ᾱ (b) scores of
the rankings are given in the brackets.

320 M. Petković et al.

confusion matrices, we compute the scores (10) for each ranking. Hence, we have
three indicators of the quality of the feature ranking for each dataset. For each
indicator, we perform Friedman’s test, to see, whether all the considered ranking
algorithms perform equally well. If this hypothesis is rejected, we also perform
Nemenyi’s post-hoc test. When we compare only two algorithms (Question (2)
in Sect. 4), we perform Wilcoxon test. All the tests are described by Demšar [9].

5 Results and Discussion

In this section, we present the results of the performed experiments, which answer
our experimental questions. First, we analyze if the transformation of the input
dataset helps to obtain better performance in a ranking context, as compared
to the use of the original data. Next, we examine if it is better to compute
the feature ranking on the transformed or on the original dataset. Finally, we
perform a comparison1 of the different combinations of dataset transformations
and ranking algorithms, in terms of ranking quality.

Question (1). To answer the question whether is better to use the original or
the transformed version of a dataset, we simply compare the rankings, i.e., cor-
responding models, that were computed and tested on the transformed datasets,
to the rankings/models obtained from the original datasets. Hence, for each of
the nine algorithm/transformation pairs, where the algorithms include ReliefF,
SVM and IG, and the transformations include ECDF, sigmoid and KDE, we
perform the Wilcoxon test between (algorithm, transformation) and (algorithm,
original). The results for big datasets are given in Table 3.

Table 3. A comparison of the performances of the algorithms that were run and
tested on a particular transformed version of the dataset, to the performances of the
algorithms on the original datasets. The results are for the big datasets and based on
the α-scores (left table) and ᾱ-scores (right table). The symbol > (respectively <) in the
upper left corner of a table denotes, whether the modified algorithms performed better
(resp. worse) than original ones. Each field contains the significance level (p-value from
the Wilcoxon’s test) at which modified algorithm performs better that the original.
The bold font is used, when the significance level is smaller than 0.05.

> ECDF sigmoid KDE

ReliefF 0.0125 0.0125 0.0527

IG 0.00934 0.0125 0.00934

SVM 0.0367 0.0218 0.126

< ECDF sigmoid KDE

ReliefF 0.878 0.508 0.445

IG 0.221 0.285 0.202

SVM 0.285 0.169 0.0366

1 Due to its implementation in Weka, the SVM-RFE algorithm could not be applied
to datasets with non-binary nominal features, hence the results of SVM-RFE are
based on 19 (and not 28) small datasets. From now on, we refer to SVM-RFE as
SVM.

A Comparison of Different Data Transformation Approaches 321

We can see that, in all cases, the modified version of the algorithm performs
better than the original one, in terms of α-scores. The difference is statistically
significant at the level 0.05 in 7 out of 9 cases.

On the other hand, the scores ᾱ are worse for the modified versions of the
data, although the differences are usually far from being statistically significant
(except for the (SVM, KDE) combination). Since the comparisons of the versions
are consistent (either all modified version perform better or all perform worse),
we can conclude that a predictive model itself can in fact benefit from the trans-
formations; The accuracies αj and ᾱj on the modified datasets are higher than
those on the original datasets, which leads to better feature addition and worse
feature removal curves. Additionally, we can report here that the δ-scores show
that the transformed datasets yield better performance, although the differences
are significant only for ReliefF and SVM, coupled with ECDF and sigmoid.

For smaller datasets, the transformed versions also perform better, although
without significant differences (either at level 0.10 or 0.05) for every of the scores
α, ᾱ and δ. For all datasets combined, the transformed methods are always better
at the significance level 0.10, many of them also at 0.05, for scores α. The scores
ᾱ give significant differences only for sigmoid and KDE version of SVM with
p-values smaller than 0.05. The score δ shows no significant differences.

Question (2). In the previous section, we have seen that modifying the dataset
leads to better predictive models. However, we do not yet know, whether this
is due to better rankings. It might be that learning models from the modified
datasets is easier than learning models on the original dataset.

To determine, whether it is better to compute the feature ranking on the
modified dataset, when the original version of the data is used for building a
model, we fix the ranking algorithm, obtain the rankings on the original and
transformed versions of a dataset, and evaluate the rankings only on the original
dataset. Friedman’s and (possibly) Nemenyi’s statistical tests are used to inspect
whether there are any differences in performance and where do they occur.

For ReliefF, there are no statistically significant differences among the trans-
formations. However, in none of the nine combinations of dataset group (small,
big and all) and type of score (α, ᾱ and δ), the original dataset is ranked first:
(Relief, KDE) wins in 7 cases and (Relief, ECDF) in the remaining two.

For SVM rankings, significant differences between the methods occur. How-
ever, a somehow surprising discovery is that the original method is the best
in 6 of the nine (dataset group, score) combinations. We conclude that differ-
ent features are (more) important in the original and in the modified versions
of the datasets. In Fig. 2, we present the statistically significant differences on
a critical distance diagram, where the results of the Nemenyi’s post-hoc test
are presented. The groups of algorithms, among which no significant differences
occur, are connected by a red line.

In the case of IG, the differences are far from significant. As mentioned
before, this is expected, since all the transformations are monotone, hence the
discretization method that is used by IG should produce almost the same nomi-
nal attributes, regardless of the particular transformation applied. The extreme

322 M. Petković et al.

Fig. 2. The average rank diagram that is based on the results of Nemenyi’s test for
δ-scores of different versions of SVM, on all datasets (at level 0.05). (Color figure
online)

result is obtained in the case of ᾱ for big datasets: all of the four versions (original
+ 3 modified) have the same average rank 2.5.

Question (3). Here, we discuss which combination (ranker, transformation) is
the best. We already know that results that are obtained by evaluating the same
ranking on the transformed and the original version of a dataset are somewhat
contradictory, i.e., one of the two compared rankings has typically a better α-
score, while the other has a better ᾱ-score. Hence, we will not compare this
two options of evaluation, and only 12 combinations (3 algorithms and 3 + 1
modifications) will be compared.

We start with the results where the rankings from the modified dataset are
evaluated on its original version. Again, the comparisons were made by using
Friedman’s and Nemenyi’s tests. The differences are not always statistically sig-
nificant, but in 7 out of 9 considered scenarios (small, big, all datasets, and α, ᾱ
and δ scores) the combination that performs best is (ReliefF, KDE). In the case
when α-scores are compared on the big datasets, (SVM, KDE) performs best,
whereas in the case when δ-scores are compared on the big datasets, (ReliefF,
ECDF) is the best.

Typically, the four versions of the algorithms are grouped together, which is
expected, since the previous results showed, that the results of the versions of
one algorithm may not differ much. Here, we explicitly show only the results for
the big datasets. Since the differences in terms of α-scores are not statistically
significant, we only give the comparisons that are based on the ᾱ-scores and
δ-scores (Fig. 3). The results for small and all datasets are almost the same
regarding the order of algorithms (top four algorithms are from Relief-group,
whereas Info Gain and SVM-RFE are mixed) and the significance of the results
(no significant differences only in the case of the α-scores).

In the case when the rankings were evaluated on the transformed datasets,
there is one noteworthy difference with respect to the previous case: the opposi-
tion between the α and ᾱ results causes (among other differences in the ordering)
that (SVM, KDE) and (SVM, ECDF) perform worst in terms of ᾱ-scores and
the best in terms of α-scores. But, in general, the combination (ReliefF, KDE)
produces the best results in terms of ranking quality.

A Comparison of Different Data Transformation Approaches 323

Fig. 3. The average rank diagram that is based on the results of Nemenyi’s test for big
datasets for ᾱ-score (a) and δ-score (b), at the level of significance 0.05.

6 Conclusions and Future Work

In this paper, we presented a comparison of different data transformation
approaches in the context of feature ranking. We have shown that it is bene-
ficial to transform a dataset using the presented approaches and then use only
the transformed version, in terms of predictive performance. On the other hand,
it seems that in most cases that the transformation does not lead to a better
ranking for the original dataset. Even worse, ranking obtained by using SVM-
RFE for the original version of the data performed best. However, it is reassuring
that the combination of feature ranking with ReliefF and feature transformation
by KDE performs best in the vast majority of cases.

We suggest that KDE transformation is used, since it exhibits good predictive
performance. Also, we did not face nearly as many convergence problems as in
the sigmoid case. Due to its simplicity, using ECDF is also a legitimate choice.
However, on contrast to Cao and Obradovic [7], we would discourage the use of
the sigmoid transformation, for the aforementioned computational issues.

The starting motivation for this work was the improvement of ReliefF. We
have made a step forward with the new approach to estimating the PDF of a
feature moving from the EM-algorithm to that of Botev et al. [4]. However, the
differences are still not significant. Hence, we believe that there is still room for
improvement of the estimation of the numeric features, which will be addressed
in our further work.

Acknowledgements. We would like to acknowledge the support of the EC through
the projects: MAESTRA (FP7-ICT-612944) and HBP (FP7-ICT-604102), and the
Slovenian Research Agency through a young researcher grant and the program Knowl-
edge Technologies (P2-0103).

References

1. Visualization-based cancer microarray data classification analysis. http://www.
biolab.si/supp/bi-cancer/projections. Accessed 04 Oct 2015

2. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions (1972)

http://www.biolab.si/supp/bi-cancer/projections
http://www.biolab.si/supp/bi-cancer/projections

324 M. Petković et al.

3. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A., Beńıtez, J.M., Her-
rera, F.: A review of microarray datasets and applied feature selection methods.
Inf. Sci. 282, 115–135 (2014)

4. Botev, Z., Grotowsky, J., Kroese, D.P.: Kernel density estimation via diffusion.
Ann. Stat. 38(5), 2916–2957 (2010)

5. Bowling, S.R., Khasawneh, M.T., Kaewkuekool, S., Cho, B.R.: A logistic approx-
imation to the cumulative normal distribution. J. Ind. Eng. Manag. 2, 114–127
(2009)

6. Cantelli, F.P.: Sulla determinazione empirica delle leggi di probabilita. Giornale
dell’Istituto Italiano degli Attuari 4, 421–424 (1933)

7. Cao, X.H., Obradovic, Z.: A robust data scaling algorithm for gene expression
classification. In: Proceedings of the 15th IEEE International Conference on Bioin-
formatics and Bioengineering (2015)

8. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc. Ser. B (Methodol.) 39, 1–38 (1977)

9. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

10. Glivenko, V.I.: Sulla determinazione empirica delle leggi di probabilita. Giornale
dell’Istituto Italiano degli Attuari 2, 92–99 (1933)

11. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifi-
cation using support vector machines. Mach. Learn. 46(1), 389–422 (2002)

12. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1),
10–18 (2009)

13. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn.
MorganKaufmann Publishers Inc., San Francisco (2011)

14. Kira, K., Rendell, L.A.: The feature selection problem: traditional methods and
a new algorithm. In: Proceedings of the Tenth National Conference on Artificial
Intelligence, AAAI 1992, pp. 129–134 (1992)

15. Kononenko, I., Robnik-Šikonja, M.: Theoretical and empirical analysis of ReliefF
and RReliefF. Mach. Learn. J. 53, 23–69 (2003)

16. Lewis, A.: Getdist. https://github.com/cmbant/getdist. Accessed 27 May 2016
17. Lichman, M.: UCI machine learning repository (2013)
18. Petković, M., Panov, P., Džeroski, S.: Improved ranking of numeric features with

ReliefF. Presented at the Workshops on Machine Learning in Computational Biol-
ogy (MLCB) & Machine Learning in Systems Biology (MLSB) (2015)

19. Rao, K.R., Kim, D.N., Hwang, J.J.: Fast Fourier Transform - Algorithms and
Applications, 1st edn. Springer Publishing Company, Incorporated, Heidelberg
(2010)

20. Slavkov, I.: An Evaluation Method for Feature Rankings. Ph.D. thesis, Mednaro-
dna podiplomska šola Jožefa Stefana, Ljubljana (2012)

21. Stańczyk, U., Jain, L.C. (eds.): Feature Selection for Data and Pattern Recognition.
Studies in Computational Intelligence, vol. 584. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-45620-0

22. Wu, C.: On the convergence properties of the EM algorithm. Ann. Stat. 11, 95–103
(1983)

https://github.com/cmbant/getdist
http://dx.doi.org/10.1007/978-3-662-45620-0
http://dx.doi.org/10.1007/978-3-662-45620-0

On Selection Bias with Imbalanced Classes

Gert Jacobusse1 and Cor Veenman1,2(B)

1 Digital and Biometric Traces, Netherlands Forensic Institute, Laan van Ypenburg 6,
2497 GB The Hague, The Netherlands

g.jacobusse@nfi.minvenj.nl
2 Leideu Institute of Advanced Computer Science, Leiden University, Niels Bohrweg

1, Leiden, The Netherlands
corveenman@gmail.com

Abstract. In various applications, such as law enforcement and medical
screening, one class outnumbers the other, which is called class imbal-
ance. The inspection to recognize targets from the minority class is usu-
ally driven by experience and expert knowledge. In that way, targets can
be found way above the base rate to make the inspection process feasi-
ble. In order to make the search for targets more efficient, the inspected
samples can serve as training set for a learning method. In this study,
we show how the introduced selection bias can be remedied in several
ways using unlabeled data. With a synthetic dataset and a real-world
law enforcement dataset, we show that adding unlabeled data to the
non-targets strongly improves ranking performance. Importantly, com-
pletely leaving out the labeled non-targets and using only the unlabeled
data as non-targets gives the best results.

Keywords: Classification · Class imbalance · Selection bias · Unlabeled
data · Supervised learning · Semi-supervised learning · PU learning

1 Introduction

In real-life screening problems, there is usually a relatively small group of tar-
gets that needs to be detected among a large group of non-targets [17]. These
applications range from medical screening [23], screening of job applicants [29],
biochemical screening [20] to law enforcement [30] and fraud detection [11,28].
In such class imbalance problems, the screening procedure must be informed
and directed towards the target group to make the procedure feasible, that is, to
restrict the number of unsuccessful inspections. We consider class imbalance of
the order of 1 in 100 between targets and non-targets. In such scenarios random
sampling would lead to a success rate of one percent, which can hardly ever be
justified. Therefore, in an expert knowledge driven way, a screening procedure is
designed with parameters that are known to correlate with the target phenom-
enon, such as age for medical cancer screening or a restaurant category in law
enforcement for illegal workers. The data, that is collected, inspected and labeled
this way, is strongly biased towards the target group. Moreover, the subset of
c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 325–340, 2016.
DOI: 10.1007/978-3-319-46307-0 21

326 G. Jacobusse and C. Veenman

non-targets is similar to these targets. Yet, the class imbalance that was the
reason for the selective search is no longer pronounced in the inspected dataset
or even absent. This is what we consider selection bias with imbalanced classes,
which is the subject of this study.

In order to make a clear distinction between class imbalance in the underlying
distributions and class imbalance in the available selected dataset, we will define
two separate notions:

– class prior imbalance: the imbalance in the priors of the underlying distribu-
tions of the classes;

– class sample imbalance: the imbalance in the available samples of the classes
involved.

In Fig. 1, this is illustrated in a one-dimensional example. This dataset has
clear class prior imbalance: the volume of targets is 5 % of the volume of non-
targets. Beyond the selection threshold t = 3, there are more or less as many
targets (minority class) as non-targets (majority class). So, samples that are
selected through such a selection bias would not have class sample imbalance.
Clearly, the bulk of the non-targets are not sampled in the selected dataset.

In Fig. 2, we show a two dimensional example of two Gaussians with class
prior imbalance of 1 (targets) in 10 (non-targets). A random sample from these
distributions is shown in Fig. 2(a) with 10 targets and 100 non-targets. When
a well-informed selection process retrieves only samples that have y > 1.5, the
targets and non-targets are more or less balanced, see Fig. 2(b). Or, there is more
or less no class sample imbalance.

Fig. 1. Illustration of the distributions of classes with clear class prior imbalance. When
the samples with x > 3 are selected through a biased inspection process, the resulting
training set is more or less balanced.

In order to be more efficient, the collected dataset can be exploited to obtain
a data driven predictive model to find likely targets among the samples that
have not yet been inspected, i.e. the unlabeled samples. In a law enforcement
scenario, the possible targets from the unlabeled data can be ordered from the

On Selection Bias with Imbalanced Classes 327

(a) (b)

Fig. 2. Example of the result of selection bias towards the features of the targets (‘o’).
Non-targets are displayed with ‘+’s. In (b) the samples from (a) are shown for which
y > 1.5. The derived classification/ranking model is displayed in both figures with an
arrow that points towards the targets.

most likely to the least likely target, i.e. a ranking problem [30]. In that way, the
capacity of the agencies can be scheduled towards maximal success in finding
targets1. In the example of Fig. 2(a), a model based on all data would recognize
the few targets to be situated in the upper left corner of the 2-D space, which
is indicated with the direction of the arrow. The selected subset of the data in
Fig. 2(b), gives rise to quite a different image of the distinction between targets
and non-targets. The targets seem to be situated at the left part of the space,
which is clearly suboptimal considering the distribution of the complete dataset.

In this work, we propose a sampling based method to deal with the selection
bias in case of class prior imbalance, where the unlabeled data play a central
role. We tested the method on a synthetic dataset for which we simulate class
prior imbalance and selection bias. In addition, we tested the method on a real-
life law enforcement dataset. In contrast to the other datasets, this dataset has
no obvious ground truth available to validate the method. We propose to use a
subset of the dataset as validation set, because of its specific properties.

The layout of the paper is as follows. In the next section, we first introduce
the formal problem definition and terminology. Then, we overview the different
lines of related work. Next, we propose our methods of exploiting unlabeled data
to remedy selection bias with imbalanced classes. We describe the experiments
we did to test the method on synthetic and real-life data and conclude with
discussions and outlook from the work.

1 A strict application of this scenario would make it hard to discover new phenomena
or trends, since the goal is to find targets similar to previous cases. This exploratory
aspect is, however, not the subject of this study.

328 G. Jacobusse and C. Veenman

2 Problem Statement

Given is a partially labeled dataset X with n+ targets X+, n− non-targets X−

and n0 unlabeled samples X0, where n0 � n+ and n0 � n−. The number of
available targets is of the same order as the number of non-targets: n+ ≈ n−.
The unknown true number of targets is N+ and the true number of non-targets is
N−. The targets x ∈ X+ have label y = +1, the non-targets x ∈ X− have label
y = −1, and the samples x ∈ X0 have no known label. Each sample x ∈ X is a
vector in a p dimensional feature space. The prior probability of the underlying
distribution of the targets is π+ and of the non-targets is π−, where π− � π+.
The class prior imbalance ratio between these distributions is quantified with
cp = π+/π−. We denote class sample imbalance with cs = n+/n−. Also, we
use cp(X) to denote the class prior ratio of targets versus non-targets in the
unlabeled set X.

The labeled samples have been selected (s = 1) through a biased process that
is driven only by the feature vector of the sample from the probability distribu-
tions P (x|y = +1) and P (x|y = −1). In other words, the selection of a sample is
independent of its label given its feature vector: P (s|x, y) = P (s|x) [32].

The goal is to correctly rank the unlabeled samples from the most likely to
the least likely targets. The required ordering function F (x) gives the highest
score to the most likely target samples. The quality of the ordering is measured
with the Area Under the ROC Curve (AUC) [1]:

AUC(X,F (·)) =
1

n+ · n−
∑

x1∈X+

∑
x2∈X−

δ (x1, x2) , (1)

where

δ (x1, x2) =

{
0 if F (x1) ≥ F (x2)
1 if F (x1) < F (x2)

(2)

3 Related Work

The research that we explore in this work touches many fields of research. Below
we describe the essential elements of these fields and stress the similarities and
differences. We divide the related work up into the way the training data is
drawn from the underlying data distributions. The training sample can be rep-
resentative, undersampled and biased. Clearly, this separation is not as strict
as suggested. For instance, some selection bias can and will always be present,
while also some unlabeled data is often available. Further, in all cases, while we
use the general term learning, we consider classifier learning only.

3.1 Representative Sample

First, a representative dataset with labeled targets and non-targets is typically
a starting point for pattern recognition and supervised learning. Representative-
ness means that the probability of selecting a sample is independent of its feature

On Selection Bias with Imbalanced Classes 329

vector and its label, i.e. P (s|x, y) = P (s) = c. The fundamental assumption that
the given dataset is a representative sample from the underlying distributions is
clearly violated in this study.

Class Imbalance. Many machine learning methods optimize global criteria like
error or accuracy. In case the classes are harder to differentiate, such models are
principally unsuitable for class imbalance problems. The criterion of these meth-
ods is then optimized by a degenerate model that always decides for the majority
class. In this way the samples will be ordered randomly. Several approaches have
been published to deal with class (sample) imbalance, such as undersampling the
majority class or oversampling the minority class [5,13,14,31]. In our problem,
class imbalance is present in the underlying distributions, but not visible in the
labeled training data. These solutions are therefore not applicable as such.

3.2 Small Sample

When labeling of the data is expensive or at least labor intensive, it can be ben-
eficial to use unlabeled data in addition to the labeled data for model learning.
Typically, the unlabeled samples strongly outnumber the labeled samples.

Semi-supervised Learning. In the semi-supervised setting [3,34], it is often
assumed that the underlying distributions are undersampled more or less ran-
domly, i.e., P (s|x, y) = P (s) = c. The structure of the data P (x) can be derived
from all data, i.e. including the unlabeled data. Additional assumptions are used
to benefit from the unlabeled samples such as a stronger smoothness assumptions
than with ordinary supervised learning, a cluster assumptions and a manifold
assumption [3]. In our case with strong class prior imbalance and class overlap,
the smoothness assumption and cluster assumption will expectedly not hold, see
for instance Fig. 1.

PU (Positive and Unlabeled) Learning. The Positive and Unlabeled (PU)
learning problem is a special case of the semi-supervised learning problems [15].
In PU learning there are no labeled examples from the non-target class in the
training set (X− = ∅). The unlabeled set X0 contains both targets and non-
targets and the targets X+ are often assumed to be sampled representatively [4],
or at least randomly [9,19,33] from all targets. That is, P (s|x, y = 1) = P (s|y =
1) = c (and P (s|x, y = −1) = P (s|y = −1) = 0). Several researchers cast
this problem as a cost-sensitive learning problem [8,9,25]. Like in a PU learning
problem, we do have labeled targets and a substantial amount of unlabeled
data. But the assumption that the targets are randomly sampled from their
underlying distribution is definitely violated in our problem scenario. Moreover,
in our dataset there are labeled non-targets available that we can exploit.

330 G. Jacobusse and C. Veenman

3.3 Biased Sample

Clearly, our research is grounded in the selection bias literature. In [32], an
overview of types of selection bias is given. Like this study, most research in
the field deals with bias on features only. That is, the selection of a sample is
independent of its label given its feature vector: P (s|x, y) = P (s|x) [32]. Several
approaches deal with such bias by reweighting the sample loss [6,22,24].

Our problem situation comes closest to the work of [16]. They also assume the
availability of unlabeled samples. In that work, the unlabeled samples are used to
better estimate the sample weights. Further, the selection bias is covariate shift
[27], which assumes that P (y|x) for training and test conditions is the same. We do
not assume such properties. Furthermore, our approach allows for the application
of many different learners. Our proposed data sampling method can be seen as a
training set preprocessing step. We will work that out in the next section.

4 Method

The method we propose is sampling oriented. The available dataset consists of
three groups of samples. The labeled targets X+, the labeled non-targets X−

and the unlabeled mixture of targets and non-targets X0.
For the sampling based method, we exploit that in the unlabeled samples X0

the class sample imbalance is present, or:

Proposition 1
cp(X0) � 1 (3)

By definition:

cp(X0) =
N+ − n+

N− − n− (4)

and
N+ + N− = n0 + n+ + n− = |X|. (5)

Further, the labeled and unlabeled data together X is a random sample, so:

N+

N− ≈ cp, and N− � N+. (6)

Given that also n0 � n+, n−, it follows:

n0 ≈ N−, and N− � n−, (7)

so
N+ − n+

N− − n− ≈ N+ − n+

N− = cp − n+

N− . (8)

Then, cp(X0) < cp � 1.

On Selection Bias with Imbalanced Classes 331

4.1 Selection Bias

The labeled targets and non-targets have been selected using a biased selection
strategy using features that individually or jointly correlate with the class label.
Without loss of generality, we assume selection strategies that select a sample
(s = 1) for inspection if and only if it is at the right (‘target’) side of the selection
line: {

s = 1, S(x) > t

s = 0, S(x) ≤ t
(9)

where S(x) is the selection bias function and t is the threshold.
We define a perfect selection bias function Sp as a function with the following

property: if averaged over all possible threshold values t, a perfect selection bias
function has the highest probability of picking a target over an non-target sample
given the features. This comes down to that function S that has maximal AUC.

Alternatively, and usually, the selection strategy is suboptimally based on
experience of inspectors or screeners. We denote such a biased strategy with
selection function Sb.

4.2 Training Set Construction

Both selection strategies lead to non-representative training sets that are avail-
able for learning a model. In the problem statement the goal is formulated as to
obtain an optimal ordering of the unlabeled data. The model F (x) with optimal
ordering of the data is the model with maximal AUC. This is the same as the
perfect selection function Sp would achieve. The function Sp is, unfortunately,
generally unknown.

Now the goal is to learn F (x) using the available data. We propose three
ways in which X+,X− and X0 can be exploited for this purpose to obtain an
effective training set. In our proposal, the targets in the training set X+

tr always
equals the whole set of labeled targets X+. The non-target set in the training
set X−

tr consists of a primary set X−
tr1 and a secondary sampled set X−

tr2. The
secondary set is subsampled from a large set in order to prevent the curse of
strong class imbalance during learning [18]. For instance tree learners are known
to suffer from it [18]. The complete training set is then:

Xtr = X+
tr ∪ X−

tr1 ∪ X−
tr2 (10)

For the construction of the primary (X−
tr1) and secondary non-target training

set (X−
tr2), we propose the following three strategies.

Positive, Negative, and Sampled from Unlabeled (PN[U]). The applica-
tion of a classifier with as training set the labeled X+ and X− seems straightfor-
ward. These are the only samples with ground truth. Further, it is not uncommon
to have an order of 100− 1000 targets and non-targets, which are reasonable num-
bers for supervised model learning. However, the question is to what extent the

332 G. Jacobusse and C. Veenman

selection bias, either Sb or even Sp hampers the model learning. That is, expect-
edly, from the non-targets and even from the targets only samples from the tail of
the distribution are available. Many classifiers may suffer from such a degenerate
data sample. As shown earlier, with good target oriented bias, the selected samples
will be in the ‘margin’ of the classes, while the high density areas of the non-target
class are not sampled.

Therefore, in addition to the labeled non-targets, we propose to subsample
from the unlabeled samples X0 to obtain a larger set of mostly non-targets, see
Proposition 1. In this way, the high density area of the non-target class is also
represented in the training set. Indeed at the cost of a number of wrongly labeled
targets. However, we consider problems where the class prior imbalance is of
order 1 in 100, or cp = 0.01. Following Proposition 1, the number of label errors
introduced this way is limited. Ultimately, the resulting training set will become
strongly imbalanced, which may harm certain classifiers [17,31]. Restricting the
number of samples from X0 may therefore be beneficial. The ratio of samples
drawn into X−

tr2 is the sampling ratio rs.

X−
tr1 = X−, X−

tr2 ⊆ X0, and rs =
|X−

tr2|
|X0| (11)

Positive, and Sampled from Negative and Unlabeled (P[NU]). The set
X− is a very specific set of non-target samples. Through the feature vector driven
selection bias, these non-targets are not representative at all for the non-target
distribution P (x|y = −1). Different from normal labeled data sets, in this case
we know which samples are probably in the margin between the classes. Stated
differently, the vast majority of the unlabeled samples are likely further away
from the target class than the labeled non-target samples. This is a phenomenon
that we could exploit. In this proposal, we sample from the mix of labeled non-
targets and unlabeled samples. Such a non-target training set X−

tr is probably a
better representation of the non-targets even with a small sample from X0.

X−
tr1 = ∅, X−

tr2 ⊆ X− ∪ X0, and rs =
|X−

tr2|
|X− ∪ X0| (12)

Positive, and Sampled from Unlabeled (P[U]). Finally, the most rigorous
proposal is to completely discard the labeled set X−. Since the samples from X−

are presumably in the margin, they can be confusing for the model. Moreover,
in domains such as law enforcement the labeling is typically noisy. If during
an inspection the violation of the law cannot be proven, the sample will be
labeled as non-target. In this respect, resources and legal possibilities are limited.
Therefore, we propose a training set construction strategy where the non-target
training samples X−

tr are sampled solely from the unlabeled labeled samples X0.

X−
tr1 = ∅, X−

tr2 ⊆ X0, and rs =
|X−

tr2|
|X0| (13)

On Selection Bias with Imbalanced Classes 333

5 Experiments

In this section, we describe the experiments we did to evaluate the training
set construction strategies PN[U], P[NU], and P[U] to obtain the best ranking
model. A major challenge is how to test and compare the learned models using
the various training sets. In order to have controlled conditions, we started with
a synthetic dataset generated from known distributions and ground truth labels.
Then, we applied the proposed method to a true law enforcement dataset, which
was the motivation for this research.

We applied an extensive set of linear and non-linear classifiers for all the
experiments described, such as the Fisher classifier [7], logistic regression [7], L1
and L2 regularized linear SVM [10], L1 and L2 regularized logistic regression
[10], gradient boosting [12], and random forests [2]. In order to focus on the
general message of this study, we only report the results of the Fisher classifier.
Some other classifiers had higher performance for certain problem parameter
settings, but needed parameter tuning of several hyper parameters. The trends
and general results were the same for all methods employed.

5.1 Synthetic Data

The experiments with synthetic data were run using two Gaussian distributions
where the distance between the class means is 1 in one dimension and 0 in the 99
other dimensions, and the variance per class σ2 = 1 in all p = 100 dimensions.
In this controlled experiment, we additionally varied the class prior imbalance
to measure the influence of this parameter on the proposed three training set
construction methods.

Biased Imbalanced Dataset Construction. We created the biased, imbal-
anced, and partially labeled dataset as follows. First, we generated a large
Gaussian test dataset (100,000 samples) with class prior imbalance ratio cp = 0.01
to obtain strong class imbalance according to the assumptions of this study. The
minority class was the target class. Then, we generated a reference dataset with
the same properties as the test set with in total 10,000 samples. For convenience,
we estimated Sp(x) with a classifier learned with this reference dataset resulting
in Ŝp(x). Alternatively, we could have derived it straight from the data generation
prescription. We applied this simulated selection bias function Ŝp(x) to the refer-
ence dataset and ranked it according to the output of function Ŝp(x). We set the
threshold t, such that for the first 500 samples it holds Ŝp(x) > t. These samples
were used to construct X+ and X−, with their original labels. All remaining sam-
ples were put in the set of unlabeled samples X0. Accordingly, the labeled targets
and non-target samples are at the tails of their respective distributions in the same
direction in feature space, similar to the examples in Fig. 1.

Results. We applied the three training set construction strategies PN[U],
P[NU], and P[U] for various subsample ratios rs for the secondary training

334 G. Jacobusse and C. Veenman

set X−
tr2. In Fig. 3, we show the AUC performance of the Fisher classifier for

this experiment. The figure shows that with very few unlabeled samples, the
method PN[U] has higher performance than P[NU] and P[U]. This could be
expected, because PN[U] has at least a substantial set of true negatives from X−,
and the training set construction strategies P[NU] and P[U] have hardly any neg-
ative training samples. When the number of samples in X−

tr2 increases to 1 %
(i.e. |X+

tr| ≈ |X−
tr2|), both P[NU] and P[U] outperform PN[U]. Finally, when all

data has been used, PN[U] and P[NU] converge to the same AUC performance,
since then both have as training set X−

tr = X− ∪ X0. Importantly, discard-
ing the samples from X− altogether according to strategy P[U] gives a small
(≈ 1.0%) improvement with respect AUC performance over PN[U] and P[NU].
The PN[U] curve in the figure also suggests improvement of discarding the sam-
ples from X−. That is, towards the right side of the figure, the PN[U] curve is
still strongly increasing, while adding unlabeled samples. The P[NU] curve that
is based on a mixture of negative and unlabeled samples already flattens off. It
follows that making the imbalance between unlabeled samples and non-target
samples larger by discarding X− indeed helps.

Fig. 3. AUC performance as function of the amount of unlabeled data for the synthetic
100-dimensional Gaussian distributions. The results are shown for the different training
conditions: PN[U], P[NU], and P[U]. The class prior imbalance ratio cp = 0.01.

Variable Class Imbalance. Next, we varied the class prior imbalance cp to
see if discarding the non-target class is always beneficial. We let cp range from
0.0001 . . . 1.0. As in the first experiment, we took the top 500 samples that were
ranked by the biased model. Again, these samples had their original labels, while
the lower ranked samples were considered unlabeled. Because we always took
the top 500 samples, not only the imbalance ratio of the reference and test set
changed, but also the class sample imbalance ratio cs of the labeled sets X+ and
X−. With every setting we ran the experiment 30 times. In Table 1, we show the
gain in average AUC between PN[U], P[NU], and P[U] when all unlabeled data
are used.

On Selection Bias with Imbalanced Classes 335

Table 1. AUC performance with various class prior imbalance ratios cp. The table
shows the difference between scenarios PN[U], P[NU], and P[U], when all unlabeled
data is used. Note that PN[U] and P[NU] are the same when all unlabeled data is
used.

cp n+ n− PN [U] = P [NU] P [U] Δ

0.001 9 491 0.575 0.576 0.001

0.003 19 481 0.628 0.634 0.006

0.01 39 461 0.669 0.676 0.007

0.03 76 424 0.710 0.714 0.004

0.1 212 288 0.741 0.743 0.002

0.3 390 110 0.751 0.751 0.000

1.0 484 16 0.750 0.750 0.000

As can be seen in Table 1, the gain in AUC is negligible at the extremes, i.e.
when cp = 0.001 and when cp = 1.0. When the class imbalance cp = 0.01 then
the AUC gain is maximal, approximately 1 %. These results can be explained
by the different effects that the decrease in size of X− and at the same time
increase in size of X+ may have on the results in the experiments. These are
hard to separate. However, in these experiments it never hurts to discard the
labeled non-targets.

5.2 Law Enforcement Data

The motivation for this research was an investigation project for the Inspec-
torate SZW of the Ministry of Social Affairs and Employment, The Hague. The
objective of the project was to find companies that are likely to violate the For-
eign Nationals Employment Act. The dataset consists of 65,487 companies from
which various information is stored in a collected database, such as:

– the internal database of the Inspectorate SZW: name of company, postal code,
city, phone number, main branch of company;

– tax information over three years: such as turnover tax, tax return, total
salaries, possible tax fines;

– chamber of commerce information: sector of company activities, personnel,
legal form.

Not all database values were available for all companies. Since we do not know
the cause of missingness, being Missing At Random (MAR), Missing Completely
At Random (MCAR), or Missing Not At Random (MNAR) [21], we encoded all
relevant variables with an additional variable indicating whether the value of
the variable was available or not [26]. This is especially important in case the
data are MNAR, because then the information in the missingness itself can be
exploited.

336 G. Jacobusse and C. Veenman

In addition to the given data, other features were engineered, such as: a
set of features that dummy code most frequent cities and sectors of activity, the
number of similar companies in the neighborhood, ratios such as salary/turnover,
variations over the years in minimum, mean, and maximum of various tax data.
From the given data fields, in total p = 272 features were derived.

Validation. The inspectorate has roughly two different reasons for doing an
inspection at a company. The first is that based on their knowledge and expertise
a company with certain properties is more likely to violate the Foreign Nationals
Employment Act, which we call Inspectorate Bias Selection (IBS). The other
reason is that a third party has made a report indicating that such a violation
is suspected. We call this type of selection Third Party Selection (TPS).

The IBS inspections can be considered according to the selection bias of the
inspectorate. For these samples holds: P (s|x, y) = P (s|x). This is the type of
selection bias we assumed throughout this research. Among the companies, 5,458
have been inspected in the last 5 years as a result of the knowledge and expertise
of the inspectorate. From these, 610 were fined for one or more violations of the
Foreign Nationals Employment Act. These data can serve as training data, where
n+ = 610, n− = 4, 848, and n0 = 60, 029.

To test the performance of the strategies PN[U], P[NU], and P[U], a suitable
test set with ground truth is required. For this real-world dataset, the ground truth
for the unlabeled data is not readily available. Alternatively, we propose to use the
TPS samples. The inspections based on third party reports will not be according
to the selection bias from the inspectorate themselves. The cases have probably
been reported for other reasons than the in the data available information. The
reports are from governmental organizations like the police, the Netherlands Food
and Consumer Product Safety Authority, the immigration office, or ordinary cit-
izens. Therefore, we consider these diverse reports to representatively cover the
population of targets. That is, the presence of a report is independent of the fea-
tures given the labels: P (s|x, y = +1) = P (s|y = +1) [32]. This implies that we
can use these targets as test set targets. Further, it is given that most companies
are non-targets. Among the unlabeled samples also most samples are non-target.
We therefore use the unlabeled samples as non-targets in the test set, while we
know we introduce limited label noise this way.

Now, the non-targets X− and the unlabeled data X0 play a role in both the
training phase and test phase. Moreover, the test targets count as unlabeled in the
training set and the training targets as unlabeled in the test set. To handle training
and test sets properly, a suitable cross-validation scheme is required. We used 10-
fold cross-validation in the following way. We collected indexes from the whole
dataset in the standard 9/10th training and 1/10th test scheme as usual with
cross-validation. Then, the training indexes select targets from the IBS targets
and non-targets from the unlabeled set, which includes targets from TPS targets.
The test set contains target indexes from the TPS targets and also non-targets
from unlabeled set, which in this case include IBS targets. We repeated the 10-
fold experiments for strategy PN[U], P[NU], and P[U] three times.

On Selection Bias with Imbalanced Classes 337

Results. Fig. 4 shows the averaged AUC performance curves of the tests per-
formed. The figure displays very similar behavior with respect to AUC per-
formance, compared to the synthetic experiment in Fig. 3. Adding unlabeled
samples led to substantial increase in AUC for all three training set construction
strategies. With very little unlabeled samples rs ≈ 0.0002, strategy P[NU] and
P[U] already outperform PN[U] in AUC. This comes down to approximately
only 10 samples in X−

tr for strategy P[NU] and P[U]. The gain of discarding X−

(P[U] compared to P[NU]) is approximately 2 % in AUC. Again, at the right
side of the figure, the PN[U] curve is still strongly increasing, while adding unla-
beled samples. The P[NU] curve that is based on a mixture of non-target and
unlabeled samples already flattens off. Indeed, discarding X− helps.

Fig. 4. Performance as function of the amount of unlabeled data for the Inspectorate
SZW dataset with training conditions PN[U], P[NU], and P[U].

6 Conclusions

In this paper we studied selection bias with imbalanced classes. This specific
problem arises in screening situations such as law enforcement and medical
screening. Because of the strong class imbalance, biased selection strategies are
employed to make the screening procedure feasible. We proposed three training
set construction strategies that exploit unlabeled data to learn ranking models
to make the screening more efficient. The proposed strategies exploit labeled
targets, labeled non-targets and unlabeled samples as follows:

– Positive, Negative, and Sampled from Unlabeled (PN[U]);
– Positive, and Sampled from Negative and Unlabeled (P[NU]);
– Positive, and Sampled from Unlabeled (P[U]).

With synthetic and real-life law enforcement data, we tested the proposed
strategies on their ranking abilities to find targets among the unlabeled samples.

338 G. Jacobusse and C. Veenman

We explored the problem with many different classifiers ranging from the Fisher
classifier, logistic regression and SVM to random forests and gradient boosting.
For the sake of computational speed and clarity of the message, we selected the
Fisher classifier for the experiments.

The synthetic experiments were performed with biased imbalanced data from
Gaussian distributions. With class imbalance between targets and non-targets of
at least 1–10, the AUC performance of the models improved strongly by adding
unlabeled data to the non-target class. Importantly, completely discarding the
labeled non-target samples led to the best AUC performance.

For the real-world law enforcement dataset, we proposed to use a set of targets
as validation set that were selected through third party reports of suspected
violations of the Foreign Nationals Employment Act. These targets have the
property that the selection bias is (mostly) independent of the feature vector
given the class label. Also with this dataset, adding unlabeled data to the non-
targets improved the ranking performance significantly. Moreover, also with this
real-life dataset, completely discarding the labeled non-targets was the most
effective.

For both synthetic and real-life data with (1) class prior imbalance, (2) biased
selected targets and non-targets, and (3) clear class overlap, the following can
be concluded:

– Adding unlabeled samples to the non-targets improves ranking performance,
– Leaving out the labeled non-targets results in even better performance.

The proposed validation approach is more generally applicable. Also in other
screening situations, samples can be recognized as target through other processes
than the standard selection bias. For instance, the population can be screened for
diseases based on age and gender, while patients pro-actively go to the doctor in
case of medical symptoms. For this research, such targets were useful to test our
method of dealing with selection bias with imbalanced classes. Clearly, in case
such target samples are available, these should be used as training set targets to
have a better (less biased) representation of the target class.

Acknowledgements. We would like to thank Gerard Meester and his colleagues from
the Inspectorate SZW of the Ministry of Social Affairs and Employment, The Hague,
The Netherlands, for their support and making their data available for our research.
We also thank Dr. Marco Loog for his critical review of and extensive comments on a
previous version of the paper.

References

1. Bradley, A.: The use of the area under the ROC curve in the evaluation of machine
learning algorithms. Pattern Recogn. 30(7), 1145–1159 (1997)

2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
3. Chapelle, O., Schölkopf, B., Zien, A.: Semi-supervised Learning (2006)

On Selection Bias with Imbalanced Classes 339

4. Chaudhari, S., Shevade, S.: Learning from positive and unlabelled examples using
maximum margin clustering. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.)
ICONIP 2012. LNCS, vol. 7665, pp. 465–473. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-34487-9 56

5. Chen, C., Liaw, A., Breiman, L.: Using Random Forest to Learn Imbalanced Data.
Technical report, Department of Statistics, University of Berkeley (2004)

6. Cortes, C., Mohri, M., Riley, M., Rostamizadeh, A.: Sample selection bias cor-
rection theory. In: Freund, Y., Györfi, L., Turán, G., Zeugmann, T. (eds.) ALT
2008. LNCS (LNAI), vol. 5254, pp. 38–53. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-87987-9 8

7. Duda, R., Hart, P., Stork, D.: Pattern Classification. John Wiley and Sons Inc.,
New York (2001)

8. Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of the 17th
International Joint Conference on Artificial Intelligence, IJCAI 2001, vol. 2, pp.
973–978 (2001)

9. Elkan, C., Noto, K.: Learning classifiers from only positive and unlabeled data. In:
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2008, pp. 213–220. ACM, New York (2008)

10. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library
for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

11. Fawcett, T., Provost, F.: Adaptive fraud detection. Data Min. Knowl. Disc. 1,
291–316 (1997)

12. Friedman, J.H.: Greedy function approximation: a gradient boosting machine
(2000)

13. Guo, X., Yin, Y., Dong, C., Yang, G., Zhou, G.: On the class imbalance problem.
In: 2008 Fourth International Conference on Natural Computation, ICNC 2008,
vol. 4, pp. 192–201. IEEE (2008)

14. He, H., Garcia, E.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng.
21(9), 1263–1284 (2009)

15. Hu, H., Sha, C., Wang, X., Zhou, A.: A unified framework for semi-supervised PU
learning. World Wide Web 17(4), 493–510 (2014)

16. Huang, J., Smola, A., Gretton, A., Borgwardt, K., Scholkopf, B.: Correcting sample
selection bias by unlabeled data. In: Advances in Neural Information Processing
Systems, vol. 19, p. 601 (2007)

17. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell.
Data Anal. 6(5), 429–449 (2002)

18. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: one-sided
selection. In: Proceedings of the Fourteenth International Conference on Machine
Learning (ICML), pp. 179–186. Morgan Kaufmann (1997)

19. Li, H., Chen, Z., Liu, B., Wei, X., Shao, J.: Spotting fake reviews via collective
positive-unlabeled learning. In: IEEE International Conference on Data Mining
(ICDM 2014) (2014)

20. Li, Q., Wang, Y., Bryant, S.: A novel method for mining highly imbalanced high-
throughput screening data in PubChem. Bioinformatics 25(24), 3310–3316 (2009)

21. Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data. Wiley, New
York (2002)

22. Liu, A., Ziebart, B.: Robust classification under sample selection bias. In: Advances
in Neural Information Processing Systems 27: Annual Conference on Neural Infor-
mation Processing Systems 2014, Montreal, Quebec, Canada, 8–13 December 2014,
pp. 37–45 (2014)

http://dx.doi.org/10.1007/978-3-642-34487-9_56
http://dx.doi.org/10.1007/978-3-642-34487-9_56
http://dx.doi.org/10.1007/978-3-540-87987-9_8
http://dx.doi.org/10.1007/978-3-540-87987-9_8

340 G. Jacobusse and C. Veenman

23. Malof, J., Mazurowski, M., Tourassib, G.: The effect of class imbalance on case
selection for case-based classifiers: an empirical study in the context of medical
decision support. Neural Netw. 25(1), January 2012

24. Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation: learning bounds
and algorithms. CoRR

25. du Plessis, M., Niu, G., Sugiyama, M.: Analysis of learning from positive andun-
labeled data. In: Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems, Montreal, Quebec, Canada,
8–13 December 2014, pp. 703–711 (2014)

26. Ramoni, M., Sebastiani, P.: Robust learning with missing data. Mach. Learn. 45(2),
147–170 (2001)

27. Shimodaira, H.: Improving predictive inference under covariate shift by weighting
the log-likelihood function. J. Stat. Plann. Infer. 90(2), 227–244 (2000)

28. Van Vlasselaer, V., Akoglu, L., Eliassi-Rad, T., Snoeck, M., Baesens, B.: Guilt-
by-constellation: fraud detection by suspicious clique memberships. In: 2015 48th
Hawaii International Conference on System Sciences (HICSS), pp. 918–927. IEEE,
January 2015

29. Varshney, K., Chenthamarakshan, V., Fancher, S., Wang, J., Fang, D., Mojsilović,
A.: Predicting employee expertise for talent management in the enterprise. In:
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2014, pp. 1729–1738. ACM, New York (2014)

30. Veenman, C.: Data base investigation as a ranking problem. In: Proceedings of
the European Intelligence and Security Informatics Conference (EISIC), Odense,
Denmark, 21–24 August 2012

31. Visa, S., Ralescu, A.: Issues in mining imbalanced data sets - a review paper. In:
Proceedings of the Sixteen Midwest Artificial Intelligence and Cognitive Science
Conference, pp. 67–73 (2005)

32. Zadrozny, B.: Learning and evaluating classifiers under sample selection bias. In:
Proceedings of the Twenty-First International Conference on Machine Learning,
ICML 2004, p. 114. ACM, New York (2004)

33. Zhou, J., Pan, S., Mao, Q., Tsang, I.: Multi-view positive and unlabeled learning.
In: Proceedings of the 4th Asian Conference on Machine Learning, ACML 2012,
Singapore, Singapore, 4–6 November 2012, pp. 555–570 (2012)

34. Zhu, X.: Semi-supervised learning literature survey. Technical report (2006)

A Framework for Classification in Data Streams
Using Multi-strategy Learning

Ali Pesaranghader1(B), Herna L. Viktor1, and Eric Paquet1,2(B)

1 School of Electrical Engineering and Computer Science,
University of Ottawa, Ottawa, Canada

{apesaran,hviktor,eric.paquet}@uottawa.ca
2 Information and Communications Technologies,

National Research Council of Canada, Ottawa, Canada
eric-paquet@nrc-cnrc.gc.ca

Abstract. Adaptive online learning algorithms have been successfully
applied to fast-evolving data streams. Such streams are susceptible to
concept drift, which implies that the most suitable type of classifier often
changes over time. In this setting, a system that is able to seamlessly
select the type of learner that presents the current “best” model holds
much value. For example, in a scenario such as user profiling for security
applications, model adaptation is of the utmost importance. We have
implemented a multi-strategy framework, the so-called Tornado envi-
ronment, which is able to run multiple and diverse classifiers simultane-
ously for decision making. In our framework, the current learner with the
highest performance, at a specific point in time, is selected and the corre-
sponding model is then provided to the user. In our implementation, we
employ an Error-Memory-Runtime (EMR) measure which combines the
error-rate, the memory usage and the runtime of classifiers as a perfor-
mance indicator. We conducted experiments on synthetic and real-world
datasets with the Hoeffding Tree, Naive Bayes, Perceptron, K-Nearest
Neighbours and Decision Stumps algorithms. Our results indicate that
our environment is able to adapt to changes and to continuously select
the best current type of classifier, as the data evolve.

Keywords: Data stream mining · Classification · Concept drift ·
Parallel learning · Multi-strategy learning · Adaptive learning

1 Introduction

Online and adaptive learning from evolving data streams have attracted the atten-
tion of many researchers during the last decade. Online learning algorithms con-
tinuously update their classification models by processing instances one-by-one to
avoid any performance degradation [1,15]. Adaptive learning algorithms not only
update classification models online but also monitor any change in the data dis-
tribution (the so-called concept drift), by using drift detectors. Subsequently, the

c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 341–355, 2016.
DOI: 10.1007/978-3-319-46307-0 22

342 A. Pesaranghader et al.

models areupdatedonce adrift is detected [2–6].Online andadaptive learningalgo-
rithms have been successfully applied in machine learning applications, robotics,
recommender systems, and intrusion detection systems [7–9].

Recently, there has been a surge of interest in so-called pocket data mining,
where the aim is to run data mining models on small devices [13]. In this setting,
the models produced by data stream mining algorithms should not only have
low error-rates. Rather, the learning techniques should also be lightweight and
efficient in terms of runtime and other resource allocations. Specifically, it has
been shown that running even a lightweight decision tree classifier will often crash
a mobile device [13,14]. It then becomes important to consider issues such as
storage space and memory utilization, when building models within a streaming
environment.

However, in most streaming studies [2–9] the error-rate (or accuracy) is used
as the defining measure of performance for evaluating adaptive learners. The
interplay with memory usage and runtime considerations has only been investi-
gated in a few studies. For example, Bifet et al. [10] considered memory, time
and accuracy to compare the performances of ensembles of classifiers. Here, each
measure was individually used for evaluation. In [11], Bifet et al. introduced the
RAM-Hour measure, where every RAM-Hour equals to 1 GB of RAM occupied
for one hour, to compare the performance of three versions of perceptron-based
Hoeffding Trees. In addition, Zliobaite et al. [12] proposed the return on invest-
ment (ROI) measure for probing whether adaptation of a learning algorithm is
beneficial. They concluded that adaptation should only take place if the expected
gain in performance, measured by accuracy, exceeds the cost of other resources
(e.g. memory and time) required for adaptation. In a recent study by Olorun-
nimbe et al. [13], the ROI measure is employed to adapt the number of classifiers
used in an ensemble setting.

In this paper, we introduce the Tornado framework that addresses the
above-mentioned issues. In our environment, we implemented a number of very
diverse learners that are run in parallel against a single data stream. A dynamic,
multi-strategy learning approach is followed, where diverse classifiers co-exist.
All of the learners access the stream at the same time and proceed to construct
their individual models in parallel. This framework thus stands in contrast to
existing environments, such as MOA [15] and Weka [16], where the different
types of classifiers are run independently and/or where an ensemble is employed.
We also introduce an Error-Memory-Runtime (EMR) measure that is used to
continuously assess and rank the performance of the different types of classifiers.
This ranking is subsequently used to dynamically select the model constructed
by the current “best” learner and present it to the users.

The remainder of this paper is organized as follows: The next section intro-
duces the EMR measure that we use to select the “best” model at a specific time.
We detail our Tornado framework in Sect. 3. Section 4 describes our experimen-
tal evaluation, and Sect. 5 concludes the paper.

A Framework for Classification Using Multi-strategy Learning 343

2 Balancing Performance Measures

As stated above, error-rate is most often used to evaluate the performance of
classifiers against a data stream that is susceptible to concept drift. Intuitively, as
illustrated in Fig. 1, a change in the distribution of the data, as caused by concept
drift, may lead to the error-rates of different types of classifiers to increase or
decrease. In this figure, we simulate a number of drift points and show that,
as a drift occurs, the classifier with the lowest error-rate changes. Based on this
observation, it follows that a multi-strategy learning system where different types
of classifiers co-exist and where the model, from the current “best” learner is
provided to the users, may hold much value.

Fig. 1. Illustration of concept drift and error-rate interplay

However, following an “error-rate-only” approach is not beneficial in all
settings. For instance, in an emergency response setting, the response time,
i.e. the time it takes to present a model to the users, may be the most important
criterion. That is, users may be willing to sacrifice accuracy for speed and par-
tial information. Further, reconsider the area of pocket (or mobile) data mining,
which has much application in areas such as defense and environmental impact
assessment [14]. Here, the memory resources may be limited, due to connection
issues, and thus reducing the memory footprint is also of importance.

In such a pocket data mining setting, consider two classifiers C1 and C2

which are used for classification over stream S. Suppose that the current model
constructed by classifier C1 has an 8.0 % error-rate, 20 MB memory usage, and
100 s runtime. On the other hand, the model constructed by classifier C2 has
the same error-rate, 1.5 MB memory usage, and 10,000 s runtime. It follows that
these two classifiers have the same level of error-rate. However, the memory usage

344 A. Pesaranghader et al.

of the first classifier may terminate the program, when running on a mobile device
[14]. Further, the second classifier may not be suitable in an emergency response
setting, where the goal is to optimize just-in-time decision making.

Based on these observations, we introduce the Error-Memory-Runtime
(EMR) measure. The EMR measure is defined as:

EMRC =
we · EC + wm · MC + wr · RC

we + wm + wr
(1)

where we is the error-rate cost weight, EC is the error-rate of classifier C,
wm refers to the memory usage cost weight, MC denotes the memory usage of
classifier C, wr depicts the runtime cost weight and RC refers to the runtime of
classifier C. We define the domain dependent cost weights for error-rate, memory
usage and runtime to emphasize their importance as we measure the cost of
classifiers. In order to use the Eq. (1), we normalize the values of error-rate,
memory usage and runtime. A high EMR value means that the classifier has
resulted in a high error-rate, high memory usage, and/or high runtime. Hence, a
classifier with the lowest EMR is preferred in a multi-strategy learning setting.

In the real world, it follows that the values of the three weights (we, wm, wr)
will be set to reflect the current domain of application. For instance, a classifier
which has been shown to be very slow over the last period of time may be made
to fade away. Alternatively, if the memory resources are limited, such as the
case in a pocket data mining scenario [13], the value of wm may be set higher.
On the other hand, if memory is abundant, but accuracy and speed of model
construction are of importance, the wm value may be much lower (or even set
to zero).

We use the EMR measure to score each classifier as follows. The score of
classifier C is calculated by Eq. (2). Since the lowest EMR value is preferred, it
follows that the highest score is preferred. Deduction of the lowest EMR from 1
results in the highest score.

ScoreC = 1 − EMRC (2)

The average EMR which represents the average cost of a classifier over time
is defined as follow:

EMRC =
1
T

·
T∑

τ=1

EMRC
τ (3)

In this equation, T is the total number of EMRs calculated for the classifier
C so far and EMRC

τ is the τ th EMR of that classifier. In addition, the average
score of the classifier C is defined as:

ScoreC = 1 − EMRC (4)

3 The Tornado Framework

In this section, we introduce the Tornado framework, coded in Python, as out-
lined in Fig. 2. Recall that, in our framework, a number of diverse classifiers are

A Framework for Classification Using Multi-strategy Learning 345

executed in parallel, against the same stream. In our system, a number of diverse
base classifiers co-exist. That is, we include classifiers with different learning styles
such as rule-based learners, decision trees, and nearest neighbour approaches in
our Framework. This choice is based on the observation that employing diverse
learning styles often leads to highly accurate and stable models.

Fig. 2. The Tornado framework

We focus on the Stream Reader, Classifiers, Drift Detectors and
EMR Calculator components of the framework in this section. The inputs
are a Stream, the error-rate weight we, the memory usage weight wm, and the
runtime weight wr. Our framework operates based on the prequential approach
where instances are first tested and then used for training, allowing for a maxi-
mum usage of the data [1,18].

The framework’s workflow is as follows. Initially, the Stream Reader reads
instances from the stream one-by-one, and sends each to the learners for model
construction. Each learner builds incremental models. That is, it first tests the
instance and then trains from the latter for updating its model. At the same time,
Classifiers send their statistics (e.g. error-rate and total number of instances
observed since the last drift), to their respective Drift Detector in order to
detect a potential occurrence of a drift. Also, each one of the classifiers sends the
error-rate, memory usage and runtime (including testing and training time) to
the EMR Calculator in order to evaluate the scores which are subsequently
ranked. As a result, the current model with the highest rank is presented to the
user. This selection may change, as we learn incrementally from the stream and
concept drift occurs. This process continues until either a pre-defined condition
is met or when all the instances in the stream are observed.

The following observation is noteworthy. Our multi-strategy framework con-
tains different types of base learners, i.e. it is different from an ensemble of
classifiers. In this framework, the individual learners proceed independently to
construct their models. The reason for this design decision is that we aim to

346 A. Pesaranghader et al.

utilize diverse learning strategies that potentially address concept drifts differ-
ently. However, future work may include incorporating lightweight ensembles,
i.e. ensembles with lower memory utilization, into our Framework.

Figure 3 gives an example showing how Tornado runs the classifiers simul-
taneously and then recommends the best one by considering their scores at each
time interval. During τ0 to τn, classifier C1 is considered as being the best clas-
sifier. The data distribution change at τn. It follows that, in the interval in
between τn to τ2n, classifier C3 is the best classifier and is recommended to the
user. Then, a drift occurs at τ2n which results in classifier C2 becoming the one
with the highest score.

Fig. 3. Recommending the classifier with the highest score

The pseudocode of our approach is shown in Algorithm 1. The inputs are a
Stream, a list of Classifiers, the error-rate weight we, the memory usage weight
wm, and the runtime weight wr. The outputs are the scores of classifiers and the
classifier recommended. The first instance is used to train all classifiers. Future
instances are tested and used for the training by the classifiers. If there is a drift,
the classifier and the corresponding drift detector are reset. When an instance is
processed, the CalculateScores function is invoked in order to calculate the
scores associated with the classifiers. Within this function, the NormalizeList
function normalizes the error-rate, the memory usage and the runtime. Sub-
sequently, the CalculateEMR function calculates the EMRs associated with
the various classifiers. Finally, all of the classifiers scores are shown to the users
and the classifier with the current lowest EMR is recommended. Recall that this
process continues until the process is terminated by the user, or the end of the
stream is met.

A Framework for Classification Using Multi-strategy Learning 347

Algorithm 1. High-level Pseudocode of the Tornado Framework
1: inputs:

stream � Stream of Instances
classifiers � List of Classifiers
we, wm, wr � Error-rate, Memory usage, Runtime Weights

2: outputs:
scores � Scores of Classifiers
classifier recommended � Classifier Recommended

3: for each instance in stream do
4: X = instance.X � Values of Attributes
5: y = instance.y � Real Class
6: for each classifier in classifiers do
7: y′ = classifier.test(X) � Predicted Class
8: classifier.update error rate(y, y′)
9: if classifier.detector.drift is True then

10: classifier.reset() � Resetting the Classifier and its Detector
11: else
12: classifier.train(X)
13: end if
14: end for
15: scores = CalculateScores(classifiers, we, wm, wr)
16: classifier recommended = GetBestClassifier(scores)
17: Printout(scores) � Printing out the Scores of Classifiers
18: Recommend(classifier recommended) � Printing out the Best Classifier
19: end for

20: function CalculateScores(classifiers, we, wm, wr)
21: errors, memories, runtimes, scores = []
22: for each classifier in classifiers do
23: errors.append(classifier.error)
24: memories.append(classifier.memory)
25: runtimes.append(classifier.runtime)
26: end for
27: NormalizeList(errors, memory, runtimes)
28: for i in range(0, classifiers.length) do
29: emr = CalculateEMR(errors[i], memories[i], runtimes[i], we, wm, wr)
30: scores.append(1 - emr)
31: end for
32: return scores
33: end function

34: function CalculateEMR(e, m, r, we, wm, wr)
35: return (we · e + wm · m + wr · r)/(we + wm + wr)
36: end function

37: function GetBestClassifier(scores)
38: return classifiers[scores.index(scores.max())]
39: end function

348 A. Pesaranghader et al.

4 Experimental Evaluation

In this section, we describe our experimental evaluations against seven synthetic
and five real-world datasets from the data stream mining domain [3,10,11,17].
The Hoeffding Tree (HT), Naive Bayes (NB), Perceptron (PR), K-NN, and Deci-
sion Stump (DS) learning algorithms are available in our framework. In all exper-
iments, the parameters of the Hoeffding Tree are set to δ = 10−7 (the allowed
chance of error), τ = 0.05 (the tie) and nmin = 200 (the minimum number of
observation at each leaf), as determined in [19]. The Perceptron’s learning rate
is set to α = 0.01, as determined in [11]. From the preliminary experiments, we
found that 5-NN is the most suitable classifier of the K-NN family in terms of
error-rate, memory usage and runtime results.

In our current experimental setup, the error-rate weight we, the memory
usage weight wm and the runtime weight wr are all set to one in order to avoid
any bias. We used the Drift Detect Method (DDM) [3] for drift detection, as it
is less subject to false alarm and requires less memory [1,3,6]. We report the
error-rate, the memory usage (in kilobytes) and the runtime (in seconds) of the
classifiers at every thousand instances (this value was set by inspection). All
experiments were executed on an Intel Core i7-3770 CPU Quad Core 3.4 GHz
with 16 GB of RAM running on Windows 10.

4.1 Experiments on Synthetic Datasets

We generated seven synthetic datasets, as described in [3,17], for our exper-
iments. Each dataset contains two class labels of positive and negative, and
100,000 (one hundred thousand) instances. Concept drifts occur at every 20,000
instances in the Sine1, Sine2 and Mixed, at every 25,000 instances in the Cir-
cles, and at every 33,333 instances in the Stagger datasets.

– Sine1 · with abrupt concept drift : It consists of two attributes x and y uni-
formly distributed within the interval [0, 1]. Instances under the curve sin(x),
i.e. the classification function, are classified as positive and other instances as
negative. At a drift point, the classification paradigm is reversed, e.g. instances
under the curve are classified as negative while the remaining instances are
classified as positive.

– Sine2 · with abrupt concept drift : Like Sine1, it has two attributes x and y
which are uniformly distributed in between 0 and 1. The classification function
is 0.5+0.3∗sin(3πx). Instances under the curve are classified as positive while
the other instances are classified as negative. At a drift point, the classification
paradigm is inverted.

– Circles · with gradual concept drift : It involves two attributes x and y which
are uniformly distributed. The classification is performed with four disk func-
tions. The boundary of each disk is defined by a circle <(xc, yc), rc> that
is further described by the function (x − xc)2 + (y − yc)2 − r2c = 0, where
(xc, yc) is the center and rc is the radius. The parameters for the four disks are
<(0.2, 0.5), 0.15>, <(0.4, 0.5), 0.2>, <(0.6, 0.5), 0.25> and <(0.8, 0.5), 0.3>
respectively. A change in the classification function results in a drift.

A Framework for Classification Using Multi-strategy Learning 349

– Stagger · with abrupt concept drift : It contains only three nominal attributes
of size {small, medium, large}, color {red, green} and shape {circular, non-
circular}. Before the first drift point, instances are labelled positive if color =
red∧size = small. Then after this point and before the second drift, instances
are classified positive if color = green∨shape = circular, and finally after this
second drift point, instances are classified positive only if size = medium ∨
size = large.

– Mixed · with abrupt concept drift : It has two Boolean attributes v and w,
and two numeric attributes uniformly distributed in the interval [0, 1]. The
instances are classified as positive, if at least two of the three following condi-
tions are satisfied, namely two of v, w and/or y < 0.5 + 0.3 ∗ sin(3πx) hold.
The classification paradigm is reversed, after each drift point.

– Sine11
100,000 • Sine21

100,000 (S1•S2): We generated this stream by creating
the union of Sine1 and Sine2.

– Stagger1
100,000 • Mixed1

100,000 • Sine11
100,000 (S•M•S1): We generated

this stream through concatenating all the instances in Stagger, Mixed, and
Sine1. That is, we appended all attributes and all classes.

Next, we discuss our experimental results when applying our multi-strategy
learning framework to these data streams. The reader should recall that the
main aim of these experiments was to illustrate how the “best” type of classifier
changes over time, in the presence of concept drift.

We illustrated the evolution of classifiers’ scores, error-rates, memory usage
and runtime over time for the Sine1•Sine2 and Stagger•Mixed•Sine1 data
streams in Figs. 4 and 5, respectively. The “current best” classifier is shown at
the top of the Figures.

Figure 4 shows that Perceptron initially performs better than the other clas-
sifiers in terms of the combined error-rate, memory usage, and runtime. However,
Naive Bayes, Decision Stump and 5-NN are better choices towards the end of the
stream. Specifically, Naive Bayes takes over as the best classifier until the end of
the stream is reached. Despite the fact that the Hoeffding Tree and 5-NN classi-
fiers have a lower error-rate than Decision Stump, their global performances are
lower because of their memory usages and runtimes, respectively.

In Fig. 5, we compare the performances of classifiers as instances arrive over
time for S•M•S1. At first, Perceptron globally dominates the other classifiers for
the first 20 % of the instances. Then, it is outperformed by Decision Stump until
35 % of the instances have been observed and to be, in turn, outdone by Naive
Bayes for the remainder of the stream, with Perceptron a close second.

We present the average scores for the five types of classifiers in Table 1. These
values are included to depict the general behaviours of the classifiers against our
synthetic data streams. Our analysis shows that there is no clear winner, in
terms of overall performance. However, we notice that the Perceptron and Naive
Bayes classifiers are the best at balancing the three indicators. Further, memory
usages of Hoeffding trees are prohibitive, while the average runtimes of K-NN
are the highest. Thus, the Hoeffding tree algorithm would be better suited in an

350 A. Pesaranghader et al.

Fig. 4. S1•S2 Data stream: Scores, error-rates, memory usages and runtimes

environment where memory is not a critical resource, while K-NN seems to be
unsuitable for building just-in-time models.

In this subsection we conducted experiments on the synthetic datasets and
we confirmed, as expected, that the “best” classifier changes over the time, as
drifts occur. In the next subsection we continue our experiments over real-world
datasets.

4.2 Experiments on Real-World Datasets

In this section, we first describe the real-world datasets used in our experiments.
These datasets were obtained from the UCI Machine Learning Repository [20]:

– Nursery [21]: It consists of eight nominal attributes, five class labels and
12,960 instances. This dataset was used to recommend nursery to families.

– Shuttle dataset has nine numeric attributes, seven class labels and 58,000
instances. It was designed to predict suspicious states during a NASA shuttle
mission. We use the training set which consists of 43,500 instances.

A Framework for Classification Using Multi-strategy Learning 351

Fig. 5. S•M•S1 Data stream: scores, error-rates, memory usages and runtimes

– Electricity (Elec) [22]: This dataset was collected from the Australian
New South Wales Electricity company and has 45,312 instances with one nom-
inal attribute, seven numeric attributes, and two class labels.

– PokerHand [23]: The dataset consists of 1,000,000 instances and eleven
attributes. Each record of the PokerHand dataset is an example of a hand
consisting of five playing cards drawn from a standard card deck of 52. Each
card is described using two attributes (the suit and rank), for ten predictive
attributes.

– Adult [24]: It has six numeric and eight nominal attributes, two classes, and
48,842 instances. It allows predicting if a person has an annual income higher
than $50,000.

We again followed the prequential learning method, as explained in Sect. 3,
and proceed to incrementally construct models against these real-world datasets.
Figures 6 and 7 show the performances of the various classifiers against the data
streams. Note that the “spikes” in performance correspond to drift points. These
figures clearly illustrate the fact that the performances of the various classifiers

352 A. Pesaranghader et al.

Table 1. Average scores. of classifiers for the synthetic datasets

Datasets HT NB PR 5-NN DS

Sine1 0.537 0.938 0.980 0.655 0.639

Sine2 0.595 0.951 0.665 0.649 0.786

Circles 0.517 0.918 0.663 0.635 0.739

Stagger 0.613 0.879 0.997 0.621 0.601

Mixed 0.569 0.940 0.869 0.635 0.648

S1•S2 0.567 0.932 0.809 0.656 0.692

S•M•S1 0.566 0.948 0.892 0.441 0.714

considerably vary over time. In order to continuously obtain the best perfor-
mances, the best classifier must be chosen, leading to an adaptive environment
where the models presented to the users change as the data evolve. For example,
the initial classifier with the highest score for the Nursery dataset is Decision
Stump, while the Naive Bayes learner performs better towards the end of the
stream. For the Shuttle data stream, Naive Bayes performs well, except just
after concept drift has occurred where Perceptron does best. There is interplay
between the Perceptron and Decision Stump classifiers early in the Electric-
ity data stream, while Naive Bayes and 5-NN also produce high quality models
towards the end of the stream. For the PokerHand, the Perceptron and Deci-
sion Stump classifiers are hand-in-hand at the beginning of the stream, while the
Perceptron, Hoeffding tree and Naive Bayes classifiers produce the best models
later on. The Adult data stream is the only one that has a clear winner, namely
the Naive Bayes learner. Thus, the use of multi-strategy learning does not seem
advantageous on this particular dataset.

Fig. 6. The behaviors (overall scores) of classifiers for Nursery and Shuttle data
streams

A Framework for Classification Using Multi-strategy Learning 353

(a) Electricity Data Stream (b) PokerHand Data Stream

(c) Adult Data Stream

Fig. 7. The behaviors (overall scores) of classifiers for Electricity, PokerHand and
Adult data streams

Recall that the aim of our Tornado framework is to create a multi-strategy
environment in which classifiers with diverse learning strategies co-exist, and
where the most suitable model is presented to the user at any given time. Our
system currently includes five different learning algorithms. In the future, we
also plan to extend this framework to include other types of classifiers. We are
especially interested in including light-weight versions of algorithms. It further
follows that the importance of the various weights will heavily depend on the
domain of application. We will investigate the optimization of the various weights
associated with the measures. Our future work will also focus on dynamically
adapting the membership based on the performance of the individual classifiers.
We envisage a system where new types of classifiers are added while poorer
performing classifiers (e.g. ones that performed well on older data, or never
performed well) retire. The valuable retirees are maintained, offline, in order to
handle re-occurring concept drifts. Significantly, this will enable the system to
revisit history and to adapt to new drifts that follow past patterns.

354 A. Pesaranghader et al.

5 Conclusion and Future Work

This paper presented the multi-strategy Tornado framework in which various
diverse learners co-exist. These learners access the same stream and construct
their models in parallel. In our environment, the current model created by the
current “best” type of classifier, at a specific point in time, is presented to the
user. We utilized an EMR measure which combines the classifiers’ error-rate,
memory usage and runtime for performance evaluation. Our experimental results
show how the classifier with the highest performance seamlessly adapts, as the
stream ebbs and flows.

As stated above, our future research will include varying these three different
weights based on domain-specific constraints. When aiming to run classifiers on
small devices as the memory restrictions need further consideration. The use
of anytime algorithms that are able to fade classifiers in and out (e.g., retiring
current poor performers) presents an important new direction [13,14]. The reader
will notice we did not include the total costs of memory in our experiments.
We plan to include this value in our decision making. Finally, our framework
currently includes five base learners and we will also include other types of
learners.

References

1. Gama, J., Zliobaite, I., Bifet, A., Pecheniziky, M., Bouchachia, A.: A survey on
concept drift adaptation. J. ACM Comput. Surv. 46(4), 1–37 (2014)

2. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In:
7th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (2001)

3. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection.
In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp.
286–295. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28645-5 29

4. Gama, J., Fernandes, R., Rocha, R.: Decision trees for mining data streams. J.
Intell. Data Anal. 10(1), 23–45 (2006)

5. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing.
In: SIAM International Conference on Data Mining, pp. 443–448 (2007)

6. Huang, D.T.J., Koh, Y.S., Dobbie, G., Bifet, A.: Drift detection using stream
volatility. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Soares, C., Gama,
J., Jorge, A. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9284, pp. 417–432.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-23528-8 26

7. Koren, Y.: Collaborative filtering with temporal dynamics. In: 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 447–456
(2009)

8. Lee, W., Stolfo, S.J., Mok, K.W.: Adaptive intrusion detection: A data mining
approach. J. Artif. Intell. Rev. 14(6), 533–567 (2000)

9. Stavens, D., Hoffmann, G., Thrun, S.: Online speed adaptation using supervised
learning for high-speed, off-road autonomous driving. In: 20th International Joint
Conference on Artificial Intelligence, pp. 2218–2224 (2007)

http://dx.doi.org/10.1007/978-3-540-28645-5_29
http://dx.doi.org/10.1007/978-3-319-23528-8_26

A Framework for Classification Using Multi-strategy Learning 355

10. Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavalda, R.: New ensemble meth-
ods for evolving data streams. In: 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 139–148 (2009)

11. Bifet, A., Holmes, G., Pfahringer, B., Frank, E.: Fast perceptron decision tree
learning from evolving data streams. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi,
V. (eds.) PAKDD 2010. LNCS (LNAI), vol. 6119, pp. 299–310. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-13672-6 30

12. Zliobaite, I., Budka, M., Stahl, F.: Towards cost-sensitive adaptation: when is it
worth updating your predictive model? Neurocomputing 150, 240–249 (2015)

13. Olorunnimbe, M.K., Viktor, H.L., Paquet, E.: Intelligent adaptive ensembles for
data stream mining: A high return on investment approach. In: Ceci, M., Loglisci,
C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2015. LNCS (LNAI), vol.
9607, pp. 61–75. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39315-5 5

14. Gaber, M., Stahl, F., Gomes, J.B.: Pocket Data Mining: Big Data on Small Devices.
Studies in Big Data. Springer, Heidelberg (2014)

15. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive online analysis.
J. Mach. Learn. Res. 11, 1601–1604 (2010)

16. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: An update. ACM SIGKDD Explor. Newsl. 11(1), 10–
18 (2009)

17. Kubat, M., Widmer, G.: Adapting to drift in continous domain. In: 8th European
Conference on Machine Learning, pp. 307–310. Springer, Heidelberg (1995)

18. Gama, J., Sebastiao, R., Rodrigues, P.P.: On evaluating stream learning algo-
rithms. J. Mach. Learn. 90(3), 317–346 (2013)

19. Domingos, P., Hulten, G.: Mining high-speed data streams. In: 6th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 71–80
(2000)

20. Lichman., M.: UCI Machine Learning Repository. University of California Irvine,
School of Information and Computer Science (2013)

21. Zupan, B., Bohanec, M., Bratko, I., Demsar, J.: Machine learning by function
decomposition. In: International Conference on Machine Learning (ICML), pp.
421–429 (1997)

22. Harries, M.: Splice-2 Comparative Evaluation: Electricity Pricing. Technical
Report, University of New South Wales, Australia (1999)

23. Cattral, R., Oppacher, F., Deugo, D.: Evolutionary data mining with automatic
rule generalization. In: Recent Advances in Computers, Computing and Commu-
nications pp. 296–300 (2002)

24. Kohavi, P.: Scaling up the accuracy of naive-bayes classifiers: A decision-tree
hybrid. In: 2nd International Conference on Knowledge Discovery and Data Mining
(1996)

http://dx.doi.org/10.1007/978-3-642-13672-6_30
http://dx.doi.org/10.1007/978-3-319-39315-5_5

Networks

Anomaly Detection in Networks
with Temporal Information

Fabrizio Angiulli(B), Fabio Fassetti, and Estela Narvaez

DIMES, University of Calabria, Rende, Italy
{f.angiulli,f.fassetti,e.narvaez}@dimes.unical.it

Abstract. We present a technique for node anomaly detection in net-
works where arcs are annotated with time of creation. The technique aims
at singling out anomalies by taking simultaneously into account informa-
tion concerning both the structure of the network and the order in which
connections have been established. The latter information is obtained by
timestamps associated with arcs. A set of temporal structures is induced
by checking certain conditions on the order of arc appearance denoting
different kinds of user behaviors. The distribution of these structures is
computed for each node and used to detect anomalies. The anomaly score
measures the deviation from the expected number of structures associ-
ated with each node on the basis of the correlation between nodes degree
and numerousness of exhibited structures. The resulting algorithm has
low computational cost and is applicable to large networks. We present
experimental results on some real-life networks showing the reliability of
the approach.

1 Introduction

The large use of social networks supplies a huge amount of data which provides
much information about individuals and individual behaviors reflecting human
relationship in the real world. Such behaviors can be model as relational struc-
tures among the actors of the social network.

Among the interesting hidden knowledge that can be mined by analyzing
node behaviors, a relevant role is played by the anomaly discovery, where the
aim is to find those individuals that can be considered as outliers, since they
assume exceptional behaviors. The problem of finding malicious nodes in net-
works is of interest in many areas such as fake account detection, spammer node
detection, ddos attacks in computer networks, and many others. Much work has
been made to detect anomalous nodes mostly based on detecting anomalous
structures around the individual [1].

However, in many scenarios, the exceptional behavior of an individual has
not to be searched only in the structural composition of its neighborhood but

This research has been partially supported by the PRIN project 20122F87B2 titled
“Compositional Approaches for the Characterization and Mining of Omics Data”
co-finance by the Italian Ministry of Education, University and Research.

c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 359–375, 2016.
DOI: 10.1007/978-3-319-46307-0 23

360 F. Angiulli et al.

the exceptional behavior is characterized by the temporal sequence of connection
establishments. Thus, taking into account the time dimension sheds interesting
lights on individuals’ behaviors. As such, our approach is orthogonal to the works
aimed at mining structural properties of large static networks.

Consider, for example, the individuals registered to the Facebook social net-
work and arcs between them defined as follows: if a marks b as a friend there
is an arc from a to b and, vice versa, there is an arc from b to a if b marks a
as a friend. Thus, the arc from a to b represents that either a sends a Facebook
request to b or a accepts a Facebook request coming from b.

Consider, now, an individual a with five hundreds friends then with five
hundreds other individuals there is a connection from a and a connection towards
a. Clearly, it is not anomalous since such a number of friends is not so exceptional.
But, if a is always the first to send Facebook friend requests and all the five
hundreds just accept this request (and, then, for any b friends of a the arc from
a to b always precedes the arc from b to a), a becomes a clear outlier.

The problem tackled with in the rest of the paper can be defined as follows:

Anomaly detection in timed networks. Given a timed network, that is a net-
work where each arc is equipped with a timestamp denoting the time of creation
of the corresponding link, find the nodes in the network that are considerably
dissimilar with respect to the rest of the network nodes when both the structure
of their neighborhood and the order in which the structure has been established
are taken into account.

Different approaches have been proposed in the literature that search for
anomalies in dynamic networks, among them [2–6].

We point out that the approach here proposed is substantially different from
techniques dealing with dynamic networks. Indeed, our aim is not to determine
the points in time in which a certain portion of the networks (typically a commu-
nity or a subgraph) exhibited a significant change, as usually done by dynamic-
graph anomaly detection techniques. Rather, our primary aim is to analyze each
single node by taking simultaneously into account its temporal footprint.

In this sense our approach can be regarded as a static-graph anomaly detec-
tion technique in which temporal information has a privileged role in character-
izing the behavior of network nodes.

The rest of the work is organized as follows. Section 2 reports preliminary
notions and describe how the individual behavior is modeled; subsequent Sect. 3
illustrates the specific behavior models we retrieve to detect outliers; Sect. 4 is
devoted to discuss the outlier score and its properties; Sect. 5 presents the several
phases of the mining algorithm; Sect. 6 depicts the experiments we conduct on
real datasets; finally, Sect. 7 concludes the work.

2 Behaviors on Timed Networks

In this section, we report the preliminary definitions and the notations employed
throughout the paper. We aim at modeling the behavior of a node in the network
through the way the node has interacted with its neighborhood during the time.

Anomaly Detection in Networks with Temporal Information 361

Thus, first of all we introduce the model of network equipped with time infor-
mation tackled by the proposed technique.

Definition 1 (Timed Network). A timed network (or, simply, network) is a
triple N = (V,E, τ), where V = {v1, . . . , vn} is a set of nodes, E = {e1, . . . , em}
is a set of arcs, with each ei = 〈si, di〉 an ordered pair of nodes in V , and τ
a function associating each arc 〈s, d〉 in E with a timestamp representing the
instant of time in which the connection from s to d is established.

Moreover, given a node v, we refer to the set of nodes v′ such that there is an
arc from v to v′ as the set of outgoing neighbors of v (or, simply, neighbors) and
we denote it as

−→
N (v). Vice versa, the set of nodes v′ such that there is an arc

from v′ to v is referred to as the set of ingoing neighbors of v and we denote it
as

←−
N (v). Finally, the total number of outgoing and ingoing neighbors is denoted

as deg(v), then deg(v) = |−→N (v)| + |←−N (v)|.
Next, we provide formal definition of contact and awareness between nodes

that are exploited for modeling interactions.
Given a network N = (V,E, τ) and two nodes v and v′in V , we say that v

contacts v′ at time t if 〈v, v′〉 ∈ E and τ(〈v, v′〉) = t. Also, in this case, we say
that v′ is a contact of v starting from the instant of time t.

For example, in Fig. 1a, v contacts v′ at time t = 10 and, hence, starting from that
time, v′ is a contact of v.

An interaction between two nodes v and v′ is fired (or established) at time
t if either v contacts v′ at time t or v′ contacts v at time t. In such a case, the
established contact is said to be the contact associated with the interaction.

Given an interaction i between two nodes v and v′, the inverse interaction of i
is the establishment of the contact inverse with respect to the contact associated
with i.

Thus, in Fig. 1a and b, there is an interaction between v and v′ fired at time t = 10
having as associated contact the arc from v to v′ and, then, the inverse interaction
between v′ and v is fired at time t = 20, having as associated contact the arc from
v′ to v.

Next we provide the definition of awareness which intends to model the
intuition that an individual knows another individual, which is not one of its
contacts, due to the presence of a common friend.

Definition 2 (Awareness). Given a network N = (V,E, τ) and two nodes v
and v′ in V , we say that the node v is mediately aware (or, simply, aware) of
v′ at time ta if there exists a node v′′ in the network N , such that v contacts
v′′ at time t1 , v′′ contacts v′ at time t2, max{t1, t2} ≤ ta and (i) either 〈v, v′〉
is not in E or (ii) ta ≤ τ(〈v, v′〉). Moreover, we call intermediary the node v′′

responsible of the awareness.

362 F. Angiulli et al.

v v′

v′′t1 = 1 t2 = 3

t = 10

t′ = 20

(a)

v v′

v′′t1 = 1 t2 = 15

t = 10

t′ = 8

(b)

Fig. 1. Example

Note that, according to our definition, v is no more aware of v′ once v′

becomes a contact of v, since with the awareness we want to model the mediated
knowledge between individuals.

In Fig. 1a, v is aware of v′ at each instant of time in the range [3, 9]. Starting from
the instant of time t = 10, v′ becomes a contact of v and, then, v is no more aware
of v′. Conversely, in Fig. 1b, v is never aware of v′ and, starting from the instant
of time t = 10, v′ becomes a contact of v.

The notions of contacts and awareness are next exploited to model the behav-
ior of a node within its neighborhood and, in particular, we distinguish between
two families of behaviors: action behavior and reaction behavior.

Definition 3 (Action Behavior). Let N be a network, an action is an inter-
action between two nodes v and v′ of the network fired before that the inverse
interaction is fired.

Let v be a node of a network N and let v′ be one of its neighbor. According to
the above definition, the action behaviors involving v can be both the establishing
of a connection from v to v′ preceding a possibly connection from v′ to v and the
establishing of a connection from v′ to v preceding a possibly connection from v
to v′.

Consider Fig. 1a. There are two actions involving v: (i) the contact from v to v′

which is accomplished before that v′ contacts v and (ii) the contact from v to v′′.
Consider, now, Fig. 1b. There are again two actions involving v: (i) the contact
from v′ to v which is accomplished before that v contacts v′ and (ii) the contact
from v to v′′.

Definition 4 (Reaction Behavior). Let N be a network, a reaction is an
interaction between two nodes v and v′ of the network fired after that the inverse
interaction is fired.

The reaction behaviors involving v are both the establishing of a connection
from v to v′ succeeding a connection from v′ to v and the establishing of a
connection from v′ to v succeeding a connection from v to v′.

Anomaly Detection in Networks with Temporal Information 363

Consider Fig. 1a. There is one reaction involving v: the contact from v′ to v which
is accomplished after that v′ contacts v. Consider, now, Fig. 1b. There is again one
reaction involving v: the contact from v′ to v which is accomplished after that v
contacts v′.

After having defined the concepts of actions and reactions, we can distinguish
among different kinds of actions and reactions on the basis of the properties
holding at the instant of time in which they are performed.

For example, Figs. 1a and b depict two different kinds of actions:

i. the node (v) is aware of the other node (v′) when performs the action of
contacting it (Fig. 1a);

ii. the node (v′) is not aware of the other node (v) when performs the action of
contacting it (Fig. 1b).

In the following Sect. 3 we will describe in details which kinds of actions and
reactions are addressed in this work.

The technique we propose aims at detecting outliers on the basis of their
behavior taking simultaneously into account and suitably combining actions and
reactions. Specifically, each action–reaction couple models a different scenario
and we will denote it with the expression A ↔ R, where A is the action and R
the reaction.

For example, consider the Twitter social network and consider the scenario in
which an individual v starts to follow another individual v′ and v′ does not follow
back v. There, we can individuate an action performed by v and received by v′ and
a reaction performed by v′ (the decision of not following back v) and received by v.

For each scenario there are several involved performers: there is the performer
who makes the action, the performer who receives the action, the performer who
makes the reaction, the performer who receives the reaction and, in some cases,
the performer involved as intermediary. Thus, on each scenario a node can play
different roles. We call structure the coupling of role and scenario. Each structure
defines a precise role played on a precise scenario and is referred to a single node
called actor of the structure.

The previous example induces, then, four structures:

s1: node making action (who decides on its own initiative to follow another
node);

s2: node receiving action (who is followed by another node on its own initiative);
s3: node making reaction (who decides to do not follow back a node by which it

was followed);
s4: node receiving reaction (who is not followed back by a followed node).

For structures s1 and s4 the actor is v while for the structures s2 and s3 the actor
is v′.

Hence, once actions and reactions have been defined, those draw several sce-
narios and relative roles played. Scenarios and associated roles induce a set of
S structures which encodes the node behavior. In particular, evaluating how

364 F. Angiulli et al.

frequently a node v plays each possible role on each scenario (then, how fre-
quent v is the actor of each structure) leads to the building of the vector
φ(v) = (φs1(v), . . . , φsk(v)) which represents the distribution of the roles played
by the node on the different scenarios and φsi(v) represents how frequently v is
the actor of the structure si. This distribution semantically encodes the behavior
of the node in the network and can be effectively exploited to find anomalous
individuals, as detailed in the Sect. 4.

3 Modeled Behaviors

This section is devoted to present the behaviors considered. In particular, we
present the kinds of actions and reactions we capture to gather information for
modeling the overall node behavior. However, the approach is easily extensible
to cover other kinds of actions/reactions.

Given a node v and one of its neighbor v′, next we present the actions taken
into account to model the behavior of v and start by summarizing the notation
employed:

t the instant of time τ(〈v, v′〉) associated with 〈v, v′〉;
t′ the instant of time τ(〈v′, v〉) if 〈v′, v〉 ∈ E; if 〈v′, v〉 is not in E then t′ is set

to −1, meaning that it is not defined;
tM the greatest instant of time smaller than t such that v is aware of v′ at time

tM due to the intermediary v′′, and we refer as vM the node v′′; if v was not
aware of v′ when the connection from v and v′ has been established then tM
is set to −1, meaning that it is not defined.

For the sake of readability, we employ def(t) for indicating that t 	= −1 and
undef(t) for indicating that t = −1.

For each considered action/reaction, we discuss the semantic behavior asso-
ciated with it together with the conditions to be checked in order to verify if the
behavior under analysis is actually assumed.

v v′

t1 = 5 t2 = 15

t = 10

t′ = 20

(a) Action 1

v v′

vM
t1 = 5 t2 = 8

t = 10

t′ = 20

(b) Action 2

Fig. 2. Action behaviors

Anomaly Detection in Networks with Temporal Information 365

(Action 1) a node contacts another node on its own initiative.
This action represents that v contacts v′ before that v′ contacts v
and without v being aware of v′ (see Fig. 2a).

Condition: (undef(t′) ∨ t ≤ t′)
∧

undef(tM)

(Action 2) a node contacts another node due to an intermediary.
This structure means that v contacts v′ before that v′ contacts v but
after that v becomes aware of v′ (see Fig. 2b).

Condition: (undef(t′) ∨ t ≤ t′)
∧

def(tM)
∧

tM < t

v v′

t = 10

t′
1 = 12t′

2 = 25

t′ = 20

(a) Reaction 1

v v′

v′
M

t = 10

t′
1 = 12t′

2 = 15

t′ = 20

(b) Reaction 2

v v′

t = 10

t′
1 = 12t′

2 = 15

(c) Reaction 3

v v′

t = 10

t′
1 = 12t′

2 = 15

t′ = 10

(d) Reaction 4

Fig. 3. Reaction behaviors

As for the reactions, we capture four kinds of reactions for v. Note that,
since these are reactions, we assume that either a connection from v to v′ or a
connection from v′ to v has already been fired.

(Reaction 1) a node directly replies to the node who contacts him:
This reaction models that v′ contacts v since v contacts v′ and not
because v′ becomes aware of v (see Fig. 3a).

Condition: def(t)
∧

def(t′)
∧

t < t′∧ (undef(t′
M) ∨ t′

M < t)

(Reaction 2) a node replies to the node who contacts him due to an
intermediary:
This reaction represents that v′ contacts v after that v contacts v′

but only after that v′ becomes aware of v (see Fig. 3b).
Condition: def(t)

∧
def(t′)

∧
def(t′

M)
∧

t < t′
M < t′

366 F. Angiulli et al.

(Reaction 3) a node does not reply to the node who contacts him:
This is not an actual reaction since it represents that v′ does not
react to the action performed by v (see Fig. 3c).

Condition: def(t)
∧

undef(t′)

(Reaction 4) a node contacts the node who contacts him independently:
This is not an actual reaction since it represents that v′ contacts
v on its own initiative (see Fig. 3d).

Condition: def(t)
∧

def(t′)
∧

t′ = t
∧

undef(t′
M)

Once actions and reactions are defined, we can analyze which scenarios are
modeled and which structures are induced. In particular, we have eight different
scenarios and for each scenario two roles are definable, the node who acts and
the node who reacts. Moreover, for scenarios involving action A2 and/or reaction
R2, also the role of intermediary is definable.

Thus, focusing on a single node v, we can define seventeen structures for it:

structures s1 . . . s4 : v plays the role of performing action A1 and receiving
one of the possible four reactions;

structures s5 . . . s8 : v plays the role of performing action A2 and receiving
one of the possible four reactions;

structures s9 . . . s12 : v plays the role of receiving action A1 and performing
one of the possible four reactions;

structures s13 . . . s16 : v plays the role of receiving action A2 and performing
one of the possible four reactions;

structure s17 : v plays the role of being the intermediary of a couple of
interacting nodes.

For example, consider the scenario depicted in Fig. 1a again: v contacts v′ after
viewing that v′ is a contact of v′′ which is one of its contact. v′ reacts to this
contacting back v. The scenario is then A2 ↔ R1 and the roles are: (1) who makes
the action A2 and receives the action R1, (2) who receives the action A2 and makes
the reaction R1, and (3) who plays the role of intermediary. Thus, after analyzing
this scenario, for the node v we have to update the structure associated with (1),
that is s5; for the node v′ the structure associated with (2), that is s13; and for
the node v′′ the structure associated with (3), that is s17.

4 Anomaly Score

The distribution φs(v) encodes the behavior of the node v in terms of how
much frequently it is involved in the different structures. We can then exploit
the distributions φs in order to determine how typical is the behavior of each
node with respect to the whole population. With this aim, an anomaly score is
assigned to each node.

Given the network N = (V,E, τ), for each structure s ∈ S the regression line
of the set of points Ps(N) = {(deg(vi), φs(vi)) | vi ∈ V } is computed.

Anomaly Detection in Networks with Temporal Information 367

Let αs and βs denote be the parameters of the estimated line. The anomaly
score of the node vi with respect the structure s is defined as:

scs(vi) =
∣∣∣∣
φs(vi) − [αs · deg(vi) + βs]

log2 (1 + deg(vi))

∣∣∣∣ (1)

The numerator of Eq. (1) represents the deviation of the observed number of
structures φs(vi) from the expected one yi, according to the value predicted by
the regression curve yi = αs · deg(vi) + βs. As for the denominator, it serves the
purpose of taking into account the cardinality of the neighborhood of vi, while
the absolute value is needed to capture both the upper tail and the lower tail of
resulting distribution.

Fig. 4. Example of bandwidths associated with the score of a structure (left) and
example highlighting the top twenty anomalies on a real dataset (right).

Figure 4 on the left reports a regression line (the solid curve for k0 = 0,
having parameters α = 0.1 and β = 50) and the bandwidths associated with
different values of anomaly score (specifically, for k1 = 10, k2 = 25, and k3 = 50;
e.g., the score associated with points falling within the dashed bandwidth will
be not greater than k1). Figure 4 on the right reports the structure distribution
associated with a real dataset and the top twenty anomalies according to Eq. (1).

Scores associated with each single structure are then normalized in order to
make them homogeneous

ŝcs(vi) =
scs(vi)

std({scs(v)})
(2)

and, hence, expressed in terms of number of standard deviations.
The anomaly score of a node vi is

sc(xi) =
∑
s

scs(xi), (3)

that is obtained by combining the scores computed with respect to the single
structures.

368 F. Angiulli et al.

v v′

v′
1

v′
h

v1

vk

t1,1 t2,1

t1,k t2,k

t

t′1,1t′2,1

t′1,ht′2,h

t′

(a) analyzed pattern

v v′

t, tM , vM

t′, t′M , v′
M

where tM = max{ti = max{t1,i, t2,i} | ti < t}
vM = vi s. t. max{t1,i, t2,i} = tM

t′M = max{t′i = max{t′1,i, t′2,i} | t′i < t′}
v′
M = v′

i s. t. max{t′1,i, t′2,i} = t′M

(b) annotated graph

Fig. 5. Graph annotation (Phase 1)

5 Algorithm

In this section the algorithm we designed to mine outliers is presented and
its properties are discussed. The algorithm consists in three main phases each
accounted next.

Phase 1. This phase has the intent of enriching the information associated with
the arcs (see Fig. 5). In order to retrieve behaviors illustrated in Sect. 3 we need
to find, for each arc 〈v, v′〉 with associated timestamp t, if v is aware of v′ at
time t, namely we have to search for a node v̂ such that both edge e1 = 〈v, v̂〉 and
edge e2 = 〈v, v̂〉 exist and the timestamps t1 and t2 associated with these edges
are both strictly smaller than t. Among these nodes, we are interested in the node
vM which is the most recent responsible of the fact that v is aware of v′. Finally,
the edge e = 〈v, v′〉 is annotated with the node ve

M and the time teM which is
the instant of time starting by which v is aware of v′ due to ve

M ; in formula teM
is the maximum between the time associated with the arc 〈v, veM 〉 and the time
associated with the arc 〈ve

M , v′〉. Concluding, given a network N = (V,E, τ), the
phase returns the annotated network N+ = (V,E, τ+) where τ+(e) returns the
triple (τ(e), teM , ve

M).

Computational Complexity of Phase 1. As for the cost of this phase, let
N = (V,E, τ) be the analyzed network, let n = |V | and let m = |E|. We iterate
over the set of edges and for each arc e = 〈v, v′〉 in E we iterate over the set−→
N (v) of neighbors of v in order to search vM and, then, for each neighbor v̂ of
v we have to check if there exists an arc from it to v′. This latter operation can

Anomaly Detection in Networks with Temporal Information 369

be performed through a binary search in the list of the outgoing arcs of v̂. Thus,
the overall cost is

∑
〈v,v′〉

∑

v̂∈−→
N (v)

log
−→
N (v̂) = O(m · n · log n) (4)

where n denotes the mean number of neighbors of nodes in the networks.

Phase 1. Network information enrichment
Input: A network N = (V, E, τ)
Output: The annotated network N+

1 foreach edge e = 〈v, v′〉 in E do
2 let t = τ(e) be the timestamp associated with the edge from v to v′;
3 set tM to −1;
4 set vM to ∅;
5 foreach edge ê = 〈v, v̂〉 do
6 let t1 = τ(ê) be the timestamp associated with the edge from v to v̂;
7 if 〈v̂, v′〉 belongs to E then
8 let t2 = τ(〈v̂, v′〉) be the timestamp associated with the edge from v̂

to v′;
9 let t̂ be max{t1, t2};

10 if tM < t̂ < t then
11 set tM to t̂;
12 set vM to v̂;

13 associate tM and vM with the e;
// then substitute τ(e) = t with τ+(e) = (t, tM , vM)– see Fig. 5

Phase 2. This phase has the intent of mining the behavior of each individual
in the network, starting from the annotated network coming from the previous
phase. Then, given an annotated network N+ = (V,E, τ+) we iterate over the
set of nodes V and for each node v in V we iterate over the set of neighbors and
for each neighbor v′ in

−→
N (v) the behaviors depicted in Sect. 3 are evaluated. In

particular, through the information provided by N+ the conditions associated
with the behaviors are checked and, according to the result of the check, the
behavior counters are updated. The result of this phase is then the distribution
of the behaviors for each node.

Computational Complexity of Phase 2. As for the cost of this phase, let
N+ = (V,E, τ+) be the analyzed network, let n = |V | and let m = |E|. Iterating
over the set of nodes and for each node v iterating over the set of neighbors

−→
N (v)

corresponds to iterating over the set of edges. For each edge, in constant time
we can obtain the required information by N+ and we can evaluate all the
conditions. Since the number of conditions is fixed, also this latter step can be
accomplished in constant time. Thus, the overall cost of this phase is O(m).

370 F. Angiulli et al.

Phase 2. Structures computation
Input: An annotated network N+ = (V, E, τ+)
Output: The distribution of structures φv for each node v

1 foreach node v in V do
2 set φs(v) to 0 for each structure s;
3 foreach neighbor v′ of v do
4 extract tuple T =

(
τ+(〈v, v′〉), τ+(〈v′, v〉));

// T contains then (t, tM , vM , t′, t′
M , v′

M)– see Fig. 5b
5 foreach action a do
6 foreach reaction r compatible with a do
7 let s be the structure associated with the pair a ↔ r;
8 if Ca(T) and Cr(T) then
9 update φs(v);

10 if a ↔ r involves node vM then
11 update φŝ(vM);

Phase 3. This phase has the intent of detecting outlier individuals. Starting
from the distribution of behaviors computed by the previous phase, we have
to compute the outlier score as defined in Sect. 4. The first step consists in
computing, for each considered structure, the regression line. The second step
consists in computing for each structure s and for each node v the score scs(v)
achieved by node v on the structure s by means of Eq. (1). Next the standard
deviation of the scores assumed by nodes on structure s is computed and, then,
this value is exploited to normalize the scores (lines 6–7).

After that all the structures have been analyzed, the outlier score of each
node v is computed by properly aggregating the score achieved by v on each
single structure by means of Eq. (3).

Computational Complexity of Phase 3. As for the cost of this phase, let
N+ = (V,E, τ+) be the analyzed network, let n = |V | and let m = |E|. Comput-
ing the regression line has a cost linear with respect to the number n of nodes.
Next, for each node we had to compute the score. Since Eq. (1) is computable in
constant time, also this step has a cost linearly dependent from n. Normalizing
the scores costs O(n) as well and, finally, also computing the overall outlier score
costs O(n) since Eq. (3) iterates over a fixed number of structures.

6 Experimental Results

In this section experimental results concerning the introduced technique are pre-
sented. All the datasets employed are from the Online Social Networks Research.
All the dataset underwent a preprocessing during which multiple and self links
have been removed. The Digg friends dataset1 contains data about stories
1 http://www.isi.edu/integration/people/lerman/downloads.html.

http://www.isi.edu/integration/people/lerman/downloads.html

Anomaly Detection in Networks with Temporal Information 371

Phase 3. Outlier mining
Input: The distribution of structures φv for each node v
Output: The overall outlier score for each node v

1 foreach structure s do
2 compute the regression line of the observations (deg(v), φs(v));
3 foreach node v in N do
4 compute the score scs(v) of v for structure s through Eq. (1);

5 compute the standard deviation of the score std({scs(v)});
6 foreach node v in N do
7 compute the normalized score of v for structure s through Eq. (2);

8 foreach node v in N do
9 compute the overall score of v through Eq. (3);

promoted to Digg’s front page2 over a period of a month in 2009. The dataset
contains Digg users who have voted for a story. We considered the voters’ friend-
ship links, where a link user id → friend id means that user id is watching
the activities of (is a fan of) friend id. User identifiers are available already
anonymized. The network analyzed consists of 279, 631 nodes and 2, 251, 166
arcs. The Facebook wall dataset3 contains a list of all of the wall posts from
the Facebook New Orleans network. Each line contains two anonymized user
identifiers, meaning the second user posted on the first user’s wall. The third
column is the times of the wall post. The network analyzed consists of 45, 813
nodes and 264, 004 arcs. The Wikipedia growth4 dataset contains links between
Wikipedia pages and the time when these links were first created. The dataset
represents the complete history of the network over a period of 826 days, between
January 1st, 2005 and April 6th, 2007. The datasets is anonymized to protect
the privacy of page authors. The network analyzed consists of 1, 870, 709 nodes
and 39, 953, 145 arcs.

The following table reports the total number of the structures mined, for each
of the structures si in the set S. Notice that the total counts associated with the
pairs of structures (si, si+8) are identical, since these structures are induced by
symmetric roles in the same scenario.

Clearly, this does not mean that they are redundant, since the respective
counts per node differ in general, being different the number of times in which
the single node plays each role in the same scenario. In the Facebook wall dataset
the structures s4, s8, s12, and s16, capturing the simultaneity of the response,
are not present since timestamps are almost all different (only 846 timestamps
appear more than once in the dataset) and it is never the case that two users

2 Digg is a news aggregator (http://digg.com) aiming to select stories for the Internet
audience such as science, trending political issues, and viral Internet issues. It allows
people to vote web content up or down.

3 http://socialnetworks.mpi-sws.org/data-wosn2009.html.
4 http://socialnetworks.mpi-sws.org/data-wosn2008.html.

http://digg.com
http://socialnetworks.mpi-sws.org/data-wosn2009.html
http://socialnetworks.mpi-sws.org/data-wosn2008.html

372 F. Angiulli et al.

(a) Digg dataset – s3 (b) Digg dataset – s11

(c) Facebook dataset – s9 (d) Facebook dataset – s11

(e) Wikipedia growth dataset – s5 (f) Wikipedia growth dataset – s17

Fig. 6. Structure count distribution. (Color figure online)

Structure Digg friends Facebook wall Wikipedia growth

s1, s9 61, 122 57, 476 2, 030, 550

s2, s10 8, 307 4, 167 641, 677

s3, s11 683, 282 74, 268 22, 416, 947

s4, s12 6, 294 0 7, 596

s5, s13 65, 844 16, 319 451, 128

s6, s14 44, 301 2, 629 293, 043

s7, s15 681, 317 28, 552 10, 694, 970

s8, s16 152 0 56

s17 1, 009, 571 80, 042 14, 052, 936

Total 7, 574, 125 446, 864 87, 124, 870

Anomaly Detection in Networks with Temporal Information 373

(a) (b)

Fig. 7. Notable structure distributions for a top outlier node

Fig. 8. Scalability analysis.

simultaneously make a post on the respective wall. In general, these structures
are among the less numerous in these datasets due to the fine granularity of the
temporal scale.

Figure 6 shows the scatter plots of the node degree versus the structure count
for some of the structures mined. Each plot reports also the regression line of
the points (represented by the red points) and highlights the top 20 anomalies
(the red circled points) according to the anomaly score of Eq. (1).

Next, we discuss on the knowledge mined for one of the top outlier in a dataset
in order to highlight how the proposed technique is able to provide not only the
outlier score but also an in intelligible interpretation of the score, shedding light
on semantic underlying the decision made by the technique of signaling a node
as anomalous.

Specifically, we focus on the Wikipedia growth dataset and on the node out
having id 256, 356. We consider the two structures that mostly contribute to the
large score achieved by out. Figure 7 reports how the number of times in which
out is actor of structure s1 and s11 places the node with respect to the number
of times in which the other nodes perform as actors of those structures.

It is clear by the plots that out is located in both cases at the margin of
the distribution. In particular, out performs as actor of structure s1 much more
times than other nodes, while performs as actor of structure s11 much less times
than nodes having a similar neighborhood cardinality.

From a semantic point of view, these plots naturally lead to a description of
the outlierness that could explain the exceptionality of the node. Since out very

374 F. Angiulli et al.

often plays as actor for structure s1, the associated Wikipedia page has a high
number of links and, exceptionally, almost always the linked page links back the
page associated with out. Moreover, since out rarely plays as actor for structure
s11, whenever out is linked by a page p, rarely a link to p does not appear in out.

Finally, Fig. 8 shows the scalability of the method. We varied the size of the
datasets, from the 1% to the 100% of the original data, by randomly sampling
nodes and retaining the arcs linking only pairs of nodes in the selected sample.
The solid lines in the plot show the total execution time versus the number of
arcs of the network. The dashed lines represents the cost of the method in the
average case, as reported in Eq. (4), with a constant prefactor computed in a way
such that the two curves start from the same point. The curves show that the
actual cost of the method is generally below that predicted by the cost analysis,
thus confirming the applicability of the method to large networks. To illustrate,
the full Wikipedia growth dataset was processed in about 120 s on a Intel Core
i7 2.40 GHz equipped machine under the Linux operating system.

7 Conclusions

We considered the anomaly detection in timed networks problem whose goal is
to single out anomalies by taking into account simultaneously information con-
cerning both the structure of the network and the order in which connections
have been established. Our primary aim is to analyzing each single node by
taking simultaneously into account its temporal footprint. We defined a set of
spatio-temporal structures is induced by checking certain conditions on the order
of arc appearance denoting different kinds of user behaviors and exploited their
distribution to detect anomalies. We presented a scalable algorithm and experi-
mental results showing the peculiarity of the knowledge mined by our technique
and its applicability to the analysis of large networks.

References

1. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection anddescrip-
tion: a survey. Data Min. Knowl. Disc. 29(3), 626–688 (2015). doi:10.1007/
s10618-014-0365-y

2. Chen, Z., Hendrix, W., Samatova, N.F.: Community-based anomaly detection in
evolutionary networks. J. Intell. Inf. Syst. 39(1), 59–85 (2012)

3. Gupta, M., Gao, J., Sun, Y., Han, J.: Community trend outlier detection using
soft temporal pattern mining. In: Flach, P.A., Bie, T., Cristianini, N. (eds.) ECML
PKDD 2012. LNCS (LNAI), vol. 7524, pp. 692–708. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33486-3 44

4. Ji, T., Yang, D., Gao, J.: Incremental local evolutionary outlier detection for
dynamic social networks. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F.
(eds.) ECML PKDD 2013, Part II. LNCS (LNAI), vol. 8189, pp. 1–15. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40991-2 1

http://dx.doi.org/10.1007/s10618-014-0365-y
http://dx.doi.org/10.1007/s10618-014-0365-y
http://dx.doi.org/10.1007/978-3-642-33486-3_44
http://dx.doi.org/10.1007/978-3-642-40991-2_1

Anomaly Detection in Networks with Temporal Information 375

5. Mongiovi, M., Bogdanov, P., Ranca, R., Singh, A.K., Papalexakis, E.E., Faloutsos,
C.: Netspot: spotting significant anomalous regions on dynamic networks. In:
Proceedings of the 13th SIAM international conference on data mining (SDM),
Texas-Austin, TX. SIAM (2013)

6. Wang, T., Fang, C.V., Lin, D., Wu, S.F.: Localizing temporal anomalies in large
evolving graphs. In: Proceedings of the 2015 SIAM International Conference on
Data Mining, pp. 927–935. SIAM (2015)

Accelerating Computation of Distance Based
Centrality Measures for Spatial Networks

Kouzou Ohara1(B), Kazumi Saito2, Masahiro Kimura3, and Hiroshi Motoda4,5

1 Department of Integrated Information Technology,
Aoyama Gakuin University, Sagamihara, Japan

ohara@it.aoyama.ac.jp
2 School of Administration and Informatics, University of Shizuoka, Shizuoka, Japan

k-saito@u-shizuoka-ken.ac.jp
3 Department of Electronics and Informatics, Ryukoku University, Otsu, Japan

kimura@rins.ryukoku.ac.jp
4 Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan

motoda@ar.sanken.osaka-u.ac.jp
5 School of Computing and Information Systems,

University of Tasmania, Hobart, Australia

Abstract. In this paper, by focusing on spatial networks embedded
in the real space, we first extend the conventional step-based closeness
and betweenness centralities by incorporating inter-nodes link distances
obtained from the positions of nodes. Then, we propose a method for
accelerating computation of these centrality measures by pruning some
nodes and links based on the cut links of a given spatial network. In
our experiments using spatial networks constructed from urban streets
of cities of several types, our proposed method achieved about twice
the computational efficiency compared with the baseline method. Actual
amount of reduction in computation time depends on network structures.
We further experimentally show by examining the highly ranked nodes
that the closeness and betweenness centralities have completely different
characteristics to each other.

Keywords: Closeness centrality · Betweenness centrality · Spatial net-
work · Distance-based centrality · Cut link

1 Introduction

Studies of the structure and functions of large complex networks have attracted a
great deal of attention in many different fields such as sociology, biology, physics
and computer science [15]. Our final goal of this research is to develop methodolo-
gies and technologies that are accurate, efficient and scalable to analyze complex
networks which are now ubiquitous in almost every field of science and to dis-
cover useful knowledge from there. For this we think it is critical to be able to
assess and utilize inherent and intrinsic characteristics of such networks.

c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 376–391, 2016.
DOI: 10.1007/978-3-319-46307-0 24

Accelerating Computation of Distance Based Centrality Measures 377

One common approach to analyze large complex networks is investigating
their characteristics through a measure called centrality. Various kinds of cen-
tralities are used according to what we want to know. For example, if our goal
is to know the topological characteristics of a network, degree, closeness, and
betweenness centralities [11] can be used. If it is to know the importance of
nodes that constitute a network, HITS [5] and PageRank [3] centralities are
often used. Influence degree centrality [12] is another one to measure the impor-
tance of nodes. Among these conventional centralities, we focus on the closeness
and betweenness centralities in this work because they are closely related to real
world problems such as location planning of commercial or evacuation facilities
in a wide area. Here, note that closeness and betweenness centralities usually
approximate the distance between two distinct nodes by the number of links
traversed to get to one node from another. This approximation may not be real-
istic when analyzing networks such as real traffic networks, one of the real world
problems. Thus, as a particular class, we focus on spatial networks embedded
in the real space, like urban streets, whose nodes occupy a precise position in
two or three-dimensional Euclidean space, and whose links are real physical con-
nections [10]. Analyzing and characterizing the structure of such large spatial
networks will play an important role for understanding and improving the usages
of these networks, as well as discovering new insights for developing and plan-
ning city promotion, trip tours and so on. To facilitate such research work, in
this paper, we propose techniques useful to accelerate their computations based
on network pruning. This is motivated by the fact that the computation time to
calculate the value of such conventional step-based centralities for every single
node in a network becomes larger as the size of the network gets larger because
of the necessity to traverse each link in the network multiple times.

In this paper, we first extend the conventional step-based closeness and
betweenness centralities by incorporating inter-nodes link distances obtained
from the positions of nodes. Hereafter, we refer to these extended ones as
distance-based centrality measures. Then, we propose a method for accelerat-
ing computation of these centrality measures by pruning some nodes and links
that are related to the cut links of a given spatial network, where each cut link
divides the network into two connected components by its removal. Here, we
should note that our approach is applicable to a wider range of spatial networks,
and potentially to complex networks with inter-nodes link distances, although in
this paper, we focus on spatial networks constructed from urban streets by map-
ping the intersections of streets into nodes and the streets between the nodes into
links. In the experiments we evaluate the performance of our proposed accelera-
tion techniques for the spacial networks constructed from cities of several types,
and discuss the characteristics of the distance-based centralities.

This paper is organized as follows. After first explaining the related work in
Sect. 2, we describe the details of our proposed methods in Sect. 3. In Sect. 4, we
evaluate the characteristics of networks obtained by our proposed methods both
qualitatively and quantitatively, and give our conclusion in Sect. 5.

378 K. Ohara et al.

2 Related Work

As mentioned earlier, analyzing and characterizing the structure of large spa-
tial networks like urban streets will play an important role for understanding
and improving the usages of these networks embedded in the real space. Thus,
the structure and functions of spatial networks have also been studied by many
researchers [4,10,13,17,18,20]. From structural viewpoints, centrality measures
have been widely used to analyze spatial networks [10,18], especially by extend-
ing the conventional notions of centrality measures on simple networks into those
of weighted networks based on road usage frequency of urban streets [13,17].
From functional viewpoints, traffic usage patterns in urban streets have been
investigated [4,20]. In this paper, unlike these previous studies, we focus on
extending the conventional centralities by incorporating inter-nodes link dis-
tances obtained from the positions of nodes, and propose a method for acceler-
ating the calculation of these centrality measures.

To find important nodes in a network, several centrality measures have been
presented in the field of social and information network analysis. Representative
centrality measures include degree, closeness and betweenness centralities [11],
HITS (hub and authority) centrality [5], and PageRank centrality [3]. These mea-
sures are also closely related to quantifying how influential each node is in the
context of information diffusion, and influence degree centrality can be defined
by evaluating the influence of each node. Unlike centrality measures derived
only from network topology, influence degree centrality exploits a dynamical
process on the network as well. An efficient method of simultaneously estimat-
ing the influence degrees of all the nodes was presented under the SIR model
setting [12]. We note that influence degree centrality can also be employed for
identifying super-mediators in the social network [19]. In this paper, as our first
step to develop these centrality notions for spatial networks, we focus on close-
ness and betweenness centralities, which have been widely used in the field of
social network analysis. Our proposed method in this paper shares the same
basic idea of the previous method presented under the SIR model setting [12] in
that redundant nodes and links are pruned for accelerating the computation of
the centrality measures.

For some centrality measures such as betweenness centrality, their computa-
tion becomes harder as the network size increases, since it needs to take the global
network structure into account. Thus, several researchers presented methods of
approximating such centralities [1,6–8,16]. For instance, a bottom-k sketch [7,8]
is obtained by associating with each node in a network an independent random
rank value drawn from a probability distribution. The bottom-k sketch of each
node in the network can be quite efficiently calculated by orderly assigning the
rank values from the smallest one to those nodes reachable by reversely following
links over the network. Based on this framework, a greedy Sketch-based Influ-
ence Maximization (SKIM) algorithm has been proposed, and it has been shown
that the SKIM algorithm scales to graphs with billions of edges, with one to
two orders of magnitude speedup over the best greedy methods [9]. Here in this
paper, unlike the above approximation approaches, we rather focus on exactly

Accelerating Computation of Distance Based Centrality Measures 379

computing the centrality measures whereby there is no need to worry about the
approximation performance. Note that these exact solutions can be used as the
ground-truth for evaluating the approximation performance.

3 Proposed Method

Let G = (V,E) be a spatial network consisting of a single connected component
without self-loops, where V = {u, v, w, · · · } and E = {e, · · · } ⊂ V × V are
sets of nodes and undirected links, respectively. For each link e = (u, v), we
express the distance between nodes u and v by d(u, v), where we can obtain
these distances from the positions of nodes in the spatial network. For each pair
of nodes u,w ∈ V without the direct connection, we define the distance d(u,w)
as the geodesic distance over the network, as usual. Then, for each node u ∈ V,
we can define the following distance based closeness centrality measure:

DC(u) =

(∑
w∈V

d(u,w)

)−1

. (1)

Note that the distance based closeness centrality DC(u) is a natural extension to
the conventional step based closeness centrality SC(u) because DC(u) reduces
to SC(u) by setting d(u, v) = 1 for each link (u, v) ∈ E. Similarly, for each
node v ∈ V, we can define the following distance based betweenness centrality
measure:

DB(v) =
∑

u∈V\{v}

∑
w∈V\{u,v}

σ(u,w; v)
σ(u,w)

(2)

where σ(u,w) is the total number of the paths with the smallest distance between
node u and node w in G and σ(u,w; v) is the number of those paths between node
u and node w in G that passes through node v. Again, note that the distance
based betweenness centrality DB(v) is a natural extension to the conventional
step based betweenness centrality SB(v) because DB(v) also reduces to SB(v)
by setting d(u, v) = 1 for each link (u, v) ∈ E. By applying the best-first search
algorithm starting from each node u ∈ V with respect to distance d(u,w), we
can calculate these centrality measures, DC(u) and DB(v), for all the nodes in
G. As mentioned earlier, when calculating closeness and betweenness centrality
measures, their computation becomes harder as the network size increases. Below
we propose a method of improving the computational efficiency to calculate these
centrality measures.

3.1 Pruning Techniques for Closeness Centrality

We say that a link e ∈ E is a cut link if the network G is divided into two
connected components by eliminating the link e. For a given cut link e = (u, v),
let V(u \ v) and V(v \u) be the sets of nodes in the two connected components,

380 K. Ohara et al.

each of which includes the nodes u and v, respectively, i.e., u ∈ V(u \ v), v ∈
V(v \u), V(u\v)∩V(v \u) = ∅ and V(u\v)∪V(v \u) = V. Let η(u) and δ(u)
be the number of the nodes and the accumulated value of distances obtained by
our pruning process relating to the node u, respectively. Then, after initializing
η(u) ← 1 and δ(u) ← 0 for each node u ∈ V, and setting W ← V and F ← E,
we consider calculating DC(x)−1 for each node x ∈ W by using the following
formula:

DC(x)−1 =
∑
w∈W

(η(w)d(x,w) + δ(w)) (3)

Now, let e = (u, v) be a cut link; then, for a node x ∈ V(u\v), we can decompose
DC(x)−1 as follows:

DC(x)−1 =
∑

w∈V(u\v)
d(x,w) +

∑
w∈V(v\u)

(d(x, u) + d(u, v) + d(v, w))

=
∑

w∈V(u\v)
d(x,w) + |V(v \ u)|d(x, u) + |V(v \ u)|d(u, v) +

∑
w∈V(v\u)

d(v, w). (4)

By using the above decomposition shown in Eq. (4), we can derive a recursive
TP (Top-down Pruning) technique for closeness centrality. More specifically, we
consider updating η(u) and δ(u) by using the following formulae:

η(u) ← 1 + |V(v \ u)|,
δ(u) ← |V(v \ u)|d(u, v) +

∑
w∈V(v\u)

d(v, w), (5)

Then, after pruning the node set V(v \ u) and the cut link e = (u, v) from the
network G = (V,E) as W ← V \V(v \u) and F ← E\{e}, we can equivalently
calculate DC(x)−1 by using Eq. (3) for each node x ∈ V(u \ v) as obtained by
Eq. (1). Clearly, we can apply the same arguments to the case of x ∈ V(v \ u).
Therefore, by generalizing the update formulae of Eq. (5) as follows:

η(u) ← η(u) +
∑

w∈W(v\u)
η(w),

δ(u) ← δ(u) + d(u, v)
∑

w∈W(v\u)
η(w) +

∑
w∈W(v\u)

η(w)d(v, w), (6)

for all the node x ∈ V, we can exactly calculate the closeness centrality measure
DC(x) by using the above recursive TP update shown in Eq. (6), where W(u \ v)
and W(v \ u) denote the sets of nodes in the two connected components, respec-
tively, which are obtained by the removal of the cut link e = (u, v), just like those
defined for V.

As a special case, by focusing on the fact that each link of degree-one node is
a cut link, we derive a recursive BP (Bottom-up Pruning) technique algorithm
for closeness centrality. More specifically, for a degree-one node v and its cut link

Accelerating Computation of Distance Based Centrality Measures 381

e = (u, v), we consider updating η(u) and δ(u) as follows:

η(u) ← η(u) + η(v),
δ(u) ← δ(u) + η(v)d(u, v) + δ(v) (7)

Then, after pruning the node v and its cut link e = (u, v) from the network
G = (W,F) as W ← W \ {v} and F ← F \ {e}, and updating η(u) and δ(u)
by Eq. (7), we can also equivalently calculate DC(x)−1 by using Eq. (3) for each
node x ∈ W as obtained by Eq. (1). Here note that after obtaining the value of
DC(u)−1, we can calculate DC(v)−1 as follows:

DC(v)−1 ← DC(u)−1 + (|V| − 2η(v))d(u, v)

Therefore, for all the node x ∈ V, we can exactly calculate the closeness cen-
trality measure DC(x) by using the above recursive TP and BP techniques.

3.2 Pruning Techniques for Betweenness Centrality

We derive the recursive pruning techniques for calculating the betweenness cen-
trality measure DB(x). Let φ(u) be the number of node pairs obtained by our
pruning process relating to the node u. Again, after initializing η(u) ← 1 and
φ(u) ← 0 for each node u ∈ V, and setting W ← V and F ← E, we consider
calculating DB(x) for each node x ∈ W by using the following formula:

DB(x) = φ(x) +
∑

w∈W\{x}
η(w)ξ(x;w). (8)

Here, ξ(x;w) stands for the number of descendant nodes of x obtained by the
best first search starting from the node w, i.e.,

ξ(x;w) = η(x) − 1 +
∑

z∈C(x;w)

(ξ(z;w) + 1)
σ(w, x)
σ(w, z)

,

where C(x;w) means the set of direct child nodes of x for the search from node
w. Now, let e = (u, v) ∈ E be a cut link; then, for a node w ∈ V(u \ v), we can
calculate ξ(u;w) as follows:

ξ(u;w) = |V(v \ u)| +
∑

z∈C(u;w)\{v}
(ξ(z;w) + 1)

σ(w, u)
σ(w, z)

, (9)

and ξ(u;w) = |V(u \ v)| − 1 for w ∈ V(v \ u). By using the above calculation
shown in Eq. (9) and noting that the node u mediates any node pair (w, y)
starting from w ∈ V(v \ u) and ending at y ∈ V(u \ v) \ {u}, but no pair
starting from w ∈ V(v \u) and ending at y ∈ V(v \u), we can derive a recursive
TP technique for betweenness centrality. More specifically, we consider updating
η(u) and φ(u) by using the following formulae:

η(u) ← 1 + |V(v \ u)|,
φ(u) ← V(v \ u)|(|V(u \ v)| − 1)|, (10)

382 K. Ohara et al.

Then, after pruning the node set V(v \ u) and the cut link e = (u, v) as W ←
V \ V(v \ u) and F ← E \ {e}, we can equivalently calculate DB(x) by using
Eq. (8) for each node x ∈ V(u \ v) as obtained by Eq. (2). Again, we can apply
the same arguments to the case of x ∈ V(v \ u). Therefore, by generalizing the
update formulae of Eq. (10) as follows:

η(u) ← η(u) +
∑

w∈W(v\u)
η(w),

φ(u) ← φ(u) +
∑

w∈W(v\u)
η(w)

⎛
⎝ ∑

w∈W(u\v)
η(w) − 1

⎞
⎠ , (11)

for all the node x ∈ V, we can also exactly calculate the betweenness centrality
measure DB(x) by using the above recursive TP update shown in Eq. (11).

Similarly to the case of the closeness centrality, by focusing on the fact that
each link of degree-one node is a cut link, we derive a recursive BP technique
algorithm for betweenness centrality. More specifically, for a degree-one node v
and its cut link e = (u, v), we consider updating η(u), φ(u) and φ(v) as follows:

η(u) ← η(u) + η(v),
φ(u) ← φ(u) + η(v)(|V| − η(v) − 1),
φ(v) ← φ(v) + (η(v) − 1)(|V| − η(v)). (12)

Then, after pruning the node v and its cut link e = (u, v) from the network
G = (W,F) as W ← W \ {v} and F ← F \ {e}, and updating η(u), φ(u) and
φ(v) by Eq. (12), we can equivalently calculate DB(x) by using Eq. (8) for each
node x ∈ W as obtained by Eq. (2). Here note that for any pruned nodes v, we
calculate its measure by DB(v) ← φ(v). Therefore, for all the node x ∈ V, we
can exactly calculate the closeness centrality measure DB(x) by using the above
recursive TP and BP techniques.

3.3 Summary of Proposed Method

Hereafter, we consider simultaneously calculating both the closeness and
betweenness centrality measures for all the node v ∈ V. In our proposed method,
the BP technique is applied before the TP techniques, because we can easily
know the degree-one nodes in our network G. Although we can individually
incorporate these techniques into the baseline method that do not employ our
proposed pruning techniques, we only consider the proposed method without
the TP technique, which is referred to as the BP method. Since it is difficult to
analytically examine the effectiveness of these techniques, we empirically eval-
uate the computational efficiency of these three methods in comparison to the
baseline method without the proposed pruning techniques, which is referred to
as the BL method.

Accelerating Computation of Distance Based Centrality Measures 383

4 Experiments

In this section, after explaining the dataset used in our experiments, we eval-
uate the performance of our proposed acceleration algorithm, and discuss the
characteristics of the distance based centralities.

4.1 Dataset

We used OSM (OpenStreetMap) data of eight cities in our experiments, i.e.,
Barcelona (Spain, Europe), Bologna (Italy, Europe), Brasilia (Brazil, South
America), Cairo (Egypt, Africa), Washington D.C. (United States, North Amer-
ica), New Delhi (India, Asia), Richmond (United States, North America), and
San Francisco (United States, North America). These are a subset of cities stud-
ied in [10]. In August, 2015, we obtained the OSM data of these eight cities from
Metro Extracts1. Here note that in our experiments, the area of each city is more
than 100 times larger than those of the previous study [10].

From the OSM data of each city, we extracted all highways and all nodes
appearing in them, and constructed each spatial network by mapping the
ends, intersections and curve-fitting-points of streets into nodes and the streets
between the nodes into links. Then, based on GRS80 [14], we calculated each
inter-node link distance from the positions of the nodes, each of which is
described by a pair of latitude and longitude. Table 1 shows the basic statis-
tics of the networks for the eight selected cities, where deg means the average
degree of nodes calculated by deg = 2|E|/|V|, and avg, s.d. and max stands
for the average, standard deviation and maximum of inter-node link distances,
respectively. From this table, we can see that although the area and the numbers
of nodes and links, |V| and |E|, are substantially different, the average degrees are
quite similar as common characteristics of these spatial networks. On the other
hand, it seems that each city has its own characteristics about the statistics of
link distances.

In order to more closely study the characteristics of link distances, we exam-
ined the frequency of link distances obtained by

f(k) = |{e = (u, v) ∈ E : εk ≤ d(u, v) < εk+1}|, (13)

where k is a non-negative integer, and εk is set to k meter. Figure 1 shows our
analysis results of the eight cities shown in Table 1, where the horizontal and ver-
tical axes stand for the distance and frequency, respectively. From these results
plotted as log-log graphs, we can observe that each frequency curve is reasonably
approximated by a power-law-like distribution. This suggests that since some
link distances have relatively quite larger values, the distance-based centrality
measures may have significantly different characteristics in comparison to those
of the step-based centrality measures. In this paper, we experimentally evaluate
these differences by focusing on the closeness and betweenness centralities.

1 https://mapzen.com/data/metro-extracts.

https://mapzen.com/data/metro-extracts

384 K. Ohara et al.

Table 1. Basic statistics as network.

No. Name Area |V| |E| deg avg s.d. max

1 Barcelona 45× 30 km 344,095 378,074 2.2 27.0 34.7 1,396.4

2 Bologna 60× 45 km 262,839 281,294 2.1 34.2 59.3 4,341.1

3 Brasilia 120× 104 km 197,829 240,546 2.4 78.6 135.6 8,369.9

4 Cairo 87× 86 km 195,228 225,049 2.3 69.8 123.2 8,078.4

5 Washington D.C 23× 18 km 114,758 128,746 2.2 25.3 33.7 1,058.5

6 New Delhi 109× 75 km 284,964 336,183 2.4 66.2 99.7 10,968.3

7 Richmond 54× 35 km 371,174 394,161 2.1 28.5 45.5 15,359.4

8 San Francisco 90× 50 km 492,266 541,162 2.1 33.9 48.3 7,241.0

distance (m)
100 102 104

fre
qu

en
cy

100

105

(a) Barcelona
distance (m)

100 102 104

fre
qu

en
cy

100

105

(b) Bologna
distance (m)

100 102 104

fre
qu

en
cy

100

105

(c) Brasilia

distance (m)
100 102 104

fre
qu

en
cy

100

105

(d) Cairo
distance (m)

100 102 104

fre
qu

en
cy

100

105

(e) Wash. D.C.
distance (m)

100 102 104

fre
qu

en
cy

100

105

(f) New Delhi

distance (m)
100 102 104

fre
qu

en
cy

100

105

(g) Richmond
distance (m)

100 102 104

fre
qu

en
cy

100

105

(h) San Francisco

Fig. 1. Frequency of link distances.

4.2 Computational Efficiency

As described earlier, we evaluated the efficiency of the proposed method which
simultaneously calculates DC(v) and DB(v) for each node v ∈ V, by comparing
the computation time of the baseline (BL), only bottom-up pruning (BP), and
the proposed (PR) methods. We implemented the BL method based on Brandes’s
algorithm [2] known as the standard and efficient technique for computing the
betweenness centrality of each node in a network. Figure 2 shows the computation

Accelerating Computation of Distance Based Centrality Measures 385

dataset number
2 4 6 8

pr
oc

es
si

ng
 ti

m
e

(s
ec

.)

× 104

0

2

4

6

8

10

12
BL BP PM

(a) Processing time
dataset number

2 4 6 8

re
du

ct
io

n
ra

te

0

0.2

0.4

0.6

0.8

1

BL BP PM

(b) Reduction rate

Fig. 2. Computation time comparison.

time of each method, where the dataset numbers shown in the horizontal axis
are identical to those of Table 1. Figure 2(a) compares the actual processing
time of these methods, where our programs implemented in C were executed on
a computer system equipped with two Xeon X5690 3.47 GHz CPUs and 192 GB
main memory with a single thread within the memory capacity. Figure 2(b)
compares the reduction rates of computation time for these methods from the
BL method.

From Figs. 2(a) and (b), we can see that for all the networks, the BP method
steadily improves the computational efficiency of the BL method, and the PR
method slightly improve that of the BP method. These results demonstrate the
effectiveness of the proposed techniques. More specifically, as expected, from
Fig. 2(a) and Table 1, we can see that the processing time of the BL method is
almost proportional to the size of network. In contrast, from Fig. 2(b), we can
see that the reduction rates of the BP and PR methods depend on the network,
i.e., around from 0.4 to 0.8 for the BP method and around from 0.3 to 0.7 for
the PR method. These results indicate that the effects of our pruning techniques
depend on the networks.

On the other hand, we note that the improvement rates of the PR method
over the BP method are modest, i.e., the reduction rates by the TP technique
are not so remarkably effective. This must be partly because the TP tech-
nique requires additional computation costs for detecting cut links. Overall,
we can conjecture that the proposed method combining both the BP and TP
techniques is more reliable than the other two methods in terms of computation
time because it produced the best performance for all of the eight networks. In
short, reduction of computation time depends on network structures, but overall
we can say that use of both techniques can increase the computational efficiency
by nearly twice of the BL method.

386 K. Ohara et al.

4.3 Comparison with Conventional Centralities

As noted earlier, we experimentally evaluate the characteristics of the distance-
and the step-based measures by focusing on the closeness and betweenness cen-
tralities. In order to make a fair comparison of these different types of centralities,
we consider the normalized measures that are divided by their maximum val-
ues, i.e., normalized distance-based closeness and betweenness centralities are
calculated by

nDC(v) = DC(v)/max
x∈V

{DC(x)},

nDB(v) = DB(v)/max
x∈V

{DB(x)}, (14)

respectively. Here, let v(kDC) be the k-th node which has the k-th largest value
in the distance-based closeness centrality values {DC(v) : v ∈ V}. Similarly,
we can define the k-th node for the other centrality measures as v(kSC), v(kDB)
and v(kSB), respectively. Recall that we denote the step-based closeness and
betweenness centrality measures as SC(v) and SB(v), respectively. Then, we
consider characterizing the top-k nodes of these measures by plotting the follow-
ing quartets:

{(k, nDC(v(kDC))), (k, nDC(v(kSC))), (k, nDB(v(kDB))), (k, nDB(v(kSB)))}.(15)

Namely, we evaluate the top-k nodes of the distance- and the step-based close-
ness centralities by the normalized measures of the distance-based closeness cen-
trality and those of the distance- and the step-based betweenness centralities by
the normalized measures of the distance-based betweenness centrality.

Figure 3 shows our experimental results, where the horizontal and vertical
axes stand for the rank k up to top-100 and the normalized distance-based close-
ness or betweenness centrality measure, respectively. We can see that the close-
ness and betweenness centralities have completely different characteristics. In
fact, the top-100 values of the distance- and the step-based closeness centralities
(DC= nDC(v(kDC)) and SC= nDC(v(kSC))) are almost the same, while the
situation is completely different for the two betweenness centralities. The top-100
values of the distance-based betweenness centrality substantially decrease (DB =
nDB(v(kDB))), while the top-100 values of the step-based betweenness central-
ity have no regularity and violently change (SB = nDB(v(kSB))). Namely, these
results indicate that the ranking by the distance- and the step-based closeness cen-
tralities is almost the same, while the ranking by the distance-based betweenness
centrality is substantially different from the ranking by the step-based between-
ness centrality. These experimental results suggest that for arbitrary pairs of
nodes, most of the paths with the minimum distances are different between the
distance- and the step-based centralities, while the distances of these paths are
relatively close to each other. On the other hand, we can see that the curves for
the top-100 nodes are somewhat different from each other across different network
datasets, although their global behaviors are generally quite similar regardless of
any pairs of the centrality measures and the networks. Thus, it is expected that

Accelerating Computation of Distance Based Centrality Measures 387

rank
0 50 100

no
rm

al
iz

ed
 m

ea
su

re

0

0.2

0.4

0.6

0.8

1

DC SC DB SB

(a) Barcelona
rank

0 50 100

no
rm

al
iz

ed
 m

ea
su

re

0

0.2

0.4

0.6

0.8

1

DC SC DB SB

(b) Bologna
rank

0 50 100

no
rm

al
iz

ed
 m

ea
su

re

0

0.2

0.4

0.6

0.8

1

DC SC DB SB

(c) Brasilia

rank
0 50 100

no
rm

al
iz

ed
 m

ea
su

re

0

0.2

0.4

0.6

0.8

1

DC SC DB SB

(d) Cairo
rank

0 50 100

no
rm

al
iz

ed
 m

ea
su

re

0

0.2

0.4

0.6

0.8

1

DC SC DB SB

(e) Wash. D.C.
rank

0 50 100

no
rm

al
iz

ed
 m

ea
su

re

0

0.2

0.4

0.6

0.8

1

DC SC DB SB

(f) New Delhi

rank
0 50 100

no
rm

al
iz

ed
 m

ea
su

re

0

0.2

0.4

0.6

0.8

1

DC SC DB SB

(g) Richmond
rank

0 50 100

no
rm

al
iz

ed
 m

ea
su

re

0

0.2

0.4

0.6

0.8

1

DC SC DB SB

(h) San Francisco

Fig. 3. Comparison of top-100 nodes.

the normalized measure curves shown in Fig. 3 may be able to uncover some char-
acteristics of these networks, e.g., the nodes within the top-50 in San Francisco
are quite similar for both the closeness and betweenness centralities.

Next, we investigate how differently the top ranked nodes in each central-
ity measure are distributed on a spatial map. To this end, we plotted the top-
10 nodes in each centrality measure on the street map for the Washington D.C.
dataset as shown in Fig. 4, where the top-10 nodes in the distance-based central-
ity are denoted by a star-shaped marker, and those in the step-based centrality
are denoted by a cross-shaped marker. From Fig. 4(a), it is found that the top-10
locations in the closeness centrality are concentrated in a small area for both the
distance-based and the step-based centralities. It seems natural that close neigh-
boring nodes have similar values for the closeness centrality because the distances
to another node could be similar regardless of the criterion whether it be distance-
based or step-based. Here, remember that the rankings by the distance- and the
step-based closeness centralities tend to be almost the same in Fig. 3. But, the
actual areas in which the top-10 nodes are located are different in the distance-
and the step-based centralities. Especially, the area is more limited and closer to
the central area of the city for the distance-based centrality. This characteristic of

388 K. Ohara et al.

(a) Closeness centrality (b) Betweenness centrality

Fig. 4. Top-10 points in the distance-based (star-shaped markers) and step-based
(cross-shaped markers) centralities for Washington D.C.

the distance-based closeness centrality might be helpful for determining the point
to build facilities such as a delivery center or a disaster shelter.

On the other hand, Fig. 4(b) in which the top-10 nodes in the distance- and
the step-based betweenness centralities are plotted in the map exhibits a bit
different tendency from Fig. 4(a). In Fig. 4(b), whether the measure is distance-
based or step-based, the top-10 points are split into two groups, each of which is
located on different streets that are apart from each other. The top-10 nodes in
the distance-based betweenness centrality have a higher degree of concentration
than those in the step-based one, similarly to the case of closeness centrality
in Fig. 4(a). Further, the streets along which the top-10 points in the distance-
based betweenness centrality are plotted are away from the streets along which
the top-10 points in the step-based betweenness centrality are plotted. This
tendency coincides with what we observed in Fig. 3 that the ranking by the
distance-based betweenness centrality is substantially different from the ranking
by the step-based betweenness centrality. Interestingly, the street that is close
to the bottom-right corner and has three star-shaped markers is connecting to
a freeway via a bridge, which is different from the other streets with markers.
Indeed, one of the three points corresponds to the top node in the distance-based
betweenness centrality. These points might be more critical in this urban traffic
network than the others because it seems difficult to find alternative routes
having a similar distance-based betweenness centrality value from the nearby
street. If the street is closed and the traffic is blocked, we would have to go
a very long way around. The distance-based betweenness centrality might be
helpful to find such critical points in a traffic network.

We further plotted the top-10 nodes in each centrality measure on the street
map for the Cairo dataset in the same fashion as in Fig. 4. The resulting maps
are shown in Fig. 5. It is found that the findings we obtained above from Fig. 4

Accelerating Computation of Distance Based Centrality Measures 389

(a) Closeness centrality (b) Betweenness centrality

Fig. 5. Top-10 points in the distance-based (star-shaped markers) and step-based
(cross-shaped markers) centralities for Cairo

also hold in Fig. 5 although the two cities have different distributions of link
distances as shown in Table 1. Note that the zoom level in Fig. 5 is different from
the one in Fig. 4. It shows a wider area than Fig. 4 does. Thus, the groups of the
top-10 nodes found in Fig. 5(b) are more distant from each other than those in
Fig. 4(b). This is due to the difference between Washington D.C. and Cairo in
the distribution of link distances.

5 Conclusion

In this paper, we first extended the conventional step-based closeness and
betweenness centralities to analyze spatial networks. Unlike these conventional
centralities that adopt the number of links to be traversed to reach one node
from another as the distance between them, the extended distance-based close-
ness and betweenness centralities take into account the inter-nodes link distances
obtained from the positions of nodes. They are natural extensions of the con-
ventional centralities and general enough to include their definitions as a special
case. Second, we have proposed two novel techniques to improve the computa-
tional efficiency to compute the distance-based centralities. Both are based on
graph cut and recursively applied to a network in order to reduce scanning size
needed for computing the centralities. The TP (Top-down pruning) technique
recursively decomposes a network into two disjoint sub-networks that are con-
nected by a cut link, while the BP (Bottom-up pruning) technique recursively
removes a degree-one node by eliminating a cut link adjacent to it before the TP
technique is applied. Note that it is straightforward to extend these techniques
so that they can deal with directed networks.

We conducted extensive experiments using real-world road networks of eight
different cities that have different distributions of link distances. Major findings

390 K. Ohara et al.

we obtained through the experiments are that (1) applying both techniques can
improve the computation efficiency to calculate the closeness and betweenness
centralities about twice as much of the baseline method, (2) the actual improve-
ment rates depend on networks, and (3) the BP technique is more effective than
the TP technique due to the difference in the cost of finding cut links to remove.
We further found that the node ranking by the distance-based closeness cen-
trality is almost the same as the ranking by the step-based closeness centrality,
while the ranking by the distance-based betweenness centrality is substantially
different from the ranking by the step-based betweenness centrality. Locating
the top-10 nodes in each centrality measure on an actual street map brought us
further insights into their characteristics. The top-10 nodes in the distance-based
centralities tend to be concentrated in a narrower area than those in the step-
based ones do. Those in the distance-based closeness centrality are more likely
to be located in an area closer to the center of a city than those in the step-based
one are so. On the other hand, the top-10 nodes in the betweenness centralities
tend to be split into two groups whether or not the measure is distance-based or
step-based, and these two groups are geographically apart from each other. The
distance-based closeness centrality seems more helpful to find locations to build
facilities easy to access in a given area, while the distance-based betweenness
centrality seems more useful to detect critical points in a traffic network. Find-
ing these points in a network in an efficient way is one of our future directions.
In addition, since centrality values of individual nodes can be computed inde-
pendently, it is possible to parallelize those computations. This synergistically
work with the proposed methods, leading to further improvement in efficiency
and scalability. We are planning to empirically confirm this effect, too.

Acknowledgments. This material is based upon work supported by the Air Force
Office of Scientific Research, Asian Office of Aerospace Research and Development
(AOARD) under award number FA2386-16-1-4032, and JSPS Grant-in-Aid for Scien-
tific Research (C) (No. 26330261).

References

1. Boldi, P., Vigna, S.: In-core computation of geometric centralities with hyperball: a
hunderd billion nodes and beyond. In: Proceedings of the 2013 IEEE 13th Interna-
tional Conference on Data Mining Workshops (ICDMW 2013), pp. 621–628 (2013)

2. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25,
163–177 (2001)

3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst. 30, 107–117 (1998)

4. Burckhart, K., Martin, O.J.: An interpretation of the recent evolution of the city
of Barcelona through the traffic maps. J. Geogr. Inf. Syst. 4(4), 298–311 (2012)

5. Chakrabarti, S., Dom, B., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins,
A., Gibson, D., Kleinberg, J.: Mining the web’s link structure. IEEE Comput. 32,
60–67 (1999)

Accelerating Computation of Distance Based Centrality Measures 391

6. Chierichetti, F., Epasto, A., Kumar, R., Lattanzi, S., Mirrokni, V.: Efficient
algorithms for public-private social networks. In: Proceedings of the 21st ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD 2015), pp. 139–148 (2015)

7. Cohen, E.: Size-estimation framework with applications to transitive closure and
reachability. J. Comput. Syst. Sci. 55, 441–453 (1997)

8. Cohen, E.: All-distances sketches, revisited: HIP estimators for massive graphs
analysis. In: Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems, pp. 88–99 (2015)

9. Cohen, E., Delling, D., Pajor, T., Werneck, R.F.: Sketch-based influence maxi-
mization and computation: scaling up with guarantees. In: Proceedings of the 23rd
ACM International Conference on Information and Knowledge Management, pp.
629–638 (2014)

10. Crucitti, P., Latora, V., Porta, S.: Centrality measures in spatial networks of urban
streets. Phys. Rev. E 73(3), 036125 (2006)

11. Freeman, L.: Centrality in social networks: conceptual clarification. Soc. Netw. 1,
215–239 (1979)

12. Kimura, M., Saito, K., Ohara, K., Motoda, H.: Speeding-up node influence com-
putation for huge social networks. Int. J. Data Sci. Anal. 1, 1–14 (2016)

13. Montis, D.A., Barthelemy, M., Chessa, A., Vespignani, A.: The structure of interur-
ban traffic: a weighted network analysis. Environ. Plann. B Plann. Des. 34(5),
905–924 (2007)

14. Moritz, H.: Geodetic reference system 1980. J. Geodesy 74(1), 128–133 (2000)
15. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45,

167–256 (2003)
16. Ohara, K., Saito, K., Kimura, M., Motoda, H.: Resampling-based framework for

estimating node centrality of large social network. In: Džeroski, S., Panov, P.,
Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS (LNAI), vol. 8777, pp. 228–239.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-11812-3 20

17. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks:
generalizing degree and shortest paths. Soc. Netw. 32(3), 245–251 (2010)

18. Park, K., Yilmaz, A.: A social network analysis approach to analyze road networks.
In: Proceedings of the ASPRS Annual Conference (2010)

19. Saito, K., Kimura, M., Ohara, K., Motoda, H.: Super mediator - a new centrality
measure of node importance for information diffusion over social network. Inf. Sci.
329, 985–1000 (2016)

20. Wang, P., Hunter, T., Bayen, A.M., Schechtner, K., Gonzalez, M.C.: Understanding
Road Usage Patterns in Urban Areas. Scientific Reports 2 (2012)

http://dx.doi.org/10.1007/978-3-319-11812-3_20

A Semi-supervised Approach to Measuring
User Privacy in Online Social Networks

Ruggero G. Pensa(B) and Gianpiero Di Blasi

Department of Computer Science, University of Torino, Turin, Italy
ruggero.pensa@unito.it

Abstract. During our digital social life, we share terabytes of infor-
mation that can potentially reveal private facts and personality traits
to unexpected strangers. Despite the research efforts aiming at provid-
ing efficient solutions for the anonymization of huge databases (including
networked data), in online social networks the most powerful privacy pro-
tection is in the hands of the users. However, most users are not aware
of the risks derived by the indiscriminate disclosure of their personal
data. With the aim of fostering their awareness on private data leakage
risk, some measures have been proposed that quantify the privacy risk
of each user. However, these measures do not capture the objective risk
of users since they assume that all user’s direct social connections are
close (thus trustworthy) friends. Since this assumption is too strong, in
this paper we propose an alternative approach: each user decides which
friends are allowed to see each profile item/post and our privacy score is
defined accordingly. We show that it can be easily computed with mini-
mal user intervention by leveraging an active learning approach. Finally,
we validate our measure on a set of real Facebook users.

Keywords: Privacy metrics · Active learning · Online social networks

1 Introduction

Online social networks are among the main traffic sources in the Internet. At
the end of 2014, they attracted more than 31 % of the worldwide internet traf-
fic towards the Web. Facebook, the most famous social networking platform,
drives alone 25 % of the whole traffic. As a comparison, Google search engine
represents just over 37 % of the global traffic1. More than two billions people are
estimated to be registered in at least one of the most popular social media plat-
forms (Facebook hits the goal of one billion users in 2012). Overall, the number
of active “social” accounts are more than two billions. The famous “six degrees
of separation” theory has been far exceed in Facebook, where an average degree
of 3.57 has been recently observed2. Consequently, social network users are con-
stantly exposed to privacy leakage risks. Although most users do not disclose
1 Source: http://www.alexa.com/.
2 https://research.facebook.com/blog/three-and-a-half-degrees-of-separation/.

c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 392–407, 2016.
DOI: 10.1007/978-3-319-46307-0 25

http://www.alexa.com/
https://research.facebook.com/blog/three-and-a-half-degrees-of-separation/

A Semi-supervised Approach to Measuring User Privacy 393

very sensitive facts (private life events, diseases, political ideas, sexual prefer-
ences, and so on), they are simply not aware of the risks due to the disclosure
of less sensitive information, such as GPS tags, photos taken during a vacation
period, page likes, or comments on news. As an example, the research project
myPersonality [14] carried out at the University of Cambridge has shown that,
by leveraging Facebook user’s activity (such as “Likes” to posts or fan pages) it
is possible to “guess” some very private traits of the user’s personality. Accord-
ing to another study, it is even possible to infer some user characteristics from
the attributes of users who are part of the same communities [18]. As a conse-
quence, privacy has become a primary concern among social network analysts
and Web/data scientists. Also, in recent years, many companies are realizing
the necessity to consider privacy at every stage of their business. In practice,
they have been turning to the principle of Privacy by Design [5] by integrating
privacy requirements into their business model.

Despite the huge research efforts aiming at providing efficient solutions to the
anonymization of huge databases (including networked data) [3,25], in online
social networks the most powerful privacy protection is in the hands of the
users: they, and only they, decide what to publish and to whom. Even though
social networking sites (such as Facebook), notify their users about the risks of
disclosing private information, most people are not aware of the dangers due
to the indiscriminate disclosure of their personal data when they surf the net.
Some social media provide advanced tools for controlling the privacy settings of
the user’s profile [24]. However, yet a large part of Facebook content is shared
with the default privacy settings and exposed to more users than expected [17].
According to Facebook CTO Bret Taylor, even though most people have modi-
fied their privacy settings3, in 2012, still “13 million users [in the United States]
said they had never set, or didn’t know about, Facebook’s privacy tools4”.

Some studies try to foster risk perception and awareness by “measuring”
users’ profile privacy according to their privacy settings [16,23]. These met-
rics usually require a separation-based policy configuration: in other terms, the
users decide “how distant” a published item may spread in the network. Typical
separation-based privacy policies for profile item/post visibility include: visible
to no one, visible to friends, visible to friends of friends, public. However, this
policy fails when the number of user friends becomes large. According to a well-
known anthropological theory, in fact, the maximum number of people with
whom one can maintain stable social (and cybersocial) relationships (known as
Dunbar’s number) is around 150 [10,20], but the average number of user friends
in Facebook is more than double5. This means that many social links are weak
(offline and online interactions with them are sporadic), and a user who sets the

3 http://www.zdnet.com/article/facebook-cto-most-people-have-modified-their-
privacy-settings/.

4 http://www.consumerreports.org/cro/magazine/2012/06/facebook-your-privacy/
index.htm.

5 http://www.pewresearch.org/fact-tank/2014/02/03/6-new-facts-about-facebook/.

http://www.zdnet.com/article/facebook-cto-most-people-have-modified-their-privacy-settings/
http://www.zdnet.com/article/facebook-cto-most-people-have-modified-their-privacy-settings/
http://www.consumerreports.org/cro/magazine/2012/06/facebook-your-privacy/index.htm
http://www.consumerreports.org/cro/magazine/2012/06/facebook-your-privacy/index.htm
http://www.pewresearch.org/fact-tank/2014/02/03/6-new-facts-about-facebook/

394 R.G. Pensa and G. Di Blasi

privacy level of an item to “visible to friends” probably is not willing to make
that item visible to all her friends.

To address this limitation, in this paper we propose a circle-based formulation
of the privacy score proposed by Liu and Terzi [16]. We assume that a user may
set the visibility of each action and profile item separately for each other user in
her friend list. For instance, a user u may decide to allow the access to all photo
albums to friends f1 and f2, but not to friend f3. In our score, the sensitivity
and visibility of profile item i published by user u are computed according to the
set of u’s friends that are allowed to access the information provided by i. Since
the expression of explicit allow/deny policy for each friend and each item may
require huge labeling efforts, we also propose an active learning labeling approach
to limit the number of manual operations. We show experimentally that (i) our
circle-based definition of privacy score better capture the real privacy leakage
risk and (ii) the active learning approach provides accurate results in terms of
both predicted privacy settings and final privacy score.

The remainder of the paper is organized as follows: we briefly review the
related literature in Sect. 2; the overview and the theoretical details of our score
are presented in Sect. 3; the active learning approach is presented in Sect. 4;
Sect. 5 provides the report of our experimental validation; finally, we draw some
conclusions in Sect. 6.

2 Related Work

Most research efforts in social network privacy are devoted to the identification
and formalization of privacy breaches and to the anonymization of networked data
[25]. All these works focus on how to share social networks owned by companies
or organizations masking the identities or the sensitive connections of the indi-
viduals involved. However, increasing attention is being paid to the privacy risk
of users caused by their information-sharing activities (e.g., posts, likes, shares).
In fact, since disclosing information on the web is a voluntary activity, a com-
mon opinion is that users should care about their privacy during their interac-
tion with other social network users. Thus, another branch of research has focused
on investigating strategies and tools to enhance the users’ privacy awareness and
help them act more safely during their day-to-day social network activity. In [6]
the authors present an online game, called Friend Inspector, that allows Facebook
users to check their knowledge of the visibility of their shared personal items and
provides recommendations on how to improve privacy settings. Instead, Fang and
LeFevre [11] propose a social networking privacy wizard based on active learn-
ing. The wizard iteratively asks the user to allow or deny the visibility of pro-
file items to selected friends and assign privileges to the rest of the user’s friends
using a classifier. [4] presents a tool to detect unintended information loss in online
social networks by quantifying the privacy risk attributed to friend relationships
in Facebook. The authors show that a majority of users’ personal attributes can
be inferred from social circles. In [22] the authors present a privacy protection
tool that measures the inference probability of sensitive attributes from friendship

A Semi-supervised Approach to Measuring User Privacy 395

links. In addition, they suggest self-sanitization actions to regulate the amount of
leakage. [12], instead, introduces a machine learning technique to monitor users’
privacy settings and recommend reasonable privacy options. Other approaches to
privacy control in social networks investigate the problem of the risk perception.
In [1,2], for instance, the authors propose to provide users with a measure of how
much it might be risky to have interactions with them, in terms of disclosure of
private information. They use an active learning approach to estimate user risk
from few required user interactions.

The privacy measure we propose in this paper is closely related to the work
of Liu and Terzi [16]. They propose a framework to compute a privacy score
measuring the users’ potential risk caused by their participation in the network.
This score takes into account the sensitivity and the visibility of the disclosed
information and leverages the item response theory as theoretical basis for the
mathematical formulation of the score. Another privacy measure has been pro-
posed in [23] where the authors introduce a privacy index to measure the user
privacy exposure in a social network. This index, however, strongly relies on pre-
defined sensitivity values for users’ items. Furthermore, in both proposals, the
privacy measures are computed by leveraging separation-based privacy policies.
Differently from the above mentioned papers, our proposal considers circle-based
policy settings that better suits the real user visibility preferences.

3 A Circle-Based Definition of Privacy Score

In this section we introduce our circle-based privacy score aiming at supporting
the users participating in a social network in assessing their own privacy leakage
risk. Most social networking platforms (such as Facebook or Google+), provide
an adequate flexibility in configuring privacy of profile items and user’s actions.
Moreover, they offer some advanced facilities, such as the possibility of grouping
friends into special lists or social circles. But privacy is not just a matter of users’
preferences; it also relies on the context in which an individual is immersed: the
position within the network (very central users are more exposed than marginal
users), her or his own attitude on disclosing very private facts, and so on. Hence,
we propose a privacy score that takes all these aspects into account and fits the
real user expectations about the visibility of profile items.

Before entering the technical details of our approach, we briefly introduce
some basic mathematical notation required to formalize the problem.

3.1 Preliminaries and Notation

Here we introduce the mathematical notation we will adopt in the rest of our
paper. We consider a set of n users U = {u1, . . . , un} corresponding to the
individuals participating in a social network. Each user is characterized by
a set of m properties or profile items P = {p1, . . . , pm}, corresponding, for
instance, to personal information such as gender, age, political views, religion,

396 R.G. Pensa and G. Di Blasi

workplace, birthplace and so on. Hence, each user ui is described by a vector
pi =< pi1, . . . , pim >.

Users are part of a social network. Without loss of generality, we assume
that the link between two users is always reciprocal (if there is a link from uj

to uj then there is also a link from uj to ui). Hence, the social network here
is represented as an undirected graph G(V,E), where V is a set of n vertices
{v1, . . . , vn} such that each vertex vi ∈ V is the counterpart of user ui ∈ U and
E is a set of edges E = {(vi, vk)}. Given a pair of users (ui, uk) ∈ U , (vi, vk) ∈ E
iif users ui and uk are connected (e.g., by a friendship link).

For any given vertex vi ∈ V we define the neighborhood N (vi) as the set of
vertices vk directly connected to the vertex vi, i.e., N (vi) = {vk ∈ V | (vi, vk) ∈
E}. Conversationally speaking, N (vi) is the set of friends (also known as friend-
list) of user ui, hence we use N (vi) or N (ui) interchangeably. Given a user ui and
her friend-list N (ui), we also define the ego network centered on user ui as the
graph Gi(Vi, Ei), where Vi = N (vi) ∪ {vi} and Ei = {(vk, vl) ∈ E | vk, vl ∈ Vi}.

Finally, for any user ui we introduce a privacy policy matrixM i ∈ {0, 1}ni×m

(with ni = |N (ui)|) defined as follows: for any element mi
kj of M i, mi

kj = 1 iif
profile item pj ∈ P is visible to user uk ∈ N (ui) (0 otherwise, i.e., iif user uk is
not allowed to access profile item pj).

It is worth noting that our framework can be easily extended to the case of
directed social networks (such as Twitter): in this case, the privacy policies are
defined only on inbound links.

3.2 Privacy Score

Our measure is inspired by the privacy score defined by Liu and Terzi [16].
It measures the user’s potential risk caused by his or her participation in the
network. A n×m response matrix R is associated to the set of n users U and the
set of m profile properties P. In [16], each element rij of R contains a privacy
level that determines the willingness of user ui to disclose information associated
with property pj . In the binomial case rij ∈ {0, 1}: rij = 1 (resp. rij = 0) means
that user ui has made the information associated with profile item pj publicly
available (resp. private). In the multinomial case, entries in R take any non-
negative integer values in {0, 1, . . . , �}, where rij = h (with h ∈ {0, 1, . . . , �})
means that user ui discloses information related to item pj to users that are
at most h links away in the social network G (e.g., if rij = 0 user ui wants to
keep pj private, if rij = 1 user ui is willing to make pj available to all friends, if
rij = 2 user ui is willing to make pj available to the friends of her or his friends,
and so on). For this reason, we call this policy separation-based. However, in this
work, we adopt a different meaning for the entries rij of R: in our framework rij

is directly proportional to the number of friends to whom ui is willing to disclose
the information of profile property pj . Hence, we can compute R according to
the circle-based privacy policies defined by matrices M i’s using this formula:

rij =

⎢⎢⎢⎣� · 1
|N (ui)|

|N (ui)|∑
k=1

mi
kj

⎥⎥⎥⎦ (1)

A Semi-supervised Approach to Measuring User Privacy 397

where N (ui) is the set of friends of user ui, mi
kj denotes the visibility of user

ui’s profile item pj for friend uk, and � · � is the floor function. As a consequence,
rij = � iif ∀uk ∈ N (ui), mi

kj = 1. Our definition is conceptually different from
the original one, since the latter does not take into account the possibility of
disclosing personal items to just a part of friends.

In the following, we use RS when we refer to the response matrix computed
with the original separation-based policy approach defined in [16]. We use RC

when we refer to our circle-based definition of response matrix.
Using the response matrix it is possible to compute the two main components

of the privacy function: the sensitivity βjh of a profile item pj for a given privacy
level h, and the visibility Vijh of a profile item pj due to ui for a given level h.
The sensitivity of a profile item pj depends on the item itself (attribute “sexual
preferences” is usually considered more sensitive than “age”). The visibility,
instead, captures to what extent information about profile item pj of user ui

spreads in the network. For the computation details of βjh and Vijh we invite
the reader to refer to [16], where a mathematical model based on item response
theory (a well known theory in psychometrics) is used to compute sensitivity
and visibility. Intuitively, sensitivity βj is such that the more users adopt at
least privacy level h for privacy item pj , the less sensitive pj is w.r.t. level h.
Instead, visibility Vijh is higher when the sensitivity of profile items is low and
when users have the tendency to disclose lots of their profile items. Moreover, it
depends on the position of user ui within the network and can be computed by
exploiting any information propagation models [13].

The privacy score φp(ui, pj) for any user ui and profile property pj is com-
puted as follows:

φp(ui, pj) =
�∑

h=0

βjh · Vijh. (2)

and the overall privacy score φp(ui) for any user ui is given by

φp(ui) =
m∑

j=1

φp(ui, pj). (3)

From Eqs. 2 and 3 it is clear that users that have the tendency to disclose sensitive
profile properties to a wide public are more prone to privacy leakage. Intuitively,
φp(ui) = 0 means that, in each element of the summation, either βjh = 0 (the
profile item pj is not sensitive at all), or Vijh = 0 (the profile item pj is kept
private). On the contrary, the privacy score is maximum when a user discloses
to all her or his friends (Vijh = 1) all sensitive information (βjh = 1).

In this paper, we use φS
p when we refer to the score computed using the

original separation-based response matrix RS ; we use φC
p when we refer to the

privacy score leveraging our circle-based definition of response matrix RC .

398 R.G. Pensa and G. Di Blasi

4 Semi-supervised Privacy Policy Definition

Our definition of privacy score requires the availability of visibility preferences
for all user friends. However, setting them correctly is often an annoying and frus-
trating task and many users may prefer to adopt simple but extreme strategies
such as “visible-to-all” (exposing themselves to the highest risk), or “hidden-
to-all” (wasting the positive social and economic potential of social networking
websites). In this section we present a semi-supervised approach to minimize
the user’s intervention while computing the circle-based privacy policy matrices
M i. The classification model should be as accurate as possible in predicting
those privacy preferences not explicitly set by the users. Moreover, the model
should be easily updatable when the user sets more privacy preferences or adds
new users. Our choice is to use a Naive Bayes classifier [19], which is simple and
converge quickly even with few training data. Moreover, it can be easily embed-
ded in an active learning framework using, for instance, uncertainty sampling [9]
thus minimizing the intervention of the user in the model training phase.

Table 1. Example of Input Dataset for the Classification Task

Friend ID Age Gender Hometown Community No. of friends Cwork Cphotos Cpolitics

102030 “21–30” Male Rome C10 “501–700” allow allow deny

203040 “31–40” Female Madrid C5 “201–300” allow deny deny

304050 “15–19” Female Paris C7 “101–200” allow deny deny

405060 “41–50” Female Berlin C5 “701–1000” allow deny deny

506070 “51–60” Male Rome C10 “501–700” allow allow deny

607080 “21–30” Female Rome C10 “301–500” ? ? ?

708090 “41–50” Male Madrid C5 “301–500” ? ? ?

For any given user ui ∈ U and any given profile item pj ∈ P we define
a classification problem in which we have a set of |N (ui)| instances D =
{d1, . . . , d|N (ui)|} corresponding to all friends of ui. Each instance dk is char-
acterized by a set of p attributes {A1, . . . , Ap} with discrete values and m class
variables {C1, . . . , Cm} that take values in the domain {allow, deny}: Cj = allow
(resp. Cj = deny) means that friend uk is allowed (resp. is not allowed) to
access the information of profile item pj of user ui. The values of attributes
{A1, . . . , Ap} are partly derived from the profile vector pk =< pk1, . . . , pkm > of
users uk, partly from the ego network Gi(Vi, Ei) of user ui (see Sect. 3.1). For
instance, they may contain information such as the workplace and home-town
of uk, or the communities in Gi uk belong to. Table 1 is an example of possible
small dataset for a generic user consisting of five training instances and two test
instances with three profile-based attributes, two network-based attributes and
three class variables.

The Naive Bayes classification task can be regarded as estimating the class
posterior probabilities given a test example dk, i.e., Pr(Cj = allow|dk) and
Pr(Cj = deny|dk). The class with the highest probability is assigned to the

A Semi-supervised Approach to Measuring User Privacy 399

example dk. Given a test example dk, the observed attribute values are given by
the vector dk = {ak

1 , . . . , . . . , ak
p}, where ak

s is a possible value of As, s = 1, . . . , p.
The prediction is the class c (c ∈ {allow, deny}) such that Pr(Cj = c|A1 =
ak
1 , . . . , Ap = ak

p) is maximal. By Bayes’ theorem, the above quantity can be
expressed as

Pr(Cj = c|A1 = ak
1 , . . . , Ap = ak

p)

=
Pr(A1 = ak

1 , . . . , Ap = ak
p|Cj = c)Pr(Cj = c)

Pr(A1 = ak
1 , . . . , Ap = ak

p)

=
Pr(A1 = ak

1 , . . . , Ap = ak
p|Cj = c)Pr(Cj = c)∑

cx

Pr(A1 = ak
1 , . . . , Ap = ak

p|Cj = cx)Pr(Cj = cx)
(4)

where, Pr(Cj = c) is the class prior probability of c, which can be estimated
from the training data. If we assume that conditional independence holds, i.e.,
all attributes are conditionally independent given the class Cj = c, then

Pr(A1 = ak
1 , . . . , Ap = ak

p|Cj = c) =
p∏

s=1

Pr(As = ak
s |Cj = c) (5)

and, finally

Pr(Cj = c|A1 = ak
1 , . . . , Ap = ak

p) =

=
Pr(Cj = c)

∏p
s=1 Pr(As = ak

s |Cj = c)∑
cx

Pr(Cj = cx)
∏p

s=1 Pr(As = ak
s |Cj = cx)

(6)

Thus, given a test instance dk, its most probable class is given by:

c = arg max
cx

{
Pr(Cj = cx)

p∏
s=1

Pr(As = ak
s |Cj = cx)

}
(7)

where the prior probabilities Pr(Cj = cx) and the conditional probabilities
Pr(As = ak

s |Cj = cx) are estimated from the training data.
To predict all Cj ’s accurately without requesting too much labeling work

to ui, we adopt an active learning approach named uncertainty sampling [15]
based on the maximum entropy principle [9]. In an active learning settings the
learning algorithm is able to interactively ask the user for the desired/correct
labels of unlabeled data instances. A way to reduce the amount of labeling
queries to the users is to sample only those data instances whose predicted class
is most uncertain. Different measures of uncertainty have been proposed in the
literature, e.g., least confidence [8], smallest margin [21] and maximum entropy
[9], but for binary classification tasks they are equivalent. Hence, we decide to
adopt the maximum entropy principle. According to this principle, the most
uncertain data instance du is given by:

du = arg max
dk

{
−

∑
cx

Pr(Cj = cx|dk) log Pr(Cj = cx|dk)

}
(8)

400 R.G. Pensa and G. Di Blasi

Since probabilities Pr(Cj = cx|dk) are exactly those computed by the Naive
Bayes classifier to take its decision, this principle can be easily adapted to our
classification task.

Once all friends’ labels are predicted, each entry of the policy matrix M i can
be updated as follows:

∀uk ∈ N (ui), mi
kj =

{
1, if Cj = allow for uk

0, if Cj = deny for uk.
(9)

The entries of M i are then used to compute the response matrix RC as described
in Sect. 3. Note that the original separation-based definition of privacy score can
not take advantage of this active learning strategy.

5 Experimental Results

In this section we report and discuss the results of an online experiment that
we conducted on real Facebook users. The main objectives of our experiment
are: (i) to study the relationship between the separation-based privacy policies
and our circle-based policy definition; (ii) to analyze the relationship between
the separation-based privacy score φS

p defined in [16] and our circle-based score
φC

p ; (iii) to assess the performances of our active learning approach in terms of
classification accuracy and privacy score robustness.

The section is organized as follows: first, we describe the data and how we
gathered them; then we provide the details of our experimental settings; finally
we report the results and discuss them.

5.1 Dataset

Our online experiments were conducted in two phases. In the first phase we
promoted the web page of the experiment6 where people could voluntarily grant
us access to some data related to their own Facebook profile and friends’ network.
We were not able to access any other information rather than what we asked the
permission for, i.e.: email (needed to contact the users for the second phase of our
experiment), public profile, friend list, gender, age, work, education, hometown,
current location and pagelikes. The participants were perfectly aware about the
data we asked for and the purpose of our experiment. In this first phase, data
were gathered through a Facebook application developed in Java JDK 8, using
Version 1.0 of Facebook Graph API. From March to April 2015, we collected the
data of 185 volunteers, principally from Europe, Asia and Americas. The social
network consisting of all participants plus their friends is an undirected graph
with 75,193 nodes and 1,377,672 edges.

6 http://kdd.di.unito.it/privacyawareness/.

http://kdd.di.unito.it/privacyawareness/

A Semi-supervised Approach to Measuring User Privacy 401

Q1 Which people would you like to tell that
you have just changed job?

Q2 If your relationship status changed,
which friends would you like to tell?

Q3 After a nice holiday, which friends would
you share your photos with?

Q4 With whom would you like to share a
comment on current affairs/politics?

Q5 With whom would you like to share your
mood or something personal that hap-
pened to you?

(a) (b)

Fig. 1. The five questions (a) and the graphical interface (b) of our online survey

During the second phase, all the remaining participants were contacted for
the interactive part of our experiment. First, the participants had to indicate to
which level (0=no one, 1=close friends, 2=friends except acquaintances, 3=all
friends, 4=friends of friends, 5=everyone on Facebook) they were willing to allow
the access to five personal profile topics. The topics were proposed in form of
direct questions (see Fig. 1(a)) with different levels of sensitivity. We used the
answers to fill the response matrix RS . Then, to each participant, we proposed a
list of 60 randomly chosen friends and 6 randomly chosen friends of friends (when
available). The participants had to indicate to which people they were willing
to allow the access to the same five topics. For this phase, we developed a Java
JDK 8 mobile-friendly web application leveraging Version 2.0 of Facebook Graph
API. Figure 1(b) provides a screenshot of our online survey. We used the answers
on friends to fill the response matrix RC . From May 2015 to February 2016, 74
out of 185 participants answered all questions of two surveys. Hence, in our
experiments, we consider the network data provided by all 185 participants and
the survey data related to the 74 participants who completed the questionnaire.
All the data have been anonymized to preserve volunteers’ privacy. The entries
in the two resulting 74 × 5 matrices RS and RC take values in {0, . . . , 5}.

5.2 Separation-Based vs. Circle-Based Policies

As a preliminary analysis, we measure how the perception of topic sensitivity
changes when the two policies (separation-based and circle-based) are presented
to the participants. To this purpose we compare the two response matrix RS

and RC in several ways. First, we measure the Pearson’s correlation coefficient
between the two matrices. Given two series of n values X = x1 . . . , xn and
Y = yi, . . . , yn, the Pearson’s coefficient is computed as:

ρ(X,Y) =
∑n

i=1 (xi − x) (yi − y)√∑n
i=1 (xi − x)2

√∑n
i=1 (yi − y)2

(10)

where x =
∑n

i=1 xi/n and y =
∑n

i=1 yi/n. It basically captures the correlation
between the two series of values and ranges between −1 (for inversely correlated

402 R.G. Pensa and G. Di Blasi

sets of values) and +1 (for the maximum positive correlation). In our experiment,
n = 74 · 5. We obtain a moderate positive correlation (ρ(RS ,RC) = 0.4632),
that indicates a substantial difference between the two policies. Then, for each
question Qj , we measure the average difference between each entry of the two
matrices as

∑
i (rd

ij − rb
ij)/n. All the average differences are positive, i.e., the

given separation-based policies are less restrictive than circle-based ones. In par-
ticular, we measure an average difference of 0.54 for Q1, 0.43 for Q2, 0.32 for
Q3, 0.35 for Q4 and 0.15 for Q5. Moreover, we measure the overall sensitivity
of each topic as βj =

∑�
h βjh (see Sect. 3.2) in the two cases. As can be seen in

Fig. 2(a), all sensitivity values increase when the circle-based policy is adopted.
The improved sensitivity perception is confirmed when we look at the users’
policies more deeply. In particular, for each question Qj , we count:

– the number A of participants that, in the separation-based test, have made
Qj at least visible to friends of their friends (rS

ij ≥ 4), but have denied the
access to Qj to some of the friends of their friends in the circle-based test;

– the number B of users that have granted the access to some of the friends of
their friends in the circle-based test while rS

ij < 4 in the separation-based test;
– the number C of participants that, in the separation-based test, have made

Qj visible at least to all friends (rS
ij ≥ 4), but have denied the access to Qj to

some of their friends in the circle-based test rC
ij < 5;

– the number D of participants that, in the circle-based test, have made Qj

visible to all friends (rC
ij = 5), but have denied the access to Qj to some of

their friends in the separation-based test rS
ij < 3.

The results in Table 2 indicate that the major differences are on questions Q3

and Q4, that are the less sensitive according to Fig. 2(a). However, then passing
from a separation-based policy to a circle-based one, many users have reviewed
their choices in a more restrictive way for question Q1 and Q2 as well.

Table 2. Policy differences in visibility

Measure Q1 Q2 Q3 Q4 Q5

A 2 2 4 9 1

B 0 0 4 9 1

C 20 5 19 21 4

D 0 0 4 9 1

Finally, we also compute the privacy scores φS
p (ui, pj) and φC

p (ui, pj) for
each question Qj and each participant ui. The average score values are given in
Fig. 2(b). Interestingly, although the circle-based policy increases the perception
of topic sensitivity, the related privacy scores are sensibly smaller than those
computed within the separation-based hypothesis, i.e., the participants have a
safer behavior w.r.t. the visibility of the topics. For the sake of completeness,

A Semi-supervised Approach to Measuring User Privacy 403

Fig. 2. Comparative results (separation-based approach vs. circle-based approach)

we perform a correlation analysis between the values of φS
p (ui) and φC

p (ui) in
Fig. 2(c). The value of the Pearson’s ρ coefficient (0.4582) shows moderate pos-
itive correlation between the two series of scores.

5.3 Assessment of the Active Learning Approach

To measure the performances of the active learning approach, we generate 74×5
datasets (one for each pair of users and questions) that we use to train and
test the Naive Bayes classifier. These datasets contain, for each friend uk of
a user ui, the following attributes: gender and age of uk, countryman (true, if
uk and ui were born in the same place, fellow citizen (true, if uk and ui live
in the same place), coworker (true, if uk and ui work or have worked in the
same place), schoolmate (true, if uk and ui are or have studied in the same
school/college/university), and the Jaccard similarity of page likes of ui and uk.
All attribute values are derived from the information extracted by the Facebook
profiles, when available. Additionally, we also consider the list of communities
uk is part of. To this purpose, we execute a community detection algorithm on
the so called “ego-minus-ego” networks (the subgraph induced by the vertex
set N (ui) \ {ui}) of all 74 users. We use DEMON [7], a local-first approach
based on a label propagation algorithm that is able to discover overlapping
communities. The algorithm requires two parameters as input: the minimum
accepted size for a community (minCommunitySize) and a parameter ε that
determines the minimum overlap two communities should have in order to be
merged. In our experiments, we set minCommunitySize = 3 (to discard very
small communities) and ε = 0.5 (to admit an average overlap degree). Finally,
each friend has a class variable that takes values in the set {allow, deny}.

We conduct the experiment as follows. To simulate the active learning frame-
work, for each user and question, (i) we start with just five (randomly chosen)
labeled friends with which we train the Naive Bayes classifier described in Sect. 4;
(ii) we test the classifier on the remaining 55 friends and (iii) choose the friend
whose prediction is the most uncertain, following the maximum entropy crite-
rion (see Eq. 8 in Sect. 4); (iv) we assign to this friend the same label declared
by the participant and (v) we re-train the classifier on 5 + 1 instances (friends);
(vi) finally, we test the new classifier on the remaining 54 instances. We repeat
iteratively the last four steps until there are no test instances left.

404 R.G. Pensa and G. Di Blasi

Fig. 3. Prediction Accuracy vs. Privacy function: average results

At the end of each prediction step, we measure the following performance
parameters: (i) the Accuracy of the predictions; (ii) the F-Measure of the pre-
dictions, computed as F -Measure = 2 · (precision · recall)/(precision + recall)
where precision and recall are computed by considering the deny class as the
positive one; (iii) the privacy score (Eq. 3) computed by considering both given
and predicted {allow, deny} labels for all 74 users and applying Eq. 9 to calculate
matrices M i and Eq. 1 to compute the response matrix RC .

The values of the three parameters are averaged on all 74 users and 30 runs.
In each run, the first five labeled friends are chosen randomly. The initial value of
the privacy function (when no labels are given) is computed by assigning random
labels to all 60 friends.

The results are provided in Fig. 3. The values of the three parameters are
reported for each question separately. As a general observation, the accuracy
of the prediction increases significantly with the number of labeled friends (see
Fig. 3(a)). The growth of the F-Measure is less sharp, instead (Fig. 3(b)). We
recall that both measures are computed on the test instances only. The small
drop of Accuracy and F-Measure in the last steps can be explained by the fact
that misclassification errors of few test instances (less than 5 samples) are more
likely to happen. Interestingly, predictions are more accurate for the two most
sensitive questions (Q2 and Q5). As for the privacy scores (Fig. 3(c)), they start
to decrease when few friends (5 to 15) are labeled, then they start to grow
almost monotonically and the differences among them are more emphasized.
This behavior can be partially explained by noting that, as the amount of labeled
friends increases, the sensitivity perceived by the users gets closer to the realistic
sensitivity of the five topics.

5.4 Reliability of the Predictions

We also study the robustness of the approach by extending the prediction to
all participants’ friends. Since we do not have the correct labels for friends who
do not belong to the list proposed to the participants, we can only measure the
privacy scores computed on the basis of the predicted set of labels. We compare
these measures with those computed by just considering the labeled friends.

To do that, we first compare the sensitivity values in the two cases (see
Fig. 4(a)). All questions are subject to an increase of their sensitivity, but when

A Semi-supervised Approach to Measuring User Privacy 405

 0
 1
 2
 3
 4
 5
 6
 7

Q1 Q2 Q3 Q4 Q5

Se
ns

iti
vi

ty

Topic

labeled friends
all friends

(a) Sensitivity

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

Q1 Q2 Q3 Q4 Q5

Pr
iv

ac
y

sc
or

es

Topic

labeled friends
all friends

(b) Privacy scores

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1 1.2

Pr
iv

ac
y

sc
or

e
(a

ll
fri

en
ds

)

Privacy score (labeled friends)

ρ=0.8093 (p-value<0.000001)

(c) Correlation analysis

Fig. 4. Privacy scores computed with labeled friends only vs. privacy scores computed
on all friends

looking at the average privacy scores (Fig. 4(b)) we note that all scores are higher
than those computed when considering only labeled friends. This means that the
visibility of the topics is high. Hence, we perform a correlation analysis in order
to check whether the behavior of scores is coherent in the two cases and measure
the Pearson’s ρ coefficient on the two series of privacy score values. We obtain
a Pearson’s coefficient of ρ = 0.8093 with a p-value p < 0.000001 (see Fig. 4(c))
denoting high positive correlation. This result confirm that: (i) the experiments
on the limited set of 60 friends per user are significant enough and that, (ii) the
approach is reliable even for users with a realistic number of friends and few
given labels. Note that the overall number of friends of the participants spans
between 120 and 1558 (with an average of 435).

6 Conclusions

With the final goal of fostering users’ privacy awareness in the Web, we have
proposed a privacy score based on an active learning approach to provide the
users of online social networks with a measure of their privacy leakage. We have
validated experimentally our metrics on an original dataset obtained through
an online survey on real Facebook users. The experiments have shown the effec-
tiveness and the reliability of our approach. In particular, we have shown that
state-of-the-art metrics are based on a distorted perception of sensitivity of pub-
lished items. Based on these results, we believe that our framework can be easily
plugged into any domain-specific or general-purpose social networking platforms.
Furthermore, it may inspire the design of privacy-preserving social networking
components for Privacy by Design compliant software [5].

Acknowledgments. The work presented in this paper has been co-funded by
Fondazione CRT (grant number 2015-1638). The authors wish to thank all the vol-
unteers who participated in the survey.

406 R.G. Pensa and G. Di Blasi

References

1. Akcora, C.G., Carminati, B., Ferrari, E.: Privacy in social networks: How risky is
your social graph? In: Proceedings of ICDE 2012, pp. 9–19 (2012)

2. Akcora, C.G., Carminati, B., Ferrari, E.: Risks of friendships on social networks.
In: Proceedings of ICDM 2012, pp. 810–815 (2012)

3. Backstrom, L., Dwork, C., Kleinberg, J.M.: Wherefore art thou R3579X?:
anonymized social networks, hidden patterns, and structural steganography. Com-
mun. ACM 54(12), 133–141 (2011)

4. Becker, J., Chen, H.: Measuring privacy risk in online social networks. In: Proceed-
ings of Web 2.0 Security and Privacy (W2SP) (2009)

5. Cavoukian, A.: Privacy by design [leading edge]. IEEE Technol. Soc. Mag. 31(4),
18–19 (2012)

6. Cetto, A., Netter, M., Pernul, G., Richthammer, C., Riesner, M., Roth, C., Sänger,
J.: Friend inspector: A serious game to enhance privacy awareness in social net-
works. In: Proceedings of IDGEI 2014 (2014)

7. Coscia, M., Rossetti, G., Giannotti, F., Pedreschi, D.: Uncovering hierarchical and
overlapping communities with a local-first approach. TKDD 9(1), 6:1–6:27 (2014)

8. Culotta, A., McCallum, A.: Reducing labeling effort for structured prediction tasks.
In: Proceedings of AAAI 2005, pp. 746–751 (2005)

9. Dagan, I., Engelson, S.P.: Committee-based sampling for training probabilistic
classifiers. In: Proceedings of ICML 1995, pp. 150–157 (1995)

10. Dunbar, R.I.M.: Do online social media cut through the constraints that limit the
size of offline social networks? Roy. Soc. Open Sci. 3(1), 50292 (2016)

11. Fang, L., LeFevre, K.: Privacy wizards for social networking sites. In: Proceedings
of WWW 2010 (2010)

12. Ghazinour, K., Matwin, S., Sokolova, M.: Monitoring and recommending privacy
settings in social networks. In: Proceedings of 2013 EDBT/ICDT Workshop, pp.
164–168 (2013)

13. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence
through a social network. In: Proceedings of SIGKDD 2003, pp. 137–146 (2003)

14. Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable
from digital records of human behavior. PNAS 110(15), 5802–5805 (2013)

15. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In:
Proceedings of SIGIR 1994, pp. 3–12 (1994)

16. Liu, K., Terzi, E.: A framework for computing the privacy scores of users in online
social networks. TKDD 5(1), 6 (2010)

17. Liu, Y., Gummadi, P.K., Krishnamurthy, B., Mislove, A.: Analyzing facebook pri-
vacy settings: user expectations vs. reality. In: Proceedings of SIGCOMM IMC
2011, pp. 61–70 (2011)

18. Mislove, A., Viswanath, B., Gummadi, P.K., Druschel, P.: You are who you know:
inferring user profiles in online social networks. In: Proceedings of WSDM 2010,
pp. 251–260 (2010)

19. Mitchell, T.M.: Machine learning. McGraw-Hill, New York (1997)
20. Roberts, S.G.B., Dunbar, R.I.M., Pollet, T.V., Kuppens, T.: Exploring variation in

active network size: Constraints and ego characteristics. Soc. Netw. 31(2), 138–146
(2009)

21. Scheffer, T., Decomain, C., Wrobel, S.: Active hidden markov models for informa-
tion extraction. In: Hand, D.J., Kok, J.N., Berthold, M.R. (eds.) IDA 1999. LNCS,
vol. 1642, pp. 309–318. Springer, Heidelberg (2001). doi:10.1007/3-540-44816-0 31

http://dx.doi.org/10.1007/3-540-44816-0_31

A Semi-supervised Approach to Measuring User Privacy 407

22. Talukder, N., Ouzzani, M., Elmagarmid, A.K., Elmeleegy, H., Yakout, M.:
Privometer: Privacy protection in social networks. In: Proceedings of M3SN 2010,
pp. 266–269 (2010)

23. Wang, Y., Nepali, R.K., Nikolai, J.: Social network privacy measurement and sim-
ulation. In: Proceedings of ICNC 2014, pp. 802–806 (2014)

24. Wu, L., Majedi, M., Ghazinour, K., Barker, K.: Analysis of social networking pri-
vacy policies. In: Proceedings of 2010 EDBT/ICDT Workshops (2010)

25. Zheleva, E., Getoor, L.: Privacy in social networks: A survey. In: Aggarwal, C.C.
(ed.) Social Network Data Analytics, pp. 277–306. Springer, Heidelberg (2011)

On Using Temporal Networks to Analyze
User Preferences Dynamics

Fab́ıola S.F. Pereira1(B), Sandra de Amo1, and João Gama2

1 Federal University of Uberlândia, Uberlândia, Brazil
{fabiola.pereira,deamo}@ufu.br

2 LIAAD INESC TEC, University of Porto, Porto, Portugal
jgama@fep.up.pt

Abstract. User preferences are fairly dynamic, since users tend to
exploit a wide range of information and modify their tastes accordingly
over time. Existing models and formulations are too constrained to cap-
ture the complexity of this underlying phenomenon. In this paper, we
investigate the interplay between user preferences and social networks
over time. We propose to analyze user preferences dynamics with his/her
social network modeled as a temporal network. First, we define a tempo-
ral preference model for reasoning with preferences. Then, we use evolv-
ing centralities from temporal networks to link with preferences dynam-
ics. Our results indicate that modeling Twitter as a temporal network is
more appropriated for analyzing user preferences dynamics than using
just snapshots of static network.

Keywords: Temporal networks · User preferences · Evolving
centralities

1 Introduction

What drives people’s preferences dynamics? Modeling users’ preferences and
needs is one of the most important personalization tasks in the information
retrieval domain. User preferences are fairly dynamic, since users tend to exploit
a wide range of items and modify their tastes accordingly over time. Moreover,
all the time users are facing others’ opinions and being socially influenced. This
scenario dispatches several research efforts to investigate the interplay between
user preferences and social networks [1,2].

In this paper, we are interested in user preferences dynamics, i.e., the obser-
vation of how a user evolves his/her preferences over time. In our context, user
preference is a specific type of opinion, that establishes an order relation between
two objects. For example, when a user says: “I prefer sports than religion”, we
clearly identify his preference to sports subjects over religion.

Although social networks are fairly dynamic, traditional approaches in online
social networks analysis consider nodes and edges as being persistent over time
[3]. We go a step beyond and discuss social networks as temporal networks,
c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 408–423, 2016.
DOI: 10.1007/978-3-319-46307-0 26

On Using Temporal Networks to Analyze User Preferences Dynamics 409

where the times when edges are active are an explicit element of the represen-
tation [4]. A classical example of temporal networks is on disease contagion.
Usually, the spreading of diseases occurs through contact between two people.
Considering the order of these contacts is important and more meaningful than
just analyzing an aggregate static network that ignores when these contacts
occurred. In the context of social networks, our topic of interest, temporal net-
works are being used to represent users interactions [5,6].

We hypothesize that centralities properties of temporal networks can reveal
interesting patterns of users’ preferences dynamics, especially when handling
change detection. The running example below illustrates the preference dynamics
problem we are investigating in this paper and its link with temporal networks.

Motivating example. Let us consider the most popular microblogging social
network, Twitter. In Twitter, a user A usually follows another B if A is interested
in what B posts. A common behavior is, for example, if A is fan of soccer,
probably he is following sports channels and personalities like Messi and Neymar.
Let us imagine, now, the context of an e-commerce recommendation system able
to infer user preferences from Twitter in order to improve recommendations
quality. In Fig. 1(a) we have a sequence of preferences inferred for user A about
different themes (sport, TV, religion and music) that he likes to follow, post,
share or read about in Twitter. An edge (a1, a2) indicates that a1 is preferred to
a2 (edges inferred by transitivity are not represented in the figure). Analyzing
A’s preferences, we notice that in the first week of January, his preferences keep
stable, just appearing a preference of TV over music themes and disappearing
a preference of sport over music. However, on day 9, A changed his mind and is
preferring music over TV. This can be an indicative of changes on his preferences
and interests.

Now, in Fig. 1(b) we have snapshots of A’s Twitter network. One edge from
node A to node B indicates that A is followed by B (the flow of information).
It is well know that Twitter network is fairly dynamic, and people start and
end relationships (follows) all the time [7]. According to our hypothesis, many
aspects of A’s network structure may have influenced on his preferences change.
For instance:

– the structural position of A in the network can be changed, as well as the
global network topology. This means that he could be held a close position to
music influential users;

– from second week of January, according to A’s position, he is not receiving
any information about religion;

– A’s position is always close to sport celebrities.

It is an essential point for our hypothetical recommendation system to detect
and predict A’s preferences evolution over time and their changes. This could
improve the sales of CDs, for example, when recommending to A. We show
that the temporal-topological Twitter structure is strongly correlated with user
preferences dynamics.

410 F.S.F. Pereira et al.

Fig. 1. (a) Sequence of A’s preferences. (b) Snapshots from A’s Twitter network

Contributions. The main contributions of this paper can be summarized as
follows: (1) proposal of a temporal preference model for representing and rea-
soning with preferences over time; (2) a preference change detection algorithm
for detecting changes events in preferences; (3) a centrality change detection
algorithm; (4) proposal of a correlation between preferences and centrality mea-
sures in temporal networks; (5) a set of experiments validating our proposals,
specially against static networks counterpart.

Organization of the paper. First, we discuss some related work. Then, we
formalize user preferences dynamics by proposing a temporal preference model
able to detect changes on preferences. After that, we present social temporal
networks, discussing temporal aspects that were adopted in our analysis. In
the Methodology Section, we mainly describe how we elicited preferences from
Twitter dataset to validate our proposal. Then, we present the experimental
results and conclude the paper.

2 Related Work

We summarize related literature according to two different aspects that we are
addressing in this paper: (1) user preferences on social networks and (2) temporal
networks.

2.1 User Preferences on Social Networks and Dynamics

Social networks are playing an important role as a type of source knowledge for
mining (or inferring) user preferences in the Preference Learning area. The work
[1], for example, combines user attributes and social network ties to discover user
preferences. In [2], social influence has been used on classifiers to predict users’
preferences. In this paper, we go a step beyond, from the point that preference
relations between objects are already known and social networks are not used
on the learning process, but on the new Preference Dynamics field. The work [8]
investigates the music listening histories of Last.fm users focusing on the changes
in their preferences based on their choices for different artists at different points
in time. The modeling has been done by the survival analysis statistical method.
In [9] the focus is on preferences shift (or change) over time. The authors propose

On Using Temporal Networks to Analyze User Preferences Dynamics 411

a new measure of user preference dynamics (UPD) that captures the shifting
rate of preferences. The work [10] is orthogonal to ours because it combines the
growth of social links with the generation of user interaction events on those
links. The focus is on social interactions, while ours is on user preferences. The
topic of preference change has also been studied on sociology field [11,12].

2.2 Temporal Networks

The literature of temporal networks, focused on social media, is essentially con-
centrated on understanding patterns of information diffusion [13,14]. Especially,
the ideas presented in [5] motivated us to develop this research. The author
reviews methods to analyze temporal networks that seek to identify key media-
tors and how temporal and topological structure of interaction affects spreading
processes. In the same way, [15] analyzes temporal centrality metrics. However,
our focus is not on information diffusion, but on user preferences dynamics.

Researches on graph metrics for temporal networks essentially address this
issue. [6,16] discuss that there are various concepts of shortest path for temporal
graphs and propose efficient algorithms to compute them. In [17] graph metrics
are revisited for temporal networks in order to take into account the effects of
time ordering on causality.

Remarking on detecting changes on networks, according to [18], the concept
of change in a graph sequence falls into one of three main categories accord-
ing to the structure level of interest: global structure, local structure and the
community-level structure. Our focus is on local changes. Global and communi-
ties’ changes do not hold in our experiments.

3 User Preferences Dynamics

There is no consensus on the definition of preferences dynamics [19]. We adopt
the following definition:

Definition 1 (User Preferences Dynamics (UPD)). UPD refer to the
observation of how a user evolves his/her preferences over time.

First, we propose a temporal preference model able to represent and reasoning
with preferences on time. Then, we describe how to detect events of changes on
temporal preferences.

3.1 Temporal Preference Model

A preference is an order relation between two objects. For example, when a user
says: “I prefer sports to politics”, if we order sports and politics in a ranking, we
can clearly identify that sports will be in the top position.

412 F.S.F. Pereira et al.

Definition 2 (Temporal Preference Relation �t). A temporal preference
relation (or temporal preference, for short) on a finite set of objects A = {a1, a2,
..., an} is a strict partial order over A inferred on time t, i.e., a binary relation
R ⊆ A×A satisfying the irreflexivity and transitivity properties on t. Typically, a
strict partial order is represented by the symbol �. Considering �t as a temporal
preference relation, we denote by a1 �t a2 the fact that a1 is preferred to a2 on t.

Definition 3 (User Temporal Profile Γu
t). User temporal profile Γu

t is the
transitive closure (TC) of all temporal preferences of user u on t.

Example 1. Let A = {sport, tv, religion,music} be the set of objects in our
running domain representing themes of interest of user A. Figure 1(a) illustrates
the temporal preferences of A on days 1, 4 and 9 through better-than graphs.
Remark that an edge (a1, a2) indicates that a1 is preferred to a2 and edges
inferred by transitivity are not represented. We have: ΓA

1 = {sport �1 tv, tv �1

religion, sport �1 religion, sport �1 music}, ΓA
4 = {sport �4 tv, tv �4 reli-

gion, sport �4 religion, tv �4 music, sport �4 music} and ΓA
9 = {sport �9

tv, tv �9 religion, sport �9 religion,music �9 tv,music �9 religion}.

3.2 Detecting Changes on Temporal Preferences

A key property of temporal preferences is the irreflexivity. We say that a temporal
profile Γu

t is inconsistent when there is a preference a1 �t a1 ∈ Γu
t . It would

means that “I prefer X better than X!”, which does not hold for a strict partial
order.

Our proposal for detecting preference change is based on the consistency of
user temporal profiles. The idea is to compute the union of user profiles collected
over time, infer temporal preferences by transitivity considering all timestamps
and verify if there is any inconsistency on the resulted set of preferences. If yes,
we detect an event of preference change. These concepts are formalized in what
follows.

Definition 4 (Temporal Profile Union Ωu
t). Two temporal preferences of

the type a1 �t−1 a2 and a2 �t a3, can unite to infer a third temporal preference
a1 �t′ a3, once considering transitivity of both, temporal preference relation and
timestamp order. A temporal profile union Ωu

t is the transitive closure (TC) of
all irreflexive relations given by Γu

t−1 ∪ Γu
t .

Definition 5 (Preference Change δut). If there is a temporal preference
inconsistency in Ωu

t a preference change has been detected on time t for user
u. In other words, a preference change δut is defined as:

δut =

{
1, if there is a temporal preference inconsistency in Ωu

t

0, otherwise
(1)

Remarking on Example 1, let us consider W = {1, 4, 9} the set of intervals
time stamps. The temporal profile union ΩA

9 = {..., tv �4 music,music �9

On Using Temporal Networks to Analyze User Preferences Dynamics 413

tv, tv �9′ tv, ...} contains the inconsistency tv �9′ tv. So, a preference change
has been detected on time 9 (δA9 = 1). Intuitively, we have that on day 1, for
example, A prefers to read/post/share on his social network news about sport,
but between tv and religion he is in the mood for tv. On the following days,
A’s preferences practically do not change, just appearing a preference of tv over
music. However, on day 9, A’s presented a preference change, as music became
preferred over tv.

The size of the intervals time stamps in W determines if we are tracking
short-term or long-term preference events. As example of real events, we can
cite new product releases and special personal occasions such as birthdays [20].

In order to formalize the detection of changes in our temporal preference
model, we propose the PrefChangeDetection algorithm. The intuition of this
algorithm is to analyze better-than graphs of a user during the observation inter-
vals in W from social networks. If the resulting graph has at least one cycle
(meaning an inconsistency) we have detected a preference change. The Algo-
rithm1 formalizes this idea.

Algorithm 1. PrefChangeDetection

Input: User u, set of intervals W , a vector Γu of size |W | containing u’s temporal
profiles for each t ∈ W extracted from the social network G = (V, E)

Output: A vector δu of size |W | containing u’s preference changes for each t ∈ W
1: BGu

prev ← ∅
2: for all t ∈ W do
3: build better-than graph BGu

t from Γu[t]
4: BGu ← BGu

prev ∪ BGu
t

5: if BGu is not acyclic then
6: δu[t] = 1
7: else
8: δu[t] = 0

9: BGu
prev ← BGu

t

10: return δu

Remarking on the complexity analysis, the time to build a better-than graph
(line 3) varies according to the preference mining algorithm used. In Sect. 5 we
present the algorithm we use in this paper for mining preferences from social net-
works. In worst case, its complexity is O(|V |), where |V | is the number of nodes.
The time to detect if a directed graph is acyclic (line 5) is O(|A| + |Ωu

t |) where
A is the set of objects in the domain (the nodes) and Ωu

t is the temporal profile
union containing the preference orders (the edges). Hence, PrefChangeDetection,
in the worst case, has complexity of O(|W ||V |(|A| + |Ωu

t |)).

414 F.S.F. Pereira et al.

4 Social Networks Evolution

We introduce the background of temporal networks, leveraging terms like tem-
poral networks, temporal graphs, static networks and evolving graphs. Next, we
propose an algorithm for detecting changes on centralities metrics.

4.1 Temporal Networks vs. Static Networks

In this paper, we explore two different representation of social networks: as a
static graph structure and as a temporal graph [4,6]. The static graph structure
is a traditional approach where the temporal aspects are aggregated and the
evolution is analyzed just as a set of graphs snapshots over time [6]. On the
other hand, in temporal graphs (or temporal networks) the information of when
interactions between nodes happen is taken into account. Let us formalize these
concepts.

Definition 6 (Static Networks). A network Gs = (V,E) is static (or aggre-
gate) if there is not any time reference in the edges.

Definition 7 (Temporal Networks). Temporal networks or temporal graphs
Gt = (V,E) are graphs with temporal edges, i.e., each edge contains the infor-
mation of when it has been created and when it has been deleted [6].

Example 2. Consider the temporal and the aggregate graphs in Fig. 2. They rep-
resent a social network, where the nodes are users and the edges are interactions
(for example, tweets) between two users. Suppose that node A has a high impact
information to spread in the network. If we analyze the network from the aggre-
gate graph perspective, the information will reach node F . This is not true for
the temporal network, as A just interacts on time t3 with B and after that, it is
not possible to reach F from B.

Fig. 2. Temporal network vs. static (aggregate) network

The centrality metrics analysis is inherent to what network representation
we are using. Remarking on Example 2, there is a path between nodes A and F
in aggregate graph, but not in temporal graphs. This implies in different values
of centralities for these nodes. The problem of evolving centralities in temporal
networks is addressed in [6]. In Sect. 6 we show that the betweenness and close-
ness centralities have different behaviors according to the network representation
and, consequently, they correlate with user preferences in different ways.

On Using Temporal Networks to Analyze User Preferences Dynamics 415

4.2 Detecting Changes on Centrality Metrics

In order to detect changes on temporal metrics, and consequently on graph
structure, we defined a baseline approach founded on change-point in rankings
[21]. The idea is to maintain a ranking R of all the nodes in the graph according
to their metrics values for each interval time stamp ti inside the observation set
of intervals W . Based on the variations of metrics values and ranking positions
from t to t + 1, we detect changes.

Definition 8 (Ranking Position). Let G = (V,E) be a graph and W = {t, t+
1, ...} a set of intervals. We define Cu

t as the centrality value of u on time t, for
u ∈ V and t ∈ W . Let us consider a ranking Rt where the centrality values of
all nodes in V are ranked in descending order on time t. We define posut as the
position of node u in Rt, i.e., Cu

t > Cv
t iff posut > posvt , for u, v ∈ V .

Definition 9 (Temporal Metric Change λu
t). We define Λu

t as the acceler-
ation of node u in centrality ranking position from time t − 1 to time t:

Λu
t =

|posut − posut−1|
max(posut , posut−1)

(2)

A temporal metric change λu
t is detected when Λu

t is greater than a
threshold θ:

λu
t =

{
1, Λu

t > θ

0, otherwise
(3)

The algorithm CentralityChangeDetection (Algorithm 2) implements change
detection in centrality metrics based on above definitions. The complexity time is
given by the computation of centralities (line 3). In the worst case, the between-
ness centrality involves calculating the shortest paths between all pairs of vertices
on a graph, which takes O(|V |3). Hence, the total complexity is O(|W ||V |3).

5 Methodology

In our methodology we chose as temporal social network the Twitter fol-
lower/followee network and extract preferences based on the structure of this
network.

5.1 Dataset

The Twitter dataset from [6] was used to validate our proposal. In order to
correlate user preferences and the structure of social networks, from evolution
viewpoint, we need a dataset (1) containing the information of when relationships
start and end in the network and (2) some semantic information about the nodes
from which it is possible to extract preferences.

The temporal information of Twitter has the following meaning: each node is
a user and an edge (u, v, tinit, tend) indicates that v starts following u at tinit and

416 F.S.F. Pereira et al.

Algorithm 2. CentralityChangeDetection

Input: User u, set of intervals W , social network G = (V, E), threshold θ
Output: A vector λu of size |W | containing temporal metrics changes for each t ∈ W
1: Rt−1 ← ∅
2: for all t ∈ W do
3: calculate centralities from G and build ranking Rt

4: if Rt−1 = ∅ then
5: Λu

t = 0
6: else
7: Λu

t ← |posut −posut−1|
max(posut ,posut−1)

8: if Λu
t > θ then

9: λu[t] = 1
10: else
11: λu[t] = 0

12: Rt−1 ← Rt

13: return λu

unfollows u at tend+1 (v follows u during [tinit, tend]). As we are dealing with a
real dynamic social network, a user can follows and unfollows another user all the
time. This is the most interesting aspect that we are investigating: how following
relationships on Twitter can allow us to understand user preferences dynamics?
The dataset contains 144975 users and 1222118 temporal edges, observed from
08/28/2015 to 12/15/2015. In [6] there are more insights about time-changing
characteristics of data.

5.2 Preference Mining

The dataset we used was crawled from Twitter based on a “seed celebrity” pol-
icy: choose s celebrities users as seeds and for each seed, select his/her followers.
These seeds play an important role for the extraction of users preferences from
data. We labeled the 27 seeds based on 9 themes that they represent as celebri-
ties. The themes are politics, sport, religion, news, music, humor, TV, fashion
and health. For example, Neymar is a sport celebrity, Gisele Bündchen from
fashion and the pope is a religion representative.

The 9 themes adopted are the domain of preferences. The intuition in this
preference mining process is: if user u follows a lot of religions personalities and
does not follow anyone from fashion field, then u has more interest in religion
than in fashion. Thus, we mined preferences of the type: religion �t

u fashion.
We consider the preference strength w as the number of seeds of the same

theme that a user u follows. For example, if u follows 3 religion seeds and 1
news seed, we have religion �t

u news. If u does not follow any health seed, we
have that the remaining themes are preferred over health. These situations are
illustrated in Fig. 3. This method is solely language-agnostic and based on the
semantics inferred by the structure of the network [22].

On Using Temporal Networks to Analyze User Preferences Dynamics 417

Fig. 3. Mining preferences from Twitter

There are many drawbacks on mining preferences in this way. We can infer
that a user prefer a topic even if the posts are badly written. Or, that soccer
players always post about soccer, which is not necessary true. As this paper is a
pioneer quantitative analysis of preferences dynamics in Twitter, we chose this
preference mining approach as baseline. In [23] a technique to extract preferences
from tweets has been proposed, but we did not use it because our dataset do not
contain users tweets. We just have the network topology.

5.3 Discussion

There are many directions to explore from the concepts presented in this paper:
(i) networks are related to preferences to what extent? (ii) Any social network can
be used to analyze UPD? (iii) What are the best centrality metrics? (iv) What
is the best network modeling to analyze UPD: static or temporal? In this paper,
we perform experiments to validate the direction (iv).

We analyze how effective are temporal networks to track user preferences
dynamics against static networks in Twitter dataset. The analysis is founded on
the correlation strength of preferences changes and centralities metrics changes
over time. According to our methodology, the preferences are elicited from the
same graph structure that we perform centralities measures analysis. Hence,
preference change and centrality change are naturally correlated. Our focus here
is to show that there is a significant difference between correlations strength
obtained with temporal networks representation in relation to static networks
counterpart. So, the methodology does not imply a bias in the experiments.

6 Experimental Results

We show that temporal networks are better representations than static networks
for the analysis of user preferences dynamics.

6.1 Experimental Environment

Intervals. The solutions we are proposing for the problem of preferences and
centralities events detection are highly sensitive to the granularity of observation

418 F.S.F. Pereira et al.

window W . We define four intervals to perform the experiments, described in
Table 1. Remark that the intervals are the elements of W . If we are interested in
tracking short-term events, then short intervals like Daily and Weekly fit better.
For instance, preferences over the domains of news or restaurants have a high
changing rate. On the other hand, long intervals are more appropriate when the
events are not frequent, for example preferences about movies and politics.

Table 1. Intervals inside observation window W = [08/28/2015, 12/15/2015]

Period # of intervals Values

Daily (DA) 110 DA1 = [08/28, 08/28], ..., DA110 = [12/15, 12/15]

Weekly (WE) 15 WE1 = [09/01, 09/07], WE2 =
[09/08, 09/14], ..., WE15 = [12/08, 12/14]

Fortnightly (FO) 7 FO1 = [09/01, 09/15], FO2 =
[09/16, 09/30], ..., FO7 = [11/30, 12/14]

Monthly (MO) 3 MO1 = [09/01, 09/30], MO2 =
[10/01, 10/31], MO3 = [11/01, 11/30]

Users. The dataset contains 144975 users. For computing the events along time
intervals, the values λAVG

t and δAVG
t correspond to the average across all users

for each time interval t.

Centrality Metrics. Betweenness and closenness metrics are used in our exper-
iments. Betweenness considers how important nodes are in connecting other
nodes. In closeness centrality the intuition is that the more central nodes are,
the more quickly they can reach other nodes [24]. Thus, these metrics are related
with nodes that play influence and spreading roles in the network, respectively.
These are potential features for understanding users preferences dynamics. For
centrality events detection we vary the threshold θ = {0.2, 0.4, 0.6}.

Social Network Representation. We compare the behavior of temporal
graphs and static graphs structures in relation to preferences and centralities
changes over time.

6.2 Analyzing Change Events and Correlations

Q1: What are the changes behaviors of users (preferences) and nodes (centrali-
ties)? Are these variables really dynamics?

We verify the change rate for both preferences and centralities over different
time intervals. The results are illustrated in Fig. 4. The analysis of daily intervals
is not interesting here as there is no difference between temporal and static
networks for daily intervals (the temporal network has granularity of one day).
The parameter θ has been fixed as 0.4 in this analysis, corresponding to the

On Using Temporal Networks to Analyze User Preferences Dynamics 419

intermediate value of our range. In next analysis we show that it does not affect
the correlations behaviors.

On average, the rate of users that change their preferences are 30.39 %,
32.17 % and 40.11 % for week, fortnight and month intervals, respectively. For
temporal betweenness centrality, the averages of changes are 43.56 %, 46.44 %
and 46.39 %; and 36.42 %, 35.07 %, 45.01 % for static betweennes. Temporal
closeness changes averages are 38.85 %, 38.78 % and 41.23 %; and 24.16 %,
26.28 % and 33.78 % for static closeness. Generally, as the interval size increases,
the change rate increases as well. This occurs due to the trade off between
domain of preferences and social network. We are investigating the domain of
users’ preferences to post/share/read in Twitter. According to our analysis, this
is very dynamic and even short-term data (week intervals) have relevancy.

The most important observation is that the curves of preferences and tem-
poral centralities have similar behaviors for all scenarios, different from static
centralities. This observation indicates that if we consider temporal modeling
of Twitter network to track evolving betweenness and closeness nodes central-
ities, we have a better notion of users respective preferences dynamics than if
considering static modeling.

Fig. 4. Change rates for betweenness (up) and closeness (down) centralities

Q2: Are temporal networks more appropriate to analyze user preferences dynam-
ics than static networks?

420 F.S.F. Pereira et al.

We use Pearson Correlation Coefficient (PCC) metric to evaluate which net-
work model better represents preferences dynamics. As previously appointed,
we mine preferences from the same graph structure that we perform centralities
measures analysis. It is expected that both variables are correlated. As a matter
of fact, in this analysis, we explore the correlation strength difference between
temporal and static networks representations in our context.

The results are illustrated in Fig. 5. PCC(δAVG
t , λAVG

t) has been calculated
considering betweenness and closeness centralities. Each scenario has three peri-
ods – Day, Week and Fortnight. The month intervals are not illustrated due
the small size of the series (only three values). For each centrality we vary the
parameter θ. This parameter indicates that the closer to 1, more significant are
the centralities changes that are being considered.

Both centralities metrics correlate significantly (as compared to the corre-
sponding critical values – in all scenarios critical values are lower than 0.1). Two
random variables (with no correlation) would have a 95 % probability of PCC
greater than a critical value or lower. As expected, we observe a high correlation
between the change events in user preferences and in centrality metrics.

We highlight the difference between temporal and static values. Consider-
ing the analyzed scenarios, on average, temporal betweenness has a correlation
strength 40 times higher than static betweenness. For closeness, the correlation

Fig. 5. PCC between centralities and preferences

On Using Temporal Networks to Analyze User Preferences Dynamics 421

strength is 59 times higher. This corroborates our investigation that changes
in temporal metrics indicate changes on users preferences. The correlation dif-
ference between temporal and static metrics is an evidence that dynamics of
preferences fit better in temporal networks representation.

Q3: Why temporal networks are good social network representation in the analy-
sis of user preferences dynamics?

The results obtained so far can be explained by the phenomena of information
propagation and inherent consequences of homophily and influence. The main
difference between temporal and static networks, as discussed in Sect. 4, is that
temporal networks take into account the contact sequence between nodes to
compute paths [6] and this has an impact on different centralities measures.
The related work [14] discuss about the relation of preferences and information
propagation in social networks. The aspects described on motivating example
(Sect. 1) could illustrate that preferences are directed by information flow in
the social network. Finally, temporal networks represent information flow more
realistically.

7 Conclusion

In this paper we have investigated the interplay between user preferences dynam-
ics and evolving social networks. We have introduced a new temporal preference
model able to describe dynamics of user preferences through user profiles and
change detection. We have presented a social network analysis correlating cen-
tralities metrics evolution with user preferences dynamics over Twitter data.
Our findings have shown that there is a high correlation between changes on
temporal centrality metrics – betweenness and closeness – and changes on user
preferences, against static centrality metrics counterpart.

Acknowledgments. This work was supported by the research project “TEC4Gr-
owth - Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact
/ NORTE-01-0145-FEDER-000020”, financed by the North Portugal Regional Oper-
ational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agree-
ment, and through the European Regional Development Fund (ERDF) and by Euro-
pean Commission through the project MAESTRA (Grant number ICT-2013-612944).
Fabiola Pereira is financed by the ERDF – European Regional Development Fund
through the Operational Programme for Competitiveness and Internationalization -
COMPETE 2020 Programme within project POCI-01-0145-FEDER-006961, and by
National Funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese
Foundation for Science and Technology) as part of project UID/EEA/50014/2013. This
work was also supported by the Brazilian Research Agencies CAPES and CNPq.

422 F.S.F. Pereira et al.

References

1. Li, J., Ritter, A., Jurafsky, D.: Inferring user preferences by probabilistic logical
reasoning over social networks. arXiv preprint (2014). arXiv:1411.2679

2. Abbasi, M.A., Tang, J., Liu, H.: Scalable learning of users’ preferences using net-
worked data. In: Proceedings of the 25th ACM Conference on Hypertext and Social
Media, pp. 4–12. ACM (2014)

3. da Costa, L.F., Rodrigues, F.A., Travieso, G., Villas Boas, P.R.: Characterization
of complex networks: a survey of measurements. Adv. Phys. 56(1), 167–242 (2007)

4. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)
5. Holme, P.: Analyzing temporal networks in social media. Proc. IEEE 102(12),

1922–1933 (2014)
6. Pereira, F.S.F., Amo, S., Gama, J.: Evolving centralities in temporal graphs: a

twitter network analysis. In: First Workshop on High Velocity Mobile Data Man-
agement Co-Located with 17th IEEE International Conference on Mobile Data
Management (MDM), pp. 43–48 (2016)

7. Arias, M., Arratia, A., Xuriguera, R.: Forecasting with twitter data. ACM Trans.
Intell. Syst. Technol. (TIST) 5(1), 8 (2013)

8. Kapoor, K., Srivastava, N., Srivastava, J., Schrater, P.: Measuring spontaneous
devaluations in user preferences. In: 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 1061–1069. ACM (2013)

9. Rafailidis, D., Nanopoulos, A.: Modeling the dynamics of user preferences in cou-
pled tensor factorization. In: Proceedings of the 8th ACM Conference on Recom-
mender systems, pp. 321–324. ACM (2014)

10. Yang, Z., Xue, J., Wilson, C., Zhao, B.Y., Dai, Y.: Process-driven analysis of
dynamics in online social interactions. In: Proceedings of the 2015 ACM on Con-
ference on Online Social Networks, pp. 139–149. ACM (2015)

11. Liu, F.: Preference change and information processing. Technical report, ILLC,
University of Amsterdam (2006)

12. Liu, F.: Preference change a quantitative approach. Stud. Logic 2(3), 12–27 (2009)
13. Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Temporal distance metrics for

social network analysis. In: Proceedings of the 2nd ACM Workshop on Online
Social Networks, pp. 31–36. ACM (2009)

14. Guille, A., Hacid, H.: A predictive model for the temporal dynamics of informa-
tion diffusion in online social networks. In: Proceedings of the 21st International
Conference Companion on World Wide Web, pp. 1145–1152. ACM (2012)

15. Tang, J., Musolesi, M., Mascolo, C., Latora, V., Nicosia, V.: Analysing information
flows and key mediators through temporal centrality metrics. In: 3rd Workshop on
Social Network Systems, p. 3. ACM (2010)

16. Wu, H., Cheng, J., Huang, S., Ke, Y., Lu, Y., Xu, Y.: Path problems in temporal
graphs. Proc. VLDB Endowment 7(9), 721–732 (2014)

17. Nicosia, V., Tang, J., Mascolo, C., Musolesi, M., Russo, G., Latora, V.: Graph met-
rics for temporal networks. In: Holme, P., Saramäki, J. (eds.) Temporal Networks.
Understanding Complex Systems, pp. 15–40. Springer, Heidelberg (2013)

18. Koujaku, S., Kudo, M., Takigawa, I., Imai, H.: Community change detection in
dynamic networks in noisy environment. In: 24th International Conference on
World Wide Web Companion, pp. 793–798 (2015)

19. Liu, F.: Reasoning about Preference Dynamics. Synthese Library. Springer,
Netherlands (2011)

http://arxiv.org/abs/1411.2679

On Using Temporal Networks to Analyze User Preferences Dynamics 423

20. Xiang, L., Yuan, Q., Zhao, S., Chen, L., Zhang, X., Yang, Q., Sun, J.: Temporal rec-
ommendation on graphs via long-and short-term preference fusion. In: 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
723–732 (2010)

21. Wei, W., Carley, K.M.: Measuring temporal patterns in dynamic social networks.
ACM Trans. Knowl. Disc. Data (TKDD) 10(1), 9 (2015)

22. Klochko, M.A., Ordeshook, P.C.: Endogenous Time Preferences in Social Networks.
Edward Elgar Publishing, Cheltenham (2005)

23. Pereira, F.S.F.: Mining comparative sentences from social media text. In: Second
Workshop on Interactions between Data Mining and Natural Language Processing
Co-Located with European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases, pp. 41–48 (2015)

24. Zafarani, R., Abbasi, M.A., Liu, H.: Social Media Mining: An Introduction.
Cambridge University Press, New York (2014)

Kernels and Deep Learning

Soft Kernel Target Alignment for Two-Stage
Multiple Kernel Learning

Huibin Shen(B), Sandor Szedmak, Céline Brouard, and Juho Rousu

Department of Computer Science, Aalto University and Helsinki Institute
for Information Technology, 02150 Espoo, Finland

{huibin.shen,sandor.szedmak,celine.brouard,juho.rousu}@aalto.fi

Abstract. The two-stage multiple kernel learning (MKL) algorithms
gained the popularity due to their simplicity and modularity. In this
paper, we focus on two recently proposed two-stage MKL algorithms:
ALIGNF and TSMKL. We first show through a simple vectorization of
the input and target kernels that ALIGNF corresponds to a non-negative
least squares and TSMKL to a non-negative SVM in the transformed
space. Then we propose ALIGNF+, a soft version of ALIGNF, based
on the observation that the dual problem of ALIGNF is essentially a
one-class SVM problem. It turns out that the ALIGNF+ just requires
an upper bound on the kernel weights of original ALIGNF. This upper
bound makes ALIGNF+ interpolate between ALIGNF and the uniform
combination of kernels. Our experiments demonstrate favorable perfor-
mance and improved robustness of ALIGNF+ comparing to ALIGNF.
Experiments data and code written in python are freely available at
github (https://github.com/aalto-ics-kepaco/softALIGNF).

Keywords: Multiple kernel learning · Kernel target alignment · Soft
margin SVM · One-class SVM

1 Introduction

The choice of the kernels is critical for good performance in kernel based learning
algorithms. In recent years, the traditional practise of choosing the ‘best’ kernel
by cross-validation has given way to Multiple Kernel Learning (MKL) where,
instead of using the single best one, one seeks for the best combination of the
kernels.

A significant body of work on MKL exists for classification tasks [7]. These
algorithms can be broadly divided into two kinds: one-stage models integrate
learning the kernel combinations with learning the classifier [12,14], and two-
stage models learn the kernels combination without referring to the subsequent
classifier learning phase [1,2,4,11]. Two-stage methods are appealing in practical
applications due to their relative simplicity and modularity, and competitive
accuracy compared to one-stage methods. A prime example is the centered kernel
target alignment based algorithm ALIGNF [2] which is based on maximizing the
alignment between a combination of centered kernels and the ideal target kernel.
c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 427–441, 2016.
DOI: 10.1007/978-3-319-46307-0 27

https://github.com/aalto-ics-kepaco/softALIGNF

428 H. Shen et al.

The kernel target alignment problem is essentially a linear regression in a
transformed input output space, as also demonstrated by [22]. Recent advance-
ment on two stage MKL relies on replacing the regression problem with a clas-
sification problem [3,13]. With a simple transformation, the regression based
kernel target alignment and the classification based two-stage method can be
unified in one setting.

In this paper, we propose ALIGNF+, a soft formulation of ALIGNF, that
combines the ideas of one-class SVM and soft margin SVM [18], and is shown to
interpolate between two competitive MKL algorithms. The experiments demon-
strate favorable empirical performance of ALIGNF+ and ability to resist label
noise when coupled with SVM in the second stage. For multilabel datasets,
we also compared ALIGNF and ALIGNF+ when coupled with a multilabel
method in the second stage, namely operator-valued kernel regression (OVKR)
[16], where we also found that ALIGNF+ is more robust than ALIGNF.

The paper is organized as follows: Sect. 2 revisits the ALIGNF algorithm
and shows it can be cast into a regression problem through a simple transforma-
tion, also relied upon by the classification framework proposed by [13]. Section 3
first derives a dual problem of ALIGNF, and shows that is essentially a one-
class SVM problem and then introduces the soft ALIGNF algorithm based on
this observation. Experiments are described in Sect. 4 followed by conclusions in
Sect. 5.

2 Unified Setting for Two-Stage MKL Methods

In this section, we first review the ALIGNF algorithm, then we show it is equal
to solving a non-negative least squares problem in a transformed space where the
works of [3,13] naturally fit in. The basic setting is a binary classification problem
with the training instances of (x, y) drawn from a distribution P over X × Y
where x ∈ R

d and y ∈ {+1,−1}. p positive semi-definite (PSD) kernel functions
are defined on X : K1, . . . ,Kp. For a set of n training instances, the input and
label can be represented as X ∈ R

n×d and y ∈ R
n and the corresponding kernel

matrices are K1, . . . ,Kp ∈ R
n×n. We use || · || to denote the �2 norm throughout

the paper.

2.1 Centered Kernel Target Alignment

The target kernel matrix computed from labels is typically Ky = yyT [4]. The
kernel target alignment between two kernel matrices K and K′ [4] is defined as
follows:

Â(K,K′) =
〈K,K′〉F√〈K,K〉F 〈K′,K′〉F

, (1)

where 〈·, ·〉F is the Frobenius inner product.
Let I be the identity matrix, and 1 be a unit vector. Given U = [I− 11T

n], the
centered version of a kernel matrix can be computed with the simple formula:

Kc = UKU.

Soft Kernel Target Alignment for Two-Stage Multiple Kernel Learning 429

Centered kernel target alignment is found to be better correlated with the
performance of the kernels [2], which is simply defined by applying (1) with the
centered kernel:

ρ̂(K,K′) =
〈Kc,K′

c〉F√〈Kc,K′
c〉F 〈K′

c,K′
c〉F

. (2)

The two-stage MKL method ALIGNF [2] seeks a non-negative linear com-
bination of kernels, i.e. Kμ =

∑p
k=1 μkKk with the constraint M = {||µ|| =

1,µ ≥ 0} such that ρ̂(Kμ,Ky) is maximized:

max
μ∈M

ρ̂(Kμ,Ky). (3)

Let M and a be defined by:

(M)k� = 〈Kkc
,K�c〉F , k, � = 1, . . . , p,

(a)k = 〈Kkc
,Ky〉F , k = 1, . . . , p.

The following proposition, proved by [2], shows that the optimization (3) can
be solved via quadratic programming (QP).

Proposition 1. Let v∗ be the solution of the following QP:

min
v≥0

vTMv − 2vTa. (4)

Then, the solution µ∗ of the Optimization (3) is given by µ∗ = v∗/||v∗||.
We now assume that all the kernel matrices are centered without mentioning,

i.e. the notation K is interchangeably used to denote the corresponding centered
version Kc.

2.2 Reformulation Through Vectorized Kernel Matrices

A simple vectorization on the input kernel matrices and target kernel matrix uni-
fies two previously proposed two-stage MKL methods, ALIGNF [2] and TSMKL
[13]. The following proposition shows that the optimization in (4) is equivalent
to solve a non-negative least squares problem.

Proposition 2. Let vec(·) stack all the columns of a matrix into a vector and
x̂k = vec(Kk), k = 1, . . . , p and ŷ = vec(Ky). A new matrix X̂ ∈ R

n̂×p (n̂ = n2)
is defined as X̂ = (x̂1, . . . , x̂p). Let M and a be defined as in Proposition (1).
Then the solution v∗ of the following non-negative least squares regression:

min
v≥0

||X̂v − ŷ||2 (5)

is the same as the solution in optimization (4).

430 H. Shen et al.

Proof.

||X̂v − ŷ||2 = vT X̂T X̂v − 2vT X̂T ŷ + ŷT ŷ

=
p∑

i=1

p∑
j=1

vivjx̂
T
i x̂j − 2

p∑
i=1

vix̂
T
i ŷ + ŷT ŷ

=
p∑

i=1

p∑
j=1

vivj〈Ki,Kj〉F − 2
p∑

i=1

vi〈Ki,Ky〉F + ŷT ŷ

= vTMv − 2vTa + ŷT ŷ.

Since the term ŷT ŷ is a constant, it is clear that this problem has the same
objective as Optimization (4). The conversion of v back to the solutions of
ALIGNF requires normalization as in (4).

Now we shortly review the TSMKL algorithm [13] and follow the notations
in the original paper. It first transforms the original input and output space X
and Y to a new space, named as K-space: {(zxx′ , tyy′)|((x, y), (x′, y′)) ∼ P × P}
where zxx′ = (K1(x, x′), . . . ,Kp(x, x′)) and tyy′ = yy′ for binary classification
and tyy′ = 2·1{y=y′}−1 for multi-class classification. zxx′ is called K-example and
tyy′ is called K-label. Then a linear SVM restricted to the non-negative orthant
is learned in the K-space and the solutions of this linear SVM is directly taken
as the kernel weights.

The definition of K-labels coincides with the entries of target kernel matrix
computed by Ky = yyT . To see this, let q = (j − 1)n + i, K-label tyiyj

=
yiyj = (Ky)ij , which is the qth entry of vec(Ky) = ŷ. K-example zxixj

=
(K1(xi, xj), . . . ,Kp(xi, xj)) is a concatenation of entries on ith row and jth col-
umn of all the kernel matrices, i.e. zxixj

= ((K1)ij , . . . , (Kp)ij), which is the
same as the qth row of X̂, denoted as x̂q = (vec(K1)q, . . . , vec(Kp)q).

As a result, when � is fixed to be the hinge loss, the TSMKL [13] algorithm
can be restated as:

min
v≥0

λ

2
||v|| +

1
n̂

n̂∑
q=1

�(v; x̂i, ŷi). (6)

Now it is clear that, by vectorizing the input and target kernel matrices,
ALIGNF solves a non-negative least squares and TSMKL solves a non-negative
linear SVM with the same input and output. In this case, large scale linear solver
and stochastic optimization will be needed since the number of data examples
in the vectorized kernel space is quadratic to the number of original data points.
In terms of worst case time complexity, solving ALIGNF in (4) including the
computation of matrix M and vector a takes O(n2p2 +p3) and solving ALIGNF
in (5) takes O(n5). Therefore, when the number of kernels is much smaller than
the number of data examples, solving ALIGNF in (4) is more efficient.

Soft Kernel Target Alignment for Two-Stage Multiple Kernel Learning 431

3 ALIGNF+

In this section, we first introduce a problem whose dual corresponds to (4). Then
we extend ALIGNF with similar idea of soft margin SVM, adding slack variables
in the constraints.

Proposition 3. The dual of the the following problem coincides with (4):

min
W∈Rn×n

〈W,W〉F (7)

s.t. 2〈W,Kk〉F ≥ 2〈Ky,Kk〉F , k = 1 . . . , p (8)

Proof. Introducing Lagrangian multipliers v ≥ 0 for (8) and the Lagrangian
becomes:

L(W,v) = 〈W,W〉F − 2
p∑

k=1

vk〈W,Kk〉F + 2
p∑

k=1

vk〈Ky,Kk〉F . (9)

The derivative of the Lagrangian with respect to W is:

∂L

∂W
= 2W − 2

p∑
k=1

vkKk (10)

Setting the derivative of Lagrangian with respect to W to zero leads to:

W∗ =
p∑

k=1

v∗
kKk. (11)

With the same definition of M and a as in Proposition 1, plugging (11) back to
the Lagrangian we have the following dual problem:

min
v≥0

vTMv − 2vTa,

which is the same as (4).

We now call the problem defined in Proposition (3) as primal ALIGNF and
the problem defined in Eq. (4) as dual ALIGNF. Strong duality holds between
them. When we reach optimal in both primal and dual, the following comple-
mentary slackness can be derived:

(〈W∗,Kk〉F − 〈Ky,Kk〉F)v∗
k = 0, k = 1, . . . , p. (12)

The equation above can be interpreted as follows: when the input kernel
matrix correlates better with the solution matrix W than the correlation with
the target kernel (indicates a bad alignment between the input kernel and target
kernel), it will have no weight. When the input kernel matrix correlates to the
target kernel as well as the solution matrix (indicates a good alignment between
the input kernel and target kernel), it will receive a non-zero weight.

432 H. Shen et al.

Now we pay attention to the constraints (8), which can be seen as similar
constraints to the ones in the one-class SVM [18]. These constraints are not
robust to outliers and noise. Some input kernels may happen to be well correlated
with the target kernel but they may contain small amount of information. The
estimate of the target kernel could also be noisy. With the same rationale of
soft margin SVM, which embraces better stability than hard margin SVM as
discussed in [10], we propose to add slack variables to the constraints (8), leading
to the following problem.

Definition 1. Primal problem of ALIGNF+:

min
W,ξ

〈W,W〉F + C

p∑
k=1

ξk (13)

s.t. 2〈W,Kk〉F ≥ 2〈Ky,Kk〉F − ξk, k = 1 . . . , p, (14)
ξk ≥ 0, k = 1 . . . , p. (15)

By applying the standard Lagrangian technique, we obtain the following dual
problem of ALIGNF+.

Definition 2. Dual problem of ALIGNF+:

min
v

vTMv − 2vTa (16)

s.t. 0 ≤ vk ≤ C, k = 1 . . . , p. (17)

After the optimal v∗ found, the kernel weights µ can be computed as µ =
v∗/||v∗||. Similar to soft-margin SVM, the ALIGNF+ algorithm just requires an
upper bound on all the components of the solution.

In fact, by controlling the upper bound of ALIGNF+, we interpolate between
ALIGNF and the simple uniform combination of kernels (UNIMKL), where every
kernel receives the same weight. The ALIGNF+ reduces to ALIGNF when C →
+∞ and it reduces to UNIMKL when C → 0. We demonstrate this issue on the
Spambase dataset (refer to the experiments section for more detail about this
dataset) in the Fig. 1 where we plot the change of angles between the solutions
of ALIGNF+ and UNIMKL against increasing upper bound in ALIGNF+ (blue
line). We also plot the angle between the solutions of ALIGNF and UNIMKL (red
dashed line). It is clear that the solutions of ALIGNF+ evolve from UNIMKL
to ALIGNF when the upper bound is increased.

It is also possible to formulate ALIGNF+ as a bounded least squares problem
in the vectorized kernel space. With the same notation as shown in Sect. 2.2, the
soft ALIGNF (ALIGNF+) can be equivalently formulated as:

min
0≤v≤C

||X̂v − ŷ||2. (18)

When the number of kernels is much larger than the number of data exam-
ples, it is advantageous to solve ALIGNF+ in (18). When the number of kernels
is much smaller than the number of data examples, it is better to use the for-
mulation of ALIGNF+ given in Definition (2), which is the formulation used in
all our experiments.

Soft Kernel Target Alignment for Two-Stage Multiple Kernel Learning 433

Fig. 1. For the Spambase dataset, the change of angles between the solutions of
ALIGNF+ and UNIMKL (on the Y-axis) against increasing upper bound in ALIGNF+
(on the X-axis), shown in the blue line. The angle between the solution of ALIGNF
and UNIMKL is shown in the red dashed line. (Color figure online)

3.1 Coupling ALIGNF+ with a Multilabel Method

Both ALIGNF and ALIGNF+ are designed for single label kernel target align-
ment. They can be adapted for multilabel dataset either by considering each
label independently or by defining target kernel for multiple labels at the same
time. We will test both in the experiments section. Let us denote the labels as
a matrix Y ∈ R

n×m where m is the number of labels. We focus on the simplest
target kernel defined as KY = YYT for all the labels. Notice that by defining
the target kernel this way, the learnt kernel weights are shared for all the labels.

To compare the weights learnt by ALIGNF and ALIGNF+, we use operator-
valued kernel regression (OVKR) in the second stage. We briefly recap OVKR
here. OVKR [16] extends the classical regularized kernel regression to the case
of vector-valued functions. In this setting, the values of the input kernel are not
scalar but operators on vectors in Y. In the multilabel setting, the kernel values
K(x,x′) are matrices of size m × m. Given a loss function L : Y × Y → R, the
optimization problem of OVKR is the following:

arg min
f∈H

n∑
i=1

L(f(xi),yi) + λ‖f‖2H, λ > 0. (19)

434 H. Shen et al.

In this paper we consider the least squares loss function: L(f(xi),yi) = ‖f(xi)−
yi‖2Y . In this case, the solution of the minimization problem (19) can be written
as:

∀x ∈ X , f(x) = Gx(λI + G)−1 vec(YT),

where G is an n × n block matrix, where each block is an m × m matrix:
Gij = Kx(xi,xj), i, j = 1, . . . , n. Gx is a block vector of length n defined as
Gx = (Kx(x,x1), . . . ,Kx(x,xn)).

In the multilabel setting, [6] proposed to use decomposable operator-valued
kernels: Kx(x,x′) = Kx(x,x′)A, where Kx is a scalar-valued kernel function and
A is a positive semi-definite m × m matrix that encodes the relations existing
between the m labels. It was shown that the regularization of f in H can be
interpreted as a function of the matrix A. Following [6], we consider a graph-
based regularization:

‖f‖2H =
η

2

m∑
i,j=1

Cij‖f (i) − f (j)‖2 + (1 − η)
d∑

i=1

Cii‖f (i)‖2,

where f (i) denotes the i-th component of f , η is a parameter in [0, 1] and C is
a positive m × m matrix that measures the similarity between the labels, e.g.
covariance matrix. This regularization term enforces the predictions f (i) and f (j)

to be close to each other when the labels i and j have a high similarity in C.
When η = 0, the labels are predicted independently from each other. [6] showed
that using this regularization term is equivalent to use a decomposable kernel
with the matrix A defined as A = (ηLC + (1 − η)I)−1, where LC denotes the
graph Laplacian of C. This is the formulation used in our experiments with C
as covariance matrix.

4 Experiments

We have two sets of experiments. The first set covers Sects. 4.2 and 4.3, where
the individual labels in a multilabel dataset are handled independently in both
stages, first for learning the kernel weights, and training SVM in the second
stage. This is the main focus of the paper. The second set covers Sect. 4.4, where
the labels for multilabel datasets are treated jointly and OVKR is used in the
second stage to predict the multiple labels at once. We start with an introduction
on the datasets used for evaluation.

4.1 Datasets

We used 17 datasets for evaluation: 4 public datasets, 5 real world bioinformatics
datasets and 8 real world image annotation datasets. The public datasets contain
one single label dataset Spambase, three multilabel datasets Emotions, Yeast,
and Enron. The single-label dataset Spambase is downloaded from UCI Machine
Learning Repository (http://archive.ics.uci.edu/ml/) and the others are from

http://archive.ics.uci.edu/ml/

Soft Kernel Target Alignment for Two-Stage Multiple Kernel Learning 435

Mulan library (http://mulan.sourceforge.net/datasets.html). We computed RBF
kernels with different γ parameters. For multilabel datasets, γ are taken from
the set {2−13, 2−11, . . . , 21, 23}. For single-label dataset Spambase, the same set
of γ parameters are used as stated in [2]. Both ALIGNF and ALIGNF+ are
single label methods, so we handle each label independently and we do the same
for all the multilabel datasets in this paper without mentioning otherwise.

The 5 bioinformatic datasets contain three multiclass datasets Psort+,
Psort− and Plant and two multilabel datasets FPS and FP. The multiclass
datasets are taken from [23] where we used all the 69 kernels as input including
64 sequence motif kernels, 3 kernels from BLAST E-values and 2 kernels based
on phylogenetic trees. The target kernels for multiclass datasets are computed
as in Sect. 2.2. We used the full datasets without any filtering. The FPS dataset
(superscript ‘S’ means small) consists of 1000 mass spectra as input and 101
molecular fingerprints as labels with balanced positive and negative examples.
The 12 input kernels include one probability product kernels [9] and 11 fragmen-
tation tree kernels as described in [21]. The FP dataset contains 24 kernels, 12
of them are the same as FPS and the others are described in [5].

The 8 image annotation datasets are two versions of the datasets Corel5k,
Espgame, Iaprtc12 and Mirflickr [8,15]. The linear kernel are computed on
15 features which are described in [8]. Many labels are extremely dominated by
negative examples, so we only consider the labels with more than 2 % of positive
labels. For these datasets, the upper bounds are selected on the training set and
the learned weights are used to combine the kernels and the performances are
evaluated on a fixed test set. They have 499, 2081, 1962 and 12500 fixed test
examples respectively. We also sampled 1000 examples from the training set of
all the image datasets and we denote these smaller ones by Corel5kS , EspgameS ,
Iaprtc12S and MirflickrS . All the datasets are summarized in Table 1.

4.2 Comparison to ALIGNF

We first report the performance of ALIGNF+ comparing to original ALIGNF.
The kernel weights are first learned by ALIGNF and ALIGNF+ independently
for each label. Then, for each label, the kernels weights are normalized and the
kernels are combined with the weights before being used by SVM in the second
stage.

Table 1. Datasets summary. n and m are the numbers of training examples and
labels. Psort+, Psort− and Plant are multiclass datasets which have 4, 5 and 4 classes
respectively.

Spambase Emotions Yeast Enron Psort+ Psort− Plant FP FPS

n 1000 593 1500 1702 541 1444 940 4138 1000

m 1 6 14 53 1 1 1 505 101

Corel5k Espgame Iaprtc12 Mirflickr Corel5kS EspgameS Iaprtc12S MirflickrS

n 4500 18689 17665 12500 1000 1000 1000 1000

m 43 58 74 17 37 52 67 15

http://mulan.sourceforge.net/datasets.html

436 H. Shen et al.

For the full image datasets with fixed test sets, the upper bound in ALIGNF+
is selected within the training set and the performance reported are based on
the fixed test set. The results for other datasets, except a 10-fold strategy as
in the original publication for the FP dataset [5], are based on 5-fold cross-
validation. The upper bound in ALIGNF+ is selected in an inner cross validation
based on F1 scores on validation folds. The upper bound is chosen from the set
{2−9, 2−8, . . . , 25, 26}. For the multilabel datasets, we use a stratification setting
of [19] to split to data in such a way that each fold has similar label distribution.

The macro-average F1, micro-average F1 and accuracy of ALIGNF and
ALIGNF+ are recorded in Table 2. For single label dataset Spambase, the macro
and micro average F1 scores are just F1 scores. The performance deviation comes
from averaging the results of different test folds in cross validations and the full
image datasets have zero deviation due to the fixed test sets.

From Table 2, in general the ALIGNF+ outperforms original ALIGNF espe-
cially in macro-average F1 and accuracy. This can be explained because the
upper bound in ALIGNF+ is selected based on the F1 score for each label.
Macro-average F1, as a summary statistic, reflects the label-wise difference better

Table 2. Performance comparison of ALIGNF and ALIGNF+. The performance devi-
ation comes from averaging the results of different test folds. The full image datasets
have deviation zero due to fixed test sets. The better method between the two is high-
lighted in bold font for each dataset.

Data Macro-average F1 Micro-average F1 Accuracy

ALIGNF ALIGNF+ ALIGNF ALIGNF+ ALIGNF ALIGNF+

Spambase 92.3±1.7 93.1±1.6 92.3±1.7 93.1±1.6 94.1±1.3 94.7±1.2

Emotions 66.0±2.1 65.9±1.7 68.6±2.0 68.4±1.9 81.8±0.7 81.8±0.5

Yeast 41.4±1.3 41.8±1.0 65.8±0.6 65.6±0.8 79.8±0.2 79.6±0.4

Enron 31.1±1.5 33.2±2.1 60.2±1.4 60.6±1.5 91.0±0.2 91.0±0.2

Psort+ 88.8±2.4 90.5±2.4 89.9±1.7 91.3±1.7 89.9±1.7 91.3±1.7

Psort− 91.2±2.2 91.0±1.7 91.8±2.1 91.6±1.5 91.8±2.1 91.6±1.5

Plant 91.7±2.2 92.4±1.1 92.8±2.0 93.5±1.1 92.8±2.0 93.5±1.1

FPS 84.5±0.6 86.4±0.3 84.8±0.5 86.7±0.3 84.8±0.4 86.7±0.2

Corel5kS 49.1±4.7 51.9±5.1 54.0±3.7 56.0±3.5 96.1±0.3 96.2±0.3

EspgameS 14.0±1.4 15.7±1.6 26.0±3.0 27.2±2.2 94.8±0.2 94.8±0.2

Iaprtc12S 16.8±3.5 16.8±3.6 27.1±2.4 26.7±2.7 94.6±0.2 94.5±0.2

MirflickrS 15.2±7.8 15.7±8.0 16.9±6.1 16.6±6.8 97.2±0.3 97.3±0.2

FP 78.3±0.8 79.3±0.7 85.6±0.5 86.5±0.4 89.0±0.3 89.7±0.3

Corel5k 50.8±0.0 51.5±0.0 53.1±0.0 53.0±0.0 95.7±0.0 95.8±0.0

Espgame 28.8±0.0 29.0±0.0 33.7±0.0 34.5±0.0 93.4±0.0 93.4±0.0

Iaprtc12 34.9±0.0 35.7±0.0 37.7±0.0 39.1±0.0 93.6±0.0 93.7±0.0

Mirflickr 10.0±0.0 10.5±0.0 10.1±0.0 10.3±0.0 95.5±0.0 95.6±0.0

Soft Kernel Target Alignment for Two-Stage Multiple Kernel Learning 437

than the micro-average F1. We also observed that the performance of ALIGNF+
is very sensitive to the upper bound. Because ALIGNF is a special case of
ALIGNF+, ideally, ALIGNF+ should be at least as good as ALIGNF when
the right upper bound could be estimated from the training data. However, the
estimation based on the training folds may not be optimal for testing folds due
to lack of data or sub-optimal train-test split. We tested the methods difference
significance level with Friedman test, the resulting p-value is 0.0027, 0.2253 and
0.0522 for macro F1, micro F1 and accuracy respectively.

With the slack variables introduced in the primal problem of ALIGNF+, it
should be more robust to noise than ALIGNF. To demonstrate this advantage,
we choose one dataset which has the most positive labels from each category and
randomly flip the labels of Emotions, FPS and Iaprtc12S datasets with prob-
abilities {0.5%, 1.0%1.5%, 2.0%, 2.5%}. We plot the macro and micro average
F1 scores of ALIGNF+ (red line) and ALIGNF (blue line) in Fig. 2.

Clearly, for Emotions dataset, with increasing noise on the labels, the per-
formance of ALIGNF+ drops slower than ALIGNF. For FPS dataset, the perfor-
mance of the two seems to drop at the same pace but ALIGNF+ is always better
than ALIGNF on all noise levels. For Iaprtc12S dataset, although ALIGNF+ is
worse in the beginning (this may due to errors for upper bound estimation on the
training data, more advanced method on choosing the hyper-parameters can be
used such as [17]), its performance is more stable when more noise is presented.
In Fig. 2, the F1 scores are not averaged over 5 folds but computed on the whole
prediction, which explains why some F1 scores are different to those in Table 2.

Fig. 2. The X-axis represents the probability to flip the labels (noise level). The Y-axis
corresponds to the macro-average F1 (top) and micro-average F1 (bottom). Red line
represents ALIGNF+ and blue line represents ALIGNF. (Color figure online)

438 H. Shen et al.

4.3 Comparison to Other Two-Stage MKL Methods

We consider two competitors, the uniform combination of kernels UNIMKL and
the TSMKL algorithm described in Sect. 2.2. In the experiments, the maximum
number of iterations for TSMKL is set to 105 and a python implementation of
pegasos [20] using stochastic gradient descent (https://github.com/ejlb/pegasos)
is used to solve the linear SVM with projection onto non-negative orthant after
each iteration. The regularization parameter λ is selected based on a random
80 %–20 % split of the training folds [13]. The 5 fold cross validated macro-
average F1 and accuracy are reported in Table 3. From the table, ALIGNF+
outperforms UNIMKL almost consistently and the advantage stays when com-
paring to TSMKL in the accuracy measure. We tested the methods difference
significance level with Friedman test, the resulting p-value is 0.0658 and 0.0074
for macro F1 and accuracy respectively.

As mentioned in Sect. 2.2, TSMKL is equivalent to solving a linear SVM in
the vectorized kernel space. Here we also point out another issue of TSMKL:
Even though large scale linear solver could be used to solve this problem, one
should mind for the convergence issue while ALIGNF+ in the dual formulation
(16) is much more simple. This QP can be solved very efficiently when the
problem size is modest, say no more than couple of thousands.

Table 3. Performance comparison of UNIMKL, TSMKL and ALIGNF+. The perfor-
mance deviation comes from averaging the results over different cross-validation folds.
The best methods of the three are highlighted in bold font.

Data Macro-average F1 Accuracy

UNIMKL TSMKL ALIGNF+ UNIMKL TSMKL ALIGNF+

Spambase 93.2±1.5 93.3±1.9 93.1±1.6 94.8±1.2 94.9±1.5 94.7±1.2

Emotions 65.4±2.1 65.9±2.1 65.9±1.7 81.5±0.9 80.8±1.5 81.8±0.5

Yeast 42.0±1.0 44.5±1.4 41.8±1.0 79.5±0.4 78.6±0.3 79.6±0.4

Enron 32.6±2.0 32.9±2.1 33.2±2.1 91.1±0.2 90.7±0.1 91.0±0.2

Psort+ 82.6±3.8 81.1±4.7 90.5±2.4 83.0±3.4 81.6±5.0 91.3±1.7

Psort− 85.9±2.8 84.7±2.6 91.0±1.7 86.8±2.7 85.7±2.5 91.6±1.5

plant 71.4±2.0 83.6±1.9 92.4±1.1 75.0±1.7 86.0±2.1 93.5±1.1

FPS 85.6±0.2 86.1±0.3 86.4±0.3 85.9±0.3 86.4±0.2 86.7±0.2

Corel5kS 51.4±5.4 50.0±4.0 51.9±5.1 96.1±0.3 95.9±0.3 96.2±0.3

EspgameS 15.7±1.6 15.7±1.7 15.7±1.6 94.8±0.2 94.4±0.3 94.8±0.2

Iaprtc12S 16.6±3.2 18.6±1.7 16.8±3.6 94.4±0.2 94.1±0.3 94.5±0.2

MirflickrS 15.0±8.5 16.9±7.5 15.7±8.0 97.3±0.3 97.3±0.3 97.3±0.2

https://github.com/ejlb/pegasos

Soft Kernel Target Alignment for Two-Stage Multiple Kernel Learning 439

4.4 Multilabel Classification Experiments

In this section, we show the results using multilabel kernel target alignment
in the first stage where the target kernel is computed as KY = YYT . In the
second stage, we use operator-valued kernel regression (OVKR). The detail of
the above two components can be found in Sect. 3.1. The parameters λ and η
have been selected on the training folds from λ ∈ {0.0001, 0.001, 0.01, 0.1, 1, 10}
and η ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

We also tested the macro-average and micro-average F1 scores for multilabel
datasets. There is no clear winner between ALIGNF+ and ALIGNF so we omit
the results here. This could be partially explained by the fact that the target
kernel matrix computed in this way is already robust. Let the entry on ith row
and jth column of target kernel matrix be (KY)ij =

∑m
t=1(yi)t(yj)t. If one label

is corrupted, this value could be corrected by the other labels to certain extent.
For this reason, we repeated the experiments on the noisy labels with OVKR for
Emotions, FPS and Iaprtc12S datasets. The results are shown in Fig. 3. It is
clear that the ALIGNF+ formulation almost outperforms, or is at least as good
as ALIGNF on all noise levels.

Fig. 3. Performance comparison between ALIGNF and ALIGNF+ with target kernel
computed as KY = YY′ and using OVKR in the second stage. The real valued predic-
tion is binarized to 1 and −1 with threshold 0. The X-axis represents the probability
to flip the labels (noise levels). The Y-axis corresponds to the macro-average F1 (top)
and micro-average F1 (bottom). Red line represents ALIGNF+ and blue line represents
ALIGNF. (Color figure online)

440 H. Shen et al.

5 Conclusions

We have shown that through vectorizing the input and target kernel matrices,
the two recently proposed two-stage MKL algorithms ALIGNF [2] and TSMKL
[13] show correspondence to familiar machine learning problems: the first solves
a non-negative least squares while the second solves a non-negative linear SVM
with the same input and output. Based on centered kernel target alignment algo-
rithm ALIGNF, we derived the corresponding primal problem, which is essen-
tially a one-class SVM problem. Then we proposed a soft formulation, named
ALIGNF+, where slack variables are included into the constraints, similar to
soft-margin SVM, to make the algorithm more robust to noise. The dual of
ALIGNF+ turned out to be as simple as ALIGNF, just with an upper bound on
the solution. This upper bound was shown to interplay between UNIMKL and
ALIGNF.

Experiments with SVM in the second stage showed that the ALIGNF+ algo-
rithm outperforms the original ALIGNF and other two-stage MKL algorithms
on several tasks. When noise was added to the labels, ALIGNF+ was less sensi-
tive against the noise than ALIGNF. It is also possible to use multilabel method
such as operator-valued kernel regression (OVKR) in the second stage by defin-
ing the target kernel on all the labels. Experiments in this setting suggested that
the advantage of ALIGNF+ is the robust performance against noise.

One drawback of ALIGNF+ algorithm is that it is very sensitive to the upper
bound. One needs to choose it based on some sort of cross validations. The esti-
mation could be problematic if the range of the upper bound is too coarse.
Also, different split strategies should be properly selected which are applica-
tions dependent. For future work, a method which could estimate the upper
bound without heavy cross validations will potentially boost the availability of
ALIGNF+.

References

1. Cortes, C., Kloft, M., Mohri, M.: Learning kernels using local rademacher complex-
ity. In: Advances in Neural Information Processing Systems, vol. 26, pp. 2760–2768
(2013)

2. Cortes, C., Mohri, M., Rostamizadeh, A.: Algorithms for learning kernels based on
centered alignment. J. Mach. Learn. Res. 13(1), 795–828 (2012)

3. Cortes, C., Mohri, M., Rostamizadeh, A.: Multi-class classification with maximum
margin multiple kernel. In: Proceedings of the 30th International Conference on
Machine Learning, pp. 46–54 (2013)

4. Cristianini, N., Kandola, J., Elisseeff, A., Shawe-Taylor, J.: On kernel-target align-
ment. In: Advances in Neural Information Processing Systems, vol. 14, pp. 367–373.
MIT Press (2002)

5. Dührkop, K., Shen, H., Meusel, M., Rousu, J., Böcker, S.: Searching molecular
structure databases with tandem mass spectra using CSI: fingerid. Proc. Nat. Acad.
Sci. 112(41), 12580–12585 (2015)

6. Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel
methods. J. Mach. Learn. Res. 6, 615–637 (2005)

Soft Kernel Target Alignment for Two-Stage Multiple Kernel Learning 441

7. Gönen, M., Alpaydın, E.: Multiple kernel learning algorithms. J. Mach. Learn. Res.
12, 2211–2268 (2011)

8. Guillaumin, M., Verbeek, J., Schmid, C.: Multimodal semi-supervised learning for
image classification. In: IEEE Conference on Computer Vision & Pattern Recog-
nition, pp. 902–909 (2010)

9. Heinonen, M., Shen, H., Zamboni, N., Rousu, J.: Metabolite identification and
molecular fingerprint prediction through machine learning. Bioinformatics 28(18),
2333–2341 (2012)

10. Herbrich, R.: Learning Kernel Classifiers: Theory and Algorithms. MIT Press,
Cambridge (2001)

11. Jawanpuria, P., Varma, M., Nath, S.: On p-norm path following in multiple kernel
learning for non-linear feature selection. In: Proceedings of the 31st International
Conference on Machine Learning, pp. 118–126 (2014)

12. Kloft, M., Brefeld, U., Sonnenburg, S., Zien, A.: Lp-norm multiple kernel learning.
J. Mach. Learn. Res. 12, 953–997 (2011)

13. Kumar, A., Niculescu-Mizil, A., Kavukcuoglu, K., Daume III, H.: A binary clas-
sification framework for two-stage multiple kernel learning. In: Proceedings of the
29th International Conference on Machine Learning (2012)

14. Lanckriet, G.R., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I.: Learning
the kernel matrix with semidefinite programming. J. Mach. Learn. Res. 5, 27–72
(2004)

15. Makadia, A., Pavlovic, V., Kumar, S.: Baselines for image annotation. Int. J. Com-
put. Vis. 90(1), 88–105 (2010)

16. Micchelli, C.A., Pontil, M.A.: On learning vector-valued functions. Neural Comput.
17, 177–204 (2005)

17. Moore, G., Bergeron, C., Bennett, K.P.: Model selection for primal SVM. Mach.
Learn. 85(1), 175–208 (2011)

18. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Esti-
mating the support of a high-dimensional distribution. Neural Comput. 13(7),
1443–1471 (2001)

19. Sechidis, K., Tsoumakas, G., Vlahavas, I.: On the stratification of multi-label
data. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML
PKDD 2011, Part III. LNCS(LNAI), vol. 6913, pp. 145–158. Springer, Heidelberg
(2011)

20. Shalev-Shwartz, S., Singer, Y., Srebro, N., Cotter, A.: Pegasos: primal estimated
sub-gradient solver for SVM. Math. Program. 127(1), 3–30 (2011)

21. Shen, H., Dührkop, K., Böcker, S., Rousu, J.: Metabolite identification through
multiple kernel learning on fragmentation trees. Bioinformatics 30(12), i157–i164
(2014)

22. Yamada, M., Jitkrittum, W., Sigal, L., Xing, E.P., Sugiyama, M.: High-dimensional
feature selection by feature-wise kernelized lasso. Neural Comput. 26(1), 185–207
(2014)

23. Zien, A., Ong, C.S.: Multiclass multiple kernel learning. In: Proceedings of the 24th
International Conference on Machine learning, pp. 1191–1198. ACM (2007)

Unsupervised Anomaly Detection
in Noisy Business Process Event Logs

Using Denoising Autoencoders

Timo Nolle(B), Alexander Seeliger, and Max Mühlhäuser

Technische Universität Darmstadt, Telecooperation Lab, Darmstadt, Germany
{nolle,seeliger,max}@tk.tu-darmstadt.de

Abstract. Business processes are prone to subtle changes over time, as
unwanted behavior manifests in the execution over time. This problem is
related to anomaly detection, as these subtle changes start of as anom-
alies at first, and thus it is important to detect them early. However, the
necessary process documentation is often outdated, and thus not usable.
Moreover, the only way of analyzing a process in execution is the use
of event logs coming from process-aware information systems, but these
event logs already contain anomalous behavior and other sorts of noise.
Classic process anomaly detection algorithms require a dataset that is
free of anomalies; thus, they are unable to process the noisy event logs.
Within this paper we propose a system, relying on neural network tech-
nology, that is able to deal with the noise in the event log and learn a rep-
resentation of the underlying model, and thus detect anomalous behavior
based on this representation. We evaluate our approach on five different
event logs, coming from process models with different complexities, and
demonstrate that our approach yields remarkable results of 97.2 % F1-
score in detecting anomalous traces in the event log, and 95.6 % accuracy
in detecting the respective anomalous activities within the traces.

1 Introduction

Anomaly detection, or outlier detection, is an important topic for todays busi-
nesses. Companies all over the world are interested in anomalous executions
within their process, as these can be indicators for fraud, or inefficiencies in
their process.

More and more companies rely on process-aware information systems
(PAISs) [7] to assist their employees in the execution. The increasing numbers of
PAISs has generated a lot of interest in the data these systems are storing about
the execution of a process. PAISs provide data analysts with a huge amount of
information in form of log files. These log files can be used to extract the events
that happened during the execution of the process, and hence create so called
event log files. Event logs are comprised of activities that have occurred during
the execution of a process. These event logs enable a process analyst to explore
the process by which this event log has been generated. In other words, the event
log is the leftover evidence of the process that produced it. Consequently, it is
c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 442–456, 2016.
DOI: 10.1007/978-3-319-46307-0 28

Unsupervised Anomaly Detection in Noisy Business Process Event Logs 443

possible to recreate the process model by evaluating its event log. This is known
as process model discovery and is one of the main ideas in the domain of process
mining [22].

Often, process models have been designed by experts some time in the past,
but over the years the process has slowly mutated. These mutations can be
caused by new employees, working slightly different than their predecessors,
or the use of new technology, or simply changes in the business plan. Process
changes usually happen in a very subtle way. In a procurement process, for
example, an employee stops requesting the required approval of their advisor,
as this speeds up the process. At first this will happen rarely, but over time it
will start to overwhelm the designated behavior. In other words, these subtle
changes start off as anomalies in the process, and therefore it is important to
detect them early and take actions, before they can manifest.

Process mining provides methodologies to detect these changes, e.g., by dis-
covering the as-is process model from the event log [1]; that is, generating a
valid process model that is capable of producing the same event log. After the
discovery of the as-is model, it can be compared to a reference model in order
to detect the changes. This is known as conformance checking [18]. However,
this approach requires the existence of such a reference model of some form
(e.g., BMPN model, petri-net, rule set). Unfortunately, these reference models
are often not well maintained by the company, or even non-existent.

The absence of a reference model is a big problem for conformance checking,
and especially in the field of anomaly detection, as there is no model that defines
what a normal execution of the process ought to look like. Thus, we can not
define what an anomalous execution is either. Many of the current anomaly
detection algorithms work by first learning what a normal example is, by training
on a training set that solely consists of normal examples, and then using this
knowledge to detect the anomalies, as they are much different from what they
have learned about normal examples during training. However, this is not a valid
assumption we can make when considering process event logs from PAISs, as they
usually already contain anomalous behavior and other sorts of noise. What is a
valid assumption, on the other hand, is that the anomalous executions are highly
outnumbered by the normal ones, which we will take advantage of.

In this paper we propose a method to automatically split a noisy event log
into normal and anomalous traces. The main contribution of this approach is that
it does not require the existence of a reference model, nor prior knowledge about
the underlying process. We train our system on the raw input from the event
log, including the anomalous traces, and without the use of labels indicating
which cases are, in fact, anomalous. The system has to deduce the difference
between normal and anomalous traces purely based on the patterns in the raw
data. Our approach is based on a special type of neural network, called an
autoencoder, that is trained in an unsupervised fashion. We will demonstrate
that our system is able to understand the underlying processes of five different
event logs. Consequently, it can automatically analyze a given event log and
filter out anomalous traces, based on the implicitly inferred model. Not only can

444 T. Nolle et al.

we filter out anomalous traces, but we can also infer which specific activity in a
trace is the cause for the anomaly.

2 Related Work

In the field of business processes, and especially process mining [22], anom-
aly detection is not very frequently researched. The most recent publication [4]
describes an approach where a reference model is build through the use of discov-
ery algorithms. Then, this reference model can be used to automatically detect
anomalous traces. However, this approach relies on a clean dataset, that is, no
anomalous traces must be present in the data set during the discovery. As we
have described earlier, this is usually not the case, as the event logs from PAISs
most likely already do contain these anomalies.

The approach within this paper is highly influenced by the works in [9,12],
where they propose the use of replicator neural networks [10], i.e., networks that
reproduce their input, which are based on the idea of autoencoders from [11]. The
approaches from [9,12], however, do not work well with variable length input.

A review of novelty detection (i.e., anomaly detection) methodology can
be found in [17], where they describe and compare many methods that have
been proposed over the last decades. The authors differentiate between five
different basic methods for novelty detection: probabilistic, distance-based,
reconstruction-based, domain-based, and information-theoretic novelty detec-
tion.

Probabilistic approaches try to estimate the probability distribution of the
normal class, and thus are able to detect anomalies as they were sampled from
a different distribution. However, this approach also requires a clean dataset.
Distance-based novelty detection (e.g., nearest neighbor, clustering) does not
require a cleaned dataset, yet it is only partly applicable for process traces, as
anomalous traces are usually very similar to normal ones.

Reconstruction-based novelty detection (e.g., neural networks) is similar to
the aforementioned approaches in [9,12]. However, training a neural network
usually also requires a cleaned dataset. Nevertheless, we will show that our app-
roach works on the noisy dataset, by taking advantage of the skewed distribution
of normal data and anomalies, as demonstrated in [8].

Domain-based novelty detection requires domain knowledge, which violates
our assumption, that we do not require any prior knowledge, only the data.
Information-theoretic novelty detection defines anomalies as the examples that
most influence an information measure (e.g., entropy) on the whole dataset.
Iteratively removing the data with the highest impact will yield a cleaned
dataset, and thus a set of anomalies. With the exception of reconstruction-based
approaches, this is the only approach that can, to a certain degree, handle noisy
datasets.

Within this paper, we opted to use a neural network based approach, as
the recent achievements in machine translation and natural language processing
indicate that neural networks are an excellent choice when modeling sequential

Unsupervised Anomaly Detection in Noisy Business Process Event Logs 445

data. At last, we want to point out that one-class support vector machines
(SVMs) [6] are usually very sensitive to outliers in the data [2], which is why we
did not apply classic one-class SVMs in this setting.

3 Dataset

PAISs keep a record of almost everything that has happened during the execution
of a business process. This information can be extracted in form of an event log.
An event log consists of traces, each consisting of the activities that have been
executed. Table 1 shows an excerpt of such an event log, in this case it has been
generated by a procurement process model. Notice that an event log must consist
of at least three columns: trace id, to uniquely assign an executed activity to a
trace; a timestamp, to order the activities within a trace; and an activity label,
to distinguish the different activities.

Table 1. Example event log of a procurement process

Trace ID Timestamp Activity

1 2015-03-21 12:38:39 PR Created

1 2015-03-28 07:09:26 PR Released

1 2015-04-07 22:36:15 PO Created

1 2015-04-08 22:12:08 PO Released

1 2015-04-21 16:59:49 Goods Receipt

2 2015-05-14 11:31:53 SC Created

2 2015-05-21 09:21:26 SC Purchased

2 2015-05-28 18:48:27 SC Approved

2 2015-06-01 04:43:08 PO Created

In order to create a test setting for our approach we randomly generated
process models and then sampled event logs from those models. These event logs
have been generated by PLG2 [5], a process simulation and randomization tool.
PLG2 allows the user to randomly generate a process model and then simulate
it to generate genuine event logs. It also comes with a feature to perturb the
generated event log by, for example, skipping events, doubling events, or changing
the sequence in which events have occurred. PLG2 was specifically designed for
process mining researchers’ needs, as the amount of publicly available datasets
of reasonable sizes is minuscule.

We have used the PLG2 tool to generate random process models of differ-
ent complexities. Table 2 shows the complexity of these models in terms of the
number of distinct activities and the number of gateways in the model. The
resulting models were then used to generate noisy event logs, i.e., event logs
including anomalous traces. Each trace in the event log has the chance of being

446 T. Nolle et al.

Table 2. Overview over the four different randomly generated process models and the
corresponding event logs

Model Activities Gateways Traces Unique Anomalous

Small 12 2 10 000 240 978

Medium 32 12 398 973

Large 42 14 621 985

Huge 51 22 50 000 1 044 4 778

P2P 12 8 10 000 232 968

affected by any of the following mutations: skipping an event; swapping two
activities, or duplicating an activity so that it appears twice in a row.

The probability that a mutation occurs has been set to 3.3 % for all the
three mentioned mutations. Thus, the resulting event log will contain roughly
ten percent anomalous traces, as shown in Table 2. When considering a real-life
business process, ten percent anomalous traces in the event log is quite high, and
thus we have chosen to set this as our upper bound. Notice that our approach
ought to yield better results with less anomalous traces in the log, as it becomes
easier to generalize to the normal traces. This is why we use a highly noisy
event log as compared to real life event logs, where the number of anomalies is
usually much smaller. Notice that we used a fixed size of 10 000 traces for the
small, medium, and large dataset, and a bigger size of 50 000 traces for the huge
dataset. The huge dataset required a bigger sample due to its higher complexity.
The increasing complexity with every dataset is also illustrated by the number
of unique traces in each log, as shown in Table 2.

Figure 1 shows a t-SNE [15] visualization of the four randomly generated
datasets, depicting anomalous traces in red and normal ones in green. We can
clearly recognize the clusters that are being formed by the normal traces. How-
ever, within these clusters there also lie anomalous traces, which is exactly what
we want, as anomalies in real life are typically very similar to normal traces in
terms of the sequence of activities.

In addition to the four randomly generated models, we also used a simplified
version of a purchase to pay (P2P) process model as is depicted by the BPMN
model shown in Fig. 2. This model was mainly created for the evaluation part
within this paper, as it features interpretable activity names, unlike the randomly
generated ones. The resulting event log for the P2P model was generated in
the same fashion as those of the randomly generated models, using the same
parameters as mentioned above. A trace in our P2P model can either start with
the manual creation of a purchase request (PR) or the creation of a shopping
cart (SC). In both cases, after the necessary approval of the SC and the release of
the PR, a purchase order (PO) is created. This PO can be altered by increasing
or decreasing the order quantity. After the PO has been released the orderer
receives the goods, and usually in quick succession also the corresponding invoice.

Unsupervised Anomaly Detection in Noisy Business Process Event Logs 447

Fig. 1. t-SNE visualization of the randomly generated datasets from Table 2 (Color
figure online)

Fig. 2. BPMN model of a simplified purchase to pay process

448 T. Nolle et al.

The orderer ought to settle the invoice if and only if they have already received
the goods.

Ultimately, our datasets consist of 10 000 traces (50 000 for the huge dataset),
each consisting of a variable number of activities. Notice that we also assume
that the event log only contains complete traces, that is, every trace starts and
ends with valid activities according to the process model. The only exception to
this is if either the start activity or the end activity, or both, are affected by one
of the aforementioned mutations.

4 Method

Before we introduce our method, first we want to give a short overview over deep
learning. Deep learning is a branch of machine learning that has been inspired
by the human brain [14]. That is, deep learning methods try to replicate the way
the human brain learns new concepts by connecting neurons with axons in the
brain. So called artificial neural networks connect simple processing units with
weighted connections to imitate the behavior of the brain. Recently, artificial
neural networks have gotten a lot of attention by outclassing the state-of-the-art
methods in many domains such as object recognition in images [13], or machine
translation [3].

A neural network consists of multiple layers, each containing many neurons.
Every neuron in one layer is connected to all neurons in the preceding and suc-
ceeding layers (if present). These connections have weights attached to them,
which can be used to control the impact a neuron in one layer has on the acti-
vation of a neuron in the next layer. To calculate the output of a neuron we
apply a non-linear activation function (a popular choice is the rectifier function
f(x) = max(0, x) [16]) to the sum over all outputs of the neurons in the pre-
vious layer times their respective connection weights. When training a neural
network all the weights are set in a random fashion. Then the backpropagation
algorithm [19] can be used to iteratively tune the weights, so that the neural
network produces the desired output, or a close enough approximation of it.
This is done by measuring how far the output of the neural network differs from
the desired output, for example by calculating the mean squared error, and then
back-propagating the error to the weights, so that the error gets minimized.

In classic classification tasks the desired output of the neural network will be a
class label. However, one can also train a neural network without the use of class
labels. This is especially helpful when no labels exist. One type of neural network
that does not rely on labels is called an autoencoder, which is what we deployed
in our method. Whereas a classic neural network is trained in a supervised
fashion, an autoencoder is trained in an unsupervised fashion, as it is trained to
reproduce its own input. Obviously, a neural network, if given enough capacity
and time, can simply learn the identity function of all examples in the training
set. To overcome this issue, some kind of corruption is added to the autoencoder,
for example, by forcing one of the hidden layers to be very small, therefore not
allowing the autoencoder to simply learn the identity. Another very common

Unsupervised Anomaly Detection in Noisy Business Process Event Logs 449

way of adding corruption is to distribute additive gaussian noise over the input
vector of the autoencoder. Thus, the autoencoder, even if repeatedly trained on
the same trace, will always receive a different input. These types of autoencoders
are known as denoising autoencoders, as they are basically producing a noise free
version of their input. Our method is based on exactly this kind of autoencoder.

4.1 Setup

An autoencoder has a fixed size input; hence, we have to transform the variable
sized traces from the event log. First, we force all traces to have the same length
by repeatedly adding a special padding activity to the end until all traces have
the same length (this can be set by hand or set to the maximum trace length
encountered in the event log). Thereafter, we encoded the activity names using
a one-hot encoding. Every activity is encoded by an n-dimensional vector, where
n is the number of different activities in the event log, so that every activity is
connected to exactly one dimension in the one-hot vector. To encode one activity
we simply set the corresponding dimension of the one-hot vector to a fixed value
of one, whilst setting all the other dimensions to zero. Notice that, instead of
using zero, we opted to use −1 as this results in better distribution of the additive
gaussian noise. Because we are using rectified linear units (i.e., units using the
aforementioned rectifier function as their activation function), using −1 instead
of 0 does not have a huge impact. This is done for every activity in every trace,
including the special padding activity.

Consider the following example: let us assume an event log consists of 10
different activities and the maximum length of all traces in the event log is also
10. After the padding, every trace will have a fixed size of 10; and every activity is
encoded by a 10-dimensional one-hot vector. Consequently, the resulting one-hot
vector for every trace will have a size of 100.

Using the one-hot encoded event log we can train the autoencoder with
stochastic gradient descent and backpropagation, using the event log both as
the input, and the label. Figure 3 shows a simplified version of the architec-
ture. Notice that Fig. 3 shows the event log with variable size traces for reasons
of simplicity. In reality the event log is transformed before being fed into the
autoencoder and then decoded afterwards. The special noise layer adds gaussian
noise before feeding the input into the autoencoder, this layer is only active

Fig. 3. Autoencoder is trained to replicate the traces in the event log after the addition
of gaussian noise

450 T. Nolle et al.

Table 3. Overview of the hidden layer sizes

Model Input/Output size Hidden size

Small 264 286

Medium 340 374

Large 616 660

Huge 728 784

P2P 154 168

during training. Now the autoencoder is trained to reproduce its input, that is,
to minimize the mean squared error between the input and its output.

We trained the autoencoder for a fixed number of 500 epochs using a mini
batch size of 32. As the optimizer we used stochastic gradient descent with a
learning rate of 0.01, a learning rate decay of 10−5, and nesterov momentum [21]
with a momentum factor of 0.9. Additionally, we used a maxnorm weight con-
straint of 0.5, as well as a dropout of 0.5, as suggested in [20]; the additive
gaussian noise was sampled from a zero centric gaussian distribution with a
standard deviation of 0.1. Each autoencoder consisted of an input and an out-
put layer with linear units, and exactly one hidden layer with rectified linear
units. These training parameters were used for each of the different event logs,
but the size of the hidden layer was adapted depending on the event log. The
number of neurons in the hidden layer was set to the size of the input plus one
neuron for each possible activity in the event log. This was an arbitrary choice
for the hidden layer size, but we found that it worked sufficiently good. However,
choosing a hidden layer size smaller than the input layer size did not yield good
results. The actual hidden layer sizes can be found in Table 3.

4.2 Anomalous Trace Classifier

After training the autoencoder, it can be used to reproduce the traces in the
same event log it was trained on, but without applying the noise. Now, we can
measure the mean squared error between the input vector and the output vector
to detect anomalies in the event log. Because the distribution of normal traces
and anomalous traces in the event log is one sided we can assume that the
autoencoder will reproduce the normal traces with less reproduction error than
the anomalies. Therefore we can define a threshold t, where if a traces reproduc-
tion error succeeds this threshold t we consider it as an anomaly. Figure 4 shows
how to transform the trained autoencoder into an anomaly classifier by adding
a threshold classifier. We found that using the average reproduction error on the
event log is a good general choice for the threshold (cf. Fig. 5 in Sect. 5).

4.3 Anomalous Activity Classifier

We have described how to detect anomalous traces in the event log, now we want
to refine this method. Not only can we detect that a trace is anomalous, but also

Unsupervised Anomaly Detection in Noisy Business Process Event Logs 451

Fig. 4. Threshold classifier based on the mean squared error between the input vector
and the output of the autoencoder

what activity in the trace influences the reproduction error the most. Therefore,
we have to change our calculation of the reproduction error from trace based to
activity based. Up until now, we calculated the reproduction error as the mean
squared error between the entire one-hot encoded input and output sequence
of the autoencoder. However, we can also consider the mean squared error for
every activity in the sequence separately. After a trace has been reproduced by
the autoencoder we split the input and the output vectors into subparts, so that
every subpart contains the one-hot encoding for one single activity. Now we can
compute the mean squared error for each activity separately and then apply the
same threshold classifier method as before, only this time the classifier detect
anomalous activities as apposed to anomalous traces.

5 Evaluation

We evaluated our approach on four different event logs coming from process mod-
els with different complexities, ranging from low to high complexity. In addition
to those four event logs we also used an interpretable version with low complexity
for demonstrative purposes.

After training one autoencoder for each event log, we evaluated the autoen-
coders on the same dataset, but without adding gaussian noise, as in the training
phase. Therefore, we calculated the mean squared error for every trace in the
training set and analyzed the resulting distribution. Figure 5 shows the distribu-
tion of the reproduction error for each dataset split into anomalous and normal
traces. To indicate the variance of the distribution we used so called box-and-
whisker plots. Figure 5 indicates that all five autoencoders are able to perfectly
split the normal traces from the anomalous one solely based on the reproduc-
tion error. It also shows that the average reproduction error is a good threshold
value for the anomaly classifier, albeit one would prefer a more pessimistically
set value for real life scenarios, so that the anomaly class precision and the nor-
mal class recall are maximized. However, as we do not have the benefit of being
provided labels in real life, we stick with the simple solution here. We plan on
investigating more sophisticated methods of automatically setting the threshold.

Table 4 shows the respective precision, recall, and F1-score for the 5 differ-
ent autoencoders in their classification report. Notice that using the average
reproduction error as the threshold leads to the low anomaly precision class and

452 T. Nolle et al.

Fig. 5. The autoencoder succeeds in perfectly splitting the dataset into normal and
anomalous traces solely based on the reproduction error

Table 4. Classification report for the anomalous traces detector

Dataset Class Precision Recall F1-score Support

P2P normal 1.00 1.00 1.00 9 032

anomaly 1.00 1.00 1.00 968

average 1.00 1.00 1.00 10 000

Small normal 1.00 1.00 1.00 9 022

anomaly 1.00 1.00 1.00 978

average 1.00 1.00 1.00 10 000

Medium normal 1.00 0.95 0.98 9 027

anomaly 0.70 1.00 0.83 973

average 0.97 0.96 0.96 10 000

Large normal 1.00 1.00 1.00 9 015

anomaly 1.00 1.00 1.00 985

average 1.00 1.00 1.00 10 000

Huge normal 1.00 0.87 0.93 45 222

anomaly 0.46 1.00 0.63 4 778

average 0.95 0.89 0.90 50 000

normal class recall scores in the medium and huge event log. Even though the
overall result is still remarkable, we still have room to improve the automatic
adjusting of the threshold, as one can clearly see that setting the threshold opti-
mally is indeed possible.

Next, we want to evaluate the activity based anomaly detection described
earlier, but first we want to consider a few examples of classified traces from

Unsupervised Anomaly Detection in Noisy Business Process Event Logs 453

Fig. 6. Conformance check on a sample of the P2P dataset (Color figure online)

the P2P dataset autoencoder. Figure 6 shows a sample of 30 traces of the P2P
event log, where every activity has been color coded according to the autoen-
coders reproduction error. The color coding simply linearly distributes 6 color
patches across the range from zero to the maximum reproduction error in the
event log. When comparing the traces to the reference procurement model from
Fig. 2, we find that the autoencoder detects the anomalous activity in the traces
remarkably well. However, we can also see that it has problems when certain
activities are left out and the rest of the trace consequently gets shifted by one
activity. Trace number 30 demonstrates this phenomenon. We can see that the
necessary activity ‘PR Released’ has been skipped, but the system indicates that
all activities after this point are anomalous, albeit the rest of the sequence being
valid. The system has problems to handle shifted subsequences. Nevertheless, the
autoencoder successfully detects the first activity that does not conform with the
underlying model, that is the reproduction error of that activity is significantly
high.

We have evaluated two versions of the anomalous activity classifier. The
first produces only one position in the sequence by returning the index with
the highest reproduction error. The second approach, similar to the anomalous
trace classifier before, returns all indices where the reproduction error exceeds
the average reproduction error on the whole event log. We shall call the former
the argmax approach and the latter the threshold approach. Table 5 shows the
classification reports for those two approaches. Notice that we only evaluated

454 T. Nolle et al.

them on the anomalous traces and that we do not give the precision and F1-
score for the threshold approach. The threshold approach will always yield a
precision of one, hence we concentrate on the recall score, which is equivalent
with the accuracy here. In case of the threshold approach, its prediction has been
count as correct if the actual index of the first anomalous activity, according to
the reference model, produced an above average reproduction error.

Table 5. Classification report for the anomalous activity detector

Dataset Type Precision Recall F1-score Support

P2P argmax 0.55 0.47 0.50 968

threshold 0.85

Small argmax 0.76 0.66 0.68 978

threshold 0.98

Medium argmax 0.68 0.54 0.56 973

threshold 0.99

Large argmax 0.67 0.59 0.61 985

threshold 1.00

Huge argmax 0.70 0.63 0.64 4 778

threshold 0.96

Table 5 shows that the argmax approach does not perform well. This is due to
the fact that in most cases the reproduction error of the first anomalous activity
in the trace is indeed significantly high, yet the overall highest reproduction error
is found at a different index. Notice that this is also an effect of the reproduc-
tion error being carried through, as mentioned before. However, the threshold
approach clearly shows that the anomalous activity almost always produces an
above average reproduction error; hence, the autoencoder is capable of detecting
them.

6 Conclusion and Future Work

Real-life event logs often contain anomalous traces. We have presented an app-
roach that is capable of automatically filtering out anomalous traces in a noisy
event log without any prior knowledge being fed into the system. The sys-
tem learns to discriminate between normal and anomalous traces only from the
present pattern in the data. We have evaluated the system on five different noisy
event logs from randomly generated process models (one model was produced
manually). Our evaluation has shown that our threshold based anomalous activ-
ity classifier is indeed capable of automatically detecting the anomalous activity
in a trace with an accuracy of at least 85.0 % and 95.6 on average over all train-
ing sets. Especially for the more complex process models this is a remarkable
result.

Unsupervised Anomaly Detection in Noisy Business Process Event Logs 455

We want to point out that our approach is susceptible to anomalous behavior
in the event log that is very frequent, that is the same anomalous trace is found
multiple times. This is something we want to investigate in the future. However,
as changes in a business process usually happen subtly, anomalous traces with
the same sequence should be infrequent at first; thus, our approach will be able
to detect them early, so that they do not have time to settle in. We also want to
test our approach on a range of different noise levels in the event log (i.e., more
anomalous traces), as well as include incomplete traces in the event log. As event
logs consist of sequences of activities, it is also sensible to apply recurrent neural
networks to the problem. Using recurrent networks could overcome the issue that
our system is susceptible to skipped activities, which results in a shifted event
sequence that is otherwise valid. Recurrent networks can learn these pattern
regardless of where they exactly occur in the sequence, which is something the
autoencoder in our approach is unable to do.

Our approach proves that neural networks are applicable within the domain
of business processes. Moreover, we have shown that denoising autoencoders are
capable of dealing with event logs that do already contain the anomalous traces,
as opposed to training them on event logs that only contain normal traces. This
approach is especially interesting, as it shows that an autoencoder can capture
the underlying process of an event log, without being provided extra knowledge.

Acknowledgments. This project (HA project no. 479/15-21) is funded in the frame-
work of Hessen ModellProjekte, financed with funds of LOEWE – Landes-Offensive zur
Entwicklung Wissenschaftlich-ökonomischer Exzellenz, Förderlinie 3: KMU-Verbund-
vorhaben (State Offensive for the Development of Scientific and Economic Excellence)
and by the LOEWE initiative (Hessen, Germany) within the NICER project [III L
5-518/81.004].

References

1. Van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process
models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

2. Amer, M., Goldstein, M., Abdennadher, S.: Enhancing one-class support vec-
tor machines for unsupervised anomaly detection. In: Proceedings of the ACM
SIGKDD Workshop on Outlier Detection and Description, pp. 8–15. ACM (2013)

3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate (2014). arXiv preprint: arXiv:1409.0473

4. Bezerra, F., Wainer, J., Aalst, W.M.P.: Anomaly detection using process mining.
In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, R.
(eds.) BPMDS/EMMSAD 2009. LNBIP, pp. 149–161. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-01862-6 13

5. Burattin, A.: PLG2: multiperspective processes randomization and simulation for
online and offline settings. CoRR abs/1506.0 (2015)

6. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

7. Dumas, M., Van der Aalst, W.M., Ter Hofstede, A.H.: Process-Aware Information
Systems: Bridging People and Software Through Process Technology. John Wiley
& Sons, Hoboken (2005)

http://arxiv.org/abs/1409.0473
http://dx.doi.org/10.1007/978-3-642-01862-6_13

456 T. Nolle et al.

8. Eskin, E.: Anomaly detection over noisy data using learned probability distri-
butions. In: Proceedings of the International Conference on Machine Learning.
Citeseer (2000)

9. Hawkins, S., He, H., Williams, G., Baxter, R.: Outlier detection using replica-
tor neural networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.)
DaWaK 2002. LNCS, pp. 170–180. Springer, Heidelberg (2002). doi:10.1007/
3-540-46145-0 17

10. Hecht-Nielsen, R.: Replicator neural networks for universal optimal source coding.
Science 269(5232), 1861 (1995)

11. Hinton, G.E.: Connectionist learning procedures. Artif. Intell. 40(1), 185–234
(1989)

12. Japkowicz, N.: Supervised versus unsupervised binary-learning by feedforward
neural networks. Mach. Learn. 42(1), 97–122 (2001)

13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

14. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

15. Maaten, L.V.D., Hinton, G.E.: Visualizing data using t-SNE. J. Mach. Learn. Res.
9, 2579–2605 (2008)

16. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing (ICML 2010), pp. 807–814 (2010)

17. Pimentel, M.A., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty
detection. Sign. Process. 99, 215–249 (2014)

18. Rozinat, A., van der Aalst, W.M.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

19. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Cogn. Model. 5(3), 1 (1988)

20. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

21. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initializa-
tion and momentum in deep learning. In: Proceedings of the 30th International
Conference on Machine Learning (ICML 2013), pp. 1139–1147 (2013)

22. Van Der Aalst, W., Adriansyah, A., de Medeiros, A.K.A., Arcieri, F., Baier, T.,
Blickle, T., Bose, J.C., van den Brand, P., Brandtjen, R., Buijs, J., et al.: Process
mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011 Work-
shops, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-28108-2 19

http://dx.doi.org/10.1007/3-540-46145-0_17
http://dx.doi.org/10.1007/3-540-46145-0_17
http://dx.doi.org/10.1007/978-3-642-28108-2_19
http://dx.doi.org/10.1007/978-3-642-28108-2_19

DeepRED – Rule Extraction from Deep
Neural Networks

Jan Ruben Zilke(B), Eneldo Loza Menćıa, and Frederik Janssen

Knowledge Engineering Group, Technische Universität Darmstadt,
Darmstadt, Germany

j.zilke@mail.de, {eneldo,janssen}@ke.tu-darmstadt.de

Abstract. Neural network classifiers are known to be able to learn very
accurate models. In the recent past, researchers have even been able
to train neural networks with multiple hidden layers (deep neural net-
works) more effectively and efficiently. However, the major downside
of neural networks is that it is not trivial to understand the way how
they derive their classification decisions. To solve this problem, there has
been research on extracting better understandable rules from neural net-
works. However, most authors focus on nets with only one single hidden
layer. The present paper introduces a new decompositional algorithm –
DeepRED – that is able to extract rules from deep neural networks.

The evaluation of the proposed algorithm shows its ability to out-
perform a pedagogical baseline on several tasks, including the successful
extraction of rules from a neural network realizing the XOR function.

1 Introduction

To tackle classification problems, i.e., deciding whether or not a data instance
belongs to a specific class, machine learning offers a wide variety of methods. If
the only goal is to accurately assign correct classes to new, unseen data, neural
networks (NN) are able to produce very low error rates that yet could not be
achieved by other machine learning techniques [8]. Sufficiently deep NNs, so-
called deep neural networks (DNN), are even able to realize arbitrary functions.
And lately, researchers improved the training of these structures such that they
can generalize better and better from training data, for instance in the research
fields of speech recognition and computer vision.

However, there is a major downside of NNs: For humans, it is not easy to
understand how they derive their decisions [11]. However, understanding a NN’s
function can be essential. For instance, this is the case in safety-critical appli-
cation domains such as medicine, power systems, or financial markets, where a
hidden malfunction could lead to life-threatening actions or enormous economic
loss. A better understanding of the way NNs derive their decisions could also
push NN training research. Making NNs more transparent, for instance, could
help to discover so-called hidden features that might be formed in DNNs while
learning. Such features are not present in the plain input data, but emerge from
combining them in a useful way.
c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 457–473, 2016.
DOI: 10.1007/978-3-319-46307-0 29

458 J.R. Zilke et al.

In contrast to NNs, rule-based approaches like decision trees or simple IF-
THEN rules are known to be better understandable. Since most humans tackle
classification problems in a manner very similar to the one implemented by many
rule-based learning techniques, i.e., listing simple conditions that need to be met,
their models and decision processes are more comprehensible.

To overcome the weakness of NNs being black boxes, especially in the 1990s
researchers have worked on the idea of extracting rules from them. Since then,
a lot of rule extraction techniques have been developed and evaluated – and for
many approaches quite good results have been reported. However, most algo-
rithms to extract rules focus on small NNs with only one hidden layer. Surpris-
ingly little work has been done on analysing the challenges of extracting rules
from the more complex DNNs. Although some authors have presented rather
general approaches, to the best of our knowledge, there does not exist any algo-
rithm that has explicitly been tested on the task of extracting rules from DNNs.
But indeed, having a large amount of layers makes the extraction of comprehen-
sible rules more difficult.

In this paper, we introduce and evaluate DeepRED, a new algorithm that
is able to extract rules from DNNs. The decompositional algorithm extracts
intermediate rules for each layer of a DNN. A final merging step produces rules
that describe the DNN’s behaviour by means of its inputs. The evaluation shows
DeepRED ’s ability to successfully extract rules from DNNs and to outperform
a pedagogical approach.

The work is structured as follows: First, we give an overview of the current
state-of-the-art. Afterwards, we describe our proposed algorithm in more detail
(Sect. 3). We evaluate DeepRED on several tasks (Sects. 4 and 5) before we
summarize and conclude our work.

2 Related Work

It is commonly believed that “concepts learned by neural networks are difficult to
understand because they are represented using large assemblages of real-valued
parameters” [4]. To transform NNs into a form that is better comprehensible for
humans, many concepts are conceivable. One famous choice is to extract rules
from NNs. In [1], the authors have introduced a widely used taxonomy to distin-
guish between different rule extraction algorithms. The taxonomy, for instance,
comprises the translucency dimension that defines the strategy used: decompo-
sitional (considering NN’s inner structure), pedagogical (black box approach),
or eclectic (mixture of both).

Examples of eclectic methods are the MofN algorithm [19] as well as the
FERNN algorithm [15]. MofN ’s main approach is to find NN connections with
similar weights. FERNN focuses on identifying a NN’s relevant inputs and hid-
den neurons.

The works dealing with pedagogical rule extraction, for instance, com-
prise the VIA method discussed in [17,18], different sampling-based approaches
[5,13,14,16,21], and the RxREN algorithm [2]. VIA uses validity interval

DeepRED – Rule Extraction from Deep Neural Networks 459

analysis to find provably correct rules. Sampling-based methods try to create
extensive artificial training sets where rule learning algorithms later can extract
rules from. RxREN provides interesting ideas to prune a NN before rules are
extracted (cf. Sect. 3.4).

Examples for decompositional approaches are the KT method that heuristi-
cally searches for input combinations that let a neuron fire [7], a more efficient
implementation of the latter [20], and an algorithm that transforms NNs to
fuzzy rules [3]. However, the most important basis for this present work is the
(decompositional) CRED algorithm presented in [12]. CRED uses decision trees
to describe a NN’s behaviour based on the units in its hidden layer. In a sec-
ond step it builds up new decision trees to describe the split points of the first
decision trees. Afterwards rules are extracted and merged.

Although we encounter a wide variety of interesting rule extraction
approaches, there is a major shortcoming: Most decompositional algorithms
introduced so far cannot deal with NNs with more than one hidden layer. Fur-
thermore, to the best of our knowledge, there does not exist any algorithm that
has explicitly been tested on the task of extracting rules from DNNs. This is the
case even though most pedagogical approaches should be able to perform this
task without any major modifications. However, due to the lack of pedagogical
techniques to include the knowledge present in a DNN’s inner structure, we focus
on a decompositional method to extract rules from DNNs.

3 The DeepRED Algorithm

With DeepRED (Deep neural network Rule Extraction via Decision tree induc-
tion), in this paper we present an algorithm that is able to overcome the short-
coming of most state-of-the-art algorithms: DeepRED is applicable to DNNs.
Since DeepRED is a decompositional approach, in contrast to pedagogical meth-
ods, the algorithm is able to easily extract hidden features from a DNN.

This section is structured as follows: First, we introduce our notation and
assumptions. After describing the CRED algorithm in more detail, we present
DeepRED ’s way to extract rules from DNNs as well as the pruning technique
used.

3.1 Preliminaries

We assume a multiclass classification problem with m training examples
x1, . . . ,xm, each xj associated with one class yj ∈ {λ1, ..., λu}. We represent the
input values of a NN as i = i1, . . . , in and the output values as o = o1, . . . , ou, one
for each possible class. The hidden layers are abbreviated as hi ∈ {h1, . . . , hk}
while the hidden layer hi consists of the neurons hi,1 . . . , hi,Hi

(in the case of
a single-hidden-layer NN, the hidden neurons are written as h1, . . . , hH). For
convenience, we set h0 = i and hk+1 = o and let hi(x) denote the specific layer
values for input instance x. DeepRED produces intermediate rule sets Ra→b

that include rules that describe layer b by means of terms based on layer a.

460 J.R. Zilke et al.

A rule r : IF body THEN head is constituted by a set of terms in the body (con-
ditions on attribute values, or, in our case, also conditions on activation values)
and an assignment term in the head.

3.2 CRED as Basis

As mentioned earlier, DeepRED is based on CRED (Continuous/discrete Rule
Extractor via Decision tree induction). In a first step, the original algorithm
introduced by Sato and Tsukimoto [12] uses the well-known C4.5 algorithm [10]
to transform each output unit of a NN (with one hidden layer) into a decision
tree. Such a tree’s inner nodes are tests on the values of the hidden layer’s units.
The leaves represent the class such an example would belong to (cf. Fig. 1).
Afterwards, intermediate rules are extracted directly from these trees. In the case
illustrated in Fig. 1, if the task is to find rules for class1, a single intermediate
rule would be extracted, i.e. IF h2 > 0.5 AND h1 ≤ 0.6 THEN ŷ = λ1. This
leads us to a rule set that describes the behaviour of a NN on the basis of the
hidden layer’s units.

Fig. 1. Result of CRED’s first step: a decision tree providing rules for the neural
network’s output based on its hidden layer (adapted from [12]).

Next, for each term used in these rules, another decision tree is created using
split points on the NN’s input layer. In these new decision trees, the leaves do
not directly decide for an example’s class, but rather on the tests used in the
first tree’s node, as exemplarily depicted in Fig. 2. Extracting rules from this
second decision tree leads us to a description of the hidden neurons’ state by
terms consisting of input variables. In case of the state h2 > 0.5, the following
intermediate rules could be extracted: IF i0 > 0.5 THEN h2 > 0.5, IF i0 ≤ 0.5
AND i1 = a THEN h2 > 0.5, and IF i0 ≤ 0.5 AND i1 = b THEN h2 > 0.5.
Further decision trees must be extracted for all the other split points found in
the first tree (in our example for h1 ≤ 0.6).

As a last step, the intermediate rules that describe the output by means of
the hidden layer and those that describe the hidden layer based on the NN’s
inputs are substituted and merged to build rules that describe the NN’s output
on the basis of its inputs. Note that the resulting rules from the decision tree
are disjunctive, i.e., only one will fire at a time for any test instance.

DeepRED – Rule Extraction from Deep Neural Networks 461

Fig. 2. Result of one iteration of CRED’s second step: a decision tree providing rules
for h2 > 0.5 based on the neural network’s inputs (adapted from [12]).

3.3 Extending CRED to DeepRED

Since CRED is a decompositional rule extraction approach, it is not possible
to apply the original implementation directly to NNs with multiple layers of
hidden neurons. However, the algorithmic approach can be extended relatively
straight-forward by deriving additional decision trees and intermediate rules for
every supplementary hidden layer.

The general process of DeepRED is the following: The algorithm extracts
rules for each class/NN output one after another. For each class it processes every
hidden layer in a descending order. DeepRED extracts rules for each hidden layer
that describes its behaviour based on the preceding layer. In the end, all rules
for one class are getting merged such that we arrive at the rule set Ri→o.

Our modified version of the CRED algorithm – DeepRED – starts just like
the original implementation by using C4.5 to create decision trees consisting of
split points on the activation values of the last hidden layer’s neurons and the
regarding classifications in the trees’ leaves. Figure 3 provides the pseudo code
for DeepRED. To exemplify DeepRED ’s approach we consider, without loss of
generality, a NN with k hidden layers. As a result of the first step we get a
decision tree that describes the output layer by split points on values regarding
hk, i.e., the rule set Rhk→o. The data to run C4.5 on is generated by feeding
the training data to the NN and recording the outputs of the hidden neurons
(line 8).

In the next step, in contrast to the algorithm presented by Sato and Tsuki-
moto, we do not directly refer to the input layer, but instead process the next
shallower hidden layer, i.e. hk−1 (loop starting in line 1). For every term present
in one of the rules in Rhk→o, we need to apply the C4.5 algorithm to find decision
trees that describe layer hk by means of hk−1 and can be transformed to the rule
set Rhk−1→hk

(line 10). We also see that the proposed algorithm also implements
a procedure to prevent itself from performing redundant runs of C4.5 since we
only learn a decision tree for terms which were not already extracted (line 6).
Just like in the CRED example presented earlier, the terms in Rhk→o are directly
used to differentiate positive and negative examples for the regarding C4.5 runs
(line 9).

462 J.R. Zilke et al.

Fig. 3. Pseudo code of DeepRED.

We proceed in the same manner until we arrive at decision trees/rules that
describe terms in the first hidden layer h1 by terms consisting of the original
inputs to the NN, i.e. Ri→h1 .

Now we have rule sets that describe each layer of the NN by their respective
preceding layer, i.e. we have the sets of intermediate rules Ri→h1 , Rh1→h2 , . . . ,
Rhk−1→hk

, and Rhk→o. To get a rule set Ri→o that describes the NN’s outputs by
its inputs, these rules need to be merged. This merging process proceeds layer-
wise (block starting at line 13). First, DeepRED substitutes the terms in Rhk→o

by the regarding rules in Rhk−1→hk
to get the rule set Rhk−1→o (line 14). As men-

tioned in Fig. 3, unsatisfiable intermediate rules as well as redundant terms are
deleted (lines 15 and 16).1 This happens to reduce computation time and memory

1 The merging may produce rules of the form i1 < 0.1 AND i1 > 0.2, or i1 > 0.4 AND
i1 > 0.5.

DeepRED – Rule Extraction from Deep Neural Networks 463

usage drastically. Next, we merge the rule sets Rhk−1→o and Rhk−2→hk−1 . Step
by step we go through all layers until we arrive at rules that describe the classi-
fication/outputs according to the inputs to the NN, which is the result we were
looking for.

3.4 Pruning

One way to facilitate the rule extraction process is to prune NN components that
can be considered as less important for the classification. While the authors of
CRED did not report on any of these approaches, other researchers have invented
several techniques that help to extract comprehensible rules. As a pre-processing
step before DeepRED is applied, we have borrowed the input pruning technique
from RxREN [2]. It proceeds by testing the NN’s performance while ignoring
individual inputs. Those inputs that where not necessary to still produce an
acceptable classification performance are getting pruned.

Table 1. Overview of deep neural networks used for evaluation, including the charac-
teristics of the original data the NNs were trained on and the accuracies of the NN on
the training and test set.

#attributes #training ex. #test ex. NN structure acc(training) acc(test)

MNIST 784 12056 2195 784-10-5-2 99.6 % 98.8 %

letter 16 1239 438 16-40-30-26 96.9 % 97.3 %

artif-I 5 20000 10000 5-10-5-2 99.5 % 99.4 %

artif-II 5 3348 1652 5-10-5-2 99.4 % 99.0 %

XOR 8 150 106 8-8-4-4-2-2-2 100 % 100%

4 Experiments

Since we are not aware of any algorithm that has been tested on extracting
rules from DNNs, we want to fill this gap with a DeepRED evaluation. Although
DeepRED is able to extract rules from DNNs with an arbitrary number of output
neurons, in this study we limit ourselves to two-class-problems. Before we present
and discuss the results more extensively, we first take a look at the evaluation
data base.

To evaluate DeepRED, we need suitable input data, i.e. trained NNs and
training sets. Unfortunately, it is not trivial to find already trained NNs in lit-
erature or online. Although NN research is a lot about training, usually only
network structures, training methods and performances are reported, while spe-
cific weights are not of particular interest for most researchers. Therefore, we
trained DNNs for real-world and artificial problems. Table 1 summarizes our
data basis.

464 J.R. Zilke et al.

Both, the MNIST and the letter data are taken from real-world problems.
The basis for our MNIST dataset is the dataset presented in [9]. We picked a
subset of the original data, reduced the problem to distinguish only between two
different classes (1 vs. rest), and trained a DNN on it. The letter recognition
problem is derived from the dataset introduced in [6]. Here, we first trained the
DNN on a multi-class training set. Afterwards we reduced the training and test
set to a binary classification problem (accuracy rates reported are based on the
training set reduced to two classes).

The datasets artif-I and artif-II are artificial ones that we have created to
be able to compare original and extracted models. Both databases comprise
examples with five attributes (discrete and continuous domains). A challenging
characteristic of artif-I is that it contains greater-than relations on real-valued
attributes. These functions cannot easily be modelled by decision trees. This is
not the case with artif-II, however, the second artificial dataset is based on a
model where the value of one attribute has no effect on the class, which as well
might be challenging for rule extraction algorithms.2

As a fifth problem we manually constructed a DNN that solves the XOR
problem with eight inputs. The parity function is well-known as a hard problem
for rule learners. Top-down learner, for instance, need all possible input examples
to correctly model XOR.

4.1 Rule Extraction Algorithms

To get an idea of how well the proposed algorithm performs the task of extracting
rules from DNNs, in this evaluation we compare two variants of DeepRED –
a version without and a version with RxREN pruning – with a pedagogical
baseline.

To control the behaviour of DeepRED, we implemented two parameters that
influence the included C4.5 algorithm and one for the pruning mechanism. The
first two parameters control when C4.5 should stop further growing a decision
tree. As an additional general setting we adjust C4.5 to only perform binary
splits and to produce a maximum decision tree depth of ten.

The first parameter – class dominance – is a threshold that considers the
classes of the current data base. If the percentage of examples that belong to
the most frequent class exceeds the value in the class dominance parameter, this
class is getting predicted instead of further dividing the data base.

The second parameter is the minimum data base size. This value tries to stop
C4.5 further growing the decision tree when there is not enough data available
to base dividing steps on. This parameter takes the number of training exam-
ples available in the first step as a reference value and defines a percentage of
this size as the minimum data base size. If for the current step, there are less

2 Input instances are drawn randomly from x ∈ {0, 0.5, 1} × {0, 0.25, 0.5, 0.75, 1} ×
[0, 1]3. For artif-I y = λ1 if x1 = x2, if x1 > x2 AND x3 > 0.4, or if x3 > x4 AND
x4 > x5 AND x2 > 0, else y = λ2, whereas for artif-I y = λ1 if x1 = x2, if x1 > x2

AND x3 > 0.4, or IF x5 > 0.8.

DeepRED – Rule Extraction from Deep Neural Networks 465

examples available than the parameter requires, C4.5 produces a leaf with the
most frequent class at this point.

The RxREN pruning parameter, namely the maximum accuracy decrease,
controls the pruning intensity. Step by step, the technique prunes the inputs
that are considered as the least significant ones, as long as the NN’s accuracy
does not drop below the decrease allowed by this parameter.

As a pedagogical rule extraction baseline we choose to use the C4.5 algo-
rithm, that is also used as a part of DeepRED itself. Like the sampling-based
approaches, our baseline is provided with the training examples as well as the
NN’s classification for these instances (instead of the real classes). Using these
values, C4.5 extracts a decision tree that, afterwards, is transformed to a rule
set. The two introduced C4.5 parameters do also apply to the baseline.

Note that no rule rewriting, rule pruning or any other rule optimization
mechanisms are implemented by the DeepRED variants or the baseline (except
DeepRED ’s reported steps to delete redundant terms and unsatisfiable rules).

4.2 Evaluation Measures

To compare the results of the algorithms presented using the trained DNNs
introduced, we derive two central measures from the extracted rule sets, that
are used to assess their quality. First, we measure the comprehensibility by the
number of terms in the extracted rule set. Second, we use the fidelity (ratio
of prediction matches) to compare the mimicking performance of the extracted
rules in contrast to the original NN’s behaviour.

4.3 Evaluation Setup

Before we setup the evaluation, we collected our expectations of DeepRED ’s
performance. Our expectations were:

1. DeepRED is able to extract rules from deep neural networks.
As stated earlier, to the best of our knowledge, no rule extraction algorithm
has ever been tested on a DNN. We believed that in general the proposed algo-
rithm can manage this task. However, we also expected DeepRED ’s memory
and computation time demands to sometimes make rule extraction processes
intractable. We assumed that this was especially true for classification prob-
lems where an instance is described by a large number of attributes.

2. DeepRED outperforms the baseline on more complex problems.
We believed that our algorithm can profit from a NN’s structure when the
training data model a concept that cannot be described/learned by a simple
decision tree – including but not restricted to the XOR problem. On the
other hand, for decision tree problems, i.e. classification tasks that can more
easily be solved by a decision tree, our assumption was that the baseline could
outperform DeepRED.

466 J.R. Zilke et al.

3. RxREN pruning facilitates the extracted rules.
For problems where not all inputs are relevant, we expected the extracted
rules to be more comprehensible when RxREN pruning has been applied.
Depending on the problem, we even thought that the fidelity rates could be
improved. However, since the optimal setting of the pruning parameters is
not trivial, the extracted rules probably would not reach the possibly best
tradeoff between comprehensibility and fidelity.

4. DeepRED extracts more accurate rules if more data is available.
We believed that the DeepRED algorithm would need a certain amount of
data to extract reasonable rules. However, we also thought that our algo-
rithm is less dependant on a sufficiently large dataset than C4.5 is, because
DeepRED focuses on the setup of the NN’s inner structure using instances,
which is a more efficient representation compared to the pedagogical point of
view.

To check these expectations, our evaluation setup includes three different
pairs of C4.5 parameter values, three different pruning settings, as well as four
values that control the number of training examples visible to the rule extraction
algorithm. Table 2 summarizes the different parameter settings chosen.

The number of experiments for the proposed algorithm sums up to 180 (or 36
per dataset) while the baseline is executed in 60 experiments (or 12 per dataset) –
RxREN pruning never is applied here.

5 Evaluation

The results of DeepRED ’s evaluation shows that most of our expectations are
met. The main results are:

DeepREDcan Successfully ExtractRules fromDeepNeuralNetworks –
Table 3 gives an overview of the general success of applying DeepRED to different
DNNs. For every dataset, we list the number of experiments that were executed3

as well as the number of successful and aborted attempts4.
One observation is that for every DNN tested there is at least one parame-

ter setting that enables DeepRED to successfully extract rules. Except for the
MNIST dataset, this also holds true for every RxREN pruning variant evaluated.
On the other hand is the high abortion rate of approximately 46 % an indication
that the right parameters are important when using DeepRED. Especially for
classification problems with a large number of inputs, i.e. MNIST, the success
rate is very low.

3 You might notice that, earlier, we mentioned that there are 36 experiments per
dataset. However, to avoid sophisticating the outcomes, we discard those experiments
where the RxREN pruning results in no pruned inputs at all.

4 An abortion could either be the case if the experiment exceeds the allocated mem-
ory space (10000 MB) or if DeepRED needs more than the maximum execution time
(24 h).

DeepRED – Rule Extraction from Deep Neural Networks 467

Table 2. The parameter settings used for the evaluation.

Table 3. Statistics of performed experiments for DeepRED.

artif-I artif-II letter MNIST XOR

Executed 36 36 36 21 12

Successful 11 23 26 4 12

Aborted (memory) 24 13 10 7 0

Aborted (time) 1 0 0 10 0

A further investigation concerning the abortion reasons shows that most of
the time memory limits are exceeded while merging if a lot of intermediate
rules are present in the first two layers. The abortions due to violation of time
constraints can all be ascribed to large training sets passed to the algorithm –
the implemented C4.5 is not efficient enough when dealing with large datasets.

DeepRED can Extract Comprehensible Rules for Complex Problems –
Taking a closer look at the results on the datasets artif-I and artif-II lets us
assess DeepRED ’s performance on more complex problems. As described earlier,
the data in artif-I model a function that cannot easily be realized by a decision
tree. We consider this a difficult problem for the baseline. The artif-II data, on
the other hand, can quite easily be modelled by a decision tree. However, please
notice that the functions the DNNs have learned are not equivalent to the true
models.

Figure 4 shows the results. We clearly see that the best DeepRED result
outperforms the baseline on the DNN representing the artif-I dataset. Especially
the comprehensibility of the rules extracted by our approach is much better. It
seems like the proposed algorithm could use the inner structure of the DNN to
create rules that efficiently model the NN’s behaviour.

The artif-II dataset gives a different picture: The baseline produces much
better results than DeepRED does. Regarding fidelity, the outcomes of our app-
roach are more or less similar to those of the artif-I data. However, the baseline
is able to find a more efficient way to model the NN’s outputs – and does so
much more accurate. For some reason, the inner structure of the DNN seems to
confuse DeepRED such that it cannot extract high-quality rules.

Part of our expectation also was, that DeepRED can outperform the baseline
by far when extracting rules from an XOR NN. Figure 5 gives an insight into
the performance on this task. Please notice, that compared to Fig. 4 we needed
to adjust the axes to draw a meaningful graph. As we expected it and it is

468 J.R. Zilke et al.

Fig. 4. Evaluation results for DeepRED and the baseline on artif-I (left) and artif-II
(right).

well-known, C4.5 cannot generalize from XOR training examples to correctly
classify distinct test instances, i.e. it never gets better than random. However,
as we see in the graph, DeepRED is able to use the knowledge embedded in
the DNN, to extract rules that correctly classify unseen examples. As we will
discuss in a moment, DeepRED needs a sufficiently large data basis to perform
this task. But if it is given, an error rate of 0 % can be achieved (only having
the training examples).

You might argue that DeepRED is not extracting comprehensible rules. In
fact, rules in the form as we use them are not able to efficiently model the
XOR problem. To correctly classify all possible 256 input combinations for this
problem, 128 rules with 8 terms each are necessary to cover all 128 positive
examples (the default rule covers the negative examples). In sum this leads to a
number of 1024 terms in the rule set – which is the number of terms, the most
accurate rules extracted by DeepRED have.

Fig. 5. Evaluation results for DeepRED and the baseline on XOR.

DeepRED – Rule Extraction from Deep Neural Networks 469

RxREN Pruning Helps DeepRED to Extract More Comprehensible
Rules – RxREN pruning can facilitate the rule extraction process for DeepRED.
Here, we want to analyse how the RxREN pruning affects a rule set’s compre-
hensibility – and what it means for its fidelity. Figure 6 offers some insights for
this question. We only show the datasets where not all inputs are important,
i.e. letter, artif-I, and MNIST. The connected points represent experiments with
the same C4.5 parameters and training set sizes. Please note, that the figure
only shows groups of experiments where at least two different pruning settings
were successful.

Fig. 6. The effect of DeepRED’s different RxREN pruning parameters on the extracted
rules’ comprehensibility.

One can clearly see that for the vast majority of experiments, the number of
terms gets smaller when the pruning intensity gets higher. This holds true for all
experiments when we only consider no pruning versus pruning with a threshold
of 5 %.

Figure 7 provides fidelity rates for exactly the same experiments as depicted
in Fig. 6. For the artif-I problem, where the 10 % pruning setting produced the
shortest rules, we also see the best fidelity rates for the same pruning setting.
For the MNIST problem, instead, the threshold of 10 % is too greedy and leads
to a much worse fidelity.

The results for the letter problem are less clear. We conclude that the prun-
ing intensity needs to be adjusted in a more elaborate way to ensure the best
achievable results. In total the results are better than expected since, although
RxREN pruning overall increases the comprehensibility drastically, a clear trend
towards lower fidelity rates cannot be recognized.

Another interesting observation is the fact that RxREN pruning in eight of 13
cases in the first place enables DeepRED to successfully extract rules. Without

470 J.R. Zilke et al.

Fig. 7. The effect of DeepRED’s different RxREN pruning parameters on the extracted
rules’ fidelity.

the pruning option, for instance, the algorithm would not be able to process the
MNIST DNN at all.

DeepRED can Extract High-Quality Rules Independently from the
Training Set Size – As a last measure we want to analyse the effect of the
training set size on the results. Our belief was, that DeepRED profits from more
available data. The graph in Fig. 8 shows the results of all successful experiments
on datasets with less than 4000 training examples (with a minimum fidelity
of 77 %).

Although we can clearly see that increasing the training set size from 10 %
to 25 % has a positive influence on the fidelity, the overall results for the artif-II
and letter datasets are surprising. Contrary to our expectations more data do
not necessarily lead DeepRED to extract better rules. Often, the fidelity even
gets worse when making more data available to the algorithm, while the baseline
more often can profit from additional training data. A further investigation why
this is the case is left for future research.

For the XOR dataset, Fig. 8 shows us exactly what we expected – a strong
correlation between the number of training examples and the fidelity of the rule
sets. While the results for the baseline are not shown in the extract of the graph
(since the results are never better than 50 %), DeepRED manages to extract
sensible rule sets with only 50 % of the training data (which is about 29 % of all
possible input combinations). In our experiments with 100 % training data, the
proposed algorithm extracted rules that perfectly mimic the NN’s behaviour.
Again, we want to clarify that the 100 % training data are approximately 59 %
of all possible input combinations. The baseline would only be able to extract
such a rule set, if all 256 possible instances are available for training.

DeepRED – Rule Extraction from Deep Neural Networks 471

Fig. 8. The implications of different sizes of the available data on the extracted rules’
fidelity.

This clearly shows the benefit of having access to the NN’s structure.
DeepRED does not need every input combination of all attributes in the train-
ing data – the examples must only contain the relevant input combinations
anywhere in the training set. In the best case, for an XOR with four inputs, only
four examples are needed5, which is only 25 % of all 16 possible input combina-
tions. The deeper a similar XOR network, the more DeepRED benefits from the
NN’s architecture.

6 Conclusion

In this paper, we presented and evaluated DeepRED, a new decompositional
algorithm that solves the problem of extracting rules from DNNs to make their
decision processes more comprehensible.

Since most state-of-the-art algorithms do not consider DNNs at all, we cre-
ated a new rule extraction algorithm that is able to deal with DNNs. We pro-
posed DeepRED which extends the CRED algorithm. Our approach uses C4.5
to create rules that describe neurons on the basis of neurons in the preceding
layer. DeepRED then merges these rules to produce a rule set that mimics the
overall behaviour of the given DNN.

Our evaluation with different parameter settings on five datasets showed
DeepRED ’s advantages over a pedagogical baseline. The proposed algorithm
even managed to successfully extract correct rules from an XOR NN despite not

5 An example of a sufficient training set with the instance notation x = x1x2x3x4

would be 0011, 1101, 1000, and 0110. It contains all combinations of x1/x2 and
x3/x4.

472 J.R. Zilke et al.

seeing all training examples that would usually be necessary to replicate such a
function with a rule learning algorithm.

Future research on DeepRED is needed to better adjust its parameters and
select or sample suitable training examples. Not only optimizing C4.5 to bet-
ter fit DNN rule extraction characteristics, but also a replacement of C4.5 by
another rule learner could be very interesting. Additional evaluations that are
not restricted to binary classification problems would help to further optimize
DeepRED. Since, to the best of our knowledge, the DNN rule extraction problem
by now has not been analysed more extensively by other researchers, developing
alternatives for DeepRED also is an interesting open research opportunity.

References

1. Andrews, R., Diederich, J., Tickle, A.B.: Survey and critique of techniques for
extracting rules from trained artificial neural networks. Knowl. Based Syst. 8(6),
373–389 (1995)

2. Augasta, M.G., Kathirvalavakumar, T.: Reverse engineering the neural networks
for rule extraction in classification problems. Neural Process. Lett. 35(2), 131–150
(2012)

3. Beńıtez, J.M., Castro, J.L., Requena, I.: Are artificial neural networks black boxes?
IEEE Trans. Neural Netw. 8(5), 1156–1164 (1997)

4. Craven, M., Shavlik, J.W.: Using sampling and queries to extract rules from trained
neural networks. In: ICML, pp. 37–45 (1994)

5. Craven, M.W., Shavlik, J.W.: Extracting tree-structured representations of trained
networks. In: Advances in Neural Information Processing Systems, pp. 24–30 (1996)

6. Frey, P.W., Slate, D.J.: Letter recognition using Holland-style adaptive classifiers.
Mach. Learn. 6(2), 161–182 (1991)

7. Fu, L.: Rule generation from neural networks. IEEE Trans. Syst. Man Cybern.
24(8), 1114–1124 (1994)

8. Johansson, U., Lofstrom, T., Konig, R., Sonstrod, C., Niklasson, L.: Rule extraction
from opaque models-a slightly different perspective. In: 5th International Confer-
ence on Machine Learning and Applications, ICMLA 2006, pp. 22–27. IEEE (2006)

9. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

10. Quinlan, J.R.: C4.5: Programs for Machine Learning, vol. 1. Morgan Kaufmann,
San Francisco (1993)

11. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Edu-
cation, New York (1995)

12. Sato, M., Tsukimoto, H.: Rule extraction from neural networks via decision tree
induction. In: Proceedings of the International Joint Conference on Neural Net-
works, IJCNN 2001, vol. 3, pp. 1870–1875. IEEE (2001)

13. Schmitz, G.P., Aldrich, C., Gouws, F.S.: ANN-DT: an algorithm for extraction of
decision trees from artificial neural networks. IEEE Trans. Neural Netw. 10(6),
1392–1401 (1999)

14. Sethi, K.K., Mishra, D.K., Mishra, B.: KDRuleEx: a novel approach for enhancing
user comprehensibility using rule extraction. In: 2012 Third International Confer-
ence on Intelligent Systems, Modelling and Simulation (ISMS), pp. 55–60. IEEE
(2012)

DeepRED – Rule Extraction from Deep Neural Networks 473

15. Setiono, R., Leow, W.K.: FERNN: an algorithm for fast extraction of rules from
neural networks. Appl. Intell. 12(1–2), 15–25 (2000)

16. Taha, I.A., Ghosh, J.: Symbolic interpretation of artificial neural networks. IEEE
Trans. Knowl. Data Eng. 11(3), 448–463 (1999)

17. Thrun, S.: Extracting provably correct rules from artificial neural networks. Tech-
nical report, University of Bonn, Institut für Informatik III (1993)

18. Thrun, S.: Extracting rules from artificial neural networks with distributed rep-
resentations. In: Advances in neural information processing systems, pp. 505–512
(1995)

19. Towell, G.G., Shavlik, J.W.: Extracting refined rules from knowledge-based neural
networks. Mach. Learn. 13(1), 71–101 (1993)

20. Tsukimoto, H.: Extracting rules from trained neural networks. IEEE Trans. Neural
Netw. 11(2), 377–389 (2000)

21. Zhou, Z.H., Chen, S.F., Chen, Z.Q.: A statistics based approach for extracting
priority rules from trained neural networks. In: Proceedings of the IEEE-INNS-
ENNS International Joint Conference on Neural Networks, IJCNN 2000, vol. 3,
pp. 401–406. IEEE (2000)

Ligand Affinity Prediction with Multi-pattern
Kernels

Katrin Ullrich1,2(B), Jennifer Mack1, and Pascal Welke1

1 University of Bonn, Bonn, Germany
ullrich@iai.uni-bonn.de, mack@cs.uni-bonn.de, welke@uni-bonn.de

2 Fraunhofer IAIS, Sankt Augustin, Germany

Abstract. We consider the problem of affinity prediction for protein
ligands. For this purpose, small molecule candidates can easily become
regression algorithm inputs if they are represented as vectors indexed
by a set of physico-chemical properties or structural features of their
molecular graphs. There are plenty of so-called molecular fingerprints,
each with a characteristic composition or generation of features. This
raises the question which fingerprint to choose for a given learning task?
In addition, none of the standard fingerprints, however, systematically
gathers all circular and tree patterns independent of size and the adja-
cency information of atoms. Since structural and neighborhood informa-
tion are crucial for the binding capacity of small molecules, we combine
the features of existing graph kernels in a novel way such that finally both
aspects are covered and the fingerprint choice is included in the learning
process. More precisely, we apply the Weisfeiler-Lehman labeling algo-
rithm to encode neighborhood information in the vertex labels. Based on
the relabeled graphs we calculate four types of structural features: Cyclic
and tree patterns, shortest paths and the Weisfeiler-Lehman labels. We
combine these different views using different multi-view regression algo-
rithms. Our experiments demonstrate that affinity prediction profits from
the application of multiple views, outperforming state-of-the-art single
fingerprint approaches.

Keywords: Graph kernels · Molecular fingerprints · Multiple kernel
learning · Support vector regression · Weisfeiler-lehman labeling

1 Introduction

In biological organisms small molecular compounds bind to large proteins with
protein-ligand-specific affinities. If the real-valued affinity exceeds a given limit
the compound is called a ligand of the protein. The ligand binding process typ-
ically triggers biochemical processes, for example, via a change of conforma-
tion or charge at the protein surface. Ligand (affinity) prediction is an impor-
tant and challenging practical problem in the range of quantitative structure-
activity relationship (QSAR) models as many drugs act as ligands. In practice,

c© Springer International Publishing Switzerland 2016
T. Calders et al. (Eds.): DS 2016, LNAI 9956, pp. 474–489, 2016.
DOI: 10.1007/978-3-319-46307-0 30

Ligand Affinity Prediction with Multi-pattern Kernels 475

for drug discovery and design millions of compounds can be tested in the lab-
oratory already quite efficiently with high-throughput-screening (HTS) setups.
Nevertheless, because of the expensive equipment and the quasi infinite num-
ber of synthesizable chemical compounds the process is still very time- and
cost-consuming. Therefore, in chemoinformatics similarity-based virtual screen-
ing uses statistical ranking and machine learning methods in combination with
molecular descriptors to train a binding model for the considered protein. Behind
these approaches is the similarity assumption that similar compounds show sim-
ilar binding behavior. As mentioned above, the protein-ligand-docking complex
has a certain strength which can be measured as binding affinity Ki. For the
prediction of affinities the well-known support vector regression (SVR) utilizing a
vectorial feature representation of small molecules, the so-called molecular finger-
prints, is the state-of-the-art method and was tested successfully (e.g., [1,9,17]).
However, other machine learning algorithms like neural networks trained with
molecular fingerprint data [10] were applied for the affinity prediction task as
well. For a complete overview of approaches we point to the survey of Cherksov
et al. [4].

Many publicly available or commercial fingerprint descriptors exist, just to
mention a few: Maccs Keys, ECFP/C and FCFP/C fingerprints, GpiDAPH fin-
gerprints, TGD or TGT. The fingerprints list (or count) diverse physico-chemical
properties of the molecule, structural properties of their molecular graphs, or
3D information, and can be grouped according to their respective generation
of features [2]. Additionally, even more molecular descriptors gathering graph
structure information arise from the field of graph theory and have been proven
beneficial (e.g., [7,11]). The variety of data descriptions is a blessing and a curse
at the same time. On the one hand, a lot of different information sources for
diverse learning tasks are available. On the other hand, this includes the neces-
sity to choose a representation in order to obtain optimal results. Hence, we
intend to overcome this problem by using multiple representations simultane-
ously. There are related QSAR approaches (e.g., [7,18]) which we would like to
complement in this paper. Anyway, the method we will present is applicable for
arbitrary graph data with multiple representations and real-valued labels.

Both structural and neighborhood information are crucial for the capacity
of small molecules to be a ligand and for the strength of the bond (e.g., [12],
[7]). For example, the presence of a benzene ring or that of an alcoholic group
and their relative positions influence the chemical properties of the compound
at hand. None of the existing fingerprints that collect structural information,
however, captures both all circular and tree patterns of the molecular graph
independent of size and the adjacency and connectivity information of atoms
within the graph structure. Therefore, we propose to combine the feature set
of the cyclic pattern kernel (CPK) [8] with that of shortest path (SP) kernels
[3] and Weisfeiler-Lehman (WL) labels [14]. The WL algorithm assigns (new)
labels to each vertex in the graph that depend on the surrounding vertices up to
a certain distance h. CPK decomposes a graph into the set of contained cycles
(C) and remaining tree components (T) of edges that do not belong to cycles.

476 K. Ullrich et al.

Shortest path features (P) collect the shortest paths from one vertex to another.
Finally, we also consider the labels of the atoms (L) themselves as features.
Hence, for each depth h of the WL algorithm, we obtain four types of features
(Ch, Th,Ph,Lh) for each graph. Each of these 4 · h feature sets can possibly be a
(weighted) part of a resulting fingerprint. Additionally, a feature vector can either
list or count features of a compound (binary or counting feature representation,
see [12]). However, it is neither clear which of them to keep in the application
scenario of affinity prediction, nor obvious which role the components play for
the predictive process. Hence, we apply a systematic process to obtain an optimal
combination of the proposed feature sets.

On an abstract level, these components can also be considered multiple views
on molecular graphs. Including different views on data to learn one prediction
function is known as multi-view learning. In general, a view or feature vector
representation Φ is canonically related to a kernel function k via Mercer’s theorem

k(x, x′) = 〈Φ(x), Φ(x′)〉 , x, x′ ∈ X , (1)

where X is the instance space of learning objects. In our case X are the potential
ligands and Φ(x) would be the feature vector. We use the supervised kernel
methods multiple-kernel learning (MKL) and its solution from Vishwanathan et
al. [19] and learning kernel ridge regression (LKRR) by Cortes et al. [6]. Both
algorithms learn a linear combination of kernel functions corresponding to the
provided views. The linear combination of functions is included into a regularized
empirical risk functional with ε-insensitive loss function (MKL) or squared loss
function (LKRR). Hence, they virtually solve a multi-view SVR and multi-view
regularized least squares regression (RLSR) problem. We will employ these multi-
view kernel methods to find and use a combination of our features that suits
the learning process best. Out of the rich set of patterns we aim at finding
optimal compositions or combinations of views for the affinity prediction learning
task. In the case of the linear kernel this is equivalent with utilizing a novel
fingerprint representation with differently weighted pattern components, such
that the identification of optimal weights is part of the learning process itself.
Finally, this approach allows us to incorporate multiple feature representation
for structural and neighborhood information with an automatic weighting that
highlights the importance of the pattern group for the affinity prediction task.

2 Regression with Multiple Views

In the practical scenario of ligand affinity prediction we are looking for a real-
valued predictor function f defined on an instance space X of molecules, i.e.,
f : X → R. Here, f should be an element of a certain candidate space of
functions H and the molecules in X can be regarded as graphs of atoms and
bonds (see Fig. 1 below). A particular choice for H is a reproducing kernel Hilbert
space (RKHS), a function space that is canonically related to a so-called kernel
function k : X × X → R. In the supervised scenario with training examples
(x1, y1), . . . , (xn, yn) ∈ X × R, a common approach to find a good predictor

Ligand Affinity Prediction with Multi-pattern Kernels 477

is the principle of regularized empirical risk minimization (ERM) as a trade-
off between empirical risk and function norm. Utilizing the ε-insensitive loss or
the squared loss function for the empirical risk we obtain the SVR and RLSR
formulation, respectively. For a thorough study of SVR and RLSR as well as their
kernelized variants consult, for example, [16] or [5]. When we choose an RKHS H
with reproducing kernel k as function space the representer theorem of Schölkopf
et al. [15] implies a representation of the solution f∗. In fact, it turns out that f∗

must be a linear combination of the kernel function k centered at training points
that can be used to parameterize all considered optimization problems. Now let
Φ1, . . . , ΦM be M views with corresponding kernels k1, . . . , kM according to (1),
and respective RKHSs H1, . . . ,HM . Having multiple representations on data we
want to apply SVR- and RLSR-related multi-view kernel algorithms. In contrast
to using only one single view or kernel in the regularized ERM, the supervised
multi-view approaches we consider incorporate a linear combination of kernel
functions

k(x, x′) =
M∑
v=1

bvkv(x, x′) =
M∑
v=1

bv 〈Φv(x), Φv(x′)〉 , (2)

which itself is a kernel again for bv ≥ 0. In order to prevent overfitting, the
linear factors b = (b1, . . . , bM) need to be regularized additionally. As the kernel
expansion parameters from the representer theorem and linear factors b have
to be learned simultaneously, the solution strategies of SVR- and RLSR-related
multi-view approaches are different to the ones of single-view SVR and RLSR.
On the one hand, the multiple kernel learning (MKL) algorithm presented in [19]
utilizes the p-norm, p > 1, for the regularization of b. Hence, the MKL objective
becomes f∗

1 , . . . , f∗
M =

argmin
fv∈Hv,bv≥0

1
2

M∑
v=1

‖fv‖2Hv
+ C

n∑
i=1

max {0, |f(xi) − yi| − ε} +
Λ

2

(
M∑
v=1

bpv

) 2
p

,

where f =
∑M

v=1 bvfv and C,Λ, ε > 0. Actually, there are other variants of MKL
which we do not want to consider. On the other hand, the learning kernel ridge
regression (LKRR) algorithm from [6] requires b being close to a constant vector
b0. The LKRR objective is

f∗
1 , . . . , f∗

M = argmin
fv∈Hv

M∑
v=1

‖fv‖2Hv
+ C

n∑
i=1

|f(xi) − yi|2

s.t. ‖b − b0‖ ≤ Λ, bv ≥ 0,

where again f =
∑M

v=1 bvfv as well as b0v, Λ > 0. For the solution of MKL and
LKRR we refer to [6,19].

478 K. Ullrich et al.

3 Patterns for Molecular Graphs

Our contribution in this paper is the intelligent combination of several graph pat-
terns for the task of ligand prediction. To this end we now define four pattern
sets or classes and corresponding kernels that incorporate structural and neigh-
borhood information. Finally, we define a multi-pattern kernel based on these
patterns that allows efficient combinations of patterns based on the methods
presented in the previous section.

Fig. 1. Glucose molecule in its 3D (left) and graph representation (right). All bonds
in glucose are single bonds, hence edge labels are omitted.

A labeled, undirected graph is a quadruple G = (V,E,Σ, λ), with V being a
finite set of vertices, E ⊆ (

V
2

)
a set of edges, Σ a finite linearly ordered set of

labels, and λ : V ∪ E → Σ a function assigning a label to each vertex and edge.
For the computation of patterns we consider molecules as labeled, undirected
graphs such that atoms correspond to vertices (labels: C, O, H, N, ...) and
bonds to edges (labels: single, double, and aromatic). An example is shown in
Fig. 1. A sequence w = {v0, v1} , {v1, v2} , . . . , {vk−2, vk−1} , {vk−1, vk} of edges
of a graph is called simple path if vi �= vj for all i, j with 1 ≤ i < j ≤ k (the
vertex v should not be confused with the view index v). If additionally v0 = vk
holds true, the sequence is called simple cycle. Edges not belonging to any simple
cycle are called bridges. A forest is an undirected graph that does not contain
a cycle, a connected (i.e., where any two vertices are connected by a simple
path) forest is called a tree. Two labeled, undirected graphs G = (V,E,Σ, λ)
and G′ = (V ′, E′, Σ′, λ′) are isomorphic, if there is a bijection ϕ : V → V ′ that
respects edges and labels, i.e., {v, w} ∈ E if and only if {ϕ(v), ϕ(w)} ∈ E′, as
well as λ(v) = λ′(ϕ(v)), and λ({v, w}) = λ′({ϕ(v), ϕ(w)}).

In the following we will review four types of graph patterns: Label patterns L,
cyclic patterns C, tree patterns T , and shortest path patterns P. These patterns
already appear in the definitions of the popular graph kernels Weisfeiler-Lehman

Ligand Affinity Prediction with Multi-pattern Kernels 479

Fig. 2. WL labeling of two molecular graphs.

kernel (WLK), cyclic pattern kernel (CPK), and shortest path kernel (SPK).
First, we introduce the Weisfeiler-Lehman labeling of a graph G’s vertices as the
basis for the WL test of graph isomorphism as well as the WLK of Shervashidze
et al. [14], represented by the recursive labeling function λh

G : V → Σ∗ for
recursion depth h. Initially, it holds that λ0

G = λ. That means for depth h = 0
the WL labels are the original vertex labels. For each recursion step we append
to each vertex label λh

G(v), v ∈ V , a sorted list of all labels from adjacent vertices
and obtain

λh+1
G (v) = r

(
λh
G(v), sort

({
λh
G(w) : (v, w) ∈ E

}))
,

where a, b represents the concatenation of strings a and b (using a separating
comma), {·} is a multiset, and r is a renaming function (see Shervashidze et al.
[14]). Based on this definition we denote with Gh = (V,E,Σ, λh

G) the graph G
with WL labels of depth h. The edge labels remain unaffected in the sense that
λh
G(e) = λ(e) for all h = 0, 1, . . . and all e ∈ E. Two small examples can be found

in Fig. 2.

Definition 1 (Label Patterns). For a labeled, undirected graph G we define
L(G) to be the set of all vertex labels of G.

The above definition implies that L(Gh) are the WL labels of depth h ≥ 0. Next,
cyclic and tree patterns correspond to the features defined by Horváth et. al. [8]
for the CPK.

Definition 2 (Cyclic Patterns). Given a labeled, undirected graph G we
define S(G) to be the set of all simple cycles in G. Then C(G) denotes the set of
canonical representations1 of S(G).

1 See [8] for a definition of such a canonical representation.

480 K. Ullrich et al.

That is, C(G) is equivalent to the set of simple cycles up to isomorphism.
Hence, if G contains two isomorphic cycles, there will be only one cyclic pattern
representing the two. Similarly, the tree patterns of a graph are only considered
up to isomorphism.

Definition 3 (Tree Patterns). Given a labeled, undirected graph G we define
T (G) to be the set of connected components of the forest that contains only the
bridges in G. Then, T (G) denotes the set of canonical representations of T (G).

We enhance the expressiveness of the tree patterns T (G) by computing short-
est paths between all pairs of vertices contained in the forest consisting of the
bridges in G. To regain connectivity inside the forest, we contract each bicon-
nected component to a single vertex and assign a fixed, unused label to each of
those fusion vertices. We call this newly derived tree representation of the origi-
nal graph contracted graph and define the shortest path patterns corresponding
to the SPK of Borgwardt et al. [3] as follows.

Definition 4 (Shortest Path Patterns). Given a labeled, undirected graph
G we define P (G) to be the set of shortest paths between all pairs of vertices in
the contracted graph of G. With P(G) we denote the canonical representations
of P (G).

Considering that a WL labeled graph Gh differs from its underlying original
graph G only with respect to the labels, we can apply the definitions of cyclic,
tree, and shortest path patterns to such graphs as well. This allows us to derive
even more detailed patterns C(Gh), T (Gh), P(Gh), and of course L(Gh) for
depths h greater than zero. With Φv : X → R

dv , v ∈ {C, T ,P,L}, we denote the
binary or counting feature representation of the respective patterns. In practice,
the feature space dimension dv depends on the view v, the considered depth h,
and the graph dataset at hand. In Sect. 4 we will use the term (set) intersection
or (set) counting kernel when we refer to the linear kernel on binary or counting
feature vectors, respectively. Analogous to the WLK in [14] we define cumulative
pattern kernels and a non-cumulative version of them.

Definition 5 (Pattern Kernel). Let v ∈ {C, T ,P,L} be a graph pattern class
and Φv its binary or counting feature mapping. For two labeled, undirected graphs
G and G′ the cumulative pattern kernel kh

v of depth h is defined as

kh
v (G,G′) = 〈Φv(G0), Φv(G′

0)〉 + · · · + 〈Φv(Gh), Φv(G′
h)〉 , (3)

whereas the non-cumulative pattern kernel of depth h is just

kh
v (G,G′) = 〈Φv(Gh), Φv(G′

h)〉 . (4)

Obviously, (3) is a generalization of the WLK and (4) is an instance of its
non-negatively weighted variant. Although we restrict to the linear view ker-
nel 〈Φv(·), Φv(·)〉 in Definition 5 also other base kernels (compare WLK defini-
tion in [14]) could be applied. For the sake of convenience we do not use extra

Ligand Affinity Prediction with Multi-pattern Kernels 481

indices for cumulative/non-cumulative or intersection/counting kernels. This will
be clear from the context in the practical part below. Finally, we define the
multi-pattern kernel (MPK). Interestingly, with minor modifications the molec-
ular fingerprint ECFPx corresponds to the cumulative WL labels of a molecular
graph up to depth h = x/2.

Definition 6 (Multi-pattern Kernel). We consider non-negative weights bv,
v ∈ {C, T ,P,L}. The multi-pattern kernel kMPK of two labeled, undirected
graphs G and G′ is defined as

kMPK(G,G′) =
∑

v∈{C,T ,P,L}
bv · khv

v (G,G′) , bv ≥ 0,

where the WL depth hv depends on the pattern v and khv
v can be a cumulative

or non-cumulative pattern kernel.

Now we want to investigate MPKs with multi-view kernel approaches in the
context of ligand affinity prediction.

4 Experiments

We provided a considerable number of representation variants for molecular
graphs that can be used as views for single- and multi-view kernel approaches
which themselves can be parameterized as well in several ways (regularization
and kernel type). At first, in the preliminary experiments we intend to extract
promising views or view combinations for the practical task of ligand affinity
prediction using only the single view regression methods SVR and RLSR. For
this purpose, the views are either individual graph pattern vectors or their con-
catenation. In a second step, we use the best patterns and check whether we can
take profit from multi-view kernel methods for regression. We will compare our
results with the performance of standard fingerprints.

4.1 Setup and Datasets

Our experiments will be performed on 20 datasets, each of which representing
ligands of one of 20 human proteins. A set contains between 90 and 986 ligands
of the respective protein gathered from BindingDB2. We ordered the protein
datasets according to the number of contained ligands and renamed them (see
Number in Table 1, DS = dataset). We divided the 20 datasets into two groups:
The first group, consisting of odd ordinal numbers, was used for preliminary and
parameter tuning experiments. The second group with even numbers was utilized
for the main experiments with multi-view kernel methods. Every ligand is a
single molecule in the sense of a connected graph and is labeled with its affinity
value (pKi = − log10 Ki) towards the protein target. The ligands are given

2 Binding database, https://www.bindingdb.org/bind/index.jsp.

https://www.bindingdb.org/bind/index.jsp

482 K. Ullrich et al.

Table 1. Datasets with name, ordinal number, number of ligands, and label range.

Target P23946 Q99895 P09871 P25774 Q9Y5Y6

Number DS 1 DS 2 DS 3 DS 4 DS 5

Ligands 90 91 92 104 125

Range 5.4-8.9 2.7-8.0 4.8-9.0 4.3-9.8 4.0-10.1

Target P17655 P42574 P00740 P07384 P07339

Number DS 6 DS 7 DS 8 DS 9 DS 10

Ligands 128 133 171 189 197

Range 4.8-10.8 4.9-11.9 3.9-8.7 3.1-10.7 4.1-11.0

Target P08709 P43235 P00750 P07858 P29466

Number DS 11 DS 12 DS 13 DS 14 DS 15

Ligands 249 252 264 278 310

Range 3.9-9.5 3.9-11.5 2.2-9.5 3.0-10.5 3.1-9.8

Target P07711 P00747 P00749 P08246 P07477

Number DS 16 DS 17 DS 18 DS 19 DS 20

Ligands 357 474 600 742 986

Range 3.9-10.6 1.9-11.0 0.3-11.1 2.7-11.2 2.0-10.6

Fig. 3. SVR and RLSR results for the intersection kernel.

in SMILES-format (Simplified Molecular Input Line Entry Specification) from
which the labeled graph structure can be deduced easily, e.g., with the chemistry
toolbox Open Babel3 and the structure data format (SDF). We introduced the
edge label aromatic by hand using a Hückel’s rule heuristic. Thus, for all ligands
in all datasets the binary and counting feature vectors for all pattern types up to

3 openbabel.org.

http://openbabel.org

Ligand Affinity Prediction with Multi-pattern Kernels 483

Fig. 4. SVR and RLSR results for the counting kernel.

WL depth i = 6 and the standard molecular fingerprints Maccs and ECFP6 were
available for our experiments.

We use the SMO-MKL software4 for efficient MKL that is based on libSVM5

for both our MKL and SVR experiments. For LKRR we use our own implemen-
tation of Algorithm 1 in [6]. For a learned predictor function f we report root
mean squared error RMSE(f) = 1√

m
‖Ytest − f(Xtest)‖2, i.e., the root mean

squared distance between the original label vector Ytest of m test instances
Xtest and the corresponding vector of prediction values Ypred = f(Xtest). In
our experiments we perform 5-fold cross validation. In every training and para-
meter tuning fold we randomly sample 80% training data and the remainder
as test instances. We use the linear kernel on binary and counting feature vec-
tors kv(G,G′) = 〈Φv(G), Φv(G′)〉. For the reason of calculation stability of the
used software, we normalized every kernel matrix initially with its Frobenius
matrix norm. For the parameters we chose C ∈ [50.0, 100.0] for all algorithms
and Λ = 1.0. The trade-off parameter C was generally chosen quite large during
the parameter tuning phase (which we account for the kernel normalization),
whereas all algorithms seemed to be almost insensible to the choice of Λ. Leaned
on the expert knowledge in chemoinformatics with affinity prediction (e.g., [1])
we used ε = 0.1.

4.2 Results

Preliminary Experiments: Initially, we considered the patterns cycles, trees,
shortest paths, and labels individually applying SVR and RLSR for the prediction
of ligand affinities. Therefore, we used a cumulative and non-cumulative feature
4 Available at http://research.microsoft.com/en-us/um/people/manik/code/smo-

mkl/download.html.
5 https://www.csie.ntu.edu.tw/∼cjlin/libsvm/.

http://research.microsoft.com/en-us/um/people/manik/code/smo-mkl/download.html
http://research.microsoft.com/en-us/um/people/manik/code/smo-mkl/download.html
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

484 K. Ullrich et al.

Table 2. RMSE for standard fingerprints. A: SVR with Maccs, B: SVR with ECFP6,
C: MKL with Maccs and ECFP6, D: RLSR with Maccs, E: RLSR with ECFP6, F:
LKRR with Maccs and ECFP6.

Target A B C D E F

DS 2 1.039 1.004 1.010 1.007 1.000 0.995

DS 4 0.923 0.719 0.737 0.970 0.762 0.746

DS 6 1.052 0.906 0.915 1.063 0.903 0.812

DS 8 0.790 0.655 0.675 0.841 0.618 0.621

DS 10 0.897 0.726 0.755 1.083 0.906 0.914

DS 12 1.289 1.077 1.111 1.265 1.071 1.053

DS 14 1.254 1.048 1.078 1.271 1.073 1.033

DS 16 1.216 0.948 0.996 1.190 0.961 0.925

DS 18 1.068 0.820 0.834 1.073 0.842 0.801

DS 20 1.138 0.869 1.045 1.116 0.855 0.816

Fig. 5. Graphical visualization of main results for the counting kernel. Left: SVR/MKL
results from Table 4, columns A, B, G, H, I. Right: RLSR/LKRR results from Table 6,
columns A, B, F, G, H.

vector variant which we refer to with “cum. pattern” or “pattern”, respectively.
For the first variant, we use all features based on all WL depths up to some
depth h in a concatenated feature vector. For the second, we only use features
of a fixed depth h. The results can be found in Figs. 3 and 4. We report the
mean RMSE with respect to all datasets with odd numbers. We observe that
the qualitative performance trend is very similar for SVR and RLSR. Obviously,
the non-cumulative patterns reach an optimal WL depth and decline for greater
depths. The cumulative ones appear to converge to the optimal performance with
increasing WL depth. Nevertheless, the best RMSE is very similar for cumula-
tive and non-cumulative patterns. In general, for the predictive task at hand
the performance of labels seems to be very high for an appropriate WL depth,
whereas for all WL depths the one for cycles is quite low.

Ligand Affinity Prediction with Multi-pattern Kernels 485

Table 3. RMSE for SVR/MKL experiments with intersection kernel. A: SVR with
Maccs, B: SVR with ECFP6, C: SVR with cum. SPK h = 6, D: SVR with cum. WLK
h = 6, E: SVR with cum. CPK h = 6, F: MKL with best depth of all patterns, G: MKL
with best depth of all cum. patterns, H: MKL with best depths of 3 best patterns, I:
MKL with best depths of 2 best patterns, “-” algorithm did not converge.

Target A B C D E F G H I

DS 2 1.028 1.056 1.100 1.084 1.071 1.095 1.088 1.107 1.101

DS 4 0.932 0.707 0.726 0.752 0.948 0.777 0.769 0.762 0.743

DS 6 .068 0.894 0.842 0.882 1.041 0.891 0.864 0.881 0.860

DS 8 0.849 0.700 0.715 0.694 0.714 0.693 0.697 0.696 0.707

DS 10 0.935 0.744 0.747 0.757 0.819 0.742 0.752 0.740 0.745

DS 12 1.307 1.099 1.104 1.069 1.244 1.036 1.030 1.016 1.038

DS 14 1.261 1.102 0.931 0.956 1.118 0.932 0.899 0.913 0.917

DS 16 1.189 0.946 0.940 0.941 1.070 0.979 0.952 0.952 0.931

DS 18 1.103 0.846 0.869 0.838 0.804 0.784 0.785 0.787 0.832

DS 20 1.110 0.838 - 0.886 - - 0.834 0.751 0.718

Table 4. RMSE for SVR/MKL experiments with counting kernel. A: SVR with Maccs,
B: SVR with ECFP6, C: SVR with cum. SPK h = 5, D: SVR with cum. WLK h = 6,
E: SVR with cum. CPK h = 4, F: MKL with best depth of all patterns, G: MKL with
best depth of all cum. patterns, H: MKL with best depths of 3 best patterns, I: MKL
with best depths of 2 best patterns, “-” algorithm did not converge.

Target A B C D E F G H I

DS 2 0.818 0.776 0.815 0.787 0.805 0.802 0.796 0.794 0.807

DS 4 0.930 0.673 0.675 0.691 0.894 0.728 0.725 0.706 0.718

DS 6 1.037 0.841 0.763 0.820 0.995 0.826 0.808 0.805 0.808

DS 8 0.837 0.751 0.785 0.761 0.781 0.775 0.764 0.788 0.776

DS 10 0.896 0.728 0.698 0.715 0.807 0.698 0.705 0.687 0.710

DS 12 1.231 0.991 0.993 0.973 1.212 1.007 0.981 0.984 0.978

DS 14 1.317 1.130 0.990 0.989 1.205 0.978 0.994 0.959 0.943

DS 16 1.142 0.891 0.860 0.886 1.008 0.912 0.904 0.902 0.917

DS 18 1.106 0.880 0.893 0.877 0.846 0.822 0.834 0.816 0.803

DS 20 1.142 0.868 - - - 0.767 0.833 0.797 0.814

As the information for individual datasets is not apparent in the diagrams of
Figs. 3 and 4 for each cumulative and non-cumulative pattern variant we chose
the best WL depth and extracted the performance for every dataset with odd
number. We omit the results for reasons of space, but in essence they show the
same impact of the different pattern classes for individual datasets as for the
average over the datasets.

486 K. Ullrich et al.

Table 5. RMSE for RLSR/LKRR experiments with intersection kernel. A: RLSR with
Maccs, B: RLSR with ECFP6, C: RLSR with cum. SPK h = 4, D: RLSR with cum.
WLK h = 6, E: RLSR with cum. CPK h = 2, F: LKRR with best depth of all patterns,
G: LKRR with best depth of all cum. patterns, H: LKRR with best depths of 3 best
patterns, I: LKRR with best depths of 2 best patterns.

Target A B C D E F G H I

DS 2 0.991 0.990 1.011 1.016 1.082 0.998 1.011 1.018 0.995

DS 4 0.966 0.839 0.827 0.879 1.039 0.807 0.815 0.797 0.774

DS 6 1.097 0.974 0.902 0.948 1.055 0.878 0.870 0.829 0.784

DS 8 0.820 0.678 0.715 0.684 0.741 0.669 0.688 0.667 0.689

DS 10 0.872 0.697 0.729 0.725 0.770 0.710 0.715 0.716 0.711

DS 12 1.175 1.028 1.000 0.985 1.210 0.976 0.973 0.954 0.931

DS 14 1.251 1.084 0.948 0.980 1.169 0.928 0.940 0.906 0.887

DS 16 1.186 0.958 0.933 0.952 1.088 0.918 0.910 0.901 0.881

DS 18 1.046 0.828 0.856 0.807 0.770 0.729 0.733 0.723 0.738

DS 20 1.160 0.888 0.810 0.890 0.961 0.764 0.767 0.753 0.742

Table 6. RMSE for RLSR/LKRR experiments with counting kernel. A: RLSR with
Maccs, B: RLSR with ECFP6, C: RLSR with cum. SPK h = 4, D: RLSR with cum.
WLK h = 6, E: RLSR with cum. CPK h = 3, F: LKRR with best depth of all patterns,
G: LKRR with best depth of all cum. patterns, H: LKRR with best depths of 3 best
patterns, I: LKRR with best depths of 2 best patterns.

Target A B C D E F G H I

DS 2 0.985 0.962 1.040 1.021 1.034 1.005 0.997 1.024 0.997

DS 4 0.949 0.766 0.782 0.826 1.049 0.808 0.801 0.798 0.828

DS 6 1.078 0.918 0.844 0.886 1.034 0.847 0.857 0.834 0.860

DS 8 0.787 0.610 0.599 0.621 0.676 0.630 0.604 0.620 0.620

DS 10 1.013 0.876 0.838 0.870 0.971 0.826 0.832 0.816 0.851

DS 12 1.244 1.013 1.007 1.006 1.254 1.014 0.993 0.986 0.986

DS 14 1.300 1.096 0.961 0.994 1.130 0.940 0.943 0.926 0.924

DS 16 1.238 0.998 0.968 0.988 1.093 0.946 0.951 0.933 0.961

DS 18 1.090 0.872 0.899 0.841 0.805 0.751 0.763 0.754 0.734

DS 20 1.140 0.869 0.764 0.851 0.912 0.741 0.719 0.736 0.785

Main Experiments: At first, we tested whether we can already take profit from
multi-view approaches using standard molecular fingerprints only. The results
are presented in Table 2. We find that in the case of RLSR/LKRR there is a
performance improvement in favor of the multi-view algorithm. This cannot be
verified in the case of SVR/MKL as single-view SVR with fingerprint ECFP6
turns out to be the best method for all datasets. Subsequently, we investigated

Ligand Affinity Prediction with Multi-pattern Kernels 487

whether we can take advantage of different graph pattern features in the multi-
view setting. Actually, there are too many pattern combinations to test all of
them in the scope of multi-view algorithms. Therefore, we chose the most promis-
ing combinations and depths from the preliminary experiments (with respect to
the RMSE) to compare them with baseline kernels and standard fingerprints.
The results are shown in Tables 3, 4, 5 and 6, as well as Fig. 5. In columns A and
B the single-view results with standard fingerprints are shown. The columns C to
E present the performance of the popular graph kernels SPK, WLK, and CPK,
each with its optimal depth taken from the preliminary experiments. Finally,
the columns F - I obtain the results for optimal multi-view combinations from
the preliminary experiments (see the respective table caption). In the case of
SVR/MKL experiments we observe that MKL approaches show the best perfor-
mances in 7 out of 10 cases (Table 3). If we utilize the counting kernel the MKL
approaches outperform the single-view SVR variants with standard molecular
fingerprints or standard graph kernels in the majority of cases (Table 4). In the
RLSR/LKRR scenario the multi-view approaches exhibit the lowest RMSE for
8 out of 10 or 7 out of 10 datasets when we apply the intersection or counting
kernel, respectively (Tables 5 and 6). We observe that the single-view approaches
SVR and RLSR applying the standard graph kernel features of SPK, WLK, and
CPK outperform the other algorithms in very few cases. Most interestingly, the
more simple non-cumulative pattern combinations perform very well in compar-
ison to cumulative combinations, even if we do not lift all pattern types cycles,
trees, shortest paths, or labels, but rather only 2 or 3 of them. Apparently, it is
sufficient to use non-cumulative pattern combinations of few pattern types.

5 Conclusion

We considered the problem of ligand affinity prediction with a variety of dif-
ferent feature vectors representing small molecular compounds and compared
single- and multi-view regression approaches for this learning task. We showed
that one can profit from the application of linear combinations of multiple views
on molecular data in this practical scenario. It turned out that the multi-view
approaches based on structural features and neighborhood information outper-
form the SVR and RLSR algorithm using standard molecular fingerprints or
popular graph kernels. This effect was the more visible the greater the dataset
sizes were (see Fig. 5). During our experiments we observed that the application
of WL labels L and shortest path patterns P improved the prediction results
particularly. In general, the squared loss-approaches RLSR and LKRR achieved
better results than the analogue ε-insensitive loss algorithms SVR and MKL.
Hence, using combinations of graph patterns based on WL labels of appropriate
depths together with multi-view methods represents a noteworthy alternative to
the application of SVR and standard molecular fingerprints which is the state-
of-the-art approach for affinity prediction in the field of QSAR modeling.

Acknowledgements. We want to thank Dr. Martin Vogt from the Department of
Life Science Informatics, B-IT, of the university of Bonn for preparing the protein

488 K. Ullrich et al.

dataset and making it available for us. Furthermore, we thank Dr. Martin Vogt and
his colleagues for many valuable discussions on this topic. We would also like to thank
Prof. Thomas Gärtner for guidance and advice.

References

1. Balfer, J., Bajorath, J.: Artifacts in support vector regression-based compound
potency prediction revealed by statistical and activity landscape analysis. PLoS
ONE 10 (2015)

2. Bender, A., Jenkins, J.L., Scheiber, J., Sukuru, S.C.K., Glick, M., Davies, J.W.:
How similar are similarity searching methods? A principal component analysis of
molecular descriptor space. J. Chem. Inf. Model. 49, 108–119 (2009)

3. Borgwardt, K.M., Kriegel, H.-P.: Shortest-path kernels on graphs. In: Proceedings
of ICDM, pp. 74–81 (2005)

4. Cherkasov, A., Muratov, E.N., Fourches, D., Varnek, A., Baskin, I., Cronin, M.,
et al.: QSAR modeling: where have you been? Where are you going to? J. Med.
Chem. 57, 4977–5010 (2014)

5. Christianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge University Press, New
York (2000)

6. Cortes, C., Mohri, M., Rostaminzadeh, A.: L2 regularization for learning kernels.
In: Proceedings of UAI, pp. 109–116 (2009)

7. Gaüzère, B., Brun, L., Villemin, D.: Treelet kernel incorporating cyclic, stereo
and inter pattern information in Chemoinformatics. Pattern Recogn. 48, 356–367
(2014)

8. Horváth, T., Gärtner, T., Wrobel, S.: Cyclic pattern kernels for predictive graph
mining. In: Proceedings of KDD, pp. 158–167 (2004)

9. Liu, W., Meng, X., Xu, Q., Flower, D.R., Li, T.: Quantitative prediction of mouse
class I MHC peptide binding affinity using support vector machine regression
(SVR) models. BMC Bioinform. 7 (2006)

10. Myint, K.-Z., Wang, L., Tong, Q., Xie, X.-Q.: Molecular fingerprint-based artificial
neural networks QSAR for ligand biological activity predictions. Mol. Pharm. 9,
2912–2923 (2012)

11. Ning, X., Rangwala, H., Karypis, E.: Multi-assay-based structure-activity-
relationship models: improving structure-activity-relationship models by incorpo-
rating activity information from related targets. J. Chem. Inf. Model. 49, 2444–
2456 (2009)

12. Ralaivola, L., Swamidass, S.J., Saigo, H., Baldi, P.: Graph kernels for chemical
informatics. Neural Netw. 18, 1093–1110 (2005)

13. Rogers, D., Hahn, M.: Extended connectivity fingerprints. J. Chem. Inf. Model.
50, 742–754 (2010)

14. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)

15. Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In:
Helmbold, D., Williamson, B. (eds.) COLT 2001. LNCS (LNAI), vol. 2111, pp.
416–426. Springer, Heidelberg (2001). doi:10.1007/3-540-44581-1 27

16. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput.
14, 199–222 (2004)

http://dx.doi.org/10.1007/3-540-44581-1_27

Ligand Affinity Prediction with Multi-pattern Kernels 489

17. Sugaya, N.: Ligand efficiency-based support vector regression models for predicting
bioactivities of ligands to drug target proteins. J. Chem. Inf. Model. 54, 2751–2763
(2014)

18. Qiu, S., Lane, T.: Multiple kernel support vector regression for siRNA efficacy
prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 4983, 367–378 (2008)

19. Vishwanathan, S.V.N., Sun, Z., Theera-Ampornpunt, N., Varma, M.: Multiple
kernel learning and the SMO algorithm. In: Proceedings of NIPS, pp. 2361–2369
(2010)

Author Index

Angiulli, Fabrizio 359
Appice, Annalisa 295
Ardimento, Pasquale 167

Bensafi, Moustafa 19
Bilancia, Massimo 167
Bornemann, Leon 85
Bosc, Guillaume 19
Boström, Henrik 261
Boulicaut, Jean-François 19
Brouard, Céline 427
Brzezinski, Dariusz 229

Colonna, Juan G. 198

d’Amato, Claudia 101
de Amo, Sandra 408
Di Blasi, Gianpiero 392
Duivesteijn, Wouter 3
Džeroski, Sašo 118, 245, 310

Esposito, Floriana 101

Fanizzi, Nicola 101
Fassetti, Fabio 359
Fürnkranz, Johannes 151, 279

Galvão, Leandro R. 134
Gama, João 198, 213, 408
Golebiowski, Jérôme 19
Guccione, Pietro 295

Horváth, Tamás 67

Jacobusse, Gert 325
Janssen, Frederik 151, 279, 457

Karlsson, Isak 261
Kauschke, Sebastian 151
Kaytoue, Mehdi 19
Kimura, Masahiro 376
Knobbe, Arno 3
Kocev, Dragi 118

Lecerf, Jason 85
Loza Mencía, Eneldo 457

Mack, Jennifer 474
Merschmann, Luiz H.C. 134
Mihelčić, Matej 35
Monopoli, Stefano 167
Motoda, Hiroshi 376
Mühlhäuser, Max 442

Nakamura, Eduardo F. 198
Narvaez, Estela 359
Nolle, Timo 442

Ohara, Kouzou 376
Oliveira, Mariana 183
Osojnik, Aljaž 118

Panov, Panče 310
Papapetrou, Panagiotis 85, 261
Paquet, Eric 341
Pensa, Ruggero G. 392
Pereira, Fabíola S.F. 408
Pesaranghader, Ali 341
Petković, Matej 310
Plantevit, Marc 19

Rebelo de Sá, Cláudio 3
Rizzo, Giuseppe 101
Robardet, Céline 19
Rousu, Juho 427

Saito, Kazumi 376
Santos Costa, Vítor 183
Seeliger, Alexander 442
Shen, Huibin 427
Simidjievski, Nikola 245
Šmuc, Tomislav 35
Soares, Carlos 3
Stecher, Julius 279
Stefanowski, Jerzy 229
Szedmak, Sandor 427

Tabassum, Shazia 213
Todorovski, Ljupčo 245
Torgo, Luís 183

Ukkonen, Antti 51
Ullrich, Katrin 474

van Leeuwen, Matthijs 51

Veenman, Cor 325

Viktor, Herna L. 341

Welke, Pascal 67, 474
Wrobel, Stefan 67

Zilke, Jan Ruben 457

492 Author Index

	Preface
	Organization
	Invited Talks
	Margin Based Structured Output Learning
	Collective Attention on the Web
	Perspectives of Feature Selection in Bioinformatics: From Relevance to Causal Inference
	Learning About Agents and Mechanisms from Opaque Transactions
	How to Estimate the Meanof a Random Variable?
	Contents
	Pattern Mining and Rules
	Exceptional Preferences Mining
	1 Introduction
	1.1 Main Contributions

	2 Label Ranking
	3 Subgroup Discovery and Exceptional Model Mining
	3.1 Traversing the Search Space

	4 Exceptional Preferences Mining
	4.1 Preference Matrix
	4.2 Characterizing Exceptional Subgroups

	5 Experiments
	5.1 Datasets
	5.2 Results

	6 Conclusions
	References

	Local Subgroup Discovery for Eliciting and Understanding New Structure-Odor Relationships
	1 Introduction
	2 Problem Formulation
	2.1 Subgroup Discovery
	2.2 Redescription Mining

	3 An Adaptive Quality Measure
	4 Mining Local Subgroups
	5 Experiments
	6 Conclusion
	References

	InterSet: Interactive Redescription Set Exploration
	1 Introduction
	1.1 Notation and Definition
	1.2 Related Work
	1.3 Contributions

	2 Redescription Set Exploration with the Tool InterSet
	2.1 Entity Based Redescription Set Exploration
	2.2 Attribute Based Redescription Set Exploration
	2.3 Property Based Redescription Set Exploration
	2.4 Analysing Individual Redescriptions

	3 Exploring Redescriptions Obtained on the Country Data
	3.1 Redescription Set Analysis

	4 Conclusions and Future Work
	References

	Expect the Unexpected -- On the Significance of Subgroups
	1 Introduction
	2 Subgroup Discovery
	3 Estimating the Significance of a Description Language
	3.1 Description Languages and Accessible Subsets
	3.2 On the Significance of Description Languages

	4 Estimating Pr(q(S)) for Accessible Subsets
	5 Estimating Pr(q(S)) for All Subsets
	6 Experiments
	6.1 Experiment1: Estimating Pr(q(S)) in All Subsets
	6.2 Experiment2: Estimating Pr(q(S)) in Accessible Subsets
	6.3 Experiment3: The Odds of Finding Patterns Having Large Effect Sizes

	7 Conclusions
	References

	Min-Hashing for Probabilistic Frequent Subtree Feature Spaces
	1 Introduction
	2 Notions
	3 Efficient Min-Hash Sketch Computation
	3.1 Probabilistic Tree Patterns
	3.2 Fast Min-Hashing for Tree Patterns

	4 Experimental Evaluation
	4.1 Speed-Up
	4.2 Positive Instance Retrieval
	4.3 Predictive Performance

	5 Concluding Remarks
	References

	Structured Output Prediction
	STIFE: A Framework for Feature-Based Classification of Sequences of Temporal Intervals
	1 Introduction
	2 Related Work
	3 Background
	4 Compressed IBSM
	5 Feature-Based Classification Through STIFE
	5.1 STIFE Framework Components
	5.2 I - Static Metrics
	5.3 II - Shapelet Extraction and Selection
	5.4 III - Distance to Class-Cluster Center
	5.5 Runtime and Memory Complexity Overview

	6 Empirical Evaluation
	6.1 Real Data-Sets
	6.2 Synthetic Data

	7 Conclusions
	References

	Approximating Numeric Role Fillers via Predictive Clustering Trees for Knowledge Base Enrichment in the Web of Data
	1 Introduction
	2 Related Works
	3 Basics
	4 Predictive Clustering Trees for Multi-target Regression in DL Knowledge Bases
	4.1 The Problem
	4.2 The PCT Model
	4.3 The Methods

	5 Experiments
	5.1 Experimental Settings
	5.2 Outcomes and Discussion

	6 Conclusion and Further Extensions
	References

	Option Predictive Clustering Trees for Multi-target Regression
	1 Introduction
	2 Option Predictive Clustering Trees
	3 Experimental Design
	3.1 Data Description
	3.2 Experimental Setup

	4 Results and Discussion
	4.1 Parametrization of OPCTs
	4.2 Predictive Performance and Efficiency
	4.3 Interpretability of OPCTs

	5 Conclusions
	References

	HSIM: A Supervised Imputation Method for Hierarchical Classification Scenario
	1 Introduction
	2 Background
	2.1 Hierarchical Classification
	2.2 Missing Value Imputation

	3 Proposed Method
	4 Computational Experiments
	4.1 Datasets and Experimental Setup
	4.2 Computational Results

	5 Conclusion
	References

	Applications
	Predicting Cargo Train Failures: A Machine Learning Approach for a Lightweight Prototype
	1 Introduction
	2 Data Retrieval and Preparation
	2.1 Diagnostic Data
	2.2 Converting Diagnostic Data to Instances
	2.3 The Learning Problem

	3 Tour Analysis
	3.1 Temporal Behaviour of Events in Tours

	4 Building a Classification Model
	4.1 Labelling with Variable Window Size
	4.2 Instance Level Classification
	4.3 Tour-Level Meta Classification

	5 Experimental Setup
	5.1 Parametrisation of the Classifiers
	5.2 Sampling and Balancing
	5.3 Leave One Tour Out Evaluation
	5.4 Variants

	6 Experiment Results
	6.1 The Accuracy Baseline
	6.2 Relevant Results
	6.3 Improvement by Percentage Threshold Meta Classifier

	7 Conclusions and Outlook
	References

	Predicting Bug-Fix Time: Using Standard Versus Topic-Based Text Categorization Techniques
	1 Introduction
	2 Data Collection
	3 Methods
	3.1 Pre-processing Textual Description of Bug Reports
	3.2 Prediction of Bug-Fix Times Based on Standard Text Categorization Models
	3.3 Prediction Based on Supervised Latent Dirichlet Allocation

	4 Results
	5 Discussion and Conclusion
	References

	Predicting Wildfires
	1 Introduction
	2 Wildfires in Portugal
	2.1 Data Set
	2.2 Computing Spatial Relationships

	3 Predicting Wildfires
	3.1 Problem Definition
	3.2 Propositional Pre-processing Approach
	3.3 Relational Pre-processing Approach
	3.4 Common Steps
	3.5 Experimental Analysis

	4 Conclusion
	References

	Recognizing Family, Genus, and Species of Anuran Using a Hierarchical Classification Approach
	1 Introduction
	2 Motivation for Using a Hierarchical Approach
	3 Fundamentals
	3.1 Bioacoustics Systems
	3.2 Review of Hierarchical Classification Approaches

	4 Related Works
	5 Proposed Approach
	6 Methodology Description
	6.1 Dataset Description
	6.2 Node Classifier Description
	6.3 Special Type of Cross-Validation
	6.4 Performance Measure (Average-Accuracy)

	7 Experiments and Results
	8 Conclusion
	References

	Evolution Analysis of Call Ego-Networks
	1 Introduction
	2 Related Work
	3 Description of Call Network Data
	4 Metrics for Evaluating Ego Networks
	4.1 Graph Level Metrics
	4.2 Node Level Metrics

	5 Densification Law for Evolving Call Ego-Network
	6 Evolution Analysis of a Temporal Ego-Network
	7 Sampling Ego Network with Forgetting Factor (SEFF)
	8 Evaluation Methodology
	9 Experimental Evaluation
	10 Conclusions
	References

	Ensemble Learning
	Ensemble Diversity in Evolving Data Streams
	1 Introduction
	2 Related Work
	2.1 Ensemble Diversity Measures
	2.2 Stream Classifiers and Drift Detectors

	3 Calculating Diversity Measures for Streaming Data
	4 Experimental Study
	4.1 Datasets
	4.2 Diversity Analysis over Time
	4.3 Drift Detection Using Diversity Measures

	5 Conclusions and Outlook
	References

	Learning Ensembles of Process-Based Models by Bagging of Random Library Samples
	1 Introduction
	2 Process-Based Modeling
	3 Bagging of Random Library Samples
	4 Experimental Design
	4.1 Data
	4.2 Modeling Knowledge
	4.3 Experimental Setup

	5 Results
	6 Conclusion
	References

	Early Random Shapelet Forest
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Random Shapelet Forests

	3 Early Random Shapelet Forests
	4 Experiments
	4.1 Experimental Setup
	4.2 Empirical Evaluation

	5 Concluding Remarks
	References

	Classification
	Shorter Rules Are Better, Aren't They?
	1 Introduction
	2 Understandability and Rule Length
	3 Inverted Heuristics for Supervised Descriptive Rule Induction
	3.1 Inverted Heuristics
	3.2 Algorithm

	4 Experiments
	4.1 Data
	4.2 Rule Complexities
	4.3 Rule Coverage
	4.4 Rule Overlap
	4.5 Example Rules
	4.6 Inverted Heuristics and Sparse Data

	5 Conclusions
	References

	Exploiting Spatial Correlation of Spectral Signature for Training Data Selection in Hyperspectral Image Classification
	1 Introduction
	2 Motivations and Contributions
	3 Basic Concepts
	3.1 Hyperspectral Data
	3.2 Local Indicators of Spatial Autocorrelation
	3.3 Partition-Based Clustering

	4 Learning Process
	5 Empirical Study
	5.1 Hyperspectral Data
	5.2 Clustering Performance Analysis
	5.3 Classification Performance Analysis

	6 Conclusion
	References

	A Comparison of Different Data Transformation Approaches in the Feature Ranking Context
	1 Introduction
	2 Background and Related Work
	2.1 Preliminaries
	2.2 Feature Ranking with ReliefF
	2.3 Transformations of the Feature Space

	3 Using Different Data Transformation Approaches with the ReliefF Algorithm
	3.1 Proposed ReliefF Modifications
	3.2 Equivalent Data Transformations
	3.3 Implementation

	4 Experimental Design
	5 Results and Discussion
	6 Conclusions and Future Work
	References

	On Selection Bias with Imbalanced Classes
	1 Introduction
	2 Problem Statement
	3 Related Work
	3.1 Representative Sample
	3.2 Small Sample
	3.3 Biased Sample

	4 Method
	4.1 Selection Bias
	4.2 Training Set Construction

	5 Experiments
	5.1 Synthetic Data
	5.2 Law Enforcement Data

	6 Conclusions
	References

	A Framework for Classification in Data Streams Using Multi-strategy Learning
	1 Introduction
	2 Balancing Performance Measures
	3 The Tornado Framework
	4 Experimental Evaluation
	4.1 Experiments on Synthetic Datasets
	4.2 Experiments on Real-World Datasets

	5 Conclusion and Future Work
	References

	Networks
	Anomaly Detection in Networks with Temporal Information
	1 Introduction
	2 Behaviors on Timed Networks
	3 Modeled Behaviors
	4 Anomaly Score
	5 Algorithm
	6 Experimental Results
	7 Conclusions
	References

	Accelerating Computation of Distance Based Centrality Measures for Spatial Networks
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Pruning Techniques for Closeness Centrality
	3.2 Pruning Techniques for Betweenness Centrality
	3.3 Summary of Proposed Method

	4 Experiments
	4.1 Dataset
	4.2 Computational Efficiency
	4.3 Comparison with Conventional Centralities

	5 Conclusion
	References

	A Semi-supervised Approach to Measuring User Privacy in Online Social Networks
	1 Introduction
	2 Related Work
	3 A Circle-Based Definition of Privacy Score
	3.1 Preliminaries and Notation
	3.2 Privacy Score

	4 Semi-supervised Privacy Policy Definition
	5 Experimental Results
	5.1 Dataset
	5.2 Separation-Based vs. Circle-Based Policies
	5.3 Assessment of the Active Learning Approach
	5.4 Reliability of the Predictions

	6 Conclusions
	References

	On Using Temporal Networks to Analyze User Preferences Dynamics
	1 Introduction
	2 Related Work
	2.1 User Preferences on Social Networks and Dynamics
	2.2 Temporal Networks

	3 User Preferences Dynamics
	3.1 Temporal Preference Model
	3.2 Detecting Changes on Temporal Preferences

	4 Social Networks Evolution
	4.1 Temporal Networks vs. Static Networks
	4.2 Detecting Changes on Centrality Metrics

	5 Methodology
	5.1 Dataset
	5.2 Preference Mining
	5.3 Discussion

	6 Experimental Results
	6.1 Experimental Environment
	6.2 Analyzing Change Events and Correlations

	7 Conclusion
	References

	Kernels and Deep Learning
	Soft Kernel Target Alignment for Two-Stage Multiple Kernel Learning
	1 Introduction
	2 Unified Setting for Two-Stage MKL Methods
	2.1 Centered Kernel Target Alignment
	2.2 Reformulation Through Vectorized Kernel Matrices

	3 ALIGNF+
	3.1 Coupling ALIGNF+ with a Multilabel Method

	4 Experiments
	4.1 Datasets
	4.2 Comparison to ALIGNF
	4.3 Comparison to Other Two-Stage MKL Methods
	4.4 Multilabel Classification Experiments

	5 Conclusions
	References

	Unsupervised Anomaly Detection in Noisy Business Process Event Logs Using Denoising Autoencoders
	1 Introduction
	2 Related Work
	3 Dataset
	4 Method
	4.1 Setup
	4.2 Anomalous Trace Classifier
	4.3 Anomalous Activity Classifier

	5 Evaluation
	6 Conclusion and Future Work
	References

	DeepRED -- Rule Extraction from Deep Neural Networks
	1 Introduction
	2 Related Work
	3 The DeepRED Algorithm
	3.1 Preliminaries
	3.2 CRED as Basis
	3.3 Extending CRED to DeepRED
	3.4 Pruning

	4 Experiments
	4.1 Rule Extraction Algorithms
	4.2 Evaluation Measures
	4.3 Evaluation Setup

	5 Evaluation
	6 Conclusion
	References

	Ligand Affinity Prediction with Multi-pattern Kernels
	1 Introduction
	2 Regression with Multiple Views
	3 Patterns for Molecular Graphs
	4 Experiments
	4.1 Setup and Datasets
	4.2 Results

	5 Conclusion
	References

	Author Index

