
An Attribute-Based Protection
Model for JSON Documents

Prosunjit Biswas(B), Ravi Sandhu, and Ram Krishnan

Institute for Cyber Security, University of Texas at San Antonio,
San Antonio, USA

prosun.csedu@gmail.com, {ravi.sandhu,ram.krishnan}@utsa.edu

Abstract. There has been considerable research in specifying autho-
rization policies for XML documents. Most of these approaches consider
only hierarchical structure of underlying data. They define authoriza-
tion policies by directly identifying XML nodes in the policies. These
approaches work well for hierarchical structure but are not suitable for
other required characteristics we identify in this paper as semantical
association and scatteredness.

This paper presents an attribute based protection model for JSON
documents. We assign security-label attribute values to JSON elements
and specify authorization policies using these values. By using security-
label attribute, we leverage semantical association and scatteredness
properties. Our protection mechanism defines two types of policies called
authorization and labeling policies. We present an operational model to
specify authorization policies and different models for defining labeling
policies. Finally, we demonstrate a proof-of-concept for the proposed
models in the Swift service of OpenStack IaaS cloud.

1 Introduction

JavaScript Object Notation (JSON) is a human and machine readable represen-
tation for text data. It is widely used because of its simple and concise structure.
For example, Twitter uses JSON as the only supported format for exchange
of data starting from API v1.1 [5] and YouTube recommends uses of JSON
for speed from its latest API [6]. JSON is being adapted increasingly in large
and scalable document databases such as MongoDB [4], Apache Casandra [2]
and CouchDB [3]. Besides these, JSON is also widely used in lightweight data
storages for example in configuration files, online catalogs or applications with
embedded-storage.

In spite of high adoption from industries, JSON has received little attention
from academic researchers. To the best of our knowledge, there is no formal work
published on the protection of JSON documents.

On the other hand, considerable work has been done for protection of XML
documents. Although syntactically JSON and XML formats are different, seman-
tically both of them form a rooted tree hierarchical structure. In fact, JSON
data can equivalently be represented in XML form and vice versa. This brings
c© Springer International Publishing AG 2016
J. Chen et al. (Eds.): NSS 2016, LNCS 9955, pp. 303–317, 2016.
DOI: 10.1007/978-3-319-46298-1 20

304 P. Biswas et al.

an obvious question - whether we can utilize authorization models used for XML
documents for protection of JSON data.

Before we answer the preceding question, we look into some of the salient
characteristics of data represented in JSON (or XML) format, given below.

– Hierarchical relationship. Data often exhibits hierarchical relationship. For
example, a residential address consists of pieces like house number, street
name, district/town and state name organized into an strictly hierarchical
structure.

– Semantical association. Different pieces of data are often related seman-
tically and may need same level of protection. For example, phone number,
email address, Skype name may all represent contact information and require
same level of protection.

– Scatteredness. Related information can be scattered around a document. For
example, different pieces of contact information might be located in different
places in a document. Some pieces of data can even be repeated in more than
one place in the same document or across documents.

Interestingly, most of XML authorization models [8–10,17] consider structural
hierarchy only. These models have an implicit assumption that information has
been organized in the intended hierarchical form. These models attach autho-
rization policies directly on nodes in the XML tree and propagate them using
the hierarchical structure. For example, Damiani et al. [15] specify authorization
policy as a tuple 〈subject, object, action, sign, type〉 where subject is specified as
user, user group, IP address or semantic name; object is specified with XPath
expression; example of actions are read or write; signs are positive and negative;
and example of types are local, global and DTD which determines the level of
propagation. In this model, if similar data items requiring same level of pro-
tection are placed in structurally unrelated nodes, it is required to attach same
authorization policy to all these nodes. This results in duplication of authoriza-
tion policies which is caused by lack of recognition of semantical association and
scatteredness properties.

Duplication incurs significant overhead in maintenance of authorization poli-
cies. For instance, if requirements for storing or publishing contact information
(e.g. email, phone, fax) change, it is required to update policies for all different
pieces of data that represent contact information. Organizations often collect
different types of data including personal identifiable information of employees
and customers. So, they are compliant to different internal and external parties
including government and standard bodies. This increases the likelihood that
authorization requirements change frequently over time.

While most XML authorization models directly identify nodes in their autho-
rization policies, our proposed model adds a level of abstraction by using security-
label attribute values. The proposed model specifies two types of policies called
authorization policies and labeling policies. Authorization policies are specified
using security-label attribute values. These values are assigned to JSON data
using labeling policies. A conceptual overview of existing XML authorization

An Attribute-Based Protection Model for JSON Documents 305

models and our proposed model is shown schematically in Fig. 1(a) and (b)
respectively. By using security-label attribute values to connect nodes and poli-
cies, we can assign semantically related or scattered data same attribute values.
This eliminates the need to specify duplicated policies.

Fig. 1. (a) Existing XML models (b) the proposed model

The proposed model additionally offers flexibility in specification and main-
tenance of authorization and labeling policies. These two types of policies can
now be managed separately and independently. For instance, given security-label
attribute values, higher level, organization-wide policy makers can specify autho-
rization policies using these values without knowing details of JSON structure.
On the other hand, local administrators knowledgeable about details of specific
JSON documents can specify labeling policies.

We believe, the presented model can easily be generalized for data represented
in trees and be instantiated for other representations, for example, YAML [1].
For simplicity, we only focus on JSON here.

The contributions of this paper are as follows. We have identified underlying
characteristics of data represented in XML/JSON form. While, existing XML
authorization models address only structural hierarchy, we additionally focus
on semantical association and scatterredness properties. We have designed an
attribute-based protection mechanism for JSON documents including an oper-
ational and two different labeling models. We have demonstrated a proof-of-
concept for the proposed models in the Swift service of OpenStack IaaS cloud
platform.

The rest of the paper is organized as follows. In Sect. 2, we discuss underlying
concepts of JSON documents and existing works relating to the protection of
these documents. Section 3 presents the operational model. The labeling models
are described in Sect. 4. Section 5 discusses the proof-of-concept implementation
of our proposed models. Finally, we conclude the paper in Sect. 6.

2 Background and Related Work

In this section, we briefly review JSON and discuss related work.

2.1 JSON (JavaScript Object Notation)

JSON or JavaScript Object Notation is a format for representing textual data
in a structured way. In JSON, data is represented in one of two forms—as an

306 P. Biswas et al.

Fig. 2. Example of (a) JSON data (b) corresponding JSON tree

object or an array of values. A JSON object is defined as a collection of key,value
pairs where a key is simply a string representing a name and a value is one of
the following primitive types—string, number, boolean, null or another object
or an array. The definition of a JSON object is recursive in that an object may
contain other objects. An array is defined as a set of an ordered collection of
values. JSON data manifests following characteristics.

– JSON data forms a rooted tree hierarchical structure.
– In the tree, leaf nodes represent values and a non-leaf nodes represent keys.
– A node in the tree, can be uniquely identified by a unique path.

Figure 2(a) shows the content of a JSON document where strings representing
values have been replaced by “...” for ease of presentation. Figure 2(b) shows
the corresponding tree representation. Any node in the tree can be uniquely
represented by JSONPath [18] which is a standard representation of paths for
JSON documents.

2.2 Related Work

There is limited academic research published on security of JSON data. To the
best of our knowledge, we are the first to propose a protection model for it.

On the other hand, XML security has long been investigated by many
researchers. A fundamental line of work in this area is about specifying authoriza-
tion policies for the protection of XML documents [8–10,17]. All of these models
attach authorization policies directly on nodes in the XML tree. Most of these
models use XPath [14] to specify a node in the tree. For example, Damiani et al.
[15] specify authorization policies as a tuple of 〈subject, object, action, sign, type〉

An Attribute-Based Protection Model for JSON Documents 307

where an object is identified by an URI (Uniform Resource Identifier) along with
a XPath expression.

Another direction of work is about effective enforcement of authorization
mechanisms for secure and efficient query evaluation. For example, in [16] the
authors derive security views comprising exactly the set of accessible nodes
for different user groups. Based on the security view, they provide a unique
DTD view for each user group. Similar works in this direction include [19,20]
which use query preprocessing approaches. These models uses preprocessed finite
automatas for authorization policies, document and Schema/DTD, and deter-
mine if a query is safe before running it. Unsafe queries can be rewritten.

The idea of associating labels with protected objects has been proposed
before. For example, in purpose based access control (PBAC) [13], the authors
associate intended purposes with data items and access purpose with users. If
access purpose of a user is included in the intended purposes of the requested
objects, the request is granted. Our approach is similar. While PBAC man-
ages intended purposes using RBAC [22], we use attributes with attribute-based
access control (ABAC). Most significantly, PBAC does not specify how to anno-
tate objects with access purposes, which we emphasize in this paper via labeling
policies. Adam et al. [7], have applied concepts and slots on digital objects which
work at a finer grained content level. They have also specified an access control
model based on expressions using concepts and slots. This model also does not
specify how to assign concepts and slots to objects.

The concept of attaching organized labels to users and objects and controlling
access based on these labels is the underlying idea of Lattice Based Access Con-
trol (LBAC [21]), sometime also referred as Mandatory Access Control (MAC).
The operational model, AtOM , presented in Sect. 3 resembles LBAC but it is
fundamentally different from LBAC. AtOM is based on enumerated authoriza-
tion policy ABAC model named EAP-ABAC [11,12]. EAP-ABAC is a general
purpose ABAC model which supports larger set of attributes contrary to sin-
gle label in LBAC and based on enumerated authorization policies. Correlation
between EAP-ABAC and LBAC is presented in [12].

3 The Operational Model

This section presents the Attribute-based Operational Model (AtOM) for pro-
tection of JSON documents. AtOM adapts enumerated authorization policies
from [11,12].

Figure 3 presents components of AtOM . In the figure, the set of users is
represented by U . Each user is assigned to one or more values of an attribute
named user-label or uLabel in short. These values are selected from the set of
all possible user-label values UL which are partially ordered. The partial order
is represented by ULH. An example showing user-label values and hierarchy is
presented in Fig. 4(a). On the other hand, the set of JSON elements are spec-
ified as JE. JSON elements may subsume other JSON elements, and form a
tree structured hierarchy. The hierarchy is represented by JEH. Each JSON ele-
ment is assigned values of an attribute named security-label or sLabel in short.

308 P. Biswas et al.

Fig. 3. The Attribute-based Operational Model (AtOM)

Table 1. Definition of AtOM

I. Sets and relations
- U, JE and A (set of users, JSON elements and actions resp.)
- JEH (hierarchy of JSON elements, represented by �j)
- UL and ULH (finite set of uLabel values and their partial order denoted as �ul resp)
- SL and SLH (finite set of security-label values and their partial denoted as �sl resp)
- uLabel and sLabel (attribute functions on users and JSON objects resp.) Formally,

uLabel : U → 2UL; sLabel : JO → 2SL

II. Policy components

- Policy-tuples = UL × SL
- Policya ⊆ Policy-tuples for a ∈ A
- Policy = {Policya|a ∈ A}

III. Authorization function

- can access(u : U, a : A, o : JE) = (∃(ul, sl) ∈ Policya)[ul ∈ uLabel(u) ∧ sl ∈ sLabel(o)]
- is authorized(u : U, a : A, jei : JE) = (can access(u, a, jej))[jei �sl jej]

These values are selected from the set of security-label values SL which are also
partially ordered. The partial order is represented by SLH. An example show-
ing security-label values and hierarchy is presented in Fig. 4(b). A JSON tree
annotated with security-label values is given in Fig. 4(c). These components and
relationship among them are formally specified in Segment I of Table 1.

In Fig. 3, the set of authorization policies is represented by Policy. There
exists one authorization policy per action which is shown by the one-to-one rela-
tion between Policy and A. In Table 1, Policyread presents the authorization
policy for action read. An authorization policy may contain one or more micro-
policies and one micro-policy can be associated with more than one authoriza-
tion policies. This is represented by the many-to-many relation between Policy
and Policy-tuples. Policyread, as mentioned above, contains four policy-tuples
including (manager, sensitive). The tuple (manager, sensitive) while contained
in policy Policyread specifies that users who are manager can read objects that
have been assigned values sensitive. Formally, we represent a policy-tuple a pair
of atomic values (ul, sl) where ul ∈ UL and sl ∈ SL. The formal definition of
policies and policy-tuples is given in Segment II of Table 1. We use the terms
policy-tuples and micro-policies equivalently to represent sub-policies.

An Attribute-Based Protection Model for JSON Documents 309

Fig. 4. (a) User-label values, (b) security-label values and (c) annotated JSON tree

Table 2. Example of an authorization policy and authorization requests

I. Enumerated authorization policies

Policyread ≡ { (manager,sensitive), (HR,employment),
(employee, enterprise), (guest, public)}

II. Authorization requests

is authorized(Alice, read, emp-rec) = true, assuming uLabel(Alice) = {manager}
is authorized(Bob, read, emp-rec) = false, assuming uLabel(Bob) = {employee}
is authorized(Bob, read, con-info) = true, assuming uLabel(Bob) = {employee}
is authorized(Charlie, read, sen-info) = false, assuming uLabel(Charlie) = {HR}

The authorization function is authorized() is specified in Section III of
Table 1. We define the helper function can access(u, a, o) which specifies that
the user u can access the object o for action a if there exists a policy-tuple in
Policya for that allows it. A user is authorized to perform an action on the
requested JSON element if he can access the requested element and all its sub-
elements. For example, let us assume, Alice as a manager wants to read emp-rec
which has been assigned value enterprise as shown in Fig. 4(c). The tuple (man-
ager, sensitive) in Policyread specifies that Alice can read object labeled with
sensitive or junior values. Thus, the request is authorized(Alice, read, emp rec)
is evaluated true. On the other hand, assuming Bob as an employee, the request
is authorized(Bob, read, emp-rec) is evaluated false as an employee cannot read
sen-info which is sub-element of emp-rec. Additional examples of authorization
request is given in Segment II of Table 2.

4 Labeling Policies

In this section, we discuss specification of labeling policies for the operational
model given in Sect. 3. We broadly categorize the policies used in the operational
model into specification of authorization policies and assignment of security-label
values or labeling policies. Policy scope of the operational model is schematically
shown in Fig. 5. Here, we focus on the later type of policies.

We specify two different approaches to assign security-label values to elements
in a JSON document, viz. content-based and path-based. These approaches are

310 P. Biswas et al.

Fig. 5. Policy scope

fundamentally different in how a JSON element is specified. While a path is
described starting from the root node of the tree, content is specified starting
from the leaf nodes of the tree. These two contrasting approaches offer flexibility
in assignments and propagation of security-label values.

4.1 Control on Labeling Policies

For specification of labeling policies, we define two types of restriction that con-
trol assignments and propagations of security-label values. In the first type, we
restrict how security-label values are selected and assigned on tree nodes. We
call this assignment-control . In the second type, we specify how assigned values
are propagated along nodes in the tree. We call this propagation-control .

Fig. 6. (a) Assignment of security label values (b) assignment controls

The motivation of assignment-control is to restrict arbitrary assignments of
security-label values. This enables administrators to restrict future assignments
after some assignments have been carried out. These controls are specified during
the assignments. If any attempting assignment does not comply with assignment-
controls of existing assignments, it will be discarded. We define five possible

An Attribute-Based Protection Model for JSON Documents 311

options for assignment-control as no-restiction, senior-up, senior-down, junior-
up and junior-down. The type no-restriction does not specify any restriction. If
we assign a value valuei in nodei, with senior-up restriction, all up/ancestors
of nodei must be assigned values senior to valuei possibly including valuei. In
type senior-down restriction, all down/descendants of nodei must be assigned
values senior to valuei possibly including valuei. Similarly, the types junior-
up and junior-down, specify that ancestors and descendants of nodei must be
assigned values junior to valuei, possibly including valuei. Figure 6 schematically
illustrates assignment-control . In Fig. 7, the node con-info is assigned a value
enterprise with option junior-down which regulates that its descendant nodes
namely {email, work-phone} must be assigned values enterprise or its juniors,
in this case from the set {enterprise, public} (using security-label values given in
Fig. 4(b)). In the same figure, the node sen-info is assigned value sensitive with
option senior-down which mandates that its descendant nodes namely {SSN,
salary} must be assigned values from sensitive or its seniors in this case from
the set {sensitive}.

Fig. 7. Assignments with assignment controls

Once we assign security-label values on an element in a JSON tree, the value
can be propagated to other elements in the tree. We define following types for
propagation-control as no-prop, one-level up, one-level down, cascading up and
cascading down. Assigned values are not propagated in type no-prop. From a
node, assigned values are propagated to parent and all its siblings in the type one-
level up. Assigned values are propagated to all ancestor nodes in type cascading
up. Similarly, from a selected item, assigned values are propagated to direct
children in type one-level down and to all descendants in type cascading down.

4.2 Content-Based Labeling

This section shows how to assign security-label values by matching content and
propagating the labels.

We adapt the concept of query object available in MongoDB [4] which
matches content in a JSON document. Query objects discover content start-
ing from the value nodes of the JSON tree. It accepts regular expression to
find value nodes or key nodes conveniently. MongoDB has built-in functions to

312 P. Biswas et al.

Fig. 8. Content-based labeling model

Table 3. Definition of content-based labeling

I. Basic sets and relations
- QO (set of query objects).
- AC (assignment control) AC= {no-restriction, senior-up, junior-up}.
- PC (propagation control) PC = {no-prop, one-level-up, cascade-up}.
- SCOPE ⊆ AC × PC
- SL (set of security-label values).

II. Assignments of security-label values

- LabelAssignments ⊆ QO × SCOPE × 2SL

express regular expressions and compare values matched by the regular expres-
sions.

A model to assign security-label values based on query objects is given in
Fig. 8. In the figure, QO represents the set of all query objects and SL is the set
of security-label values. The set AC represents assignment-control and PC repre-
sents propagation-control discussed earlier. AC and PC together define labeling
scopes. A labeling scope determines how values are assigned and propagated in
the tree. As content is matched from the value/leaf nodes of the tree, we con-
sider assignment and propagation control only for the ancestors of the matching
nodes.

The formal definition of the model is given in Table 3. Segment I of the table
specify basic sets and relations. In Segment II, the relation LabelAssignments
defines rules for assigning security-label values. An assignment rule is a triple
of a query object to match content, a scope and a set of values to be assigned.
Section I of Table 4 gives some examples of query objects and their interpretation
in plain English. Segment II of Table 4, presents examples of assignment policies
based on query objects.

4.3 Path-Based Labeling

In this section, we show how we assign security-label values by matching paths
in the JSON tree and propagate them along the tree.

An Attribute-Based Protection Model for JSON Documents 313

Table 4. Examples of query objects and content-based labeling policies

I. Query objects

- ob1 = {“email”: { $regex:“/.*@example.com/”} } (matches email addresses
from domain example.com)

- ob2 = { $elemMatch: { $regex: “RE EMAIL” } } (matches any key having value
corresponding to the given regular expression)

- ob3 = {$elemMatch:{ $regex: “RE SSN”}, $elemMatch: {“RE CREDIT CARD”}}
(matches all objects containing both social security and credit card number)

II. LabelAssignments

- LabelAssignments= { (ob1, (no-prop, unrestricted), {enterprise}), (ob2,
(no-prop, unrestricted), {enterprise}), (ob3, (no-prop, restricted), { sensitive} }

Fig. 9. Path-based labeling model

We adapt JSONPath [18] to specify path-based labeling policies. This model
is very similar to the content-based labeling model except we use JSONPath
instead of query objects. While, query objects are matched starting from the leaf
nodes, JSONPath specifies elements starting from the root node (or any node
in case of relative path) and traverses towards leaf of the tree. As a result, this
model apply assignment control and propagation control towards descendants
of matching nodes. The components of the model and its formal definition are
given in Fig. 9 and Table 5 respectively. Examples of JSON paths and path based
labeling policies are presented in Segment I and II of Table 6.

5 Implementation in OpenStack Swift

We have implemented our proposed operational model and path-based label-
ing scheme in OpenStack IaaS cloud platform using OpenStack Keystone as
the authorization service provider and OpenStack Swift as the storage service
provider. Our choice of OpenStack is motivated by its support for independent
and inter-operable services and a well defined RESTful API set.

We have modified OpenStack Keystone and Swift services to accommodate
required changes. A reference architecture of our testbed is given in Fig. 10.
Details of the implementation is shown in Fig. 11. Required changes are presented
as highlighted rectangles in Fig. 11.

314 P. Biswas et al.

Table 5. Definition of path-based labeling

I. Basic sets and relations
- JPath (set of JSONPaths).
- AC (assignment control) AC= {no-restriction, senior-down, junior-down}.
- PC (propagation control) PC = {no-prop, one-level-up, cascade-up}.
- SCOPE ⊆ AC × PC, relation to assign and propagate values.
- SL (set of security-label values).

II. Assignments of security-label values

- LabelAssignments ⊆ JPath × SCOPE × 2SL (assign security-label values on
JSON elements matched and propagate values based on defined scope)

Table 6. Examples of JSONPath and path-based labeling policies

I. JSONPaths
- path-to-email=$.emp-rec.con-info.email
- path-to-salary=$.emp-rec.sen-info.salary

II. LabelAssignments

- LabelAssignments= { (path-to-email, (no-prop, unrestricted), {enterprise}),
(path-to-salary, (no-prop, unrestricted), {sensitive}) }

Fig. 10. Reference architecture of the implementation testbed

Fig. 11. Implementation in OpenStack IaaS cloud platform

An Attribute-Based Protection Model for JSON Documents 315

5.1 Changes in OpenStack Keystone

OpenStack Keystone uses roles and role-based policies to provide authorization
decisions. In our implementation, we uses roles to hold user-label attribute val-
ues. A set of valid security-label values are also stored as part of the Keystone
service.

Among two different types of policies - authorization and labeling policies,
the former is managed in the Keystone service. We assume, a higher level admin-
istrators (possibly at the level of organization) adds, removes or updates these
authorization policies. We add a policy table in Keystone database to store these
enumerated authorization policies.

5.2 Changes in OpenStack Swift

In Swift side, we store security-label values assigned to JSON objects and path-
based labeling policies applied to them. Security-label values and labeling policies
are stored as metadata of the stored objects, JSON documents in this case. For
simplicity, we assume object owner (Swift account holder in this case) can update
security-label values or labeling policies for stored JSON document.

During evaluation, we intercept every requests to Swift (from the Swift-proxy
server) and reroute a request to be passed through JSONAuth plugin if it is a
request for a JSON document. In this case, the request additionally carries a
requested path and authorization policies applicable to the user. JSONAuth
plug-in retrieves the requested JSON document, apply path-based labeling poli-
cies to annotate the document and uses authorization policies to determine if
the user is authorized for the requested content of the file.

Fig. 12. Performance evaluation

316 P. Biswas et al.

5.3 Evaluation

An evaluation of our implementation is shown in Fig. 12. The evaluation has
been made against concurrent download requests to the Swift proxy server. The
X-axis shows size of the JSON document requested for download while the Y-
axis shows the average download time for 10 concurrent request. Our evaluation
shows a performance hit of nearly 60 % over no authorization protection.

6 Conclusion

This paper presents an attribute based protection model for JSON docu-
ments. In the proposed model, JSON elements are annotated with security-label
attribute values with labeling policies. We specify authorization policies using
these attribute values. The advantage of the separation of labeling and autho-
rization policies is that they can be specified and administered independently
possibly by different level of administrators. In this regard, we have presented
an operational model to specify authorization policies that evaluates access
request. Further, we have specified two different models for assigning security-
label attribute values on JSON elements based on content and paths. We have
presented a proof-of-concept of the proposed models in OpenStack IaaS cloud
platform.

Acknowledgement. This research is partially supported by NSF Grants CNS-
1111925 and CNS-1423481.

References

1. The official YAML website. www.yaml.org. Accessed July 2016
2. Apache Cassandra. http://cassandra.apache.org/. Accessed Sept 2015
3. Apache CouchDBTM. http://couchdb.apache.org/. Accessed Sept 2015
4. MongoDB. http://www.mongodb.org/. Accessed Sept 2015
5. Twitter API. https://dev.twitter.com/docs/api/1.1/overview. Accessed Sept 2015
6. Youtube API. https://developers.google.com/youtube/v3/. Accessed Sept 2015
7. Adam, N.R., Atluri, V., Bertino, E., Ferrari, E.: A content-based authorization

model for digital libraries. IEEE KDE 14(2), 296–315 (2002)
8. Bertino, E., Castano, S., Ferrari, E., Mesiti, M.: Controlled access and dissemina-

tion of XML documents. In: 2nd ACM WIDM, pp. 22–27 (1999)
9. Bertino, E., Castano, S., Ferrari, E., Mesiti, M.: Specifying, enforcing access con-

trol policies for XML document sources. World Wide Web 3(3), 139–151 (2000).
Springer

10. Bertino, E., Ferrari, E.: Secure and selective dissemination of XML documents.
ACM TISSEC 5(3), 290–331 (2002)

11. Biswas, P., Sandhu, R., Krishnan, R.: A comparison of logical-formula and enumer-
ated authorization policy ABAC models. In: Ranise, S., Swarup, V. (eds.) DBSec
2016. LNCS, vol. 9766, pp. 122–129. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-41483-6 9

www.yaml.org
http://cassandra.apache.org/
http://couchdb.apache.org/
http://www.mongodb.org/
https://dev.twitter.com/docs/api/1.1/overview
https://developers.google.com/youtube/v3/
http://dx.doi.org/10.1007/978-3-319-41483-6_9
http://dx.doi.org/10.1007/978-3-319-41483-6_9

An Attribute-Based Protection Model for JSON Documents 317

12. Biswas, P., Sandhu, R., Krishnan, R.: Label-based access control: an ABAC model
with enumerated authorization policy. In: Proceedings of the 2016 ACM Interna-
tional Workshop on Attribute Based Access Control, pp. 1–12 (2016)

13. Byun, J.-W., Bertino, E., Li, N.: Purpose based access control of complex data for
privacy protection. In: 10th ACM SACMAT (2005)

14. Clark, J., DeRose, S.: XML path language (XPath) version 1.0 (1999)
15. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: A fine-

grained access control system for XML documents. ACM TISSEC 5(2), 169–202
(2002)

16. Fan, W., Chan, C.-Y., Garofalakis, M.: Secure XML querying with security views.
In: ACM SIGMOD/PODS, pp. 587–598 (2004)

17. Fundulaki, I., Marx, M.: Specifying access control policies for XML documents
with XPath. In: 9th ACM SACMAT, pp. 61–69 (2004)

18. Goessner, S.: JSONPath Syntax. http://goessner.net/articles/JsonPath/.
Accessed Sep 2015

19. Luo, B., Lee, D., Lee, W.-C., Liu, P., Qfilter: fine-grained run-time XML access
control via NFA-based query rewriting. In: ACM CIKM (2004)

20. Murata, M., Tozawa, A., Kudo, M., Hada, S.: XML access control using static
analysis. ACM TISSEC 9(3), 292–324 (2006)

21. Sandhu, R.S.: Lattice-based access control models. IEEE Comput. 26(11), 9–19
(1993)

22. Ravi, S.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Rolebased access control
models. IEEE Comput. 29(2), 38–47 (1996)

http://goessner.net/articles/JsonPath/

	An Attribute-Based Protection Model for JSON Documents
	1 Introduction
	2 Background and Related Work
	2.1 JSON (JavaScript Object Notation)
	2.2 Related Work

	3 The Operational Model
	4 Labeling Policies
	4.1 Control on Labeling Policies
	4.2 Content-Based Labeling
	4.3 Path-Based Labeling

	5 Implementation in OpenStack Swift
	5.1 Changes in OpenStack Keystone
	5.2 Changes in OpenStack Swift
	5.3 Evaluation

	6 Conclusion
	References

