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Preface

This volume contains the papers presented at NSS 2016: The 10th International Con-
ference on Network and System Security held during September 28–30, 2016, in
Taipei, Taiwan. NSS 2016 was organized and supported by the Chinese Cryptology
and Information Security Association (CCISA), Taiwan. Since its inauguration in
2007, NSS has become a highly successful series of annual international gatherings, for
academic and industrial researchers and practitioners to exchange ideas in the area of
network and system security. Previous editions of NSS were held in: New York, USA
(2015); Xi’an, China (2014); Madrid, Spain (2013); Wu Yi Shan, China (2012); Milan,
Italy (2011); Melbourne, Australia; (2010); Gold Coast, Australia (2009); Shanghai,
China (2008); and Dalian, China (2007).

The conference received 105 submissions. Each submission was carefully reviewed
by at least three committee members. The Program Committee decided to accept 31 full
papers and four short papers. We would like to thank all authors who submitted their
papers to NSS 2016, and the conference attendees for their interest and support, which
made the conference possible. We further thank the Organizing Committee for their
time and efforts; their support allowed us to focus on the paper selection process. We
thank the Program Committee members and the external reviewers for their hard work
in reviewing the submissions; the conference would not have been possible without
their expert reviews.

We also thank the invited speakers for enriching the program with their presenta-
tions. We thank Prof. Yang Xiang, Chair of the NSS Steering Committee, for his
advice throughout the conference preparation process. We also thank Prof. Yeh Kuo-
Hui for the contributions to the local arrangements, which helped make this conference
happen in Taipei. Last but not least, we thank EasyChair for making the entire process
of the conference convenient.

We hope you find these proceedings educational and enjoyable!

September 2016 Jiageng Chen
Vincenzo Piuri

Chunhua Su
Moti Yung
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While Mobile Encounters with Clouds

Man Ho Au1, Kaitai Liang2(B), Joseph K. Liu3, and Rongxing Lu4

1 Department of Computing, Hong Kong Polytechnic University,
Kowloon, Hong Kong

csallen@comp.polyu.edu.hk
2 Department of Computer Science, Aalto University, Espoo, Finland

kaitai.liang@aalto.fi
3 Faculty of Information Technology, Monash University, Melbourne, Australia

joseph.liu@monash.edu
4 Faculty of Computer Science, University of New Brunswick,

Fredericton, NB, Canada
rlu1@unb.ca

Abstract. To date the considerable computation and storage power of
clouds that have attracted great attention from mobile users and mobile
service providers over the past few years. The convergence of mobile
devices and clouds that leads to a brand new era of could-based mobile
applications. It brings long-listed advantages for mobile users to get rid
of the constraints of mobile devices (including limited mobile memory,
data processing ability and battery). However, mobile clouds yield new
security and privacy risks in open network setting. This survey paper
attempts to introduce security risks on mobile clouds in the view point
of applied cryptography.

1 Background

The report given by comScore [28] shows that the number of increasing usage
of mobile devices (up to 1.9 billions) exceeds that of desktop (with nearly 1.7
billions) in 2015. Besides, the average time people spend on mobile apps. is
increased by 21 % over the last year (2014) conducted by a Go-Globe survey [11].
Both data interpret a strong signal that an increasing number of people tend
to spend more time in using their mobile devices compared to other unportable
electronic devices. The massive usage of mobile devices lights up the booming of
all kinds of mobile network applications, which can be available and downloaded
from either Apple’s iTunes or Google Play Store.

Although mobile devices connected to Internet can enjoy many network ser-
vices and applications much like desktop, they, to a large extent, cannot fully pro-
vide excellent user experiences for their clients because of their “natural-born”
constraints including limited memory, processing power and battery life. To help
mobile devices to move beyond the restrictions, mobile research and industrial
communities invent a new framework, mobile cloud, which is the convergence of
mobile devices and clouds, such that device users are allowed to offload heavy

c© Springer International Publishing AG 2016
J. Chen et al. (Eds.): NSS 2016, LNCS 9955, pp. 3–18, 2016.
DOI: 10.1007/978-3-319-46298-1 1



4 M.H. Au et al.

storage and computational cost to clouds to reduce the local resource and energy
consumption.

There are long-list advantages of leveraging clouds in storage and computa-
tion with mobile devices. One of them is that mobile users can store and gain
access to more data than the mobile is capable of holding. For instance, a tourist
with mobile device does not need to spend lots of bandwidth in downloading a full
local map with hotel, restaurant, sightseeing information, but simply reporting
his location to cloud, with help of cloud-based mobile Global Positioning System
(GPS) navigation. Take social media networking app as another example. While
using Tinder (https://www.gotinder.com) to find friends around us, it is unnec-
essary for us to download all system users’ information locally, but just upload
our current locations. The outsource of mobile contents (e.g. personal photos)
from local to clouds prevents information leakage incurred by mobile stolen or
lost incidences. By using considerable computational power of clouds, mobile
devices with limited computation resource can enable users to play 3D games,
to run mobile commercial systems, and even to participate into mobile-learning
platforms (e.g. Litmos (https://www.litmos.com)).

Lifting weight from mobile devices, mobile clouds, at the same time, yield
security and privacy challenges. There are various challenges incurred by usage
of mobile clouds, e.g., identity management and standardization. As we mention
previously, a mobile device user can upload his/her personal photos to a cloud,
which is trusted by the user. However, this may endanger the privacy of the user
while the cloud server is intruded by malicious hackers. Even in more trustwor-
thy commercial bank systems, the records of customers may be suffered from
malicious leak as well. For example, the leaking iCould celebrity picture [29] and
Barclays bank client records leak incidence [4] are recent wake-up call for cloud
storage service.

In this survey, we stand at some practical behaviors of mobile device users
to discuss the security risks in mobile clouds. Specifically, we mainly focus on
the following clients’ behaviors: identity authentication before connection, data
encryption before uploading, data integrity check after data uploading, remote
data search, share and computation.

2 Mobile Cloud - Bring Benefit to Us

2.1 For Mobile Users

In addition to traditional services (e.g. phone call), mobile service providers cloud
can promote new and more convenience offers to their clients by using mobile
cloud. Mobile learning is a novel merging service in which clients are allowed to
take classes, finish homework and join real-time seminar via mobile devices. On-
line learners can search what they want to learn in mobile cloud, and download
unlimited but easy accessible resources from courses, on-line universities’, and
even public libraries.

Clinics, hospitals and heal care centers can be benefited from another mobile
cloud service, mobile-health care. Getting rid of tedious paper works and wasting

https://www.gotinder.com
https://www.litmos.com
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time in long queue waiting, patients can use mobile devices for doctor appoint-
ment booking. Moreover, new health sensor techniques can be employed into
mobile devices, such that the health condition of patients can be immediately
updated to hospital for better medical treatment track.

More and more Internet users prefer to launch commercial activities in their
smart-phones. A blooming period for mobile commercial ear is approaching. Due
to being equipped with powerful computational resources, mobile cloud is strong
enough to support various commercial actions, such as money transfer, and bank
payment.

Mobile cloud game service is also another potential commercial market. There
are many new and popular game apps. promoted by Apple Store every year. Nev-
ertheless, the visual/sound effect and complex game design of those apps. seri-
ously consume smart-phone’s battery and memory. With help of mobile cloud,
the game engine and effect/upgrade packages can be completely offloaded to
cloud and meanwhile, the cloud can be used to run large computational cost
algorithms (e.g. graphic rendering).

Last but not least, mobile cloud also provides large-scale stream media store,
large volume of social network data share, and location-based service for smart-
phone users. Considerable storage space, unlimited computational power, and
convenient interface, these extremely appealing advantages of mobile cloud, that
light up a bright prospective for diverse mobile services.

2.2 For Academic Communities, Industries and Authorities

Mobile cloud does encourage visible and invisible opportunities for other enti-
ties including academic researchers, industries and authorities. The academic
communities may be inspired to invent more lightweight and secure proto-
cols/systems to lessen the workload of device users to mobile cloud. With the
assistance of mobile cloud, industries and companies are able to provide more
powerful data computing, more efficient data processing, and more consider-
able storage services for their clients, e.g., Portable Genomics (http://www.
portablegenomics.com/#!home) offers convenient genome data analysis services
to smart-phone users. The authorities, such as local transportation center, may
leverage mobile cloud to monitor public events, e.g. mobile data traffic forecast.

Furthermore, the quick expansion of mobile cloud yields an opportunity of
collaboration among mobile device users, mobile service providers, and local
authorities. The collaboration of the three parties, definitely, contributes more
correct, accurate and trustworthy outcomes compared to the only-one-side-
working mode. Moreover, mobile device users need to worry about battery,
memory and computation limitation no more with help of service provider/cloud
server. For example, mobile data encryption and decryption could be partially
offloaded to a cloud server, so that the users only are required a small piece of
computation, and the rest of the computation is transfered to the server. The
collaboration, however, should ensure that even the service provider colludes
with some hackers, they cannot access to the users’ data. Working together may
be an effective way to tackle efficiency, privacy and security problems.

http://www.portablegenomics.com/#!home
http://www.portablegenomics.com/#!home
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3 Mobile Cloud - Its Own Security Risks

Standing at the viewpoint of applied cryptography by the side of mobile cloud
users, this paper investigates some security risks based on the following fre-
quently users operations: (1) (login) authentication between client and mobile
clouds; (2) outsource data from local mobile device to remote clouds, and data
integrity check; (3) search and share client’s remote data with others, and remote
data computation. Meanwhile, the paper will show that existing tools do not fully
satisfy the security requirements for mobile cloud users.

3.1 Authentication for Mobile Clients

While talking about authentication, we usually consider the single way of authen-
tication, i.e. “client to cloud authentication mode” where the cloud server will
only allows valid clients to access the cloud system if the clients pass the cor-
responding authentication check. This type of “proof of identity” is extremely
necessary upon protecting cloud clients data privacy.

To date, there are various mobile-to-cloud authentication methods that have
been proposed. They can be categorized into three branches: knowledge-based,
possession-based and biometric-based authentications. Individually leveraging
one of the approaches that may yield security concern. Using username and pass-
word for (knowledge-based) authentication [2] that is one of most convenience
authentication mechanisms. Some of the existing systems are already built in the
context of mobile devices. For example, Acar et al. [2] introduced a single pass-
word authentication in which a mobile device must be trusted. Specifically, the
hash value Hash(pw) of a user’s password pw is used as a key to encrypt a ran-
domly string K generated by a mobile user (i.e. CT = Encrypt(Hash(pw),K)),
and the encryption is further stored in the mobile device; meanwhile, the user’s
ID and the string K are delivered to a cloud server. When trying to login the
server, the user sends its ID to the server who returns a challenge chal. The
user then taps password pw into the mobile, such that the mobile can recover
K = Decrypt(Hash(pw), CT ) and compute a MAC(K, chal) to the server. With
knowledge of K and chal, the server can check the validity of the MAC value.
To secure passwords, mobile clients usually use a long and complex enough com-
bination, (e.g. using image as password [20]), or password manager apps. (e.g.
SafeInCloud - https://www.safe-in-cloud.com/) to manage passwords.

Possession-based approach enables mobile client to leverage something his
hold to execute identity authentication. Thus, we may choose to use secure USB
token, one-time password [33], or embed a public key infrastructure (e.g. [35])
into mobile device, to strengthen the security of authentication. But this app-
roach requires more computational cost and energy consumption, for example,
key management could be a problem for mobile devices upon usage of public key
infrastructure. Furthermore, the possessed device might be stolen by adversary
or lost by careless owner, such that they may be misused.

Due to advance mobile technology, the biometric authentication [7] can be
used to provide a unique and portable way for client identification via making use

https://www.safe-in-cloud.com/
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of client’s bio-characteristics, such as voice, face, iris and fingerprint [31]. How to
secretly store and process personal bio-information in authentication is a major
privacy concern. Since one’s biometric information is unique, if adversary obtains
the information by hacking into the client’s mobile device, it will bring serious
harm to personal privacy.

To achieve stronger authentication security, multi-factor authentication sys-
tems (e.g. [27] ) have been introduced in the mobile cloud scenario. Usually, more
than one factor are implemented into mobile device in advance. The device and a
cloud server will also share some secret information, such as Hash(pw) or random
string K. The authentication phase will take 2–3 factors’ information into the
we call “challenge-and-respond” interaction (Fig. 1). The multi-factor mechanism
strengthens the difficulty of attacking login authentication in the sense that mali-
cious adversary has to compromised all factors to result in a successful attack.
Because of its high security guarantee, many companies has employed multiple
factors for clients authentication, e.g., SafeNet (http://www.safenet-inc.com/),
Microsoft Azure (http://azure.microsoft.com/en-us/) and rackspace (http://
www.rackspace.com/).

Fig. 1. Unidirectional mobile to cloud authentication structure

Table 1. Comparison among different types of authentication

Category Security Client to
cloud

Cloud to
client

Factor
update/revoke

Authentication
delegation

Password weak ✓ ✕ ✕ ✕

Possession weak ✓ ✕ ✕ ✕

Biometric weak ✓ ✕ ✕ ✕

Multi-factor strong ✓ ✕ ✕ ✕

Nonetheless, the “most secure look” multi-factor authentication still suffers
from thorny challenges incurred by factor update and revocation, delegation in

http://www.safenet-inc.com/
http://azure.microsoft.com/en-us/
http://www.rackspace.com/
http://www.rackspace.com/
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authentication, and bidirectional authentication (see Table 1). The update and
revocation of factor is needed while the factor is compromised by attackers. How
to effectively and efficiently detect the compromise factor and further renew the
factor in both cloud and client sides is a formidable task. An identity verification
delegation is very common in daily life. For example, an on-line eBay user is re-
directed to a third-party payment platform. Here, the first login cloud service
provider should take responsibility for the second platform authentication, so
that no privacy information will be “curiously” collected by the latter, e.g.,
the client’s transaction history. The authentication delegation may also happen
in client side in the sense that a client A requires another client B to login
a cloud system to use the data/service on behalf of A. Some naive solutions,
such as requesting the server to modify access control list for B, may work. But
allowing the server to know the delegation between A and B may lead to high
risk of commercial secret leak in some business settings. Therefore, a privacy-
preserving client-side authentication delegation is desirable. Last but not least,
a bidirectional authentication system should be considered (i.e. client ↔ cloud)
due to unpredictable security risks in an open network. The growing number
fishing and fake cloud services have been taking serious influence in mobile cloud
security. Mobile clients must need a way to verify a cloud service provider before
authorizing it further operation to the device.

In addition to the previously introduced cloud-based authentication mech-
anisms, there are some interesting systems in the literature, such as behavior-
based authentication [13], single sign on [12] and mobile trusted module [21].
These systems, however, cannot address the above challenges as well.

3.2 Data Secrecy and Integrity

The confidentiality and integrity of the data outsource and stored in mobile
cloud should be put at the top of priority list. Encryption technology seems to
be an appropriate option that can be used to protect the on-device (local) data
and the outsourced data. Effective and efficient data protection and integrity
check techniques can deliver sense of trust and safety to mobile cloud users.

Traditional Encryption. We first consider the case that mobile device users
prefer to install a cryptographic system in their devices. The traditional cryp-
tographic encryption is classified into two branches - symmetric encryption and
asymmetric encryption. Advanced Encryption Standard (AES) [1] and Data
Encryption Standard (DES) [26] are the standard examples of the former,
while public key based encryption (e.g. [17]), identity-based encryption (e.g.
[8]), attribute-based encryption (e.g. [18]) and functional encryption (e.g. [30])
are considered as the latter. Symmetric encryption and its contemporary have
respective pros and cons.

Compared to symmetric encryption, asymmetric technique provides fine-
grained data share ability, for example, an encryption can be intended for a
group of users (e.g., broadcast encryption). For example, in RSA, a mobile user,
say Alice, may choose two distinct prime numbers p and q, computes n = pq
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and φ(n) = (p − 1)(q − 1), and choose an integer e so that gcd(e, φ(n)) = 1.
Alice further chooses a d so that d = e−1mod φ(n), publishes n and e as public
key, and keeps d secretly as secret key. Any system user knowing a user Alice’s
public key (n, e) that can encrypt an integer m (0 ≤ m < n, gcd(m,n) = 1)
as C = me mod n to Alice, such that Alice can use her secret key d to recover
the m as m = Cd mod n, where n = pq, 1 < e < φ(n), gcd(e, φ(n)) = 1 and
d = e−1mod φ(n).

This fine-grained property, however, yields huge computation, communica-
tion and storage complexity as opposed to symmetric encryption. Even RSA, the
most efficient public key encryption, cannot outperform symmetric encryption
in power consumption, and encryption/decryption speed (the benchmark can be
referred to Crypto++) (see Table 2 for the comparison. We note that the data
in Table 2 is collected from Crypto++ (https://www.cryptopp.com/) whereby
AES is 128 bits, and RSA is 2048 bits. For RSA 2048-bit encryption, 0.16 Mil-
liseconds/Operation is given. We assume that one operation roughly proceeds
1024-bit data. Thus, the encryption complexity is around 7.63 MiB/s. Similarly,
we have the decryption complexity of RSA is approximately 0.020 MiB/s.

If mobile users are only with single purpose - outsourcing their own data to
mobile cloud, they may choose to employ symmetric encryption technology to
encrypt the data before uploading to the cloud.

Table 2. Comparison among DES, AES and RSA

Key size
(bit)

Round Running time
(MiB/Second)

Power consumption Hard/Software
implementation

DES 56 16 32 Low Better in hardware

AES 128, 192,
256

10, 12, 14 139 Low Fast

RSA ≥1024 1 0.763 (Encryp-
tion)

High Inefficient

0.020 (Decryp-
tion)

Symmetric encryption looks like a very promising solution to guarantee data
security. Nevertheless, a direct and critical problem incurred by using symmetric
encryption in mobile devices that is key management. Mobile users need to store
encryption/decryption key locally, such that they can re-gain access to their data
in the future. If the clients only upload a few files with small size (e.g. 1 MB)
to clouds, key management problem may be ignored. But if they outsource a
great amount of image, audio, and video data with huge size (e.g. 2 GB), the
key management problem is extremely apparent as the devices suffer from large-
size key file storage consumption. A naive solution for the problem is to encrypt
the key file and next upload the encrypted file to mobile clouds. Nevertheless,

https://www.cryptopp.com/
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again, the clients are still required to store some keys locally. Once the devices
are intruded by mobile attackers, the keys are compromised as well.

Symmetr and Asymmetric Method. To reduce local key storage cost, a mobile
user may combine symmetric encryption with asymmetric encryption. Suppose
SY E is a symmetric encryption with key generation algorithm SY E.KeyGen,
encryption algorithm SY E.Enc, and decryption algorithm SY E.Dec; PKE
is a traditional public encryption, key generation algorithm PKE.KeyGen,
encryption algorithm PKE.Enc, and decryption algorithm PKE.Dec. The user
may first generate a symmetric key SY E.key for a file f to be encrypted,
runs C = SY E.Enc(SY E.key, f) and further encrypts the key SY E.key as
V = PKE.Enc(PKE.pk, SY E.key), and finally uploads C and V to a mobile
cloud, where public/secret key pair (PKE.pk, PKE.sk) ← PKE.KeyGen.
After that, the user can reuse the same PKE.pk to encrypt all the symmet-
ric keys, next upload the encryptions to the cloud. Here all ciphertexts and their
corresponding encrypted keys are stored in the cloud. The user is only required to
locally store the PKE.sk. This hybrid method is more efficiency than managing
a bunch of symmetric keys in local.

Mobile Data Encryption Apps. Mobile encryption apps. bring hope for less-
ening key management problem. Many mobile devices in various platforms (e.g.
Apple iOS, Android, and Windows) enable users to encrypt personal data in a
hard-cored way. Some data encryption apps. (e.g. boxcryptor) also are invented
to allow users to encrypt mobile contents before uploading. The encryption for
the platforms/apps mostly depends on password/PIN mode whereby the pass-
word/PIN is used to encrypt encryption/decryption key. The encrypted key may
be stored in remote clouds as well based on user preference. We note that even a
mobile hard-cored security system tries to protect user data, a malicious attacker
may be able to find a way to extract personal data from mobile device [15].

Nonetheless, both hybrid and apps. modes leave computation, communica-
tion and trust problems to us. No matter which apps or platforms we use, we
have to encrypt data in local devices beforehand. This is a barrier to fully lever-
age the computational power of mobile clouds. Moreover, encrypting large file
will occupy local computation resource, increase battery consumption and mean-
while, large encrypted block might jam the bandwidth. At last, a potential secu-
rity risk pops up from a fact that we have to fully trust the apps/platforms
we use. Once the trusted facilities are crushed by attackers, our data secrecy is
smashed.

Bypassing the usage of heavy cryptographic encryption tools, some light-
weight academic research works (e.g. [14]) have been proposed to achieve high
efficiency for mobile data encryption. For instance, an efficient image sharing
system for mobile devices is introduced in [14], in which 90 % of the image
transmission cost is eliminated at the mobile user side.

However, the lightweight solutions are only the first step for mobile data
outsourcing. Much like the aforementioned encryption approaches, these acad-
emic works fail to support remote data integrity check. Without integrity check,
taking the image sharing system as an example, we cannot guarantee that the
shared images are 100 % identical to the original ones.
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Remote Data Integrity. The integrity check of outsourced data is desirable
while data owner loses the physical control of data. In traditional scenario, the
check is fulfilled by simply using message digest technique (e.g. MD5 [6]). Sup-
pose there are a file f and its digest D = H(f), a data owner is able to retrieve
an encrypted file Enckey(f) from a mobile cloud, next to recover f with key,
and finally to compare H(f) with the digest D (stored in mobile) to check if f is
modified/tempered. Nevertheless, this technique requires data owner to possess
a copy of the data (or its digest) which is stored locally. This brings storage
hindrance for mobile device users.

Fig. 2. Remote data auditing system with data protection

Remote data auditing offers data integrity check with help of a trusted (third
party) auditor even the data is outsourced to clouds. It has three different models:
provable data possession-based (PDP), proof of retrievability-based (POR) and
proof of ownership-based (POW). A remote data auditing system with data
protection is shown in Fig. 2. The PDP method only takes responsibility for
preserving the integrity of outsourced data. Some existing PDP systems cannot
guarantee data protection, e.g. [16], either are lack of data recovery functionality
(i.e. the damaged data cannot be recovered) with linear complexity, e.g. [32] with
O(t) computation cost for client and the same complexity for communication,
where t is the number of blocks to be changed; whilst the systems guarantee data
recovery but leading to high (linearly) computation complexity for client (e.g.
[5]). The recent POR solution, [10], is a type of cryptographic proof of knowledge,
protecting privacy and providing data recovery strategy. But its computation
and storage overheads (with O(tlog2n) computation complexity for client side,
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and O(t2log2n) communication complexity) hinder its exploration into mobile
applications, where n denotes the number of blocks of each file, respectively.
Similarly, the latest POW method [34], single-instance data storage for removing
data redundancy, yields huge computation complexity - O(t) client computation
and O((m + t)n) communication cost, where m is the number of symbols of a
block. Besides, it cannot recover correct data from broken ones.

On one hand, mobile device users are willing to offload computational com-
plexity but also storage overhead to clouds. On the other hand, the users want
to maintain the (periodically) data availability and integrity check for the “out
of hand” data. From Table 3, we see that none of the existing systems is cost-
effective, so that systems supporting data protection and integrity check are
needed.

3.3 Data Search, Share and Computation

Mobile Cloud Data Search. Since being out of “physical control” of personal
data, mobile device users may need some secure means to search and retrieve
their data stored in mobile cloud. Searchable encryption mechanisms have been
designed to guarantee data confidentiality and search privacy, in which a data
owner will upload an encrypted database and an encrypted search index struc-
ture to a cloud server, such that the server can locate the encrypted data by
using so-called search token generated by the data owner. Symmetric searchable
encryption (SSE) and public key based searchable encryption are two classic
types of searchable encryption.

SSE is usually leveraged in practice as its efficiency is much better than
that of public key based systems. A recent SSE system, for large scale data-
base, is designed in [9]. The crucial idea of the system is that a user sym-
metrically encrypts each file with a keyword w as d ← Enc(K2, Ii) with the
key K2 ← F (K, 2||w), and stores d into an array A (|A| = T ), where F is a
pseudorandom function, and K is its seed. The user further partitions A into

Table 3. Summarization for data protection and integrity check

Systems Data protection Integrity
check

High computation complexity
for client

Data recovery

DES ✓ ✕ ✕ ✕

AES ✓ ✕ ✕ ✕

RSA ✓ ✕ ✕ ✕

PDP ✓a ✓ ✓ ✕b

POR ✓ ✓ ✓ ✓c

POW ✓ ✓ ✓ ✕
a Some PDP cannot fully provide data protection.
b Most of PDP fail to provide data recovery.
c Most of POR support data recovery.
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b blocks (T ′ ← �T/b�) and computes the new indices as l ← F (K1, c) and
d′ ← Enc(K2, Jc), where c ∈ [0, ..., T ′] and Jc is the c-th block of A, and
K1 ← F (K, 1||w). The tuples (l, d′) are stored in a list γ. For data search,
given K1 and K2, the server first locates d ← Get(γ, F (K1, c)) from γ, recovers
(i1, ..., ib) ← Dec(K2, d), and finally computes li ← Dec(K2, A[ij ]). The system
is efficient as only pseudorandom function and symmetric encryption are used.
However, users have to undertake high computation complexity for encrypting
“the whole” database and its search index structure, but also to spend large com-
munication cost in transferring the encrypted database and the index structure.
This can be seen from the above details that a user has to build up a search index
structure, and next compute each related file’s encryption and pseudorandom
value. Furthermore, the symmetric encryption and pseudorandom computation
for l as well as encrypted files are linearly in the product of number of keyword
and the related files. If there is a great amount of files in the database, say 10
GB, a mobile user has to take a long time to upload the encrypted database.

To offload the above burden to a third party, we have to assume that the
party is fully trusted as a secret information of data search belonging to data
owner will be shared with that party. This trusted assumption does not scale
well in practice, since once the party is compromised by malicious attackers,
the attackers can fully obtain the search ability. More recently, Li et al. [22]
introduced a traffic and energy saving encrypted search system to remove the
fully trust assumption and furthermore to protect data privacy. The system,
unfortunately, cannot support expressive search query, such as range, and more
complex formula query.

All aforementioned systems only provide “plain” text based search for mobile
device users. In real-world applications, audio/video-based, and even bio-based
search pattens are desirable. Designing privacy-preserving search with workload
offloading (to cloud) without loss of search expressiveness is a challenging and
unsolved problem.

Mobile Cloud Data Share. To securely share a file with others, a mobile
device user may use traditional encryption (e.g. attribute-based encryption [24]).
But the traditional encryption requires the user to be always on-line, and to
consume considerable computation resource, communication cost and battery
to fulfill a simple data sharing. Proxy re-encryption (PRE) has been invented
to tackle the above efficiency problem in the sense that a user only generates
a special key (other than a ciphertext, as the golden coin in Fig. 3) for cloud
server, such that the server can convert the ciphertexts of the user into those
for others. Alice is a delegator, while Bob is a delegatee; the golden coin is a
re-encryption key for the ciphertext conversion.

The premise of PRE relies on the design of re-encryption algorithm that
guarantees the server to run a “partial decryption” for an original ciphertext
of a user for another, so that the data receiver can recover the message by its
decryption key and meanwhile, the server knows nothing about the message.
To achieve the secure re-encryption, the construction of a re-encryption key is
somewhat tricky. For instance, given a ciphertext (Z1 = gxr, Z2 = e(g, g)r ·m), a
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user A may construct a re-encryption key gy/x for the server, such that the server
can compute Z3 = e(Z1, g

y/x) for another user Y who recovers m by computing
Z2/Z

1/y
3 , where (gx, x) and (gy, y) are public/secret key pairs for X and Y .

Recent PRE techniques enable users to perform fine-grained data share in the
context of identity-based [23], attribute-base and even functional encryption.

Fig. 3. Secure encrypted cloud-based data share - proxy re-encryption

Nevertheless, the simple usage of PRE yields a potential security risk in
ciphertext conversion that no one knows if the conversion is correct. A direct
solution is introduced in [25] in which an encryption receiver with appropriate
decryption rights can check the validity of conversion. This post-check mode,
actually, does not scale well in real world, as it is too late to detect the errors -
after the encrypted data being downloaded, and meanwhile, only a valid decryp-
tor can tell the errors upon accessing the encryption. A practical and publicly
validity check method - before downloading data, is necessary here.

Another efficiency problem incurred by PRE is that a re-encryption key
can only be used to handle the conversion of a “fixed” type of ciphertext for-
mat. For example, an identity-based encryption can be converted to another
“identity-based” ciphertext, while an attribute-based ciphertext corresponds to
a “attribute-based” one. Furthermore, for more fine-grained encryption, e.g.,
functional encryption, the construction of re-encryption key is heavy for mobile
user, as it usually is linearly in either the size of policy or the size of attribute
set. Here, users have to take great resource and energy cost in generating differ-
ent re-encryption keys for the purpose of sharing various encrypted format data
with others. One key for all types of encryption conversion, definitely, brings
convenience for users that is extremely desire as well.

Mobile Cloud Data Computation. Homomorphic encryption technique is
an effective approach for encrypted data computation whereby an untrusted
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party can compute the encrypted data in a “blind” way but outputting valid
“encrypted” result. The party here knows nothing about the result but also
underlying encrypted input. To date homomorphic encryption can support
ciphertext additive property, multiplicative operation, or both of the opera-
tions. For multiplication, for example ElGamal, we have Enc(m1)⊗Enc(m2) =
Enc(m1 · m2); Enc(m1) ⊗ Enc(m2) = (gr1 ,m1h

r1)(gr2 ,m2h
r2) = (gr1+r2 , (m1 ·

m2)hr1+r2); for additive property, e.g., Paillier, we have Enc(m1) ⊗ Enc(m2) =
Enc(m1 + m2). Enc(m1) ⊕ Enc(m2) = (gm1rx1 )(gm2rx2 ) = gm1+m2(r1r2)x,
where x is the modular, r1, r2 are random seeds, and m1,m2 are messages.
Whereas the fully homomorphic encryption can provide both types of calculation
- Enc(m1) ·Enc(m2) = Enc(m1 +m2) and Enc(m1) ·Enc(m2) = Enc(m1 ·m2).
An advantage of homomorphic encryption is that the computation cost can be
offloaded from users to clouds.

Although there exist some improved versions of homomorphic encryption
over efficiency and properties, e.g., [3]1, there are some limitations when using
homomorphic technologies in mobile cloud context. We note secure multi-party
computation (MPC) systems can support cloud-based encrypted data computing
as well in sense that a server intakes two respective encrypted values as input and
outputs a “masked” result. However, those systems suffer from similar limitations
as the homomorphic encryption does as follows. First of all, no current systems
enable the encryption of arbitrary values in R, i.e. real number. Although Chinese
Remainder Theorem can be used to increase message space of systems to support
large integer, it seems there is still a long way for homomorphic encryption to
achieve real number encryption. In addition to huge ciphertext size cost for just
a small dataset, there is no homomorphic system providing a native division
operations. Mobile users have to download the corresponding encrypted data
from clouds to decrypt-then-calculate the division on their owns. Moreover, if
the homomorphic computation outputs a “long” encrypted result, such as a set
of “masked” biometric data, the devices will suffer from huge computation and
communication cost for download-then-decrypt operation. Last but not least, the
existing homomorphic encryption systems fail to support search functionality, so
that a cloud may take the whole encrypted database as input for calculation. We
note that [19] introduces more security tools for mobile cloud computing. Due
to limited space, we refer the readers to that paper for more technical details.

In addition to aforementioned limitations, the single ability providing in
searchable encryption (searchability), homomorphic encryption/MPC (secure
computation) and PRE (secure data share) cannot fully satisfy the multiple
functionalities need of mobile device users (see Table 4). A naive “all-in-one”
solution is to trivially combine a searchable encryption, a homomorphic encryp-
tion/MPC and a PRE into one system. Nevertheless, it is unknown that if the
building blocks are compatible with each other and furthermore, and the com-
bination is effective and secure.

1 This paper limits the computation to small number of AND gates with shallow
depth, and the multiplications are in GF(2).
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Table 4. Functionalities summarization

Systems Share Search Computation

Searchable encryption ✕ ✓ ✕

Homomorphic encryption/MPC ✕ ✕ ✓

PRE ✓ ✕ ✕

4 Conclusions

In investigating the security riks of mobile cloud, our goal is to inspire academic
and industrial communities to tackle all the problems involved. We also would
like to light in the hopes that mobile cloud service providers, mobile device users
and local authorities will be more conscious of the challenges and embrace the
opportunities to work together to create a brighter future for the mobile cloud
applications.
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Abstract. Recently, a few pragmatic and privacy protecting systems for
authentication in multiple systems have been designed. The most promi-
nent examples are Restricted Identification and Pseudonymous Signature
schemes designed by the German Federal Office for Information Security
for German personal identity cards. The main properties are that a user
can authenticate himself with a single private key (stored on a smart-
card), but nevertheless the user’s IDs in different systems are unlinkable.

We develop a solution which enables a user to achieve the above men-
tioned goals while using more than one personal device, each holding a
single secret key, but different for each device – as for security reasons
no secret key is allowed to leave a secure device. Our solution is privacy
preserving: it will remain hidden for the service system which device is
used. Nevertheless, if a device gets stolen, lost or compromised, the user
can revoke it (leaving his other devices intact).

In particular, in this way we create a strong authentication framework
for cloud users, where the cloud does not learn indirectly personal data.
In the standard solutions there is no way to avoid leaking information
that, for instance, the user is in his office and authenticates via his desk-
top computer.

Our solution is based on a novel cryptographic primitive, called
Pseudonymous Public Key Group Signature.
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provider. Today such systems become increasingly popular and the number of
systems used per user is rapidly growing. If authentication is taken seriously (not
based just on a login and a password), then for each service we get an indepen-
dent authentication environment that requires generating and distribution of the
secret keys for the users. Such a framework has serious disadvantages: the neces-
sity of managing secret/public keys among certain parties, constant updates of
user secret keys and maintaining large and costly PKI infrastructures.

In this paper, we develop a framework which aims to provide a cryptograph-
ically sound authentication scheme to a dynamically growing set of services,
which preserves privacy for groups of users and does not require expensive, time
and resource consuming infrastructures as well as key management procedures.

Application Scenario. In order to be more specific, we consider an application
scenario of Multiple Mobile Devices and Authentication for Web Services, called
below domains: We assume that:

– a user registers to a given domain only once,
– the user may register himself in many different domains, but he should use

the same device or set of devices for interaction with these domains,
– a given user is in possession of a few devices that may be used interchangeably

(mobiles devices, desktop computers, etc.),
– the user should not be bothered to register these devices in each single domain

in order to use them, . . .
– . . . but must be able to revoke each of the devices in a case of theft, key leakage,

etc.

For usability reasons, we assume that a user registers once in a domain by
providing his public key for this domain. Moreover, no party except for the user
and the service domain should be involved. (We do not consider how the user
is initially authenticated – he may appear in person, authenticate himself via a
payment, authenticate himself with a personal identity card or by other means.)

After registration, without any updates or interaction with any party, the
participant should be able to delegate the right to run authentication protocol
on behalf of the user and sign digitally challenges in order to authenticate the
user.

Privacy and Unlinkability Issues. One of the major threats in a multi-
system environment is that the authentication means from one domain can be
misused for getting unlawful access into user’s accounts in another domain. For
password based systems this is a severe threat as the users tend to use the same
password in multiple places. Many recent examples are known where compromise
of one system resulted in compromising users’ accounts in another systems.

Apart from unlawful access, it might be necessary to protect the information
that a given physical person is a user in a domain. Therefore after the phase of
registration the user’s identity should be anonymized. Moreover, the pseudonyms
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in different domains should be unlinkable, even when the data from authentica-
tion sessions are at hand. In this case a potential data leakage is not threatening
the principles of personal data protection.

Group Signatures. Group signatures as defined in [1] or [2] are signature
schemes in which a group manager admits the users to the group. Each of the
group members may sign data anonymously on behalf of the group. Only an
entity called an opener may “open” a signature and derive the signer’s real iden-
tity. Informally, a group signature scheme has to fulfil the following properties:

anonymity: it is infeasible to establish the signer of a message. To be more
specific, it is infeasible to link the signature to a single user, i.e. having two
signatures one cannot even say whether they originate from one signer or
from two different signers.

unframeability: it is infeasible, even for a coalition of malicious group mem-
bers, to forge a signature which would open to the identity of a group member
not belonging to the coalition.

traceability: it is infeasible to produce a signature which would open to an
identity not added to the group by the group manager.

Group signatures is a well studied cryptographic primitive. There are many
variants of them, with security proofs based either on the random oracle model
(e.g. [3]), or on the standard model (e.g. [4]). Many variants of group signatures
have been developed, like Verifier Local Group Signatures [5], Traceable Signa-
tures [6], Hierarchical [7], Attribute [8] and Identity Based Group Signatures
[9].

Ad Hoc Solution Based on Group Signatures. At a first look, group
signature schemes address our practical problem pretty well. The user plays the
role of the group manager for group signatures, while his devices play the role of
group members (admitted by the manager). Note that this constructions gives
some functionalities for free:

– the user can delegate his rights to authenticate on behalf of him to any number
of his devices – indeed, the number of group members is typically unlimited,

– the devices are indistinguishable from the point of view of the verifier – this
is the basic feature of group signatures,

– in case of a misbehavior, the user may open a signature and find which device
has created it.

Unfortunately, there are also some drawbacks that have to be addressed.
The main problem is that we have to create separate and unlinkable authen-
tication means for different domains. Creating a new independent group
for each domain separately would solve this problem, however this would
require installing separate keys for each domain on each single device. For prac-
tical reasons this is not really acceptable.
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Unfortunately, existing group signature schemes have been designed having
in mind single groups or a hierarchy of groups with central authorities. In partic-
ular, existing schemes assume that a group of such a hierarchy is identified by a
public key determined by the scheme setup. This makes such schemes unsuitable
for our application. Our aim is therefore to design a group signature scheme in
which group public keys may be derived spontaneously from a domain specific
bit string (e.g. www.some-service.com), a secret key of the group manager, and
with no involvement of PKI infrastructures and/or trusted authorities.

Moreover, group public keys or, as we will call it, domain pseudonyms must
be unlinkable, what means that having two or more domain pseudonyms from
distinct domains it is infeasible to tell whether the pseudonyms correspond to a
group manager.

Such an anonymity notion is known from Domain Pseudonymous Signature
schemes (see e.g. [10]), (see e.g. Direct Anonymous Attestation [11]) and Anony-
mous Credential Systems (see e.g. [12]). What is important, creating new public
keys by a group manager does not require from group members to update their
secret keys or any other information and they might automatically sign data
corresponding to the new public key.

Contribution and Paper Overview. Our main technical contribution is
a new concept of group signatures, where group public keys are domain
pseudonyms which may be derived spontaneously. The particular setting is tai-
lored for the above mention application of delegating authentication chores to
multiple devices of a user.

In Sect. 3 We give a formal definition for our new primitive. This is followed in
Sect. 4 by a relatively efficient construction based on pairings. We give also some
intuition about its security properties and formulate corresponding theorems.
The proofs of these theorems are based on the random oracle model assumption,
which is dictated mainly by efficiency and practical needs of the construction.
In Sect. 4.3 we provide some additional remarks and we show how to apply our
scheme to solve our practical problem.

2 Preliminaries

Bilinear Groups. Let G1, G2 and GT be cyclic groups of a prime order p, gen-
erated by g1 ∈ G1 and g2 ∈ G2. In our scheme we make use of bilinear maps
e : G1 × G2 → GT , which are:

– bilinear : for a, b ∈ Zp, we have e(ga
1 , gb

2) = e(g1, g2)a·b,
– non-degenerate: the element e(g1, g2) ∈ GT is a generator of GT .

Additionally, we require that e and all group operations are efficiently com-
putable.

Throughout the paper we will use Type-3 pairing according to the classi-
fication from [13]. We call a pairing of Type-3, if G1 �= G2 and no efficiently
computable homomorphism between G1 and G2 is known.
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Security Assumptions.

Definition 1 (Discrete Logarithm Problem (DLP)). Let G be a cyclic
group of prime order p with a generator g ∈ G. An algorithm A has advantage ε
in solving the DLP if

Pr[A(g, gα) → α] ≥ ε,

where the probability is taken over the random choice of the generator g ∈ G,
the random choice of α ∈ Zp, and the random bits of A.

We say that the (t, ε)-DL assumption holds in G if no time t algorithm has
advantage ε in solving DLP in G.

Definition 2 (Decisional Diffie-Hellman Problem (DDH)). Let G be a
cyclic group of order p with a generator g ∈ G. An algorithm A has advantage ε
in solving the DDH problem if

|Pr[A(gα, gβ , gα·β) → 1] − Pr[A(gα, gβ , gγ) → 1]| ≥ ε,

where the probability is taken over the random choice of g ∈ G, the random
choice of (α, β, γ) ∈ Z

3
p, and the random bits of A.

We say that the (t, ε)-DDH assumption holds in G, if no time t algorithm
has advantage at least ε in solving the DDH problem in G.

Definition 3 (Symmetric eXternal Diffie-Hellman assumption
(SXDH)). Let G1, G2 be cyclic groups of a prime order and e : G1 ×G2 → GT

be a bilinear map. The SXDH assumption says that the DDH assumption holds
in both G1 and G2.

Definition 4 (Bilinear Decisional Diffie-Hellman Assumption). Let G

be a cyclic group of a prime order and e : G × G → GT be a bilinear map. An
algorithm A as advantage ε in solving the BDDH problem if

|Pr[A(gα, gβ , gγ , e(g, g)α·β·γ) → 1] − Pr[A(gα, gβ , gγ , e(g, g)δ) → 1]| ≥ ε,

where the probability is taken over the random choice of g ∈ G, the random
choice of (α, β, γ, δ) ∈ Z

3
p, and the random bits of A.

We say that the (t, ε)-BDDH assumption holds in G, if no time t algorithm
has advantage at least ε in solving the BDDH problem in G.

Definition 5 (Collusion attack algorithm with q traitors (q-CAA)). Let
G1 and G2 be groups of a prime order p and generated by g1 ∈ G1 and g2 ∈ G2.
Let e : G1 × G2 → GT be a bilinear map which maps into a target group GT .

An algorithm A has advantage ε in solving the q-CAA problem, if

Pr

⎡
⎣ A(g1, gz

1 , (m1, g
1

z+m1
1 ), . . . , (mq, g

1
z+mq

1 ),

g2, g
z
2) → (m, g

1
z+m

1 ) ∧ m �∈ {m1, . . . ,mq}

⎤
⎦ ≥ ε,

where the probability is taken over the random choice of (g1, g2) ∈ G1 × G2,
the random choice of z ∈ Zp, the random choice of (m1, . . . ,mq) ∈ Z

q
p, and the

random bits of A.
We say that (q, t, ε)-CAA assumption holds in (G1,G2), if no time t algorithm

has advantage at least ε in solving the q-CAA problem in (G1,G2).
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3 Formal Model of Pseudonymous Public Key Group
Signature

A Pseudonymous Public Key Group Signature scheme consists of the following
procedures:

Setup(1λ): On input a security parameter λ, it outputs global parameters param.
CreateUser(param): On input the global parameters param, it creates and out-

puts the user’s master secret key mSK.
ComputePseudonym(param,mSK, dom): On input the global parameters param,

the master secret key mSK and a domain name dom, it returns a pseudonym
nym within domain dom for the user holding mSK.

AddDevice(param,mSK, i): On input the global parameters param, the master
secret key mSK and a device identifier i, this procedure returns a device
secret key uSKi.

CreateRevocationToken(param,mSK, dom, i, j): On input the global parameters
param, user index i and his secret key mSK, the domain name dom and a
device identifier j, this procedure computes and outputs a device revocation
token uRTi,j,dom within the domain dom.

Sign(param, uSK, dom,m): On input the global parameters param, a device
secret key uSK, a domain name dom and a message m, it returns a signature
σ on the message m. (Note that we do not require that the pseudonym nym
is used.)

Verify(param, nym, dom, σ,m, uRT ): On input the global parameters param, a
pseudonym nym with regards to a domain name dom, a signature σ on a
message m, and a revocation token uRT , this algorithm returns 1 (accept),
or 0 (reject).

Below we discuss the required properties of Pseudonymous Public Key Group
Signature.

Correctness. A Pseudonymous Public Key Group Signature is correct, if for
every λ ∈ N, param ← Setup(1λ), domain name dom ∈ {0, 1}∗, and message
m ∈ {0, 1}∗, if

mSKi ← CreateUser(param)
uSKi,j ← AddDevice(param,mSKi, j)
nym ← ComputePseudonym(param,mSKi, dom)
uRTi,j,dom∗ ← CreateRevocationToken(param,mSKi, dom

∗, j)
σ ← Sign(param, uSKi,j , dom,m)

then
Verify(param, nym, dom, σ,m,R) = 1 for R �= uRTi,j,dom∗

Verify(param, nym, dom, σ,m, uRTi,j,dom∗) = 0.

In order to define the remaining properties we use the following notation:
USET stands for the list of users and their secret keys, DSET contains triples



Multi-device Anonymous Authentication 27

(i, j, uSK), where i denotes a user index, j is a device index and uSK is its
secret key, CD is a list pointing to corrupted devices and S is a list of signature
query records. Then we define the following oracles used by the adversary during
the security games:

OCreateUser: On input i, if there exists an entry (i, .) in USET , the oracle aborts.
Otherwise the oracle runs mSKi ← CreateUser(param) and adds the pair
(i,mSKi) to USET .

OGetNym: On input dom and i, the oracle finds the secret key mSKi in USET

corresponding to i. If no such entry exists, then the oracle aborts. Otherwise
the oracle computes nymi,dom ← ComputePseudonym(param, mSKi, dom)
and returns nymi,dom.

OAddDevice: On input a user index i and a device identifier j, the oracle finds an
entry (i,mSKi) ∈ USET and checks that (i, j, ·) �∈ DSET . If (i, j, ·) �∈ DSET ,
then the oracle aborts. Then uSKi,j ← AddDevice(param,mSKi, j) and the
oracle adds the tuple (i, j, uSKi,j) to DSET .

OAddCorruptedDevice: On input a user identifier i and a device identifier j, the
oracle finds (i,mSKi) ∈ USET and checks that (i, j, ·) �∈ DSET (if this is
not the case, then the oracle aborts). Otherwise the oracle runs uSKi,j ←
AddDevice(param, mSK, j), adds the tuple (i, j, uSKi,j) to DSET and CD,
and outputs uSKi,j .

OGetRT: On input a user identifier i and his master key mSKi, a device identifier
j and a domain name dom, the oracle checks that (i, j, ·) ∈ DSET , (if this is
not the case, then the oracle aborts). Then the oracle computes uRTi,j,dom

← CreateRevocationToken(param, mSKi, dom, j) and returns uRTi,j,dom.
OSign: On input a user identifier i, a device identifier j, a domain name dom

and a message m, the oracle finds the corresponding secret key uSKi,j in
DSET , (if such an entry does not exist, then the oracle aborts). Otherwise,
the oracle runs σ ← Sign(param, uSKi,j , dom,m), adds (σ,m, dom, j, i) to S
and returns σ.

OCorruptDevice: On input a user identifier i and a device identifier j, the oracle
finds the secret key uSKi,j in DSET corresponding to i and j. (If such an
entry does not exist, then the oracle aborts.) Then the oracle returns uSKi,j

and adds (i, j) to CD.

Unforgeability. This property says that no coalition of malicious devices of a
user can forge a signature on behalf of a device not belonging to the coalition.
We define the unforgeability property by the following experiment:

Experiment UNFS
A (λ):

- (param) ← Setup(1λ).
- O ← {OCreateUser, OGetNym, OAddDevice, OGetRT, OSign, OCorruptUser}.
- (σ∗, m∗, dom∗, nym∗) ← AO(param).
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- If
– Verify(param, nym∗, dom∗, σ∗, m∗, ⊥) = 1 and
– There exists (i, mSKi) ∈ USET , (i, j, ·) ∈ DSET such that

nym∗ = ComputePseudonym(param, mSKi, dom
∗),

uRTi,j,dom∗ ← CreateRevocationToken(param, mSKi, dom
∗, j)

Verify(param, nym∗, dom∗, σ∗, m∗, uRTi,j,dom∗) = 0
(i, j) �∈ CD and (σ∗, m∗, dom∗, j, i) �∈ S,

then the challenger returns 1.
- Otherwise the challenger returns 0.

Definition 6. A Pseudonymous Public Key Group Signature S is (t, ε)-
unforgeable if Pr[UNFS

A (λ) = 1] ≤ ε for any adversary A running in time t.

Seclusiveness. Seclusiveness means that it is infeasible to produce a signature
on behalf of the user and that does not correspond to any device of the user. In
other words, it is infeasible to create a signature that corresponds to none of the
revocation tokens. Seclusiveness is formally defined by the following experiment.

Experiment SECS
A (λ):

- (param) ← Setup(1λ).
- O ← {OCreateUser, OGetNym, OAddCorruptedDevice, OGetRT}.
- (σ∗, m∗, dom∗, nym∗) ← AO(param).
- If

– Verify(param, nym∗, dom∗, σ∗, m∗, ⊥) = 1 and
– there exists (i, mSKi) ∈ USET such that

nym∗ = ComputePseudonym(param, mSKi, dom
∗)

and for all j such that (i, j, ·) ∈ DSET :
uRTi,j,dom∗ ← CreateRevocationToken(param, mSKi, dom

∗, j)
Verify(param, nym∗, dom∗, σ∗, m∗, uRTi,j,dom∗) = 1

the challenger returns 1.
- Otherwise the challenger returns 0.

Definition 7. We say that a Pseudonymous Public Key Group Signature S is
(t, ε)-seclusive, if Pr[SECS

A(λ) = 1] ≤ ε for any adversary A running in time t.

Anonymity. We require that it is infeasible to correlate two signatures of the
same device (unless its revocation token is used). For the anonymity experiment
we define an additional oracle:

OChallenge: This oracle takes as input a bit b, a user index i∗, a domain name
dom∗, two device indexes j∗

0 , j∗
1 and a message m∗. If

– (i∗, ·) �∈ USET or j∗
0 = j∗

1 , or
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– (i∗, j∗
0 , ·) �∈ DSET or (i∗, j∗

1 , ·) �∈ DSET , or
– (i∗, j∗

0 ) ∈ CD or (i∗, j∗
1 ) ∈ CD, or

– the OGetRT oracle was called on input (i∗, j∗
0 , dom∗) or (i∗, j∗

1 , dom∗),

then the oracle returns ⊥ and aborts. Otherwise, the oracle computes σ ←
Sign(param, uSKi∗,j∗

b
, dom∗, m∗) and returns σ.

After calling the OChallenge oracle, the adversary cannot call the OGetRT on input
(i∗, j∗

0 , dom∗) or (i∗, j∗
1 , dom∗), and the OCorruptUser on input (i∗, j∗

0 ) or (i∗, j∗
1 ).

Experiment AnonS
A:

- (param) ← Setup(1λ).
- choose b ∈ {0, 1} at random,
- O ← {OCreateUser, OGetNym, OAddDevice, OGetRT, OSign, OCorruptUser,

OChallenge(b, ·, ·, ·, ·)}.
- b̂ ← AO(param).
- If b̂ = b, then output 1, otherwise output 0.

Definition 8. A Pseudonymous Public Key Group Signature S is (t, ε)-
anonymous if |Pr[AnonS

A(λ) = 1] − 1
2 | ≤ ε for any adversary A running in

time t.

Domain Unlinkability. Informally, domain unlinkability means that it is infea-
sible to correlate two domain pseudonyms with a single user. We will give a
simulation based definition for the domain unlinkability property.

First we need to define the following data structures: D denotes a set of
domain names, UI

SET is the set of user indexes, K denotes an associative map
which maps a pair (dom, i) ∈ {0, 1}∗ ×N into a master secret key from the secret
key space USK. Then we define an associative map UK which maps a tuple
(dom, i, j) ∈ {0, 1}∗ × N

2 into a device secret key.
Then we define the following oracles which implement the ideal functionality,

where the keys of the user for different domains are independent (note that for
Pseudonymous Public Key Group Signature they are the same):

OIdeal
CreateUser: The query requests to create a secret key for the i-th user. If i �∈

{1, . . . , n} or i ∈ UI
SET , then the oracle aborts. Otherwise, the oracle adds i

to UI
SET and for each dom ∈ D, the oracle chooses a secret key mSKi,dom at

random from USK and sets K[(i, dom)] ← mSKi,dom.
OIdeal

AddDevice: The query requests to create the j-th device for user i. For each
dom ∈ D the oracle obtains mSKi,dom ← K[(i, dom)] and runs uSKdom,i,j ←
AddDevice(param,mSKdom,i, j), and sets UK[(dom, i, j)] ← uSKdom,i,j .

OIdeal
GetNym: The query requests the pseudonym of the i-th user with regards to

a domain name dom. If i �∈ UI
SET , then the oracle aborts. If K[(i, dom)] is
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undefined, then the oracle chooses a secret key mSKi,dom ∈ USK at ran-
dom and sets K[(i, dom)] ← mSKi,dom. Then the oracle runs nymi,dom ←
ComputePseudonym(params,mSKi,dom, dom) and outputs nymi,dom.

OIdeal
GetRT: The query requests a revocation token for the j-th device of

user i with regards to a domain name dom. If i �∈ UI
SET , then

the oracle aborts. If UK[(dom, i, j)] is undefined, then the oracle runs
the procedure uSKdom,i,j ← AddDevice(param,mSKdom,i, j), and sets
UK[(dom, i, j)] ← uSKdom,i,j . Then the oracle runs uRTi,j,dom ←
CreateRevocationToken(param,mSKdom,i, dom, j) and outputs uRTi,j,dom.

OIdeal
Sign : The query requests to sign a message m by the j-th device of user

i with regards to a domain name dom. If i �∈ UI
SET , then the oracle

aborts and returns ⊥. If UK[(dom, i, j)] is undefined, then the oracle runs
uSKdom,i,j ← AddDevice(param,mSKdom,i, j), and sets UK[(dom, i, j)] ←
uSKdom,i,j . Finally, the oracle runs σ ← Sign(param, uSKdom,i,j , dom,m) and
returns σ.

Definition 9. We say that a Pseudonymous Public Key Group Signature S is
(t, ε)-domain unlinkable if for any adversary A running in time t we have

| Pr[(param) ← Setup(1λ);AOReal(param)]−
Pr[(param) ← Setup(1λ);AOIdeal(param)]| ≤ ε,

where OReal = {OCreateUser, OAddDevice, OGetNym, OGetRT, OSign} and OIdeal =
{OIdeal

CreateUser, OIdeal
AddDevice, OIdeal

GetNym, OIdeal
GetRT, OIdeal

Sign }.

4 Efficient Construction

4.1 Scheme Specification

In this section we describe our implementation of a Pseudonymous Public Key
Group Signature.

The idea behind the construction is as follows. First a user chooses a
secret key for the Boneh-Boyen signature scheme [14], i.e. z ∈ Zp chosen at
random. This key is then used to compute “pseudonymized” public keys as
nym ← H0(dom)z, where H0 is a hash function and dom is a domain name. The
same key is then used to issue Boneh-Boyen signatures Aj ← g

1/(z+uj)
1 on a

secret key uj ∈ Zp of his device j. Note that according to our security definition
from Sect. 3, the user generates all secret keys for his devices and we do not
define a Join/Issue procedure to ensure exculpability1. We intentionally defined
our group signature scheme in this way due to specific use case.

Now, a device j holding a “certified” secret key (uj , Aj), computes a signa-
ture of knowledge which is based on a Σ-protocol and turned into a signature
scheme using the Fiat-Shamir paradigm. Informally, the signature carries a proof
1 The exculpability property is known from dynamic group signatures [2] and assures

that even the group manager cannot forge signatures on behalf of a user.
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that the signer knows a secret key with a certificate which verifies correctly with
a “pseudonymized” public key nym. The tricky part of our construction is that
the signer does not know the “pseudonymized” public key to which his cer-
tificate verifies. The only information which allows to sign with regards to a
pseudonymized public key is the basis of the public key, i.e. ĝ2 ← H0(dom).

Bellow, we describe our scheme more formally.

Setup(1λ):
1. Choose groups G1, G2 of a prime order p, a bilinear map e : G1 × G2 →

GT , and choose a generator g1
R← G1 at random.

2. Define a hash function H0 which maps into G2 and a hash function H
which maps into Zp.

3. Output the global parameters param = (p,G1,G2, e, g1,H0,H).
CreateUser(param):

1. Choose z ∈ Zp at random and output mSK ← z.
ComputePseudonym(param,mSK, dom):

1. Compute ĝ2 ← H0(dom) and output nym ← ĝ2
z.

AddDevice(param,mSK, i):
1. Choose ui ∈ Zp at random2.
2. Compute Ai = g

1/(ui+z)
1 , return uSK[i] ← (Ai, ui) and store ui for future

use.
CreateRevocationToken(param,mSK, dom, i):

1. Retrieve the user secret key ui, compute ĝ2 ← H0(dom) and return uRT ←
ĝ2

ui .
Sign(param, uSK, dom,m):

1. Compute ĝ2 ← H0(dom).
2. Choose (r1, r2) ∈ Z

2
p at random and compute R1 ← Ar1

i , R2 ← gr2
1 and

R3 ← e(R2, ĝ2)ui .
3. Compute the following signature of knowledge:

S ← SoK{(α, β, γ) : R1 = g
β/(z+α)
1 ∧ R2 = gγ

1 ∧ R3 = e(g1, ĝ2)α·γ}(m)

(a) Choose t1, t2, t3 ∈ Zp at random and compute

T1 ← e(Ai, ĝ2)
−t1·r1 · e(g1, ĝ2)

t2 , T2 ← gt3
1 and T3 ← e(R2, ĝ2)

t1 .

(b) Compute the challenge c = H(param, m, dom, T1, T2, T3).
(c) Compute s1 ← t1 + c · ui, s2 ← t2 + c · r1 and s3 ← t3 + c · r2.
(d) Set S = (c, s1, s2, s3)

4. Output the signature σ = (S,R1, R2, R3).
Verify(param, nym, dom, σ,m, uRT ):

1. Compute ĝ2 ← H0(dom).
2. Parse the signature as σ = (S,R1, R2, R3), where S = (c, s1, s2, s3).

2 This value may be derived in a deterministic way, e.g. ui ← H(z, i).
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3. Restore the values

T̃1 = e(R1, nym)−c · e(R1, ĝ2)−s1 · e(g1, ĝ2)s2

T̃2 = gs3
1 · R−c

2

T̃3 = e(R2, ĝ2)s1 · R−c
3

4. If c �= H(param,m, dom, T̃1, T̃2, T̃3), then return 0 (reject).
5. If e(R2, uRT ) = R3, then return 0 (reject).
6. Return 1 (accept).

Theorem 1. Pseudonymous Public Key Group Signature is correct.

Proof. The proof is simply due the inspection of the following equations:

T̃1 = e(R1, nym)−c · e(R1, ĝ2)−s1 · e(g1, ĝ2)s2 =(
e(R1, ĝ2)−t1 · e(g1, ĝ2)t2

)
· e(R1, nym)−c · e(R1, ĝ2

−c·ui) · e(gc·r1
1 , ĝ2) =

T1 · e(Ar1
i , ĝ2

−c·z · ĝ2
−c·ui) · e(gc·r1

1 , ĝ2) = T1 · e(g1, ĝ2)−r1·c · e(g1, ĝ2)r1·c = T1

T̃2 = gs3
1 · R−c

2 = gt3
1 · gc·r2

1 · g−c·r2
1 = T2

T̃3 = e(R2, ĝ2)s1 · R−c
3 = e(R1, ĝ2)t1 · e(g1, ĝ2)r2·c·ui · e(g1, ĝ2)−r2·c·ui = T3

For the revocation procedure, let uRT ← ĝ2
ui be a revocation token. Then

we have e(R2, uRT ) = e(gr2
1 , ĝ2

ui) = R3.

4.2 Security Analysis

Due to space limitation we give only an intuition behind the security proofs. A
detailed formal analysis is postponed to the full version of the paper.

Zero-Knowledge and Witness Extraction. Our construction is based on a known
technique of using a Σ-protocol converted into a signature scheme via the Fiat-
Shamir heuristic. For such a construction we may show that, in the random oracle
model, there is a witness extractor (so the protocol is a proof of knowledge) and a
simulator (so the protocol is zero-knowledge). Using the witness extractor, from a
forged signature for a pseudonym nym within domain dom, we may extract values
ũ, r̃1, r̃2 and Ã, such that gr̃2

1 = R2, e(R2,H0(dom))ũ = R3 and e(g1,H0(dom)) =
e(Ã,H0(dom)ũ · nym). Using the simulator we may generate a correct signature
having only g1, ĝ2, nym and a revocation token H0(dom)ũ.

Lemma 1. The protocol has an extractor.

Proof. Suppose we can rewind the Prover to the moment when he is given the
challenge c. The Prover will send R1, R2, R3, T1, T2 and T3 and respond with
the challenge c and s1, s2 and s3. Then we rewind to the step when the Prover
obtains c and send a different challenge c′ �= c. The Prover will answer with s′

1,
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s′
2 and s′

3 satisfying the verification equations. Let Δsi = (si − s′
i) for i = 1, 2, 3

and Δc = (c − c′). From the equality

T1 = e(R1, nym)−c · e(R1, ĝ2)
−s1 · e(g1, ĝ2)s2 = e(R1, nym)−c′ · e(R1, ĝ2)

−s′
1 · e(g1, ĝ2)s′

2

we have that

e(R1, ĝ2)−Δs1 · e(g1, ĝ2)Δs2 = e(R1, nym)Δc

e(R1, ĝ2)−Δs1/Δc · e(g1, ĝ2)Δs2/Δc = e(R1, nym)

e(g1, ĝ2)Δs2/Δc = e(R, ĝ2
Δs1/Δc · nym)

e(g1, ĝ2) = e(R(Δs2/Δc)−1

1 , ĝ2
Δs1/Δc · nym)

Then from T2 = gs3
1 · R−c

2 = g
s′
3

1 · R−c′
2 we have

gΔs3
1 = RΔc

2

g
Δs3/Δc
1 = R2

So, we may compute ũ = Δs1/Δc, and r̃1 = Δs2/Δc, r̃2 = Δs3/Δc and Ã =
Rr̃1

−1
such that gr̃2

1 = R2 and e(g1, ĝ2) = e(Ã, ĝ2
ũ · nym).

Finally, from T3 = e(R2, ĝ2)s1 · R−c
3 = e(R2, ĝ2)s′

1 · R−c′
3 we have

e(R2, ĝ2)Δs1 = e(R3, ĝ2)Δc

e(g1, ĝ2)r̃2·ũ = R3.

Lemma 2. The protocol is Zero-Knowledge.

Proof. Given the common input (G1, G2, e, g1, ĝ2, nym), where ĝ2 = H0(dom)
and nym = ĝ2

z for some z ∈ Zp, the simulator works as follows. Choose R3
R← G1

and R2
R← G1. Note that now the value of Ai is fixed by the choice of R3 and

R2. In order to highlight this we may denote R2 = gr2
1 and R3 = e(R2, ĝ2)ui for

some ui ∈ Zp, hence we have A = g
1/(ui+z)
1 . Choose R1

R← G1 at random. See
that R1 = Ar1/(u+z) for some r1, thus the values R1, R2, R3 are distributed as
in a real protocol. Now, the simulator chooses (c, s1, s2, s3)

R← Z
4
p and computes

T1 ← e(R1, nym)−c · e(R1, ĝ2)−s1 · e(g1, ĝ2)s2 ,

T2 ← gs3
1 · R−c

2 and T3 ← e(R2, ĝ2)s1 · R−c
3 .

Obviously, T1, T2 and T3 along with the values c, s1, s2, s3 satisfy the veri-
fication equations. Moreover, R1, R2, R3, c, s1, s2, s3 are uniformly distributed
as in the real executions, so the simulation is perfect.

Theorem 2. If DLP is (ε′, t′)-hard in G2, then the Pseudonymous Public Key
Group Signature is (ε, t)-unforgeable, where ε ≈ qU · n · √

qH(ε′ + 1/p) and t ≈
t′, and n, qU and qH are the upper bounds on the number of invocations of,
respectively, OCreateUser, OAddDevice and hash queries.
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The unforgeability property relies on the DLP problem. Here we put a DL
problem instance Λ ∈ G2 into the revocation tokens of a chosen device. We
may program the random oracle to output grdom

2 ← H0(dom), and then we may
compute the revocation tokens as uRT ← Λrdom . If the adversary successfully
forges a signature for that device, we use the extractor and extract the discrete
logarithm α = logg2

(Λ).

Theorem 3. If q-CAA is (ε′, t′)-hard in G1, then the Pseudonymous Public Key
Group Signature is (ε, t)-seclusive, where ε ≈ n · √qH(ε′ + 1/p), t ≈ t′, and n, q
and qH are the upper bounds on the number of, respectively, OCreateUser, OAddDevice

and hash queries.

Seclusiveness follows from the fact that device secret keys are CAA instances,
i.e. they consist of pairs (u, g

1/(u+z)
1 ) ∈ Zp × G1. If an adversary would forge

a signature, then from the extractor we may obtain a pair (ũ, Ã). If the forged
signature cannot be revoked, then from the revocation equation e(R2, ĝ2

ui) �= R3

follows that ũ �= ui for each device secret key ui issued by the user holding z.
Thus (ũ, Ã), is the solution to the CAA problem instance.

Theorem 4. If BDDH is (ε′, t′)-hard in G1,G2, then the Pseudonymous Public
Key Group Signature is (ε, t)-anonymous, where ε ≈ ε′2

n·qH·q2
U
, t ≈ t′, and n, qU

and qH are upper bounds on the number of, respectively, OCreateUser, OAddDevice

and hash queries.

In order to proof anonymity, we describe a sequence of games. We will start
with a game where the challenge signature is returned by the device j∗

0 (bit
b = 0). Then in each game we change the protocol execution so that the adversary
has only a negligible chance of noticing these changes. Finally, we will end up in
a game where the challenge signature is computed for user j∗

1 (bit b = 1).
The strategy of changing the protocol is as follows. First we need to simu-

late the signatures for all devices. Then, for the j∗
0 -th device, under the BDDH

assumption, we choose these values independently at random. Next, instead of
choosing R1, R2, R3 independently we compute these values as for device j∗

1 .
Below, we shed some light on the step of changing the values of R1, R2, R3 into
random values.

Let (ga
2 , gb

2, g
c
1) be a BDDH problem instance and let dom∗ denote the domain

from the challenge oracle. In all domains dom �= dom∗ we choose rdom at random,
program the hash oracle to output grdom

2 ← H0(dom) and we compute uRT ←
(ga

2 )rdom and R3 ← e(grdom

1 , ga
2 )r2 for device j∗

0 . In domain dom∗, we program the
hash oracle to return gb

2 ← H0(dom∗). Then, we choose r2
R← Zp at random,

compute R2 ← gc·r2
1 and R3 ← e(g1, g2)abc·r2(the current game) or R3 is chosen

at random (the next game). Note that if an adversary would distinguish whether
R3 = e(g1, g2)abc·r2 or R3 is random, then it would break the BDDH assumption.

Theorem 5. If SXDH is (ε′, t′)-hard in G1, then the Pseudonymous Public Key
Group Signature is (ε, t)-domain unlinkable, where ε ≈ ε′ ·qH(qU +n), t ≈ t′, and
n, qU and qH are the upper bounds on the number of, respectively, OCreateUser,
OAddDevice and hash queries.
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Domain unlinkability follows from the fact that we may simulate the sig-
natures for each device and that in each domain we have a distinct base
ĝ2 ← H0(dom). Note that the device revocation tokens are computed as
uRTi,j,dom = ĝ2

uj for a device secret key uj ∈ Zp. In a given domain we may
choose uRTi,j,dom at random. It is easy to see that if an adversary would recog-
nize this change, he would serve as a distinguisher for the SXDH problem. In
the proof, we need to choose revocation tokens of all devices in all domains
at random. Finally, we may use the same reasoning to choose pseudonyms
nym = H0(dom) at random in each domain, finally ending up in an ideal system
as defined in Sect. 3.

4.3 Additional Procedures and Scheme Variants

Here we describe briefly some additional procedures and variations of our scheme,
which may be useful for certain practical situations.

First, note that the signing device needs only to know his private key consist-
ing of an SDH pair (u, g

1/(z+u)
1 ) and nothing else, in order to create a signature.

In particular, the signing device does not need to know the public key, aka the
pseudonym, with which the signature will later be verified. Moreover, it seems
that the signing device alone is not even able to compute the pseudonym by itself.
However, in some cases it may be desirable that the signing device can compute
a pseudonym, what in our case may be nym′ = e(Z, ĝ2), assuming the user also
issues the value Z = gz

1 . Such nym′ may serve as a temporal pseudonym, until
the owner of the device confirms this pseudonym by proving his knowledge of
the secret key z ∈ Zp.

Proving the knowledge of the master key may be required as a part of user
registration. This may be simply done by designing a Σ-protocol [15] which will
prove the knowledge of logg1

(nym). Such standard protocol may be transformed
into a zero-knowledge proof of knowledge protocol or into its non-interactive
version in the random oracle model.

5 Conclusions

Beyond the concrete application case of delegating the rights by a user to multiple
own devices, we have introduced a novel notion for group signature schemes. It
expands the functionality of group signatures by adding the feature that group
public keys may be pseudonyms derived ad hoc.

We have introduced a security framework for our scheme supporting strong
privacy protection on one hand, and revocation capabilities on the other hand.

Finally, we have designed a scheme based on bilinear groups which imple-
ments such a system. Even if it uses bilinear groups and pairings, it is relatively
simple and implementable on relatively weak devices. Note that the user’s root of
trust may be a relatively weak device, since no procedure executed by it requires
computation of pairings. They are needed for signature creation (this can be
done by smart phones) and verification (on strong servers).
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Abstract. Text-based passwords are unable to prevent shoulder-surfing
attacks. In this paper, a new authentication mechanism was introduced
to send out misleading information to attackers when the former entered
its text-based passwords; the latter was unable to decipher the true pass-
words by simply recording or looking at them. The misleading informa-
tion was the pressure values (i.e., pressures exerted by the users) mea-
sured by pressure sensors embedded under the smartphone touchscreens.
The systems detected each pressure value entered by the users and deter-
mined whether it was to be saved (i.e., as a true password) or omitted
(i.e., as misleading information). Regarding this authentication method,
because attackers were unable to know the users’ pressure values, they
were unable to differentiate between true and misleading information and
thus had no way of knowing the users’ actual passwords. In the end, our
authentication mechanism improved the deficiency of current text-based
passwords and enhanced system security.

Keywords: Shoulder-surfing attacks · Graphical password

1 Introduction

Shoulder-surfing attacks signify the practice of spying on the user of a device
to obtain his/her passwords. Methods to protect users from shoulder-surfing
attacks have been proposed in numerous studies: (1) Virtual password. Users
obtain their password via calculations made using mathematical functions [6].
(2) Virtual keyboard. Users are asked to enter their password in advance. Text on
the keyboard is then removed during authentication, preventing attackers from
seeing the text [8]. (3) Graphical password. This type of method uses a graphical
interface as its verification tool, in which buttons are employed to move icons
to the authentication area or range [3–5,9]. (4) Second channel. A second chan-
nel is added to general authentication methods to eliminate shoulder-surfing
attacks. Examples include telling users a verification code via earphones con-
nected to their mobile phones and asking the users to enter the said verification
code [1,2,7].
c© Springer International Publishing AG 2016
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In this study, we introduced a password system that eliminated shoulder-
surfing and recording attacks. In general, users show one of two behavioral pat-
terns (i.e., honest or deceptive) when inputting information. For example, the
former involves the users operating touchscreens in a habitual manner, whereas
the latter involves the users operating the touchscreens in a manner that differs
from their habits. Our system was able to identify users’ behavioral patterns and
separate the two input types into different categories while providing the same
user interface, which enabled us to mislead our attackers.

In this study, a pressure sensor was installed on smartphone touchscreens
to obtain the pressure value when users pressed on the touchscreens. Next, the
users’ behavioral patterns were determined by analyzing pressure value changes
when the users input information. The results were incorporated into an existing
authentication system to improve security. This method was effective because
attackers were unable to steal the users’ behavioral patterns (i.e., pressure values)
by using shoulder-surfing attacks or recording attacks.

The method introduced in this study elevated a system’s defense capabil-
ity against shoulder-surfing attacks, effectively deterred recording attacks, and
reduced a system’s false positive rate. The goals of this study are to enhance
system security while providing users with a quick and convenient authentication
process.

2 An Antishoulder-Surfing Attack-Based Identity
Authentication System for Mobile Devices

In this section, we introduce an antishoulder-surfing attack-based identity
authentication system suitable for touchscreen-based smartphones. The said
system was incorporated into Android screen pattern locks, in which pressure
exerted by users’ fingers on the smartphone touchscreens was used as the basis for
authentication. The method by which the users’ pressure values were recorded is
then explained. This method effectively prevented attackers from learning about
users’ true input values by looking at the users’ passwords and did not require
verification codes be sent via secure channels. Table 1 lists the notations.

2.1 New Methods for Defending Shoulder-Surfing Attacks

In this study, we introduced a new method in which pressure values input by
users (measured by using touchscreen pressure sensors) were used as auxiliary
inputs in addition to passwords. Shoulder-surfing attackers were thus unable
to learn about the said values. Concerning the unit used by the smartphone
pressure sensors to measure pressure values, it was hPa.

Smartphone touchscreens were employed as the users input interface. Because
the amount of pressure exerted by the users’ fingers when operating the touch-
screens differed between letters/numbers/symbols, our method recorded the cor-
responding times and pressure values for each letter/number/symbol input by
the users. Our recording method was divided into five stages and are described
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Table 1. Notations

wi x, y coordinates, pressure, and time of the data input by users;

wi = (xi, yi, gi, Δt)

W Input sequence starting from the time when the user first touched the screen
to the time he/she released his/her finger from the screen;

Wi = {w1, w2, w3, ..., wn}
F Set of input sequences; F = {W1, W2, W3, ..., Wm}
Map() Mesh number converted from x and y coordinates

vi Mesh number converted from the coordinates;

vi = Map(wi) = (Mxi, Myi, gi, Δt)

V Set of mesh numbers Vi = {v1, v2, v3, ..., vn}
G Set of V s; G = {V1, V2, V3, ..., Vm}
v′ Mean pressure value obtained by first removing repeated mesh numbers

and then taking the average of the pressure values

V ′ Set of v′s (repeated mesh numbers removed); Vi
′ = {v1

′, v2′, v3′, ..., vp
′}

G′ Set of V ′s; G′ = {V1
′, V2

′, V3
′, ..., Vq

′}
tui Pressure threshold of user ui

V ′′ Set of V ′s greater than the threshold value; Vi
′′ = {V1

′′, V2
′′, V3

′′, ..., Vq
′′}

G′′ Set of V ′′s

as follows: (1) Record user’s input; (2) Convert coordinates to mesh numbers;
(3) Combine continuous and identical mesh numbers; (4) Differentiate between
pressures exerted (i.e., light and heavy pressure values); and (5) Convert data
into authentication system outputs.

When a user drew a continuous line on the touchscreen (as shown on the left
in Fig. 1, segments with a pressure value greater than the threshold value of t
were represented in red and a subsequent line was generated by our system, as
shown on the right in Fig. 1.

Stage 1: Record User’s Input. The x, y coordinates, pressure, and time of
a series of lines drawn by a user are represented as follows:

wi = (xi, yi, gi,Δt)
Wi = {w1, w2, w3, ..., wn}

F = {W1,W2,W3, ...,Wm}
In which a line drawn by a user when he/she touched the screen and released

his/her finger from the screen (one time) was set as the first input. F represents
the series of lines drawn by the user. Wi was a set of inputs in sequence, whereas
gi and Δt were the corresponding pressure value and time, respectively.
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Fig. 1. Continuous line drawn by user and subsequent line generated by the system
(Color figure online)

Stage 2: Convert Coordinates to Mesh Numbers. Coordinate wi was
converted into a mesh number vi in the authentication system, as shown below:

vi = Map(wi) = (Mxi,Myi, gi,Δt)
Vi = {v1, v2, v3, ..., vn}

G = {{V1, V2, V3, ..., Vm}}

Using the x and y coordinates of wi, the mesh in which wi was located could
be calculated. The size of the mesh was related to the authentication method
used and determined by the authentication system. Assuming that the x and y
coordinates of wi were (4, 5) and that mesh size was 3 ∗ 3 (as shown in Fig. 2,
the mesh number of x and y would be 1 (i.e., 4/3 = 1) and 1 (i.e., 5/3 = 1),
respectively. Therefore, wi would be located in mesh number (1, 1).

Stage 3: Combine Continuous and Identical Mesh Numbers. Continu-
ous and identical mesh numbers were combined and the average pressure value
was calculated. When the mesh number of vi equaled vj , the mean pressure value
was substituted into vi and vj was deleted.

gi =
gi · Δt + gi · Δt

2 · Δt
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Fig. 2. Coordinates and mesh

This produced Vi
′ = {V1

′, V2
′, V3

′, ..., Vq
′} and G′ = {V1

′, V2
′, V3

′, ..., Vq
′}.

input : V
output: V ′

1 i ← 1 ;
2 while i <= |Vi| do
3 j ← i ;
4 while j <= |Vi| do
5 j ← j + 1 ;
6 if (Mxi = Mxj)&(Myi = Myj) then
7 gi = gi·Δti+gj ·Δtj

2·Δti

8 end
9 else

10 continue ;
11 end
12 end
13 Vi

′ = Vi
′ ∪ {vi} ;

14 i ← j ;
15 end

Algorithm 1. Mesh-combining algorithm

Stage 4: Differentiate Between Pressures Exerted (i.e., Light and
Heavy). Each input (i.e., Vi

′) was separated into light or heavy pressure accord-
ing to the threshold value tui

; different threshold values were set for different
users. Only the heavy pressure values (i.e., Vi

′′) were retained and all the Vi
′′s

were grouped to form Set G′′.
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Vi
′′ = {vi

′|gi > tui
}

G′′ = {{V1
′′, V2

′′, V3
′′, ..., Vq

′′}}

Stage 5: Convert into Authentication System Output. G′′ was converted
into authentication system outputs.

2.2 Improved Android Screen Pattern Locks

To unlock Android screen pattern locks, users were required to choose four of
the nine dots (each dot had to be connected to at least one other dot), as
shown in Fig. 3; the dots selected need not be the closest to subsequent dots and
each dot could be chosen only once. Because this authentication method was
prone to shoulder-surfing attacks, it was integrated with the method proposed
in this study. First, the mesh numbers of the nine dots from left to right, top to
bottom were defined as (0, 2), (1, 2), (2, 2), (0, 1), (1, 1), (2, 1), (0, 0), (1, 0),
and (2, 0).

Stage 1: Record User’s Input. In addition to the coordinates drawn by
the user, the pressure values of the coordinates were obtained. The lock pat-
tern selected by the user is shown in Fig. 3. Because Android screen pattern
lock allowed only one input, the user’s input (i.e., F ) contained only one set
(i.e., W1).

W1 = {w1, w2, w3, ..., wn}
F = {W1}

Stage 2: Convert Coordinates to Mesh Numbers. All the coordinates of
W1 (i.e., wis) were converted into mesh numbers (i.e., vi s) to produce Set V1,
which contained all the mesh numbers.

vi = Map(wi) = (Mxi,Myi, gi,Δt)
V1 = {v1, v2, v3, ..., vn} = {(0, 2, 0.21,Δt1), (1, 2, 0.18,Δt2),

(1, 2, 0.18,Δt3), (2, 2, 0.1,Δt4), (2, 1, 0.12,Δt5), (2, 1, 0.12,Δt6),
(2, 0, 0.19,Δt7), (1, 0, 0.2,Δt8), (1, 0, 0.2,Δt9)}
G = {V1} = {{(0, 2, 0.21,Δt1), (1, 2, 0.18,Δt2),

(1, 2, 0.18,Δt3), (2, 2, 0.1,Δt4), (2, 1, 0.12,Δt5), (2, 1, 0.12,Δt6),
(2, 0, 0.19,Δt7), (1, 0, 0.2,Δt8), (1, 0, 0.2,Δt9)}}
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Fig. 3. Android pattern lock interface

Stage 3: Combine Continuous and Identical Mesh Numbers. Continu-
ous and identical mesh numbers were combined, producing the following result:

vi = Map(wi) = (Mxi,Myi, gi,Δt)
V1

′ = {v1
′, v2′, v3′, ..., vp

′} = {(0, 2, 0.21,Δt1), (1, 2, 0.18,Δt2),
(2, 2, 0.1,Δt3), (2, 1, 0.12,Δt4), (2, 0, 0.19,Δt5), (1, 0, 0.2,Δt6)}

G = {V1
′} = {{v1′, v2′, v3′, ..., vp

′} = {(0, 2, 0.21,Δt1), (1, 2, 0.18,Δt2),
(2, 2, 0.1,Δt3), (2, 1, 0.12,Δt4), (2, 0, 0.19,Δt5), (1, 0, 0.2,Δt6)}}

Stage 4: Differentiate Between Pressures Exerted (i.e., Light and
Heavy). Mesh numbers of light pressure values were removed and heavy pres-
sure values retained according to the threshold value tu1 (tu1= 0.15 hPa) to form
V1

′′, which was incorporated into G′′.

V1
′′ = {vi

′‖gi > tui} = {vi
′‖gi > 0.15}

= {(0, 2, 0.21, Δt1), (1, 2, 0.18, Δt2), (2, 0, 0.19, Δt5), (1, 0, 0.2, Δt6)}
G′′ = {V1

′′} = {{(0, 2, 0.21, Δt1), (1, 2, 0.18, Δt2), (2, 0, 0.19, Δt5), (1, 0, 0.2, Δt6)}}

Stage 5: Convert into Authentication System Output. Mesh numbers
with heavy pressure values were retained and connected to produce the following
result (Fig. 4), which differed from the pattern observed by the attacker.

The results showed that despite the attacker seeing the authentication pat-
tern entered by the user, such a pattern differed from the actual pattern
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Fig. 4. Authentication pattern generated by the system
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generated by the system. This confirms that our method can be applied to
Android pattern locks to prevent shoulder-surfing attacks.

3 Experiment and Analysis

Because pressure values differed between users and that pressure threshold set
for each user differed, instances in which the user considered a pressure value to
be light but the system assessed it to be heavy may occur. Therefore, this study
analyzed and investigated the threshold value tu1 .

A total of 10 pressures exerted by 10 users (total: 100 pressure values) were
randomly selected and the average pressure value for each user was taken (as
shown in Fig. 5). According to the figure, the pressure values differed signif-
icantly between different users, in which light pressure values fell at approx-
imately 0.0987 ± 0.05 (hPa) and heavy pressure values fell at approximately
0.1909 ± 0.07 (hPa). In fact, pressure values that were considered light for some
users were heavy for others, signifying considerable differences in light and heavy
pressure values between users. Therefore, different threshold value ranges were
set for different users.

4 Conclusion

In this study, pressure values (i.e., pressures exerted by users) were measured
using pressure sensors embedded under smartphone touchscreens. Such pressure
values were combined with identity authentication methods currently employed
by smartphones to protect users from shoulder-surfing attacks. Because attackers
are unable to differentiate between true and misleading information, the said
authentication system can effectively defend users from shoulder-surfing attacks.

The method introduced in this study can be used by any touchscreen-based
authentication system operated by fingers. The method protects users from leak-
ing their text-based passwords and Android screen pattern locks when they are
shoulder surfed by attackers, elevating their information security. In addition,
attackers are unable to decipher the true passwords even if they have successfully
observed the complete passwords.
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Technology, Taiwan under grant no. MOST 104-2221-E-103-009 and MOST 105-2221-
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Abstract. Most of the mutual authentication protocols with user
anonymity proposed for providing secure roaming service through wire-
less communications are based on smart cards and have to establish
public key cryptosystems in advance. To solve this, Guo et al. firstly pro-
posed an efficient mutual authentication protocol with user anonymity
using smart card for wireless communications. Unfortunately, we will
demonstrate their scheme requires high modular exponential operations
for security issues, and does not allow users to change passwords freely.
Based on modular square root, we propose an efficient remote user
authentication protocol with smart cards for wireless communications.
Compared with others, our protocol is more suitable for mobile devices
and smart-card users.

Keywords: Anonymity · Roaming service · Chaotic map · Modular
square root

1 Introduction

Global mobility network (GLOMONET) provides global roaming service per-
mitting mobile users MU to access the services provided by the home agent in a
foreign network. When a MU roams to a foreign network managed by a foreign
agent FA, it performs authentication with FA, under the assistant of his home
agent HA in the home network. Hence, a remote user authentication scheme
over wireless networking has raised security concerns among MUs and service
providers. Newly, many authentication protocols for GLOMONET were pro-
posed [5,9,12]. In 2011, He et al. developed a strong user authentication scheme
with smart card for wireless communications [2]. Furthermore, most previous
schemes proposed for wireless networks utilized modular exponential computing
and scalar multiplication on elliptic curves to ensure their security [2,5,9,12].
In 2013, based on Chebyshev chaotic maps [11], Guo et al. proposed mutual
c© Springer International Publishing AG 2016
J. Chen et al. (Eds.): NSS 2016, LNCS 9955, pp. 47–61, 2016.
DOI: 10.1007/978-3-319-46298-1 4
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authentication key agreement protocol using smart card for wireless communi-
cations [1], which avoids time-consuming modular exponential computing and
scalar multiplication on elliptic curve cryptosystem in authentication processes.
They claimed their protocol is able to provide user anonymity even though the
adversary could extract the data stored in the smart card [1]. However, we will
show that Guo et al.’s scheme is suffered from the impersonation attack by using
information extracted from his own smart card, and does not allow changing
password freely for MU.

Based on quadratic residue [4,6,8] and one-way hash function, we propose a
new efficient authentication protocol with user anonymity for wireless commu-
nications. Performance analysis shows our proposed mechanism is much better
compared with other protocols [1,2,5,9]. Without any modular exponentiation,
scalar multiplication on elliptic curves, and symmetric encryption/decryption
for MU, the proposed protocol is especially suitable for mobile devices or smart
cards.

In next section, we discuss the security requirements for wireless communi-
cations. In Sect. 3, we introduce the modular square root technique and review
Guo et al.’s scheme. The proposed scheme is presented in Sect. 4. In Sect. 5, the
security and performance analysis of the proposed scheme are stated. In Sect. 6,
we conclude the paper.

2 Background

In wireless networks, MU can access the services provided by HA in a FA and
establish mutual authentication with the corresponding FA. Generally, to design
a strong user authentication scheme in wireless networks should satisfy:

(1) Anonymity of users identity (2) Low communication cost and compu-
tation complexity (3) Confidentiality of the session key (4) User friendly (5)
Password table: No password tables stored in FA or HA to avoid leak-of-verifier
attacks. (6) Update password securely and freely (7) Mutual authentication (8)
Security: Although attackers can obtain the secret information stored in the
smart card, they cannot retrieve the right system secret. (9) Forward and back-
ward secrecy: Even if the intruder obtains the current session key, the secrecy of
previous or future session keys is not affected. (10) Fairness in key agreement:
The session key contains equal contributions from both parties.

Recently, many user authentication schemes with smart card have been pro-
posed for roaming services [1,2,9]. However, most are vulnerable to masquerade
attack, insider attack, password-guessing attack, and could not provide mutual
authentication [2,9]. To overcome these security issues, we propose a mutual
authentication with anonymity for roaming service with smart cards in wireless
communication.
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3 Related Works

3.1 Preliminary

The modular square root (MSR) technique [4,6,8] is built on the quadratic
residues and its property.

Let t be any integer and n ∈ N . Suppose the greatest common divisor of t
and n is 1 (gcd(t, n) = 1). Then t is called a quadratic residue modulo n if the
congruence x2 = t(modn) is soluble. The solutions are called MSR of quadratic
residue t modulo n.

Euler’s Criterion: When p = 3(mod4) and t is a quadratic residue modulo p,
there is a simple formula to compute square roots of quadratic residue t modulo
p as follows:

r1,2 = ±t
p+1
4 (modp). (1)

Based on Euler’s Criterion:

Property 1. Let n = p · q and gcd(t, n) = 1, where p and q are two distinct
odd primes and p = q = 3(mod4). Then t is a quadratic residue modulo n if
and only if t

p−1
2 = 1(modp) and t

q−1
2 = 1(modq).

Under the assumption of Property 1, based on Eq. (1) and the Chinese
remainder theorem, these four modular square roots r1,2,3,4 of a quadratic residue
a modulo n can be computed as follows:

r1,2 = α · q · q∗ ± β · p · p∗(modn) (2)

r3,4 = −α · q · q∗ ± β · p · p∗(modn) (3)

where α = t
p+1
4 (modp), β = t

q+1
4 (modq), p∗ = p−1(modq), and q∗ = q−1(mod

p). Since gcd(p, q) = 1, both p∗ and q∗ can be determined based on the extended
Euclidean algorithm.

The security of MSR is based on the difficulty of extracting modular square
roots of a quadratic residue modulo n (n = p · q) when p and q are unknown. It
is computationally infeasible to factorize n if p and q are large enough.

3.2 Review of Guo et al.’s Protocol

Basic key-agreement protocol of Guo et al.’s is based on the Chebyshev chaotic
map, similar to the Diffie-Hellman key-agreement protocol [7,10]. A session key
can be established between two communication entities, A and B.

(1) User A and B choose a random number x ∈ (−1, 1) together.
(2) A selects a random larger integer r and computes X = Tr(x), and sends X

to B.
(3) B randomly selects a larger integer s and computes Y = Ts(x), and sends Y

to A.
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Fig. 1. Registration phase of Guo et al.’s protocol

(4) A and B could compute the common secret key k = Tr(Y ) = Ts(X) =
Trs(x).

Since Tr(Ts(x)) = Ts(Tr(x)) = Trs(x), A and B could construct the common
secret key for the secure communication. To enhance the security, Zhang proved
that property holds for Chebyshev polynomials defined on interval (−∞,∞)
[11]. In Guo et al.’s scheme, they use the enhanced Chebyshev polynomials:
Tn(x) = 2xTn−1(x) − Tn−2(x) mod N , where n ≥ 2, x ∈ ZN , and N is a large
prime number. And it is obvious that Tr(Ts(x)) = Ts(Tr(x)) = Trs(x).

Guo et al.’s protocol consists of three phases:

(1) Registration phase:
In this phase, HA must choose a public key cryptosystem based on the
Chebyshev chaotic map; the corresponding public key is (x;Ts(x)), and his
private key is s. When a MU wants to register to HA, MU chooses his
identity IDM and password PW , selects a random number b and sub-
mits IDM and h(PW ‖b) to HA for registration over a secure channel. HA
computes V = EKS(IDM ‖h(PW ‖b)) , where KS is a secret key kept by
HA, and issues a smart card to MU over a secure channel containing V ,
x, Ts(x), EK(.) and a one-way hash function h( ). When MU receives the
smart card, he stores b into the smart card. Finally, the smart card contains
{b, V, x, Ts(x), EK(.), h(.)} (Fig. 1).
(2) Mutual authentication and session key agreement phase:
When MU visits a new foreign network, if he wants to access several services
or establish a session with FA, MU and FA must perform mutual authenti-
cation and agree on a session key. Similar to Xu et al.’s protocol [12], HA
pre-shares a distinct symmetric key KHF with FA. As shown in Fig. 2, the
following steps are performed in this phase.

• Step 1. MU inserts his smart card into a card reader and inputs his identity
IDM and password PW . Then, the device selects a random number u and
computes KMH = Tu(Ts(x)) and R = EKMH(hpw ‖V ‖TMU ), where hpw =
(IDM ‖h(PW ‖b)) and TMU is the current timestamp. Then, MU sends an
authentication request message m1 = {IDH , R, Tu(x), TMU} to FA, where
IDH is the identity of the HA.
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• Step 2. FA checks whether the timestamp TMU is valid. If it is, FA
selects a random number v and computes Tv(x). Then, FA computes M =
EKFH(TMU ‖TFA ‖Tu (x) ‖R ‖Tv (x)), where TFA is the current timestamp,
and sends the message m2 = {M} to HA.

• Step 3. HA decrypts M with KHF to recover TMU ‖TFA ‖Tu (x) ‖R ‖Tv (x).
First, HA checks the timestamp TFA with current time. If it is valid, HA
computes KMH = Ts(Tu(x)) with his private key s. Then, HA decrypts
R with KMH to recover hpw, V , and TMU . HA checks whether the TMU is
equal to the previous one that was decrypted from M . If they are correct, HA
decrypts V by using his secret key KS to obtain ID′

M and h′(PW ‖b) . Finally,
HA computes h′

pw = h(ID′
M ‖h′(PW ‖b)) and compares the computed value

of h′
pw with the recovered value of hpw. If they are equal, HA knows MU is

authorized.
• Step 4. HA computes Q = EKHF (TMU ‖TFA ‖Tu(x) ‖Tv (x)) and P =

EKMH(TMU ‖Tu(x) ‖Tv (x) ‖IDF ), and sends the message m3 = {Q,P} to
FA, where IDF is the identity of the FA.

• Step 5. FA decrypts Q with KHF to obtain TFA, TMU , Tu(x), and Tv(x). If
the recovered TFA is equal to the original choice, FA confirms that MU is
authenticated by HA. Then, FA forwards P to MU.

• Step 6. MU decrypts P to recover TMU , Tu(x), Tv(x), and IDF . If the recov-
ered TMU is equal to the previous one and IDF is the assigned FA, MU believes
that the message P is computed from HA. Then, FA is authenticated.

• Step 7. Finally, MU and FA compute their common session key k =
h(TuTv(x)) = h(TvTu(x)).

(3) Password change phase:
To change his password, MU inserts his smart card into a card reader and
performs the following steps:

• Step 1. MU inserts his smart card into a card reader and inputs his identity
IDM and his old password PW and requests to change the password. Then
MU submits his new password PW ∗.

• Step 2. The smart card selects a random number u′ and computes V ′ =
EKMH(IDM ‖h(PW ‖b)) , where KMH = Tu′(Ts(x)). Next, the device sends
the authentication request message {u′, V ′, V } to the corresponding HA.

Fig. 2. The authentication and key agreement phase of Guo et al.’s protocol
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• Step 3. HA computes the session key KMH = Ts(Tu′(x)), and decrypts V ′ =
EKMH(IDM ‖h(PW ‖b)) to obtain IDM and the information h(PW ‖b) .
Then, HA compares whether V = EKS(IDM ‖h(PW ‖b)) . If it holds, HA
computes V ∗ = EKS(IDM‖h(PW

∗ ‖b)) and replaces V with V ∗.

3.3 Weakness of Guo et al.’s Protocol

Guo et al. is based on Chebyshev chaotic maps. In the Chebyshev polynomials:
Tn(x) = 2xTn−1(x) − Tn−2(x) mod N , where n ≥ 2, T0(x) = 1, T1(x) = x,
x ∈ (−∞,∞), and N is a larger prime number. It is obvious that if given x
and s, it is easy to compute Ts(x) = y; however, given y, it is very difficult to
find the exact parameters x and s such that y = Ts(x). There are many pairs x
and s such that y = Ts(x). The probability of obtaining the exact x and s are
equivalent to performing an exhaustive search on y = Ts(x). On the other hand,
from the recurrent relation Tn(x) = 2xTn−1(x) − Tn−2(x) modN , given y and
x, it is computationally tractable to obtain s such that y = Ts(x) when s is not
large enough.

Guo et al. claimed their scheme is efficient since no time-consuming mod-
ular exponential computing and scalar multiplication on elliptic curve cryp-
tosystem are involved in the authentication processes. However, in the reg-
istration phase of Guo et al.’s protocol [1], the mobile user MU’s smart
card contains {b, V, x, Ts(x), EK(.), h(.)}, where V = EKS(IDM ‖h(PW ‖b))
and KS is a secret key kept by HA. Now, suppose the adversary (someone
Ua) could extract the data x and Ts(x) which stored in Ua

′s smart card,
with the communication information of authentication request message m1 =
{IDH , R, Tu(x), TMU}, Ua could be able to find u from the given values x and
Tu(x) when u is not large enough. Similarly, with the communication message
m1 = {IDH , R, Tu(x), TMU}, Ua could compute KMH = Tu(Ts(x)) and decrypt
R = EKMH(hpw ‖V ‖TMU ) with the key KMH when u is not large enough. Thus,
Ua could obtain hpw and V ; then impersonates the mobile user MU for passing
the authentication phase in the future. Hence, Ua could attack and access the
system. In this situation, Guo et al.’s protocol could not provide secure mutual
authentication and key-agreement protocol for roaming service.

With the key KMH, Ua could decrypt the transmitted information P =
EKMH(TMU ‖Tu(x) ‖Tv(x) ‖IDF ) to obtain Tv(x). In this situation, from the
messages Tu(x) and Tv(x), Ua could compute Tv′(Tu(x)) and Tu′(Tv(x)) by
means of the recurrent relation Tn(x) = 2xTn−1(x) − Tn−2(x). If u and v are
not large enough like the Diffie-Hellman key-agreement protocol [3], Ua could be
computationally tractable to derive the common session key k = h(TuTv(x)) =
h(TvTu(x)) for MU and FA. Therefore, Guo et al.’s protocol also relies on the
hard problem of high-degree polynomials when the smart card’s data x and Ts(x)
are extracted. Their scheme still required high modular exponential operations
for the security. Also, MU cannot freely update his password without HA joining
this password change phase.
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4 The Proposed Scheme

In the initialization, HA chooses two distinct large primes p1 and q1 such that
p1 = q1 = 3(mod4) and computes the product n1 = p1 × q1. Next, HA selects
its secret key d. Then, it publishes n1 and h(·) but keeps d, p1, and q1 secret,
where h(·) is a secure one-way hash function with fixed-length output. Similarly,
FA selects two distinct large primes p2 and q2 such that p2 = q2 = 3(mod4) and
computes the product n2 = p2 × q2. And FA publishes n2. In addition, KFH is a
pre-shared secret key between FA and HA. Our scheme consists of three phases:

(1) Registration phase:
When MU wants to access the systems, he selects a password PWM and a
random number bM and computes h(PWM ‖bM ) , where “‖” is string con-
catenation operator. Next, MU submits his identity IDM and h(PWM ‖bM )
to HA for registration.

• Step 1. HA computes u = (h(IDM ‖d) )2 mod n1, C = h(u ‖IDM ), and v =
u ⊕ h(PWM ‖bM ).

• Step 2. Then HA issues a smart card containing {n1, h(·), v, C}, and sends it
to MU through a secure channel.

• Step 3. MU stores the random number bM into the smart card.

(2) Mutual authentication phase:
In this phase, MU and FA perform the mutual authentication as follows:

• Step 1. When MU enters a foreign network managed by FA, MU inserts his
smart card into the smart card reader and inputs his IDM and PWM . Then,
the device calculates u∗ = v ⊕ h(PWM ‖bM ) and C∗ = h(u ∗ ‖IDM ), and
checks whether C∗ = C. If it is not equal, the device terminates this login
request for a period of time. Otherwise, the device selects two random num-
bers na and nb, then computes CID = (IDM ⊕na), A = (IDH

∥∥na)2 mod n1,
B = (IDF

∥∥nb)2 mod n2, and R1 = h(u ∗ ‖na ‖B ‖TM ) , where TM is the
current timestamp of the device. Then, it sends the information m1 =
{A,CID,B,R1, IDH , TM} to FA, where IDH and IDF are the identity num-
ber of HA and FA, respectively.

• Step 2. Upon receiving m1 = {A,CID,B,R1, IDH , TM}, FA first checks
whether the timestamp TM is valid. If it is valid, FA randomly chooses nF

and computes S1 = h(KFH ‖A ‖CID ‖B ‖R1 ‖nF ‖IDF ‖TM ‖TF ) , then for-
wards the information m2 = {A,CID,B,R1, nF , IDF , S1, TM , TF } to HA,
where KFH is a pre-shared secret key between HA and FA and TF is the
current timestamp of FA.

• Step 3. After receiving m2, HA checks the current timestamp TF

with the current time. If it holds, HA computes S∗
1 = h(KFH

‖A ‖CID ‖B ‖R1 ‖nF ‖IDF ‖TM ‖TF ) and checks whether S∗
1 = S1 or not.

If so, HA can obtain the nonce na from MSR of A = (IDH

∥∥na)2 mod n1

with the knowledge of IDH , and computes ID∗
M = CID ⊕ n∗

a, u∗ =
(h(ID∗

M ‖d) )2 mod n1, and R∗
1 = h(u ∗ ‖na ‖B ‖TM ) with its secret key d.
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Next, HA verifies whether R∗
1 = R1 holds. If it holds, HA calculates

R2 = h(u∗ ‖na ‖IDF ‖nF ‖TM ) and S2 = h(KFH ‖nF ‖B ‖R2 ‖TM ‖TF ) ,
then sends the message m3 = {R2, S2} to FA. Otherwise, HA terminates this
request for a period of time.

• Step 4. Upon receiving m3 = {R2, S2}, FA computes S∗
2 =

h(KFH ‖nF ‖B ‖R2 ‖TM ‖TF ) with KFH . Then, FA checks whether the equa-
tion S∗

2 = S2 holds. If it holds, FA believes that MU is authorized. Then,
FA can derive the nonce nb from MSR of B = (IDF

∥∥nb)2 mod n2 with
the knowledge of identity number IDF . Next, FA computes the session
key K = h(nb ‖nF ) and Q = h(K ‖nF ) then delivers the message m4 =
{IDF , nF , R2, Q} to MU.

• Step 5. After receiving m4 = {IDF , nF , R2, Q}, MU computes R∗
2 = h(u ∗

‖na ‖IDF ‖nF ‖TM ) and verifies whether the equation R∗
2 = R2 holds. If it

holds, MU believes that FA is authenticated, and computes the session key
K = h(nb ‖nF ) and Q∗ = h(K ‖nF ). Then, MU verifies whether the equation
Q∗ = Q holds. If it holds, then K is a common session key for securing
communications with FA. Otherwise, MU stops the request.

Through the above steps, both MU and FA can use this common session key
K for the secure communication. Here, K, na, nb and nF are only used once.
The above mutual authentication process is illustrated in Fig. 3.

(3) Updated password phase:
In our method, if MU wants to arbitrarily update his password PWM , he
does not need to register with HA.

Fig. 3. The proposed protocol of mutual authentication phase
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• Step 1. MU inserts the smart card into the smart card reader and then inputs
his IDM and old PWM . Next, the device computes u = v ⊕ h(PWM ‖bM )
and C∗ = h(u ‖IDM ), then checks whether C∗ = C. If it holds, MU chooses
a new password PWM

′ and performs Step 2; otherwise, the device terminates
the login request for a period of time.

• Step 2. Compute v′ = v ⊕ h(PWM ‖bM ) ⊕ h(PW ′
M ‖bM ).

• Step 3. Replace v with v′ on the memory of the smart card. It is accepted
because

v′ = v ⊕ h(PWM ‖bM ) ⊕ h(PW ′
M ‖bM )

= u ⊕ h(PWM ‖bM ) ⊕ h(PWM ‖bM )
⊕ h(PW ′

M ‖bM )
= u ⊕ h(PW ′

M ‖bM ).

5 Discussion

First, we will review some security terms needed for our security analysis.

Definition 1. The difficulty of the integer factoring problem is: suppose n =
p × q, it is computationally infeasible to factorize n when p and q are large
enough.

Definition 2. A secure hash function, h(): x → y, is a one-way function, if
given x, it is easy to compute h(x) = y; however, given y, it is hard to compute
h−1(y) = x.

5.1 Security Analysis

In this section, the security and functionality of the proposed scheme are shown:

(1) Security of the system secret
In our protocol, only HA contains the system secrets d. For a MU, even if
he extracts the data v = u ⊕ h(PWM ‖bM ) and bM from his smart card,
then derives u = v ⊕ h(PWM ‖bM ) with his password PWM , where u =
(h(IDM ‖d) )2 mod n1, MU still needs to solve the factoring problem so as
to find the system secret d. Generally, the length of d is about 512–1024
bits. The probability of obtaining the exact d is equivalent to performing
an exhaustive search on u = (h(IDM ‖d) )2 mod n1. Therefore, it is very
difficult for someone to impersonate HA if not knowing d.
(2) Replay attack
In replay attack, Ua may pretend to be MU by replaying m1 = {A,CID,B,
R1, IDH , TM} to FA; and FA forwards m2 = {A,CID,B,R1, nF ,
IDF , S1, TM , TF } to HA, where KFH is a pre-shared symmetric key
between HA and FA and TF is the current timestamp. However, HA
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could find the attack through checking the validity of S1 = h(KFH

‖A ‖CID ‖B ‖R1 ‖nF ‖IDF ‖TM ‖TF ) with the current timestamps TF

and TM . Similarly, Ua may intercept the messages m3 = {R2, S2}
and m4 = {IDF , nF , R2, Q}, and reply m3 and m4 to FA and MU,
respectively. MU could find the attack through checking the validity
of R2 = h(u ‖na ‖IDF ‖nF ‖TM ) with the timestamp TM . FA could
also find the reply attack through verifying the validity of S2 =
h(KFH ‖nF ‖B ‖R2 ‖TM ‖TF ) with the timestamp TF . It will only lead to
false verification for FA and MU in Steps 4 and 5 of the proposed mutual
authentication phase.
(3) The user anonymity property
In the mutual authentication phase, with m1 = {A,CID,B,R1, IDH , TM},
it is very hard for Ua to derive MU’s IDM from CID and A, where na is a
fresh random value, CID = (IDM ⊕na), and A = (IDH‖na)

2 mod n1. The
security of na is based on the difficulty of extracting MSR of a quadratic
residue modulo n1. And not knowing primes p1 and q1 (n1 = p1 × q1),
Ua cannot trace the same user’s IDM and the nonce na from the value of
A = (IDH‖na)

2 mod n1 and CID = (IDM ⊕na). The random number na is
used one time. Hence, the proposed protocol could resist leaking the logging
of user’s identity if the authentication messages are eavesdropped.
(4) On-line and off-line password guessing attacks
Now suppose the malicious user has the smart card-loss of some MU. From
the above proposed scheme, the malicious user uses this smart card and
inputs ID′

M and guessing the password PW ′
M to perform the mutual authen-

tication with FA and HA. According to Step1 of mutual authentication
phase, the device calculates u′ = v ⊕ h(PW ′

M ‖bM ) and C ′ = h(u′ ‖ID′
M ),

then checks whether C ′ = C. If it is not equal, the device terminates this
login request for a period of time. Hence, the on-line password guessing
attack will not be arisen by the proposed method. A failed guess could be
detected and logged by the device.

Moreover, the proposed scheme could achieve the user anonymity prop-
erty. Even if Ua could eavesdrop all transmitted messages and extract
the data {n1, h(·), v, C, bM} which stored in MU’s smart card, where v =
u ⊕ h(PWM ‖bM ), C = h(u ‖IDM ), and u = (h(IDM ‖d) )2 mod n1. It is
computationally intractable to obtain the same user’s identity IDM and the
nonce na from all transmitted messages of A = (IDH‖na)

2 mod n1 and
CID = (IDM ⊕ na). Therefore, without the right identity IDM and the
password PWM of MU , it is very hard for Ua to perform the off-line pass-
word guessing attack even if the attacker could obtain the secret information
stored in the smart card.
(5) Security of the password
From the proposed mutual authentication protocol, for MU, we can find
the authentication message m1 = {A,CID,B,R1, IDH , TM} only contains
CID = (IDM ⊕ na), A = (IDH‖na)

2 mod n1, B = (IDF

∥∥nb)2 mod n2,
and R1 = h(u ‖na ‖B ‖TM ) , where TM is the current timestamp of
the device. These values do not contain any information about the user’s
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password PWM . This protects the system from off-line password dictionary
searching from the interactive authentication messages.
(6) The impersonation attack
With m1 = {A,CID,B,R1, IDH , TM}, Ua cannot easily derive the exact
IDM and the nonce na from A = (IDH‖na)

2 mod n1 and CID = (IDM ⊕
na). It is protected under the difficulty of the integer factoring problem. The
probability of obtaining the exact IDM and na is equivalent to performing
an exhaustive search on A = (IDH‖na)

2 mod n1 and CID = (IDM ⊕ na).
Without the exact IDM and na, it is computationally intractable for Ua

to impersonate the valid MU. In addition, without the information u =
(h(IDM ‖d) )2 mod n1 of MU, Ua could not calculate the validity of R1 =
h(u ‖na ‖B ‖TM ) for passing the proposed mutual authentication phase. On
the other hand, suppose malicious user has the smart card of some MU, not
knowing the user’s password PWM and IDM , it is very difficult for someone
to impersonate MU.

Similarly, not knowing the secret key KFH , it is difficult for the masked
agents to compute exact S1 = h(KFH‖A‖CID‖B‖R1‖nF ‖IDF ‖TM‖TF )
and S2 = h(KFH ‖nF ‖B ‖R2 ‖TM ‖TF ) , where KFH is a pre-shared sym-
metric key between FA and HA. Getting that far will only lead to false
verification for FA and HA in Steps 3 and 4 of the proposed mutual authen-
tication phase.
(7) The insider attack
In the registration of our method, MU sends the hash value h(PWM ‖bM )
instead of the password PWM to the server side or HA, where bM is a random
number generated by MU. The privileged insider HA cannot easily get the
password.
(8) Forward and backward secrecy
After a successful mutual authentication, the session key K = h(nb ‖nF )
is created for MU and FA. From the transmission information m1 =
{A,CID,B,R1, IDH , TM}, Ua cannot easily obtain the exact nonce nb from
B = (IDF

∥∥nb)2 mod n2. It depends on the difficulty of solving MSR. There-
fore, it is computationally infeasible for Ua to derive the session key K from
B. Even if an intruder obtains the current session key K, it is not easy
for him to obtain the current value nb from K, since it is protected under
the one-way hash function h(·). The probability of obtaining the exact nb is
equivalent to performing an exhaustive search on nb. It is not helpful to find
the system secret d. Moreover, the nonce nb and nF are used once. Therefore,
the intruder cannot derive private messages from the past. For K is used for
one time only, even if the intruder obtains the current session key K, it is
no use for him to obtain the past communication or future transactions.
(9) User friendliness
In our scheme, MU can freely choose his identity IDM and password PWM ,
then submits his identity IDM and h(PWM ‖bM ) to HA for registration.
When MU wants to change his password, he performs the steps in updated
password phase.
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(10) No password/verification table
In the registration phase, HA computes C = h(u ‖IDM ), and v = u ⊕
h(PWM ‖bM ) and stores C and v into the smart card, where C contains
the identity of MU and v contains the corresponding password. When MU
inserts his smart card, the device can determine whether MU is legitimate
with the assistance of the information C and v.
(11) Fairness in key agreement
In our protocol, both MU and FA can compute the session key K =
h(nb ‖nF ).
(12) Mutual authentication
In the proposed protocol, the goal of mutual authentication is to ensure MU,
FA, and HA are legitimate and to establish the session key between MU and
FA for further communications.

(1) Mutual authentication between MU and HA:
In Step 3 of the mutual authentication phase, because A = (IDH

∥∥na)2 mod
n1, only HA can derive the nonce na with the knowledge of IDH , and com-
putes ID∗

M = CID ⊕ n∗
a, u∗ = (h(ID∗

M ‖d) )2 mod n1, and R∗
1 = h(u ∗

‖na ‖B ‖TM ) with its secret key d. Next, HA verifies whether R∗
1 = R1 holds.

If it holds, HA believes MU is authorized. Similarly, in Step 5, upon receiving
the message R2 from FA, MU can compute R∗

2 = h(u∗‖na ‖IDF ‖nF ‖TM )
and verifies whether R∗

2 = R2. If so, HA can be authenticated by MU.
(2) Mutual authentication between FA and HA:

In Step 2 of the mutual authentication phase, FA computes S1 = h(KFH

‖A‖CID‖B‖R1‖nF ‖IDF ‖TM‖TF ), where KFH is shared between FA
and HA. In Step 3, HA computes S∗

1 = h(KFH‖A‖CID‖B‖R1‖nF ‖
IDF ‖TM‖TF ) and checks whether S∗

1 = S1. If so, he ensures the message is
from FA. In Step 4, FA computes S∗

2 = h(KFH ‖nF ‖B ‖R2 ‖TM ‖TF ) with
KFH then checks whether the equation S∗

2 = S2 holds. If so, he ensures the
message is from HA.

(3) Mutual authentication between MU and FA:
In Step 4 of the mutual authentication phase, FA can ensure MU is authen-
ticated by HA. Therefore, FA believes MU is a legitimate user and forwards
R2 to MU. In Step 5, MU computes R∗

2 = h(u ∗ ‖na ‖IDF ‖nF ‖TM ) and
verifies whether the equation R∗

2 = R2 holds. If so, MU believes FA is legit-
imate. In addition, MU can compute the session key K = h(nb ‖nF ) and
Q∗ = h(K ‖nF ). Then MU can reconfirm FA by verifying whether the equa-
tion Q∗ = Q holds.

Finally, we compare the functionality of the proposed scheme with Guo
et al. [1], He et al. [2], Xu et al. [9], and Lee et al. [5].

5.2 Performance Comparison

Guo et al. proposed a new chaotic maps-based mutual authentication and key-
agreement protocol for wireless communications. Their scheme avoids modular
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Table 1. Security and functionality comparisons between our proposed mechanism
and other related protocols

Schemes Ours [1] [2] [9] [5]

Mutual authentication Yes Yes Yes Yes Yes

User friendliness Yes Yes Yes Yes No

No password /verification table Yes Yes Yes Yes Yes

Fairness in key agreement Yes Yes No Yes No

User identity anonymity Yes Yes No Yes No

Withstanding the insider attack Yes Yes Yes No No

Withstanding the smart card-loss case Yes No Yes Yes Yes

Withstanding the replay attack Yes Yes Yes Yes Yes

Confidentiality of the session key Yes Yes No No No

exponential computing or scalar multiplication on elliptic curve that used in
traditional authenticated key agreement protocols using smart cards, which is
more efficient than previously proposed schemes. Therefore, we only compare the
proposed scheme with Guo et al.’s protocol. Compared to the modular exponen-
tiation computation such as MSR or Diffie-Hellman key agreement, the one-way
hash function offer faster computation. Besides, the modular multiplication com-
putation is more efficient than one-way hash function; a MSR computation in zn
needs same amount of computation time as a modular exponentiation operation;
and one-way hash function is more efficient than symmetric encryption or decryp-
tion [6,8]. For efficiency, we define related notations to analyze computational
complexity. The notation S means time complexity of symmetric encryption or
decryption, T denotes time complexity of Chebyshev polynomial computation,
R represents time complexity of MSR, M is time complexity of modular multi-
plication computation, C stands for time complexity of scalar multiplication on
elliptic curve, E expresses time complexity of modulus exponential operation,
and H symbolizes time complexity of executing adopted one-way hash function
in one’s scheme. Note that times for computing modular addition and exclusive-
or are ignored, since they are much smaller than S, T , R, M , C, E and H
(Table 1).

In Table 2, the proposed scheme requires 6H (hash functions) and 2M (mod-
ular multiplication computations) for MU; 1R (MSR computation) and 4H for
FA; and 1R, 5H, and 1M for HA. Obviously, our scheme has better perfor-
mance than Guo et al.’s for MU. Moreover, Guo et al.’s authentication protocol
for roaming service in the global mobility network is still vulnerable when the
smart card’s data x and Ts(x) are extracted. Therefore, the Chebyshev polyno-
mial computation (T ) is still required high modular exponential operations for
the security. In this situation, our scheme could offer more efficiency than Guo
et al.’s scheme in both of FA and HA.
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Table 2. The comparisons of computation performance for MU, FA, and HA between
our proposed mechanism and protocols of Guo et al. [1], He et al. [2], Xu et al. [9], and
Lee et al. [5]

Schemes Ours [1] [2] [9] [5]

MU 6H + 2M 3H + 3T + 1S 10H + 2S 1H + 2E + 3S 2H + 2S

FA 4H + 1R 1H + 2T + 2S 5H + 1S + 3C 2S 1S

HA 5H + 1R + 1M 1H + 1T + 4S 5H + 2S + 3C 1E + 6S 3H + 1S

6 Conclusion

In this paper, we proposed an efficient remote user authentication protocol with
smart cards for wireless communications based on MSR. The proposed method
could resist attacks even when the information stored in the smart card is dis-
closed. Our scheme provides following functions: (1) no password table is required
for designated servers (2) users can freely choose their passwords (3) users can
update their passwords without server or home agent joining (4) user anonymity
property is provided (5) supplies mutual authentication for mobile user, foreign
agent, and home agent (6) session key is generated by user and remote foreign
agent for each session. The computational costs of our scheme are low. Thus,
our scheme is more suitable for mobile clients and smart-card users.
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Abstract. In this paper, we propose an efficient fine-grained access con-
trol system for secure Personal Health Records (PHRs) in cloud com-
puting. In this system, the patients have fine-grained access control
for their health records. The underlying primitive of this system is a
newly designed identity-based conditional proxy re-encryption scheme
with chosen-ciphertext security, which is the first of its kind that achieves
the highest security level. It is also highly efficient. The public parame-
ters size and also, the private key and ciphertext size are constant and
our experimental results indicate that the computational cost does not
rely on the message size.

Keywords: Personal health records · Cloud computing · Fine-grained
access control · Chosen-ciphertext security

1 Introduction

A personal health record (PHR) is a comprehensive electronic version of a
patient’s lifelong health information, which is managed by the patient himself
at any time and at any location as long as there exists a networked device. It
brings out great convenience for the patients to maintain their personal health
records (PHRs). Especially for the emergency care, the doctors need to know
the histories of the patient’s health as soon as possible. Additionally, it greatly
reduces the health-care cost and improves the treatment quality and efficiency.

Cloud computing owns large-scale storage space and huge computing power,
which brings great benefits to many large organizations and individual users.
Now it is widely adopted by all walks of life. In medical treatment, in order to
save storage costs, the patients outsource their PHRs (as shown in Fig. 1) to the
cloud server. However, in a way, it directly makes the patients lost control for
their PHRs. Additionally, not merely the semi-trust cloud server can smoothly
view the patients’ PHRs, even in some cases, their PHRs may be utilized as an
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unauthorized secondary use or a commercial use. Thus, it is necessary to resolve
the problem of the access control and the security for the PHRs of the patients
in the cloud server [8,9].

Usually, to guard against the security risks, it is essential for each patient
to encrypt his/her PHRs ahead uploading their PHRs to the cloud server. Nev-
ertheless, once the PHRs are encrypted, all the authorized users (e.g., family
members, friends, doctors, and health care providers) are hard to access the
patients’ PHRs. Therefore, it is essential to construct a secure PHRs system
with fine-grained access control.

Hospital Records

PHR database

laboratory Records

Progress Notes

Personal Measurements 

Medication Records

History and Physical

Fig. 1. Personal health information
sources

Fig. 2. PKG generates the users’ pri-
vate keys

In order to achieve the access control for the encrypted PHRs, in the early
secure PHRs system [27], the patients encrypt their health records using a sym-
metric encryption scheme, where the encryption key is the same as the decryption
key. In this case, if the patients want to share their PHRs which is encrypted
under the symmetric scheme to the other users, they need to generate a secret
key and distribute the secret key through a secure channel. However, this is a
troublesome problem. With the development of cryptography, the appearance
of the public key encryption [7] had cancelled the key distribution, since it uses
a public key which is public to encrypt a message and a private key which is
secretly kept by the owner to decrypt the encrypted message. But while the
patient shares his PHRs which are encrypted under his public key to the other
users, first the patient needs to download the encrypted PHRs (the ciphertext)
from the cloud server. Then he decrypts the ciphertext with his private key to
obtain the message. Next he encrypts the message under the user’s public key
and uploads the user’s ciphertext to the cloud server. Obviously, it needs huge
computation cost and communication load.

Attribute-based encryption (ABE) [25] is a special public-key encryption, in
which both the private key and the ciphertext are related with the attributes.
It has been at large used to design some access control systems [10,13,17,24,29,
30,35,37]. Currently, there exists some systems with fine-grained access control
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for the patients’ PHRs by employing ABE as a primitive. Here we discuss some
of the state-of-the-art ones [14,18,28].

In 2009, Ibraimi et al. [14] applied a variant of ABE scheme to manage the
patients’ PHRs, which took into consideration the authorized users belong to
either a social domain or a professional domain. In 2010, Li et al. [18] pro-
posed a patient-centric secure PHRs system with fine-grained access control in
multi-owner settings. In their system, the authors divided the users into a pub-
lic domain and a personal domain. In order to reduce the complexity of the
key management, they utilized a multi-authority ABE scheme [3] to manage the
access control of the users in a public domain and employed signal-authority ABE
scheme [10] to manage the access control of the users in the personal domain.
In 2013, they extended their construction to a multiple data owner scenario
[19]. Meanwhile, they provided a formal security proof for their construction
and evaluated the performance of their construction. In 2014, Wang et al. [28]
proposed a cloud-based PHRs system by adopting the ABE scheme for the users
in the public domain and an anonymous multi-receiver identity-based encryp-
tion scheme for the users in the personal domain. However, the computational
cost of the ABE schemes is very high, as it increases with the access structure
complexity and requires a large amount of pairing computations. Especially for
the complexity of the key management for the patients and the users. This may
a main obstacle to put into use the ABE scheme as a primitive in building a
PHRs system.

To obtain an efficient fine-grained access control for secure PHRs in cloud
computing, Leng et al. [16] and Huang et al. [12] respectively proposed an effi-
cient conditional proxy re-encryption (CPRE) scheme [1,4,6,11,15,22,23,26,31–
34,36], in which a semi-trust proxy can transform the patients’ PHRs which is
encrypted under the patient’s public key to the same PHRs which is encrypted
under another user’s public key. In this case, the semi-trust proxy does not
know the patient’s PHRs. However, the two schemes are just in the public key
environment, where it requires a third party (Certificate Authority) to certify
the authenticity of the users’ public keys. And even the two schemes do not
provide the security proofs. Although there exists two CPRE schemes in the
identity-based environment [20,21] and the authors claimed that their schemes
are chosen-ciphertext secure under the standard model. Nevertheless, in the two
schemes, we find that some ciphertext components cannot be verified before run-
ning the transformed algorithm, so that it is hard to achieve chosen-ciphertext
security in the proxy re-encryption setting.

Therefore, we present a cost-efficient and chosen-ciphertext secure condition
proxy re-encryption scheme in the identity-based environment, which directly
develops a secure PHRs system with fine-grained access control function in cloud
computing.

1.1 Contributions

We propose a highly efficient and secure fine-grained access control system for
PHRs in cloud computing. The underlying primitive of the system is a new
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identity-based conditional proxy re-encrypted scheme. It has the following nice
features. First, it is in an identity-based setting, in which an arbitrary string
can be the user’s public key, provided that the string can uniquely identify the
user, such as passport number and email address. Second, this scheme is the
first of its kind to reach the highest security level under a standard assumption:
adaptive chosen-ciphertext security. Third, the scheme is very efficient and the
result of experiment demonstrates that the computational cost is independent
on the plaintext size.

1.2 Organization

The remainder of the paper is organized as follows. In Sect. 2, we present some
fundamental notations and cryptographic definitions. In Sect. 3, we present the
framework of the PHRs system in cloud computing, describe the algorithm of
the underlying scheme and give a secure analysis for the scheme. In Sect. 4, we
simulate the performance of all the algorithms of the underlying scheme. Finally,
we present the conclusion in Sect. 5.

2 Preliminaries

2.1 Bilinear Map

G and GT are two multiplicative cyclic groups with prime order p. The bilinear
map e : G × G → GT has three properties:

– Bilinearity: e(ua, vb) = e(u, v)ab for all u, v ∈ G and ∀a, b ∈ Zp.
– Non-degeneracy: e(g, g) �= 1G, where g is a generator of G.
– Computability: There exists a probabilistic algorithm to compute e(u, v) for

∀u, v ∈ G.

2.2 Decisional Bilinear Diffie-Hellman (BDH) Assumption

The decisional BDH assumption in a bilinear group (p,G,GT , e) is shown as
follows: A challenger takes as input (g, ga, gb, gc, Z) for the unknown a, b, c ←R

Zp. A probabilistic polynomial time (PPT) adversary decides Z = e(g, g)abc

or Z is a random value. The advantage for the PPT adversary A to solve the
decisional BDH assumption is defined:

AdvDBDH
A = |Pr[A(g, ga, gb, gc, e(g, g)abc) = 1] − Pr[A(g, ga, gb, gc, Z) = 1]|.

If the advantage is negligible, the DBDH assumption holds in the bilinear map
(p,G,GT , e).
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2.3 Identity-Based Conditional Proxy Re-encrypt (IBCPRE)

We review the definition and the security notion for the IBCPRE scheme [5,32].
An IBCPRE scheme includes the following seven algorithms:

– Setup(1λ): Given a security parameter 1λ, it outputs the public parameters
params and a master secret key msk.

– Extract(msk, ID): Given the master secret key msk and an identity ID, it
generates a private key skID.

– ReKeyGen(skIDi
, IDj , w): Given a private key skIDi

, an identity IDj , and
a condition w, it generates a re-encryption key rkw|IDi→IDj

from IDi to IDj

associated with w.
– Enc(params, IDi, w,m): Given the public parameters params, an identity

IDi, a condition w and a plaintext m ∈ M, it generates an initial ciphertext
CT(IDi,w) under an identity IDi associated with w.

– ReEnc(rkw|IDi→IDj
, IDj , CT(IDi,w)): Given a re-encryption key

rkw|IDi→IDj
, an identity IDj , and an initial ciphertext CT(IDi,w), it generates

a transformed ciphertext CT(IDj ,w).
– Dec2(skIDi

, CT(IDi,w)): Given a private key skIDi
and an initial ciphertext

CT(IDi,w), it returns a plaintext m or an invalid symbol ⊥.
– Dec1(skIDj

, CT(IDj ,w)): Given a private key skIDj
and a transformed cipher-

text CT(IDj ,w), it returns a plaintext m or an invalid symbol ⊥.

Consistency: For any m ∈ M, skIDi
and skIDj

are generated from
Extract algorithm, it holds that Dec2(skIDi

, CT(IDi,w)) = m and Dec1(skIDj
,

ReEnc(ReKeyGen(skIDi
, IDj , w), IDj , CT(IDi,w))) = m.

Next, we give the security definition for the IBCPRE scheme in the sense
of indistinguishability under chosen-ciphertext attacks (IND-CCA), which is
described by the following game between a challenger C and an adversary A.
Adversary A is able to obtain a series of queries. In spite of this, adversary A
cannot distinguish which message is encrypted from the challenge ciphertext.

– Setup: Challenger C runs (params,msk)←Setup(1λ), then it sends params
to A and keeps msk itself.

– Phase 1: Adversary A adaptively issues a polynomial number of queries:
• Extraction query 〈IDi〉: Challenger C runs Extract(msk, IDi) to obtain a

private key skIDi
and returns it to adversary A.

• Re-encryption key query 〈IDi, IDj , w〉: Challenger C first gets the
private key skIDi

← Extract (msk, IDi) and runs rkw|IDi→IDj
←

ReKeyGen(skIDi
, IDj , w). Then it returns rkw|IDi→IDj

to adversary A.
• Re-encryption query 〈IDi, IDj , CT(IDi,w)〉: Challenger C first gets the

re-encryption key rkw|IDi→IDj
← ReKeyGen(skIDi

, IDj , w) and runs
CT(IDj ,w) ← ReEnc (rkw|IDi→IDj

, IDj , CT(IDi,w)). Then it returns
CT(IDj ,w) to adversary A.

• Decryption query 〈ID,CT(ID,w)〉: Challenger C first gets the private key
skID ← Extract(msk, ID) and runs the decryption algorithm to get the
the result Dec(skID, CT(ID,w)). Then it returns the result to adversary A.
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– Challenge: Adversary A outputs a target identity ID∗, a target condition
w∗ and two distinct plaintexts m0,m1 ∈ M, where |m0| = |m1|. Challenger
C picks β ∈R {0, 1} and returns CT ∗

(ID∗,w∗) = Enc (params, ID∗, w∗,mβ) to
adversary A.

– Phase 2: Adversary A keeps on issuing the queries as in Phase 1, challenger
C responds the queries as in Phase 1. But the difference is that Phase 2 needs
to satisfy the following conditions:

• Adversary A cannot issue the Extraction query on ID∗.
• Adversary A cannot issue the Decryption query on neither 〈ID∗,

CT ∗
(ID∗,w∗)〉 nor 〈IDj , ReEnc(rkw∗|ID∗→IDj

, IDj , CT ∗
(ID∗,w∗))〉.• If adversary A gets skIDj

on IDj , it cannot issue Re-encryption
query on 〈ID∗, IDj , CT ∗

(ID∗,w∗)〉 and the Re-encryption key query on
〈ID∗, IDj , w

∗〉.
– Guess: Adversary A makes a guess β′ ∈ {0, 1} and wins the game if β′ = β.

We define the adversary’s advantage in the above game as AdvIND-IBCPRE-CCA
A =

|Pr[β′ = β] − 1/2|.
Definition 1 (IND-IBCPRE-CCA Security). We say that an IBCPRE scheme
is IND-CCA secure, if for any PPT adversary A, the advantage in the above
security game is negligible, that is AdvIND-IBCPRE-CCA

A ≤ ε.

3 A Fine-Grained Access Control System for Secure
PHRs in Cloud Computing

In this section, we first introduce the framework of the fine-grained access control
system for PHRs in cloud computing. Then we present the underlying scheme
of the system. Finally, we give the security analysis for the scheme.

3.1 System Framework

We describe the framework on how to realize the fine-grained access control for
secure PHRs in cloud computing, which is shown in Fig. 3. The core process is
included the following steps.

1. Encrypt and upload: If a patient has a PHRs database, he encrypts each PHRs
M with a related condition W under his identity IDA and then uploads them
to the cloud server.

2. Transform: When a data user wants to access the patient’s PHRs, the patient
generates a re-encryption key to the the data user IDB under a condition W
and uploads it to the cloud server. Then the cloud server transforms only the
patient’s encrypted PHRs with the same condition W as in the re-encryption
key to the encrypted PHRs under the data user’s identity IDB . The con-
crete process is showed in Fig. 4 and the algorithm is presented in the next
subsection.

3. Download and decrypt: The data user downloads the transformed PHRs
ciphertext and decrypts it by using his private key to obtain the patient’s
PHRs.
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Fig. 3. Fine-grained access control for secure PHRs in clouds

The framework mainly involves four entities. A brief description of the entities
is given below.

– Patient: The patient (data owner) stores his PHRs in cloud server and has
fine-grained access control his PHRs.

– Data User: The data user wants to share the patients’ PHRs. (eg. the
patients’ family members and friends, medical researches or health-care
providers).

– Cloud Server: The cloud server owns huge space to store the encrypted PHRs
and the re-encryption keys and enormous computing power to transform the
encrypted PHRs from the data owner to the data user as shown in Fig. 4. It is
a semi-trust cloud server, so it might be concern about the privacy information
(eg. PHRs) and try to get some secret information.

Fig. 4. Cloud server transforms ciphertext A to ciphertext B
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– Private Key Generator (PKG): The PKG issues the private key to each
user in the fine-grained access control system as shown in Fig. 2.

3.2 Construction

The construction consists of the following seven algorithms.

– Setup(1λ): Given a security parameter 1λ, it first outputs a bilinear group
(p,G,GT , e). Then it chooses a generator g ∈R G, α ∈R Zp and computes
g1 = gα. Next, it chooses six hash functions H1, H2, H3, H4, H5 and H6,
where H1 : {0, 1}∗ → G, H2 : GT × {0, 1}n → Zp, H3 : GT → {0, 1}n,
H4 : {0, 1}∗ × G × GT × {0, 1}n × G → G, H5 : {0, 1}∗ → G and
H6 : {0, 1}n → G, where n is related with 1λ. The public parameters are
params = ((p,G,GT , e), g, g1,H1,H2,H3,H4,H5,H6) and the master secret
key is msk = α.

– Extract(msk, ID): Given the master secret key msk and an identity ID, it
computes QID = H1(ID) and sets the private key as skID = Qα

ID.
– Enc(params, IDi, w,M): Given the public parameter params, an identity

IDi, a condition w and a message M from the message space M, it picks
δ ∈R GT and sets r = H2(δ||M), A = gr, B = δ · e(g1,H1(IDi))r, C = H3(δ)
⊕ M , D=H5 (IDi||w)r, S = H4(IDi||A||B||C||D)r. Then it outputs an initial
ciphertext CT(IDi,w) = (A,B,C,D, S,w).

– ReKeyGen(skIDi
, IDj , w): Given the private key skIDi

, an identity IDj

and a condition w, it first picks θ ∈R M, δ′ ∈R GT and sets r′ = H2(δ′||θ),
rk1 = gr′

, rk2 = δ′ ·e(g1,H1(IDj))r′
, rk3 = H3(δ′)⊕θ. Then, it picks s ∈R Zp

and sets RK1 = skIDi
·H5(IDi||w)s ·H6(θ), RK2 = gs. Fianlly, it outputs the

re-encryption key rkw|IDi→IDj
= (rk1, rk2, rk3, RK1, RK2).

– ReEnc(rkw|IDi→IDj
, IDj , CT(IDi,w)): Given the re-encryption key, the iden-

tity IDj and the initial ciphertext CT(IDi,w), it first checks whether
e(SD, g) = e(H4(IDi||A||B||C||D)H5(IDi||w), A). If not, it outputs ⊥. Oth-
erwise it computes B′ = B · e(D,RK2)/e(A,RK1) = δ/e(A,H6(θ)). Then it
outputs the transformed ciphertext CT(IDj ,w) = (A,B′, C, rk1, rk2, rk3).

– Dec2(skIDi
, CT(IDi,w)): Given the private key skIDi

and the initial cipher-
text CT(IDi,w), it first checks whether e(SD, g) = e(H4(IDi||A||B||C||D)
H5(IDi||w), A). If not, it outputs ⊥. Otherwise, it computes δ =
B/e(A, skIDi

) and M = H3(δ) ⊕ C. Then it checks whether A = gH2(δ||M). If
not, it outputs ⊥. Otherwise it outputs M .

– Dec1(skIDj
, CT(IDj ,w)): Given the private key skIDj

and the transformed
ciphertext CT(IDj ,w), it first computes δ′ = rk2/e(rk1, skIDj

) and θ = H3 (δ′)
⊕ rk3. Then it checks whether rk1 = gH2(δ

′||θ), if not, it outputs ⊥; else it
computes δ = B′ · e(A,H6(θ)) and M = H3(δ) ⊕ C. Finally, it checks whether
A = gH2(δ||M). If not, it outputs ⊥. Otherwise it outputs M .

3.3 Security Analysis

In the following, we prove that our construction is IND-IBCPRE-CCA secure in
the random oracle model.
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Theorem 1. Suppose that the decisional BDH assumption holds in a bilinear
group (p,G,GT , e). Then the above IBCPRE scheme is IND-CCA secure in the
random oracle model.

Concretely, if adversary A with a non-negligible advantage against the above
IBCPRE scheme, then there exists a challenger C to solve the DBDH assumption
with a non-negligible advantage.

Proof. Suppose that adversary A has non-negligible advantage to attack the
above IBCPRE scheme. We can build a PPT challenger C that makes use of A to
solve the DBDH problem. Challenger C is given a DBDH instance (g, ga, gb, gc, Z)
with unknown a, b, c ∈ Zp, challenger C’s aim is to decide Z = e(g, g)abc or Z is
a random value. Challenger C works by interacting with A in the above security
game as follows:

– Setup: Adversary A is given the public parameters params = ((p,G,GT , e), g,
g1,H1,H2,H3,H4,H5,H6), where g1 = ga and H1,H2,H3,H3,H4,H5,H6 are
random oracles managed by challenger C. The master secret key a is unknown
to challenger C.

– Phase 1: Adversary A adaptively asks the following queries:
Hash Oracle Queries. Adversary A freely queries Hi with i ∈
{1, 2, 3, 4, 5, 6}. Challenger C maintains six hash tables Hi-list with i ∈
{1, 2, 3, 4, 5, 6}. At the beginning, the tables are empty. Challenger C replies
the queries as follows:

• Hash1 Query (IDj): If IDj is on the H1-list in the form of
〈IDj , Qj , qj ,�j〉, challenger C returns the predefined value Qj . Other-
wise, it chooses qj ∈R Zp and generates a random �j ∈ {0, 1}. If �j = 0,
challenger C computes Qj = gqj ; else it computes Qj = gbqj and adds
〈IDj , Qj , qj ,�j〉 into the H1-list, and then it returns Qj .

• Hash2 Query (δ||M): If 〈δ||M〉 is on the H2-list in the form of 〈δ||M, r, gr〉,
return r. Otherwise, challenger C selects r ∈R Z∗

p and adds 〈δ||M, r, gr〉
into the H2-list, then it returns r.

• Hash3 Query (δ ∈ GT ): If δ is on the H3-list in the form of 〈δ,X〉, chal-
lenger C returns X. Otherwise, it chooses X ∈R {0, 1}n and adds 〈δ,X〉
into the H3-list, then it returns X.

• Hash4 Query (IDj ||A||B||C||D): If 〈IDj ||A||B||C||D〉 is on the H4-list
in the form of 〈IDj ||A||B||C||D,Tj , tj〉, challenger C returns the value
Tj . Otherwise, it chooses tj ∈R Zp, computes Tj = gtj and adds
〈IDj ||A||B||C||D,Tj , tj〉 into the H4-list, and then C returns Tj .

• Hash5 Query (IDj , wj): If 〈IDj , wj〉 is on the H5-list in the form of
〈IDj ||wj , Q̂j , q̂j , �̂j〉, challenger C returns the value Q̂j ; Otherwise, it picks
q̂j ∈R Zp and �̂j ∈R {0, 1}. If �̂j = 0, challenger C computes Qj = gq̂j ;
else it computes Qj = gbq̂j . Challenger C adds 〈IDj ||wj , Q̂j , q̂j , �̂j〉 into
the H5-list, and then it responds with Q̂j .

• Hash6 Query (θ ∈ {0, 1}n): If θ is on the H6-list in the form of 〈θ, Y 〉,
challenger C returns the value Y ; Otherwise, it chooses Y ∈R G and adds
〈θ, Y 〉 into the H6-list, and then challenger C returns Y .
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Extraction query (IDj): Challenger C recovers the tuple 〈IDj , Qj , qj ,�j〉
from the H1-list. If �j = 1, challenger C outputs ⊥ and aborts; Otherwise,
challenger C returns skIDj

= g
qj
1 to adversary A. (Note that skIDj

= g
qj
1 =

gaqj = Qa
j = H1(IDj)α, so that this is a proper private key for the identity

IDj).
Re-encryption key query (IDi, IDj , w): Challenger C first picks δ′ ∈R GT ,
θ ∈R {0, 1}n and recovers 〈IDi, Qi, qi,�i〉 and 〈IDj , Qj , qj ,�j〉 from the H1-list
and 〈δ′||θ, r′, gr′〉 from the H2-list, 〈δ′,X〉 from the H3-list, 〈IDi||wi, Q̂i, q̂i, �̂i〉
from the H5-list and 〈θ, Y 〉 from the H6-list. Lets rk1 = gr′

, rk2 = δ′ ·e(g1, Qj)r′
,

rk3 = X ⊕ θ. Then challenger C constructs RK1, RK2 as follows:

• If �i = 0, challenger C picks s ∈R Zp and lets RK1 = gqi
1 ·Q̂i

s ·Y , RK2 = gs.
• If �i = 1 and �̂i = 1: challenger C sets RK1 = gbq̂is

′ · Y , RK2 = g
−qi/q̂i
1 gs′

,
where s = −aqi/q̂i + s′.

• If �i = 1 and �̂i = 0: challenger C outputs ⊥ and aborts.

Finally, challenger C returns the re-encryption key rkw|IDi→IDj
= (rk1, rk2,

rk3, RK1, RK2) to adversary A.
Re-encryption query (IDi, IDj , CT(IDi,w)): Their exists the following cases
to generate the re-encrypted ciphertext:

• If �i = 1 and �̂i = 0, challenger C first parses the ciphertext CT(IDi,w)

as (A,B,C,D, S,w) and checks whether e(SD, g) = e(H4(IDi||A||B||C||D)
H5(IDi||w), A). If not, it returns ⊥. Otherwise, challenger C checks whether
there exists a tuple 〈δ||M, r, gr〉 from the H2-list such that A = gr. If no, it
returns ⊥. Otherwise, C recovers the tuple 〈IDj , Qj , qj ,�j〉 from the H1-list
and 〈δ′,X〉 from the H3-list, and then it picks θ ∈R {0, 1}n, δ′ ∈R GT and
sets r′ = H2(δ′||θ), rk1 = gr′

, rk2 = δ′ · e(g1, Qj)r′
, rk3 = X ⊕ θ. Next, C

recovers the tuple 〈θ, Y 〉 from the H6-list and sets B′ = δ/e(A, Y ). Finally,
C outputs the transformed ciphertext CT(IDj ,w) = (A,B′, C, rk1, rk2, rk3) to
adversary A.

• Otherwise, challenger C first queries the re-encryption key to get
rkw|IDi→IDj

, and then it runs the ReEnc (rkw|IDi→IDj
, IDj , CT(IDi,w))

algorithm to obtain the transformed ciphertext CT(IDj ,w). Finally challenger
C returns the transformed ciphertext CT(IDj ,w) to adversary A.

Decryption query (ID,CT(ID,w)): Challenger C checks whether CT(ID,w) is
an initial or a transformed ciphertext.

• For an initial ciphertext, challenger C first extracts CT(ID,w) as (A,B,C,
D,S,w). Then challenger C recovers a tuple 〈ID,Q, q,�〉 from the H1-
list. If � = 0 (meaning skID = gq

1), challenger C decrypts the cipher-
text CT(ID,w) using skID; Otherwise, challenger C first checks whether
e(SD, g) = e(H4(ID||A||B||C||D)H5(ID||w), A) holds. If no, it returns ⊥;
else challenger C searches the tuple 〈δ||M, r, gr〉 from the H2-list such that
A = gr. If it cannot find such tuple, it returns ⊥; else searches whether
there exists a tuple 〈δ,X〉 from the H3-list, a tuple 〈ID||w, Q̂, q̂, �̂〉 from
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the H5-list and a tuple 〈ID||A||B||C||D,T, t〉 from the H4-list, such that
M ⊕X = C, Q̂r = D and T r = S. If not, it returns ⊥; Otherwise, challenger
C returns M to adversary A.

• For a transformed ciphertext, challenger C first parses CT(ID,w) as (A,B′,
C, rk1, rk2, rk3). Then challenger C recovers tuple 〈ID,Q, q,�〉 from the H1-
list. If � = 0 (meaning skID = gq

1), challenger C decrypts the ciphertext
CT(ID,w) using skID; Otherwise, challenger C searches whether there exists
a tuple 〈δ′||θ, r′, gr′〉 from the H2-list such that rk1 = gr′

. If not, it returns ⊥;
else searches whether there exists a tuple 〈δ′,X〉 from the H3-list and a tuple
〈ID,Q, q,�〉 from the H1-list such that θ ⊕ X = C and δ′ · e(g1, Q)r′

= rk2.
If not, it returns ⊥; Otherwise, challenger C recovers 〈θ, Y 〉 from the H6-list,
and it computes δ = B′ · e(A, Y ) and M = H3(δ) ⊕ C. Finally, challenger C
returns M to adversary A.

– Challenge: Adversary A outputs an identity ID∗, a condition w∗ and two
different plaintexts M0,M1, where |M0| = |M1|. Challenger C recovers the
tuple 〈ID∗, Q∗, q∗,�∗〉 from the H1-list and a tuple 〈ID∗||w∗, Q̂∗, q̂∗, �̂∗〉
from the H5-list. If �∗ = 0 or �̂∗ = 1, challenger C outputs ⊥ and
aborts; else challenger C first picks β ∈R {0, 1}, δ∗ ∈R GT , X∗ ∈R

{0, 1}n, and then it inserts the tuple 〈δ∗,X∗〉 into the H3-list and the
tuple 〈δ∗,Mβ , ·, gc〉 into the H2-list. Next challenger C sets A∗ = gc,
B∗ = δ∗ · T q∗

, C∗ = X∗ ⊕ Mβ ,D∗ = gĉq∗ and selects t∗ ∈R Zp, and
then it inserts the tuple 〈ID∗||A∗||B∗||C∗||D∗, gt∗

, t∗〉 into the H4-list,
and sets S∗ = gct∗

. Finally, challenger C sends the challenge ciphertext
CT ∗

(ID∗,w∗) = (A∗, B∗, C∗,D∗, S∗) to adversary A.
– Phase 2: Adversary A continues to adaptively issue queries as in Phase 1. But

it needs to satisfy the conditions which are described the above security
model.

– Guess: Adversary A outputs a guess β′ ∈ {0, 1}.

4 Performance Evaluation

In this section, we simulate the experiment of the underlying primitive of the
fine-grained access control system for the secure PHRs in cloud computiong,
that is the the above identity-based conditional proxy re-encryption (IBCPRE)
construction. The results of the experiments are shown in Fig. 5. To simulate
all the experiments, all the programs were implemented on a Win7 PC with
Inter(R) Core(TM) i5-3470 CPU @ 3.20 GHz processor and 4G DDR3-RAM.
In software, we use the jPBC library [2] and the JDK 1.7 to implement the
underlying primitive (IBCPRE). In order to achieve the practical function, we
choose an elliptic cure group with 160-bit pairing type-A.

In our experiments, we first set the size of the message to be many different
values respectively. Then for each value, we evaluated the running time of the
Enc algorithm, the ReEnc algorithm, the Dec1 algorithm and the Dec2 algorithm,
which are shown in Fig. 5. Meanwhile, we have tested the average running time
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of the ReKeyGen algorithm as shown in Fig. 5. It is easy to find that the run-
ning time of the Enc algorithm, the ReEnc algorithm, the Dec1 algorithm and
the Dec2 algorithm is almost constant, which means that the running time of
these algorithms are independent of the message size. The encryption time is
more than the time of the ReEnc algorithm and the two decryption algorithm.
But it is still very efficient. Its average running time is just 125 ms, which is no
matter how large the message. The average running time of the ReEnc algorithm,
the Dec1 algorithm and the Dec2 are 54 ms, 64 ms and 63 ms respectively. We
also evaluate the performance of the ReKeyGen algorithm. We run the ReKeyGen
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algorithm 120 times and get the average time is about 108 ms. It is also very
efficient.

5 Conclusion

In this paper, we propose an identity-based conditional proxy re-encryption
encryption scheme with adaptive chosen-ciphertext security, which is the highest
security level of its kind under the standard (DBDH) assumption. The scheme is
very efficient. It is almost constant regardless of the size of the plaintext. Based
on our scheme, we design a fine-grained access control system for secure PHRs in
cloud computing. We believe that this system meets the practical requirements.
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Abstract. Reducing energy consumption has become an important task
in cloud datacenters. Many existing scheduling approaches in cloud data-
centers try to consolidate virtual machines (VMs) to the minimum num-
ber of physical machines (PMs) and hence minimize the energy con-
sumption. VM live migration technique is used to dynamically consoli-
date VMs to as few PMs as possible; however, it introduces high migra-
tion overhead. Furthermore, the cost factor is usually not taken into
account by existing approaches, which will lead to high payment cost
for cloud users. In this paper, we aim to achieve energy reduction for
cloud providers and payment saving for cloud users, and at the same
time, without introducing VM migration overhead and without compro-
mising deadline guarantees for user tasks. Motivated by the fact that
some of the tasks have relatively loose deadlines, we can further reduce
energy consumption by proactively postponing the tasks without wak-
ing up new PMs. In this paper, we propose a heuristic task schedul-
ing algorithm called Energy and Deadline Aware with Non-Migration
Scheduling (EDA-NMS) algorithm. EDA-NMS exploits the looseness of
task deadlines and tries to postpone the execution of the tasks that have
loose deadlines in order to avoid waking up new PMs. When determining
the VM instant types, EDA-NMS selects the instant types that are just
sufficient to guarantee task deadline to reduce user payment cost. The
results of extensive experiments show that our algorithm performs bet-
ter than other existing algorithms on achieving energy efficiency without
introducing VM migration overhead and without compromising deadline
guarantees.

Keywords: Virtualized cloud · Real-time task · Scheduling ·
Criticality · Energy-aware

1 Introduction

Cloud computing is one of the fastest evolving paradigm in the domain of com-
puter science. Cloud serves as powerful computing platforms for a wide range
c© Springer International Publishing AG 2016
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of applications, such as meteorological prediction, genomic analysis, real-time
complex physics simulations, monitoring watershed parameters through soft-
ware services, and biological and environmental assistance [15]. Consequently,
tens of thousands of hosts in a cloud datacenter consume enormous amount
of energy. Therefore, reducing energy consumption has become an important
task when deploying and operating cloud datacenters. In a virtual cloud com-
puting environment, a set of submitted tasks from different users are sched-
uled on a set of virtual machines (VMs), and the task scheduling has become
a critical issue for achieving energy efficiency. Previous energy-aware schedul-
ing approaches [6,12,16,20,22] try to consolidate VMs to the minimum number
of physical machines (PMs) to minimize the energy consumption, which how-
ever introduces high migration overhead. Figure 1(a) illustrates how existing task
scheduling algorithms use VM migrations to further save energy. Suppose we are
scheduling three tasks to the VMs in a datacenter. The first-in-first-out (FIFO)
scheduling algorithm will create a VM for each task consequently. As each PM
has two VM slots, the scheduling will end up with using two PMs as show in
the figure. As task 2 is short, it will finish soon. After that, two tasks (e.g., task
1 and task 3) occupy two PMs. In order to reduce energy consumption, VM 3
can be migrated to PM 1 so that PM 2 can be shut down. A primary fraction of
computing applications in cloud datacenters are real-time tasks [6], which have
timing requirements on the response results. The arrival times of these tasks
are dynamic and the predictions of their execution duration can also be diffi-
cult and sometimes impossible [3]. Users usually prefer that their task execution
must be finished within a given deadline constraint. Motivated by the fact that
some of the tasks have relatively loose deadlines, we can further reduce energy
consumption by proactively postponing the tasks without waking up new PMs.
Also, we no longer need VM migration to reduce energy consumption, thus the
VM migration overhead is reduced. Figure 1(b) illustrates how arranging task
with respect to their deadlines can help in eliminating VM migrations. Take the
same scheduling problem as an example. As task 2 is short, we expect that it
will finish executing soon. On the other hand, as task 3 does not have a stringent
deadline, we can proactively postpone its execution. We schedule task 3 to VM
2 in PM 1. In this case, we no longer need the VM migration in Fig. 1(a) when
VM 2 finishes execution.

In this paper, we propose a heuristic task scheduling algorithm called Energy
and Deadline Aware with Non-Migration Scheduling (EDA-NMS) algorithm.
EDA-NMS aims to provide a solution for achieving energy reduction for cloud
providers without compromising deadline guarantees for user tasks. EDA-NMS
exploits the looseness of task deadlines and tries to postpone the execution of
the tasks with loose deadlines in order to avoid waking up new PMs.

In order to maximally satisfy user requests with different priorities, the pro-
posed approach also introduces the concept of real-time criticality to accelerate
the scheduling of priority tasks with stringent deadline constraints. Criticality
is a different dimension than hard or soft characterization of a task, which is a
measure of the cost of a failure(the higher the cost of failure, the more critical the
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Fig. 1. Task scheduling examples.

task) [13]. If two tasks have the same deadline, the task with higher criticality
should be scheduled first. When determining the VM instant types, EDA-NMS
selects the instant types that are just sufficient to guarantee task deadline to
reduce user payment cost. EDA-NMS gives higher priority to guaranteeing task
deadlines than reducing energy consumption.

The key contributions of this paper are as follows:

– We propose an energy-saving EDA-NMS algorithm that reduces the num-
ber of running PMs and avoids VM migration by exploiting the looseness of
task deadlines without compromising task schedulability (i.e., the condition
of being schedulable) and throughput.

– We conduct extensive simulation-based experiments to evaluate and analyze
the performance of the proposed task scheduling algorithm. The results show
that the proposed heuristic task scheduling algorithm not only reduces energy
consumption, but also improves the completion time of real-time tasks.

2 Related Work

A significant amount of research efforts has been devoted to investigating the
task scheduling in the cloud systems over last decade. Qiu et al. [16] stud-
ied the problem of assigning computing units to each task in a system to
achieve energy savings at a minimum cost. Hosseinimotlagh et al. [12] proposed
a VM scheduling algorithm based on the unsurpassed utilization level, which
achieves optimal energy consumption while meeting a given QoS. It focuses on
increasing the acceptance rate of arrival tasks but ignores the type of work-
loads running in VMs which affects the QoS guarantee of scheduling algorithm.
Besides these works, most existing cloud schedulers, such as FIFO scheduling in
Hadoop MapReduce [9], Fair scheduler in Facebook [7] and Capacity scheduler
in Yahoo [21] schedule tasks based on worst-case execution time while ignoring
dynamically changing cloud computing environments. As a result, they fail to
fully utilize the resource. In other word, those approaches assume that cloud
computing environments are deterministic and pre-computed schedule decisions
will be statically followed during schedule execution. Unlike those approaches,
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we leverage interval numbers to capture the dynamically changing cloud resource
parameters to improve resource utilization.

Several scheduling works also address the problem of ensuring user dead-
lines as defined in Service Level Agreements (SLAs). Chen et al. [6] proposed
a real-time scheduling strategy that allows executing only one task at any time
instant on each VM. When the number of tasks increases, it needs vast VMs
instants that will produce a lot of static energy consumption. Zhu et al. [22]
presented a rolling-horizon optimization policy, which reduces energy consump-
tion in virtualized data centers by supporting VM migration and VM placement
optimization. These works reduce static energy consumption by migrating VMs
between PMs. However, these works ignore the incurring VM migration overhead
on the servers as well as the network infrastructure of the cloud. In contrast to
previous researches, we propose the heuristic task scheduling algorithm to reduce
static energy consumption. The total energy consumption consists of two parts:
dynamic energy consumption and static energy consumption. The static energy
consumption is the energy consumed by a host during idle time. The dynamic
energy consumption is the extra energy consumed by a host when it is busy.
As static energy consumption is dominant, our work focuses on reducing static
energy consumption (i.e., reducing the number of active PMs). The proposed
heuristic achieve reduce energy by selecting different types of VM instances with
varying computing capacities for the tasks (i.e., we are actually adjusting execu-
tion speeds of real-time tasks, and consolidating these tasks into fewer number
VMs, hence fewer number of PMs). As a result, it does not need to migrate
VMs from an under-loaded host (PM) to other hosts (PMs). Furthermore, it
also provides guarantees for the real-time tasks deadlines.

There are also some works that focus on the energy consumption model. The
DVFS-enabled scheduling algorithms offers the minimum amounts of required
CPU utilization to each task, and hence reduces the dynamic energy consump-
tion as much as possible [5,18]. He et al. [10] developed a new energy-efficient
adaptive scheduling algorithm (EASA) that can adaptively adjust supply volt-
ages according to the system workload for dynamic energy efficiency. Most of
previous research works like DVFS-enabled scheduling, focus on reducing the
dynamic energy consumption as low as possible. However, the static power will
last for a long time even for executing a low-speed task [11].

3 Model and System Architecture

In this section, we introduce the scheduling system architecture and three math-
ematical models: (i) the finishing time of a task, (ii) the laxity of a task, and
(iii) the energy consumption of local a provider. These models will be used in our
scheduling algorithm. Specifically, the scheduling system architecture is a VM
based system, where VMs are launched for processing the submitted tasks and
torn down when the tasks are finished. The system also dynamically turns on/off
physical machines, and maintains the CPU utilization of the physical machines
at the optimal level based on the number of VMs to reduce energy consumption.
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(i) The finishing time of a task is calculated based on the length/size of the
task and the computing capability of the VM to which the task is going to
be assigned. It is used to estimate whether the task can be scheduled to a
certain VM under deadline constrain.

(ii) The laxity of a task is calculated based on the task finishing time and its
deadline. It is a measure of how urgent the task is. It is used for sorting the
tasks in the scheduling queue.

(iii) The energy consumption is calculated based on the CPU utilizations of
physical machines. Based on the estimated energy consumption, our algo-
rithm dynamically turns on/off physical machines to reduce energy con-
sumption.

4 Model and System Architecture

4.1 System Architecture

Figure 2 illustrates the compositional scheduling architecture used for the virtual
cloud system.

Fig. 2. Compositional scheduling architecture.

The scheduling architecture consists of two critical parts (the global sched-
uler and local VM providers) and three sub-components (performance monitor,
schedulability analyzer and cost function), as shown in Fig. 2.

– The performance monitor observes the current workload in the system, checks
the system status information such as currently allocated VMs, collects actual
tasks processing time and arrival pattern information.

– The schedulability analyzer maintains and updates the configuration parame-
ters which record tasks’ deadlines and arrival time information provided by
performance monitor. Also, the schedulability analyzer takes tasks from users
and generates VMs startup plan from configuration parameters for different
users.
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– The cost function sub-component calculates the computing expense of execut-
ing tasks in the public cloud using price model offered by Amazon’s Elastic
Compute Cloud (EC2), based on the size of tasks and the computing price for
renting a VM resource [3].

Cloud service providers (CSPs), who own large datacenters and server clus-
ters, are incentivized by profits that they accrue by charging the end users for
the service access [8]. CSPs provide services to end users through local VM
providers. Each local VM provider is responsible for allocating cloud resource to
the tasks of an individual user. One local VM provider offers one user massive
computing power, needed storage and different services based on an SLA. Several
neighboring local VM providers may form the CSPs with network connections.
CSPs consist of a set of local VM providers: LP = {lp1, lp2, ..., lpn}.

Each lpj manages a set of PMs: PM j = {pmj
1, pmj

2, ..., pmj
k}, k =

0, 1, ..., |PM j |. A PM can host one or more VMs. For each local VM provider
lpj , it manages a set of PMs which contains a set of VMs: V M j =
{V M j

1 , V M j
2 , ..., V M j

k}, k = 1, ..., |PM j |. V M j
k is a set of VMs in pmj

k that
belongs to lpj , and V M j

k = {vmj
k1, vmj

k2, ..., vmj
kr}, r = 1, ..., |V M j

k |. vmj
kr is

the rth VM on PM pmj
k that belongs to lpj . The resource demands of a set

V M j cannot exceed the resource capacity of PM j which belongs to lpj .
To satisfy tasks diversity, multiple task queues are employed in global sched-

uler. Thus, the real-time tasks are assigned to global real-time waiting queues
(RTQ), and non-real-time tasks are assigned to global non-real-time queue
(NRTQ). In RTQ, all the real-time tasks are sorted by their laxity values in
an ascending order, whenever a new real-time task arrives. The task with the
smallest laxity which means a level of urgency is first considered for execution in
scheduling. The motivation of sorting the tasks in RTQ based on their laxities
is that tasks with tight deadlines are processed earlier than others in order to
avoid SLA violations.

Definition 1. The laxity ζi of real-time task τ j
ikr belong to vmj

kr means a level
of urgency, and it is given as [6]:

ζj
ikr = du

i − (etjikr)
+ − tc, (1)

where du
i is the deadline of task τu

i , (etjikr)
+ represents the maximal execution

time of task τu
i executing on vmj

kr and tc is the current time.

If some tasks have the same laxity value, then these tasks are sorted by their
criticalities again. The tasks with higher criticality should be scheduled first. In
NRTQ, the non-real-time tasks are sorted by their arrival times. The task with
an earlier arrival time is scheduled first. Only when the RTQ is empty, the global
scheduler schedules the tasks in NRTQ.

The local VM provider is bound to a specific user, so its VM instances can
promote user context preservation, security and privacy. In other words, any VM
instance of a local VM provider is dedicated to a single user until the instance
is shut down when it approaches multiples of full hour operation (i.e., keep the
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instance busy doing work until the charging time interval is due) and no tasks
are running on it. For example, since the instance is charged based on the unit
of hour, we shut down the VM only when it is idle and reaching multiples of full
hour operation. One local VM provider lpu

j manages and monitors all pending
and ready VM instances belong to one user u.

4.2 Task Model and Characteristics

The information provided by the task is the input to our scheduling algorithm.
We introduce the task model and its characteristics in this section.

The tasks are submitted by individual users. We denote the set of tasks
belonging to a separate user u as Tu = {τu

1 , τu
2 , ..., τu

m}. The tasks considered
in this paper can be divided into two types: real-time and non-real-time triv-
ially parallel tasks which are independent and aperiodic. Each task requires to
be executed in one VM instance type and cannot be partitioned to multiple
computing nodes. Each task τu

i is characterized by a 4-tuple of parameters:
τu
i = (atui , l̃ui , du

i , ku
i ), where

– atui is the arrival time for task τu
i .

– l̃ui is the length/size of task tui , which is the number of instructions (i.e.,
millions instructions, MI). Note that the length of a task is uncertain before
scheduling, but its lower bound (lui )− and upper bound (lui )+ can be gained
[2,6]. As in [6,17], we regard l̃ui as an interval number.

– du
i is the deadline of τu

i . Note that du
i ≥ atui . In this paper, the deadlines serve

as the performance requirements specified by the users.
– ku

i ∈ {K1,K2,K3} denotes the criticality of the task τu
i .

The set of criticality is a designation of the level of assurance against failure
needed for a system component [4]. In this paper, we use three generic critical-
ity levels. K1 is the lowest criticality level, K3 is the highest criticality level.
The task with higher criticality level indicates that it is more important and
usually requires urgent response.

4.3 VM Instances

VMs are categorized into G distinct instance types: it1, it2, ..., itG, and a VM of
instance type itg denotes as vmg. VM is configured to have a number of slots
for executing tasks. For a given VM vmj

kr, it is characterized by its c̃apvmj
kr

and

τ j
ikr, where c̃apvmj

kr
denotes the CPU capacity represented by the number of

instructions per second (MIPS), and τ j
ikr is an indicator denoting that the task

τu
i belong to vmj

kr, respectively. Each user only specifies the types of VMs that
are needed, but not the quantity of each requested VM type [8].

VM instance acquisition requests can be made at any time, but it may take
startup time denoted as σ for newly requested pending instance to be ready to
use. Based on the previous research [14], σ could take around 600 s from the
arrival time of an instance acquisition request to the time when the VM is ready
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to use. The overhead is paid by the user although a task cannot be executed
on the VM during the time when the VM is starting up. Because cloud VM
instances are currently billed by instance hours (rather than the exact user con-
sumption time), the scheduling and scaling (i.e., whether wake up extra PMs)
decisions should avoid partial instance-hour waste. Therefore, a reasonable pol-
icy is that whenever an instance is started, it is better to be shut down when
the VM usage approaches full hour operation (i.e., keep the instance busy doing
work until the charging time interval is due) [14].

As mentioned before, clouds now normally offer various instance types for
users to choose, instead of offering one suit-for-all instance type. Correspond to
Amazon EC2 instance type with the only exception that all the VMs are single-
core, our experiments model multiple VM instance types of a cloud with differ-
ent performance and varying costs as shown in following Table 1. The it1 and
it2 are compute and memory optimized instance types which are most suitable
for CPU and memory intensive applications respectively, like image processing,
database systems and memory caching applications. The it3 is a general instance
type which provides the balance between compute and memory. General type
instances are suitable for all general purpose applications. A computing inten-
sive task can run faster on high-CPU VM instance than on high-memory VM
instance. Choosing cost-effective instance types can both guarantee task dead-
lines and save user payment cost [14].

4.4 Task Finishing Time Estimation

The CPU capacity allocated to a task in a VM is measured in MIPS (million
instructions per second) c̃apvmj

kr
, which arbitrarily varies over time. We do not

know its actual value, but its lower and upper bounds can be obtained before
scheduling [6]. As a result, the real execution time ẽt

j

ikr cannot be exactly deter-
mined before scheduling. We utilize the interval number described in [6,17] to
determine these uncertain parameters as follows.

c̃apvmj
kr

= [cap−
vmj

kr

, cap+
vmj

kr

], (2)

Table 1. Characteristics of types of VMs used

Type name Description Max MIPS Cost Startup lag

it1 High-CPU 2500 $0.68/hour σ = 720 s

it2 High-Memory 2000 $0.50/hour σ = 720 s

it3 General type 1000 $0.085/hour σ = 600 s
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where cap−
vmj

kr

and cap+
vmj

kr

are the computing capacity lower and upper bound
of the VMs with minimal and maximal CPU performance.

ẽt
j

ikr =
l̃ui

c̃apvmj
kr

=

⎡
⎣ (lui )−

cap+
vmj

kr

,
(lui )+

cap−
vmj

kr

⎤
⎦ . (3)

f̃ t
j

ikr = s̃t
j

ikr + ẽt
j

ikr, (4)

where s̃t
j

ikr is the estimated start time of task τ j
ikr, and f̃ t

j

ikr denotes the finish
time of task τ j

ikr.

s̃t
j

ikr = max{(ftjikr)
b, atui }, (5)

where (ftjikr)
b is the finish time of previously allocated task before τu

i executing
on vmj

kr.

4.5 Energy Consumption

CPU resource utilization. We first discuss the CPU resource utilization of
the VMs and PMs, which are related to the energy consumption. The CSPs may
offer different types of VM instances, which are suitable for different types of
workloads. lpj is associated with an integer array Qj of G members: qj

1, q
j
2, ..., q

j
G,

where qx
g indicates that number of type g VMs (vmg) are hosted on the PMs

set PM j that belongs to lpj . Since Qj is dynamic, it may change over time
due to VM terminations and reconfigurations. We denote it as Qj(t) at time t.
lpj contains a finite amount of computing resources Cj

cpu coming from PM j .
The CPU resource utilization of lpj at time t is denoted as U j(t), and the CPU
resource requirement of vmg is denoted as Rg

cpu.

U j(t) =

G∑
g=1

Qj
g(t) · Rg

cpu

Cj
cpu

× 100% (6)

=

|PMj |∑
k=1

U j
k(t)

|PM j | , (7)

where U j
k(t) is the CPU resource utilization of one PMs pmj

k belongs to lpj at
time t.

The energy consumption (E) at a datacenter is defined as a total amount of
power (P) consumed over a period of time (T) while performing the work [19].

E = P · T. (8)

The total energy consumption of pmj
k is denoted as TEj

k. In CMOS chips,
the total energy-consuming contains two main parts, one is the static energy
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consuming SEj
k and the other is dynamic energy consuming DEj

k. The SEj
k

is the energy consumed during the idle time of pmj
k. From [12], we can define

SEj
k as:
Static energy consumption. The SEj

k is the energy consumed during the
idle time of pmj

k. From [12], we can define SEj
k as:

SEj
k =

{
γ·MEj

k

Uj
k

, when U j
k > 0,

0, otherwise.
(9)

where MEj
k is the energy consumed when a PM works with its maximum utiliza-

tion, γ is a constant ratio of the static energy consumption SEj
k to the maximum

energy consumption MEj
k of pmj

k (0 < γ < 1).

MEj
k = P j

k max
· tmax, (10)

where P j
k max

is the power consumed when a PM works with its maximum uti-
lization, and tmax is the time in which a PM works at its maximum computing
power to finish a certain amount of tasks.

This ratio γ depends on the physical characteristics of the PM, and it is
constant during the time that a host is switched on.

Dynamic energy consumption. The relationship between dynamic energy
consumption DEj

k and Uj(t) is much more complex. From [11], we can know
that several models proposed for the dynamic energy consumption DEj

k in the
literature which are functions of the utilization of a PM. The dynamic energy
consumption DEj

k and the total energy consumption TEj
k of pmj

k to execute
tasks can be defined as:

DEj
k = (MEj

k − SEj
k) · U j

k . (11)

TEj
k = SEj

k + DEj
k (12)

= [γ + (1 − γ) · U j
k

2
]
P j

k max
· tmax

U j
k

. (13)

Equation (13) explains that CPU resource utilization U j
k is the only

adjustable parameter that has an impact on total energy consumption TEj
k.

In the following, we will show that the static energy consumption dominates
the total energy consumption. In Fig. 3, we assume the γ = {0, 0.2, 0.4, 0.8},
it means that the static energy consumption SEj

k takes 0%, 20%, 40%, 80%
of the maximum energy MEj

k. We compare the total energy consumption TEj
k

under different static energy consumption by ignoring the exact value of P j
k max

.
Figure 3 shows that the pmj

k consumes a noticeable amount of static energy for
a long-life computing. Therefore, the static energy plays a profound role in the
total energy consumption, and sometimes it comprises up to 70 % of total energy
consumption [11]. When the value of γ is larger, the static energy consumption is
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Fig. 3. Total energy consumption with various values of γ.

more than those with smaller γ. From the projection curves on x-y plane under
various γ values, we can see that the increasing speeds of energy consumption are
different. The smaller γ has faster increasing speed of energy consumption. This
explains that most of total energy consumption is dynamic energy consumption
when the γ is smaller.

Only alleviating the dynamic energy consumption cannot reduce the total
energy consumption significantly as long as there is high static energy consump-
tion. Previous research works focus on consolidating VMs to alleviate the sta-
tic energy consumption. However, the migration process imposes a high over-
head depending on the network infrastructure. In addition, the source local VM
provider spends more computing power during the live migration transient inter-
val which might result in SLA violations. In order to handle this problem, we
propose a task scheduling strategy that launches as few VMs (hence few PMs)
as possible to guarantee most of tasks’ deadlines and to enhance the CPU uti-
lization level to minimize the static energy consumption.

5 Scheduling Strategy with Deadline Guarantee

Our energy-aware scheduling strategy focuses on how to finish all the submitted
tasks before user specified deadlines with as few VM instance hours as possible.

Definition 2. The computing cost of running a task τu
i on provider lpj with

instance VM type iti ∈ {it1, it2, it3} is defined as Ctask(τu
i , lpj , iti).

Ctask(τu
i , lpj , iti) = (� l̃ui

c̃apvmjk

� · Citi), (14)

where � ˜lui
c̃apvmjk

� means that the execution time is rounded up to the nearest

discrete time unit (i.e. 1 h) of lpj’s billing interval for cost calculations, Citi

denotes as the cost of running the VM instance vmj
kr of type iti on lpj for one

time unit. When the deadline of task τu
i is not met, the computing cost is ∞.
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Our scheduling policy first schedules the task τu
i within deadline constraint

on the local waiting queue of the cheapest (low hourly-cost) VM instance type
among all the live instances. A task τu

i will be removed from the cheapest VM
instance type queue to more expensive (high hourly-cost) VM instance type
queue from the all available instance types, when the current state of vmj

kr is
not able to finish task τu

i before its deadline. Even when there is no workload, a
cloud application will always maintain at least one running VM instance. When
one VM instance vmjk is approaching full hour operation, we need to decide
whether to shut down the machine or not. The detail pseudocode of our EDA-
NMS algorithm is showed in Algorithm1.

Algorithm 1. Pseudocode of EDA-NMS algorithm
1: RTQ ← NULL;
2: NRTQ ← NULL;
3: for each new task τu

i do
4: if du

i ! = NULL then
5: RTQ ← τu

i ;
6: else
7: NRTQ ← τu

i ;
8: end if
9: while RTQ! = NULL do

10: sort all the tasks in RTQ by laxity in ascending order;
11: if more than two tasks have the same ζi then
12: sort all the tasks with same ζi by criticality ku

i in descending order;
13: end if
14: τu

i ← get the task at the head in RTQ;
15: the global scheduler assigns task τu

i to specific lpj belonging to one user;
16: move τu

i to the tail of local waiting queue on most cost-efficient vmj
kr;

17: execute LRTS algorithm (Algorithm 2);
18: end while
19: while RTQ == NULL && NRTQ! = NULL do
20: τu

i ← get the task at the head in NRTQ;
21: the global scheduler assigns task τu

i to specific lpj belonging to one user;
22: move τu

i to the tail of local waiting queue on most cost-efficient vmj
kr;

23: for each task in local waiting queue on vmj
kr do

24: execute τu
i ;

25: end for
26: end while
27: end for

The pseudocode of local real-time scheduling (LRTS) algorithm is shown in
Algorithm 2.
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Algorithm 2. Pseudocode of LRTS algorithm
1: τu

i ← get the task at the head in local waiting queue on vmj
kr;

2: calculate the start time ˜st
j
ikr, execution time ˜et

j
ikr and finish time ˜ft

j

ikr of τu
i ;

3: while ˜ft
u

ijk > du
i do

4: Find next cost-efficient vmj
kr′ ;

5: end while
6: if can find one vmj

kr on lpj make ˜ft
u

ijk ≤ du
i then

7: while τu
i ! = NULL do

8: execute τu
i ;

9: τu
i ← get the task at the head in local waiting queue on vmj

kr;
10: end while
11: else
12: reject τu

i

13: end if

6 Performance Evaluation

6.1 Environment Setup

To demonstrate the performance improvements gained by our EDA-NMS algo-
rithm, we quantitatively compare it with a existing algorithms PRS using the
CloudSim simulator [6]. We compare the user payment cost and the completion
time of real-time tasks of running cloud applications. In the simulation frame-
work, we can also control the input parameters, such as workload patterns and
task deadlines. The detailed parameters are given as follows:

– The simulation environment consists of a datacenter with 10000 hosts, where
each host is modeled to have a single CPU core (with CPU performance
3000 MIPS, 3500 MIPS and 4500 MIPS), 4 GB of RAM memory, and 1 TB
of storage [1,6].

– We employ the interval number to control a task’s deadline, which can be
calculated as:

du
i = atui +

U [(lui )−, (lui )+]
cap+

vmj
kr

+ U [0, 500] s, (15)

where U [0, 500] s denotes a variable that subjects to uniformly distributed
from 0 s to 500 s, and it determines whether the deadline of a task is loose or
not.

– We randomly generated the task’s length: l̃ui = [5000, 100000]MIs in a uniform
distribution.

– The arrival of tasks follows Poisson distribution at the arrival rate of
Poisson(λ), λ = 4 per unit of time, it means the arrival interval between two
consecutive tasks obey the negative exponential distribution with parameter
Exp(1/λ).



An Energy-Efficient Task Scheduling Heuristic Algorithm 93

6.2 Performance Under Changing Workloads

In these experiments, we focus on two types of workload. The single type work-
load experiment for compute-intensive tasks whose main bottleneck is CPU’s
computing power. In the mix type workload evaluation, we simulated three types
of tasks, including mix, computing intensive and I/O intensive. The processing
time parameters of single type and mix type workload experiment on different
types VM instance are summarized in Table 2.

Table 2. Mix type workload unit execution time

Mix Computing intensive I/O intensive

General 50 s/MI 50 s/MI 50 s/MI

High-CPU 25 s/MI 15 s/MI 50 s/MI

High-Memory 25 s/MI 50 s/MI 15 s/MI

Three task trace groups are generated for the experiments, each includes
1000, 5000 and 10000 tasks and the number of real-time tasks, non-real-time
tasks and reject tasks produced by the experiment results is summarized in
Table 3.

Table 3. Some running results of single type workload/mix type workload

Number of real-
time tasks

Number of non-
real-time tasks

Reject number of
real-time tasks

EDA-NMS(1000 tasks) 584/587 416/413 0/0

PRS(1000 tasks) 587/581 413/419 0/0

EDA-NMS(5000 tasks) 2915/2912 2085/2088 0/0

PRS(5000 tasks) 2910/2913 2090/2087 1/0

EDA-NMS(10000 tasks) 5838/5835 4162/4165 5/2

PRS(10000 tasks) 5828/5832 4172/4168 6/2

To investigate the duration of the real-time tasks executions, we use the
cumulative distribution function (CDF) of the response time lags (i.e., deadline -
finish time) of the tasks. From the experiment result of Fig. 4, we can see the
EDA-NMS and PRS scheduling algorithms’ performance under these two types
of workload conditions. EDA-NMS outperforms PRS in terms that it achieves
bigger tasks response lag than PRS, it means that the completion time of the
real-time tasks executed by EDA-NMS is shorter than PRS under different types
of workloads.

By analysing the situation of the rejected tasks, we can know the system
stability under EDA-NMS and PRS. The reject tasks of EDA-NMS consist of
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Fig. 4. Tasks response time lag.

7 tasks with middle criticality, and the reject tasks of PRS consist of 8 tasks
including 3 ones with highest criticality, 4 ones with middle criticality and 2
ones with lowest criticality. The task with different criticality which misses the
deadline has different influence on the system stability. So we can find that there
are fewer rejected tasks with higher criticality of our EDA-NMS than PRS. It
means that our EDA-NMS has better system stability than PRS.

6.3 Cost Efficient Comparison

By changing the task number from 1000 to 10000, we first use the average execu-
tion cost of real-time tasks to compare the performance of these two scheduling
policies (EDA-NMS, PRS). The experiment results in Fig. 5 show that our EDA-
NMS has lower average execution cost in both two computing intensive and mix
type workload cases.
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Fig. 5. Average cost per real-time task comparison.

We then compare the total cost of these two scheduling policies (EDA-NMS,
PRS) with three different types of VM instances as shown in Table 1. From the
comparison results of total cost are illustrated in Table 4, we can see that the
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Table 4. Mix workload cost

No Number of tasks VM types Total cost($) Static energy
consumption

Choice 1 10000 General, Gen-
eral

9.95 × 103(58 %
higher)

Standard

Choice 2 10000 General, High-
Memory

7.74 × 103(23 %
higher)

Standard

Choice 3 10000 General, High-
CPU

7.4 × 103(17 %
higher)

Standard

Optimal 10000 General,
High-CPU,
High-Memory

6.3 × 103 1.5 standard

choice 1, choice 2 and choice 3 incur 58 %, 23 % and 17 % more cost than the
optimal solution separately. Our choice 3 is closest to the optimal cost, and it
outperforms other two choices. Although the optimal solution can obtain the
lowest cost, its statics energy consumption is 1.5 times of other three choices.
Because the future workload cannot be known in advance, so the optimal cost
can’t be obtained in real life. Hence, our choice 3 is cost and energy efficient
solution.

7 Conclusion

In this paper, EDA-NMS exploits the looseness of task deadlines and tries to
postpone the execution of the tasks that have loose deadlines in order to avoid
waking up new PMs. It incrementally provides cloud resources to the tasks based
on the user specified deadlines, the estimated completion times of the tasks, and
the resource utilization levels of the hosts. The results of extensive experiments
show that our approach perform better than other existing approaches on achiev-
ing energy efficiency without introducing VM migration overhead and without
compromising deadline guarantees. In the future, we are going to implement
EDA-NMS in a real testbed and evaluate its performance.
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Abstract. This paper presents an infrastructure-based mobile cloud computing
framework that obstructs the execution of JavaScript (JS) worms injected from
the untrustworthy remote servers. The execution of such worms triggers the
Cross-Site Scripting (XSS) attack on the mobile cloud-based Online Social
Network (OSN). The framework executes in two steps. Initially, it extracts the
Uniform Resource Identifier (URI) links embedded in the HTTP response for
extracting the untrusted JS links/code. Secondly, our framework generates the
Document Object Model (DOM) tree corresponding to each extracted HTTP
response. This tree is explored for the script nodes and extracts the embedded JS
code. Now, both these extracted set of JS code will be explored for the detection
of similar code. Such similar code will simply point towards the untrusted
JavaScript code that will be utilized by an attacker to exploit the vulnerabilities
of XSS attack on the OSN. The prototype of our framework was developed in
Java and integrated the functionality of its components on the virtual machines
of mobile cloud platforms. The experimental testing and performance evaluation
of our work was carried out on the open source OSN websites that are integrated
in the virtual cloud servers. Evaluation results revealed that our framework is
capable enough to detect the untrusted JS worms with very high precision rate,
fewer rates of false positives and acceptable performance overhead.

Keywords: Mobile cloud computing � Cloud security � JavaScript worms �
Cross-Site Scripting (XSS) attacks � Online Social Network (OSN)

1 Introduction

In order to fulfill the needs of growing smartphone users and essential constraints
related to smartphone, mobile cloud computing evolved from cloud computing [16].
However, mobile cloud computing has raised numerous issues related to the privacy
and security of the smart phone users. This is generally due to the fact that the sensitive
credentials of such users are kept in the domain of public cloud that is managed by
untrustworthy commercial service providers. In the modern era of mobile cloud
computing, mobile cloud security has turned out to be an utmost key challenge that has
appealed numerous efforts related to research and development in the recent times. The
smart phone users access the facilities of OSN through the infrastructures of mobile
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cloud. However, it is clearly known that the cloud settings are installed on the back-
bone of Internet [9]. Therefore, numerous Web application vulnerabilities in the con-
ventional Internet infrastructures also exist in the backgrounds of mobile cloud-based
environments.

The most prominent attack found on OSN sites is the Cross Site Scripting
(XSS) attack [1–5]. XSS worms have turned out to be a plague for the mobile
cloud-based OSN. Such worms steal the sensitive credentials of the active users by
injecting the malicious JS worms in the form of some posts on such web applications
[6–8]. Input sanitization is considered to be the most effective mechanism for alleviating
and mitigating the effect of JS worms from the mobile cloud-based OSN on the virtual
machines of cloud platforms. Numerous defensive methodologies had been proposed
for thwarting the effect of JS worms or XSS attacks from such platforms [23]. Livshits
et al. [10] proposed an automated technique of sanitizer placement by statically ana-
lyzing the stream of infected data in the program. Path Cutter [12] generally jams the
transmission path of XSS worms by restricting the DOM access to several different
views at the web browser and hampers the illicit HTTP web requests to the web server.
Saner [11] is a tool that combines static and dynamic analysis practices to detect the
defective sanitization techniques that can be evaded by a malicious attacker. The main
objective of this tool is to analyze the working of sanitization procedures to report the
web application vulnerabilities like XSS attack. XSSFilt [13] is a Firefox
extension-based XSS filter that uses approximate string matching rather than exact
string matching algorithm. XSS-Auditor [14] is integrated as an extension on the Google
Chrome Web browser that circumvents the browser quirks problem via interposing at
the Java-Script engine interface. It can detect the exploitation of JS worms that occur in
web pages which are generated dynamically due to client-side script execution.

1.1 Existing Performance Issues

The main issue with these existing JS worm defensive techniques is that they cannot
easily integrate in the existing virtual machines of mobile cloud platforms. Integration
of their functionality demands major alterations in the source code of their prototypes.
On the other hand, most of these existing techniques rely on exact JavaScript string
matching. They cannot detect the partial injection of JS worms. In addition to this,
these methodologies perform the sanitization of JavaScript worms in a
context-insensitive manner. Sanitization of malicious variables of JS code without
determining their context is considered to be an ineffective sanitization mechanism for
alleviating the effect of JS worms.

1.2 Key Contributions

Based on such severe performance issues, this article presents a mobile cloud-based JS
worm defensive framework that detects and alleviates the propagation of such worms
from the cloud-based OSN. The framework intercepts each HTTP request from the
smart phone user and detects the untrusted/malicious JavaScript code and performs the

An Infrastructure-Based Framework 99



context-aware sanitization on the suspicious variables embedded in such code. Such
sort of sanitization guarantees the complete alleviation of JS worms from the platforms
of mobile cloud-based OSN. The experimental testing of our framework was done on
real world OSN-based web applications that are integrated on the virtual machines of
mobile cloud platforms. The next section discusses our mobile cloud-based framework
in detail. The remainder of the paper is structured as follows: Sect. 2 illustrates our
mobile cloud-based JS defensive framework. Implementation and experimental eval-
uation is presented in Sect. 3. Finally, Sect. 4 concludes our work and discusses the
future work.

2 Proposed Framework

This article presents an infrastructure-based mobile cloud framework that obstructs the
dissemination of JS worms from the contemporary platforms of OSN. Such worms are
injected by an attacker to exploit the vulnerabilities of XSS attack on OSN. The novelty
of our mobile cloud computing-based framework lies in the fact that it not only detects
the propagation of JS worms but also completely alleviates the effect of such worms
from OSN.

2.1 Abstract View

This sub-section discusses the abstract overview of our framework. Figure 1 highlights
the abstract overview of our mobile cloud–based framework. Smartphone devices will
access the Internet on the wireless network with the help of installed Base Transceiver
Stations (BTS). Users of smartphone will transmit the HTTP request to the OSN web
server deployed in the cloud platforms. The HTTP response generated by the OSN
server will be transmitted to the virtual cloud JS worm detection server. This
cloud-based JS worm detection server not only detects the propagation of JS worms but
also determines the context of the malicious variables embedded in such worms.
Accordingly, it alleviates the effect of such worms by performing the context-aware
sanitization on these malicious variables. Finally, safe sanitized HTTP response is
transferred to the smart phone user.

2.2 Detailed Illustration

The key goal of our infrastructure-based mobile cloud JS worm defensive framework is
to compare the set of extracted JS code embedded in both URI links and DOM tree.
Any similarity found in both the extracted set of JS code will simply point towards the
location of JS worm. In addition, our framework defines the context of malicious
variables embedded in such JS code and accordingly performs the context-aware
sanitization on them. This sort of context-sensitive sanitization will guarantee the
complete alleviation of JS worms from the OSN platforms deployed in the cloud-based
mobile platforms. Figure 2 highlights the detailed design view of our mobile
cloud-based framework.
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2.3 Key Modules

The modules of our framework are deployed on the virtual machines of mobile cloud
servers. This sub-section discusses the detailed working of some of the key components
utilized in our mobile cloud computing-based framework.

Fig. 1. Abstract overview of mobile cloud-based framework

Fig. 2. Detailed design view of our framework
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URI Link Extractor: JS worm might probably be communicated via text message or
URI web link pointing towards the resource located in the external web server. Here,
the URI web link must be injected inside the parameter-related values of outward
HTTP request for communication. In addition, the text message also needs to embed in
the same way. Now, the extracted parameter-related values and JavaScript files will be
accumulated in set A by the JavaScript extractor component. Algorithm 1 highlights
the detailed procedure of extraction of URI links.

Algorithm 1. Extraction of URI links 

The algorithm illustrates the procedure of extraction of URI links. These links will
be referred for the extraction of embedded JS code followed by the decoding procedure
of such code. The resultant JS code will be extracted by the JavaScript extractor
component and stored in set ‘A’ for further reference.

Injection Point Extractor: This component is utilized to parse the HTTP response
generated by the HTTP response for the detection of hidden user injection points.
These injection points will be utilized for detecting the embedded malicious/untrusted
JS code. Algorithm 2 illustrates the detailed procedure for detecting the unknown
injection points from the generated HTTP response messages.

Algorithm 2. Extraction of unknown injection points 
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The HTML parser also causes the formation of script and text vertices in document
tree. However, text vertices are of no interest to us. XSS-Immune transmits the
JavaScript vertices to the Get/Post parameter detector and JavaScript component.

DOM Tree Generator: This component is utilized for generating the Document Object
Model (DOM) representation of HTTP response messages. This representation of
HTTP response is generally seen as a tree comprising of JavaScript and text vertices.
Such nodes will be explored for the extraction of hidden JS code embedded in the
unknown injection points of OSN-based web applications.

Node Extractor: The key goal of this module is to extract the JS vertices embedded in
the DOM tree. Although, there are diverse categories of vertices available in the DOM
tree, but the vertices, which are of concern to us are the JS vertices. Such vertices will
be utilized for the extraction of JS code. Here the set of JavaScript code retrieved is
transmitted to the JavaScript extractor component and stored in set ‘B’.

JavaScript Extractor: This module will store the two sets of JavaScript code in set ‘A’
and ‘B’. The set ‘A’ JavaScript code was extracted from the extracted URI links
embedded in the HTTP response message. On the other hand, the set ‘B’ JavaScript
code was extracted from the DOM tree. These two sets of JavaScript code will be
compared for the similar code. Any similarity found in these two sets will simply
indicate the presence of JS worms.

JavaScript Decoder: Keeping in view, that the malware of JS worm in both the sets
‘A’ and ‘B’ possibly be encrypted, we execute a recursive decoding technique before
executing our similarity pointer component.

Similarity Pointer: This component is used to match the extracted code from set A and
B for detecting the presence of similar untrusted/malicious JavaScript code. The similar
code states the probable propagation activities of JS worm. Algorithm 3 illustrates the
algorithm for detection of similar untrusted/malicious JavaScript code embedded in the
HTTP request and response messages.
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The algorithm not only illustrates the procedure of detection of JavaScript worm, it
also explains the procedure to determine the context of malicious variables present in
such worms. Accordingly, it performs the sanitization on such variables for completely
alleviating the effect of JS worms. Algorithm 4 illustrates the detailed procedure of
sanitization of JS worms.

Context Locator: The goal of this component is to identify the context for each type of
untrusted variable of JavaScript worms corresponding to each untrusted input. It will
represent the context in which untrusted JavaScript input is embedded and sanitizers
are selected accordingly.

Sanitization Engine: Sanitization is a process of validating the untrusted user input to
ensure that they are in correct format as perceived by the Web application.
Context-aware sanitization applies sanitizer on each untrusted variable in an automated
manner (i.e. dynamic content like JavaScript) according to the context in which they
are used. There may be different contexts present in an HTML document like element
tag, attribute value, style sheet, script, anchors, href, etc. These all contexts may be
used by an attacker to launch the XSS attack. This component will determine the
different possible contexts of extracted similar JavaScript code and accordingly per-
forms the sanitization on such code. Algorithm 4 highlights the sanitization of similar
untrusted/malicious JavaScript code.
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Here, note that the Algorithm 4 sanitizes the malicious variables of JavaScript code
in a context-aware manner. The context of both the sanitizer primitive and malicious
JavaScript variable will be found out. The sanitization of a JavaScript variable will be
performed only if the context of sanitization primitive and the associated malicious
JavaScript variable are same.

3 Implementation and Experimental Evaluation

We had developed a prototype of our mobile cloud-based JavaScript worm defensive
framework in Java via introducing the Java Development Kit and integrate this
framework in the virtual machine of cloud-based OSN server. The experiment back-
ground is simulated with the help of a normal desktop system, comprising 1.6 GHz
AMD processor, 2 GB DDR RAM and Windows 7 operating system. The JS worm
detection capability of our framework was evaluated on a tested suite of two open
source OSN websites deployed in virtual machines of cloud platforms. Table 1 high-
lights the detailed configuration of these OSN-based web applications. We deploy these
web applications on an XAMPP web server with MySQL server as the backend
database. In addition, we verified the performance of our cloud-based framework
against XSS cheat sheet repository [17–20], which includes the list of old and new XSS
attack vectors. Very few XSS attack vectors were able to bypass our mobile
cloud-based framework. We have injected the 120 JS attack vectors in the possible
injection points of above two OSN-based web applications. Figures 3 and 4 highlights
the statistics of results of two web applications based on some key factors like Quantity
(#) of JS worms injected, Quantity (#) of True Positives (TP), Quantity (#) of True
Negatives (TN), Quantity (#) of False Positives (FP) and Quantity (#) of False
Negatives (FN). It is clearly reflected that the less number of false positives and false
negatives are observed in Joomla as compared to Drupal.
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The next sub-sections discuss the performance analysis of our framework and
comparison of our work compared to existing defensive methodologies.

3.1 Performance Assessment

A well-known statistical method (i.e. F-Measure) is applied on the observed results of
two OSN-based web applications for evaluating the performance of our mobile
cloud-based framework. The analysis conducted reveal that the proposed framework

Table 1. Details of configuration of OSN-based web applications

OSN-based web application Lines of code XSS vulnerabilities Version

Joomla [21] 227351 CVE-2013-5738 3.2.0
Drupal [22] 43835 CVE-2012-0826 7.23

Fig. 3. Observed results of our mobile cloud-based framework on Joomla

Fig. 4. Observed results of our mobile cloud-based framework on Drupal
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produces better results as compared to existing state-of-art techniques. To perform
binary classification, precision and recall are the parameters used for evaluations. And
their harmonic mean is F-measure. Here we calculate the precision, recall and finally
F-Measure of observed experimental results of our proposed mobile cloud-based
framework. The analysis conducted reveals that the framework exhibits high perfor-
mance as the observed value of F-Measures in all the platforms of OSN web appli-
cations is greater than 0.9. Therefore, the proposed framework exhibits 90–100 %
success rate in the two OSN-based web applications. Table 2 highlights the detailed
performance analysis of mobile cloud-based JS worm defensive framework on two
OSN-based web applications.

Precision ¼ True postitive TPð Þ
True postitive TPð ÞþFalse postitive FPð Þ

Recall ¼ True postitive TPð Þ
True postitive TPð ÞþFalse negative FNð Þ

F-Measure ¼ 2 TPð Þ
2 TPð ÞþFPþFN

3.2 Comparison-Based Assessment

This sub-section discusses the comparison of our proposed work with the other recent
existing JS worm defensive methodologies. Table 3 compares the existing
sanitization-based state-of-art techniques with our work based on seven identified
metrics: Analyzing Mechanism (AM), Browser-Side Modifications Required (BSMR),
Browsing of Source Code Required (BSCR), Context-Aware Sanitization Provision
(CASP), Partial JS Worm Detection Support (PJWDS), Level of Precision (LOP) and
False Positive Rate (FPR). It is clearly reflected from the Table 3 that most of the
existing defensive frameworks do not perform context-aware sanitization in a complete
manner. On the other hand, most of the existing defensive methodologies suffer from
non-acceptable rate of false negatives and false positives. In addition, most of the
existing techniques do not detect the partial injection of JavaScript worms. However,
our proposed mobile cloud-based JS worm defensive methodology is entirely based on
the detection of hidden injection points of JS attack worms and performs the saniti-
zation of such worms in a context-aware manner.

The key difference between these sanitization based techniques and our framework
is that the previous defensive solutions perform the sanitization mechanisms on all

Table 2. Results of performance analysis of proposed framework

OSN-based web application # of TP # of FP # of FN Precision Recall F-Measure

Joomla 99 7 6 0.933 0.942 0.938
Drupal 102 6 5 0.944 0.953 0.949
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possible attack vectors. Hence, such solutions increase the complexity of injecting the
sanitizers in the source code of web applications and as result, produces a high runtime
overhead. However, our framework needs not to sanitize the whole string of JS attack
worm, as our technique executes on the principle of partial detection of JavaScript
worms. This uniqueness indicates the novelty of our work as compared to other
existing approaches.

4 Conclusion and Future Work

This article presents a mobile cloud-based JavaScript worm defensive framework that
mitigates the propagation of such worms from the mobile cloud-based OSN. The
framework extracts the JS code embedded in URI links and DOM tree. These two
locations of JS code will be compared for the similar code. Any similarity observed
will simply point towards the presence of JS worm in the HTTP response generated for
the smart phone user. Finally, the context of malicious/untrusted variables embedded in
such worms will be found out and accordingly performs the context-sensitive saniti-
zation on them. The evaluation of our work was carried out on the tested platforms of
OSN-based web applications, whose functionality was integrated in the virtual
machines of mobile cloud platforms. The results of performance analysis revealed that
our work was capable enough to detect the JS worms with low false positive rate, false
negative rate and incurs acceptable runtime overhead during the execution of
context-sensitive sanitization procedure. We will also try to evaluate the JS worm
detection capability of our framework on some more contemporary platforms of mobile
cloud-based OSN as a part of our further work.
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Abstract. Text categorization is a foundational task in many NLP applications.
Traditional text classifiers often rely on hand engineering features, and recently
Convolutional Neural Networks (CNNs) with word vectors have achieved
remarkably better performance than traditional methods [15, 20]. In this paper,
we combined prior knowledge into deep learning method for structured text cate‐
gorization. In our model, we apply word embedding to capture both semantic and
syntactic information of words, and apply different convolutional neural networks
to capture advanced features of different parts of the structured text. Since
different text parts perform different impact on the text categorization result, a
linear SVM kernel is then applied to decide the final categorization result. More‐
over, in order to enhance discriminativeness of the word, we employ latent topic
models to assign topics for each word in the text corpus, and learn topical word
embeddings based on both words and their topics. We conduct experiments on
several datasets. The experimental results show that our model outperforms
typical text categorization models, especially when the text in the dataset have a
similar structure.

Keywords: Text categorization · Structured text · Neural network · Content
security

1 Introduction

Text categorization is an essential component in many applications, especially in content
security. In order to ensure the Internet security, the network administrators often need
to filter large amounts of text, such as news, blogs, posts, etc. This work takes much
time and manual power. Therefore, text categorization has attracted considerable atten‐
tion from many researchers.

A key problem in text categorization is feature selection. Most traditional methods
design features based on the bag-of-words (BoW) model, where unigrams, bigrams,
n-grams or some exquisitely designed patterns are typically selected as features. Due to
the lack of discriminativeness of the Bow based features, some methods, such as pLSA
[3], LDA [12], are applied to extract more discriminative features. However, the contex‐
tual information or word order in texts is ignored in traditional feature selection method.
This leads to the dissatisfaction for capturing the semantics of the words, and heavily
affects the categorization accuracy.
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Recently, word embedding and deep neural network have achieved remarkably
strong performance on many NLP tasks, they have brought new inspiration to various
NLP applications. Word embedding, also known as word representation, can be pre-
trained from large corpus and captures both semantic and syntactic information of words
[19]. With the help of word embedding, some deep-learning-based methods are
proposed to capture the semantic representation of texts, and have achieved good results
on text categorization [21]. However, these methods ignore the text structure informa‐
tion, which can heavily affect the categorization result. For example, for most people
who using different languages, they prefer containing the most important words into the
title when they write an article, such as news, blogs, and so on. And in most instances,
one always wants to summarize the text content at the last paragraph. This is the reason
why we can get what happened from only the title or the previous part of news. From
this point of view, combining the prior text structure knowledge into deep learning
method can achieve better performance on text categorization. Moreover, due to
homonymy and polysemy, we cannot assume each word preserves a single vector, which
is a downside of most word embedding methods. Enhancing the discriminativeness of
the word in different topics will help the categorization process.

In this paper, we develop a deep learning system for structured text categorization
in content security. Our security system needs to filter vast amount of texts for public
opinion monitoring, and these texts, consistent with news, blogs, posts etc., have almost
same structure in the same data source. Following the idea above, we proposed a novel
method for structured text categorization. Firstly, we employ the widely used latent
Dirichlet allocation (LDA) [12] to obtain text topics, and perform collapsed Gibbs
sampling [9] to assign latent topics for each word. This can be seen as a process of
coarse-grained categorization of the texts. After that, each word will be discriminated
into a specific topic. Then, we design ld-WE model to learn word vectors under different
topics. Secondly, we design deep neural network architectures based on CNNs for the
categorization of different text parts. The topical word vectors pre-trained in the first
step are employed as the network input here. In this way, each part of the text will
generate a single feature vector. Unlike CNN, Ld-CNNs doesn’t perform softmax func‐
tion on the generated feature vectors, but apply a linear SVM kernel on them to get a
new single vector, which has the same size with the generated feature vectors. The main
contribution of this step is that, different weights are assigned to different parts of the
text for categorization result, so the text structure information can be employed to
enhance the categorization accuracy. Last but not least, softmax function will be
performed on the new feature vector, and categorization result is finally got through it.
Figure 1 provides a simple schematic to illustrate the model architecture just described.
We perform experiments that demonstrate the effectiveness of Ld-CNN for text cate‐
gorization on three datasets: Sogou Lab Data, which contains over 10,000 Chinese news
documents; Reuters-21578, which is consistent with over 1,000 English news docu‐
ments labeled into 80 categories; The last one is the dataset collected by our content
security system, which contains over 10,000 Chinese news documents of over 50 cate‐
gories. Ld-CNNs outperforms most text classification models for these two datasets.
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China, US renew opposition to North Korea’s
‘provocative’ moves

China and the US reiterated on Thursday their firm 
opposition to North Korea's "irresponsible and 
provocative" moves, as the US special envoy for North 
Korea held talks with his Chinese counterpart, who will 
also meet South Korea's top envoy Friday on the stalled 
Six-Party Talks   .

China has a very key role to play in the North Korean 
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implement UN sanctions, Sung Kim, the US special 
envoy for North Korea, told reporters in Beijing 
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"The situation on the Korean Peninsula is very complex 
and sensitive," Chinese foreign ministry spokesperson 
Hua Chunying told a daily briefing in March. "We hope 
the relevant country cautiously handles this issue, and we 
demand they do nothing to harm China's security 
interests." 

The two diplomats will also discuss ways the two 
countries can cooperate on the North Korean nuclear 
program
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Fig. 1. The framework of Ld-CNNs. Here we depict three filter region size: 3, 4 and 5, each of
which has 100 filters. Every filter performs convolution on the text matrix and generates feature
maps. Then 1-max pooling is performed over each map. The text matrix is consistent with the
generated topical word vectors by Ld-WE model. Thus a univariate feature vector is generated
from all maps, and then is concatenated to form a feature vector for SVM regression. Finally
categorization result is got from the softmax function on the new generated vector.

This work is organized as follows. In Sect. 2, we describe the background and
preliminaries of this work. In Sect. 3, we describe the architecture of the proposed Ld-
CNNs model, and the proposed topical word embedding model Ld-WE. Section 4 details
our experimental setup and results. Finally, in Sect. 5 we present our final re-marks.
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2 Background and Preliminary

In this section, we review recent advances on text categorization methods. We then focus
on the models with neural networks and word embedding since our model uses neural
networks and word embedding as external knowledge.

2.1 Traditional Text Categorization Models

Feature selection is an important step in text categorization. As described in Sect. 1,
traditional methods commonly use BoW model for feature extraction. Furthermore,
pLSA, LDA etc. are also explored for extracting more discriminative features. Based
on these feature selection model, statistical classification and machine learning techni‐
ques have been applied to text categorization, including multivariate regression models,
nearest neighbor classifiers, probabilistic Bayesian models, decision trees, and so on.
There are two main research lines in traditional methods. The first one is discriminative
methods like Logistic Regression (LR), Support Vector Machines (SVMs), etc. Dumais
et al. [5] compare the effectiveness of five different automatic learning algorithms for
text categorization in terms of learning speed, real-time classification speed, and clas‐
sification accuracy, and they demonstrate that Linear Support Vector Machines (SVMs)
are particularly promising because they are very accurate, quick to train, and quick to
evaluate. More recently, Joachims [13] has explored the use of Support Vector Machines
(SVMs) for text classification with promising results. The other one is probabilistic
methods such as the latent dirichlet allocation [2], the maximum entropy model [7], and
the Bayesian classification [10, 11]. Besides, Fragos et al. [7] combine the naive Bayes
classifier and the Maximum Entropy classification model to improve the classification
performance, using two merging operators. The performance limitation of traditional
methods is on the feature selection, since traditional feature representation methods often
ignore the contextual information of the words. On the other hand, when the dataset
grows large, the performance of traditional methods declines fast.

2.2 Text Categorization with Neural Networks

Recently, the pre-trained word embedding and deep neural networks have developed
rapidly, drawing more and more attentions from many researchers. David et al. firstly
introduced word embedding in 1988 [4], and it has been successfully applied in many
NLP tasks. With the help of word embedding, some deep-learning-based methods are
proposed to capture the semantic representation of texts and have achieved good
performance.

Compared to traditional text categorization methods, neural networks with word
embedding can greatly alleviate the data sparsity problem. Besides, it has already been
demonstrated that distributed representations for symbols combined with neural network
can surpass standard n-gram models in many tasks [1]. Socher et al. [22, 23] proposed
the Recursive Neural Network (RecursiveNN) for constructing sentence representation
to classify text. The RecursiveNN exhibits a time complexity of at least O(n2), where n
is the length of the text. It would consume too much time when the model meets a long
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document. Another deep learning architecture for text categorization is Recurrent Neural
Network (RecurrentNN), whose time complexity is O(n). Since it can store the semantics
of all the previous text in a fixed hidden layer, contextual information can be better
captured through model. However, the RecurrentNN is a biased model, making it maybe
not suitable for capturing the semantics of a whole document.

The last model, which is introduced to tackle the bias problem, is the Convolutional
Neural Network (CNN). With the pooling layer, CNN can fairly determine discrimina‐
tive phrases in a text. Kalchbrenner [14] apply CNN for text classification, and propose
dynamic k-max pooling strategy. Siwei et al. [21] proposed a Recurrent Convolutional
Neural Network (RCNN) for text categorization. They firstly apply a bi-directional
recurrent structure, and then employ a max-pooling layer that automatically judges
which features play key roles in text classification. However, it’s controversial to use
pooling tactics for key component capturing, since text structure plays an important role
in classifying result, which cannot be captured by pooling strategy. Besides the three
models described above, Goyal [8] proposed a method that combines Naive Bayesian
text classification technique and neural networks for text categorization, however, the
text structure information is ignored by these models, and thus the categorization accu‐
racy still has great improving space.

3 Our Model

As its name suggests, the proposed Ld-CNNs model is built upon the Convolutional
Neural Network (CNN). Ld-CNNs firstly uses the proposed Ld-WE model for topical
word embedding pre-training. Then Ld-CNNs explores text structure information to
train CNN-based classifier for each text parts, and generates a single vector for each
part. Then a linear SVM kernel, but not softmax function, is applied on these vectors to
affect the result through structure information. After the new vector is generated by
SVM, softmax function is performed on it to get the final categorization result.
Figure 1 shows the framework of our model. The input of the model is a document D,
consistent with words . The output of the model contains class elements.
In this paper,  is denoted as the probability of the document being class k, where
θ is the parameters of our model.

3.1 Topical Word Representation Learning

Due to homonymy and polysemy, it’s problematic to denote each word as a single vector.
In our model, Ld-WE method is proposed to enhance discriminativeness of word vectors
generated by common word embedding methods. Ld-WE learns word embeddings not
only based on words and their topics, but also on their positions in text structure.

Skip-Gram is a famous and popular framework for learning word vectors [19]. This
model aims to predict context words given a target word in a sliding window. Given a
word sequence  maximizing the following average log probability
is the objective of Skip-Gram:
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(1)

In Eq. (1) k is the context size of a target word. Skip-Gram formulates the probability
 using a softmax function as follows:

(2)

In Eq. (2)  and  are respectively the vector representation of target word  and
context word , and W is the word vocabulary. Hierarchical softmax and negative
sampling are often used when learning Skip-Gram in order to make it more efficient.

Ld-WE firstly uses LDA to iteratively assign latent topics for each word token, then
different with Skip-gram, Ld-WE aims to learn vector representations for words and
topics separately and simultaneously. The objective of Ld-WE is defined to maximize
the following average log probability:

(3)

In Eq. (3) set C means , same as in Eq. (2). Compared to Skip-Gram
which only using the target word  to predict context words, Ld-WE also uses both the
topic  of target word and the structure position  to predict context words. The basic
idea of Ld-WE is to regard each topic as a pseudo word that appears in all positions of
words assigned with this topic, and regard each text structure index as a auxiliary pseudo
word that appears in all positions of words assigned with this text structure index. Hence,
the vector of a topic will represent the collective semantics of words under this topic,
and the vector of a text structure index will represent the collective semantics of words
in this structure part.

In Ld-WE, the topical word embedding of a word w in topic  and text structure part
 is got by concatenating the embedding of ,  and , i.e., , where  is

the concatenation operation, and the length of  is triple of  or  or .
Learning Ld-WE models follow the similar optimization scheme as that of Skip-

Gram used in [19]. Stochastic gradient descent (SGD) is used for the optimization of
Ld-WE, and gradients are calculated using the backpropagation algorithm. For param‐
eter initialization, we first learn word embeddings using Skip-Gram. Afterwards, we
initialize each topic vector with the average over all words assigned to this topics, and
initialize each text structure part vector with the average over all words emerged in this
text part. Then Ld-WE learns topic embeddings while keeping word embeddings and
structure embeddings unchanged, and learns structure embeddings while keeping word
embeddings and topic embeddings unchanged.

The idea of the design and implementation of Ld-WE is inspired from the TWE-1
model in [18]. Liu et al. proposed three topical word embedding models: TWE-1,
TWE-2 and TWE-3. They conducted experiments to evaluate their TWE models and
found that TWE-1 outperform state-of-the-art word embedding models for contex‐
tual word similarity and text classification. Inspired from this, we use the similar
model objective as TWE-1, and add text structure information into our model Ld-WE
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to enhance discriminativeness of words. This is proved to be effective by our experi‐
ments, which will be described de-tailed in the next section.

3.2 Ld-CNNs Architecture

The architecture of Ld-CNNs is shown as Fig. 1. Ld-CNNs is consistent with several
CNN-based neural net-works according to the text structure information. Then top-level
feature vectors are generated from these networks which encoding salient features of
each text structure part. Then a linear SVM kernel is applied on these vectors to generate
the final top-level feature vector, which is more effective by exploring the text structure
information. Afterwards, the final top-level feature vector is then fed through a softmax
function to generate the final classification. By jointly embedding the topical word
vectors generated by Ld-WE into Ld-CNNs, the categorization accuracy has been further
improved.

The input of Ld-CNNs is the tokenized text which we then convert to a text matrix,
the rows of which are the topical word vectors by Ld-WE for each token. Note that the
text matrix is divided into several structure part matrixes ac-cording to the text structure
information, each of which will be fed into the corresponding CNN-based neural net-
work, i.e., Ld-CNN. Thus one input text will be processed by several neural networks
for capturing the different semantics of different structure parts. Different Ld-CNN
shares different model parameters, which makes sense since different text parts have
different features such as writing habits, common-used words, and so on.

We then describe the architecture of the network for structure parts in this paper. We
denote the dimensionality of the generated topical word vectors by d. If the length of
the given structure part (i.e., token count) is s, then the dimensionality of the part matrix
is s × d. In this way, the part matrix can be treated as an ‘image’, and convolution
operation can be performed on it via linear filters. Intuitively, since rows represent
discrete words, it’s reasonable to use filters whose width is equal to the dimensionality
of the word vectors. Then the height of the filter can vary as different region sizes. From
this point on, the height of the filter will be referred as the region size of the filter in this
paper.

Suppose that there is a filter parameterized by the weight vector w  Rh×d with region
size h; w will contain h • d parameters to be estimated. In this paper we denote the part
matrix by A  Rs×d, and use A[i : j] to represent the submatrix of A from row i to row j.
The output of the convolution operation is obtained by iteratively applying the filter on
submatrices of A:

(4)

In Eq. (4) , and  is the dot production between the submatrix and
the filter. Thus the length of the output  is . In order to induce the feature map

 for the filter, we include a bias term  and an activation function f to
each  as follows:
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(5)

In Ld-CNNs multiple filters for the same region size is used to learn complementary
features from the same regions, and we also specify multiple kinds of filters with different
region size, or ‘heights’.

After all the feature maps are generated by Ld-CNN, a pooling function is applied
to each feature map to reduce the dimension and the number of the parameters to be
estimated. In this study, 1-max pooling function is elected as the pooling strategy [24].
Together, the outputs generated from each filter map can be concatenated into a top-
level feature vector. Compared to standard CNN, the vector is not fed through a softmax
function for final classification directly here, but is preserved for linear SVM regression.
When all the top-level vectors of each Ld-CNN are generated, they are then input into
the traditional linear SVM model. The linear SVM model can assign weights to these
generated top-level vectors, to generate the final top-level vector. That means, the text
structure information is integrated into our model through this linear regression in this
step. This step is also called the feature fusion in our model.

This final top-level vector is then fed through a softmax function to generate the final
categorization. At this softmax layer, a ‘dropout strategy’ is applied as means of regu‐
larization, which we choose as the l2 norm constraint. During training, the objective to
be minimized is the categorical crossentropy loss, and the parameters to be estimated
include: the weight vectors of the filters, the bias term in the activation function, the
weight vector of the linear SVM model, and the weight vector of the softmax function.

After all the operations above are finished, the text categorization result is finally got
from the output of the softmax function at the last layer.

4 Experiments and Analysis

In this section, we evaluate the Ld-CNNs on several datasets. Then we present some
experimental results of Ld-CNNs based on different model settings, and compare the
model result with other text categorization methods under the same experimental
settings. We also describe the efficiency of Ld-CNNs at the tail of this section.

4.1 Datasets

We use two common-used datasets on text categorization and one dataset which is from
our public opinion monitoring system. The brief introduction of these datasets is as
follows:

• Sogou Lab Data: dataset collected by Sougou Lab, which can be got from https://
www.sogou.com/labs/. It is from over 130 million original pages on the Internet and
contains over 10,000 Chinese news documents.

• Reuters-21578: This dataset contains over 1,000 English news documents labeled
into 80 categories. The documents in the Reuters-21578 collection appeared on the
Reuters newswire in 1987.
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• LdCS Data: This dataset is consistent of the documents from our public opinion
monitoring system. It contains over 10,000 Chinese news documents of over 50
categories.

We report some information of these datasets in Table 1. For more details on these
datasets, please refer to the official websites of them (The last one can be accessed
through author’s email).

Table 1. Some statistical information on the experimental datasets

Dataset Documents Categories Size
Sogou lab data 10000 60 1 TB
Reuters-21578 1000 80 28.0 M
LdCS data 10000 50 142.1 M

4.2 Experiment Settings

Before the conduct of the experiments, experimental settings need to be determined. We
describe the experimental settings from three aspects: datasets preprocess, parameter
settings of Ld-WE and hyper-parameter settings of Ld-CNNs.

• Datasets Preprocess. We preprocess the dataset as follows. For Chinese documents,
which are in Sougou and LdCS datasets in this paper, we use ICTCLAS1 to segment
the words. While for English documents, i.e. the documents in Reuters dataset, the
Standford Tokenizer2 is applied on them to obtain the tokens. For the Sougou and
Reuters datasets, there is pre-defined training, development and testing separation
for each dataset. For LdCS dataset, we split 20 % of the training set into a development
and keep the remaining 80 % as the real training set. We select the Macro-F1 measure
followed by the state-of-the-art work as the evaluation metric of the LdCS dataset,
and choose accuracy as the metric for the other two datasets.

• Parameter Settings of Ld-WE. We adopt different knowledge base for the initial‐
ization of the word vectors pre-trained by Ld-WE. For Chinese documents, we use
Sougou dataset to initialize the word embeddings in this paper based on Skip-Gram.
At the same time, Wikipedia, the largest online knowledge base, is selected for
English documents with the same Skip-Gram model. After the initializaiton is
finished, Ld-WE is applied to get the discriminative topical word vectors in this study.
We set the pre-defined topic number as 20 and the dimensionality of the word
embeddings as 600. The text structure is denoted as the following five parts in a text
in this paper, which are title part, previous part, middle part, back part and tail part.
The structure index of these parts is from 1 to 5.

• Hyper-parameter Settings of Ld-CNNs. We use the development sets to tune the
hyper-parameters of the Ld-CNN in this paper. Many different combinations of
hyper-parameters can give similarly good results. We spend more time tuning the

1 http://ictclas.nlpir.org/.
2 nlp.stanford.edu/software/tokenizer.shtml.
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learning rate than tuning other parameters, since it’s the hyper-parameter which has
the largest impact on the prediction performance. The hyper-parameter settings
depend on the dataset being used somehow. In this paper we choose the same param‐
eters for the three datasets, which are listed as follows: the number of the convolution
filters in Ld-CNN is set to 6 and the number of convolutional feature maps is 100.
We choose ReLU function as our activation strategy and 1-max pooling as our
pooling method. The L2 regularization term is set to 1e-4, dropout is applied to the
penultimate level with p = 0.5. As Fig. 1 shows, there is only one hidden layer in
each Ld-CNN. Moreover, we set the learning rate of the stochastic gradient descent
(SGD)  as 0.01.

4.3 Results and Analysis

The experimental results are shown in Table 2. We compare our model with several
common-used text classification methods and the state-of-the-art models for each
dataset. The compared models are listed as follows:

Table 2. Test results for the datasets. The top, middle, and bottom parts are the baselines, the
state-of-the-art results and the results of our model, respectively. The test results are tested through
the corresponding codes.

Model Sogou lab data Reuters-21578 LdCS data
LR + BoW 89.61 89.72 75.35
LR + Bigram 90.14 89.86 76.44
SVM + BoW 90.08 90.27 83.23
SVM + Bigram 90.13 91.03 81.08
ClassifyLDA-EM [12] 90.14 91.25 84.24
Character-Level CNN [28] 90.13 92.27 83.48
RecursiveNN [22] 92.74 91.28 83.57
RCNN [21] 93.41 93.35 86.17
CNN + Word2Vec 91.21 90.29 86.31
CNN + Ld-WE 93.79 92.98 88.73
Ld-CNNs 94.48 94.13 92.73

LR/SVM + Bag of Words/Bigrams. There are several strong baselines for text clas‐
sification proposed by Wang and Manning in [24]. These baselines mainly choose
unigram or bigrams as feature selecting method, and use logistic regression (LR) and
SVM as classifiers. The weight of each feature is the term weight.

LDA-Based Methods. LDA-based approaches achieve good results in terms of
capturing the semantics of texts in several classification tasks. ClassifyLDA-EM [12] is
selected as the method for comparison.

Character-Level NN. Inspired from the big advance of convolutional neural networks
(CNN) for image processing, some researchers propose to treat the character as pixel
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and the text as image, and then apply the CNN model on NLP applications and get good
results [28]. We compare this method on our task in this paper.

RecursiveNN-Based Methods. We select two recursive-based methods for compar‐
ison with the proposed model: The Recursive Neural Network (RecursiveNN) [22] and
The Recurrent Convolutional Neural Network (RCNN) [21].

We also conduct the experiments under different experimental settings on the dataset
LdCS. The results are shown in Fig. 2. From the experimental results we can see:

• The neural network approaches outperform the traditional methods for all three data‐
sets. It’s proved that neural network based approach can effective compose the
semantic representation of texts. Compared to the traditional methods, which may
suffer from the data sparsity problem on BoW model, neural networks can capture
more contextual information of features.

• For the first two common-used datasets, Sougou and Reuters, the categorization result
is better than the dataset LdCS. This indicates that the text categorization in content
security has special points. Thus more features should be employed into the classi‐
fication model to enhance the accuracy of text categorization in content security. By
using text structure information, the model makes a big advance on this task.

• We select a standard convolutional neural network for comparison, using
CNN + word2vec and CNN + Ld-WE as compared model on text classification tasks.
From the comparison we can see that both Ld-WE and Ld-CNN contribute to the
performance of our model. It turns out that the combination of several CNN-based
architecture networks for classification task is effective, and text structure informa‐
tion plays an important role in text categorization in content security.

• From Fig. 2 we can see the impacts of different experimental setting factors on the
task results, such the selection of activation function, the region number, the fusion

Fig. 2. The experiment results under different experimental settings on LdCS dataset.
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function (i.e. the linear SVM kernel, or other regression function in this model) etc.
It demonstrates that the ReLU activation function gets the best results among the
selected activation functions, and Ld-WE embedding method has a better perform‐
ance than other embedding strategies.

• Last but not least, from these experimental results we need to know that besides the
text structure information, there are also other features that can be employed to
enhance the categorization result for content security, which will be further studied
in our future work.

5 Conclusion

In this paper, we propose a text categorization model named Ld-CNNs, whose aim is to
enhance the accuracy of the structured text categorization in content security. The
contribution of our model is that it employs the text structure information and word
topics for effective text classification. The model uses the topical word embedding
generated by the proposed Ld-WE embedding method to denote the text matrixes as
model input, and for each structure part of the text, Ld-CNN is designed for encoding
the top-level salient semantic feature vector for the part. Then a linear SVM kernel is
applied on the generated top-level feature vectors to get the final new vector, which
integrates the text structure weights into the final layer. Afterwards, the softmax function
is performed on the final vector to get the final categorization result. We evaluate our
Ld-CNNs model by conducting several experiments. The experimental results show that
our model gets good result on text classification tasks, and outperform state-of-the-art
text categorization models especially when the texts are structured in content security.
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Abstract. Over the last decade, VoIP services and more especially the
SIP-based ones, have gained much attention due to the low-cost and
simple models they offer. Nevertheless, their inherently insecure design
make them prone to a plethora of attacks. This work concentrates on
the detection of resource consumption attacks targeting SIP ecosystems.
While this topic has been addressed in the literature to a great extent,
only a handful of works examine the potential of Machine Learning (ML)
techniques to detect DoS and even fewer do so in realtime. Spurred by
this fact, the work at hand assesses the potential of 5 different ML-driven
methods in nipping SIP-powered DDoS attacks in the bud. Our exper-
iments involving 17 realistically simulated (D)DoS scenarios of varied
attack volume in terms of calls/sec and user population, suggest that
some of the classifiers show promising detection accuracy even in low-
rate DDoS incidents. We also show that the performance of ML-based
detection in terms of classification time overhead does not exceed 3.5 ms
in average with a mean standard deviation of 7.7 ms.

Keywords: VoIP · SIP · DoS · DDoS · Machine learning · Evaluation

1 Introduction

Throughout the last decade, Voice over IP (VoIP) services are gaining increasing
attention due to the multiple advantages they offer in comparison to those pro-
vided by Public Switched Telephone Network (PSTN). Based on current market
reports, VoIP is blooming and its market share is estimated to reach 130$ billion
until 2020 [1]. On the other hand, as VoIP services rely on the open Internet,
providers need to ensure availability levels similar to PSTN. This means that
among other well-documented threats [2–5], they need to cope with resource
consumtion attacks namely Denial os Service (DoS) as well as their distributed
form (DDoS) that cause service disruptions and sometimes even complete out-
ages. This is of high importance especially for critical voice services e.g., emer-
gency numbers. This threat is further aggravated as the current predominant
c© Springer International Publishing AG 2016
J. Chen et al. (Eds.): NSS 2016, LNCS 9955, pp. 126–139, 2016.
DOI: 10.1007/978-3-319-46298-1 9
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VoIP signaling protocol, namely Session Initiation Protocol (SIP), can be eas-
ily exploited by an attacker. This is mainly due to SIP text nature that allows
the aggressor to straightforwardly craft and send large volumes of SIP requests
toward its victim with the aim of paralyzing it. The perpetrator is also able to
exercise more clever attacks, including low and slow ones [6] in order to consume
a considerable amount of VoIP server’s resources and network bandwidth, and
thus degrade the quality of the service.

To cope with this threat, several SIP-oriented Intrusion Detection and pre-
vention Systems (IDS) have been presented in the literature so far. Focusing on
proposals to defend against DoS in these environments, one can identify simple
statistical schemes as those given in [7,8]. In this category of solutions detection
relies on different network statistics, including incoming traffic rate, and uses a
predefined threshold above which the received traffic is classified as malicious.
It is obvious though that such a solution cannot protect effectively SIP services
against low-rate DoS attacks, as it is cumbersome to constantly adapt itself, say,
by recalculating the underlying threshold to reflect the ongoing characteristics
of the attack.

Further, most of the existing solutions do not consider SIP different inherent
features and characteristics which can be exploited by an attacker to launch DoS,
while the majority of them are privacy-invasive. A comprehensive analysis of
existing protection solutions against DoS in SIP can be found in [9]. Therefore, as
the aggressors become more sophisticated, there is a need for advanced (D)DoS
detection methods that are able to automatically adjust their behavior to the
attack traffic patterns. A way to achieve this is to use well-established classifiers
from the Machine Learning (ML) toolbox.

Our Contribution: The paper at hand assesses the potential of using tech-
niques borrowed from the ML realm to detect (D)DoS incidents in SIP services.
In contrast to our previous work [10], the evaluation of the various classifiers is
done in realtime in the SIP proxy. Our experiments involve 5 different well-known
classifiers and a large variety of attack scenarios ranging from simple DoS to slow
and high-rate DDoS. The evaluation is done in terms of both detection accuracy
and processing time. The results show that the introduced overhead in the SIP
server is negligible, while the average detection accuracy for the best-performing
algorithms fluctuates between ≈89 % and 92 % depending on the scenario.

The remainder of the paper is organized as follows. The next section pro-
vides an overview of SIP architecture and briefly analyses the threat model.
Section 3 describes the methodology and steps followed throughout our experi-
ments. Section 4 presents the results. Section 5 overviews the related work. The
last section concludes and provides directions to future work.

2 SIP Architecture and Threat Model

SIP is a text-based protocol with syntax similar to that of HTTP. As shown in
Fig. 1, a SIP message (request in this case) consists of two basic parts. The upper
one corresponds to the message headers and carries information in regards to the
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Fig. 1. A typical SIP invite request

sender (caller) and the recipient (callee) of the message. The lower part is known
as the message body and carries the media details. Communication resources in
SIP are assigned a SIP Uniform Resource Identifier (URI), e.g., with reference to
the first line of Fig. 1, sip:tzisis@msip.aegean.gr. Every SIP message is processed
by the appropriate SIP component. A basic SIP infrastructure consists of:

– SIP User Agent (UA) - Represents the end points of the SIP protocol, that
is, the User Agent Client (UAC) and the User Agent Server (UAS) which are
able to initiate or terminate a session using a SIP software or hardware client.

– SIP Proxy Server - An intermediate entity which plays the role of the client
and the server at the same time. Its task is to route all the packets being sent
and received by the users participating in a SIP session. Note that one or more
SIP proxies may exist between any two UAs.

– Registrar - Handles the authentication and register requests initiated by the
UAs. For this reason, this entity stores the user’s credentials and UA location
information.

For a detailed analysis of SIP architecture the interested reader can consult
the corresponding RFC [11].

So far, a plethora of attacks against SIP-based services have been identified
in the literature. These include eavesdropping, flooding, SQL injection, manip-
ulation of SIP messages, and so on [2–5,12]. In this work, we concentrate on
resource consumption attacks caused by malicious entities who send a surge of
SIP messages against their target, that is, a SIP server or UA. From an attacker’s
viewpoint, this category of assaults are considered quite straightforward mostly
because of the text-based nature of the protocol, the lack of built-in countermea-
sures, and the existence of open source publicly available attack tools [13]. On
the other hand, the impact of such an attack on the target is considerable and
may vary from loss of service to entire network paralysis. From a VoIP provider
viewpoint, this may result in many dissatisfied customers and loss of profit.
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Having in mind all the above, in the following we formulate an attacker-
centric threat model. Specifically, we assume that the perpetrator is able to
fabricate a SIP message by simply spoofing its headers. The most appropriate
SIP requests to achieve such a goal are Invite, Register, and Options [11]. The
attacker spoofs certain headers of the message (Via, From, To, Call-ID, Contact)
to create a flooding effect towards the victim and obfuscate the forensic signal of
the attack. For instance, if the attacker knows the URI of a certain user, is then
able to mount a high-rate DoS attack with Invite requests to choke the user’s
softphone. An indicative example of a device that is prone to such a vulnerability
is Cisco SIP Phone 3905 [14]. An alternative attack strategy aims at paralysing
critical components of SIP infrastructure, including SIP Proxy or Registrar.

In this paper we only consider the manipulation of Invite messages. However,
as already pointed out, the same outcome can be achieved with other types of
SIP requests.

3 Detection Engine

This section elaborates on the architecture of the proposed IDS, which as
observed from Fig. 2, is composed of 3 modules. The first module is occupied
with the extraction of the required classification features from the headers of the
incoming SIP messages. The selected features are forwarded to an anonymisation
module, and finally are fed to the classification engine. After a training phase, the
latter module can be configured to operate in realtime using the ML algorithm
of choice. The subsequent sections elaborate on each of the aforementioned IDS
modules.

Fig. 2. Detection engine architecture
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3.1 Feature Extraction and Anonymization of Data

As already mentioned, the feature extraction module operating on the SIP server
examines the incoming SIP traffic for any request, say, Invite, Register. Next,
the request is parsed to isolate the headers of interest, namely, <Via>, <From>,
<To>, <Contact> and <Call-ID>. The extracted headers are anomymised with
the help of HMAC-SHA256. The latter aims at preserving end-user privacy
in cases where the detection task is outsourced to a third party. Also, it has
the dual benefit of preserving the entropy of the original headers and mak-
ing deanonymization as hard as reversing the HMAC-SHA256. The anonymized
features along with its frequency of appearance are stored in a hash table data
structure.

As described in Algorithm 1, every time a new (different) feature is extracted
from an incoming SIP request a new record is inserted in the hash table with
its corresponding value equals to 1. In case an already existing key is insterted
in the table the corresponding frequency value is increased by 1. This procedure
continues until the number of messages reaches a certain predefined Message
Window Mw. For the needs of our experiments we picked arbitrarily a Mw equal
to 1,000. Therefore, the detection engine starts the classification process from
message 1001. That is, the hash values of the headers of this message will update
the corresponding cells of the hash table and the resulting numbers will be fed
to the classifier. This process is done in a message-by-message manner for every
SIP request arriving after the 1000th.

Obviously, the value of Mw parameter is sure to affect the detection accuracy.
Therefore, this parameter should be adjusted by the service provider itself, say,
according to the average call rates. Nevertheless, to our knowledge, there is
no foolproof approach to formally define this parameter, mainly because it is
eminently contextual. That is, it is closely connected to the local characteristics
of the service and underlying network. As a result, similar to other anomaly-
based approaches, one can follow an error-trial approach to equilibrate between
the Mw parameter and the false alarm rate.

3.2 Training and Operation

Similar to any other ML-powered approach, the detection engine requires the
training of the classifier in order to be able to detect anomalies in the incoming
traffic. This means that during service initialization, the classifier of choice must
be trained based on some pregenerated training data. The creation of such a
training dataset is up to the service provider because it mainly depends on the
particular services it offers and the characteristics of the underlying network. In
our case, the training file is produced using the “offline software module” given
in [15]. More specifically, for generating the appropriate training file used by
the SIP proxy at its initialization phase, we first execute a basic scenario and
capture the SIP traffic in a log file. After that, this file is analysed with the
previously mentioned module for the sake of generating a new training file ready
to be fed to the SIP Proxy. Also, a renewal and/or amendment of the training
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Algorithm 1. Extraction of classification features
Input: Incoming SIP messages
Output: Classification result

1 SIPHeaders[N] ← ExtractSipHeader(SIP Request);
2 for (i=1; i ≤ N; i++) do
3 HashedHeader[i] ← HMAC(SIPHeaders[i]);
4 if (InsertToHashTable(HashedHeaders[i]) �= NULL) then
5 GetValueofHashTable(HashedHeader[i])++;
6 else
7 InsertToHashTable(HashedHeaders[i]);
8 SetValueInHashTable(HashedHeader[i]) ← 1;

9 end

10 end
11 classificationResult ← classify(#HashedHeaders [1],... ,#HashedHeaders[N]);
12 if (Mw = 1, 000) then
13 TotalMessages ← TotalMessages + Mw;
14 Re-Initialize(HashTable);

15 end

set is required as soon the network and/or service operating conditions change.
In this paper, we opt not to address the two aforementioned issues which are
left for future work.

Nevertheless, it should be stressed that the training data must contain both
legitimate and attack traffic. This is necessary because in order for the classi-
fier to build a realistic traffic model, the training data must contain classes of
both attack and normal traffic. As soon as the training phase is completed, the
detection engine starts on the SIP server as a realtime service.

3.3 Implementation

The realtime detection service has been implemented as a plug-in module of the
well-known SIP proxy Kamailio [16]. Specifically, the module [15] is written in
C programming language and is capable of processing any incoming SIP request
as described in the previous subsection.

The feature extraction module stores temporarily the processed data to a
hash table, while classification relies on Weka [17] a well-known framework for
ML analysis. Given that Weka provides a Java interface, we use Java Native
Interface (JNI) [18] to make possible the integration between the feature extrac-
tion and classification module. In this way, one can easily configure the employ-
ment of the appropriate classifier depending on the requirements at hand.

The implementation has been tested for possible memory leaks following
an error-trial approach and monitoring the Linux OS memory consumption
under various scenarios. This is because JNI implementation should be protected
against potential out-of-memory conditions [19]. As pointed out in Sect. 1, our
implementation is freely available [15] for further development and experimen-
tation.
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4 Results

This section details on the testbed used and presents the results in terms of both
false alarms and processing overhead on the SIP server.

4.1 Test-Bed Setup

As illustrated in Fig. 3, we employed a virtualised testbed running over an i7
processor at 2.2 GHz. Three Virtual Machines (VMs) were created, each one
equiped with 6 GB of RAM. These VMs respectively host the SIP proxy, the
UAs, and the attack traffic generator. We created distinct patterns of legitimate,
single source DoS and DDoS traffic using sipp v.3.2 [20], sipsak [21], and SIPp-
DD [22] tools respectively.

As observed from Table 1, twenty two disparate scenarios were created in total
to replicate different (D)DoS incidents. Seven basic scenarios were used for train-
ing, while the others represent an attack incident. For all the scenarios, an expo-
nential inter-arrival time distribution (λ = 100) is followed to produce the legit-
imate traffic. Note that this kind of distribution inherently presents the “lack-
of-memory” property. Specifically, this property considers that the probability
of a future event (call arrival) is the same regardless of the previous events that
took place in a series of time frames. In our case, this is analogous to the traffic
used for assessing VoIP systems’ performance [23].

Furthermore, a range of different call rates has been used in the cases of DoS
and DDoS, with the aim of simulating various call rates which may approximate
the traffic patterns of a real VoIP provider. For example, as observed in Table 1,
the call rate for SN6.1 is given as 20–120, where the first number indicates the
call rate of the attack, and the second designates the call rate of the legitimate
traffic both occurring in parallel. Keep in mind that for DDoS scenarios about
half of the registered users were generating the normal traffic, while the other
half were acting maliciously.

4.2 Detection Accuracy

In the context of our experiments, we employed 5 well-known classifiers, namely
SMO, Naive Bayes, Neural Networks, Decision Trees (J48), and Random Forest.
This particular choice has been done because these classifiers present a better
detection accuracy when it comes to numerical data [24]. The detection accuracy
of each classifier in terms of False Positives (FP) and False Negatives (FN) is
estimated and the results are included in Table 2. Also, to ease the reading of
the table, the mean, minimum, maximum FN and FP values per classifier and
collectively per attack type (DoS/DDoS) are depicted in Fig. 4. From this figure
it can be seen that FN metric fluctuates between 0.9 % and 23.7 % for DoS
scenarios having an average of 14 %, while the corresponding values for DDoS
are 2 %, 62 %, and 16 %.

Focusing on Table 2 and on its lines containing the average values of FN
metric, one can conclude that SMO produces the worst results and therefore
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Fig. 3. Deployed testbed for (D)DoS simulations

should be avoided. The same observation applies to Random Forest but only for
DoS scenarios. J48 on the other hand scores an average FN of 11.8 % but largely
fails in terms of FP (interestingly, the FP metric is almost non-existent for all
the algorithms but J48). It can be safely argued that the most reliable classifier
across all scenarios and for both FN and FP metrics seems to be Naive Bayes
followed by Random Forest. In any case, the FN percentages scored by both
the aforementioned algorithms especially for DoS scenarios are not favorable for
any real-world IDS. Putting aside SMO and Neural Networks, the rest of the
classifiers produce an average FN lesser than 8.5 % for DDoS scenarios only. It
can be therefore estimated that ML-driven detection shows greater potential in
detecting more sophisticated attacks of this kind.

Having a complete view of the results, we consider that further experimen-
tation is needed to obtain a better approximation of the power of ML-driven
(D)DoS detection in SIP realms. In this direction, a future work could concen-
trate on testing more classifiers and tuning the Mw parameter based on the
specific needs of the VoIP service provider.

4.3 Performance

Putting aside its effectiveness, the other decisive factor for any IDS is that of
performance in terms of service time. This section elaborates on the per message
(SIP request) processing time introduced by the realtime detection engine on
the SIP server. It is to be noted that all the time measurements included in this
section correspond to a worst case scenario as the SIP proxy for all the tests was
configured with one serving thread.
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Table 1. Description of scenarios

Scen Num. of users Calls/Sec Train scen Type of attack

SN1 30 2 Yes -

SN1.1 30 50 - DoS

SN1.2 30 175 - DoS

SN1.3 30 350 - DoS

SN2 30 5 Yes -

SN2.1 30 20 - DoS

SN2.2 30 40 - DoS

SN2.3 30 80 - DoS

SN3 30 20 Yes -

SN3.1 30 266 - DoS

SN4 30 120 Yes -

SN4.1 30 800 - DoS

SN5 50 120 Yes -

SN5.1 50 400 - DoS

SN5.2 50 1200 - DoS

SN6 60 20 Yes DDoS

SN6.1 60 20–120 - low-rate DDoS

SN6.2 60 120-20 - high-rate DDoS

SN7 500 100 Yes DDoS

SN7.1 500 10–200 - low-rate DDoS

SN7.2 500 100-40 - high-rate DDoS

SN7.3 500 30–50 - low-rate DDoS
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Fig. 4. DoS (left) and DDoS (right) minimum, maximum and average FN percentage
values per classifer.

Figure 5 illustrates a random snapshot of the processing time introduced
by our architecture, while Table 3 includes the average, max, min, and
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Table 2. Summary of results for all the scenarios (The best performer per scenario in
terms of FN is in bold).

SN Traffic (Calls) SMO Naive Bayes Neural networks Decision trees (J48) Random forest

FP FN FP FN FP FN FP FN FP FN

Total rec Attack rec % % % % % % % % % %

SN1.1 2.4k 1.2k 0 23.7 0 23.7 0 23.6 35.1 23.7 0 23.6

SN1.2 2.5k 1.3k 0 22.9 0 22.8 0 22.9 33.7 22.8 0 23

SN1.3 2.7k 1.5k 0 21.8 0 21.8 0 21.8 32 22 0 21.8

SN2.1 2.7k 1.2k 0 21 0 7.3 0 14 36.9 6.3 36.3 19.6

SN2.2 2.7k 1.2k 0 16.1 0 7.3 0 28 29.9 7.1 0 9.9

SN2.3 3k 1.3k 0 12.4 0 5.5 0 24.8 44.1 14.7 0 27.3

SN3.1 5k 2.3k 0 19.8 0 6.9 0 9.1 47.1 7.2 0 20

SN4.1 8k 1.5k 0 8 0 8.9 0 4.7 75.1 1.9 0 15.7

SN5.1 7k 1k 0 11.7 0 9.2 0 0.9 0 11.2 0 5.5

SN5.2 9k 2.6k 0 12.3 0 2.1 0 2.2 59.9 2 0 12.3

Avg. — — 0 16.97 0 11.55 0 15.2 39.38 11.8 3.63 17.8

SN6.1 12k 6.6k 0 3.8 0 3.8 0 3.8 0 3.4 0 3.7

SN6.2 4.5k 2k 0 18.2 0 17.9 13.7 28.5 0 17.4 0 17.7

SN7.1 10.5k 3.3k 0 31.1 0 2.1 0 31.2 0 2 0 2.1

SN7.2 7k 2.2k 0 32 0 10.7 0 32.8 0 10.5 0 10.6

SN7.3 9k 6k 0 62.6 0 7 0 62.8 0 6.6 0 5.1

Avg. — — 0 29.5 0 8.3 2.74 31.8 0 7.98 0 7.84

standard deviation processing times per classifier for all the 15 attack scenar-
ios. As observed from the Table, the average processing time remains under
4 ms, while it is easily seen that all classifiers follow a similar tendency. As the
SIP proxy is configured in single-thread mode it can be safely argued that the
induced overhead is negligible. The maximum values of, say, 300 ms contained in
both Fig. 5 and Table 3 are unique or very scarce and are due to the activation
of single-thread mode at SIP proxy side and the traffic pattern of the exam-
ined scenario. For instance, while in SN1.2 the normal traffic rate is 2 calls/sec,
in SN7.1 is 200 calls/sec, resulting to an increment in the classifier’s, average
processing time.

Table 3. Summary of classification time overhead for all the scenarios (ms)

Classifier Min Max Avg St. dev

SMO 0.08 123.78 3.37 7.73

Naive Bayes 0.15 171.13 3.48 7.76

Neural networks 0.10 129.20 3.42 7.74

Decision trees (J48) 0.08 388.01 3.28 7.91

Random forest 0.08 91.74 3.56 7.72
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Fig. 5. A random snapshot of the time overhead for scenario SN-1-2 (left) and SN-7-1
(right)

5 Related Work

Until now, a handful of works in the literature discuss the suitability of methods
borrowed from the ML community to detect DoS attacks in VoIP realms and
particularly in SIP. In the following, we elaborate on each of them starting from
those that are designed to work offline.

The authors in [10] provide an offline assessment of 5 different ML classifiers
in detecting DoS and DDoS attacks in SIP. This was done by examining the
recorded SIP audit trails in a forensic-like manner. Their results obtained under
a variety of attack scenarios indicate that ML-powered methods achieve better
results when compared to those scored by legacy statistical schemes [25,26].
They also highlight on the fact that some classifiers do achieve satisfactory
results even in the case of low-rate flooding attacks. For instance, according
to the authors, the Neural Networks classifier succeeds a FP rate of 5.2 % and
zero FN. Another offline proposal for detecting anomalies in SIP messages is
given in [27]. Particularly, among others, the authors employ the Decision Tree
(J48) classifier with the aim of exposing Invite and Register flooding incidents.
To do so, they rely on classification features taken from three SIP message head-
ers, namely <Method>, <To> and <From>. For DoS attacks, they report a
detection accuracy of approximately equal to 99.7 %.

The work in [28] also reports on the effectiveness of ML methods to cope with
flooding incidents in SIP ecosystems. In this case, the authors focus on the first
line of 13 different SIP requests and 6 different responses. The authors examine
several classifiers, including Evolving Radial Basis Function, Fuzzy AdaBoost
Genetic Classifier System, and others. They report sufficing results ranging from
0 % to 1 % for FP metric and 0 % to 97.7 % for FN. On the downside, the authors
do not consider DDoS, and their experiments were conducted on an artificially
created dataset where the simulated attack messages were injected to the normal
traffic.

Three realtime detection schemes against Spam over Internet Telephony
(SPIT) and flooding attacks are given in [29–31]. The first one deals with the
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detection of both SPIT and typical flooding attacks carried out via SIP mes-
sages. The detection mechanism proposed by the authors capitalizes on 38 dis-
tinct classification features and makes use of SVM classifier. The authors report
a detection accuracy spanning from 0 % to 98.2 % depending on the flooding
rate. The work in [30] proposes a mechanism that assembles vectors of certain
features contained in SIP messages and subsequently feeds it to Naive Bayes
and J48 classifiers. More specifically, the spatial features used in this work per-
tain to the IP address contained in the <From> header and the call ratio of
Invite requests. As in their previous work [28], the authors synthetically inject
attack messages to the normal SIP traffic in order to estimate the detection
accuracy of their proposal. They mention false alarm rates ranging from 0 % to
0.7 % and 0 % to 25 % for FP and FN metrics respectively. The third work [31]
offers an online IDS to combat DoS attacks. The authors argue that their system
presents a 99 % accuracy, presenting a detection time overhead equal to 152μ.
Nevertheless, they neither consider DDoS attacks nor different attack rates in
their analysis.

From the above discussion, it becomes apparent that so far the related work
on the topic presents two major shortcomings which are dealt by the work at
hand:

1. It does not consider more sophisticated attacks scenarios like DDoS and low-
rate DoS, which naturally are more difficult to detect and defeat. The works
in [10,30] do take into consideration the aforementioned category of assaults
but either the reported results are only concerned with offline detection or
they solely address elementary DoS attacks.

2. No work occupied with realtime detection comprehensively reports on the
overhead that the various classifiers induce to the system in terms of clas-
sification time. However, this is crucial for deciding if a particular detection
method is suitable or not.

6 Conclusions

This work examines the applicability of several well-known ML techniques in
detecting (D)DoS in SIP-based services. We implemented a Kamailio software
module to achieve attack detection in realtime and tested both the detection
accuracy and processing overhead of each classifier under 15 different attack sce-
narios representing DoS and DDoS incidents. All the algorithms but one achieve
desirable detection accuracy in terms of FP, but only mediocre accuracy (for a
real-life IDS product) when FN is considered. Therefore, further experimentation
is needed to better appreciate this potential. From a processing overhead view-
point, it can be safely argued that realtime operation is feasible as the induced
time penalty is negligible even if the SIP server operates in single-thread mode.

It is worthy to note that the legitimate users’ calling rate, the number of
users included in every scenario, and the value of the Mw are sure to affect
the false alarm rates. This happens because the selected features rely on the
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occurrences of the examined headers of interest, and thus are directly connected
to the number of users and the Mw. That is, the greater the number of users the
lesser the occurrences per message header. This fact indicates that one should
lower the size of Mw as the population of users augments and vice versa. To this
end, one can obtain the best results with an error-trial approach, calibrating the
Mw proportionally to the population of users and the calling rate as the case
may be.
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Abstract. An oblivious signature is a kind of digital signature providing
privacy protection for the signature requester. According to the pioneer
work introduced by Chen in 1994, it is defined in two different types;
an oblivious signature with n messages and, an oblivious signature with
n keys. In an oblivious signature with n messages, it allows a signature
requester to get a signature on 1-out-of-n messages while during the
signing process, the signer cannot find out which one of the n messages
has been signed. In an oblivious signature with n keys, it allows a sig-
nature requester to get a signature signed by 1-out-of-n signers while
during the signing process, no one except the requester can know who
has really signed the message. In 2008, Tso et al. gave formal defini-
tions on the models of oblivious signatures and gave an example on the
construction of oblivious signatures based on the Schnorr signature. In
this paper, we follow Tso et al.’s work but combine the two function-
alities into one scheme. We called it Two-in-one oblivious signature. In
out scheme, a signature requester can ask 1-out-of-n1 signers to sign 1-
out-of-n2 messages. At the end of our protocol, no one (including the
n1 possible-signers) knows who has really signed the message as well as
which one of the n2 message has been signed. The scheme is useful in
many applications such as e-cash, e-voting and e-auction etc. We will
give a formal model on our scheme and give a rigorous security proof
based on the random oracle model.

Keywords: 1-out-of-n signature · Oblivious signature · Oblivious trans-
fer · Privacy protection · Schnorr signature

1 Introduction

Nowadays, as the increasing awareness of personal privacy, privacy protection has
become one of the most important features for designing a secure cryptographic
protocol. For example, privacy preserving smart metering [1,7,14] which allows
users to perform and prove the correctness of computations, without disclosing
any fine grained consumption. Privacy preserving data outsourcing [12] which
can outsource the sensitive data in an encrypted form without disclosing the
real data. And many other privacy preserving schemes in data mining [10,22],
c© Springer International Publishing AG 2016
J. Chen et al. (Eds.): NSS 2016, LNCS 9955, pp. 143–155, 2016.
DOI: 10.1007/978-3-319-46298-1 10
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or in the e-health environments [23–25]. Moreover, in the applications of on-
line shopping, on-line banking, Internet-voting or e-auction etc., consumers or
users may worry about how their personal information will be used. Using an
on-line shopping as an example. Users can download the free trial version of
software, mobile Apps, musics or video from the Internet. To access the full
version, users have to pay for authorization. An authorization on a software
may be a digital signature on the software signed by the corresponding issuer.
However, to avoid the abuse of the shopping and/or the browsing habits, the user
may hope that he/she can get the authorization (i.e., a digital signature) from the
issuer without disclosing his/her consumption habits. That is, to get a signature
without showing who will really sign the message as well as which message will
be signed on from signers perspective. In this case, oblivious signatures [5,18]
will be a good method to satisfy the users requirement.

Oblivious signatures, which first introduced by Chen in 1994, was aimed to
solve the privacy-protection problem relating to the activities on the Internet.
In his pioneer work, an oblivious signature is defined in two types; an oblivious
signature with n keys and, an oblivious signature with n messages. The two
types of signatures are used in two different scenarios.

The oblivious signature with n keys is an interactive and multiparty protocol
which consists of n signers (or simply a singer with n different keys) and a
signature requester R. By executing the protocol, R interacts with the n signers
to request a signature on a message m. At the end of the protocol, R got a
signature on m signed by one of the n signers. The main feature of this scheme
is:

1. R can get one and only one signature on the message m, and the signer (or
the signing key from the n keys) is pre-determined by R before the execution
of the protocol.

2. During the signing process, all the n signers have no idea on who has really
signed the message m. But it is assured by the protocol that one and only
one signer among the n possible signers will sign the message m.

3. When necessary, R can show that he has got a signature (on the message m)
from one of the n signers (or one of the n keys from the same signer) without
revealing with which special one.

On the other hand, the oblivious signature with n messages is an interactive
protocol which consists of a signer S, a signature requester R and n messages
{m1,m2, · · · ,mn}. The n messages can either be determined by S or R as long
as both party agreed on signing one of these n messages. By executing the
protocol, R interacts with S and finally gets a signature signed by S on one of
the n messages. The main feature of this scheme is:

1. R can get one and only one signature signed by S on one of the n messages,
{m1,m2, · · · ,mn}. The message to be signed is predetermined by R before
the execution of the protocol.

2. During the signing process, the signer S has no idea on which one among the
n messages has been signed by him. But it is assured by the protocol that
only one among the n messages will be signed.



Two-in-One Oblivious Signatures Secure in the Random Oracle Model 145

3. When necessary, R can show that he has got a signature on one of the n
messages without revealing which special one.

Oblivious signatures with n keys can be considered as a complement of ring
signatures [15,20,21] or group signatures [6,11]. The difference is that a ring
signature as well as a group signature is aimed to protect the anonymity of a
signer, but an oblivious signature with n keys is to protect the choice a sig-
nature requester made (i.e., who among the n possible signers will really sign
the message). On the other hand, oblivious signatures with n messages can be
considered as an improvement of blind signatures [2,4]. A blind signature, as
introduced by Chaum [4], allows a user to get a message signed by a signer with-
out revealing any information about the message to the signer. Since a signer’s
view is perfectly shut off from the resulting signatures, it is a risk from a signer’s
perspective to sign such a blinded message. However, in an oblivious signature
with n messages, although a signer still cannot control over the message to be
signed, he can see or control the message pool in advance and know that a mes-
sage he will sign is picked from the pool. In other words, if a signer is willing
to sign any one of the message from the pool, then he can perform the protocol
and be convinced that no message outside the message pool will be signed.

Following Chen’s work, Tso et al. in 2008 redefined the model of an oblivious
signature in formal. One important change is that the property of ambiguous
verification is neglected in Tso et al.’s model. Ambiguous verification means that,
when necessary, the signature requester can show that he has got a signature
with one the n keys (or messages) without revealing with which special one.
Tso mentioned that the ambiguous verification property can be easy achieved
on any three move type signature schemes [8] by the technique of universal ring
signature [19]. Consequently, it should not be considered an a unique feature of
oblivious signatures. Instead, it is an extended feature for all three-move type
signatures.

Motivation and Contributions. Oblivious signatures have many useful appli-
cations. For oblivious signatures with n keys, It can be used in the case of
accessing sensitive databases controlled by different administrators (or simply
one administrator with different access keys). In this case, an authorization or
a permit, which is a signature signed by the corresponding administrator is
required. Using an oblivious signature scheme we can guarantee that a user can
get the permit (i.e., the signature) for accessing only one of n databases without
revealing which one. On the other hand, oblivious signatures with n messages is
useful in the case of internet shopping. Users can download the free trial version
of software, mobile Apps, musics or video from the Internet. To access the full
version, users have to pay for authorization. An authorization on a software may
be a digital signature on the software signed by the corresponding issuer. By
using oblivious signatures, the user can choose n software and get one and only
one signed by the issuer without revealing which one. Some researchers have also
found its functionality in e-voting scheme [17].

However, for the case if the message as well as the identity of the real signer
are both sensitive from a signature requester’s perspective, then there is no
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scheme suitable for this case. For this reason, in this paper, we redefine the formal
model again. We follow Tso et al.’s work and combine the two functionalities of
oblivious signatures into one scheme. We called it Two-in-one oblivious signature.
In out scheme, a signature requester can ask 1 out of n1 signers to sign 1 out
of n2 messages. At the end of our protocol, no one (including the n1 possible-
signers) knows who has really signed the message as well as which one of the n2

messages has been signed. If n1 = 1, then it is the original oblivious signature
with n2 messages. On the other hand, if n2 = 1, then it is the original oblivious
signature with n1 keys. We extend it functionality so that it can be used in
more applications, such as e-cash, e-voting and e-auction etc. We will also give a
formal model and construction on our scheme and give a rigorous security proof
in the random oracle model.

Paper Organization. The rest of the paper is organized as follows. Section 2
is Preliminaries. Section 3 gives the formal model of the new oblivious signature
scheme. In Sect. 4, we describe the detailed construction of our two-in-one obliv-
ious signatures. The rigorous security proofs are also provided in this section.
Finally, the conclusion is given in Sect. 5.

2 Preliminaries

This section gives some cryptographic primitives and definitions required for our
construction.

2.1 Complexity Assumption and Forking Lemma

Definition 1 (Discrete Logarithm (DL) Problem). Let G be a finite group
of prime order q ≥ 2λ where λ is a security parameter. Let also g be a generator
of G with order q. The DL problem is to output k of δ = gk mod q when given
g, q, δ ∈ G.

The success probability that an algorithm F has in solving the DL problem in G
is SuccDL

F = Pr[F(g, δ) = k : δ = gk], where the probability is over the random
choice of g, δ in G2 and the random bits consumed by F .

The Discrete Logarithm (DL) assumption is that SuccDL
F is negligible for

any polynomial-time algorithm F (for the security parameter κ). As one of the
fundamental complexity assumptions, DL assumption has been widely used in
the security analysis of cryptographic protocols.

Definition 2 (Forking Lemma [13]). Let (K,S,V) be a digital signature
scheme with security parameter 1k, with a signature of the form (m,σ1, h, σ2),
where h = H(m,σ1) and σ2 depends on σ1 and h only. Let A be a proba-
bilistic polynomial time Turing machine whose input only consists of public
data and which can ask qh > 0 queries to the random oracle. Assume that,
within time bound T , A produces, with probability ε ≥ 7qh/2k, a valid signature
(m,σ1, h, σ2). Then, a replay of the attacker A, where interactions with the signer
are simulated, outputs two valid signature (m,σ1, h, σ2), and (m,σ1, h

′, σ′
2) such

that h �= h′, within time T ′ ≤ 84480 Tqh/ε.
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2.2 Schnorr Signatures Revisited

Our oblivious signature is based on Schnorr signature [16], so we revisit it in this
subsection. A Schnorr signature is a digital signature which consists of three
algorithms; key generation algorithm (KGen), Signing algorithm (Sign) and
Verification algorithm Verify.

Kgen: Given a security parameter 1�, this algorithm outputs the public key
pk = (p, q, g,H, y) and the corresponding private key x ∈R Z

∗
q of a signer, where

– p, q: two large primes such that q|(p − 1).
– g: an element of Z∗

p of order q.
– H : {0, 1}∗ → Z

∗
q : a cryptographic one way hash function.

– y = gx mod p.

Sign: Given pk = (p, q, g,H, y), a message m ∈ {0, 1}∗ and the corresponding
private key x, this algorithm generates a Schnorr signature σ = (r, s) on m,
where

– k ∈R Z
∗
q .

– r = H(m, gk mod p).
– s = k − x · r mod q.

Verify: Given pk, a message m and a signature σ = (r, s), this verification
algorithm outputs “1” if r = H(m, yrgs mod p), which means the signature has
been correctly verified. Otherwise, it outputs “0” which means the signature is
incorrect.

3 Definitions of Two-in-One Oblivious Signature

We extend the formal model of an oblivious signature scheme defined by Tso
et al. in [18]. In more detail, we combined their two models in one. Our new
model allows a signature requester to receive a signature signed by one out of the
predetermined n1 signers (or simply a signer with n1 different keys) and signed
on one out of the predetermined n2 messages. Our oblivious signature scheme
(abbreviated to OS(n1,n2)

1 ) with n1 signers and n2 messages involves three types
of entities: a signature requester R, n1 possible signers Si, 1 ≤ i ≤ n1 and a
verifier V.

• A signature requester R: for any input of n1 possible signers Si, 1 ≤ i ≤ n1

and n2 messages, m1, · · · ,mn, R can choose any one of these n2 messages to
get signed by any one of the n1 signers Si, 1 ≤ i ≤ n1.

• Oblivious signers Si, 1 ≤ i ≤ n1: each signer Si, 1 ≤ i ≤ n1 performs as a
real signer to sign the message chosen by R, but he is not able to learn who
among the n1 signers is the real signer and which one of the n2 messages has
actually been signed.

• A verifier V: R converts the oblivious signature into a generic signature σ
and transmits σ to V. V is able to verify the validity of the signature without
any secrete information.
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Definition 3. An OS(n1,n2)
1 scheme consists of four algorithms:

1. System Setting: A probabilistic polynomial-time algorithm (denoted by
SSet. This algorithm is run by a trusted third party (TTP, also regarded as
a trusted manager of the system). On input a security parameter 1k, TTP runs
the System-Setting algorithm to generate the system-wide public parameters
params of the scheme.

2. Key Generation: A probabilistic polynomial-time algorithm (denoted by
KGen). This algorithm is run by each signer Si, 1 ≤ i ≤ n, of the scheme in
separate who takes the system parameters params as input and the output
is the private/public key-pair (ski, pki) of the signer Si, 1 ≤ i ≤ n.

3. Signature Generation: An interactive polynomial-time algorithm (denoted
by Sign) among a signature requester R and n1 signers. It takes the system
parameters params, n1 signing keys ski, 1 ≤ i ≤ n1, and n2 message mj , 1 ≤
j ≤ n2, as input, and outputs a standard and publicly verifiable Schnorr
signature σ.

4. Signature Verification: A deterministic polynomial-time algorithm
(denoted by Ver) which takes a public key pk and a message/signature pair
(m,σ) as input, and outputs 1 or 0 to accept or reject the signature.

Notice that when n1 = 1, it is the type I oblivious signatures defined in [18],
i.e., oblivious signature with different messages. Moreover, when n2 = 1, it is the
type II oblivious signatures defined in [18], i.e., oblivious signature with different
keys. The two models cannot be combined in [18] but we successfully modified
it into one model.

3.1 Security Requirements

We now define the securities required for our oblivious signatures OS
(n1,n2)
1 .

The securities defined in this section follows those defined in [18,19] with slight
modifications. For an OS(n1,n2)

1 scheme, the securities requirements that must
be considered are correctness, unforgeability, ambiguity in selected signer and
ambiguity in selected message.

In the coming definitions, negl(λ) denotes any function which grows slower
than 1

λc for sufficiently large λ and some constant c.

Definition 4 (Correctness). If Si, 1 ≤ i ≤ n1, and R follow the signature
generation protocol properly and, at the end of the protocol, a signature σ
has been generated, then, with probability at least 1 − negl(λ), V will accept
the signature with probability at least 1 − negl(λ). In other words, σ satisfies
Ver(σ, params, pki,mj) = 1 for some i, 1 ≤ i ≤ n1, and j, 1 ≤ j ≤ n2.

The signature σ on messages mj is said valid with regard to (params, pki) if it
leads any verifier V to accept.

Except the completeness of the protocol, other requirements are defined sep-
arately for a signature requester R and for possible signers Si, 1 ≤ i ≤ n1.
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The security requirement for signers is the unforgeability of signatures and the
security requirements for requester is the ambiguity in selected signers and the
ambiguity in selected messages. The security for signers is protected in the sense
of computational security and the security for a requester is protected in the
sense of unconditional security.

To define the security for signers, we modify the definition of [18] and intro-
duce the following game.

Definition 5 (Game A). Let R∗ be a probabilistic polynomial time forging
algorithm. R∗ executes the part of a signature requester and tries to forge a new
signature σ∗ on a message m∗.

1. (params) ← SSet(1k),
2. {(pk1, sk1), · · · , (pkn1 , skn1)} ← KGen(params,S1, · · · ,Sn1),
3. R∗(params, pk1, · · · , pkn1 ,M) engages in the signature generation algorithm

with S1, · · · ,Sn1 for any message-set M where |M| = n2. The message set M,
a message mj ∈ M which will be signed and a real signer Si ∈ {S1, · · · ,Sn1}
to sign mj can be adaptively chosen by R. This step including the selection
of the message set M can be executed in polynomially many number of times
where R∗ can decide in an adaptive fashion when to stop. In the end of each
execution, R∗ obtains a valid signature σi,j on the message mj ∈ M signed by
Si ∈ {S1, · · · ,Sn1}. Let t denote the number of executions, and {σ1, · · · , σt}
denote the signatures obtained by R∗ at this stage.

4. R∗ outputs a new signature σ∗ on a message m∗ and claims it to be signed by
S∗ ∈ {S1, · · · ,Sn1} with S∗’s public key pk∗. In addition, σ∗ /∈ {σ1, · · · , σt}.

Definition 6 (Security for Signers: Unforgeability). An oblivious signa-
ture scheme OS(n1,n2)

1 provides the security for signers if, for any probabilistic
polynomial-time forging algorithm R∗ that plays the above game, we have

Pr (Ver(σ∗, params,m∗, pk∗ ∈ {pk1, · · · , pkn1}) = 1) < negl(λ).

The security for signers is actually the same as the notion of Existential
Unforgeability against Adaptive Chosen Message Attack (EUF-ACMA) [9] for
any standard publicly verifiable signature scheme.

The security for recipients is defined through Game B.

Definition 7 (Game B). Let S∗ be an attacking algorithm with unlimited
computation power which executes the part of one of the possible signers and R
be an honest requester that follows the signature generation algorithm. W.L.O.G,
let S∗ ∈ {Sa,Sb} and m0,m1 be two messages randomly picked by S∗. Let
u ∈R {a, b} and v ∈R {0, 1} which are kept secret from S∗. The purpose of S∗

is to predict u and /or v via the execution of the following game.

1. (params) ← SSet(1k),
2. {(pka, ska), (pkb, skb)} ← KGen(params,Sa,Sb),
3. S∗ with knowledges of (pka, ska) and (pkb, skb) engages in the signature gen-

eration algorithm with R(params, pku,mv), u ∈R {a, b} and v ∈R {0, 1},
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4. S∗ outputs u′ ∈ {a, b} and v′ ∈ {0, 1} according to the view from steps 1,
2, and 3 (i.e., S∗ is not allowed to view the output of R at the end of the
signature generation protocol).

We say that the attacking algorithm S∗ wins the game if u′ = u and/or v′ = b.

Definition 8 (Security for Recipients Against Signers: Ambiguity in
Selected Messages and/or in Selected Signers). An oblivious signature
scheme provides unconditional security for recipients against signers if, for any
attacking algorithm S∗ executing the signer’s part, S∗ wins in Game B with
probability at most 1/2 + negl(λ).

Intuitively, the security for recipients against signers means that it is uncon-
ditionally infeasible for any attacker S∗ to find out who is the real signer (or
which key has been used to signed the message during the signature generation
process) and /or which one of the messages is chosen by the signature requester
R, during the execution of the signature generation process.

4 Proposed Schemes

In this section, we propose our two-in-one oblivious signatures OS
(n1,n2)
1 with n1

signers (or a signer with n1 keys) {S1, · · · ,Sn1} and n2 messages, {m1, · · · ,mn2}.
At the end of the protocol, one of the n2 message, say ml, will be signed by one of
the n1 signer, say St. ml and St are selected and predetermined by the signature
requester.

System Setting: On input a security parameter 1λ, a Trusted Third Party (i.e.,
system administrator) runs the System-Setup algorithm SSet. The following
output forms the public parameters of the scheme.

• p, q: two large primes such that q|(p − 1),
• g: an element of Z∗

p of order q.
• H : {0, 1}∗ → Z

∗
q : a secure one-way hash function.

Key Generation: Each Si, 1 ≤ i ≤ n1 picks a random number xi ∈ Z
∗
q and

computes yi ← gxi mod p. xi is kept secret as her private key and yi is public
as her public key.

Signature Generation: Assume that a signature requester R would like to get
a signature σ(t,l) on a message ml ∈ {m1, · · · ,mn2} which is obliviously signed
by St ∈ {S1, · · · ,Sn1}, then R executes the following protocol with all possible
signers Si, 1 ≤ i ≤ n1:

Step 1 R starts the protocol by picking a random number r ∈ Z
∗
q , then computes

c = gryl
t mod p where yt is the public key of the target signer (i.e., St). R

then sends c together with the n2 messages {m1, · · · ,mn2} listed in a fixed
order to the signer S. Here l is the value of the subscript of ml, which is the
target message intended to be signed.
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Step 2 After receiving c and the ordered message set {m1, · · · ,mn2}, each pos-
sible signer Si, 1 ≤ i ≤ n1 does the following steps, independently:
For j = 1, · · · , n2, Si picks a random number k(i,j) ∈R Z

∗
q and computes:

• K(i,j) ← gk(i,j) mod p,
• ê(i,j) ← H(mj ,K(i,j)c/(gyi)j mod p), and
• ŝ(i,j) ← k(i,j) − xiê(i,j) mod q.

Each Si, 1 ≤ i ≤ n1 then sends (ê(i,j), ŝ(i,j)), 1 ≤ j ≤ n2, back to R.

Step 3 For 1 ≤ i ≤ n1, and 1 ≤ j ≤ n2, R computes δ(i,j) ← g(r−j)yl
ty

−j
i mod p

and accepts the oblivious signature if and only if

ê(i,j) = H(mj , g
ŝ(i,j)yi

ê(i,j)δ(i,j) mod p) 1 ≤ i ≤ n1, 1 ≤ j ≤ n2.

Step 4 To convert the oblivious signature into a generic (Schnorr) signature, R
computes:

• e ← ê(t,l), and
• s ← r − l + ŝ(t,l) mod q,

The signature on ml signed by St is σ(t,l) ← (e, s).

Signature Verification: Any verifier V accepts the signature σ(t,l) as a valid
signature on ml if and only if

e = H(ml, g
sye

t mod p)

4.1 Security

In this section, we follow the security proofs of [18] and show the security of
the proposed scheme. We first show the correctness of the scheme. Correctness
means any signature signed follow the procedure of the signature generation
process will always pass the signature verification process.

Correctness. The output signature σ(i,j) = (e, s) is a standard Schnorr sig-
nature, its correctness follows that of the Standard Schnorr signature and
is trivial. We need only to show that ê(i,j) = H(mj , g

ŝ(i,j)yi
ê(i,j)δ(i,j) mod

p) for all i, j, where 1 ≤ i ≤ n1, 1 ≤ j ≤ n2.
It is correct since

H(mj , g
ŝ(i,j)yi

ê(i,j)δ(i,j) mod p)

= H(mj , g
k(i,j)−xiê(i,j)yi

ê(i,j)g(r−j)yl
ty

−j
i mod p)

= H(mj , g
k(i,j)−xiê(i,j)gxiê(i,j)g(r−j)yl

ty
−j
i mod p)

= H(mj , g
k(i,j)g(r−j)yl

ty
−j
i mod p)

= H(mj ,K(i,j)g
ryl

t/(gyi)j mod p)

= H(mj ,K(i,j)c/(gyi)j mod p)
= ê(i,j).

�	
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Also notice that when i = t and j = l, then yt will be deleted so

H(mj ,K(i,j)g
(r−j)yl

ty
−j
i mod p) = H(ml,K(t,l)g

(r−l) mod p).

That is the reason why we need s ← r − l + ŝ(t,l) mod q at the end of Step 4
during the signature generation.

We than proof the security requirement for signers. That is, the unforgeability
of the oblivious signature.

Unforgeability. If there exists an adaptively chosen message attacker B which
wins Game A (see Definition 5) with an advantage ε within a time T , then there
exists an algorithm A which can solve the DL problem with the same advantage
within a time bound T ′ ≤ 84480qhT/ε, where qh is the number of hash queries.

Proof: A is given a DL problem (p, q, g, y) where p, q are two large primes such
that q|(p − 1), and g, y are two elements of Z∗

p of the same order q. The purpose
of A is to find x = logy

g , which is the solution to the DL problem.
In order to solve the problem, A utilizes B as a black-box. To get the black-

box B run properly, A simulates the environments of the proposed OS(n1,n2)
1

scheme. In the following proof, we regard the hash function H as a random
oracle. On the other hand, in the following proof, we assume that B is well-
behaved in the sense that it always queries the random oracle H on the message
m∗ that it outputs as its forgery. According to [3], we know that it is trivial to
modify any adversary-algorithm B to have this property.

W.L.O.G, assume there are n1 possible signers {S1, · · · ,Sn1}. To simulate
the environment of the scheme, A sets (p, q, g,H) as the system-wide para-
meters where H is the random oracle controlled by A. In addition, A picks
n1 random numbers {h1, h2, · · · , hn1} where each hi ∈R Z

∗
q . A then computes

yi = yhi mod p, 1 ≤ i ≤ nn1 and sets yi, 1 ≤ i ≤ n1 as the public key of the
possible signers Si, 1 ≤ i ≤ n1. At the end of the system setting stage, A gives
(p, q, g, y1, y2, · · · , yn1) to B and allows B to run via Game A.

In this game, B takes part as a signature requester. B starts by sending
cj = grjy

lj
i corresponding with a message set Mj = {mj1 , · · · ,mjn2

} to A in
order to get a signature on mlj signed by Si in an oblivious way. For Si, its
signing key should be logyi

g which is not known to the simulator A. To respond
to this query, for each request sent from B, A does the following steps:

– For cj , A picks n1 × n2 random numbers k(u,v) ∈R Z
∗
q and

• computes K(u,v) = gk(u,v) mod p,
• picks ŝ(u,v) ∈R Z

∗
q ,

• sets ê(u,v) ← H(mv,K(u,v)ci/(gyu)v mod p).
– A returns (ê(u,v), ŝ(u,v)), 1 ≤ u ≤ n1, 1 ≤ v ≤ n2, to B and records

(Mi, ci,K(u,v),, ê(u,v), ŝ(u,v), 1 ≤ u ≤ n1, 1 ≤ v ≤ n2) to a Sign-List which
is assumed to be initially empty.

The above execution can be executed at most t times. After the execution, B
outputs its forgery σ∗ = (e∗, s∗) on a message m∗. Assume σ∗ is a valid forgery
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on m∗ signed by S∗ ∈ {S1, · · · ,Sn1} and B wins Game A. According to the
protocol, we have

e∗ = H(m∗, y∗e∗
gs∗

mod p).

Since B is assumed to be well-behaved, we have e∗ = H(mv,
K(u,v)ci/(gyu)v mod p) = ê(u,v) for some ê(u,v) and y∗ = yu,m∗ = mv which
are recorded on the Sign-List.

According to the Forking Lemma [13]. By replaying the game with the same
random tape but different choices of oracle H, at the end of the second run, we
obtain another valid forgery (m∗, e∗′

, s∗′
) on the same message m∗ signed by

the same signer S∗. W.L.O.G, assume S∗ = Sa with public key Ya = yha =
gxha mod p. Since s∗ = k(a,v) +rj − lv +xae∗ and s∗′

= k(a,v) +rj − lv +xae∗′
for

the same k(a,v)+rj−lv (according to the Forking Lemma), we obtain xa = xha =

(s∗ − s∗′
)(e∗ − e∗′

)
−1

mod q. So, logy
g = x = (s∗ − s∗′

)(e∗ − e∗′
)
−1

h−1
a mod q.

This is the solution to the DL problem. The advantage of A is the same as the
advantage of B and the total running time T ′ of A is equal to the running time
of the Forking Lemma [13] which is bound by 84480qhT/ε. Here qh is the number
of hash queries in the game. �	
Theorem 1. The proposed scheme provides perfect security for recipients. In
other words, the proposed scheme provides unconditional security on the ambi-
guity of the selected message as well as the selected signer.

Proof: It is sufficient to show that an attacker F , taking parts as a signer, wins
Game B with probability exactly the same as random guessing of u ∈ {a, b} and
v ∈ {0, 1}.

Assume M = {m1, · · · ,mn2} and c = gryl
t mod p, t ∈ {1, · · · , n1}, l ∈

{1, · · · , n2}, where c is chosen by the recipient R. It is easy to see that for any
such c, there exists an r(i,j) ∈ Zq such that

c = gryl
t mod p

= gr(1,1)y1
1 = · · · = gr(1,j)y1

j = · · · = gr(1,n2)y1
n2 mod p

=
...

= gr(i,1)yi
1 = · · · = gr(i,j)yi

j = · · · = gr(i,n2)yi
n2 mod p

=
...

= gr(n1,1)yn1
1 = · · · = gr(n1,j)yn1

j = · · · = gr(n1,n2)yn1
n2 mod p

Consequently, we conclude that F wins Game B with probability exactly the
same as random guessing of u ∈ {a, b} and v ∈ {0, 1}. This ends the proof. �	

5 Conclusion

In 1994, Chen defined two types of oblivious signatures; an oblivious signature
with n messages and, an oblivious signature with n keys. In 2008, Tso et al. gave
formal definitions on the models of oblivious signatures and gave an example on
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the construction of oblivious signatures based on the Schnorr signature. In this
paper, we combine the two functionalities into one scheme. We called it Two-in-
one oblivious signature. In out scheme, a signature requester can ask 1-out-of-n1

signers to sign 1-out-of-n2 messages. At the end of our protocol, no one (including
the n1 possible-signers) knows who has really signed the message as well as which
one of the n2 message has been signed. The scheme is useful in many applications
such as e-cash, e-voting and e-auction etc. We defined a formal model on our
scheme and give a rigorous security proof based on the random oracle model.

Acknowledgement. This research was supported by the Ministry of Science of Tech-
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Abstract. We present a novel design for stateless transitive signature
(TS) for undirected graph to authenticate dynamically growing graph
data. Our construction is built on the widely studied ZSS signature tech-
nology [19] with bilinear mapping, and using general cryptographic hash
functions (e.g., SHA-512 and MD6). Compared with the existing state-
less TS schemes for undirected graph in the literature, our scheme is more
efficient. The scheme is also proven transitively unforgeable against adap-
tive chosen-message attack under the M2SDH assumption in the random
oracle model.

Keywords: M2SDH · Transitive signature · Transitively unforgeability

1 Introduction

Transitive signature has attracted significant attention from both researcher and
practitioners because of its practical functionality in offering authenticated mech-
anism for dynamically growing graph data [2]. As a case study, we consider the
authenticity of a graph data system as a set of administrative domains, i.e., data
represented by (undirected) graphs. We let the vertices i, j in the graph represent
two distinct computers. We say that they are in the same administrative domain
if and only if the edge (i, j) exists. In a transitive signature scheme, given the
transitive signatures of the edge (i, j) and the edge (j, k), one is able to obtain a
valid signature of the edge (i, k) without any interaction with the original signer
(of the two signatures). In addition, the security of transitive signature schemes
guarantees that even being able to adaptively request all valid transitive sig-
natures of graph G, the signature forger cannot forge the signature of a new
vertex or other edge outside the transitive closure of G in polynomial-time (i.e.
achieving transitively unforgeability). We refer the interested reader to Sect. 3
for the formal security notion. Transitive signature technology has a number of
c© Springer International Publishing AG 2016
J. Chen et al. (Eds.): NSS 2016, LNCS 9955, pp. 156–167, 2016.
DOI: 10.1007/978-3-319-46298-1 11
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practical advantages. For example, it can reduce the amount of edge signatures
and the corresponding computational complexity (when the signature objects
are in a transitive graph).

Related Work. Micali and Rivest [12] introduced the seminal notion of tran-
sitive signatures in 2002. They proposed two schemes: one is proven transitively
unforgeable against adaptive chosen message attacks under discrete logarithm
assumption, and the other is merely proven transitively unforgeable against non-
adaptive chosen message attacks under RSA assumption. Later, Bellare and
Neven constructed several schemes, which are proved under some complexity
assumptions (e.g., the factoring problem, the one-more discrete logarithm prob-
lem and the gap Diffie-Hellman groups), in the standard model. Another con-
tribution of [2] is to propose the hash-based variants of their schemes so as to
eliminate the need of node certificates. That decreases the computation cost of
the original systems but with a price that the security is only proved in the ran-
dom oracle model. Moreover, these variants mainly depend on the design of a
special type of hash function (e.g., an admissible encoding function called Map-
ToPoint) that is hard to be practically built. Although there have been many
attempts on building the hash algorithm in the literature, all the constructions
are probabilistic and generally inefficient. There is no a stateless transitive sig-
nature scheme for undirected graph without using any special hash function.
This becomes our motivation of this work. We note that there also exist other
transitive signature schemes, in which most of them are all for undirected graph
only [8,11,15,16].

As mentioned in [1], a directed transitive signature scheme (DTS) considers a
directed graph as a military command system, where vertices denote objects, and
a directed edge (u, v) from u to v denotes that v is subordinate to u. Obviously, if
v is subordinate to u and w is subordinate to v, w is subordinate to u. However,
it is exactly an open problem of designing directed transitive signatures by Micali
and Rivest [1], for which Hohenberger [14] showed that DTS may be very hard to
construct because the signing algorithm in such schemes forms a special Abelian
trapdoor group with infeasible inversion, whose construction remains unknown.

All existing directed transitive signature schemes have been proposed on
a special directed graph, i.e., directed tree. In 2006, Yi [18] proposed a DTS
scheme, which is proven transitively unforgeable in the standard model under
the RSA inversion assumption. Neven in [13] presented a DTS by intaking any
standard signatures, which is only supporting for directed tree. The scheme can
be proven transitively unforgeable if the underlying standard signature scheme
is unforgeable. Moreover, the proposed scheme [13] does not rely on any RSA-
related problems but enjoys less computation cost and shorter signature length
(considering the worst case) compared to that of Yi. In 2011, Camacho and
Hevia [7] introduced a practical DTS using a new variant of collision resistance
hash function with common-prefix proofs (CRHwCPP), which is also for directed
tree only but with the best efficiency.
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1.1 Our Contributions

The present paper introduces a new stateless transitive signature scheme for
undirected graph. Our signing algorithm does not need to preserve the status
information for each signed node in the graph. Besides, the security of our novel
scheme is based on assuming the M2SDH problem is hard. Compared with the
stateless schemes in [2], our proposed scheme is with less computational time
for using only general hash functions, such as MD6 or SHA-512, instead of the
special hash functions (introduced by [2]). Furthermore, our scheme is proven
existentially unforgeable under the M2SDH assumption in the random oracle
model.

1.2 Organization

The remainder of our paper is organized as follows. Section 2 provides some pre-
liminaries. The formal system definition and security notion of TS are reviewed in
Sect. 3. Section 4 recalls Bellare and Neven’s Constructions. Section 5 introduces
our SDHUTS scheme but also presents its security and performance analysis.
We make conclusion in Sect. 6.

2 Preliminaries

This section introduces the preliminaries that will be used in our construction.

2.1 Notations

The notation N = {1, 2, . . . N} denotes the set of positive integers from 1 to N ,
and x

R←S denotes that x is chosen randomly and uniformly from the set S. We
call a function f : N → R is negligible if for each m > 0, there exists n0 for all
n > n0 : f(n) < 1/nm. If an algorithm is probabilistic and its running time is
polynomial, we call it a PPT algorithm.

2.2 Graphs

All graphs we consider in this paper are all undirected. Denote G = (V,E) as an
undirected graph, where V denotes a finite set of vertices and E ⊆ V ×V denotes
a finite set of edges. The transitive closure G̃ = (Ṽ , Ẽ) of a graph G = (V,E)
is defined to have Ṽ = V and to have an edge (i, j) ∈ Ẽ when and only when
there is a path between i and j in G. The transitive reduction of G is denoted
as G∗ = (V ∗, E∗), where V ∗ = V and G has the minimum subset of edges with
the same transitive closure as G.
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2.3 Bilinear Mapping

This section reviews some notions about Bilinear Mapping [4–6,9].
Denote G1 as a cyclic multiplicative group, whose order is a prime p, gener-

ated by g1. And G2 is denoted as a cyclic multiplicative group, which has the
same order with G1. We denote e : G1 × G1 → G2 as a bilinear mapping with
three properties as follows:

1. Bilinear: ∀g, h ∈ G1 and a, b ∈ Zp, e(ga, hb) = e(g, h)ab.
2. Non-degenerate: ∃g1, h1 ∈ G1 such that e(g1, h1) �= 1.
3. Computable: ∀g1, h1 ∈ G1, e(g1, h1) can be computed efficiently.

What the above properties imply are: for any g, h1, h2 ∈ G1, e(g, h1h2) =
e(g, h1) · e(g, h2); ∀g, h ∈ G1, e(g, h) = e(h, g). In our definitions, if G1 is gener-
ated by g1, then G2 is generated by e(g1, g1).

2.4 Complexity Assumptions

We denote G as a cyclic group generated by g, whose order is a prime p.

q-Strong Diffie-Hellman Problem. We define the q-SDH problem in G as
follows: Given a PPT adversary A a (q + 1)-tuple (g, gx, gx2

, . . . , gxq

) as input,
outputs a pair (a, g

1
x+a ) where a ∈ Z

∗
p and solves q-SDH with a non-negligible

probability ε in G if

Pr[A(g, gx, g(x
2), . . . , g(x

q)) = (a, g
1

x+a )] ≥ ε,

The q-SDH assumption is that there is not a PPT algorithm exist to solve the
q-SDH problem with ε. We refer the readers to [3,10,17,19] to get more details.

Modified q-Strong Diffie-Hellman Poblem. We define the MqSDH problem
in G as follows: Given a PPT adversary A a (q +1)-tuple (g, gx, gx2

, . . . , gxq

) as
input, outputs a triple (a, b, g

1
x+a− 1

x+b ) where a, b ∈ Z
∗
p and has a non-negligible

probability ε in solving MqSDH in G if

Pr[A(g, gx, g(x
2), . . . , g(x

q)) = (a, b, g
1

x+a− 1
x+b )] ≥ ε,

The MqSDH assumption is that there is not a PPT algorithm exist to solve the
MqSDH problem with ε.

Modified 2-Strong Diffie-Hellman Problem. We define the M2SDH prob-
lem in G as follows: Given a PPT adversary A a triple (g, gx, gx2

) as input, has
access to an modified q-SDH-inversion oracle OINV(·, ·) that given (a, b) ∈ Z

∗
p

returns g
1

x+a − 1
x+b , and has a non-negligible probability ε in solving M2SDH in

G if
Pr[A(g, gx, gx2

) = (a∗, b∗, g
1

x+a∗ − 1
x+b∗ )] ≥ ε, where

1. (a∗, b∗) is not one of its previous oracle queries.
2. There does not exist a c ∈ Z

∗
p that (a∗, c), (c, b∗) are in its previous oracle

queries.
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3. There does not exist any ci ∈ Z
∗
p(i = 1, 2, . . .) that (a∗, c1), (c1, c2), . . . ,

(ci, ci+1), (ci+1, b
∗) are in its previous oracle queries.

The M2SDH assumption is that there is not a PPT algorithm exist to solve the
M2DH problem with ε.

3 Transitive Signatures

This section reviews the definition of Transitive Signatures (TS). A transitive
signature scheme is defined by four algorithms: TS = (TKG,TSign,TVf,Comp).

– (tpk, tsk) ← TKG(1k): The Transitive Key Generation algorithm (TKG) takes
as input the security parameter 1k, and outputs a pair (tpk, tsk) as the signer’s
public/private key-pair.

– σij ← TSign(tsk, i, j): The Transitive Signing algorithm (TSign) takes as input
the private key tsk and nodes i, j ∈ V , and outputs a signature on edge (i, j)
relative to tsk. TSign may maintain state between invocations in some stateful
schemes.

– {0, 1} ← TVf(tpk, σij , i, j): The deterministic Transitive Verification algorithm
(TVf) takes as input tpk, nodes i, j and a candidate signature σij on edge (i, j),
and outputs either 1 or 0. If the output is 1, σij is a valid signature on edge
(i, j).

– {σik,⊥} ← Comp(tpk, σij , σjk, i, j, k): The deterministic Composition algo-
rithm (Comp) takes as input nodes i, j, k ∈ V and edge signatures on σij , σjk,
and outputs a composed signature σik of edge (i, k) ∈ E if both σij and σjk

are valid; otherwise, it outputs ⊥ to indicate failure.

Consistence of TS Schemes. Apart from the above, we also require two consis-
tency properties in TS.

1. TVf Consistency of TSign: signatures generated by TSign must be accepted
as valid by TVf.

2. TVf Consistency of Comp: signatures generated by Comp must be accepted
as valid by TVf.

3.1 Unforgeability

This section recalls the security notion of [1]. Let a PPT algorithm F (called a
tu-cma forger) be an adaptive chosen-message forger against a transitive signa-
ture scheme TS = (TKG,TSign,TVf,Comp). Here we define the unforgeability
through the game between F and a challenger C as follows:

– Setup: C runs TKG with the input 1k to obtain a public/private key-pair
(tpk, tsk). Then C sends tpk to the forger F .

– TSign queries: F is able to query the signature σij on edge (i, j) that can
be adaptively chosen by him. In reply to F , C runs TSign to get the edge
signature σij and returns σij to F .
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Here we denote E′ as the set consists of all edges (i, j) queried by F to TSign
oracle, and denote V ′ as the set consists of all nodes in E′. Finally, F forges
a signature σ∗ on edge (i∗, j∗) with the given public key tpk by C. F wins the
game if:

1. TVf(tpk, σ∗, i∗, j∗) = 1.
2. (i∗, j∗) /∈ G̃′, where G̃′ = (V ′, Ẽ′) is the transitive closure of graph G′ =

(V ′, E′).

The advantage of an adaptive chosen-message forger F with public key win-
ning the game is denoted as Advtu−cma

F,TS . A TS scheme is transitively unforgeable
against adaptive chosen-message attacks if Advtu−cma

F,TS is negligible for any forger
F with the polynomial running time.

3.2 Privacy

As mentioned in [12], in a transitive signature scheme, a valid composed signature
should be indistinguishable from a valid original signature on the same edge,
which means that composition algorithm can work even if the given signatures
were obtained via composition algorithm.

4 Bellare and Neven’s Constructions

This section recalls Bellare and Neven’s constructions in [2], all of which are con-
structed without the need of node certificates. Although these stateless schemes
are more efficient than the stateful ones in [2], they are all based on a spe-
cial type of hash function (MapToPoint) which is hard to be practically built for
now. Three stateless schemes (RSATS-2, FactTS-2 and GapTS-2) were proposed
in [2], here we only take the RSATS-2 as an example. For more details of other
schemes, the interested reader can refer to [2].

The RSATS-2 proposed by Bellare and Neven [2] eliminates node certificates
and the basic edge signature for an edge (i, j) is a triple (hi, hj , δij), where
hi = H(i), hj = H(j), H : N → Z

∗
N is a random function and δij = (hih

−1
j )d,

where (N, e, d) ← Krsa(1k), Krsa is a RSA key generator and k is a security
parameter. Composition of two signatures (hi, hj , δij) and (hj , hk, δjk) is done
by computing δik ← δij · δjk and returning the triple (hi, hk, δik). Note that
node certificates are eliminated in RSATS-2, but node certificates σi and σj

are required in RSATS-1 [2] and the basic edge signature for (i, j) is a tuple
(Li, σi, Lj , σj , δij). One can find that RSATS-2 is more efficient than RSATS-
1, especially when the number of nodes is with an exponential increase. The
problem is how to avoid using the special hash function and construct practical
stateless schemes.

5 Our Construction

This section describes the proposed Transitive Signature (TS) scheme with the
corresponding correctness, security and performance analysis.
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5.1 Concrete Scheme

In this work, we design a new stateless (i.e., the signing algorithm does not need
to keep state information for queried nodes in the graph) transitive signature
scheme (called SDHUTS) for undirected graph, which is securely proved under
the M2SDH assumption. Different from the approaches of [2], we make use of
general cryptographic hashing such as MD6 or SHA-512 instead of special hash
functions in [2]. The reason why we choose MD6 and SHA-512 is that they are
practical to build and more secure than MD5 and SHA-1.

Our scheme is described as follows. System parameters involved in our scheme
are {G1,G2, e, p, g,H}, where H : {0, 1}∗ → {0, 1}λ is a cryptographic hash
function, g is a generator of G1 and |p| ≥ λ ≥ 160.

– TKG: Choose x
R←Z

∗
p, and compute y = gx ∈ G1 and Y = yx ∈ G1. The public

key is (g, y, Y ) and the private key is x.
– TSign: Given a private key x and nodes i, j ∈ N, the algorithm computes

σij = g
1

hi+x− 1
hj+x , where hi = H(i), hj = H(j). In general, we assume that

i < j. If the above case does not happen, one can swap i and j. It returns the
signature σij on edge (i, j).

– TVf: Given a public key (g, y, Y ), nodes i, j ∈ N and a candidate signature
σij , the algorithm computes hi = H(i) and hj = H(j), and accepts when and
only when e(ghihjyhi+hjY, σij) = e(ghj−hi , g).

– Comp: Given two candidate signatures σij on (i, j) and σjk on (j, k), if
TVf(pk, i, j, σij) = 0 or TVf(pk, j, k, σjk) = 0, the algorithm returns ⊥ as
an indication of failure. Otherwise, the algorithm returns σik = σij ·σjk as the
composed signature on edge (i, k). In general, we also assume that i < j < k.
If the above case does not happen, one can swap these two signatures.

5.2 Correctness

Consistence of SDHUTS. Here, we show two consistency properties in our
SDHUTS.

1. TVf Consistency of TSign: If σij = TSign(tsk, i, j) = g
1

hi+x− 1
hj+x , where hi =

H(i), hj = H(j), then

e(ghihjyhi+hjY, σij) = e(ghihj+x(hi+hj)+x2
, g

1
hi+x− 1

hj+x )

= e(g(hi+x)(hj+x), g
1

hi+x ) · e(g(hi+x)(hj+x), g
1

hj+x )−1

= e(g(hj+x), g) · e(g−(hi+x), g) = e(ghj−hi , g).

Therefore TVf(tpk,TSign(tsk, i, j), i, j) = 1.
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2. TVf Consistency of Comp: If σik = σij · σjk = g
1

hi+x− 1
hj+x · g

1
hj+x− 1

hk+x =
g

1
hi+x− 1

hk+x , where hi = H(i), hj = H(j), hk = H(k), then

e(ghihkyhi+hkY, σik) = e(ghihk+x(hi+hk)+x2
, g

1
hi+x− 1

hk+x )

= e(g(hi+x)(hk+x), g
1

hi+x ) · e(g(hi+x)(hk+x), g
1

hk+x )−1

= e(g(hk+x), g) · e(g−(hi+x), g) = e(ghk−hi , g).

Therefore TVf(tpk,Comp(tpk, σij , σjk, i, j, k), i, k) = 1.

5.3 Security Analysis

We present the security results of our SDHUTS with the following two theorems
and give formal proofs in this section.

Theorem 1 (Unforgeability of SDHUTS). If the t′-M2SDH assumption is hard,
then our proposed SDHUTS is transitively unforgeable against a (t, qH , qS) adap-
tive chosen message forger F in the random-oracle model.

Proof. Suppose that there is a PPT forger F who is able to break the unforgeabil-
ity of our proposed SDHUTS with a non-negligible advantage Advtu−cma

F,SDHUTS(k).
We consider a PPT M2SDH adversary A that ∀k ∈ N,

AdvM2SDH
A (k) ≥ Advtu−cma

F,SDHUTS(k).

Given a random instance (g, gx, gx2
) ∈ G1, A can also gain access to an

modified q-SDH-inversion oracle OINV(·, ·) of the M2SDH problem, where G1 is
generated by g, for some x selected randomly from Z

∗
p. Algorithm A’s aim is to

output a triple (a∗, b∗, g
1

x+a∗ − 1
x+b∗ ) (a∗, b∗ ∈ Z

∗
p), without querying (a∗, b∗) itself,

or (a∗, c), (c, b∗) (for some c ∈ Z
∗
p), or (a∗, c1), (c1, c2), . . . , (ci, ci+1), (ci+1, b

∗) (for
some ci ∈ Z

∗
p, i = 1, 2, . . .) to the modified q-SDH-inversion oracle. Denote V ′ as

the set consists of all queried vertices. Denote � : V ′ × V ′ → G′ as a function
storing all queried edge signatures. Algorithm A does the following by interacting
with forger F :

– Setup: A sets y = gx and Y = gx2
, then sends (g, y, Y ) to F . From the perspec-

tive of the forger F all the distributions are identical to the real construction.
– Hash queries: A maintains a table to record queried hash values that represents

H. When F queries H(i), A proceeds as follows:
1. If i is not in V ′ then V ′ ← V ′ ∪ i; H(i) R← Z

∗
p; Δ(i, i) ← 1

2. Return H(i) to F
– TSign queries: Suppose F asks for a signature on edge (i, j) chosen by himself.

In reply, A must generate a valid signature σij . Here, A utilizes the modified
q-SDH-inversion oracle to compute the edge signature. Note that A calls the
inversion oracle only when he cannot compute the requested signature through
composing previously signed edges. Therefore A does the following:
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1. If i > j then swap (i, j)
2. If i /∈ V ′ then V ′ ← V ′ ∪ i; H(i) R← Z

∗
p; Δ(i, i) ← 1

3. If j /∈ V ′ then V ′ ← V ′ ∪ j; H(j) R← Z
∗
p; Δ(j, j) ← 1

4. If Δ(i, j) is not defined then
5. Δ(i, j) ← OINV(H(i),H(j))
6. Δ(j, i) ← Δ(i, j)−1

7. For all v ∈ V ′ \ {i, j} do
8. If Δ(v, i) is defined then
9. Δ(v, j) ← Δ(v, i) · Δ(i, j)

10. Δ(j, v) ← Δ(v, j)−1

11. If Δ(v, j) is defined then
12. Δ(v, i) ← Δ(v, j) · Δ(j, i)
13. Δ(i, v) ← Δ(v, i)−1

14. σij ← Δ(i, j)
15. Return σij to F

Eventually, F returns a forgery signature σ∗ on edge (i∗, j∗). In general, if i∗ >
j∗, then one can swap i∗ and j∗. Denote G′ = (V ′, E′) as the graph involved in
the signatures queried by F , and denote G̃′ = (V ′, Ẽ′) as the transitive closure
of G′. We can suppose that the hash oracle on i∗ and j∗ has been queried by F ,
meaning that i∗, j∗ ∈ V ′; otherwise A is able to query the hash oracle itself after
F outputs the forgery. σ∗ is said to be a valid forgery, if the forgery satisfies the
following:

1. TVf(tpk, σ∗, i∗, j∗) = 1, that is: σ∗ = g
1

x+H(i∗)− 1
x+H(j∗) .

2. (i∗, j∗) /∈ G̃′, that is: σ∗ cannot be computed simply and directly by compos-
ing previously signed edges in G̃′.

Therefore, A outputs a solution (H(i∗),H(j∗), σ∗) to A’s challenge.
F is unable to distinguish A’s simulation from the real scheme on account of

simulating the hash function as a random-oracle in our proof. And A’s running
time is t′ = t. Next, we discuss the probability of A not aborting. Obviously, A
will not abort during Hash,TSign queries, therefore we have

AdvM2SDH
A (k) ≥ Advtu−cma

F,SDHUTS(k).

This completes the proof of Theorem 1.

Theorem 2 (Privacy of SDHUTS). If the composition algorithm of SDHUTS
is invoked on valid signatures, then it returns the same signature as the signer
would have produced.

Proof. Denote i, j, k as distinct nodes, where i < j < k. Suppose σij =

g
1

hi+x− 1
hj+x is a valid signature on edge (i, j) relative to (y, Y ), where hi = H(i),

hj = H(j), y = gx and Y = gx2
. Suppose σjk is also a valid signature on edge

(j, k) relative to (y, Y ), where hj = H(j), hk = H(k). Take σij , σjk as inputs,
the composition algorithm of SDHUTS is defined to return σik where
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σik = σij · σjk = g
1

hi+x− 1
hj+x · g

1
hj+x− 1

hk+x = g
1

hi+x− 1
hk+x .

Therefore, the composed signature in SDHUTS scheme is the same as the signa-
ture could have been produced by the original signer, and the proposed SDHUTS
scheme satisfies the privacy of transitive signatures. This completes the proof of
Theorem 2.

5.4 Comparison and Performance Analysis

In this section, we firstly compare the proposed scheme with some stateless
schemes in [2] in terms of the computation cost. We denote G as the group of
prime order p, and N as a modulus product of two big primes are utilized in
the RSA and some schemes based integer factoring. Denote Sddh as the decision
Diffie-Hellman algorithm in G̃, where G̃ is a gap Diffie-Hellman group. Let Pm

be the point scalar-multiplication in G, Pa be the point addition in G, PInv be
the inversion in Z

∗
p and PMTP be the MapToPoint hash operation. Abbreviations

are used as follows: “Exp.” represents a modular exponentiation in G; “RSA
Enc.” represents an RSA encryption; “RSA Dec.” represents an RSA decryption;
“Sq.r.” represents a square root modulo N performed given the prime factors of
N ; and “Ops.” represents the number of bit operations. Table 1 summarizes the
comparison without considering the general hash operation.

Table 1. The comparison between our scheme and the stateless schemes in [2]

Scheme Signing cost Verification cost Composition cost Signature size

RSATS-2 2PMTP+1PInv+1Pm+1RSA

Dec.

2PMTP+1PInv+1Pm+1RSA

Enc.

O(|N|2) Ops 1 point in Z
∗
N

FactTS-2 2PMTP+1PInv+1Pm+2Sq.r. in

Z
∗
N

2PMTP+1PInv+1Pm+O(|N|2)
Ops.

O(|N|2) Ops 1 point in Z
∗
N

GapTS-2 2PMTP+1PInv+1Pm+1Exp. in
˜G

2PMTP+1PInv+1Pm+1Sddh O(|N|2) Ops 1 point in ˜G

SDHUTS 2PInv+3Pa+1Exp. in ˜G 3Pm+2Pa+1Sddh O(|N|2) Ops 1 point in ˜G

As mentioned in [19], one MapToPoint hash operation is more costly than
one inversion operation in Z

∗
q . One can find that the signing and verification

cost of SDHUTS are dramatically decreased (compared to those in Table 1),
which provides a more efficient stateless and undirected transitive scheme.

We further show the time cost of sub algorithms of our proposed SDHUTS
scheme. Here, we leverage the pairing-based library (version 0.5.12)1 for our sim-
ulation. The composition algorithm in our scheme is one multiply computation,
which is so simple that testing the composition operation cost can be ignored.
Table 2 shows the tested information in our simulation, while Table 3 illustrates
the time cost in our simulation. Tables 1 and 3 present that both signing and ver-
ification algorithms in our scheme are more efficient than the previous stateless
and undirected transitive signature schemes.
1 http://crypto.stanford.edu/pbc/.

http://crypto.stanford.edu/pbc/
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Table 2. Simulation testbed

Operating system Ubuntu 10.10

CPU Intel Pentium Processor T4400

Memory 2.00 GB RAM

Hard disk 250 GB/5400 rpm

Program language C

Table 3. Time cost (in s)

Algorithm TKG TSign TVf

Max time 0.035832 0.018031 0.075022

Min time 0.012003 0.00551 0.056353

Average time 0.0252703 0.0104151 0.0639796

6 Conclusion

We proposed a novel stateless transitive signature scheme for undirected graph.
Our scheme is the most efficient one among all the existing stateless transitive
signature schemes. Furthermore, we proved the security of our scheme in the
random oracle model assuming the M2SDH problem is hard.
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Abstract. A social matching service has recently become popular.
These services help a user to search friends having common preference
or interest. On the other hand, users use their personal information for
matching in social matching services, and thus the privacy-preserving
profile matching protocols have been well studied. However, although
there are various privacy-preserving profile matching protocols, they may
cause unwilling matching. In order to solve this problem, it is necessary
to achieve a fine-grained matching mechanism considering conditions.

In this paper, we propose a privacy-preserving profile matching pro-
tocol embedded with homomorphic encryption considering conditions:
matching is established only when the conditions are satisfied. Our pro-
tocol reduces computational cost of user’s device by using the map-to-
prime technique and setting an honest-but-curious server. Furthermore,
even if a server is attacked, user’s secret key or personal data does not
leak since our protocol is designed for a server without such confidential
data.

Keywords: Privacy · Profile matching · Homomorphic encryption ·
Mobile social networks

1 Introduction

With the proliferation of mobile devices such as smart phones and tablets, a
social network is becoming an inseparable part of our life. A social matching
service has recently become popular. These services help users to search friends
having common preference or interest. Users can make new social connections or
friends based on matching of their personal profiles. However, a social matching
service deals with user’s personal profile which includes sensitive information
such as name, age, location and preference. Thus, we should protect user’s pri-
vacy. The service provider needs to reassure users by properly managing personal
data and hence it is necessary to prevent leaking personal data. It is also required
to safely manage user’s personal data for improving quality of service.

A lot of privacy-preserving profile matching protocols have been studied for
preventing the leakage of private information in recent years. So, in these pro-
tocols, matching is processed using encrypted user’s profile. For example, a user
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A answers some questions to construct her/his profile and then encrypts her/his
answers. A’s profile is compared with another profile of user B with encrypted.
After that, A and B obtain the matching result by decrypting.

Thanks to such cryptographic technology, even if their profiles include sen-
sitive information, a malicious user or a server cannot learn about it except for
the matching result. However, the existing privacy-preserving profile matching
protocols have a drawback of unwilling matching. In the existing protocols, if
two users have at least one common preference or interest, then they output the
result “matching is established”. Namely, even if a user B has one profile item
that another user A cannot accept, the matching between A and B may unwill-
ingly established. For example, we assume that A wants to match to another
user who likes baseball but A does not want to match to a smoker. If B likes
baseball but B is a smoker, the existing protocols reluctantly output the result
“matching is established” based on the attribute “baseball”, although A does
not fundamentally want to match to B. This result may disappoint A.

In this paper, we propose a privacy-preserving profile matching protocol
embedded with homomorphic encryption considering conditions: matching is
established only when the conditions are satisfied. As a result, our protocol can
prevent the unwilling matching, which occurs in the existing protocols, by setting
the conditions. If A wants to match to only a non-smoker, A sets the condition
of “non-smoker” against another user. Even if both A and B like “baseball”,
they are not matched because B is smoker, that is, B does not satisfy the condi-
tion of A. Our protocol reduces computational cost of user’s device by using the
map-to-prime technique and setting an honest-but-curious server. Furthermore,
even if a server is attacked, user’s secret key or personal data does not leak since
our protocol is designed for a server without such confidential data. We assume
that every entity has honest-but-curious setting and that secure channel is used
among A, B and S. A and B do not directly communicate in order to preserve
the fairness and to reduce computational cost on users’ devices.

The remainder of the paper is structured as follows: In Sect. 2, we dis-
cuss some related works of a privacy-preserving profile matching protocol.
Section 3 includes preliminaries. In Sect. 4, we present the privacy-preserving pro-
file matching system. Section 5 gives our proposed protocol in detail. In Sect. 6,
performance evaluation is discussed. Finally, Sect. 7 concludes the paper.

2 Related Works

In 2004, PSI protocol using Oblivious Polynomial Evaluation (OPE) was pro-
posed for the first time by Freedman et al. [2]. Then, Kim et al. [4] reduced
computational cost of user’s device by using the map-to-prime technique instead
solution of the polynomial in OPE. Many existing matching protocols need to
generate one ciphertext for one question about user profiles, and this means
that the large amount of computational cost of encryption is required if the
number of questions increases. The map-to-prime technique makes it possible to
embed more than one profile inside one ciphertext and hence makes it possible
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to decrease the computational cost of encryption. We can mainly classify the
existing schemes into two types: (1) enhancing the privacy and (2) enhancing
the matching function.

Enhancing the privacy restricts the output contents of matching results.
Abbas et al. [1] proposes cardinality matching which outputs only the num-
ber of matched elements without revealing the matched elements. In [6,7], the
private attributes are certified by a trusted third party and these prevent honest-
but-curious and malicious users from learning profile information of honest user
by choosing their set arbitrarily. In [5,8,9], privacy is enhanced by restricting
the information obtained from the matching result as the privacy level rises. For
example in [9], in level 1 users can learn the matched elements and their level
of interest. In level 2 it outputs the matched elements between users. In level 3
users can learn only if they matched without learning the matched elements.

Enhancing the matching function achieves more detailed matching of user’s
profiles. Zhu et al. [10] proposes the conditional matching protocol which is
established only when the number of matched elements is equivalent to the
number a user requires. However, the condition setting of this protocol is not
realistic. He et al. [3] proposes more detailed matching protocol in which users
can set weights to their profile. Thapam et al. [8] proposes the practical match-
ing protocol which achieves a communication closer to real life, by using not
only users’ own information but also information of their friends. As explained
above, although various matching protocols have been proposed, the fine-grained
matching considering user’s conditions has not been achieved yet.

3 Preliminaries

3.1 Requirements

Fain-grained profile matching:
The existing matching protocols have a drawback of unwilling match. Even
if a user has some profiles that anther user is unacceptable, they may reluc-
tantly match each other as described in Sect. 1. In order to solve this problem,
the fine-grained profile matching protocol considering conditions is required.

Safety management of personal information:
Since user’s profile includes personal information, it is required to store user’s
profile to keep a secret. Also, it is required that a server does not have private
keys of users or a server and that it does not use them on itself. If a server
does not have secret information, the safety management of a server becomes
easy.

Reduction of computational cost:
Many existing matching protocols need to generate one ciphertext for one
question of profiles, and this means that the large amount of computational
cost of encryption is required if the number of questions increases. In order
to solve this problem, one ciphertext for multiple profiles is required. This
can reduce the computational cost and memory consumption.



174 Y. Ishikuro and K. Omote

3.2 Paillier Encryption

The protocol proposed in this paper is based on Paillier’s homomorphic encryp-
tion. In the following, we summarize Paillier crypto system.

Key Generation:
The trusted third party chooses two large prime numbers p and q ran-
domly such that gcd(pq, (p − 1)(q − 1)) = 1 and compute n = pq and
g = (1 + αn)βn mod n2 and λ = lcm(p − 1, q − 1), where gcd() and
lcm() are the functions that computes the greatest common divisor and
the least common multiple, respectively. Furthermore, it computes μ =
(L(gλ mod n2))−1 mod n, where L(u) = (u − 1)/n. The Paillier public and
private keys are (n, g) and λ, respectively.

Encryption:
Let M ∈ Zn be a message to be encrypted and r ∈ Z

∗
n2 be a random number.

The ciphertext could be given by

E(M) = gMrn mod n2 (1)

Decryption:
Given a ciphertext c = E(M), the corresponding plaintext can be derived as

L(cλ mod n2)
L(gλ mod n2)

mod n = M (2)

Homomorphic:
Given m1,m2, r1, r2 ∈ ZN , it satisfies the following homomorphic property:

E(m1) · E(m2) = E(m1 + m2) (3)

3.3 Adversary Model

We consider an internal attacker that is a malicious user or server. We assume
that the adversary model is honest-but-curious setting. Honest-but-curious users
or server follow the protocol but they are curious to learn about user’s interest.
Additionally, we do not consider the collusion among users and server. This
model is required to satisfy correctness and privacy as follows.

– Correctness.
If two users output the matching result of each profile correctly, this protocol
has correctness.

– Privacy.
If nothing is known about each user’s profile which is not existed in the match-
ing result, this protocol has privacy.
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user A user B

(1) encrypt answers

(2) send encrypted answer

server S
(3) conduct secure profile matching

(4) return encrypted
matching result

(5) decrypt into final matching resultQ1  4
Q2  3
Q3  1

Q1  4
Q2  2
Q3  1Q1=4, Q3=1

(1) encrypt answers

(2) send encrypted answer

Fig. 1. Privacy-preserving profile matching system.

4 Privacy-Preserving Profile Matching System

A privacy-preserving matching system is that each user answers some questions
about user’s profile and then obtain only the matching result with another user. If
users A and B are matched in some questions, they obtain only the matched items
each other. Figure 1 shows an overview of privacy-preserving profile matching
system. The basic procedure is as follows.

1. A and B encrypt their own answer about their profiles.
2. A and B send their encrypted answer to a server S.
3. S conducts the secure profile matching with keeping personal information

secret.
4. S returns the encrypted matching result to A and B.
5. A and B respectively decrypt the matching result received from S and then

they can obtain the final matching result.

In Fig. 1, the final matching result is Q1 = 4 and Q3 = 1 since A’s answers of
question 1 and 3 are the same as B. Note that the answer of question 2 is kept
secret since the question 2 is not matched between A and B.

We assume that A, B and S are the honest-but-curious entities. In other
words, S, A and B are curious to learn about a user’s interest but honestly
follow the protocol. In addition, we do not assume the collision among A, B and
S and assume a secure channel between the server and users.

5 Our Protocol

In the existing protocols, even if a user B has preference or interest that another
user A cannot accept, the matching between A and B may unwillingly estab-
lished. In order to solve this problem, we propose a privacy-preserving profile
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Table 1. Notation.

Notation Description

pkA, pkB Public keys of users A and B

C Choice set

S Set of prime numbers to C

t Size of each prime in C

Cc Choice set for condition, Cc ⊂ C

γ Number of questions

XA = {a1, . . . , aγ} A’s answer, ai ∈ S

XB = {b1, . . . , bγ} B’s answer, bi ∈ S

a =
∏γ

i=1, b =
∏γ

i=1 Answers of A and B

ac B’s condition for user A

bc A’s condition for user B

raa, rab, rba, rbb Random numbers

XAB , XBA Matching results of A and B

matching protocol embedded with homomorphic encryption considering condi-
tions: matching is established only when the conditions are satisfied. Our proto-
col uses the map-to-prime technique to reduce the computational cost of user’s
device. Our protocol also has conditions that each user sets to achieve the fine-
grained matching. We assume that the secure channel is used among A, B and S
and that A and B do not directly communicate in order to preserve the fairness
and to reduce computational cost on users’ devices.

5.1 Notation

Table 1 shows the notation of our protocol. C is a set of choices contained in
one ciphertext. Our protocol deals with single answer only from multiple-choice
question. S is the set of prime numbers corresponding to C. Users A and B select
prime numbers corresponding to their own answers as XA = {a1, ..., aγ} ∈ S
and XB = {b1, ...bγ} ∈ S, respectively. User’s answer is represented by product
of prime numbers. More precisely, the answers of A and B are denoted by a =∏γ

i=1ai and b =
∏γ

i=1bi, respectively. Each user chooses a condition from Cc ⊂ C.
The conditions of A and B are denoted by bc ∈ S and ac ∈ S, respectively. If
A does not satisfy B’s condition ac or B does not satisfy A’s condition bc, then
the matching result is not output. Only if both A and B satisfy conditions each
other, the matching is certainly established as usual.

5.2 Protocol Detail

We explain about the procedure that A obtains the matching result since users A
and B are in a symmetric position. Figure 2 shows our privacy-preserving profile
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Fig. 2. Privacy-preserving profile matching protocol considering conditions between
two users.

matching protocol considering conditions between two users. We need only one
ciphertext for plural questions of profiles owing to the map-to-prime technique.
Note that two or more ciphertext is required when tγ > |nA|. The protocol detail
is shown in Fig. 2.

1. S chooses a set S corresponding to a set C for the map-to-prime technique.
2. A and B respectively generate their own public key pkA and pkB and send

them to S.
3. A receives pkB from S. A computes EpkA

(a) and EpkB
(a) by encrypting

her/his own answer, and then selects the condition bc from Cc. A sends
EpkA

(a), EpkB
(a) and bc to S. B processes in a similar way.

4. S generates four random numbers raa, rab, rba and rbb where |raa| = |rab| =
|nA| − tγ + t − 1 and |rba| = |rbb| = |nB | − tγ + t − 1. These random numbers
are used to pad message space. S obtains the prime number corresponding to
each condition received from A and B. Then, S computes the inverse elements
of bc and ac on nA and nB , i.e., b−1

c (mod nA), a−1
c (mod nA), b−1

c (mod nB)
and a−1

c (mod nB). Finally, S computes the following Eq. (4) and returns it
to A.

EpkA
(a)raaa−1

c (mod nA) × EpkA
(b)rabb−1

c (mod nA)

= EpkA
(raaaa−1

c + rabbb
−1
c )

= EpkA
(XAB),

(4)

where XAB = raaaa−1
c + rabbb

−1
c .

5. A decrypts EpkA
(XAB) to obtain XAB .

6. A verifies the matching result, that is, A conducts ai|XAB (i = 1, ..., γ). If it is
true, ai is the common prime between A and B, otherwise, ai is not common.
If A and B satisfy their conditions each other, both users can obtain the
matching result. Otherwise, neither A nor B can obtain any matching result.
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Note that we can easily construct the protocol among m users by operating our
protocol between two users in parallel.

5.3 Matching Mechanism Considering Conditions

In this section, we explain the matching mechanism considering conditions in our
protocol. Only if two users satisfy their conditions each other, they can obtain
their final matching result. More precisely, only if A selects ac and B selects bc in
their answers, then they can obtain their matching result, when the conditions
of A and B are bc and ac, respectively. If neither A nor B is satisfied, they cannot
obtain any matching result.

We explain an example of our matching mechanism considering conditions.
We assume that two users A and B respectively have a = xdh (x ∈ Cc) and
b = yeh (y ∈ Cc), where x, y, d, e and h are the prime numbers corresponding to
answers. Additionally, A and B respectively select ac = x ∈ Cc and bc = y ∈ Cc

as a condition. In this case, since A and B respectively have ac and bc in their
answers (i.e., they satisfy their conditions each other.), they can obtain the
matching result except for conditions ac and bc. Users can derive h as their
common prime number as follows.

EpkA
(a)raaa−1

c (mod nA) × EpkA
(b)rabb−1

c (mod nA)

= EpkA
(raaxdhx−1 + rabyehy−1)

= EpkA
(raadh + rabeh)

= EpkA
(h(raad + rabe))

(5)

The most important point of this computation is the cancel process of conditions.
In Eq. (5), the inverse elements x−1 and y−1 are canceled by the primes ac = x
and bc = y for conditions, respectively. From this computation, A and B can
know that h is matched between them. If the inverse element of condition is not
canceled, the matching result is randomized and hence two users cannot obtain
any result.

On the other hand, when the conditions of A and B are respectively bc = z ∈
Cc and ac = x ∈ Cc, the computation by S for a user A is as follows.

EpkA
(a)raaa−1

c (mod nA) × EpkA
(b)rabb−1

c (mod nA)

= EpkA
(raaxdhx−1 + rabyehz−1)

= EpkA
(raadh−1 + rabyehz−1)

= EpkA
(random)

(6)

In this case, the inverse element of A’s condition z is not canceled since B does
not select z. As a result, an overflow occurs with a high probability on message
space nA and thus users cannot obtain the common prime number. Unless the
conditions are satisfied, the matching result becomes random.

We can regard our protocol as two-step matching by setting the conditions.
At the first step our protocol conducts the matching of conditions, and also at
the second step it conducts the matching of the profiles.
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Table 2. Comparison of efficiency.

Computation Communication

KLC’11 [4] O(|C|) O(|C|)
TLSL’14 [8] O(|C|2) O(|C|)
ZZSY’12 [9] O(|C|) O(|C|)
Our protocol O(|C|) O(|C|)

6 Evaluation

6.1 Security Analysis

In an honest-but-curious model, we have only to prove correctness and privacy
as follows.

Theorem 1 (Correctness). Our protocol outputs a matching result correctly.

Proof. When we assume x ∈ XA ∩ XB , both a and b are divided by x and
hence both XAB = raaaa−1

c + rabbb
−1
c (mod nA) and XBA = rbaaa−1

c +
rbbbb

−1
c (mod nB) are also divided by x. As a result, each user knows that x

is a common answer. On the other hand, when we assume x �∈ XA ∩XB , we can
consider two cases: (1) x is included in XA or XB , and (2) x is included in nei-
ther XA nor XB . However, in both cases, x is accidentally existed as a common
prime in XA ∩XB with a probability of P (see P in Subsect. 6.3). Therefore, our
protocol can guarantee the correctness with a failure probability of P . ��
We show the following lemma of indeterminate equation.

Lemma 1. If gcd(a, b) = 1, then solution (x, y) of ax + by = 1 is existed cer-
tainly.

We will not prove Lemma 1 since this is a famous theorem of indeterminate
equation. Using this Lemma, we show that our protocol has privacy as follows.

Theorem 2 (Privacy). An attacker cannot obtain any information about
answers of honest user except for common elements between users.

Proof. We assume that A is an honest user and another user B is an honest-
but-curious attacker. B wishes to know A’s answer. B can obtain b, EpkA

(b),
EpkB

(b) and XBA = rbaaa−1
c + rbbbb

−1
c (mod nB) in the protocol. In order to

know the result of A’s selection, B needs to know the prime number selected
by only A from XBA = rbaaa−1

c + rbbbb
−1
c = π(rbaa′a−1

c + rbbb
′b−1

c ) (mod nB),
where a = πa′ and b = πb′. Note that π is the common prime(s) between A and
B. Since B knows XBA, b′ and π, B needs a′ from following Eq. (7).

rbaa′ + rbbb
′ = XBA/π (7)

gcd(a′, b′) = 1 holds since the common prime number is not existed in a′ and
b′. Even if a′ has any value in Eq. (7), both rba and rbb certainly exists from
Lemma 1. As a result, it is difficult for an attacker to compute a′. ��
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(2) send encrypted answers

(4) send encrypted matching result

server PC

(1) answer questions 
and encrypt her/his 
choice

(5) obtain matching result database

user’s tablet device

(3) match encrypted 
profiles in the database

Fig. 3. Flow of our demonstration.

6.2 Efficiency

We evaluate computational/communication complexities of our protocol on
user’s tablet device and a server PC. We also evaluate the computation process
time of our implemented system.

Complexity of Computation and Communication. Users send and receive
two ciphertexts in our protocol. The communication complexity of ciphertext,
which each user sends and receives, is 4|C|. Therefore, the communication com-
plexity of our proposed protocol is denoted as O(|C|).

We evaluate the computational complexity with the number of modulo expo-
nentiation. In Paillier crypto system, it is required two modulo exponentiations
in encryption and one modulo exponentiation in decryption. In our protocol,
the number of each user’s modulo exponentiation is 5|C| since it needs two
encryptions and one decryption. Therefore, the computational complexity of our
protocol is denoted as O(|C|).

Table 2 shows the comparison the efficiency of the existing schemes and our
protocol. We employ the existing schemes that users can know which elements
are matched, which is similar to our proposed protocol. The result show that
our protocol has lower computational/communication complexities.

Implementation Evaluation. We implemented our proposed protocol in
JAVA and evaluated it on a laptop with Intel Core i5 (1.4 GHz) and 8 GB RAM
and a tablet device NEXUS 7 with Qualcomm Snapdragon S4 Pro (1.5 GHz)
and 2 GB RAM. We evaluated the running time of our protocol on a laptop
as a server and a tablet as a user’s mobile device. Figure 3 shows the environ-
ment of our implementation evaluation. A user constructs her/his own profile by
answering some questions. Figure 4 shows the answer window of our implemented
application on the tablet device.

We evaluated the running time of two encryptions, one decryption and the
verification of matching on a table device, and the matching process on the server
PC. Table 3 shows ten times average of running time in each processing.
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Table 3. Running time in each processing (10 times average).

Tablet Server PC

Encryptions (two times) Decryption (one time) Matching verification Matching processing

165ms 51.3ms 7.92ms 30.6ms

Fig. 4. The answer window of our application on the tablet device NEXUS 7.

6.3 Probability of Failure Matching

We note that our protocol does not deterministically output the matching result.
For example, in spite of x �∈ XA ∩ XB , x ∈ S, if x becomes accidentally the
common prime number of A and B, then the matching result becomes wrong.
Therefore, it is important that the failure probability is negligible. P is the failure
probability that a common t-bit prime number in XA ∩XB may be accidentally
included in S as follows.

P = 1 −
(

1 − 1
2t

)|S|
(8)

We assume that the message space of E is 1024 bits, i.e., |nA| = |nB | = 1024.
Since the message space is fixed, t and C have the relation of tradeoff. As long

Table 4. The probability of failure matching when t and |C| are changed.

t |C| P

25 34 5.07 × 10−6

26 33 2.46 × 10−6

27 31 1.15 × 10−6

28 30 5.59 × 10−7

29 29 2.70 × 10−7

30 28 1.30 × 10−7

31 27 6.29 × 10−8
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as the probability of failure matching is less than 2−20 (� 10−7), we assume that
the correctness is guaranteed. Table 4 shows the probability of failure matching
when t and |C| are changed. In order to satisfy the above condition (i.e., less
than 10−7), we set t = 28 bits prime numbers and |C| = 30 from Table 4. In this
implementation, a user selects a single answer from five items assigned to each
question.

7 Conclusion

We have proposed a privacy-preserving profile matching protocol considering
conditions. In the existing protocols, the unwilling matching may occur, that
is, a user may match to another unacceptable user. In our protocol, matching
is established only when the conditions are satisfied, and hence our protocol
can prevent such unwilling matching, which occurs in the existing protocols,
by setting conditions. Additionally, we have reduced computational cost and
memory consumption by using the map-to-prime technique and an honest-but-
curious server. As a future work, we try to enhance the privacy such as condition
hiding and configuration of privacy level, which restrict the matching result.

Acknowledgements. This work was partly supported by Grant-in-Aid for Scientific
Research (C) (16K00183).
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Abstract. Credit card system has proven itself to be a convenient way
for individuals to complete transactions. Despite its great benefits, credit
card system also brings in great privacy risks to users. The card issuing
bank knows the details of all transactions made by every user, including
transaction date, amount, and merchant. These contain sensitive infor-
mation of the users which may reveal their whereabouts, preferences,
daily routines, etc. In this paper, we build privacy preserving credit card
systems that hide the expenses of individual users from the bank, while
preserving most of the features provided by the current credit card sys-
tem at the same time.

Keywords: Accountable privacy · Credit card · e-cash · Online
banking · Group signatures

1 Introduction

Customers and merchants have enjoyed the benefits of plastic money for decades,
in the form of credit cards and debit cards for examples. Plastic money saves the
customers from the trouble of carrying large amount of money every day. One
or two thin plastic cards suffice to settle most transactions. Payment can also
be made in exact amount without any changes in the form of heavy metal coins.
On the other hand, merchants do not need to worry about keeping the cash in
a safe place or rush depositing them into their bank accounts in person, since
all payments from their customers directly go to the bank. To encourage the
use of credit card, bank and merchants often hold joint promotions so that cus-
tomers can enjoy extra discounts if they choose to pay by cards. With such great
benefit and convenience, credit/debit cards related transactions are immensely
popular, ever increasingly. According to the Word Payments Report 2015 [13]
from Capgemini and Royal Bank of Scotland, the growth rates in transactions
using debit cards and credit cards are 11.5 % and 9.6 % respectively.

The conveniences come with the price of user privacy. In a credit card sys-
tem, the bank will usually generate a monthly transaction record which lists
clearly how much the customer has spent. Thus the bank knows the details of
every single transaction, including the transaction date and amount, the parties

c© Springer International Publishing AG 2016
J. Chen et al. (Eds.): NSS 2016, LNCS 9955, pp. 184–199, 2016.
DOI: 10.1007/978-3-319-46298-1 13



Privacy Preserving Credit Systems 185

involved, etc. The bank can infer a lot of sensitive information about the cus-
tomers, such as their favorite restaurants or travel plan in the near future. The
bank might make use of such information to build a full profile of the customer,
and later profit from it, e.g., by selling it to someone else.

Cryptographic e-cash [14] was invented to support transaction privacy in elec-
tronic payment systems. The typical workflow of an e-cash system is as follows.
Users withdraw coins from a bank, and then use those coins to settle payments
with the merchants. Merchants will deposit coins back to their bank accounts at
some later time. The privacy requirements mandate that the bank cannot infer
any information about who was the original owner of the coin just deposited by
the merchant. Transferable e-cash systems [8,17,23,24] allow a coin to circulate
within the system, while the traditional e-cash systems only allow a coin to be
spent once. Achieving anonymity in transferable e-cash systems [5,12,25] turns
out to be trickier than in traditional systems.

Nevertheless, e-cash systems are similar to debit card systems in nature, in
the sense that a user can never spend more than what s/he can pay for. Credit
card systems, however, grant users flexibility of purchasing goods which they
otherwise cannot afford at the moment. A natural question to ask is therefore
whether there exists electronic yet anonymous counterpart of credit card sys-
tems. At the first glance the answer to this question is obviously no. Credit
card system inherently requires recording transaction amounts so that the bank
can check in real time whether the user has exhausted his/her credit limit. The
bank will also need to know the total transaction amount to charge the user.
Anonymity offered by e-cash system seems to be contradicting to these functional
requirements of credit card systems.

This paper aims to tackle these seemingly inherently contradicting require-
ments of credit-based payment systems and e-cash systems. Our aim is to protect
the privacy of user even for the total amount s/he has spent over a time period,
yet the bank can still get enough pay-back from the users. Moreover, we aim to
retain as much functionalities of credit-based payment systems as possible, like
overdue interest charge, credit limit update, monthly payment settlement, etc.
This problem has not received much attention. As we will explain shortly, there
is no existing work that can deal with this problem completely.

1.1 Related Work

Most early electronic payment systems are centralized, with notable exceptions
of Karma+ [15] and Bitcoin [22], yet they do not preserve user privacy. Pay-
ment mechanisms with some degrees of privacy have already been considered
in the literature. Asokan et al. gave a detailed introduction about the state-of-
the-art electronic payment systems [3] by that time. Earlier works [6,19] only
protected credit card information from third parties or merchants, but not from
the bank. Low et al. introduced a credit card system which can provide card-
holder anonymity even towards the bank [21], but their scheme assumes many
trusted parties, and offers only a subset of functionalities in typical credit card
systems (e.g., no expense report or error correction service). Androulaki and
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Bellovin [2] identified a set of properties of anonymous credit card systems,
including privacy, deployability, unforgeability, and non-transferability. More-
over, the systems should provide expense report service, error correction service,
loss recovery service, and special interest rate offers. Note that their privacy level
is per-transaction. The bank has knowledge of the total expenditure of individual
users in each time period.

1.2 Our Results

We propose two privacy-preserving credit systems, which hide the expenses of
individual users from the bank. Our systems satisfy the traditional security
requirements of e-cash, such as identification of double-spending, as well as other
requirements specific to credit systems. Namely, our systems allow flexible con-
trol of the interest rates and credit limits of individual users, and protect against
mischarges and undercharges.

Our first system is relatively lightweight, as it is constructed from traditional
(non-transferable) e-cash systems [14] and (dynamic) group signatures [7]. The
efficiency comes with a mild limitation of having all users share the same payment
due date. Our second system makes use of anonymous transferable e-cash [5,
25] systems and (non-interactive) zero-knowledge proofs [9,18], and is able to
overcome the above limitation.

1.3 Paper Organization

The rest of this paper is organized as follows: Sect. 2 develops the necessary nota-
tions, and introduces the basic building blocks of our system, including group
signature, (transferable) e-cash system, and zero-knowledge proof system. We
then describe the system model in Sect. 3, and present two different construc-
tions of privacy preserving credit system in Sect. 4.

2 Preliminary

2.1 Dynamic Group Signature

A dynamic group signature scheme [7] involves a trusted party for initial pub-
lic parameter generation, two authorities (issuer and opener) with a number of
potential users, who may join the group dynamically, each with a unique iden-
tity i ∈ N. Another name for users is signers since they sign on behalf of the
group. Anyone can be a verifier of a signature, or the proof that a signature
is attributed to a certain signer. For our application, we present a simplified
definition where the group manager acts as both the issuer and the opener.

We additional require a claim algorithm which may not be a standard one
in a typical (dynamic) group signature scheme. The claim algorithm enables a
signer to later claim the authorship of an issued signature [1].
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Definition 1. A dynamic group signature scheme consists of the following PPT
algorithms:

– (gpk, ik, ok) ← GKg(1λ) : The group manager generates the group public
key gpk, the issuer key ik, and the opener key ok in the setup phase.

– (upki, uski) ← (JoinI(ik), JoinU (gpk)): A user i joins the group by engaging in a
joining protocol with the issuer. If successful, the user and the issuer register
the public key upki on the registration table reg, while the user obtains a
secret signing key uski.

– σ ← GSig(uski,m): User i can produce a signature σ on message m ∈ {0, 1}∗

using the signing key uski.
– (accept/reject) ← GVf(gpk,m, σ): A verifier can verify a signature σ on a

message m with the group public key gpk.
– (i, τ) ← Open(ok, {upk},m, σ): The opener has access to the registration table

reg. Using the opener key ok, the opener can obtain an opening of a valid
signature σ on message m pointing to a user i, with a proof τ of the correctness
of the opening.

– (accept/reject) ← Judge(gpk, upki,m, σ, τ): A judge can verify a proof τ of the
correctness of an opening i of a valid signature σ on message m.

One can construct a dynamic group signature scheme from any accountable
ring signature scheme [10,20].

A dynamic group signature scheme should satisfy correctness (of signing and
opening) and the following security properties:

Anonymity. A coalition of all parties except the opener cannot distinguish
which of the two signers of its choice has signed a target message of its choice.

Traceability. If the issuer is honest, then it is infeasible to produce a signature
whose opening does not point to any registered member.

Non-frameability. A coalition of all parties except an honest user cannot pro-
duce a signature which opens to that honest user.

2.2 Electronic Cash System

An (offline) electronic cash system [11] involves three usual kinds of players: the
user, the bank, and the merchant.

Definition 2. An electronic cash system consists of the following eight proba-
bilistic algorithms:

– Pgen(1λ) on input the security parameter 1λ outputs the system parame-
ters pp, which is a default input to the remaining algorithms.

– There are two key generation algorithms, KGenB() and KGenU ().
(pkB, skB, L) ← KGenB(pp) and (pkU , skU ) ← KGenU (pp) generate the key
pairs for the bank B and the user U respectively. The KGenB() algorithm
additionally initializes the list of deposited coins L to be an empty list.
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– Withdraw(U(pkB, skU , n),B(pkU , skB, n)): This is a protocol for the user U to
withdraw a wallet W of n coins from the bank B. In other words, W is the
user output. This bank maintains a database DB of pkU . If this protocol fails,
say due to the wrong inputs of either party, both outputs will become an error
message instead.

– Spend(U(W, skU , pkM, pkB),M(skM, pkB)): This is a protocol for user U to
transfer one of the coins from his wallet W to merchant M. Both parties
obtain a serial number s of the coin, and a proof π of validity of the coin. The
user additionally outputs an updated wallet W ′.

– Deposit(M(skM, s, π, pkB),B(pkM, skB, L)): This is the protocol for a mer-
chant M to deposit a coin (s, π) into the account at the bank B. Whenever
an honest merchant obtained (s, π) by running the Spend protocol with any
user, it is guaranteed that this coin will be accepted by the bank. Bank adds
the coin (s, π) to its list L of spent coins. The merchant side gets an empty
string, or a message denoting error if it occurs.

– (pkU ,ΠG) ← Identify(pp, s, π1, π2): This algorithm identifies double-spenders
using a serial number s and two proofs of validity of this coin π1 and π2,
possibly submitted by malicious merchants. It outputs a public key pkU and
a proof ΠG. If the merchants who had submitted π1 and π2 are not malicious,
then the proof serves as the evidence that the public key pkU is the registered
public key of a user who has double-spent coin s.

– (accept/reject) ← VfGuilt(pp, s, pkU ,ΠG): This algorithm allows anyone to ver-
ify proof pkU that the user with public key pkU is guilty of double-spending
coin s. If the proofs verify, it outputs accept; reject otherwise.

The above formulation is known as a compact e-cash system [11] since the
size of a wallet is a constant with respect to the number of coins it holds. Sim-
ilar idea has been utilized to build traceable signature schemes [16] which form
an extended notion of group signature. There are other e-cash schemes which
aim to minimize the bandwidth required by the spending protocol [4]. Below we
describe the security properties of an electronic cash system.

Correctness. If the Withdraw protocol is run by an honest user and an honest
bank, then the user will not output an error message, as well as the bank. If
the Spend protocol is run by an honest user with an honest merchant, then the
merchant accepts the coin.

Balance. No coalition of users and merchants can ever spend more coins than
they withdraw from the bank.

Identification of Double-Spenders. This property guarantees that, with high
probability, double-spender can be identified by the Identify algorithm. Specifi-
cally, Identify outputs a key pkU and proof ΠG such that VfGuilt accepts.

Anonymity of Users. From the privacy point of view, the property ensures
that the bank, even when cooperating with any coalition of malicious users and
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merchants, cannot learn anything about the spending of a user other than what
is available as “side-channel” information from the environment.

Exculpability. Exculpability ensures that a malicious bank cannot frame an
innocent user for double-spending. There are two levels of exculpability. Weak
exculpability means that an honest user cannot be accused of double-spending his
coins. Strong exculpability relaxes the restriction that the user must be honest.
In other words, the protection is extended to user who could have double-spent
some coins. Strong exculpability prevents a user who double-spent some coins
from being accused of additional coins that he did not double-spend before.

2.3 Transferable Electronic Cash System

In a transferable e-cash system [5], there are two types of parties: the bank B
and users Ui. Merchants can also be regarded as users. Since the syntax is largely
similar to those of the basic e-cash system, we only highlight the major difference
below. For brevity, we simply use skB to denote the secret key of the bank B,
but do not differentiate between its components for withdrawal and deposit
respectively.

Definition 3. A transferable e-cash scheme is an e-cash system with the follow-
ing differences (cf., Definition 2).

– There is an additional registration protocol executed between the bank and
the user: Registration(B(skB, pkU ),U(skU , pkB)). At the end, the user receives
a certificate certU , which will be part of the input in the following Spend and
Deposit protocols. If error occurred, both parties output ⊥.

– The spend protocol Spend(U1(c, skU1 , certU1 , pkB),U2(skU2 , pkB)) is executed
between a spending user U1, and U2 who receives the coin c from U1. (There
is no merchant here.) At the end of the protocol, U1 either marks the coin c
as spent, or outputs ⊥ if error occurred. U2 either outputs a coin c′ or ⊥.

– The Deposit() and Identify() protocols are merged into a single one:
Deposit(U(c, skU , certU , pkB),B(skB, pkU , L)). This is the protocol for a user
U to deposit a coin c at the bank. It consists of three sub-routines.

1. Firstly, CheckCoin checks whether the coin c is consistent, and if not
outputs ⊥.

2. If c passes CheckCoin, the bank runs CheckDS, which outputs the serial
number s of the deposited coin. The bank checks whether L already con-
tains an entry for s. If not, B adds s to L, credits the account of U and
updated L.

3. If the coin was double-spent, the subroutine DetectDS is run on the two
coins and outputs (pkU ,ΠG), where pkU is the public key of the accused
user, and ΠG is a proof that the registered user who owns pkU double-
spent the coin. ΠG should reveal nothing about the coin itself.
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Now we describe the security properties of the transferable e-cash system.
Again, we highlight the major difference from those of a normal e-cash system.

Correctness and Unforgeability. These two notions resemble the Correct-
ness and Balance properties respectively in e-cash system except that mer-
chants are treated as normal users in the context of transferable e-cash system.

Identification of Double-Spenders and Exculpability. These two proper-
ties are the same as those in a normal e-cash system.

Anonymity. Anonymity in transferable e-cash system is more complex than
non-transferable ones, because the coins can be transferred back and forth mul-
tiple times. Early works [5,8,12] defined three incomparable anonymity notions.

– Observe-then-receive full anonymity means the adversary, controlling the
bank, cannot link a coin it receives as an adversarial user or as the bank
to a previously (passively) observed transfer between honest users.

– Spend-then-observe full anonymity ensures that the adversary, controlling the
bank, cannot link a (passively) observed coin transferred between two honest
users to a coin it has already owned as a “legitimate” user.

– Spend-then-receive full anonymity means that when the bank is honest, the
adversary cannot recognize a coin it previously owned when it receives the
same coin again. Spend-then-receive* ensures that although the adversary,
when controlling the bank, can tell whenever it receives a coin it owned before,
it should not be able to learn anything about the identities of the users that
owned the coin in between.

2.4 Non-interactive Zero-Knowledge

A non-interactive zero-knowledge (NIZK) proof system [9] for an NP language L
allows a prover to produce a proof π that an instance x is a member of L without
revealing the witness.

An NIZK proof system should satisfy completeness, soundness, and zero-
knowledge. Completeness states that the proofs produced by an honest prover
should always be accepted. Soundness requires that even a malicious compu-
tationally unbounded prover cannot falsely convince an honest verifier that a
non-instance x is in the language. Zero-knowledge requires that there exists an
efficient simulator which simulates valid proofs of instances without knowing the
corresponding witnesses.

3 System Model

In real-world credit card systems, there are multiple entities besides the cus-
tomer and the merchant behind a transaction. For simplicity, we consolidate all
those entities as the bank. Our goal is to construct a privacy-preserving credit
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system which involves a bank, a group of users, and a group of merchants. To
be concrete, we first characterize the expected functionalities, and security and
privacy properties.

3.1 Functionalities

A privacy-preserving credit system consists of a tuple of efficient algorithms and
protocols, executed by the bank, the users, and the merchants. Merchants can
be seen as a subset of the users. The syntax is as follows:

– Setup Phase:
• pp ← Pgen(1λ), (pkB, skB,BB,DB) ← KGenB(pp), (pkM, skM) ←

KGenM(pp), (pkU , skU ) ← KGenU (pp): The bank, the users, and the mer-
chants run their respective key generation algorithms based on the public
parameter pp generated by a trusted third party. The bank also main-
tains a public bulletin board readable by all entities anonymously, and a
database DB which is kept private by the bank.

• (DB′, κ) ← (JoinB(skB,DB, �), JoinU (skU , �)): A user joins the system by
engaging in a joining protocol with the bank. If successful, the bank will
issue a credit card κ to the user, and then update its database to DB′. The
credit limit of individual user � is determined by external mechanisms.

– Transaction Phase:
• (r, (κ′, r)) ← (AuthM(skM, n),AuthU (skU , κ, n)): A user authorizes pay-

ment to a merchant by engaging in an authorization protocol. The pay-
ment is successful if the user possesses enough credits in κ. In that case,
the credit count of the user is reduced by n. Both the user and the mer-
chant obtain a receipt r of the transaction.

• (BB′,⊥) ← (BatchB(skB,BB),BatchM(skM, R)): The merchant collecting
a set of receipts receives payment by engaging in a batching protocol with
the bank. If successful, the bank updates the public bulletin board from
BB to BB′.

As in an e-cash system, the bank can use the Identify() algorithm
to detect double-spending events when multiple merchants batch their
receipts to the bank.

• (BB′, (κ′, R′)) ← (RepayB(skB,BB, n),RepayU (skU , κ,R, n)): The user can
repay the debt in advance by engaging in a repaying protocol with the
bank. If successful, the user gets an updated credit card κ’ with the credit
count is increased by n, and the bank updates the public bulletin board.

• st ← Track(skU ,BB, r): In a trackable scheme, the user can track a previ-
ous transaction from the public bulletin board maintained by the bank.

– Settlement Phase:
• (⊥, κ′) ← (SettleB(skB, ρ, �, �′),SettleU (skU , κ, �, �′)): On payment due

date of a user, the user and the bank engage in a settlement protocol
in which the bank charges the user interest ρ for the amount of cred-
its the user failed to repay, and issues a new set of credits to the user.
According to the payment repaid and the interest rate, the original credit
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limit � can be updated to a new one �′ in the updated credit card κ′.
The interest rate and the credit limit of the user (which determines the
number of credits issued) are again determined by external mechanisms.

Note that there is maximal flexibility in setting the credit limits and interest
rates as they are determined by external mechanisms arbitrarily.

3.2 Security

Security properties of a privacy-preserving credit system are similar their coun-
terparts in an e-cash system. Besides the properties which directly carry over,
including identification and tracing of double-spenders, anonymity of users (dur-
ing transaction), and exculpability, we further require the following additional
properties.

Balance. Similar to e-cash systems, the bank wishes to ensure that no coalition
of users can ever spend more than their collective credit limit.

Hiding Spending Pattern. The only information about the users’ expenditure
known by the bank is the total amount spent by each group of users with the
same payment due date.

Anonymous Tracking of Transactions. Users can track their previous trans-
actions from the public bulletin board. On the other hand, no coalition of users
can infer information about other users not in the coalition from the public bul-
letin board.

Undercharge Resistance. In between payment due dates, either the user
repays more than or equal to the amount of credit spent in transactions, or
the bank can compute the exact amount the user owes the bank and apply
interest. In particular, no coalition of users can spend more than the collective
amount they repay on their respective payment due date without being charged
for the interest determined externally.

Mischarge Resistance. It is infeasible for the bank and any coalition of mer-
chants to accuse a user for not fully repaying the debt, and thereby charging
unreasonable interest.

4 Constructing Credit Systems

We provide two constructions of privacy-preserving credit systems, both are built
on top of an anonymous e-cash system. The intuition is to use coins in the e-
cash system as credits. In other words, the user in the credit system is issued
a wallet. The number of coins contained in it is equal to the credit limit of the
user. To pay using the credit system, the user simply transfers some of the coins
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to the merchant, who can later deposit the coins back to the bank and settle the
transaction.

Problem arises when the user repays the debt. One straightforward solution
is to have the user purchase coins from the bank, which are then added to the
wallet. On the payment due date, the user proves in zero-knowledge that the
number of coins in the wallet is greater than the credit limit. Notice that this
requires the anonymous e-cash system to be transferable. This forms the basis
of our second construction.

Existing anonymous transferable e-cash systems are not that efficient when
compared with non-transferable ones in general. Our first construction instead
uses an anonymous (non-transferable) e-cash system with a dynamic group sig-
nature. A payment now consists of a number of coins and the same number
of group signatures. While the former are deposited to the bank as described
above, the latter are posted by the bank in a public bulletin board. To repay the
debt, the user claims the authorship of the group signatures on the board. On
the payment due date, the bank simply opens all the unclaimed signatures, and
charges the corresponding users interests. Finally, the bank issues new e-cash
wallets to all the users.

To hide the expenses of each user, we expect the user to repay the debt
in small chunks over anonymous communication channel, and transfer physical
currency to the bank anonymously. In this way, the payments by different users
are indistinguishable in the view of the bank, who thus only knows the aggregated
expenses of all users.

4.1 From Group Signatures and E-Cash Systems

We first construct a lightweight credit system using group signatures and e-cash
systems. In this lightweight construction, all users have the same payment due
date. The bank in the e-cash system also plays the roles of group manager and
opener in the group signature scheme.

Setup Phase.

– pp ← Pgen(1λ): The bank or a trusted third party runs pp ← ECash.Pgen(1λ)
to generate the public parameter.

– (pkB, skB,BB,DB) ← KGenB(pp): The bank in the credit system generates key
pairs (pkB, skB, L) ← ECash.KGenB(pp) for the bank in the e-cash system, as
well as the issuing and opening key pairs (gpk, ik, ok) ← GSig.GKg(1λ) for the
group signature scheme. It initializes an empty set of signatures Σ := φ and
sets the public bulletin board to BB ← (Σ, L). It also initializes an empty
database DB := φ.

– (pkM, skM) ← KGenM(pp), (pkU , skU ) ← KGenU (pp): The merchants and the
users of the credit system act as the users of the e-cash system, who generate
their key pairs via (pkU , skU ) ← ECash.KGenU (pp).

– (DB′, κ) ← (JoinB(skB,DB, �), JoinU (skU , �)): To join the system, the
bank enrolls the user into the group by the group joining protocol
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(upki, uski) ← GSig.(JoinI(ik), JoinU (gpk)), and issues an e-cash wallet with
the amount of coins equal to the credit limit � of the user by (W, pkU ) ←
ECash.Withdraw(U(pkB, skU , �),B(pkU , skB, �)). Upon termination of the pro-
tocol, the bank inserts the entry (pkU , upki) to the database DB, and the user
obtains the credit card κ := (uski,W ).

Transaction Phase.

– (R, (κ′, R)) ← (AuthM(skM, n),AuthU (skU , κ, n)): To pay an amount n
when there are sufficient credits, the user transfers n coins in the
e-cash system to the merchant by engaging in the spend protocol
Spend(U(W, skU , pkM, pkB),M(skM, pkB)) n times. The output of this pro-
tocol is a set of serial numbers S and a set of proofs Π asserting the validity
of the coins. The user then issues n group signatures signing the pair of each
serial number and validity proof. Denote the set of group signatures by Σ.
The tuples r = (S,Π,Σ) act as the receipts of the transaction.

– (BB′,⊥) ← (BatchB(skB,BB),BatchM(skM, R)): At the end of the day, the
merchant batches the receipts by depositing the coins back to the bank using
the deposit protocol Deposit(M(skM, S,Π, pkB),B(pkM, skB, L)), while show-
ing a batch of signatures Σ′ = {σ ← GSig(uski, (s, π))} signing the serial
number and the proof of validity of the coin deposited. The bank verifies all
received signatures. If valid, it appends the signatures Σ′ = {σ} to the set Σ
and appends (S,Π) to L.

– st ← Track(skU ,BB, r): Once the signatures are posted in the set Σ, the users
can track their previous transaction recorded in the receipt r = (S,Π,Σ) by
looking for their previously issued group signatures Σ on the board.

– The bank can also run the identification and tracing algorithms of the e-cash
system to catch double-spenders.

– (BB′, (κ′, R′)) ← (RepayB(skB,BB, n),RepayU (skU , κ,R, n)): To preserve pri-
vacy, the user repays the outstanding fees in small chunks of n. To do so, the
user claims n signatures listed in Σ corresponding to some of the previous
transactions, and pays the amount n anonymously by an external mechanism
(e.g., physically). After a signature has been claimed, the user removes the
corresponding receipt from R, and the bank removes the signatures from the
set Σ.

Settlement Phase.

– (⊥, κ′) ← (SettleB(skB, ρ, �, �′),SettleU (skU , κ, �, �′)): On the payment due
date, the bank opens all the unclaimed signatures σ in Σ corresponding to the
spent coins {(s, π)} via (i, τ) ← Open(ok, {upk}, (s, π), σ) to trace the users
who have not paid off the debt. It then charges those users interests. Finally,
the bank re-issues e-cash wallets to the users with the amount of coins equal
to their (potentially updated) credit limits as in the join protocol.
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4.2 From Anonymous Transferable E-Cash Systems

Next, we describe a construction from anonymous transferable e-cash. Each user
in this credit system may have different payment due dates.

Setup Phase.

– pp ← Pgen(1λ): The bank or a trusted third party runs pp ← ECash.Pgen(1λ)
to generate the public parameter.

– (pkB, skB,BB,DB) ← KGenB(pp): The bank in the credit system generates key
pairs (pkB, skB, L) ← ECash.KGenB(pp) via the underlying e-cash system. It
sets the public bulletin board to BB := L.

– (pkU , skU ) ← KGenU (pp): The merchants and the users of the credit system act
as the users of the e-cash system, who generate their key pairs via (pkU , skU ) ←
ECash.KGenU (pp).

– (DB′, κ) ← (JoinB(skB,DB, �), JoinU (skU , �)): To join the system, the bank
enrolls the user into the group by issuing an e-cash wallet with the
amount of coins equal to the credit limit � of the user by (W, pkU ) ←
ECash.Withdraw(U(pkB, skU , �),B(pkU , skB, �)). Upon termination of the pro-
tocol, the bank inserts the entry pkU to the database DB, and the user obtains
the credit card κ := W .

Transaction Phase.

– (R, (κ′, R)) ← (AuthM(skM, n),AuthU (skU , κ, n)): To pay an amount n
when there are sufficient credits, the user transfers n coins in the
e-cash system to the merchant by engaging in the spend protocol
Spend(U(c, skU , certU , pkB),M(skM, pkB)) n times. The output of the mer-
chant is n coins, which also act as the receipts of the transaction.

– (BB′,⊥) ← (BatchB(skB,BB),BatchM(skM, R)): At the end of the day, the
merchant batches the receipts by depositing the coins back to the bank
using the deposit protocol Deposit(M(c, skM, certM, pkB),B(skB, pkM, L)).
Any double-spenders will be identified in this process, and the list L will be
updated accordingly.

Unlike the previous construction, the information post by the bank on the
public bulletin board is unlinkable by the users due to the anonymity of the
e-cash system, which unfortunately makes this construction untraceable.

– (BB′, (κ′, R′)) ← (RepayB(skB,BB, n),RepayU (skU , κ,R, n)): To preserve pri-
vacy, the user repays the outstanding fees in small chunks of n. To do
so, the bank creates a new dummy merchant by generating a new key
pair (pkM, skM) ← ECash.KGenU (pp), and withdrawing a new wallet with
n coins by (W, pkM) ← ECash.Withdraw(U(pkB, skM, n),B(pkM, skB, n)). It
then transfers all the coins from the dummy user to the requesting user by
engaging in the spend protocol Spend(U(c, skU , certU , pkB),M(skM, pkB)) for
n times, after accepted payment via an external mechanism.
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Settlement Phase.

– (⊥, κ′) ← (SettleB(skB, ρ, �, �′),SettleU (skU , κ, �, �′)): On the payment due
date, there are only two cases: (1) The number of coins n in the wallet stored
in the credit card κ is more than or equal to its original credit limit �; (2)
The number of coins n in the wallet is less than its credit limit. In the first
case, the user can choose to prove in zero-knowledge that the wallet contains
enough coins. Otherwise, the user deposits all of the coins in the wallet to
the bank via the deposit protocol Deposit(U(c, skU , certU , pkB),B(skB, pkU , L)).
The bank thus charges the user interest based on the interest rate ρ and the
amount deposited, and issues a new wallet to the user as the new credit card
κ′, possibly with a new limit �′.

4.3 Security Analysis

From Group Signature and E-Cash Systems. If there is an adversary who
can break the balance property of our system, it can also break the balance
property of the e-cash system.

For hiding spending pattern, the bank would not open any signatures if all
the users have honestly paid all their debt. The only information about the
expenditure of user known by the bank is the total amount spent by all users,
since they are assigned the same payment due date.

For anonymous tracking of transactions, the public bulletin board just con-
tains a collection of signatures which are generated by different users in the
group. As long as the underlying dynamic group signature scheme is anonymous,
our system can ensure the anonymity when users track their transactions.

For undercharge resistance, once all users finished claiming their signatures
on the due date, the left unclaimed signatures on the bulletin board will be
opened by the bank to trace the users who have not settled the debt. Due to the
traceability of the dynamic group signature scheme, users who still have debt
will be traced out and the bank can apply external mechanisms on these users.

If there exists an adversary who can break the mischarge resistance of our
system, this adversary must be able to produce a signature together with a judge-
accepted proof. Therefore, the non-frameability of the dynamic group signature
scheme is broken.

From Anonymous Transferable E-Cash Systems. If a coalition of users
can spend more than their collective credit limit, at least one of them can spend
more coins than the number of coins which was withdrawn. Thus, from any
adversary breaking the property of balance, we can construct an adversary break-
ing the unforgeability of the transferable e-cash system.

We claim that the bank in our system only knows the total amount spent by
each group of users who are assigned to the same payment due date. This means
when the bank receives a coin, it does not know who paid this coin. Suppose
our system is insecure against this property, namely the bank can recognize
the payer who receives a coin. then by a direct reduction we can construct an
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adversary who can break the spend-and receive* property of the transferable
e-cash system.

Our system provides undercharge resistance. On the payment due date, if
the user proves in zero-knowledge that the wallet contains more coins than its
credit limit, it must be the case that the user has already paid off all the debt.
Otherwise, one can construct an adversary against the soundness of the proof
system. Another case of undercharge is when the user deposit more coins than
owned to the bank. We can separate this case into two sub-cases. In the first
sub-case, the user generates some fake coins and deposits these fake coins to
the bank. This however breaks unforgeability of transferable e-cash system. In
the second sub-case, the user deposits a coin twice. This breaks the security of
the transferable e-cash system since it fails to achieve identification of double-
spenders.

For mischarge resistance, we have to consider two cases. The first case is that
the bank and any coalition of merchants can accuse a user for not fully repaying
the debt by arguing that some of the paid coins are invalid. When the user is
honest and all the coins are transferable throughout the system, it means these
invalid coins are spent by some users who can break the balance property of our
system. Thus this case will not happen. The second case is that the bank and
merchants accuse the user of double-spending. Due to the exculpability of the
transferable e-cash system, this case will not happen as well.

5 Conclusion

In this paper, we study privacy preserving credit systems, for protecting the
transaction privacy of credit card users from the banks. We present two differ-
ent constructions such that neither the transaction amount nor the identity of
participants in the transaction is known by the bank. The major building blocks
are dynamic group signature scheme and anonymous transferable e-cash system
respectively. Our system preserves most of the desirable features in a typical
credit card system, such as personalized credit limit, interest rate control, etc.
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Abstract. Machine-learning augments today’s IDS capability to cope
with unknown malware. However, if an attacker gains partial knowledge
about the IDS’s classifier, he can create a modified version of his mal-
ware, which can evade detection. In this article we present an IDS based
on various classifiers using system calls executed by the inspected code as
features. We then present a camouflage algorithm that is used to modify
malicious code to be classified as benign, while preserving the code’s func-
tionality, for decision tree and random forest classifiers. We also present
transformations to the classifier’s input, to prevent this camouflage - and
a modified camouflage algorithm that overcomes those transformations.
Our research shows that it is not enough to provide a decision tree based
classifier with a large training set to counter malware. One must also be
aware of the possibility that the classifier would be fooled by a camou-
flage algorithm, and try to counter such an attempt with techniques such
as input transformation or training set updates.

Keywords: Malware detection · Malware obfuscation · Decision trees ·
Behavior analysis · Camouflage algorithm · Machine learning

1 Introduction

Past intrusion detection systems (IDS) generally used two methods of malware
detection: (1) Signature-based detection, i.e., searching for known patterns of
data within the executable code. A malware, however, can modify itself to pre-
vent a signature match, for example by using encryption. Thus, this method can
be used to identify only known malware. (2) Heuristic-based detection is com-
posed of generic signatures, including wild-cards, which can identify a malware
family. This method can identify only variants of known malware.

Machine-learning can be used in-order to extend the IDS capabilities to clas-
sify software unseen before as malicious or benign by using static or dynamic
features. However, our research shows that malware code can be transformed
to render machine learning classifiers almost useless, without losing the original
functionality of the modified code. We call such a generic transformation, based
on the classifier type and the features used, a camouflage algorithm.
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In this paper, we present a camouflage algorithm for decision tree and ran-
dom forest based classifiers whose input features are sequences of system calls
executed by the code at run-time. Our research has three main contributions:

1. Developing an automatic algorithm to decide which system calls to add to a
malware code to make this code being classified as benign by our IDS, without
losing its functionality. We then alleviate the assumption of full knowledge
of the classifier by the attacker, showing that partial training set information
might be enough.

2. Evaluating the algorithm against a large subset of malware samples, while
previous work evaluated specific examples only.

3. Investigating possible transformations of the IDS input in-order to counter
the camouflage algorithm - as-well-as a modified camouflage algorithm to
evade those transformations.

While the above contributions are shown for specific classifier types (decision tree
and random forest) and for specific features as input (system calls sequences), we
believe the ideas are more general, and can be applied also to different classifiers
with different features. The rest of the paper is structured as follows: Sect. 2
discusses the related work. Section 3 presents the problem definition and the
evaluation criteria for the camouflage algorithm. Section 4 describes the IDS in
detail and Sect. 5 discusses the camouflage algorithm implementation. Section 6
presents the experimental evaluation and Sect. 7 concludes the paper and outlines
future research.

2 Background and Related Work

2.1 Machine Learning Binary Classifiers

The use of system calls to detect abnormal software behavior was shown in [4,15].
System call pairs (n-grams of size 2) from test traces were compared against those
in the normal profile. Any system call pair not present in the normal profile is
called a mismatch. If the number of system calls with mismatches within their
window in any given time frame exceeded a certain threshold, an intrusion was
reported.

Various machine learning classifiers, such as decision trees, SVM, boosted
trees, Bayesian Networks and Artificial Neural Networks have been compared
to find the most accurate classification algorithm; with varying results (e.g.: [3]
chose decision trees, [8] chose boosted decision trees, etc.). The different results
were affected, e.g., by the training set and the type of the feature set used.

There are two ways to extract the classifier features. They can be extracted
statically (i.e., without running the inspected code), e.g.: byte-sequence (n-gram)
in the inspected code [8]. The features can also be extracted dynamically (i.e., by
running the inspected code), including: CPU overhead, time to execute, memory
and disk consumption [12] or executed system calls sequences, either consecu-
tive [15] or not [14]. A survey of system calls monitors and the attacks against
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them was conducted in [5], stating that in-spite of their disadvantages, they are
commonly used by IDS machine learning classifiers.

While using static analysis has a performance advantage, it has a main dis-
advantage: Since the code isn’t being run, it might not reveal its “true features”.
For example, if one looks for byte-sequence (or signatures) in the inspected code
[8], one might not be able to catch polymorphic malware, in which those sig-
natures are either encrypted or packed and decrypted only during run-time, by
a specific bootstrap code. Other limitations of static analysis and techniques to
counter it appear in [11]. Obviously, a malware can still try to hide if some other
application (the IDS) is monitoring its features dynamically. However, in the
end, in-order to operate its malicious functionality, a malware must reveal its
true features during run-time.

Since a dynamic analysis IDS must run the inspected code, it might harm
the hosting computer. In-order to prevent that, it’s common to run the code in
a sandbox; a controlled environment, which isolates between the malicious code
to the rest of the system, preventing damage to the latter. This isolation can be
done: (1) At the application-level, meaning that the malicious code is running
on the same operating system as the rest of the system, but its system calls
affect only a quarantined area of the system, e.g., Sandboxie1. (2) At the oper-
ating system level (e.g., VMWare Workstation), meaning the operating system
is isolated but the processor is the same. (3) At the processor level, meaning all
machine instruction are generated by an emulator like Qemu (e.g. TTAnalyze).
While an emulator-based sand-boxing technique might be harder to detect, it
can be done, e.g., using timing attacks due-to the emulator performance degra-
dation, as shown in [13]. Therefore, we have used the VM sandbox mechanism
to implement our IDS.

2.2 The Camouflage Algorithms

Modification of the input to a decision-tree classifier based on static analysis
features (binary n-grams) was presented in [7]. A simulation of the IDS classifier
of the installed anti-virus program was constructed by submitting a collection of
malicious and benign binaries to the classifier via a COM (Component Object
Model) interface, which runs the installed anti-virus on a file path argument and
returns the classifier’s decision for this file. Then, a feature-set similar to the
attacker’s code that would be classified as benign was found manually in the
simulated decision tree. Finally, the authors appended the feature bytes to posi-
tions ignored by the system loader in the attacker’s code, manually transforming
its feature set to the benign one. In contrast, we encountered a dynamic analysis
classifier, which is harder to fool [11].

Suggested ways to modify system call sequences were presented in [18].
It deals with mimicry attacks, where an attacker is able to code a malicious
exploit that mimics the system calls trace of benign code, thus evading detec-
tion. [18] presents several methods: (1) Make benign system calls generate

1 http://www.sandboxie.com/.

http://www.sandboxie.com/
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malicious behavior by modifying the system calls parameters. This works since
most IDSs ignore the system call parameters. (2) Adding semantic no-ops - sys-
tem calls with no effect, or whose effect is irrelevant, e.g.: opening a non-existent
file. The authors showed that almost every system call can be no-op-ed and thus
the attacker can add any needed no-op system call to achieve a benign system
call sequence. (3) Equivalent attacks – Using a different system call sequence to
achieve the same (malicious) effect.

In our work, we also use the second technique, since it’s the most flexible.
Using it, we can add no-op system calls that would modify the decision path of
the inspected code in the decision tree, as desired. Main differences: (1) We have
created an automatic algorithm and tested it on a large group of malware to
verify that it can be applied to any malware, not only specific samples. (2) We
verified that the modified malicious code functions properly and evade by exe-
cuting it after its camouflage. (3) We refer to partial knowledge of the attacker.
The authors mentioned several other limitations of their technique in [5] due-to
the usage of code injection, which don’t apply to our paper. One may claim that
the IDS should consider only successful system calls to counter this method.
However, every system call in a benign code may return either successfully or
not, depending on the system’s state and therefore may cause such IDS to falsely
classify this code.

A similar method to ours was presented in [10]. The authors used system
calls dependence graph (SCDG) with graph edit distance and Jaccard index
as clustering parameters of different malware variants and used several SCDG
transformations on the malware source code to “move” it to a different cluster.
Our approach is different in the following ways: (1) Our classification method is
different, and handles cases which are not covered by their clustering mechanism.
(2) [10] showed a transformation that can cause similar malware variants to be
classified at a different cluster - but not that it can cause a malware to be
classified (or clustered) as a benign program, as shown in this paper. (3) Their
transformations are limited to certain APIs only - and would not be effective for
malware code that doesn’t have them.

[16] presented an algorithm for automated mimicry attack on FSA (or over-
lapping graph) classifier using system call n-grams. However, this algorithm lim-
its the malware code that can be camouflaged using it, to one that can be
assembled from benign trace n-grams.

In [1,2], attacker-generated samples were added to the training set of the
classifier, in-order for it to subvert the classification of malware code to benign,
due-to its similarity to the added samples. However, it requires the attacker to
have access to the classifier’s DB, which is secured. In contrast, our method,
which does not modify the classifier, is more feasible to implement.

3 Problem Description

We deal with two separated issues: (1) Classification of the inspected code, which
was not encountered before, by the IDS as benign or malicious, using its system
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calls sequences. (2) Developing an algorithm to transform the inspected code, in-
order to change the classification of the inspected code by the IDS from malicious
to benign, without losing its functionality. The general problem can be defined
formally as follows:

Given the traced sequence of system calls as the array sys call, where the cell:
sys call[i] is the i-th system call being executed by the inspected code (sys call[1]
is the first system call executed by the code).

Define the IDS classifier as:
classify(benign training set, malic training set, inspected code sys calls),

where inspected code sys calls is the inspected code’s system calls array,
benign training set is a set of system calls arrays used to train the classifier
with a known benign classification and malic training set is a set of system calls
arrays used to train the classifier with a known malicious classification. classify()
returns the classification of the inspected code: either benign or malicious.

Given that an inspected code generates the array: malic inspected code
sys calls, define the camouflage algorithm as a transformation on this array,
resulting with the array: C(malic inspected code sys calls). The success of the
camouflage algorithm is defined as follows: Given that:

classify(benign training set, malic training set, malic inspected code sys
calls) = malicious, the camouflage algorithm result is:

classify(benign training set, malic training set, C(malic inspected code sys
calls)) = benign and:

malic behavior(C(malic inspected code sys calls)) =
malic behaviour (malic inspected code sys calls).
While in Sect. 6.3 we would show that partial knowledge of the training set

is enough to generate a probabilistic camouflage, we initially assume that the
attacker has access to the IDS and to the decision tree model it is based upon.
Such knowledge can be gained by reverse engineering the IDS on the attacker’s
computer, without the need to gain access to the attacked system - just to have
access to IDS. As shown in [7], an IDS decision tree can be recovered this way by
exploiting public interfaces of an IDS and building the decision tree by feeding it
with many samples and examining their classifications. Reconstruction attacks
such as the one described in [6] for a C4.5 decision tree could also be used for
this purpose. This assumption, that the IDS classifier, can be reconstructed, is
common in several papers on this subject (e.g.: [1,2,5,10,16,18], etc.), as-well-as
in cryptography (Kerckhoffs’s principle). We further assume the attacker knows
the system calls trace that would be produced by the malware on the inspected
system. While the system calls trace might be affected by, e.g., files’ existence
and environment variables’ values on the target system, it is highly unlikely,
since the IDS should be generic enough to work effectively on all the clients’
systems, making system-dependent flows rare.

The effectiveness of our IDS is determined by two factors (P is the
probability):
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1. We would like to minimize the false negative rate of the IDS, i.e. to
minimize P(classify(benign training set, malic training set, malic inspected
code sys calls) = benign).

2. We would like to minimize the false positive rate of the IDS, i.e. to
minimize P(classify(benign training set, malic training set, benign inspected
code sys calls) = malicious).

The overall effectiveness of the camouflage algorithm will be measured by the
increased number of false negatives, i.e. we would like that:

P(classify(benign training set, malic training set, C(malic inspected code
sys calls)) = benign)≥

P(classify(benign training set, malic training set, malic inspected code sys
calls) = benign).
Therefore, the effectiveness of the camouflage algorithm is defined as the differ-
ence between the two probabilities (which are computed by the respective fre-
quencies). The higher the difference between those frequencies, the more effective
is the camouflage algorithm.

One way to fight the camouflage algorithm is to apply transformations on
the input sequences of system calls and apply the classifier on the transformed
sequences. The assumption is that the transformed sequences would reduce the
effectiveness of the camouflage algorithm. We define a transformation of the
system calls trace of the inspected code as T(malic inspected code sys calls). We
define the transformation T to be effective iff:

1. It would not reduce the malware detection rate, i.e.:
P(classify(T(benign training set),
T(malic training set), T(malic inspected code sys calls)) = malicious) ≥
P(classify(benign training set, malic training set,
malic inspected code sys calls) = malicious)

2. It would not reduce the benign software detection rate, i.e.:
P(classify(T(benign training set),
T(malic training set), T(benign inspected code sys calls)) = benign) ≥
P(classify(benign training set, malic training set,
benign inspected code sys calls) = benign)

3. It would reduce the camouflage algorithm effectiveness:
P(classify(benign training set, malic training set, C(malic inspected code
sys calls)) = benign) ≥ P(classify(T(benign training set), T(malic training
set),
T(C(malic inspected code sys calls))) = benign).

In the next two sections we describe in detail the IDS and camouflage algorithm
implementations.

4 IDS Implementation

In-order to implement a dynamic analysis IDS that would sandbox the inspected
code effects, we have used VMWare Workstation, where changes made by a
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malicious code can be reverted. We used a Windows XP2 SP3 OS without an
internet connection (to prevent the possibility of infecting other machines). The
inspected executables were run for a period of 10 s (and then forcefully termi-
nated), which resulted in about 10,000 recorded system calls per executable on
average (the maximum number recorded per executable was about 60,000)3.

The system calls recorder we have used for Windows records the Nt* system-
calls. The usage of this low layer of system calls was done in-order to prevent
malware from bypassing Win32API (e.g. CreateFile()) recording by calling those
lower-level, Nt* APIs (e.g. NtCreateFile()). We have recorded 445 different sys-
tem calls, such-as NtClose(), etc.

We have implemented the classifier using scikit-learn4. We selected the CART
decision tree algorithm, similar to C4.5 (J48) decision tree, which was already
proven to be a superior algorithm for malware classification [3].

The training set for the binary classifier contains malicious and benign exe-
cutables. The malicious executables were taken from VX Heaven5. They were
selected from the’Win32 Virus’ type. Focusing on this specific mode of action
of the malicious code reduce the chance of infection of other computers caused
by using, e.g., worm samples. The number of malicious and benign samples in
the set was similar (521 malicious samples and 661 benign samples) to prevent
a bias towards classification with the same value as the majority of the training
samples.

As features for the decision tree we used the position and the type of the
system call, e.g.: sys call[3] = NtCreateFile. Thus, the number of available fea-
ture values was very large (about 850,000). Therefore, we performed a feature
selection of the 10,000 (best) features with the highest values for the χ2 (chi-
square) statistic of the training set, and created the decision tree based only
on the selected features. This choice was made to ease the explanation of our
algorithm in the next section. In Sect. 6.2 we would use more robust features
and show that our algorithm works in this case either.

5 The Camouflage Algorithm Implementation

The goal of the camouflage algorithm is to modify the sequence of system calls
of the inspected code in a way that would cause the classifier to change its
classification decision from malicious to benign without harming its functionality.

2 We used Windows XP and not newer versions, in-order to allow computer viri that
use exploits found on this OS but patched afterward to run on our IDS either, thus
detecting both new and old (but still used) malware.

3 Tracing only the first seconds of a program execution might not detect certain mal-
ware types, like “logic bombs” that commence their malicious behavior only after
the program has been running some time. However, this can be mitigated both by
classifying the suspension mechanism as malicious or by tracing the code operation
throughout the program execution life-time, not just when the program starts.

4 http://scikit-learn.org/.
5 http://vxheaven.org/.

http://scikit-learn.org/
http://vxheaven.org/


Evading System-Calls Based Intrusion Detection Systems 207

This is done by finding a benign decision path (i.e., a path that starts from the
tree root and ends in a leaf with benign classification) in the decision tree with
the minimal edit distance [9] from the decision path of the malware (or the
minimal Levenshtein distance between the paths’ string representations). Then
we add (not remove or modify, to prevent harming the malware functionality)
system calls to change the decision path of the modified malware code to that of
the benign path. Selecting the minimal edit distance means less malware code
modifications.

In-order to modify the system calls sequence without affecting the code’s
functionality, we add the required system calls with invalid parameters. This
can be done for most system calls with arguments. Others can be called and
ignored. For example: opening a (non-existent) file, reading (0 bytes) from a file,
closing an (invalid) handle, etc. One may claim that the IDS should consider
only successful system calls. However, it is difficult for it to determine whether a
system call is invoked with invalid parameters just to fool it, since even system
calls of legitimate programs are sometimes being called with arguments that
seem to be invalid, e.g., non-exiting registry key. In addition, IDSs that verify
the arguments tend to be much slower (4–10 times slower, as mentioned in [17]).

In the basic version of our classifier, an internal node in the decision tree
contains a decision condition of the form: system call[i] =? system call type[k].
Assume without loss of generality that if the answer is yes (i.e., system call[i]
= system call type[k]), the branch is to the right (R child), and if the
answer is no, the branch is to the left (L child). An example of a deci-
sion tree is presented in Fig. 1. In this decision tree, if the malware code
trace contains: {sys call[1]=NtQueryInformationFile, sys call[2]=NtOpenFile,
sys call[3]=NtAddAtom, sys call[4]=NtWriteFile} (decision path: M’=RRRR,
classified as a malicious) and if the algorithm will insert as the fourth system call
a system call with a type different than NtWriteFile, the classifier will declare
this malware code as benign, since the decision path would change from M’
to P1.

While there is no guarantee that the algorithm would converge (step 3 in
Algorithm 1 exists in-order to prevent an infinite loop by switching back and
forth between the same paths), it did converge successfully for all the tested
samples, as shown in Sect. 6. The reason for this is the rationale behind the
decision tree based on system calls: The behavior of malware (and thus the
system calls sequences used by it) is inherently different from that of benign
software. Because-of that, and since the decision tree is trying to reduce the
entropy of its nodes, the malicious and benign software do not spread uniformly
at the leaf nodes of the decision tree but tend to be clustered at certain areas.
Our path modifications direct the decision path to the desired cluster.

The general algorithm is depicted in Algorithm 1. Before explaining the
details of the algorithm, let’s discuss the possible edit operations when mod-
ifying a malware decision path. We will demonstrate the edit operations using
the decision tree depicted in Fig. 1:
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1. Substitution: There can be two types of substitutions: SubL - a substitution
L→R (e.g., from P=RRRL to P’=RRRR) and SubR - a substitution R→L
(e.g., from M=RRL to P3=LRL in Fig. 1).

2. Addition: AddR - an addition of R (e.g., from M=RRL to P1=RRRL in Fig. 1)
or AddL - an addition of L (e.g., from P=RRL to P’=LRRL).

3. Deletion: DelL - A deletion of L (e.g., from P=LRL to P’=RL) or DelR - a
deletion of R (e.g., from P=RRL to P’=RL).

Since the only allowed modification is an insertion of a dummy system call, the
algorithm handles the above 6 edit operations as follows:

– If the edit op is SubL, or AddR, or DelL: Given that the condition (in the
parent node of the modified\added node) is: sys call[i] =? sys call type[k], add
sys call[i]=sys call type[k]. Note that the equivalent of DelL is SubL followed
by a tree re-evaluation, since this is the only edit op allowing you to remove
the L without actually deleting a system call, which might harm the code’s
functionality.

– If the edit op is SubR, or AddL or DelR: Given that the condition: sys call[i]
=? sys call type[k], add sys call[i]=sys call type[m] s.t. m != k. The above note
about deletion applies here too.

After each edit operation, the malware trace changes: The dummy system call
addition might have affected every condition on the tree in the form of: sys call[j]
=? sys call type[k] s.t. j ≥ i. Therefore, we need to re-evaluate the entire decision
path and find again the benign paths which are closest to it. Step 2(a) exists
in-order to minimize the effects of the current edit operation on the path after
re-evaluating it. The system calls insertion would ideally be done automatically,
e.g., by usage of tools such-as LLVM, as done in [10], However, as mentioned by
the authors, such tools are currently lack support for dealing with the Windows
CRT and Platform SDK API calls, which are used by most Windows malware.
Thus we assume that the attacker would manually insert the system calls, added
by the camouflage algorithm, to the malware source code. This is demonstrated
for the “Beetle” virus, in the next section.

Example 1. We demonstrate Algorithm 1 using the decision tree in Fig. 1:
Given the malware code:
{sys call[1]=NtQueryInformationFile, sys call[2] = NtOpenFile, sys call[3]=

NtWriteFile, sys call[4]=NtClose},
Its path in the IDS’s decision tree is: M=RRL (=Right-Right-Left), and the

benign paths in the decision tree are: P1=RRRL, P2=LLL and P3=LRL, the
edit distances are d(M, P1)=1, d(M, P2)=2, d(M, P3)=1. The tuples to check
are: {(M, P1), (M, P2), (M, P3)}. We have two paths with a minimal edit
distance: edit sequence(M, P1)={AddR (at position 3)} and edit sequence(M,
P3) = {SubR(at position 1)}. The condition for-which we need to add R in P1
is: system call[3] = NtAddAtom. Thus: i=3. The condition for-which the edit
operation applies in P3 is: system call[2] = NtOpenFile. Thus: i=2. Therefore,
we start from P1 and not from P3, since its index is larger.
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Fig. 1. A system calls based decision tree

Algorithm 1. System-Calls Based Decision Tree’s Camouflage Algorithm
1. Given the decision tree of the IDS and a specific malware trace (i.e. its sequence

of system calls as recorded) with the decision tree’s path M, find all the IDS’s
decision tree’s benign paths, P1..Pm, and create a list l of m tuples to check:
l={(M, P1)..(M, Pm)}. Set path count[M] = 0

2. For each tuple (dec path, Pj) in l, find the minimum edit distance between dec path
and Pj, d(dec path, Pj). Select the tuple with the minimal such edit distance and
find the minimal sequence of edit operations needed to change dec path to Pj,
ordered from the root of the tree to the leaf\classification node (i.e. by position in
the decision path). If l is empty: Report failure.

(a) If there is more than a single path with the same minimal edit distance, look
at the first edit operation in each such path. Assuming the condition is of the
form: system call[i] =? system call type[k], select the path that maximizes i.

3. Set path count[des path] += 1. If path count[des path]≥max decision path count :
Remove all tuples that contain dec path from l and go to step 2.

4. Assuming the benign path to fit is Pj, modify the malware code based on the first
edit operation in the edit sequence, as was explained above:

(a) If the edit op is SubL, AddR, or DelL then: Add sys call[i]=sys call type[k].
Else: Add sys call[i]=sys call type[m] s.t. m != k.

5. system call[i..n] from before the modification now become system call[i+1..n+1].
Re-evaluate the new system calls sequence and generate a new decision path M’.

6. If M’ ends with a benign leaf: Report success. Else: Remove (dec path, Pj) from l,
and add all the tuples with the modified malware code {(M’, P1)..(M’, Pm)} to
l. Set path count[M’] = 0

7. Go to step 2.

In-order to modify M to P1, we add: sys call[3] = NtAddAtom(NULL, 0,
NULL) (the edit op is AddR). Notice that we add the system call with invalid
parameters. The new malware code is:
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{sys call[1]=NtQueryInformationFile, sys call[2] = NtOpenFile, sys call[3]=
NtAddAtom, sys call[4]= NtWriteFile, sys call[5]=NtClose}.

Its decision path is M’=RRRR. M’ is not classified as benign – so we remove
(M, P1), and add all the tuples with the modified code M’. Thus, we need to
examine:

{{M, P2), (M, P3), (M’, P1), (M’, P2), (M’, P3)}.
The tuple we would inspect in the next iteration is (M’, P1): d(M’, P1)=1

and i=4 (which is larger than 2 for (M, P3)). The algorithm would converge
after the next iteration, in which we would add sys call[4]!= NtWriteFile, and
the modified malware code would be classified as benign (P1 ).

5.1 Random Forest Camouflage Algorithm

In Sect. 6.2, the classifier with the best performance was random forest. Since
a random forest is actually a collection of decision trees, if we extend the same
assumptions made in Sect. 3, that-is: we know all the trees in the random forest,
we can create a camouflage algorithm for random forest.

The rationale of the algorithm is simple: Since all decision trees in the random
forest actually represents parts of the same code flow, we can modify each of them
in turn, using Algorithm 1, and keep using the modified system calls trace, until
we can fool the majority of them, thus fooling the entire random forest.

6 Experimental Evaluation

In-order to test the detection rate of our IDS, we used benign files collection from
the Program Files folder of Windows XP SP3 and from our collection of third
party benign programs and malware of Win32 Virus type, from VX Heaven’s
collection. The test set contained about 650 benign programs and 500 malware,
which were different from the ones used to train the IDS in Sect. 4. The malware
detection rate and the benign detection rate (as computed by the definitions
specified in Sect. 3), were 84.3 % and 88.9 % respectively, as shown in the first
line of Table 2.

In-order to test our camouflage algorithm, we have selected all the malware
samples from our test set, which were correctly classified (i.e., as malicious) by
our IDS (436 samples). We applied the camouflage algorithm on them: None of
the camouflaged system calls sequences of those samples were identified by our
IDS (effectiveness of 100 %, by the definition in Sect. 3).

We have applied the random forest camouflage algorithm on all the malware
code that were detected by the random forest: 445 different samples. While there
is no guarantee that the algorithm would converge, all modified section traces
were classified as benign by our IDS, i.e., camouflage algorithm effectiveness of
100 %. This is due-to the same rationale mentioned in Sect. 5.

To test a complete “end-to-end” application of our system in real-life, we
used the source code of the virus “Beetle”6. We compiled the source code and
6 The description and the source code of this virus are available at:

http://vxheaven.org/lib/vpe01.html.

http://vxheaven.org/lib/vpe01.html
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ran it through our IDS. The virus system calls trace was classified correctly as
malicious by our IDS. After using our camouflage algorithm, we received the
modified system calls sequence, classified as benign by our IDS. We manually
matched the system calls in this sequence to the virus original source code, and
applied the same modifications to it - and then recompiled the modified version.
The modified version of the virus was then run in our IDS, and was falsely
classified by it as benign. As expected, the malicious functionality of the code
remained intact.

6.1 Comparison to Other Classification Algorithms

We’ve implemented and compared the effectiveness of different classification
algorithms, using the same features, training set and test set. In-order to take
into account true and false positives and negatives, we tried to maximize the
Matthews correlation coefficient (MCC), which is used in machine learning as a
measure of the quality of binary classifications [1].

The results appear in Table 1.

Table 1. Detection rate of the IDS by classifier type

Classifier type Malware detection
rate (TPR)

Benign software
detection rate
(TNR)

MCC

Decision tree 84.3 88.9 0.76

Random forest 86.1 89.5 0.77

K-Nearest neighbors 89.4 86.0 0.77

Näıve Bayes (Gaussian) 87.0 54.5 0.50

Näıve Bayes (Bernoulli) 97.9 59.9 0.64

Ada-Boost 87.4 84.8 0.74

Support vector machine (Linear) 87.5 86.4 0.76

Support vector Machine (RBF) 96.3 74.9 0.74

Linear discriminant analysis 82.6 82.6 0.68

The Random Forest classifier and k-Nearest Neighbors classifier were the
best overall, taking into account both malware and benign software detection
rate (by maximizing the MCC).

6.2 Countering the Camouflage: Section-Based Transformations

The basic form of decision tree node condition is: system call[i]=?system
call type[k]. However, using this kind of input makes the IDS classification frag-
ile: It’s enough that we add a single system call in the middle of the sequence or
switch the positions of two system calls, to change the entire decision path.
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Therefore, we want to transform the input data (the system calls array) in a
way that would make a modification of the inspected code harder to impact the
decision tree path of the modified code, thus counter the camouflage algorithm.
In-order to define those transformations, we first divide the system calls sequence
to small sections of consecutive system calls. Each system calls Section would
have a fixed length, m. Thus, section[i]=(sys call[(i-1)*m+1],..,sys call[i*m]).

In an order-preserving without duplicates removal section-based transforma-
tion, we define the discrete values of the decision nodes in the tree to be: section[i]
=? (sys call[(i-1)*m+1], sys call[(i-1)*m+2],.., sys call[i*m]).
However, this transformation is more specific than the basic model - so it would
be easier to fool - and thus we didn’t use it. This changes when adding dupli-
cates removal : If there is more than a single system call of the same type in
a section - only the first instance (which represent all other instances) appears
in the section. This transformation prevents the possibility to split a system
call into separate system calls (e.g. two NtWriteFile() calls, each writing 100
bytes, instead of a single call writing 200 bytes). Therefore, this was the first
transformation we used.

The second transformation we examined is non-order-preserving without
duplicates removal. This transformation is identical to the order-preserving with-
out duplicates removal transformation, except for the fact that the system calls
in each section are ordered in a predetermined order (lexicographically), regard-
less of their order of appearance in the trace. Using this transformation makes
the probability of affecting the decision tree path by switching the places of two
arbitrary system calls much smaller. Only the switching of two system calls from
different sections might affect the decision path.

The last transformation we considered is non-order-preserving with duplicates
removal. It is identical to the former, except for the fact that if there is more
than a single system call of the same type in a section - only one instance (which
represent all other instances) would appear in the section. This transformation
handles both system calls switching and splitting. Notice that this transforma-
tion makes a section similar to a set of system calls: Each value can appear at
most once, without position significance.

In-order to test the detection rate of our modified IDS, we used the same test
set used for the basic model. A section size of m=10 was chosen. The detection
rate, computed by the definitions specified in Sect. 3, appear in Table 2.

As can be seen from this table, section-based transformations are effective,
by the definition in Sect. 3.

In-order to test our camouflage algorithm effectiveness vs. the modified IDS,
we have used the camouflage algorithm shown in Algorithm 1 to modify the
system calls trace. Then we have applied the input transformation on the mod-
ified system calls trace - and then we fed it to the input-transformed IDS
variant. Without transformation we got a false-negative rate of 100 %. With
section-based transformation, non order-preserving, without duplicates removal -
we got 18.8 %. With section-based transformation, non order-preserving, with
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Table 2. Detection rate of the IDS by input transformation type

Input type Malware detection
rate

Benign software
detection rate

No transformation (original DB) 84.3 88.9

Non order-preserving, without
duplicates removal

87.4 90.7

Non order-preserving, with
duplicates removal

86.5 88.1

Order-preserving, with duplicates
removal

87.6 91.3

No transformation (updated DB) 86.5 88.7

duplicates removal we got 17.2 %. With section-based transformation, order-
preserving, with duplicates removal - we got 17.4 %.

We see that each input transformation reduces the effectiveness of the cam-
ouflage dramatically, since the camouflage we applied was designed against indi-
vidual system calls and not against input transformations.

Countering the Input Transformations with Custom-Fit Camouflage
Algorithm. One might argue that camouflaging a system calls trace in our basic
IDS (without the transformations suggested in Sect. 6.2) is an easy task. One
needs to add only a single system call at the beginning to change all following
system calls positions, thus affecting the decision path in the tree. Can we apply
our camouflage algorithm on our section-based IDS with the same effectiveness?

In-order to fit our camouflage algorithm to section-based transformations, we
have used Algorithm 1, except that in each iteration we added an entire system
calls section, instead of a single system call. This is done in step 4: Assuming
the condition is:

section[i] =? (sys call[(i-1)*m+1], sys call[(i-1)*m+2],.., sys call[i*m]), if
the edit op is SubL, AddR, or DelL then:

Add section[i] = (sys call[(i-1)*m+1], sys call[(i-1)*m+2],.., sys call[i*m])
(add the same section).

Else: Add section[i]=(sys call’[(i-1)*m+1], sys call[(i-1)*m+2],..,
sys call[i*m]) s.t. sys call’[(i-1)*m+1] != sys call[(i-1)*m+1] (add a section
with a different first system call).

The section is added with the same transformation type as the IDS: either
order preserving or not, and either with or without duplicates removal.

We have applied this algorithm on all section-based transformations
described in Sect. 6.2. Like Algorithm 1, there is no guarantee that the algo-
rithm would converge. However, all 436 modified section traces were classified
as benign by our IDS, with all input transformations, i.e., camouflage algorithm
effectiveness of 100 %. This is due-to the same rationale mentioned in Sect. 5.
This was also the case when modifying the random forest camouflage algorithm
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mentioned in Sect. 5.1 to counter input transformations by replacing Algorithm 1
used by it with this variant.

6.3 Partial Knowledge of the IDS

So far, we assumed that the attacker has full knowledge of both the classifier
type, the training set used to create it and its features, in-order to generate the
exact same classifier and then use it to camouflage the malicious code. We can
alleviate this assumption: If the attacker can gain partial knowledge about the
training set, he can construct the simulated classifier using only the training
set he knows about and use it in Algorithm 1. Such partial knowledge is easy
to gather, e.g., using the VirusTotal7 samples closest to the IDS release date,
which are very probable to be used by the IDS. We have trained the attacker
classifier using a part of the training set which is used by the IDS classifier, as
mentioned in Sect. 6. We then camouflaged the entire test set using Algorithm
1, based on the attacker partial knowledge based classifier.

We discovered that a knowledge of 86.4 % of the IDS training set is enough
to create a camouflage that is 56.6 % effective. A knowledge of 77.7 % of the
training set provides camouflage effectiveness of 31.3 % and 69.1 % of it provides
effectiveness of 25.4 %. We also tested a full knowledge of the training set, with
different features being selected (in case of chi-square equality). In this case, the
camouflage is 64 % effective. Finally, we tested a full knowledge of the attacker on
the training set and features, followed by an update of the IDS training set size by
1.7 %, without the attacker knowledge. In this case, the generated camouflage
was 75.5 % effective. This means that training set updates can decrease the
camouflage algorithm effectiveness, which was supported by our results, which
are not shown due to space limitation.

From all the experiments, it is clear that the camouflage algorithm is useful
to an attacker even with partial knowledge of the classifier.

7 Conclusions

In this article, we have shown that malware code which has been identified
by a specific machine learning classifiers (decision tree or random forest) can
be camouflaged in-order to be falsely classified as benign. We have done so
by modifying the actual code being executed, without harming its malicious
functionality. We then applied a defense mechanism to the camouflage algorithm,
called input transformations, making it more robust, and showed that it can also
be evaded.

This suggests that it is not enough to use a machine learning classifier with
a large DB of benign and malicious samples to detect malware - one must also
be aware of the possibility that such classifier would be fooled by a camouflage
algorithm - and try to counter it with techniques such as continuous updating

7 https://www.virustotal.com/.

https://www.virustotal.com/
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of the classifier’s training set or application of the input transformation that we
discussed. However, as we have shown, even such transformations are susceptible
to camouflage algorithms designed against them.

Our future work in this area would examine the effectiveness of our camou-
flage algorithm on other machine-learning classifiers (e.g. SVM, boosted trees,
etc.) and find other algorithms to cope with such classifiers and with other types
of features (e.g., anomaly based detection, [12]), currently not supported.
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Abstract. Recently, there has been an increase in use-after-free (UAF)
vulnerabilities, which are exploited using a dangling pointer that refers
to a freed memory. Various methods to prevent UAF attacks have been
proposed. However, only a few methods can effectively prevent UAF
attacks during runtime with low overhead. In this paper, we propose
HeapRevolver, which is a novel UAF attack-prevention method that
delays and randomizes the timing of release of freed memory area by
using a memory-reuse-prohibited library, which prohibits a freed mem-
ory area from being reused for a certain period. In this paper, we describe
the design and implementation of HeapRevolver in Linux and Windows,
and report its evaluation results. The results show that HeapRevolver
can prevent attacks that exploit existing UAF vulnerabilities. In addi-
tion, the overhead is small.

Keywords: Use-after-free (UAF) vulnerabilities · UAF attack-
prevention · Memory-reuse-prohibited library · System security

1 Introduction

Recently, there has been an increase in use-after-free (UAF) vulnerabilities,
which can be exploited by referring a dangling pointer to a freed memory. A
UAF attack abuses the dangling pointer that refers to a freed memory area and
executes an arbitrary code by reusing the freed memory area. Figure 1 shows
the number of UAF vulnerabilities investigated in [1]. The figure shows that the
number of UAF vulnerabilities has rapidly increased since 2010 [1]. Further, the
number of exploited UAF vulnerabilities has increased in Microsoft products
[2]. In particular, large-scale programs such as browsers often include many dan-
gling pointers, and the UAF vulnerabilities are frequently exploited by drive-by
download attacks. For example, many UAF attacks exploit the vulnerabilities of
plug-ins (e.g. Flash Player) in browsers. As a modern browser has a JavaScript
engine, an attacker can exploit the UAF vulnerabilities using JavaScript, which
creates and frees memory area.

c© Springer International Publishing AG 2016
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Fig. 1. Number of UAF vulnerabilities

To show the characteristics of a UAF attack, we investigated CVE-2012-4792,
CVE-2012-4969, CVE-2013-3893, and CVE-2014-1776 as UAF vulnerabilities
used for attacks in real world. Investigation results show that in a UAF attack,
memory is reused immediately after a target freed-object is reused to reduce
the possibility of a target memory area being reused by another process after
it is released. Various methods to prevent UAF attacks have been proposed [3–
13]. However, only a few methods can effectively prevent UAF attacks during
runtime with low overhead. Furthermore, the memory usage of existing methods
is inefficient, and these methods utilize considerable memory area for preventing
UAF-attacks.

Thus, many related works have used techniques such as the DelayFree deploy
technique that delays the time of freeing a memory object. In [15–17], methods
were proposed to prevent UAF attacks against Internet Explorer (IE) by call-
ing functions that have recently taken measures against UAF attacks. However,
DelayFree [16] and Memory Protector [17] do not release the freed memory areas
for a fixed period, thus complicating UAF attacks. This period remains until the
total size of the freed memory area is more than the threshold (beyond 100 KB).
However, when the freed total memory size increases beyond the threshold, all
memory areas that were prevented to be released are released and can be reused.
In addition, each program must be altered to apply these methods, resulting in
the increase in man-day requirement to modify a program and develop a patch.
An attack against DelayFree is reported in [18], indicating that an attack against
DelayFree will succeed. In addition, an attack against IE secured using Isolated
Heap and Memory Protector was reported in [19]. Therefore, new countermea-
sures are required to prevent UAF attacks.

In this paper, we propose HeapRevolver, which is a novel UAF-attack preven-
tion method that delays and randomizes the release timing of a freed memory
area by using a memory-reuse-prohibited library. By delaying release of freed
memory area, HeapRevolver prohibits the reuse of the memory area for a cer-
tain period. Thus, the abovementioned UAF attacks are prevented. The thresh-
old for the conditions of reuse of the freed memory area can be randomized by
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HeapRevolver. This function makes it more difficult to reuse memory area for
UAF attacks by randomizing the timing of the release of the memory area. In
addition, we added a reuse condition in which the freed memory area is merged
with an adjacent freed memory area before release. By adding this condition, a
UAF attack will fail if an offset of the dangling pointer to the memory area is
not appropriately calculated. Furthermore, HeapRevolver can be implemented
in a library and be applied without altering the targeted program for protec-
tion. Thus, applying HeapRevolver to targeted programs is not difficult. As
HeapRevolver can reuse the freed memory area under the reuse conditions, the
memory can be efficiently used. Finally, we describe the design and implementa-
tion of HeapRevolver in Linux and Windows and report the evaluation results.
The results show that the performance overhead of HeapRevolver is relatively
smaller than that of DieHarder [14], which is one of the representative methods
to prevent UAF attacks by library replacement.

2 Problem and HeapRevolver Design

2.1 Problem of Existing Methods

The problems of the related studies [15–17] are as follows:
(Problem 1) The reuse timing can be guessed by attackers: The related
methods do not release the freed memory area for a fixed period and complicates
UAF attacks. Owing to the period being fixed, attackers can guess the reuse
timing. Thus, the reuse time estimation must be made difficult.
(Problem 2) Need to alter the program code: Some methods alter the
program of IE and call the recently added functions, thus preventing a UAF
attack. Therefore, altering a program is necessary.
(Problem 3) Target application and OS’s are limited: The methods pro-
tect IE in Windows against UAF attacks. Therefore, a more easy deployment
method for various OS’s and application programs is required for UAF attack
mitigation.

In this paper, we propose a novel UAF attack-prevention method to resolve
these three problems.

2.2 Design of HeapRevolver

In this paper, we focus on the objective that UAF attacks can be prevented
by preventing reuse of the freed memory area. However, when the reuse of freed
memory area is prevented, memory usage becomes extremely inefficient. In addi-
tion, the overhead of creating new memory area increases because brk and sbrk
system calls are issued to expand the heap area. To solve this problem, we pro-
hibit the reuse of a memory area for a certain period after it is freed. When a
certain period has passed, the memory area can be reused. We assume that if this
period is fixed, the reuse timing can be predicted by the attackers. Therefore,
we randomize the prohibited period of reuse in HeapRevolver.
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To prevent UAF attacks by reusing the memory objects, HeapRevolver pre-
vents a UAF attack by altering an existing library. The altered library prohibits
reuse of the freed memory for a certain period. The conditions for reuse are as
follows.
(Condition 1). The total size of the freed memory area is beyond the designated
size.
(Condition 2). The freed memory area is merged with an adjacent freed mem-
ory area.

When condition 1 is satisfied, the memory area that satisfies condition 2
is released. The released memory size is at most half of the designated total
size in the freed memory. Condition 1 refers to technique used in DelayFree
[16] and Memory Protector [17]. The designated total size (threshold) in the
freed memory in these techniques is constant. The threshold is 100 KB. When
an attacker creates a memory area of 100 KB, the freed memory is released; thus,
an attacker can attempt to reuse a memory area by creating a memory area.

In HeapRevolver, we develop two countermeasures for this problem. First, the
total size threshold of the freed memory area is set to a larger value than that in
DelayFree. This measure increases the threshold entropy against UAF attacks
because threshold estimation becomes more difficult. Second, the threshold is
randomized in some ranges. In addition, the threshold is randomly updated
when condition 1 is satisfied. Furthermore, HeapRevolver releases at most only
half of the freed memory area, implying that the randomly selected memory is
delayed. This results in a certain memory area that cannot be reused for a long
period. Furthermore, by adding condition 2, a UAF attack fails if an offset of a
dangling pointer to the memory area is not appropriately calculated.

3 Implementation of HeapRevolver

3.1 Implementation of HeapRevolver in Linux

In this section, we describe the implementation of HeapRevolver for glibc
(x86 64) in Linux by altering only the free() function of the malloc algorithm
that releases the memory area. Figure 2 shows the memory structure of malloc
in HeapRevolver.

The free() function process of HeapRevolver is explicated as follows. Lock bins
and wait bins are added to the malloc state structure for HeapRevolver.

(1) The freed memory area (chunk) is stored in the head of the list (lock bins).
(2) When the total size of the freed chunk stored in lock bins and wait bins is

beyond the threshold limit, the freed chunks are released from the lock bins
list until half of the designated total size is released. The freed chunks must
be merged with a chunk located in an adjacent memory cell before the
chunks are released. When a freed chunk is removed from the lock bins,
HeapRevolver searches for a freed chunk that can be merged with the adja-
cent chunk from the wait bins and unsorted chunks. If HeapRevolver finds a
chunk for merging, the freed chunk is merged with it and is entered into the
unsorted chunks for release.
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Fig. 2. Memory structure of malloc in HeapRevolver

(3) If no chunk can be merged, the chunks in lock bins are moved to wait bins
after attaching an attribute, indicating means that the chunk must be merged
before reuse.

We believe that the threshold for the total size of the freed chunks is 1 MB,
which is sufficient to complicate UAF attacks. In glibc of Linux/x86 64, a mem-
ory area that is larger or equal to 128 KB is created by the mmap() func-
tion. Thus, if the chunk size is smaller than 128 KB, the chunk is entered in
the lock bins. Therefore, more than seven chunks are entered in lock bins when
threshold ≥ 1 MB. Furthermore, HeapRevolver randomizes the threshold of the
total size when the total size of freed memory is larger than the threshold value.

The proposed method is applied to a library, which is introduced by replacing
an existing library in a specific directory or changing a linked dynamic library
before it is loaded. For example, a linked dynamic library can be changed by
modifying the path names of LD PRELOAD and LD LIBRARY PATH.

3.2 Implementation of HeapRevolver in Windows

The Windows’ APIs kernel32.dll and ntdll.dll provide similar memory manage-
ment processing as the glibc library in Linux. In addition, the HeapFree() func-
tion in kernel32.dll is often used to release a heap area. Thus, we implemented
a function of HeapRevolver in the HeapFree() function. In our implementation,
the HeapFree() function is hooked by our original function.

The hook function of HeapRevolver is implemented using a dynamic link
library (DLL) injection and Windows API hook. DLL injection is a DLL map-
ping method to other processes and executes DLL processing in the processes.
Windows API hook is a method that hooks a Windows API call and executes a
certain processing before the hooked Windows API call. We deployed an import
address table (IAT) hook for the Windows API hook. IAT hook is a method
that modifies the address of APIs in IAT to call a target function.

Figure 3 shows the flow of hooking the HeapFree() function to the tar-
get process. When the Hook HeapFree() function of Hook.dll is called by IAT
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Fig. 3. Flow of hooking HeapFree() function on Windows

hook, the Hook HeapFree() function of Hook.dll obtains the arguments of the
HeapFree() function and stores them in a ring buffer. Next, the Hook HeapFree
function checks whether the sum of the freed memory are beyond the threshold.
If the sum exceeds the threshold, the Hook HeapFree() function obtains the argu-
ments of the HeapFree() function and calls the HeapFree() function to release
the freed memory area. The Hook HeapFree() function calls the HeapFree() func-
tion until half of the threshold is released. If the sum of the freed memory does
not exceed the threshold, the proposed function returns without any operation.
Thus, the Hook HeapFree() function delays the release of the freed memory area
until the sum of the freed memory area exceeds the threshold.

The implementation of HeapRevolver in Windows is almost the same as in
Linux. However, the prototype implementation of Windows does not include
the determination of whether a memory area is already merged with an adja-
cent memory area. This needs to be further studied. In addition, the prototype
implementation in Windows uses the number of freed memory areas as a thresh-
old instead of the sum of the freed memory area sizes because the process of
managing the size is complex. Even when the amount of freed memory area is
used as a threshold, the entropy can increase and can complicate UAF attacks
using a large number of thresholds and randomizing them.

4 Evaluation

4.1 Security Analysis

Possibility of Success of UAF Attacks in HeapRevolver. We analyzed
the possibility of attacks against HeapRevolver. For an attack to succeed, an
attacker must reuse the freed memory area and overwrite the memory. Subse-
quently, malicious codes must be executed by referring to a dangling pointer. In
HeapRevolver, the freed memory area cannot be reused until it satisfies the reuse
condition because the area is entered into a wait bin queue. Thus, most of the
aforementioned UAF attacks can be prevented using HeapRevolver. Only when
a memory area is freed, the sum of the freed memory area exceeds the threshold
and the target memory area is merged to an adjacent memory area. The freed
memory area can then be immediately reused after it is released. However, in
this case, reusing the freed memory area is difficult because the attacker must
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predict the size of the merged memory area (described in the next paragraph).
In addition, the attacker must understand the number and total size of the freed
memory areas. Because the threshold of reuse is randomly set when the freed
memory area is released and large-scale programs such as browsers process many
memory allocations and releases, predicting when the sum of the freed memory
area exceeds the threshold is very difficult.

The additional condition for attacks is the immediate reuse of the freed mem-
ory area after it is released. In many attacks, the requested size of memory allo-
cation is the same as that of the target freed memory area. In HeapRevolver,
the reusable memory area must be merged to an adjacent memory area. Thus,
the possibility of reuse is considerably reduced when the same size is designated
for the memory allocation. For example, in Linux, unused memory area with a
size is the same as the requested size is reused prior to the reuse of the memory
area with another size.

If a dangling pointer is referred to before all the previous conditions are
satisfied, the attacks will fail because of segmentation or other faults. After the
faults, the application is terminated, and the next attack becomes impossible.
Because such failure in attacks reveals the attempts of attacks, we believe that
attackers will avoid performing low-possibility attacks.

Attack Possibility Against HeapRevolver. To defeat HeapRevolver,
attackers consider repeating memory allocation and releasing memory. In addi-
tion, to increase the probability of successful attacks, heap spraying is used. Heap
spraying is effective when the memory layout is predictable or memory fragmen-
tation in the heap area is suppressed. In HeapRevolver, freeing the memory area
is randomly delayed, and memory fragmentation such as external fragmentation
in the heap area frequently occurs. In this situation, large area of heap spraying
is often allocated in the last part of the heap area, and we believe that the suc-
cess of heap spraying is low. For the attacks against HeapRevolver to succeed,
both UAF attacks and heap spraying must succeed; thus, the possibility of the
success of two attacks is low, and the risk of revealing attack attempt is high
because of failures.

As a typical attack, to overwrite a freed memory area referred by dangling
pointer, the attacker attempts to allocate a large memory area after the target
memory area is freed. Next, the attacker overwrites the entire target memory
area. Overwriting a large memory area is expected to improve the possibility of a
successful attack. This type of attack can succeed after the target memory area is
freed and reused. As aforementioned, reuse of the target memory area is difficult.
In addition, the timing of freeing the target memory area is non-deterministic;
thus, creating attack codes with a high success probability against HeapRevolver
is difficult.

4.2 Evaluation Environment

We used a computer with Intel Core i7-3770 (3.40 GHz) and 4-GB main mem-
ory for the evaluation. The OS’s and versions used in the evaluations are Linux
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3.13.0-45-generic/x86 64 (Ubuntu 14.04 LTS) and Windows 7 (64 bit). The
HeapRevolver was implemented in glibc-2.19 in Linux.

Fig. 4. Experimental results of UAF attack prevention in Linux

To show the feasibility and overhead of the HeapRevolver, we evaluated its
performance on Linux and Windows. The following experiments were performed.
The UAF-attack prevention experiments in Linux and Windows show that UAF
attacks can be prevented by HeapRevolver. In addition, we evaluated the per-
formance overhead and memory usage of HeapRevolver. Finally, we compared
HeapRevolver with DieHarder, which is one of the UAF prevention methods that
use library replacement. In the overhead evaluations, we used fixed thresholds
on HeapRevolver because we clarified the relationship between the threshold size
and performance and memory overhead of HeapRevolver.

4.3 Prevention Experiments of UAF Attack in Linux

We describe the experimental results of attempting UAF attacks using a pro-
gram. In the program, an object of an Addnum class is created and deleted.
Subsequently, when a memory area with the same size as that of the Addnum
object is created, the memory area of the deleted Addnum object is reused.
The address where a pointer of the shell code is stored is overwritten on the
vtable address of the Addnum object. The shell code is executed by a call to
the overwritten vtable. The program was executed when address space layout
randomization and data execution prevention were disabled.

Figure 4 shows the execution results before and after the application of
HeapRevolver in Linux. Figure 4-(A) shows that the Addnum object and buf
were allocated in the same memory area. Next, the UAF attack was performed
by referring to a dangling pointer. Thus, the shell codes were executed. In con-
trast, Fig. 4-(B) shows that an Addnum object and buf were allocated in different
memory areas. Here, the UAF attack failed due to segmentation fault because
the memory area accessed by referring to the dangling pointer did not have
access rights. Therefore, HeapRevolver can prevent the UAF attack.
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Table 1. Overheads in malloc-test.

Memory size lib Thread num

1 3 5

100 B glibc 0.335 1.02 1.71

HeapRevolver (100KB) 0.398 (18.8%) 1.200 (17.6%) 2.015 (18.1%)

HeapRevolver (1MB) 0.399 (19.1%) 1.205 (18.1%) 2.020 (18.4%)

512 B glibc 0.371 1.132 1.885

HeapRevolver (100KB) 0.425 (14.5%) 1.310 (15.7%) 2.195 (16.4%)

HeapRevolver (1MB) 0.437 (17.8%) 1.324 (17.1%) 2.210 (17.2%)

1024 B glibc 0.374 1.137 1.903

HeapRevolver (100KB) 0.526 (40.6%) 1.495 (31.5%) 2.481 (30.4%)

HeapRevolver (1MB) 0.543 (45.2%) 1.503 (36.6%) 2.509 (31.8%)

4.4 Evaluation of Performance Overhead in Linux

To compare the performances of HeapRevolver and the original glibc, they were
evaluated using several program types. The thresholds of HeapRevolver in eval-
uation were 100 KB and 1 MB.

First, the malloc-test benchmark was used to evaluate the processing time.
The malloc-test benchmark contains some tests for the malloc and freeing
processes. The tests were performed by multi-threading. The processing time
was measured when the process was repeated 10,000,000 times. The requested
memory sizes were 100, 512, and 1,024 bytes. The number of threads was changed
from one to five.

Table 1 lists the evaluation results, which shows that the overhead of HeapRe-
volver was less than 20 % in the malloc-test when the memory sizes were 100 and
512 bytes. The overhead of HeapRevolver increased by approximately 30 %–45 %
when the requested memory size was 1024 bytes. We believe that this increase
caused the repeated issue for the sbrk system call to change the size of the data
segment in this evaluation. The evaluation results show that the large threshold
of the HeapRevolver involved large overhead for every requested memory size.

Next, the performance overhead of the HeapRevolver was measured using
UnixBench, SysBench and Himeno benchmarks. Table 2 lists the evaluation
results, which show that the overhead of HeapRevolver was less than 0.25 % in
every benchmark evaluation. The performance overhead of the 1-MB HeapRe-
volver is greater than that of the 100-KB HeapRevolver. We suppose that the
performance overhead increases according to the size of the threshold and that
the performance overhead is small and acceptable.

Next, the overhead in applying the proposed method to glibc was measured
using browser benchmarks; we used Firefox and Chrome as browsers for the
evaluation. The processing time of the browser benchmarks was measured using
Google’s Octane 2.0, Apple’s SunSpider 1.0.2, Mozilla’s Kraken 1.1, Microsoft’s
LiteBrite, FutureMark’s Peacekeeper, and Mozilla’s Dromaeo. Figures 5 and 6
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Table 2. Evaluation results on UnixBench, SysBench, and Himeno benchmark.

lib UnixBench SysBench (s) Himeno benchmark

glibc 4,139.18 25.98 2,690.24

HeapRevolver (100 KB) 4,131.38 (0.19 %) 26.21 (0.23 %) 2,689.64 (0.02 %)

HeapRevolver (1 MB) 4,130.57 (0.21 %) 26.22 (0.24 %) 2,688.05 (0.08 %)

Fig. 5. Performance overhead of
browser benchmarks on Firefox

Fig. 6. Performance overhead of
browser benchmarks on Chrome

show the comparison results of HeapRevolver with glibc in Firefox and Chrome
respectively, considering their performance overhead.

Figure 5 shows that the overhead was less than 1.8 % in both 100 KB and
1 MB in Firefox. The overhead in the 1 MB HeapRevolver, in which the duration
of reuse was longer, was larger than that in the 100 KB HeapRevolver because
the change in the amount of data segment size (heap area), such as sbrk system
call, increased when allocating a new memory area. Furthermore, Fig. 6 shows
that the overhead in Chrome was less than 2.6 % in both the 100 KB and 1 MB
HeapRevolvers. The overhead of the 1 MB HeapRevolver in Chrome was larger
than that of 100 KB in Firefox.

Finally, the response time of a web server was measured. The thttpd 2.25 b
was used as a web server, and ApacheBench was used as a benchmark in mea-
suring the response time of the web server in this evaluation. The size of the
requested file varied from 100 bytes, 1 KB, 10 KB, and 100 KB.

Table 3 lists the evaluation results of the response time of thttpd. It shows
that the overhead of HeapRevolver in every result was small. However, the over-
head of HeapRevolver increased when the requested file size was 0.1 KB. This
process included network and CPU processes. Thus, we assume that the overhead
of the memory allocation and release were hidden by these processes.

4.5 Evaluation of Memory Consumption in Linux

We performed three experiments to evaluate the memory consumption of
HeapRevolver in Linux. The thresholds of HeapRevolver were 100 KB and 1 MB.

We measured the memory usage of the malloc algorithm with HeapRevolver
and compared it with that of original glibc. We used a malloc-test program. In
this experiment, five threads were run, and the allocation and freeing processes
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Table 3. Response time (overheads) of thttpd web server (ms)

Method Request file size (KB)

0.1 1 10 100

glibc 74.0 75.3 131.1 1,057.8

HeapRevolver (100 KB) 77.1 (4.2 %) 80.0 (6.3 %) 130.6 (-0.4 %) 1,053.4 (-0.4 %)

HeapRevolver (1 MB) 77.6 (4.9 %) 76.4 (1.5 %) 131.4 (0.2 %) 1,057.9 (0.0 %)

Table 4. Memory usage of the malloc-
test

Method Memory usage (KB)

glibc 588

HeapRevolver (100KB) 588

HeapRevolver (1MB) 1452

Table 5. Memory usage after Firefox
finished browsing the 10 websites

Method Memory usage (MB)

glibc 282

HeapRevolver (100KB) 279

HeapRevolver (1MB) 294

were performed when the memory size was 512 bytes. Each thread repeated this
process 10 million times. We measured the memory usage when the processing
of the five threads was finished.

Table 4 lists that the memory usages of glibc and 100-KB and 1-MB HeapRe-
volver were almost the same. The size of the freed memory area was less than the
threshold. When the threshold was 1 MB, the size of the exceeded memory usage
was within the threshold limit. Therefore, these results show that the maximum
overhead of the memory usage for each process is less than the threshold.

We used Firefox 31.0 and Selenium IDE to evaluate the memory consump-
tion when browsing 10 websites continuously. We then measured the memory
consumption after Firefox finished browsing the 10 websites.

Table 5 lists the evaluation results of the website browsing. The memory
usage of glibc and HeapRevolver were almost the same. The memory usage was
between 280 and 320 MB because the memory usage overhead of HeapRevolver
was small and the variation in memory usage was relatively large.

To compare HeapRevolver with glibc, the change in the amount of virtual
memory consumption when a browser benchmark was run was measured. In this
evaluation, Octane, SunSpider, and Kraken were used.

Figures 7 and 8 show the memory consumption of Octane in Firefox and
Chrome. The evaluation results of Octane in Firefox and Chrome show that the
memory consumption of HeapRevolver was almost the same as that of glibc. Fur-
thermore, the memory consumptions of SunSpider and Kraken of the browser
benchmarks in both browsers were almost the same as those of glibc. There-
fore, the overhead in the memory consumption in HeapRevolver was also small.
Table 6 lists the maximum memory consumption under each condition. The eval-
uation results show the overhead of maximum memory consumption is small.



230 T. Yamauchi and Y. Ikegami

Fig. 7. Memory usage of Octane on
Firefox

Fig. 8. Memory usage of Octane on
Chrome

Table 6. Maximum memory consumption on browser benchmarks (KB)

Browser lib Octane SunSpider Kraken

Firefox glibc 5,375,276 917,996 1,158,092

HeapRevolver (100KB) 5,382,988 (0.14%) 922,416 (0.48%) 1,124,996 (−2.86%)

HeapRevolver (1MB) 5,407,820 (0.61%) 949,344 (3.41%) 1,151,620 (−0.56%)

Chrome glibc 1,441,932 1,431,016 1,421,312

HeapRevolver (100KB) 1,427,148 (−1.03%) 1,414,824 (−1.13%) 1,406,628 (−1.03%)

HeapRevolver (1MB) 1,428,172 (−0.95%) 1,415,848 (−1.06%) 1,406,628 (−1.03%)

4.6 Prevention Experiments Against UAF Attack in Windows

We experimented on whether UAF attacks using real attack codes distributed
in Metasploit could be prevented. The attack codes used in the environments
exploited CVE-2011-1260 and CVE-2012-4969 of IE 7 on Windows XP and CVE-
2014-0322 of IE10 on Windows 7. We determined that approximately 3,000 freed
memory areas existed and were reserved for reuse in Linux when a threshold of
1 MB was set. Thus, we used 3,000 as the threshold for the Windows experiments.

We applied HeapRevolver to IE on Windows as described earlier. Then, the
attack codes were executed in each environment. Thus, HeapRevolver success-
fully prevented all the UAF attacks that reused memory objects.

4.7 Evaluation of Performance Overhead in Windows

We measured the overhead of HeapRevolver both before and after the introduc-
tion of HeapRevolver on Windows 7. We ran three types of browser benchmark,
namely, Octane, SunSpider, and Kraken, on IE 10. The threshold of HeapRe-
volver was 3,000. The measured overhead of HeapRevolver in the three browser
benchmarks was less than 2.5 %. These browser benchmarks are CPU-intensive
and require large memory. Thus, we suppose that the influence on the perfor-
mance of the browser benchmarks can explicitly be observed. Nevertheless, the
results show that the overhead of HeapRevolver in Windows is small, and the
overhead is acceptable.
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4.8 Comparison with Existing Method

We compared HeapRevolver with DieHarder [14], which can be classified to be
the same as HeapRevolver. The threshold of HeapRevolver in this evaluation
was 1 MB.

Figures 9 and 10 show the performance overhead of HeapRevolver compared
with that of glibc when Octane, SunSpider, and Kraken were executed in Firefox
and Chrome. The performance overhead of HeapRevolver was less than that
of DieHarder except in Kraken. The performance overhead of HeapRevolver
was less than 3.0 % but the overhead of DieHarder in SunSpider was relatively
large (approximately 4 %). We will analyze the resultant factor of DieHarder in
future; however, we believe some inefficient processing in the reuse of objects in
DieHarder occurred.

Table 7. Evaluation results of malloc-test.

Memory size lib Thread num

1 2 3 4 5

512B HeapRevolver
(1MB)

0.437 (17.8%) 0.880 (17.6%) 1.324 (17.1%) 1.765 (16.2%) 2.210 (17.2%)

DieHarder 1.247 (236%) 2.586 (245%) 4.094 (262%) 5.421 (259%) 6.982 (270%)

Table 7 lists the evaluation results of the malloc-test. The performance over-
head of DieHarder was more than 200 % that of glibc because DieHarder allo-
cated memory area at random from some ranges in the memory area. In addition,
we evaluated the performance overhead results of original glibc using UnixBench,
SysBench, and Himeno benchmarks (Table 8). The results show that the perfor-
mance overhead of HeapRevolver was smaller than that of DieHarder in all
benchmarks.

Finally, we evaluated the change in the amount of memory consumption
under three browser benchmarks in Firefox. Figure 11 shows that the memory
consumption of DieHarder in Octane was more than twice that of HeapRe-
volver. Figure 12 shows that the memory consumption of DieHarder in SunSpi-
der was approximately three times more than that of HeapRevolver. However,

Fig. 9. Comparison of HeapRevolver
and DieHarder for browser benchmarks
in Firefox

Fig. 10. Comparison of HeapRevolver
and DieHarder for browser benchmarks
in Chrome



232 T. Yamauchi and Y. Ikegami

Table 8. Evaluation results of UnixBench, SysBench, and Himeno benchmarks.

lib UnixBench (KB/s) SysBench (s) Himeno benchmark

HeapRevolver (1 MB) 4,130.57 (0.21 %) 26.22 (0.24 %) 2,688.05 (0.08 %)

DieHarder 4,124.77 (0.35 %) 26.25 (1.04 %) 2,674.44 (0.60 %)

Fig. 11. Overheads of Firefox browser
memory usage (Octane)

Fig. 12. Overheads of Firefox browser
memory usage (SunSpider)

the overhead of DieHarder was very heavy to use in real world. Comparatively,
the results show that the memory usage of HeapRevolver was efficient because
HeapRevolver delayed the reuse of freed memory within the threshold size.

Next, we discuss the results in the Chrome browser. We evaluated the total
memory consumption of the processes created by Chrome because Chrome cre-
ates more than one process. Therefore, we measured the total memory consump-
tion of virtual memory in all Chrome processes, and compared HeapRevolver
with DieHarder. The total memory consumption of HeapRevolver in Octane
was 45,904,020 KB and that of DieHarder was 87,906,816 KB. These results show
that the memory consumption of DieHarder in Octane was approximately twice
that of HeapRevolver. In addition, the memory usage trend in Chrome is similar
to that in Firefox.

All comparison results show that the overhead of HeapRevolver is smaller
than that of DieHarder in most cases and the amount of memory consumption
of HeapRevolver is less than that of DieHarder. In addition, to apply DieHarder
in Windows, source codes are necessary, and the allocator must be linked and
compiled during the development process. In comparison, HeapRevolver does not
need a source code and can be applied to programs where source codes cannot
be obtained.

5 Related Work

Dangling pointer-detection approaches [3–7] include dynamic binary translation,
shadow memory, and taint analysis. These approaches detect dangling pointers
before program execution. However, if the dangling pointers are abused, which
cannot be detected before a practical use, UAF attacks cannot be prevented in



HeapRevolver: Delaying and Randomizing Timing 233

runtime. In [8–10], UAF attacks were prevented by replacing a malloc library
with a new library in which the allocation unit is a page. However, because the
allocation unit of the created memory area consists of pages, the memory usage is
inefficient. In [11–13], a UAF attack was prevented using a method that prevents
alteration of vtable. However, these methods cannot handle a UAF attack that
does not alter vtable.

6 Conclusions

In this paper, HeapRevolver was proposed, and its design and implementation
in Linux and Windows were described. As the memory-reuse-prohibited library
prevents the freed memory area from being reused during a certain period, the
HeapRevolver can prevent UAF attacks without altering the targeted program
for protection. As the timing of reuse of the freed memory area is randomized
in HeapRevolver by randomizing the maximum total size of the freed memory
areas (the threshold of HeapRevolver), UAF attacks become more difficult.

The evaluation results in Linux show that the HeapRevolver overhead is suffi-
ciently small. However, the process of repeating memory allocation and releasing
memory slightly influences the performance. Further, the evaluation results show
that the increase in the memory consumption is slight compared with that in the
original glibc, and the overhead is acceptable. The experimental results in Win-
dows using UAF exploit codes show that UAF attacks can be prevented using
HeapRevolver. In addition, the performance evaluation results by using browser
benchmarks show that the HeapRevolver overhead is less than 2.5 %. Finally,
we compared HeapRevolver with DieHarder through evaluations. The results of
the browser benchmarks show that the HeapRevolver overhead is smaller than
that of DieHarder in most cases and the amount of memory consumption of
HeapRevolver is approximately half that of DieHarder.

Moreover, HeapRevolver can be easily deployed in existing systems and pro-
grams and can make UAF attacks more difficult. In addition, the HeapRevolver
overhead is sufficiently small to be deployed in real systems. We believe that
HeapRevolver can prevent UAF attacks by exploiting zero-day vulnerability.
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Abstract. Digital forensics is a fast-evolving field of study in contem-
porary times. One of the challenges of forensic analysis is the quality of
evidence captured from computing devices and networks involved in a
crime. The credibility of forensic evidence is dependent on the accuracy
of established timelines of captured events. Despite the rising orders of
magnitude in data volume captured by forensic analysts, the reliability
and independence of the timing data source may be questionable due
to the underlying network dynamics and the skew in the large number
of intermediary system clocks that dictate packet time stamps. Through
this paper, we propose a mechanism to verify the accuracy of foren-
sic timing data through collaborative verification of forensic evidence
obtained from multiple third party servers. The proposed scheme does
analysis of HTTP response headers extracted from network packet cap-
ture (PCAP) files and validity testing of third party data through the
application of statistical methods. We also develop a proof of concept
universal time agreement protocol to independently verify timestamps
generated by local logging servers and to provide a mechanism that may
be adopted in digital forensics procedures.

1 Introduction

Timing accuracy is one of the most overlooked aspects of digital forensic evi-
dence. While standards such as the Network Time Protocol (NTP) exist for clock
synchronisation, they frequently suffer from many issues including incorrect con-
figuration, clock drift and configuration issues with virtual server environments
[8]. Casey and Rose (2010) identify the need to establish reliable timelines as part
of the digital forensics process and cite several cases in which timing discrep-
ancies in digital evidence have caused difficulties for investigators, prosecutors
and defence attorneys alike [5]. So crucial is the accuracy of timing data, many
criminal and civil cases have invested significant time verifying the validity of
forensic timestamps [5,8,14]. Even significant tools in use by law enforcement
have been shown to suffer from timing and integrity issues. For example, an inde-
pendent report in to the FBI’s Carnivore system found significant deficiencies
with integrity, including the lack of time synchronisation on logging servers [15].
c© Springer International Publishing AG 2016
J. Chen et al. (Eds.): NSS 2016, LNCS 9955, pp. 235–248, 2016.
DOI: 10.1007/978-3-319-46298-1 16
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Accurate event timing allows forensic investigators to establish relationships
between events and actors to ascertain weight of evidence i.e., to facilitate solid
foundations of evidence for presentation in a court of law. The ultimate goal
of a forensic investigator is to preserve, provide and assess evidence to deter-
mine what actions, in particular mal-actions, were taken [17] and whether they
were deliberate. By building an accurate and trusted timeline, an investigator
may draw a clear “picture” that demonstrates a sequence of events, a suspect’s
thought process, actions and intent [5]. In order to prove the intent of the perpe-
trators of the cybercrime, an investigation often needs to demonstrate the link
between cause and effect, which requires accurate timestamps of data or evi-
dence. However, timestamp data is frequently called in to question, with differ-
ent devices and pieces of evidence reporting significantly different and conflicting
timestamps. Where the variation is small, this may not pose a problem, however
timestamps may vary by hours, days, or even more, due to factors like timezone
and configuration errors. At best, these discrepancies add cost and complexity
to an investigation, at worst they may affect the course of a civil or criminal
trial [5,14].

Network forensic evidence may appear in several formats, from log files to
captured packets from the computing devices involved in the crime. Most log
data contains timing data in a certain format to enable comparison between
events, however the reliability and independence of the timing data source may
be questionable. The Apache log format, the Syslog format and PCAP packet
capture formats all specify dedicated fields to represent time-stamp data of net-
work traffic captures [2,7,18]; however, in each case, the timing data is provided
by in-built local processes and is reliant upon the system clock of the logging
device at the destination network. While services such as the Network Time
Protocol (NTP) [3] can provide high accuracy time stamps, it is necessary for
system administrators to configure, enable and verify the correct functioning
of NTP clients, to maintain evidence quality. Data analysis is the fundamental
function of forensic investigators. With questionable accuracy in identified data
timestamps, the reliability of forensic evidence may be challenged.

One of the steps in forensic analysis is validation of evidence, process and
tools [5,13], including server and time stamp validation for any captured data.
Simple validation may be possible where direct access to a logging system is
available, and the configuration and status of the server at the time of capture is
known. Sometimes this information may be pieced together from system log-files,
which may prove that a logging server was recently synchronised using a mech-
anism like NTP, however such type of evidence is independent of the actual log
data being examined. Time-stamp data presented in log-files is also be dependent
on local server configuration; for example, the NTP protocol does not include
any mechanism for synchronising time zones or daylight saving information, thus
an NTP synchronised server may still provide incorrect time stamp data if time
zone information or daylight savings parameters are incorrectly set [3].

Standards and processes are a cornerstone of digital forensics; processes for
identifying the validity of timing data have been recognised as critical since the
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early days of computer forensic investigations [9]. The work by Stevens (2004)
examined a way to synchronise timing data across multiple devices by build-
ing a clock model which takes in to account local RTC errors and timezones
[16]. However, the method requires direct access to the devices and known clock
states “close” to the time of capture. While most work on defining best practices
for standardising timing analysis has involved the validation of device real-time-
clocks (RTCs) to verify file-creation times, there is a clear need for forensic
investigators to apply these same synchronisation disciplines to all forensic evi-
dence, including network capture data. The same issues that plague time syn-
chronisation on end-user devices also affect servers, routers and other logging
equipment. The method proposed by Stevens used relative time offsets across
devices and timezones and allowed investigators to normalise the time between
multiple devices by comparing their RTCs to calculate their differences.

Our method extends the concept of relative time offsets by reducing packet
capture timestamp data to a single dimension elapsed-time offset, and then
applies a statistical analysis technique to compare the offsets to timing data
returned by independent 3rd party servers. This allows us to verify timing data
integrity without relying on any individual device’s accuracy, rather our method
allows an investigator to state that an event occurred at a specific time accord-
ing to multiple independent “virtual witnesses” (servers). Our method provides a
formalised framework for forensics investigators to verify timing integrity regard-
less of whether any verifiable timing sources are available.

2 Timing Data Sources and Errors

In an Internet-connected network environment, network packet capture data
arrives from a range of sources. Several of these sources may include time-stamps
that could be used to verify logging server data accuracy and variations from
established baselines; web requests frequently provide response headers with
a time-stamp generated by a responding server [6]; email headers frequently
include time-stamps from Mail Transfer Agents MTA’s and client machines; and
web application content may include a range of time-sources from cookies to
embedded HTML code and JavaScript variables. Some of the issues associated
with time stamp validation are: ascertaining the timestamps of response data
received from web servers and the lack of a standard encoding technique between
the clients and servers. Our statistical method for obtaining timing agreement
from multiple 3rd parties, identifies only coherent timing-data sources, thus elim-
inating multiple sources of error.

While packet capturing tools such as Wireshark [18] include timestamp data,
this data is also collected from the local clock on the logging device and may
suffer from the aforementioned errors. Reliable remote network time sources
such as the Network Time Protocol (NTP) exist, however their use as a forensic
tool may be limited depending on whether NTP events are included in a packet
capture and also on the integrity of the configured NTP server. As such, the
forensic verification of the data is left to the examiner; a process which usually
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Fig. 1. Example network configuration for logging packet capture data

requires manual examination. In addition, normalisation of time stamps requires
interpretation and analysis to remove time zone offsets and errors.

In Fig. 1, a typical network configuration is presented that comprises end-
users accessing the web, and intermediary packet capture servers for packet log-
ging. When additional HTTP requests are transmitted by an end-user’s network
router to pertinent web servers, multiple servers may respond to the request.
Therefore, the process of data logging and correlation for responses to a common
query also entails high precision in analysis and accurate correlation between the
received HTTP response packets. The ability for a forensic investigator to per-
form standardised time analysis and verification on captured data could improve
the forensic integrity of an investigation and assist investigators by allowing them
to focus on the identification and extraction of other relevant evidence.

3 Problem Definition

Everyday web-browsing activities of clients generate a large number of web
requests and corresponding responses. In a 2014 survey on web-page metrics,
Butkiewicz, Madhyastha, and Sekar [4] found that for a single web browsing ses-
sion, the median number of requests solicited from a web server is equal to 40,
with a large volume of web pages referencing content from multiple web servers.
This implies that a single end-user action will frequently result in a large amount
of returned data and meta-data to the requesting end users. Almost every HTTP
server response contains an HTTP Date field, and many responses also include
Expiry time fields, Last Modified time fields, and Cookies. Content may also
include timing data embedded in links, JavaScript or meta-data.



Timestamp Analysis for Quality Validation of Network Forensic Data 239

A typical example of HTTP date headers and embedded arrival times as
captured in the local capture/logging servers, is illustrated in Table 1. HTTP
date headers reflect the time when the HTTP response was generated by the
remote server [6]. As independent 3rd party servers generate the HTTP date
headers, they may act as witnesses to assist a forensic investigator in validating
event timing; either by verifying any embedded real-time clock (RTC) data in
a PCAP file and subsequently correcting RTC errors if the local logging servers
are incorrectly configured, or by providing an RTC estimate if no RTC data is
present.

As can be seen from the examples in Table 1, the arrival times for user
responses corresponding to a user query vary from one log entry to another,
and thus the accuracy of collected data is questionable. The examples show both
accurate (“tick”) and erroneous (“cross”) timestamp data. Specifically, the table
illustrates how a logging server with a correctly set clock (Server-A) can be relied
upon to provide forensically accurate timing data, while a server with an approx-
imate clock error of +3 h (Server-B) will tag all packet data as incorrect. While
a forensic investigation using Server-A would yield accurate evidence; a forensic
investigation relying on PCAP timing data provided by Server-B could result in
questionable reliability of evidence, or even incorrect conclusions. In both cases,
the integrity of the captured data can be tested and validated against HTTP
date header data; Server-A’s integrity can be assured through agreement with
accurate 3rd party response data. Server-B’s error can be detected, identified,
analysed and corrected using the same data.

The challenge for forensic investigators using 3rd party servers as witnesses is
in determining which witness responses are accurate, and which are erroneous.
In the same way that Table 1 PCAP logging servers (Server-A and Server-B)
may be set correctly or incorrectly, so to remote servers may have correct or
incorrect internal clocks. These servers produce HTTP Date headers that is
either accurate or erroneous.

Attaching a packet capture server on to the same network as the end-user
machine allows data to be intercepted, collected and analysed. Packet capture
data contains the raw low-level network interactions for transferring data from
a web server to an end-user. This traffic can be easily parsed to extract requests
matching certain parameters. For data generators that keep perfect time, the
time-stamps extracted from packet data would agree with a known start time.
Perfect time beacons are defined as those beacons that are in agreement with
each other. These two beacons in the context of forensically sound evidence are:
the observed time stamps from network traffic packets and the real time (given
by the summation of the actual logging start time and the elapsed i.e., offset
time). As can be seen from Fig. 4, perfect time beacons must agree with each
other. Perfect time is when the observed time is in agreement with the real time.
An observed time stamp above the perfect-time-line implies the time stamp lies
in the future, and an observed time below the perfect-time-line would imply that
the time stamp lies in the past.
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Table 1. Categorisation of time stamps as accurate or erroneous based on user inter-
action and server state

Examples of logged HTTP Date responses and PCAP embedded Arrival Time data 
in response to a single user action in comparison to an accurate Real Time Clock (RTC) 

User
Action 

Related / 
Automatic 

Actions 

Description RTC Captured 
HTTP Date 

response

PCAP Log
Entry 

(Server A) 

PCAP Log
Entry 

(Server B) 
User 
requests 
WWW
site 

User visits an
initial website 

08:00:00.00
0 1/1/2000 

Arrival Time: 
08:00:00.000 

Arrival Time: 
11:15:20.012 

User HTTP 
response 

HTTP data are 
returned to the 
user. With 
references to 
related resources 

08:00:01.08
6 1/1/2000 

HTTP.Date:  
1/1/2000
08:00:01 

Arrival Time: 
08:00:01.086 

Arrival Time: 
11:15:21.098 

Browser 
automated 
HTTP requests 

The web browser 
parses the 
returned HTTP 
data, identifies
and retrieves
related resources. 

08:00:01.15
6 1/1/2000 

Arrival Time: 
08:00:01.156 

Arrival Time: 
11:15:21.168 

Ad-server 
response with 
correct 
timestamp 

Additional 
resource retrieved 
from advertising 
server with 
correct HTTP date 
field 

08:00:01.21
0 1/1/2000 

HTTP.Date: 
1/1/2000
08:00:02 

Arrival Time: 
08:00:01.210 

Arrival Time: 
11:15:21.222 

Additional 
content server 
response with 
erroneous 
timestamp 

Additional 
resource retrieved 
from additional 
content/resource
server. 

08:00:01.25
0 1/1/2000 

HTTP.Date: 
1/1/2000
06:55:22 

Arrival Time: 
08:00:01.250 

Arrival Time: 
11:15:21.262 

Additional 
content server 
response with 
timestamp 
removed in 
transit 

Additional 
resource retrieved 
via proxy which 
manipulates or 
removes
timestamp 

08:00:02.10
0 1/1/2000 

HTTP.Date: 
(not set) 

Arrival Time: 
08:00:02.100 

Arrival Time: 
11:15:22.112 

Indicates agreement between the captured 
evidence and RTC 
Indicates a timing error or discrepancy

4 Proposed Time-Stamp Analysis Scheme

The Network Time Protocol (NTP) allows computer devices to remain in syn-
chronisation not simply within local networks but also across corporate as well
as geographical borders. In theory, devices that have their clocks synchronised
through the NTP protocol should be accurate to within a few seconds. Unfor-
tunately, due to misconfigurations or errors this isn’t always the case. Thus,
network timestamps will vary from highly accurate to significantly inaccurate or
in error.

As the timing signal observed from remote server packets is destined to
progress at a constant and linear rate, it is easy to convert our timing data
down to a single-dimension which represents the offset from the perceived start-
of-capture time i.e., the PCAP time of origin (T0). Because the accurate timing
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beacons are more likely to agree on a similar value, the distribution of perceived
T0 will peak at the real T0 (Fig. 4). Variance in the peak distribution indicates
a disagreement between the Real-Time-Clock and a mass of 3rd party timing
beacons.

Normalising of the timing signal to remove outliers can be achieved through
any number of noise reduction methods. We examine the use of k-means clus-
tering as well as statistical analysis to determine the most reliable method for
identifying ‘good’ remote servers with a high degree of probability, where ‘good’
remote servers refers to those servers that report high accuracy timing data.

Timestamp data may be inserted in to metadata or traffic payload for iden-
tification of the data’s age. The data may represent the real-item, or it may
represent another “arbitrary” time. Real timing data would identify the time of
creation of the data point; this indicates an attempt to transmit a time that can

Fig. 2. Flowchart representing the data correlation procedure adopted for time stamp
analysis
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be used to determine factors such as the data’s age. Arbitrary time may repre-
sent events that have either occurred in the past or will occur in the future: it
may be set through a predefined formula, such as the current time plus one-hour.

In addition, arbitrary time may reflect a particular point in time for example,
the closing date for student course enrolment; or it may reflect an event in the
past. Consideration must also be given to erroneous timestamps that may arise
through multiple reasons including inaccurate system clocks or even calculation
errors.

For the proposed scheme, for any given instance of the packet capture, the
current time is determined by adding the time of origin (T0) to the elapsed time
since the beginning of capture, where the value T0 is unknown. Subsequently,
3rd party timing data is subtracted from the elapsed time to determine the
final value. Subsequently, the test data is subject to normal distribution fit. If
the data that remains after this particular iteration is normally distributed, the
mean T0 is estimated and the calculated T0 is validated. Otherwise, if the data
does not fit a normal distribution, the data within (±1) standard deviation of
the median is kept based on empirical observations and the remainder discarded.
The process is iteratively repeated on the remaining data until they approach a
sufficiently normal distribution.

In Fig. 2, we illustrate the scheme that we present for data filtering. As can be
seen from the figure, the data is initially captured and stored in PCAP format.
For each data sample/point captured, the T0 value is first calculated as the
HTTP.date minus the elapsed time.

5 Experiments and Analysis

5.1 Experimental Setup

A virtual machine environment was configured with the Firefox web browser
(Mozilla Firefox 39.0). The English language dictionaries were also installed. A
Linux shell script was created that extracts a random English language word
from the Linux user dictionary wordlist [1,11] and performs an “I’m feeling
lucky” search using Google. This implies that for most searches, the top-ranking
page is returned immediately and the browser is re-directed to it.

The Google search was crafted to exclude the terms for “Wikipedia”, “Wiki”,
and “Dictionary”; this was done to eliminate excessive user traffic to these sites,
which were observed to occur frequently due to the nature of searching for un-
common words. The simulated web-browsing activity was set up to retrieve a
random site, allowing it to load for 20 to 40 s then quit and retrieve the next
website.

A virtual machine with a random Internet browsing client was configured
to access a new website every 20–40 s, this random load/wait cycle provided
enough time for most page content to load entirely, i.e. enough time for the
HTML page source to load, and the client side javascript to trigger and HTTP
requests-response pairs for 3rd party and rich media content to be captured. A
separate logging server was configured on the host machine.
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The logging server captured network traffic from the simulated Internet
client. The data were extracted and analysed using the R programming lan-
guage [12]. The host machine was synchronised with a Stratum 1 NTP server
operated by the Australian National Measurement Institute [10]; this ensured
high clock accuracy. tcpdump was used to extract packet capture data for ten-
minute blocks. The packet capture was configured to filter all traffic not originat-
ing or destined for the virtual machine that was simulating the browsing activity.
Each tcpdump packet capture of browsing activity was also stamped with NTP
clock statistics for the logging server. Packet captures were only included in the
sample data where the logging server accuracy was better than or equal to 10ms
from the Stratum 1 NTP servers.

It was hypothesized that accurate timing data obtained from 3rd party
servers would be distributed around a ‘high’ central peak distribution. The
packet capture timing data were extracted from twenty automated 10-minute
browsing sessions. The HTTP timestamp, and the RTC timestamp data were
extracted from the packet captures. The HTTP timestamp was compared to
the RTC timestamp. A time-difference value was calculated for each timestamp
received by subtracting the RTC recorded timestamp on the observed packet.

Td = Th + 0.5 − Tr − Tl (1)

where: Td is the time-difference (error) equivalent to the HTTP timestamp (Th)
plus 0.5 s; minus the RTC timestamp (Tr); minus the reported latency (Tl). The
value of 0.5 is added because the HTTP headers have an error tolerance of 1 s
and was observed to not ignore the floor of the value of the embedded HTTP
time field.

Data for each automated packet capture were tested for goodness of fit
against a standard normal distribution. The absolute error |Td| was progressively
reduced by extracting subsets of data at |Td| (Un-filtered, 120, 60, 30, 15, 5, 2).
The subset data were compared to normal distributions using a Kolmogorov–
Smirnov goodness-of-fit test. The mean error and 95 % confidence interval values
were recorded for each subset of data.

Verification of the process was done by testing datasets in the absence of RTC
timestamp (Tr) data, utilising the median timestamp Th as an initial estimate
of signal centrality, testing for normality, discarding outliers, and then repeating
as per Fig. 2.

5.2 Results Analysis

By examining the distribution of timing beacons with reduced absolute error,
we were able to eliminate outliers and examine the distribution of ‘known &
acceptable’ timing data. Each iteration tested the distribution of the HTTP
timestamp on either side of the accurate RTC timestamps by a reduced margin
of absolute error. The resulting time errors for 4 types of experiments, namely,
unfiltered data, +/− 120 s, +/− 10 s and +/− 2 s are presented in Fig. 3. As
the absolute error on |Td| was reduced, the distribution approached normal; this
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can be seen as in the improvement of Q-Q and P-P probability plots of observed
data vs normally distributed data in Fig. 3.

Typically data with a |Td| maximum less than 10 s was found to fit a nor-
mal distribution when tested using a (Kolmogorov-Smirnov goodness of fit test
p > 0.1). While other data from similarly size slices did not. This indicates that
when the maximum error was reduced, the data approached a normal distribu-
tion. The intuition for this can be summarised as follows: most servers are likely
to have their clocks in general agreement with global master clocking sources
and where remote servers have no such clock agreement, the reported times
were found to digress from the norm unpredictably. Or in terms of reliable wit-
nesses to an event: reliable witnesses will agree when an event occurred, those
that disagree will disagree unpredictably. Timing data were found to be either
accurately distributed around the RTC or highly inaccurate with errors ranging
from minutes to years.

As can be seen from Table 2 and Fig. 3, the data shows a strong and tight
correlation to the accurate RTC signal present in the packet capture data; most
importantly, the data show a high correlation in the T0 region. This indicates
that it is possible to use 3rd party timing beacons to ensure the quality and
accuracy of the logging RTC; or, where the RTC is absent or known to be
inaccurate, 3rd party timing beacons can be used to calculate an estimated
RTC with a high degree of accuracy.

Packet capture data frequently includes a packet capture elapsed time
Telapsed value for each recorded packet. Telapsed represents the elapsed time since
the beginning of the capture window. As there is a known duration between 3rd
party timing beacon events, it is possible to collapse all timing data to a single
time-difference Td ‘error’ dimension; i.e. each Th timestamps deviation from the
linear progression of the RTC timestamp Tr. It is also clear that the ‘start of
capture’ time can be determined by subtracting any known accurate RTC value
from Telapsed.

T0 = Tr − Telapsed (2)

In the absence of an RTC, timing beacon events can be used to calculate
a T0 estimate (T0est) using the arithmetic mean after repeating the method
of progressively removing outliers until T0est is normally distributed and the
confidence interval is within an acceptable range for the data being investigated.

T0est =
1
n

n∑
i=1

Th(i) − Telapsed(i) (3)

The results show that an efficient algorithm for identifying accurate 3rd party
timing beacons within PCAP data can be achieved by reducing timestamps to
a single dimension array containing T0 estimates from multiple sources; and
repeatedly eliminating outliers until the remaining data approaches a normal
distribution fit. This was confirmed through testing to evaluate T0 without
knowledge of RTC values using the process outlined in Fig. 4.
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Fig. 3. Data approaching normal distribution as outlying data are discarded

Fig. 4. Reduction of 3rd party timing beacons extracted from HTTP time to
1-Dimensional array and the resulting probability density histogram
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Table 2. Testing of method to identify T0 from a PCAP file utilising only 3rd party
timing data

Test file T0est(3rdparty) Actual T0 (RTC time) Error (s)

1. pcap.txt 05:30:44.665 05:30:44.721 −0.056

2. pcap.txt 05:35:44.310 05:35:44.739 −0.429

3. pcap.txt 05:40:44.288 05:40:44.769 −0.481

4. pcap.txt 05:45:46.062 05:45:44.750 1.312

5. pcap.txt 05:50:43.871 05:50:44.228 −0.357

6. pcap.txt 20:27:33.868 20:27:34.594 −0.726

7. pcap.txt 20:37:34.099 20:37:34.693 −0.594

11. pcap.txt 21:17:39.244 21:17:36.722 2.522

12. pcap.txt 21:27:39.752 21:27:36.258 3.494

13. pcap.txt 21:37:39.348 21:37:36.118 3.230

14. pcap.txt 21:47:35.495 21:47:36.176 −0.681

15. pcap.txt 21:57:41.273 21:57:37.306 3.967

16. pcap.txt 22:07:36.941 22:07:37.364 −0.423

17. pcap.txt 22:17:37.907 22:17:37.181 0.726

18. pcap.txt 22:27:38.013 22:27:38.315 −0.302

21. pcap.txt 22:57:42.243 22:57:39.681 2.562

22. pcap.txt 23:07:38.849 23:07:39.396 −0.547

23. pcap.txt 23:17:39.412 23:17:39.384 0.028

24. pcap.txt 23:27:38.768 23:27:39.293 −0.525

25. pcap.txt 23:37:39.558 23:37:39.919 −0.361

26. pcap.txt 23:47:39.483 23:47:40.103 −0.620

Mean squared error: 2.705

Note: missing capture files failed import or parsing in the Python
script due to data errors not related to time

Results as illustrated in Table 2 show the performance of T0 estimation with
absent RTC data using the procedure outlined in Fig. 2. We successfully iden-
tified T0 with a high degree of accuracy using only the 3rd party HTTP time
data. T0 and T0est varied by a maximum of 4 s, with a mean squared error of
2.7 s.

6 Conclusions

Through this paper we demonstrated that 3rd party servers provide an accurate
timing signal that may be used to independently verify local forensic timing
data; and, where local timing data is not present or inaccurate, the agreement
between several 3rd party servers can be used to accurately estimate the timing
of events required for forensic examination of evidence.
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HTTP response headers frequently contain a date field supplied by 3rd party
servers. The quality of the data from individual servers varies from accurate
within a few seconds, to wildly inaccurate. The 3rd party time data were found
to cluster around the real-time value; servers within a margin of error ±10 s
was found to be normally distributed around the accurate real time clock. This
indicated that a statistical sampling of server responses could prove to be useful
for excluding data obtained from inaccurate servers through the HTTP date
responses.

We tested the statistical analysis method for examining and classifying 3rd
party HTTP time stamp data as accurate or erroneous, and provided validation
that 3rd party timing data may be a viable resource for forensic investigators.
The opportunity exists to extend the analysis to other timing sources embedded
in network packets. It may be possible to detect a wide range of timing data
using simple regular expressions, and subsequently apply the filtration processes
described in the paper to include only data that accurately reflects the time.
Other methods of clustering, noise-reduction, and outlier reduction may also be
examined as part of future work.
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Abstract. Pubilc Key Encrytion with Keyword Search (PEKS) scheme
allows users to search encrypted messages by using a particular keyword
without leaking any information. Practically, users might need to relate
multiple keywords to one message. To effectively encrypt multiple key-
words, Baek et al. first presented a PEKS scheme with multiple keywords
(MPEKS). In this paper, we come up with a new efficient secure chan-
nel free PEKS scheme with multiple keywords named SCF-MPEKS. We
give formal definitions and a concrete construction of SCF-MPEKS. The
proposed SCF-MPEKS scheme is secure in the presented models of indis-
tinguishability for SCF-MPEKS. Our scheme removes the secure channel
assumption between the server and the receiver, which has much better
performance in terms of both computational and communication over-
head than Baek et al.’s MPEKS scheme for building a secure channel is
very costly.

Keywords: Pubilc key encrytion · Keyword search · Multiple key-
words · Secure channel free

1 Introduction

With the amazing speed of development of cloud computing, more and more
enterprises and individuals choose to store data in the cloud to achieve lower costs
and more efficient management. However, the confidentiality and privacy of data
cannot be guaranteed when the user uploads some of his own sensitive data, to an
untrusted cloud server, since the untrusted cloud server can directly view, delete,
or even leak the sensitive data uploaded by the user. To protect the security of
data, a user usually needs to encrypt the data before uploading the data into the
server. A practical example is the personal health records (PHR) system [12–15].
The personal health records (PHR) system is an emerging patient-centric plat-
form of health information exchange, which is usually outsourced to be stored
at a third party, such as cloud service providers. Although it is very convenient
c© Springer International Publishing AG 2016
J. Chen et al. (Eds.): NSS 2016, LNCS 9955, pp. 251–265, 2016.
DOI: 10.1007/978-3-319-46298-1 17
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to facilitate the management and sharing of patients’ personal health informa-
tion (PHI) in the cloud computing environment, there has been big concerns on
security and privacy matters as the sensitive personal health information could
be exposed to these untrusted third party servers. To ensure the patients control
over access to their own privacy, it is a promising solution to encrypt the PHRs
before outsourcing. However, when patients’ PHR files are encrypted, it produces
another problem of a PHR system, that is how users can perform search over
the encrypted data to find some patients’ information. For instance, a medical
researcher may want to find out fellow patients with the same disease and symp-
toms in order to do further investigation. A naive solution for him is to download
the whole data base, then he should try to decrypt all encrypted records to find
his target data. This is undoubtedly time-consuming and inefficient for it needs
a large amount of calculation overhead to decrypt and too much of his device’s
space to store the data. To achieve the goal of retrieving on encrypted data
directly, searchable encryption [5,8,10,16] has been proposed as a promising
method. The basic idea is to build an encrypted keyword indexes appended to
the encrypted documents. At this time, users can retrieve the encrypted data
with certain keywords. For example, when a medical researcher wants to find
out fellow patients with the same disease and symptoms, he can submit a query
request like “age = 20”, “sex = male” and “ilness = birdflu” to the server. The
server can help find out the corresponding patients’ encrypted documents and
returns them to him without learning anything else about the query including
the keywords. In recent years, except the application in PHRs system, searchable
encryption study has improved rapidly. More and more schemes [2,5,9,10,17,18]
are designed to satisfy users’ increasing requirements of query types and focus
on improving the search efficiency. And all of them can be divided into two
different kinds of searchable encryption techniques, one is the “Searchable Sym-
metric Encryption” scheme and the other one is the “Searchable Asymmetric
Encryption” scheme. Both of them have respective importance in functions and
properties. In a symmetric searchable encryption system [8,16,17], a user can
retrieve his own encrypted data with a certain keyword from the server. Unfor-
tunately, they cannot be used to retrieve the encrypted data from the third
party, which means that they can not be applied in many practical applica-
tions. Considering the scenario of an email routing system. Suppose Alice has
a number of devices: mobile phones, laptops, pagers, etc. Now she is on a holi-
day from work and wishes to read only urgent emails that require her attention
but not all of them. At this time, Alice’s mail gateway is supposed to route her
emails containing the keyword “urgent” to her pager equipped with her. That
is to say, the mail gateway should be given the ability by Alice to define which
email matches to the keyword “urgent” and help Alice to pick out corresponding
emails. To preserve the security and privacy of emails from even inside attackers
such as an untrusted mail server, her public key will be used to encrypt emails
sent to her. So how to pick out the encrypted emails directly without showing
any other information about her emails to the untrusted server is a significant
research project. To address this issue, Boneh et al. [5] first proposed public key
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encryptions with keyword search scheme (PEKS). In their scheme, the user Bob
wishes to send an email M with keywords w1, · · · , wn to user Alice. Bob first
encrypts the email M using Alice’s public key. He then appends ciphertexts of
keywords PEKS(pkA, w1), · · · , PEKS(pkA, wn) to the encrypted email. After
that, Bob sends the ciphertexts with the following form to Alice’s mail server:

E(pkA, M) ‖ PEKS(pkA, w1) ‖ · · · ‖ PEKS(pkA, wn)

where pkA is Alice’s public key. Alice could send the server a trapdoor Tw of
the “business”, if Alice wants to select some emails containing the keyword
“business”. The server can help find out the emails that contain the keyword
“business” using the information of the Tw. More generally, whenever Alice wants
to conduct search on her encrypted emails receiving from anyone knowing Alice’s
public key, she can achieve this by sending the server a certain trapdoor Tw to
test which email contains the keyword w. Upon receiving the PEKS(pkA, w′)
ciphertest and the corresponding Tw, the server can check whether w = w′. An
idea PEKS system should ensure that during the whole search procedure, the
server can only learn the result about whether w = w′ and obtain nothing more
about w itself and the email body.

Just as discussed in the above, Boneh et al.’s [5] PEKS scheme can be applied
in the email routing system. In this mechanism, user Alice achieves her goal of
searching for the encrypted emails that include the keyword w by giving the
server the trapdoor associated with w, while the PEKS value reveals nothing else
about the message to the server and other parties. In addition to this application,
Waters et al. [18] pointed out that the PEKS scheme can be used to construct
an encrypted and searchable audit log system.

However, Boneh et al.’s [5] PEKS scheme needs a secure channel between the
server and the receiver, for it is not safe if trapdoor is transferred through the
public network. But as stated in [2], building a secure channel using established
techniques such as Secure Socket Layer (SSL) is costly and may not be suitable
for all situations. In [2], Baek et al. first presented the notion of “secure channel
free PEKS scheme” (SCF-PEKS) which deletes the secure channel by making
the server keep its own public/private key pairs. In the SCF-PEKS scheme, Bob
may encrypt the email using Alice’s public key and the server’s public key. Only
the server’s corresponding private key can execute the test algorithm.

Furthermore, in the real-life application, users often need to attach several
keywords to one message. For example, if Alice wants to search an email from
“Bob” on “Monday”, both “Bob” and “Monday” should be used as keywords.
Surely, we can relate appropriate amount of keywords to one message to satisfy
our searching requirements. For this reason, it usually requires a number of key-
words in an email to support the user’s searching, furthermore, all the keywords
need to be encrypted and it is very important to create a simple and efficient
PEKS ciphertexts for multiple keywords to minimize the computation and stor-
age overhead. In [5], Boneh et al. suggested one can simply create the PEKS
ciphertexts with the form of “E(pkA, M) ‖ PEKS(pkA, w1) ‖ · · · ‖ PEKS(pkA,
wn)”. However, no formal definition for PEKS scheme with multiple keywords
was proposed in [5]. To solve this issue, Baek et al. [2] provided the notion
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of “PEKS scheme with multiple keywords” (MPEKS). They achieved the goal
of encrypting multiple keywords efficiently by using the randomness re-use tech-
nique [3,11]. They defined the security notion for MPEKS and proved its security
in the random oracle model.

We come up with a new efficient secure channel free searchable encryption
scheme with multiple keywords (SCF-MPEKS) by integrating the notions of
“SCF-PEKS” and “MPEKS” in this paper. Compared with Baek et al.’s [2]
MPEKS scheme, our scheme does not need any secure channel and gives a better
performance than Baek et al.’s MPEKS scheme.

The rest of the paper is organized as follows. In Sect. 2, we go through the
bilinear map and hardness assumptions required by the paper. In Sect. 3, we
propose formal definitions of SCF-MPEKS and its security model. In Sect. 4, we
describe our SCF-MPEKS scheme, discuss its efficiency, and prove its security
in the random oracle model. Finally, we conclude this paper in Sect. 5.

2 Preliminaries

2.1 Bilinear Map

Let G1 and G2 be two cyclic groups of large prime order p. Let g be a generator
of G1. We say that a map ê : G1 × G1 −→ G2 is an admissible bilinear map if it
satisfies the following three properties:

1. Bilinear: ê(Rα
1 ,Rβ

2 ) = ê(R1,R2)αβ for all R1,R2 ∈ G1, and α, β ∈ Zp.
2. Non-degenerate: If g is the generator of G1, then ê(g, g) is the generator of

G2.
3. Computable: There is an efficient polynomial time algorithm to compute

ê(R1,R2) for any R1,R2 ∈ G1.

We can obtain the above bilinear map such as modified Weil or Tate pairing [6]
from certain elliptic curves.

2.2 Complexity Problems

Now, let we go through two complexity problems: q-Bilinear Diffie-Hellman
(BDH) [6] problem and Bilinear Diffie-Hellman Inversion (BDHI) [4,19] problem.

Bilinear Diffie-Hellman Problem (BDH): Given g, gα, gβ , gγ ∈ G1 as input,
where α, β, γ

R← Zp, output ê(g, g)αβγ ∈ G2. We define the advantage of an
algorithm A to solve the BDH problem in G1 as ε if

Pr[A(g, gα, gβ , gγ) = ê(g, g)αβγ ] ≥ ε.

Definition 1. We say that BDH is intractable if no polynomial time algorithm
has a non-negligible advantage ε in solving BDH.
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1-Bilinear Diffie-Hellman Inversion Problem (1-BDHI): Given (g, gx)
∈ G2

1, where x
R← Zp, output ê(g, g)1/x ∈ G2. We define the advantage of an

algorithm A to solve the 1-BDHI problem in G1 as ε if

Pr[A(g, gx) = ê(g, g)1/x] ≥ ε.

Definition 2. We say that 1-BDHI is intractable if no polynomial time algo-
rithm has a non-negligible advantage ε in solving 1-BDHI.

3 A Secure Channel Free PEKS Scheme with Multiple
Keywords (SCF-MPEKS)

3.1 Generic Model for SCF-MPEKS

Similar to the scheme in [5], three entities called “sender”, “receiver” and
“server” are involved in our construction. The sender uses the server’s pub-
lic key and the receiver’s public key to generate MPEKS ciphertexts and sends
MPEKS ciphertexts to the server. The server receives MPEKS ciphertexts and
performs search upon receiving the trapdoors from the receiver. The receiver cre-
ates trapdoors and sends them to the server via a public network. Now we define
a formal SCF-PEKS scheme with multiple keywords (SCF-MPEKS) consisting
of the following five polynomial-time algorithms:

1. KeyGenreceiver(λ): Takes a security parameter λ as input and returns the
receiver’s public and private key pair (pkr, skr).

2. KeyGenserver(λ): Takes a security parameter λ as input and returns the
server’s public and private key pair (pks, sks).

3. SCF-MPEKS(pkr, pks, W ): Takes the receiver’s public key pkr, the server’s
public key pks and a keyword-vector W = (w1, w2, · · · , wn) as input,
and returns a searchable MPEKS ciphertext S of W , we write S = SCF-
MPEKS(pkr, pks,W ).

4. Trapdoor(skr, w): Takes the receiver’s secret key skr and a keyword w as
input, and returns a trapdoor Tw.

5. Test((pkr, sks, S, Tw): Takes the receiver’s public key pkr, the server’s private
key sks, the searchable encryption S = SCF-MPEKS(pkr, pks,W ) and the
trapdoor Tw as input, and returns “1” if W includes w, and “0” otherwise.

3.2 Consistency Definition for Our SCF-MPEKS Scheme

Here, we will define the consistency of our SCF-MPEKS scheme as discussed
in [1]:

Definition 3. Let B be an adversary and λ a security parameter. We consider
the experiment ExpSCF-MK-consist

B (λ) addressed in [1]: If there exists a keyword
w′ �= w, where w ∈ W , and Test function outputs 1. We define the advantage of
B as AdvSCF-MK-consist

B (λ) as follows:

AdvSCF-MK-consist
B (λ) = Pr[ExpSCF-MK-consist

B (λ) = 1].

The proposed SCF-MPEKS scheme is to be computationally consistent if the
advantage AdvSCF-MK-consist

B (λ) is negligible for all polynomial-time adversaries.
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3.3 Adversarial Models for SCF-MPEKS

As discussed in [2], we say that a SCF-MPEKS scheme is SCF-MPEKS cipher-
texts secure if it satisfies the following two conditions:

– A malicious server cannot distinguish which MPEKS ciphertexts matches
which keyword if it has not obtained the corresponding trapdoor for the key-
word.

– A malicious outside attacker(including the receiver) cannot make any decision
about the MPEKS ciphertexts even if he can generates all trapdoors for any
keyword of his choice.

Now, we formally define the security models for our SCF-MPEKS scheme.
Let two polynomial time algorithms A1 and A2 be chosen keyword adversaries
against a SCF-PEKS with multiple keywords (SCF-MPEKS) scheme. We will
define the indistinguishability of secure channel free PEKS with multiple key-
words against chosen keyword attacks (IND-SCF-MK-CKA) via the following
two games between the adversary A1(or A2) and the challenger C:

Game1: Assume that A1 is a malicious server.

1. The KeyGen(λ) algorithm is run by the challenger C to generate public and
private key pair (pkr, skr) and (pks, sks) for the receiver and server, respec-
tively, where λ is a security parameter. It gives the server’s key pair (pks, sks)
to the attacker A1 as well as the receiver’s public key pkr

2. Adaptively, the adversary A1 can ask C for the trapdoor Tw for any keyword
w ∈ {0, 1}∗ of his choice.

3. A1 sends two new keyword-vector pairs (W0, W1) on which it wishes to be
challenged to C, where W0 = (w01, · · · , w0n) and W1 = (w11, · · · , w1n). A1

has not queried both components of W0 and W1. Upon receiving this, C
chooses a random β ∈ {0, 1} and creates a target MPEKS ciphertext Sβ =
SCF-MPEKS (pkr, pks,Wβ) and returns it to A1.

4. A1 can continue to ask C for the trapdoor of any keyword except the chal-
lenged keyword-vectors W0 and W1.

5. Eventually, A1 outputs its guess β′ ∈ {0, 1} and wins the game if β = β′.

The success of a chosen keyword adversary A1 winning the above game is defined
as

SuccIND−SCF−MK−CKA
SCF−MPEKS,A1

(λ) = |Pr[β′ = β] − 1/2|.
Game2: Assume that A2 is a malicious outside attacker.

1. The KeyGen(λ) algorithm is run by the challenger C to generate public
and private key pair (pkr, skr) and (pks, sks) for the receiver and server’s,
respectively, where λ is a security parameter. It gives the receiver’s key pair
(pkr, skr) to the attacker A2 as well as the server’s public key pks.

2. A2 can adaptively ask C for the trapdoor Tw for any keyword w ∈ {0, 1}∗ of
his choice.
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3. A2 sends two new keyword-vector pairs (W0, W1) on which it wishes to be
challenged to C, where W0 = (w01, · · · , w0n) and W1 = (w11, · · · , w1n). The
challenger C chooses a random β ∈ {0, 1} and creates a target MPEKS cipher-
texts Sβ = SCF-MPEKS (pkr, pks,Wβ) and returns it to A2.

4. Eventually, A2 outputs its guess β′ ∈ {0, 1} and wins the game if β = β′

The success of a chosen keyword adversary A2 winning the above game is defined
as

SuccIND−SCF−MK−CKA
SCF−MPEKS,A2

(λ) = |Pr[β′ = β] − 1/2|.
Definition 4. The SCF-MPEKS scheme is said to be IND-SCF-MK-
CKA secure under chosen keyword attacks if SuccIND-SCF-MK-CKA

SCF-MPEKS,A1
and

SuccIND-SCF-MK-CKA
SCF-MPEKS,A2

are negligible in λ.

4 Proposed SCF-MPEKS Scheme

4.1 Construction of SCF-MPEKS

Let G1 and G2 be two cyclic groups of large prime order p, a map ê: G1×G1 → G2

a bilinear map. Let g be the generator of G1. We make use of two one-way and
collision-resistant hash functions H1: {0, 1}∗ −→ G1 and H2: G2 −→ {0, 1}log p.
The scheme is described as following:

1. KeyGenreceiver(λ): Take the security λ as input. Choose a random value x ∈
Z∗

p , a generator g of G1 and computes X = gx. It outputs the receiver’s public
key pkr = X and secret key skr = x.

2. KeyGenserver(λ): Take the security λ as input. Choose a random value y ∈ Z∗
p ,

a generator g of G1 and computes Y = gy. It outputs the server’s public key
pks = Y and secret key sks = y.

3. SCF-MPEKS(pkr, pks W ) where W = (w1, . . . , wn): Choose two randomly
values r ∈ Z∗

p and compute S = (U, V1, . . . , Vn) such that U = Xr, V1 =
H2(ê(H1(w1), Y )r), . . . , Vn = H2(ê(H1(wn), Y )r). It outputs S as a MPEKS
ciphertext.

4. Trapdoor(skr, w′): Compute Tw′ = H1(w′)1/x and output Tw′ as a trapdoor
for a keyword w′.

5. Test((U, Vi), sks, Tw′) for i ∈ {1, . . . , n}: If H2(ê(T
y
w′ , U)) = Vi holds, output

“1”, and “0” otherwise.

4.2 Consistency Proof and Performance Analysis

Consistency Proof. Here, we will show that our SCF-MPEKS scheme satisfies
the computational consistency. For some i ∈ {1, . . . , n}, w.l.o.g, we take i = 1,
supposed w′ = w1, computational consistency of the scheme is easily proved as
follows:
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H2(ê(T
y
w′ , U)) = H2(ê(H1(w′)

y
x ,Xr))

= H2(ê(H1(w′)
y
x , gxr)

= H2(ê(H1(w′), gy)r)
= H2(ê(H1(w′), Y )r)
= H2(ê(H1(w1), Y )r)
= V1.

From the above equation, we can see that if w′ �= w1, then the equation holds
with a negligible probability for the hash function H1 is collision-resistant.

Performance Analysis. We compare the performance of our SCF-MPEKS
scheme with Baek et al.’s MPEKS scheme [2] by showing the time cost of its sub
algorithms. The simulation is conducted using type A pairings in the pairing-
based library (version 0.5.12)1. The conditions of the platform we use are shown
in Table 1. The time cost is shown in Table 2. As shown in the Table 2, the running
time of our scheme is almost the same as Baek et al.’s MPEKS scheme [2], with
a slightly worse performance in the test procedure. However, we remove the
secure channel requirement so that the trapdoor can be transferred directly via
the public network. This in turns reduces the computation and communication
overhead for building a secure channel which is very costly. Therefore, our scheme
achieves a better performance and is more practical in real life.

4.3 Security Proof

Theorem 1. The SCF-PEKS scheme with multiple keywords (SCF-MPEKS)
above is IND-SCF-MK-CKA secure against chosen keyword attacks in Game1
under the random oracle model assuming 1-BDHI problem is intractable.

Proof. Suppose A1 is a malicious server which has advantage ε in breaking the
SCF-MPEKS. Assume A1 makes at most q1 hash function queries to H1, q2
hash function queries to H2 and qT trapdoor queries (Here, assume that qT is
sufficiently large). An algorithm B is going to be constructed to solve the 1-BDHI
problem with probability at least ε′ = ( qT

qT +1 )2n−2 ε
eq2(qT +1) , where e is the base

Table 1. Simulation platform

OS Ubuntu 10.10

CPU Pentium(R) T4400

Memory 2.00 GB RAM

Hard disk 250 GB/5400 rpm

Programming language C

1 http://crypto.stanford.edu/pbc/.

http://crypto.stanford.edu/pbc/
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Table 2. Performances comparison between MPEKS and SCF-MPEKS

MPEKS [2] KeyGenreceiver MPEKS(n = 10) Trapdoor Test

Average time 0.016 s 0.338 s 0.026 s 0.014 s

SCF-MPEKS KeyGenreceiver/KeyGenserver SCF-MPEKS(n = 10) Trapdoor Test

Average time 0.016 s 0.336 s 0.029 s 0.026 s

of the natural logarithm and n is the number of keywords. The running time of
the algorithm B is approximately the same as A′

1s.
On input parameters of pairing (g,G1, G2, ê) and a random instance (g, gx),

algorithm B’s goal is to output R = ê(g, g)1/x. Algorithm B works by interacting
with A1 as follows:

KeyGen. Select a random value y ∈ Z∗
p and computes Y = gy. It starts by

giving A1 the receiver’s public key X = gx and A1’s key pair (y, Y ).

H 1 Queries. A1 can query the random oracle H1 at any time. To respond, B
maintains a list of tuples < wj , lj , ej , νj > denoted as H1-list. The list is empty
initially. When A1 sends the query wi ∈ {0, 1}∗ to the random oracle H1, B
responds as follows:

1. If wi already in the H1 list in a tuple < wi, li, ei, νi >, then H1 = li will be
responded by B.

2. Otherwise, a random coin νi ∈ {0, 1} will be generated by B so that Pr[ci =
0] = 1/(qT + 1). Then a random value ei ∈ Z∗

p will be picked by B.

If νi = 0, B computes li = gei ∈ G1.

If νi = 1, B computes li = (gx)ei ∈ G1.

3. B adds the tuple< wi, li, ei, νi >to the H1 list and responds with H1 = li.

H 2 Queries. To respond to H2 queries, B maintains a list of tuples < κj , Uj >
denoted as the H2-list. The list is empty initially. When A1 queries the random
oracle H2 at a point κj ∈ G2, B responds as follows:

1. If the query κj already appears in the H2-list in a tuple < κj , Uj >, then B
responds with H2(κj) = Uj .

2. Otherwise, B picks up a Uj ∈ {0, 1}logp randomly, and adds the tuple
< κj , Uj > to the H2 list. B responds with H2(κj) = Uj .

Trapdoor Queries. When A1 sends a query for the trapdoor corresponding
to the word wi.

1. B executes the above algorithm for responding to H1 queries to create a tuple
< wi, li, ei, νi >. If νi = 0, then B reports failure and terminates.

2. Otherwise, we know νi = 1 and hence li = (gx)ei . Compute Twi
= gei .

Observe that Twi
= H1(wi)1/x and therefore Twi

is the correct trapdoor for
the keyword wi. B sends Twi

to A1.
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Challenge. Eventually, A1 generates a pair of keyword-vector (W0, W1), where
W0 = (w01, · · · , w0n) and W1 = (w11, · · · , w1n) which is going to be challenged
on. Upon receiving the target keyword-vector, B responds as follows:

1. B chooses a ∈ {1, · · · , n} randomly.
2. B runs the above algorithm for responding to H1-queries to get two tuples

< w0a, l0a, e0a, ν0a > and < w1a, l1a, e1a, ν1a > corresponding to (w0a, w1a).
If both ν0a = ν1a = 1 then B reports failure and terminates. Otherwise, we
can see one of ν0a and ν1a equals to 0, B responds as follows:
– Run the above algorithm for responding to H1-queries 2n − 2 times to

get two vectors of tuples< w01, l01, e01, ν01 >, · · · , < w0a−1, l0a−1, e0a−1,
ν0a−1 >, < w0a+1, l0a+1, e0a+1, ν0a+1 >, · · · , < w0n, l0n, e0n, ν0n > and
< w11, l11, e11, ν11 >, · · · , < w1a−1, l1a−1, e1a−1, ν1a−1 >, < w1a+1, l1a+1,
e1a+1, ν1a+1 >, · · · , < w1n, l1n, e1n, ν1n >. If one of ν0k and ν1k are equal
to 0 for all k = 1, · · · , a−1, a+1, · · · , n, B reports failure and terminates.
Otherwise, B responds as follows:

∗ Chooses β ∈ {0, 1} uniformly at random such that νβa = 1.
∗ B chooses k′ ∈ Z∗

p at random. Let r = k′
yx ∈ Z∗

p for the unknown value x.

Define Va = H2(ê(g, g)
eβak′

x ). Create a target SCF-MPEKS ciphertext S
as follows:

S = (U , V1, · · · , Vn) = (g
k′
y , H2(ê(g, g)eβ1k′

), · · · , H2(ê(g, g)eβa−1k′
),

H2(ê(g, g)
eβak′

x ), H2(ê(g, g)eβa+1k′
), · · · , H2(ê(g, g)eβnk′

).
Note that by the definition of Y , then we can get

Va = H2(ê(g, g)
eβak′

x ) = H2(ê(geβa , gy)
k′
yx ) = H2(ê(H1(wβa), Y )

k′
yx ).

Note also that

Vk = H2(ê(g, g)eβkk′
) = H2(ê(geβk , gy)

k′
yx ) = H2(ê(H1(wβk), Y )

k′
yx ).

for k = 1, · · · , a − 1, a + 1, · · · , n

More Trapdoor Queries. A1 can continue to issue trapdoor queries for key-
words wj with the only restriction wj /∈ W0,W1. B answers these queries as
before.

Output. Eventually, A1 outputs its guess β′ ∈ {0, 1} showing whether the
challenge S is the result of W0 or W1. At this point, B picks a random pair

< κj , Uj > from the H2-list and computes ρ = κ
1

ejk′
j . Then B outputs κ

1
ejk′
j as its

guess for ê(g, g)1/x. (Note that if κj = ê(g, g)
eβak′

x , then κ
1

ejk′
j = R = ê(g, g)1/x)
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Analysis. This completes the description of B. Next we will show that B out-
puts the correct ê(g, g)1/x with probability at least ε′. Firstly, we analyze the
probability that B does not abort during the simulation. Denote ε1 and ε2 as
events that B does not abort during the simulation of the trapdoor queries
and the simulation of the challenge phase. The probability that ε1 happens
is (1 − 1

qT +1 )qT ≥ 1/e. At the same time, the probability that ε2 happens is
(1 − 1

qT +1 )2n−2[1 − (1 − 1
qT +1 )2] ≥ ( qT

qT +1 )2n−2 1
qT +1 . Observe that since A1 can

never issue a trapdoor query for the challenged keyword-vectors, the two events
ε1 and ε2 are independent. Therefore, the probability that B does not abort
during the above simulation is Pr[ε1

⋂
ε2], that is at least ( qT

qT +1 )2n−2 1
e(qT +1) .

Now, supposing B does not abort, then B simulates a real attack game
when A1 issues a query for either H2(ê(H1(w0a), Y )

k′
yx ) or H2(ê(H1(w1a), Y )

k′
yx ).

Let ε3 be the event that in the real attack A1 sends a query for either
H2(ê(H1(w0a), Y )

k′
yx ) or H2(ê(H1(w1a), Y )

k′
yx ), then we will analyze the prob-

ability of the event ε3 happening. Our analysis is based on the hybrid argument
[2]. As discussed in [2], let Hybridk where k ∈ {1, · · · , n} is an event that A1

successfully guesses the keyword of the left part of a “hybrid”MPEKS ciphertext
formed with k, coordinates from wβ followed by (n − k) coordinates from w1−β .
We can get Pr[ε3] = 2

∑n
k=1(Pr[Hybridk] − Pr[Hybridk−1]) = 2(Pr[Hybridn] −

Pr[Hybrid0]) = 2ε. Then A1 issues a query for H2(ê(H1(wβa), Y )
k′
yx ) with proba-

bility ε. Therefore, the value ê(g, g)
eβak′

x will appear on the left hand side of some
pair in the H2-list. B will choose the correct pair with probability at least 1/q2.
Thus, B will generate the right answer with probability at least ε/q2. As B does
not abort during the simulation with probability at least ( qT

qT +1 )2n−2 1
e(qT +1) , we

know that B’s success probability overall is at least ( qT

qT +1 )2n−2 ε
eq2(qT +1) .

Theorem 2. The SCF-PEKS scheme with multiple keywords (SCF-MPEKS)
above is IND-SCF-MK-CKA secure against chosen keyword attacks in Game2
under the random oracle model assuming BDH problem is intractable.

Proof. Assume A2 is a receiver which enjoys advantage ε in breaking the SCF-
MPEKS. Assume A2 makes at most q1 hash function queries to H1, q2 hash
function queries to H2 and qT trapdoor queries. An algorithm B will be generated
to solve the BDH problem with probability at least ε′ = ε/eq2, where e is the base
of the natural logarithm. The running time of the algorithm B is approximately
the same as A′

2s.
On input parameters of pairing (g,G1, G2, ê) and a random instance (g, ga,

gb, gc), algorithm B’s goal is to output T = ê(g, g)abc. Algorithm B works by
interacting with A2 as follows:

KeyGen. Select a value α ∈ Z∗
p randomly, compute X = gα. It starts by giving

A2 the server’s public key Y = ga and A2’s key pair (α, X).

H 1 Queries. A2 can query the random oracle H1 at any time. To respond,
B maintains a list of tuples < wj , lj , ej > denoted as the H1-list. The list is
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empty initially. When A2 queries the random oracle H1 at a point wi ∈ {0, 1}∗,
B answers as follows:

1. If the query wi already in the H1 list in a tuple < wi, li, ei >, then B responds
with H1 = li.

2. Otherwise, B chooses a random value ei ∈ Z∗
p and computes li = gbei .

3. The tuple < wi, li, ei > is added to the H1 list and B responds with H1 = li.

H 2 Queries. To respond to H2 queries, B maintains a list of tuples < κj , Uj >
denoted as H2-list. The list is empty initially. When A2 queries the random
oracle H2 at a point κj ∈ G2, B responds:

1. If the query κj already appears in the H2-list in a tuple < κj , Uj >, then B
responds with H2(κj) = Uj .

2. Otherwise, B selects a Uj ∈ {0, 1}logp randomly, and adds the tuple < κj , Uj >
to the H2 list. B sends H2(κj) = Uj back.

Trapdoor Queries. As A2 sends a query for the trapdoor corresponding to
the word wi, B executes the above algorithm for answering to H1 queries to get
a tuple < wi, li, ei >. Then B computes Twi

= (gbei)1/α and gives Twi
to A2.

Challenge. Eventually, A2 generates a pair of keyword-vector (W0, W1), where
W0 = (w01, · · · , w0n) and W1 = (w11, · · · , w1n) which will be challenged on.
Upon receiving the target keyword-vector, B picks β ∈ {0, 1} uniformly at ran-
dom and generates a target SCF-MPEKS ciphertext as follows:

S = (U , V1, · · · , Vn) = (gαc, H2(ê(gbei , ga)c), · · · , H2(ê(gben , ga)c))

By the definition of Y , then

Vi = H2(ê(gbei , ga)c) = H2(ê(H1(wi), Y )c).

for k = 1, · · · , n.

Output. Eventually, A2 outputs its guess β′ ∈ {0, 1} showing whether the
challenge S is the result of W0 or W1. Then B picks a pair < κj , Uj > randomly

from the H2-list and computes η = κ
1

ej

j . Then B outputs κ
1

ej

j as its guess for
ê(g, g)abc.

Analysis. This completes the description of B. We will show that B outputs the
right ê(g, g)abc with probability at least ε′. Firstly we analyze the probability
that B does not abort during the simulation. Let ε1and ε2 be events that B
does not abort during the challenge phase and A2 issues a query for neither
one of H2(ê(gaei , gb)c), for i = 1, · · · , n. As there is no restriction on the chal-
lenge phase, B does not abort during the challenge phase. Thus, Pr[ε1] = 1.
Finally, it needs to show that during the simulation A2 issues a query for one
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of H2(ê(gaei , gb)c), for i = 1, · · · , n, with a probability of at least 2ε. When ε2
occurs, the bit β ∈ {0, 1} indicates whether S is a SCF-MPEKS ciphertext of
W0 or W1 is independent of A′

2s view. Thus, A2 outputs β′ will satisfy β′ = β
with probability at most 1

2 . By definition of A2, it is clear that in the real
attack |Pr[β′ = β] − 1/2| ≥ ε. We explain that the above two facts imply that
Pr[¬ε2] ≥ 2ε:

Pr[β′ = β] = Pr[β′ = β|ε2]Pr[ε2] + Pr[β′ = β|¬ε2]Pr[¬ε2]
≤ Pr[β′ = β|ε2]Pr[ε2]Pr[ε2] + Pr[¬ε2]

=
1
2
Pr[ε2] + Pr[¬ε2]

=
1
2

+
1
2
Pr[¬ε2].

P r[β′ = β] ≥ Pr[β = β|ε2]Pr[ε2] = 1
2Pr[ε2] = 1

2 − 1
2Pr[¬ε2].

Then ε ≤ |Pr[β′ = β] − 1
2 | ≤ 1

2Pr[¬ε2]. Hence, Pr[¬ε2] ≥ 2ε as required.
Consequently, B will select the correct pair with a probability of at least 1/q2
(here, we can assume that q2 is sufficient large) and thereby the correct answer
with a probability of at least 2ε/q2 ≥ ε/q2. B does not abort with a probability
1, hence, B’s overall probability of success is at least ε/eq2.

5 Conclusion

In this paper, we integrate the notions of “SCF-PEKS” and“MPEKS” schemes
to obtain a new efficient secure channel free searchable encryption scheme
with multiple keywords (SCF-MPEKS). We define the security property-
indistinguishability of SCF-MPEKS and present a concrete scheme. The scheme
is proved to be secure in the random oracle model assuming that the BDH and
1-BDHI problems are intractable. Efficiency analysis shows that our scheme is
more efficient than Baek et al.’s MPEKS scheme.
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Abstract. We consider the problem of searchable encryption scheme
which allows a user to search over encrypted data without decrypting it.
Existing schemes in the symmetric setting only deal with equality search
or a limited similarity keyword search. In this paper, we study Bloom
filter-based searchable symmetric encryption schemes which make search
on encrypted keywords more expressive and flexible, i.e., support fuzzy
search or wildcard search by using multiple wildcard characters. Our
schemes are more efficient than previous solutions on both computation
cost and communication cost. Security of our main construction is ana-
lyzed based on a formal, strong security model for searchable symmetric
encryption.

Keywords: Searchable encryption · Bloom filter · Wildcard

1 Introduction

1.1 Background

Cloud services are spreading rapidly and widely due to advance in computer and
telecommunication technology. Both individual and enterprise users outsource
not only data but also processing to cloud servers for reasons of management cost
and convenience. Because most cloud services are provided by third-party ser-
vice providers, encryption/decryption at the server’s side becomes inappropriate
because the server is not fully trusted. Therefore the data should be encrypted
before outsourced to the cloud storage servers. However, even if the encryption
will ease user’s concerns about data leakage, it also introduces some new prob-
lems: because the encrypted data (or, ciphertext) is not meaningful to the cloud
servers, many useful data operations performed by cloud servers, such as the
search functionality, become infeasible.

Searchable encryption is a technique that allows a client to outsource doc-
uments to an honest but curious server in the encrypted form, such that the
stored documents can be retrieved selectively while revealing as little informa-
tion as possible to the server. Compared with the traditional equality search,

c© Springer International Publishing AG 2016
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which means the keywords which match the query completely hit, to support
various typical users’ searching behaviors and typing habits, advanced search
functionalities also include a wildcard search, in which the keywords that match
any character other than wildcard characters obtain hits, and here wildcard char-
acters (e.g. “?” or “*”) represent any characters; a fuzzy search, in which the
keywords within a certain edit distance from the query obtain hits. As a common
scene, a user may search and retrieve the data of their respective interests using
any keywords they might come up with. For example, after a cloud server admin-
istrator gets error information “Error (code = 131415): an automatic reboot by
Segmentation fault” from one server, he may want to know whether any other
similar errors happened among other servers from numerous log files, which
include similar keywords like “Error (code = 13????): *reboot*”. In such a sit-
uation, search keywords with wildcards (e.g. “*” and “?”) will also be useful
because his search input might not exactly match those preset keywords due to
the lack of exact knowledge about the entire keyword, typing habits, possible
typos, and representation inconsistencies (e.g. “BO BOX ” and “B.O. BOX ”).

In this paper, we study the searchable symmetric encryption (SSE) utilizing
both two kind of wildcards, i.e.,“*” and “?”, to conveniently satisfy users’ various
searching behaviors and requirements in an outsourced cloud environment.

– “*” matches zero or more non-space characters, and it can be used as a
multiple-character wildcard.

– “?” matches exactly one non-space character, and it can be used as a single-
character wildcard.

For example, “he*” will match any word starting with he, such as “he”, “her”,
“help”, “hello”, “helicopter”, and so on. On the other hand, “he?” will only
match three-letter words starting with “he”, such as “hem”, “hen”, and so on.
Wildcard searches over encrypted data enable the cloud server to return results
(e.g. an encrypted document) that match combinations of characters and wild-
cards. Such an advanced SSE scheme using multiple-character wildcard search
will be helpful in the following usecases:
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Wildcard search in a more expressive manner� �

– “*2013*.*, 2013*tokyo*.*, module*.c*”
(Search a file name)

– “PC-MA??TCNZ*6, V83-P?83TS*-NW??”
(Search model numbers of some products)

– “Ta* Ni*, Fa*M* ?hao”
(Search an author name from initial characters)

– “Error (code=????): * reboot * .”
“[Urgent]: troubleshooting * decryption *”
“Bug Report: * func a * error return *”
(Search an important information from a log file)

– “192.168.???.13”
“200?:*:*:1a2b:1a2b”
(Search an IP address)

– “1-*-*, *[Tennodai], Tsukuba, Ibaraki 305-8577 Japan”
(Search an address)

� �

1.2 Related Works

In the literature, searchable encryption is a subject started in 2000 from the work
of Song et al. [SWP00], in which they introduced for the first time a symmet-
ric searchable scheme. They have introduced three basic searchable encryption
security properties: the hidden queries, the controlled searching and the query
isolation. However, their scheme does not appear to be efficient and practical
because the complexity is linear in the number of keywords multiplying the num-
ber of outsourced documents. Later, practical schemes using Bloom filters, which
consider both efficiency and adversary model for searching in encrypted data
were proposed [Goh03,BBH+11,SNS12,ME14]. Goh [Goh03] first introduced an
approach based on Bloom filters. Goh introduced the concept of semantic secu-
rity against adaptive chosen keywords attack (IND-CKA) and a second slightly
stronger security model IND2-CKA. Later, Bösch et al. [BBH+11] proposed a
conjunctive wildcard search scheme over encrypted data and presented a new
security property taking into account an adaptive adversary, called adaptive
semantic security for SSE. Being superior to Goh [Goh03] which mainly sup-
ports only the exact keyword search, [BBH+11] supports flexible conjunctive
wildcard searches, where a conjunction is the union of any number of keywords.
Suga et al. [SNS12] proposed a flexible fuzzy search scheme which supports a
keyword query containing single-wildcard characters based on the subset query
technique [MIP02]. Recently, Mohan et al. [ME14] also proposed a fuzzy key-
word search scheme for similarity search using a single-wildcard character, but
no security model was considered.

Cash et al. [CJJ+13] and Faber et al. [FJ+15] presented another kind of
SSE solution without utilizing the Bloom filter. Their schemes support Boolean
queries on multiple keywords. In particular, [FJ+15] extends the basic Boolean
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query on exact keywords of [CJJ+13] to support wildcard queries, phrase queries,
range queries and substring queries. Compared with their complicated computing
process, our Bloom filter-based schemes that use only hash-based operations will
allow simpler implementations.

1.3 Our Contributions

In this paper, we study advanced wildcard searches over encrypted data and
propose an SSE scheme supporting queries with multiple-character wildcards.
Compared with existing works [Goh03,BBH+11,SNS12,ME14], our scheme sup-
ports a more flexible, expressive query where the server can search for partially
matched encrypted keywords by taking advantage of both the single-character
wildcard “?” and the multiple-character wildcard “*”. Our second construction is
analyzed and proved secure based on a formal model, adaptive semantic security
for SSE, and especially, the second construction prevents an information leakage
threat, called a correlation attack. This approach is much more cost-effective in
terms of both the network traffic and the storage cost than [BBH+11]. Besides,
we also give efficient and secure document update mechanisms of both variants
for practical use in real world applications.

2 Preliminaries

2.1 Definitions and Notations

Bloom Filter [B70]. A Bloom filter (BF) is a space-efficient probabilistic data
structure to represent a set of elements. Usually a Bloom filter is realized by a
bit array and we assume the length of the array is m. Also the filter has several
independent hash functions and here we assume that there are k hash functions
{hi : {0, 1}∗ → [1,m]}1≤i≤k.

An empty Bloom filter is a bit array a of m bits that are set to all 0’s. To
store an element e in the Bloom filter a, we compute hi(e) for 1 ≤ i ≤ k and set
a[hi(e)] to 1 for 1 ≤ i ≤ k. We can perform set membership queries on a Bloom
filter. For example, to see whether a Bloom filter a has an element e, we check
whether all of a[hi(e)]’s are 1’s for 1 ≤ i ≤ k and if so, the Bloom filter includes
e. Similarly we can also perform subset queries. We note that false positives can
happen, but the probability of false positives can be made sufficiently small by
choosing appropriate parameters.

Pseudo-Random Generators. A polynomial time deterministic algorithm
G : {0, 1}n → {0, 1}�(n) is said to be a pseudo-random generator, if for all PPT
D, there exists a negligible function negl(·) such that | Pr

s∈R{0,1}n
[D(G(s)) = 1]

− Pr
r∈R{0,1}�(n)

[D(r) = 1] | < negl(n)

A distribution is pseudo-random if a string chosen according to it cannot be
efficiently distinguished from a random string. The probabilities above are also
over the random bits used by D and the random choices of the seed and the
string r.
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Random Oracle Model [BR93]. All oracle queries, regardless of the iden-
tity of the party making them, are answered by a single function, that is uni-
formly selected among all possible functions. The set of possible functions is
determined by a length function, �out(·), and by the security parameter of the
system. Specifically, given security parameter k we consider functions mapping
{0, 1}∗ → {0, 1}�out(k) to be a random oracle. Security of an ideal system is
defined as usual. That is, an ideal system is considered secure if any adversary
with the given abilities (including oracle access) has only a negligible probability
of success (or only a negligible advantage). We also stress that a random oracle
is a function: if it is queried twice on the same input then the output is the same.

2.2 SSE Syntax

We consider a user U who stores a set of encrypted documents on an honest-
but-curious cloud server S which can be trusted to adhere to the protocols, but
which tries to learn as much information as possible, e.g., what kind of infor-
mation U always accesses. U later may want to retrieve some of the encrypted
documents containing a specific keyword (or, a search expression), from S. To
do so, U first stores both encrypted documents and their secure indexes that
are generated from each keyword that he may search for later, in S. The secure
indexes allow U to search encrypted documents containing a specific keyword.
Then, to search for a specific keyword from S, U creates a trapdoor for that
keyword and sends this trapdoor to the server which then returns the result
indicating which documents match the query. U then decides which of the doc-
uments she wants to retrieve and sends the document IDs to S. S returns the
requested documents. Our searchable symmetric encryption schemes consist of
the following four algorithms:

– Keygen( 1s): Given a security parameter s, Keygen outputs the master private
key K. This algorithm is run by the client.

– BuildIndex(K,D): Given the master key K and a document collection D, the
algorithm outputs an index I. This algorithm is run by the client.

– Trapdoor(K,w): Given the key K and a keyword w, Trapdoor outputs the
trapdoor Tdw for w. This algorithm is run by the client.

– SearchIndex(Tdw, I): Given a trapdoor Tdw for word w and the index I, the
algorithm outputs a bit string which indicates the matched documents. This
algorithm is run by the server.

2.3 Security Model

Security for searchable encryption is intuitively characterized as the requirement
that no information beyond the outcome of a search is leaked. In this paper,
we use the security definitions for searchable symmetric encryption (SSE) from
[CGK+11]. Being different from their original security definitions, in this paper
we extend the definition of a basic “Keyword” to a “Keyword/Token Char-
acteristic Set”, which includes more than one element for supporting a more
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expressive search with one or more wildcard characters. Next, in the following
description of security definitions, we still use the “keyword” to represent the
meanings of both a “Keyword” and an element of the “Keyword/Token Char-
acteristic Set” for simplicity and easy understanding. There are mainly three
auxiliary notions: the history, which defines the user’s input to the scheme; the
server’s view, or everything he sees during the protocols; and the trace, which
defines the information we allow to leak to the server.

An interaction between the client and the server will be determined by a
document collection and a set of keywords that the client wishes to search for
(and that we wish to hide from the adversary). An instantiation of such an
interaction is called a history.

Definition 1 (History). Let W be a dictionary consisting of all possible key-
words. A history Hq,is an interaction between a client and a server over q
queries, consisting of a collection of documents D and the keywords wi used
for q consecutive search queries. The partial history Ht

q of a given history Hq =
(D,w1, ..., wq), is the sequence Ht

q = (D,w1, ..., wt), where t ≤ q.

The server’s view consists of all the information the server can gather during
a protocol run. Basically, the view consists of the encrypted files E(dFIDi

), and
their identifier FIDi, indexes I, and the trapdoors Tdwi

. It will also contain
some additional common information, such as the number of BFs attached to
each specific document, (Nbf1, ..., Nbfn), and if any, the ID sets of existing
BFs of each file, (SetFID1 , ..., SetFIDn), and the position information of all
trapdoors, (Pw1 , ..., Pwq

) where Pwj
= {pos1, ..., posvwj

}, j ∈ [1, q]. Here, {pos1,
..., posvwj

} is named as an abstract position set, where vwj
is a variable which

depends on each wj and is decided by the number of positions to be checked by
the server (e.g., to be checked to see whether the values equal “1”). The server’s
view also includes the real values of bit positions of the indexes that are checked
by the server (because in some case those indexes are masked before sent to
the server, then the real value of each position may be masked). This kind of
information for each wj , called Rwj

, will be learned by the server after executing
a keyword search. Specifically, if a position p is checked for one of the BF s and
the BF[p] did not match while searching the trapdoor of wj , such information
will be recorded in a bit array as BA[p] = 0 otherwise 1 for each BF with a
unique identifier, BIDwj

, such that BABIDwj
= {BA[1], ..., BA[vwj

]}, and Rwj

= {BABIDw1
,..., BABIDwq

}.

Definition 2 (View). Let D be a collection of n documents and let Hq

= (D,w1, ..., wq) be a history over q queries. An adversary’s view under
secret key K of the SSE scheme is defined as VK(Hq) = (FID1, ..., FIDn,
E(dFID1), ..., E(dFIDn), I, Tdw1 , ..., Tdwq

, Nbf1, ..., Nbfn, Pw1 , ..., Pwq
, Rw1 ,

..., Rwq
, SetFID1 , ..., SetFIDn

) The partial view V t
K(Hq) of a history Hq under

secret key K is the sequence V t
K(Hq) = (FID1, ..., FIDn, E(dFID1), ..., E(dFIDn

),
I, Tdw1 , ..., Tdwt

, Nbf1, ..., Nbfn, Pw1 , ..., Pwt
, Rw1 , ..., Rwq

, SetFID1 , ...,
SetFIDn

)
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Definition 3 (Access Pattern). Let D be a collection of n documents and Hq

= (D,w1, ..., wq) be a history over q queries. The access pattern induced by a
q-query history H = (D,w), is the tuple α(H) = (D(w1), ...,D(wq)).

Finally, the trace consists of all the information that we are willing to leak
or the server is allowed to learn. The information includes the file IDs and their
related query words in the history and information that describes which trap-
doors in the view correspond to the same underlying words in the history. The
index and encrypted files are also stored on the server, so the size of files |dFIDi

|,
the length of the a bloom filter |BF | and the number of BF s attached with each
document, (Nbf1, ..., Nbfn), will be leaked. In some case, it may also leak the
ID sets of existing BFs of each file, SetFID1 , ..., SetFIDn

, We add also the
sequence (D(w1), ...,D(wn)) which denotes the access pattern of a client, and
the search pattern Πq of a client as any information that can be derived from
knowing whether two arbitrary searches were performed for the same word or
not to the trace. More formally, Πq can be thought of as a symmetric binary
matrix where Πq[i, x] = 1 if wi = wx, and 0 otherwise, for 1 ≤ i, x ≤ q. Since the
server will search for a keyword by checking the stored BFs (i.e., bit arrays) with
the received trapdoor, the following two kind of information, (1) the abstract
position set of each trapdoor, Pwj

= {pos1, ..., posvwj
} for trapdoor Tdwj

, and,
(2) (Rw1 , ..., Rwq

)1, the real values of each meaningful bit position BF[p] that
are checked by the server (because in some case that indexes are masked before
sent to the server).

Definition 4 (Trace). Let D be a collection of n documents and Hq =
(D,w1, ..., wq) be a history over q queries. The trace of Hq is the sequence Tr(Hq)
= (FID1, ..., FIDn, |dFID1 |,...,|dFIDn |, |BF |, SetFID1 , ..., SetFIDn , Nbf1, ...,
Nbfn, D(w1),..., D(wq), Πq, Pw1 , ..., Pwq

, Rw1 , ..., Rwq
)

We use a simulation-based approach from Curtmola et al. [CGK+11] to intro-
duce the security definition for semantic security. Here we assume the client ini-
tially stores a number of documents and afterwards does an arbitrary number
of search queries. Intuitively, it says that given all the information the server
is allowed to learn (Trace), he learns nothing from the information he receives
(View) about the user’s input (History) that he could not have generated on his
own.

Definition 5 (Adaptive Semantic Security for SSE). An SSE scheme is
adaptively semantically secure if for all q ∈ N and for all (non-uniform) proba-
bilistic polynomial-time adversaries A, there exists a (non-uniform) probabilistic
polynomial-time algorithm (the simulator) S such that for all traces Trq of length
q, and for all polynomially samplable distributions Hq = {Hq : Tr(Hq) = Trq}
(i.e., the set of histories with trace Trq), all functions f : {0, 1}m → {0, 1}�(m)

(where m = |Hq| and �(m) = poly(m)), all 0 ≤ t ≤ q and all polynomials p and

1 The access pattern, i.e., a sequence (D(w1), ..., D(wn)), may be deduced from (Rw1 ,
..., Rwq ).
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sufficiently large k:

| Pr[A(V t
K(Hq)) = f(Ht

q) ] − Pr[S(Tr(Ht
q)) = f(Ht

q)] | <
1

p(k)
where Hq

R← Hq, K←Keygen(s), and the probabilities are taken over Hq and
the internal coins of Keygen, A,S and the underlying BuildIndex algorithm.

3 Our Constructions

We extend the approach of Suga et al. [SNS12] supporting single-character wild-
cards such that we can also use multiple-character wildcards. We assume that
there is an upper bound u of the keyword length in our schemes. In [SNS12],
one Bloom filter (i.e., array) is created from one keyword. For example, if the
keyword is “abc\0”2, a keyword characteristic set {‘1:a’, ‘2:b’, ‘3:c’, ‘4:\0’} is
extracted from the keyword and stored in the Bloom filter. To perform a search
with a search expression “?bc” which means that the second character should
be ‘b’ and the third character should be ‘c’, a search token (which is also a
Bloom filter) is created with a token characteristic set {‘2:b’, ‘3:c’}. As a result,
the search operation is reduced to a subset query on the Bloom filters, and in
this case, the search token “?bc” can match the keyword “abc” because {‘2:b’,
‘3:c’} ⊆ {‘1:a’, ‘2:b’, ‘3:c’, ‘4:\0’}. In [SNS12], only single-character wildcards
(i.e., ‘?’) are supported. We extend how to create keyword/token characteristic
sets to support multiple-character wildcards in the search expressions.

3.1 Keyword/Token Characteristic Sets

We begin by explaining how to create a keyword/token characteristic set from
a keyword with a simple example. First, let’s consider a simple keyword w =
“abcc\0” and its keyword characteristic set SK(w). In our construction, the set
SK(w) consists of two sets S

(o)
K (w), S(p)

K (w), i.e., SK(w) = S
(o)
K (w) ∪ S

(p)
K (w).

The set S
(o)
K (w) is set to {‘1:a’, ‘2:b’, ‘3:c’, ‘4:c’, ‘5:\0’} similarly to [SNS12].

Further the set S
(p)
K (w) consists of two sets S

(p1)
K (w), S(p2)

K (w) that are created
by considering all the pairs of two characters3 (including \0) in w.

More specifically, S
(p1)
K (w) is computed as

S
(p1)
K (w) = {‘1:1:a,b’, ‘2:1:a,c’, ‘3:1:a,c’, ‘4:1:a,\0’, ‘1:1:b,c’, ‘2:1:b,c’, ‘3:1:b,\0’,

‘1:1:c,c’, ‘2:1:c,\0’, ‘1:1:c,\0’}.

For example, the element ‘3:1:a,c’ in S
(p1)
K (w) comes from the subsequence of ‘a’

and ‘c’ (i.e., “abcc”) and the first 3 means the distance between ‘a’ and ‘c’ and
the second 1 means that this is the first appearance of the sequence of ‘a’ and
‘c’ with distance 3.

2 \0 is a null character and we include it in the keyword explicitly.
3 in other words, all the subsequences of length 2.
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Similarly S
(p2)
K (w) is computed as

S
(p2)
K (w) = {‘-:1:a,b’, ‘-:1:a,c’, ‘-:2:a,c’, ‘-:1:a,\0’, ‘-:1:b,c’, ‘-:2:b,c’, ‘-:1:b,\0’,

‘-:1:c,c’, ‘-:1:c,\0’, ‘-:2:c,\0’}.

The element ‘-:2:a,c’ in S
(p2)
K (w) comes from the subsequence of ‘a’ and ‘c’ (i.e.,

“abcc”) and this time we do not specify the distance between ‘a’ and ‘c’, so
we use -, and the second 2 means that this is the second appearance of the
subsequence of ‘a’ and ‘c’ with distance being unspecified. SK(w) is defined as
S
(o)
K (w) ∪ S

(p1)
K (w) ∪ S

(p2)
K (w). Then, the user can query any part she want form

the set SK(w).
Next we explain how to create a token characteristic set from a search

expression with another example, a case that the search expression contains
some wildcard characters. Let’s consider an extended search expression e′ =
“*aa*b(5)*x??z*c(13)*\0” and its token characteristic set ST (e′). First we men-
tion the difference between the search expression in [SNS12] and our extended
one. Similarly the set ST (e′) consists of two sets S

(o)
T (e′), S(p)

T (e′), i.e., ST (e′) =
S
(o)
T (e′) ∪ S

(p)
T (e′). The set S

(o)
T (e′) is set similarly to [SNS12]. Further the set

S
(p)
T (e′) consists of two sets S

(p1)
T (e′), S(p2)

T (e′) that are created by considering
all the pairs of two characters (including null) in e′. The token characteristic set
generation process are described here.

Input: an extended search expression, e.g., e′ = “*aa*b(5)*x??z*c(13)*\0”
Output: a token characteristic set including S

(o)
K (e′), S(p1)

K (e′), S(p2)
K (e′)

1. S
(o)
T (e′) = {‘5:b’, ‘13:c’}. If there is any character with a specific appear-

ance order in the search expression, extract each character with its
appearance order, then add to S

(o)
T (e′).

2. S
(p1)
T (e′) = {‘2:1:x,z’, ‘1:1:a,a’, ‘1:1:a,b’, ‘2:1:a,b’, ‘1:1:z,c’}.

If there is any single-wildcard character(s) “?” sandwiched between two
characters or any consecutive characters, extract all the possible character
pairs then add to S

(p1)
T (e′). Next, if the search expression contains one

or several single-wildcard character(s) ‘*’, extract all subsequence of two-
character pairs together with their specific distance while respecting the
appearance order.

3. Sp2
T (e′) = {‘-:1:a,a’, ‘-:1:a,b’, ‘-:1:a,x’, ‘-:1:a,z’, ‘-:1:a,c’, ‘-:1:a,\0’,

‘-:2:a,b’, ‘-:2:a,x’, ‘-:2:a,z’, ‘-:2:a,c’, ‘-:2:a,\0’, ‘-:1:b,x’,
‘-:1:b,z’, ‘-:1:b,c’, ‘-:1:b,\0’, ‘-:1:x,z’, ‘-:1:x,c’, ‘-:1:x,\0’,
‘-:1:z,c’, ‘-:1:z,\0’, ‘-:1:c,\0’ }.
Remove all “?” and “*” from the search expression to form a new string,
e.g. aabxzc\0. Then extract all possible two-character pairs, and set its
appearance order if there exists a duplicated pair.
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3.2 First Construction with Higher Efficiency but Weaker Security

We first introduce the first construction which supports efficiently the updateable
search on encrypted documents. Since the same keyword (or, element of the token
characteristic set) will be translated to the same BF for all documents, the degree
of BF similarity (which also means document similarity) is not protected in
this scheme although the higher efficiency is realized compared with our second
construction.

– Keygen(1s): Given a security parameter s, generate a secret master key K =
{k1, k2, ..., kr}, consisting of r independent secret keys.

– BuildIndex(K,D): The input is the master secret key K and a document
collection D consisting of a set of n documents. FIDi denotes the file identifier
of a specific document dFIDi

, where i ∈ [1, n]. For each document, generate a
list of all its keywords and their attached keyword characteristic sets SK(w) =
{e1, e2, ..., e�} as described in Sect. 3.1. This construction prepares one Bloom
filter per keyword characteristic set. The index thus can be represented as an
m × b binary matrix where m means the number of keywords in a document
and b is the size of a single Bloom filter in bits. To generate the Bloom filters
for each SK(w) of the documents D and then to output the index, the user
executes the following processes:

1. For each element ej (j ∈ [1, �]) in SK(w):
(a) Generate its trapdoor: Tdej

= {pos1, pos2, ..., posr}, where posx =
RO(kx, ej) for x ∈ [1, r]. RO means a hash function modeled as a
random oracle [BR93].

(b) Set the Bloom Filter BF : Set the bits at the positions of Tdej
in its

BF to 1.
2. Create the index IFIDi

from all BFs: IFIDi
= (BF1, ..., BFm)T.

– Trapdoor(K,w): Given the key K = {k1, k2, ..., kr}, for a search expression
w, first generate its token characteristic set ST (w) as described in Sect. 3.1. For
each element ej of ST (w), calculate its trapdoor Tdej

= {pos1, pos2, ..., posr},
where posx = RO(kx, ej) for x ∈ [1, r], j ∈ [1, �]. Then, output the trapdoor
for the search expression: Td = {Tde1 ,Tde2 ...,Tde�

}.
– SearchIndex(Td, I): Given a trapdoor Td = {Tde1 ,Tde2 , ...,Tdej

} and all
the indexes IFIDi

for all i ∈ n, j ∈ [1, �] documents are checked as follows.
Check if any BF from IFIDi contains 1’s in all locations denoted by any Td.
If some BF matches, the server returns the related FIDi to the client.

3.3 Second Construction with Higher Security

In the 1st construction, each element of the keyword characteristic set is repre-
sented by the same r positions in all Bloom filters. Anyone (e.g. the server)
who can access the index will know the similarity of documents from their
indexes because two similar Bloom filters mean the similar keyword/element
is included in both documents. Such an information leakage is called correlation
attack [BBH+11]. To prevent such an correlation attack and to gain a higher
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level resilience against information leakage, we also extend our first construction
to a “masked” index scheme with higher security. Compared with the exist-
ing work [BBH+11], our construction is much more cost-effective both on the
network traffic and on the storage cost of the client.

– Keygen(1s): Given a security parameter s, generate a secret master key K =
〈KH ,KG〉, with KH = {kx}x∈[1,r] being r independent keys and KG ∈ {0, 1}∗.

– BuildIndex(K,D): The input are the secret key KH , KG and a document
collection D consisting of a set of n documents. FIDi denotes the file identifier
of a specific document dFIDi

, where i ∈ [1, n]. For each document, generate a
list of all its keywords and their attached keyword characteristic sets, SK(w).
This construction also prepares one Bloom filter per keyword, which means
each BF is prepared for a unique set, SK(w), in one documents. Then the
index can be represented as an m × b binary matrix where m is the number
of keywords and b is the size of a single Bloom filter in bits. To generate
the Bloom filter for each SK(w) and finally output the index of a document,
executes the following algorithms:

1. Generate a unique identifier, BID, as the ID of the BF (for each set
SK(w)). To distinguish each BID and ensure its uniqueness on each key-
word/document, it uses both the file ID, FIDi, and the keyword w, to
generates the BID :
BIDw = RO(KG,FIDi ‖ w)
For each document, the number of its attached BIDs is the number of its
keywords. Then, for each element ej where j ∈ [1, �] in the set SK(w):
(a) Generate the trapdoor, Tdej

: Given the key KH = {k1, k2, ..., kr},
for each element ej , it calculates the trapdoor Tdej

=
{pos1, pos2, ..., posr}, where posx = RO(kx, ej) for x ∈ [1, r].

(b) Set the Bloom filter, BF : Set the bits at the positions of Tdej
in BF

to 1.
2. Create a mask for the BF . For each position (or, bit), BF[p] where p ∈

[1, b], compute its mask-bit, MB[p] :
MB[p] =RO(BID,RO(KG, p))
Here, the output of RO is the first bit of the output of RO().

3. Mask each bit in BF[p] with MB[p] using the bitwise XOR operation:
BF[p] = BF[p] ⊕ MB[p]
then output each (masked) BFi for i ∈ [1,m], an m × b binary matrix,
together with its BID. Finally, the index of a document, I = (BF1, ...,
BFm)T with the BIDs of each BFi, will be sent to and saved on the server.

– Trapdoor(K,w): Given the secret keys KH and KG, for a search expression
w, first generate its token characteristic set ST (w) as described in Sect. 3.1.
For each element ej of ST (w), where j ∈ [1, �],

1. It first calculates the first part of the trapdoor Td1st =
{pos1, pos2, ..., posr}, where posx = RO(kx, ej) for x ∈ [1, r].

2. Using another secret key KG, it calculates Td2nd = {RO(KG, pos1),
RO(KG, pos2), ..., RO(KG, posr)} as the second part of the trapdoor.
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Then, output the trapdoor Td = {Tde1 ,Tde2 , ...,Tde�
}, where Tdej

=
〈Td1st,Td2nd〉 to query the server.

– SearchIndex(Td, I): Given the trapdoor Td = {Tde1 , Tde2 , ..., Tde�
}, where

Tdej
= 〈Td1st, Td2nd〉, the server checks all its stored indexes, I, for the

matching document(s). The server executes the following processes:
1. According to each position of {pos1, pos2, ..., posv} from the received Td1st

(v is decided by the number of elements in Td), it extracts corresponding
columns as a Sub-Index, S-I, from all stored indexes.

2. Based on the received Td2nd = {RO(KG, pos1), RO(KG, pos2), ...,
RO(KG, posv)} and all stored BIDs, it generates the mask-bits using
posx and BIDi, where i ∈ [1,m] and x ∈ [1, v].
MB′

i[x] = RO(BIDi, RO(KG, posx))
3. Unmask S-I with MB′

i[x] where x ∈ [1, v]. For each bit of S-I, it calcu-
lates:
S-I ′[i][x] = S-I[i][x] ⊕ MB′

i[x]
and then output the bitwise AND result S-I’ that is an m × v unmasked
subindex.

4. Check if any row S-I ′[i] in the subindex S-I’ contains 1’s in all v locations.
If so, output the related file ID(s) dFIDi

as the matching document(s).

3.4 A Discussion on the Document Updates

Both of our constructions support efficient and secure updates on the document
collection, D, in the sense that the valid user is allowed to add and delete any
document to/from D.

In our first construction, since the same keyword (or, element of the token
characteristic set) is translated to an identical BF for all documents, the server
can integrate all identical BFs (which are generated from different documents) to
a unique BF for managing documents more efficiently. Thus, the server appends
all the files IDs (FIDi) which contain the same keyword/element, to the unique
BF. We give a toy example which shows a binary search tree based BF in Fig. 1.
In this example, the tree has five indexes, 110, 101, 011, 010, 001 (i.e., the length
of a Bloom filter is three here). If we want to add a document, d5, which has
two BFs, 101 and 010, then we just link the file ID to the corresponding nodes
of the tree. If we want to delete a document, d5, then we just need to delete its
file ID which is linked to the corresponding nodes of the tree.

We can add the following two algorithms to our first construction:

– Add(K,D). This algorithm is equal to BuildIndex(). The new index I (includ-
ing BFs) and its FIDi is sent to the server. Then, based on BFs included
in the I, the server links the FIDi to the corresponding nodes of the binary
search tree.

– Delete(FID i). Given a file ID FIDi, delete it from the binary search tree.

During such an update operation, the algorithm reveals only the processed file
ID and the number of its related BFs.
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Fig. 1. Binary search tree based document updates

In our second construction, because the similarity between documents (BFs)
is considered as an information leakage, each BF is masked before it is stored on
the server. Then, the same keyword/element will be transformed to different BFs
for each documents. Sharing the identical BF among different documents (as in
our first construction) will not work, so the server must maintain a unique index
(or, a set of BFs), for each document. Thus, the operations (update/add/delete)
for a document will be quite simple where the server just needs to add or delete
the new FIDi and its unique index I without leaking extra information. Owing
to the proposed BID where BIDw = RO(KG,FIDi ‖ w), the server can identify
duplicated BFs (and avoid storing the same BF twice) of a document.

– Add(K,D). This algorithm is equal to BuildIndex(). The new index I (includ-
ing BFs appended with their corresponding BIDs) and its FID is sent to the
server. If the FID already exists, the server checks the BID to avoid a dupli-
cated BF .

– Delete(FID i). Given a file ID FIDi, the server deletes it together with its I
(including all its BFs) from its storage.

4 Security Proof

In this section, we give the security proof of our second construction. At this
point, we do not take the external update algorithms (in Sect. 3.4) into account.

Theorem 1 In the random oracle model, our second construction with secure
extension described in Sect. 3.3 is secure in the sense of Adaptive Semantic Secu-
rity for SSE scheme in Definition 5.
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Proof Let q ∈ N, and let A be a probabilistic polynomial-time adversary. We
will describe a probabilistic polynomial-time simulator S as in Definition 5 such
that for all polynomially-bounded functions f and all distributions Hq, S can
simulate the partial view of an adversary A(V t

K(Hq)) given only the trace of
a partial history Tr(Ht

q) for all 0 ≤ t ≤ q with probability negligibly close to
1. For all 0 ≤ t ≤ q, we show that S(Tr(Ht

q)) can generate a simulated view
V ′t

K(Hq) is indistinguishable from V t
K(Hq). Let Tr(Hq) = (FID1, ..., FIDn,

|dFID1 |,...,|dFIDn
|, |BF |, SetFID1 , ..., SetFIDn

, Nbf1, ..., Nbfn, D(w1),..., D(wq),
Πq, Pw1 , ..., Pwq

, Rw1 , ..., Rwq
) be the trace of an execution after q search queries

and let Hq be a history consisting of q search queries such that Tr(Hq) = Trq.
Then the simulator S works as follows: S chooses n random values Rnd1, ...,
Rndn such that |Rndi| = |dFIDi

| for all i ∈ [1, n]. S also includes the FID1,
..., FIDn, Nbf1, ..., Nbfn, Pw1 , ..., Pwq

, Rw1 , ..., Rwq
, SetFID1 , ..., SetFIDn

known from the trace, in the partial view.
Then the simulator S generates a simulated index I ′ = (B1, ..., Bn)T with

random Bi ∈ {0, 1}b, for i ∈ [1, n]. I ′ will be included in all partial views
V ′t

K(Hq) used to simulate A. Next, S simulates the trapdoor for query wt,
1 ≤ t ≤ q in sequence. If Πq[j, t] = 1 for some 1 ≤ j < t set Td′

wt
=

Td′
wj

, and otherwise, S generates the simulated trapdoor for the query t,
Td′

wt
= {Td′

e1 , Td′
e2 , ..., Td′

e�
}, where Td′

ec
= 〈Td′

1st, Td′
2nd〉. For each Td′

ec
,

S first randomly picks each posv ∈ [1, b] from the abstract position set of
the trace, and generates Td′

1st, such that Td′
1st = {pos1, ..., posvwt

}. Then,
S picks a random value Rnd′

ec
as an “element” for c ∈ [1, �] and calculates

Td′
2nd = {RO(KG, RO(k1, Rnd′

ec
)), RO(KG, RO(k2, Rnd′

ec
)), ..., RO(KG,

RO(kr, Rnd′
ec

))}
Note, during the simulation, S controls random oracle RO(). Whenever

the adversary A queries x to the RO(), to evaluate RO(x), S first checks if
it has already recorded a pair (x, r), in which case RO(x) evaluates to the
value r. Otherwise, S picks a random value r, records (x, r) and evaluates
RO(x) to r. Finally, S constructs a simulated view V ′t

K(Hq) = (FID1, ...,
FIDn, E(dRnd1), ..., E(dRndn

), I ′, Td′
w1 , ..., Td′

wt
, Nbf1, ..., Nbfn, Pw1 , ...,

Pwt
, Rw1 , ..., Rwt

, SetFID1 , ..., SetFIDn
) and eventually outputs A(V ′t

K). We
now prove that V ′t

K(Hq) is indistinguishable from V t
K(Hq) = (FID1, ..., FIDn,

E(dFID1), ..., E(dFIDn
), I, Tdw1 , ..., Tdwt

, Nbf1, ..., Nbfn, Pw1 , ..., Pwt
, Rw1 ,

..., Rwt
, SetFID1 , ..., SetFIDn

)
We now claim that V ′t

K(Hq) is indistinguishable from V t
K(Hq) and thus that

the output of A on V t
K(Hq) is indistinguishable from the output of S on input

Tr(Hq). Therefore we first state that: for all FIDi and all Nbf i, SetFIDi
where

i ∈ [1, n], Pw1 , ..., Pwt
, Rw1 , ..., Rwt

, in V ′t
K(Hq) and V t

K(Hq) are identical,
thus indistinguishable. E(·) is semantically secure encryption algorithm (IND-
CPA) [GM84], thus E(dFIDi) is indistinguishable from E(Rndi) of the same
length. It is also clear that I ′ is indistinguishable form I, otherwise one could
distinguish between a random string I ′ = (B1, ..., Bn)T of size b and [BF [p] ⊕
MB[p]]p∈[1,b], which means the bitwise XOR of a BF-bit (the former) and the
mask-bit (the latter) that are both generated from the RO(). Then, what is left is
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to show that the simulated trapdoor Td′
wj

is indistinguishable from Tdwj
, where

1 ≤ j < t. For each element ec of the trapdoor, Td′
ec

= 〈Td′
1st, Td′

2nd〉, because
Td′

1st is picked from the trace as an abstract position set, it is identical, and
thus is indistinguishable. For the Td′

2nd which is calculated from the RO(), it is
easy to see that the it is also indistinguishable, otherwise one could distinguish
RO(KG, RO(kt, ec)) from RO(KG, RO(kt, Rndec

)). Consequently, each Td′
ec

is
indistinguishable thus a trapdoor Td′

wj
is also indistinguishable from Tdwj

.
Since V ′t

K(Hq) is indistinguishable from V t
K(Hq) for all 0 ≤ t ≤ q, the output of

A will also be indistinguishable. This completes the proof. �

5 Related Work and Discussion

To the best of our knowledge, previous schemes, except that of [BBH+11], did
not consider the Bloom filter based wildcard search in the adaptive semantic
security model, which is a stronger security model for searchable symmetric
encryption. Hereafter, we mainly discuss the Bloom filter based schemes.

First, the work of [Goh03] only realized the Bloom filter based equality search
(or, full-text search) and was proved secure under a weaker IND-CKA model.
[SNS12] extends the search expression to support general fuzzy search using a
single-character wildcard, i.e., “?”, and their security model is based on the IND-
CKA model. In [BBH+11], being similar to ours scheme, their first scheme use
the Bloom filter “as-is” for efficiency. Because each keyword is represented by
the same positions among all Bloom filters, this scheme leaks the information
of document similarity to cloud servers. Their second scheme, called a 2-round
masked scheme, is proposed to prevent such an information leakage problem:
the user first masks all of the indexes locally before sending them to the cloud
server. Then, the masked indexes are saved on the cloud server to ensure no
such similarity information is leaked. After receiving a query from the user, i.e.,
a trapdoor, the server has to search and generate the masked answer which
contains both real and fake file IDs. Finally, the searcher unmasks the answer
and obtains the real file IDs, and then access the document by the real file IDs.
Obviously, this 2-round masked scheme increases both the communication traffic
and storage cost for transferring and managing those fake answers.

To solve this kind of similarity information leakage problem, we proposed the
secure 1-round scheme using a novel BID. This construction does not increase the
communication cost and storage (management) cost for the user and the BIDs
do not need to be maintained on the user side. Moreover, our constructions
also considered the application of secure and efficient document updates (i.e.,
addition and deletion of documents).

6 Conclusion

We proposed SSE schemes supporting encrypted keyword queries in a more
expressive and flexible manner. Both of our two variants use Bloom filter for
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efficiency. The first scheme is more efficient in terms of computation and storage
cost on the cloud server side, while the second scheme is more secure in the sense
that we prevent the correlation attack by masking the indexes before sending to
cloud servers. Our second scheme is proven secure against adaptive adversaries.
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Number 26330151, JSPS A3 Foresight Program, and JSPS and DST under the Japan -
India Science Cooperative Program.
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Abstract. Nowadays the cloud security becomes a significant issue:
while the single user keyword search on encrypted data has been pro-
posed, encrypting files before uploading scarifies the advantage of the
convenience of sharing data with others on the cloud.

We design a searchable encryption for the multi-user case. We combine
the advantage of efficiency of the symmetric encryption with authenti-
cation of the asymmetric encryption to provide a secure and efficient
system of shareable keyword search on encrypted data.

Keywords: Shareable keyword search · Multi-user keyword search ·
Encrpyted data

1 Introduction

People are worried about the confidentiality and the security of their data. Most
of the intuitive solutions are to encrypt the data before outsourcing to the cloud.
But it brings the difficulty of finding data when the file names and contents are
ciphertext.

Many symmetric encryption (SE) schemes [1–3,6,7,10,11,13] etc. have been
proposed, including both the searchable symmetric encryption schemes (SSE)
and the public key encryption with keyword search schemes (PEKS). Called
the single-user searchable encryption (SUSE). There are many paper proposed
schemes for the multiple-user searchable encryption (MUSE) as well. Files owners
broadcast the key of the SUSE to authorize users to achieve a MUSE. The
advantage of the scheme is that there is no need to apply trusted server and the
key management is simple. Unluckily, the key exposure becomes the inherited
problem.

To solve this problem, ID-based encryption schemes have been presented [4,5,
12]. However the ID-based encryption is hard to implement in some programming
languages. Another scheme [14] combines the hybrid cloud with the broadcast
encryption (BE) and applies the two-phase operation to achieve MUSE. The
workload is too heavy for the trusted center.
c© Springer International Publishing AG 2016
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We propose an efficient multi-user keyword-based search on encrypted data,
in which, original documents and a set of keywords are encrypted with owners’
different data keys, stored on the public server and the public server performs
the second encryption to the data with different server keys stored on the private
server.

2 Related Works

2.1 Single-User Searchable Encryption

The method used in SUSE could be either the symmetric encryption or the pub-
lic key encryption. While solving the big outsourcing data problem, symmetric
encryption schemes are better solution because of its efficiency. They can be
described as following.
(Setup, Encrypt, Trpdr, Search, Decrypt):

Setup(1k): It is executed by the user to set up the scheme. It takes a security
parameter as input, and outputs the necessary keys.

Encrypt(KD,KW ,Data): It is executed by the user to encrypt the data and
its keywords. It takes the data and its necessary keys for data KD and the key
for keywords KW as input, and outputs ciphertexts of data and its keywords.
The key could be either symmetric or asymmetric depending on the scheme.

Trpdr(KW ,W ): It is executed by the user. It takes the key for keyword KW

and the keyword set W as input, and outputs the trapdoor set of keyword Tr.
Search(Tr): It is executed by the server to do the keyword search. It takes

the trapdoor set Tr as input, and outputs a set of data or the failure symbol.
Note that users could only search his own data.

Decrypt(KD, C): It is executed by the user to decrypt the ciphertexts of data
C, and gets the original data D.

2.2 Multi-user Searchable Encryption

The MUSE scheme is based on the SUSE, and it should meet more requirements
such as:

(1) It could dynamically add and remove users.
(2) For different users, the visibility of the same file is distinct. Users could only

see the files which he is allowed to access.

Due to the above two requirements, we need to add some functions. Collection of
a general MUSE scheme are (Setup, AddUser, Encrypt, Trpdr, Search, Decrypt,
RevokeUser, Update).

Setup(1k): It is executed by the data owner to set up the scheme. It takes a
security parameter as input, and outputs the necessary keys.

AddUser(u): It is executed by the data owner to add a new authorized user
u by using owner’s secret key. If necessary the owner may update or store other
information for access control in trusted third party.
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Encrypt(KD,KW ,Data,Group): It is executed by the data owner to encrypt
data and its keyword. It takes the data, the keys KD for data and KW for
keywords, and a set of the authorized user G that can access the data, and
outputs ciphtexts of data and its keyword.

Trpdr(KW ,W ): It is executed by the user. It takes key for keyword KW and
keyword set W as input, and outputs the trapdoor set of keywords Tr.

Search(u, Tr): It is executed by the server to perform the keyword search.
It takes user u and trapdoor set Tr as input, and outputs a set of data or the
failure symbol.

Decrypt(u,KD, C): It is executed by the user u to decrypt the ciphertexts
of data C by using owner’s key for data, and gets the original data D.

RevokeUser(u): It is executed by the data owner to revoke authorized user u.
Update(): It usually executed by the data owner to update data and its

keywords.

2.3 Long-Term Key & Session Key

The key is intended to be used at multiple points in time. In our system, every
user generates a long-term key during the setup phase. The key is stored in the
client PC.

A session key is not intentionally stored, and is not re-creatable. Session keys
are used only for communications protocols. We extend the concept of the session
key to create the short-term key. The short-term key in our system is not re-
creatable and only can be used once. Every shared data has its own short-term
keys.

2.4 Searching on Encrypted Data [9]

A query generated at the client-side, is transformed into a representation so that
it can be evaluated directly on encrypted data at the cloud storage server.

3 Design

3.1 Design Goal

We propose an efficient multi-user keyword-based search on encrypted data. In
our scheme, we store the user data and its corresponding set of keywords on the
public server, encrypted with owner different data keys and the corresponding
user server key. Meanwhile, we store users’ secret information on the private
server. Furthermore, our scheme can transform a query to a special form that
server could directly search on the database and return the results that obtain
certain keywords. The proposed scheme is designed with the following primary
objectives:
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• Security: Our scheme uses the symmetric encryption and the asymmetric
encryption to ensure the efficiency and confidentiality of data. The files are
encrypted using the AES-CBC algorithm and the keyword is generated by
using the AES-CFB algorithm. Every shared data uses different short-term
keys. Meanwhile, we use the two-phase operation on the data to guarantee
the security when users have been revoked. In order to protect owners’ data
keys and the corresponding server key, we utilize the public key encryption to
encrypt them.

• Shareable: Data owner could share his data to authorize users and dynamically
add or revoke users.

• Efficiency: We apply the symmetric encryption on data to ensure the efficiency
of our system and make use of the asymmetric one to protect owner’s data
key.

• Search Options: The search options of our system also includes the conjunc-
tive keyword search (AND/OR), common prefix keyword search and Chinese
keyword search.

3.2 Basic Model

As shown in Fig. 1, we propose a new multi-user searchable symmetric encryption
scheme. There are four separate roles in our scheme {data owner, public server,
private server, authorized users}.

• The public server stores data and keywords that are encrypted and uploaded
by data owners. It would ask the private server for the server key of the data
owner. And it encrypts them again and stores the ciphertexts in the server. It
copes with trapdoor when receiving from authorized users and performs the
keyword search.

• The private server is used to build a trusted center to provide access control
and key management, and therefore it must be fully trusted. Private server
stores keys of every user and every file.

• The data owner encrypts data and defines a group of authorized users who
can access the data before outsourcing to the public server.

• Authorized users are allowed to access the data. They could do different kinds
of keyword search to the data, and ask the private server for the keys of data
to generate the trapdoor and decrypt the data.

In order to make the proposed model more practical, three key ideas are
proposed:

1. Different kinds of keys: After the step of setup, the user would possess dif-
ferent kinds of keys including secret data keys, secret keyword keys, a server
key, a master key and a symmetric master key.

2. Encrypt twice: Before uploading to the public server, the owner encrypts
his data and keywords by using his short-term data key and short-term
keyword key. When public server receives the ciphertext, it would ask the
private server for the corresponding server key to encrypt the data again.
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Fig. 1. Basic model of shareable keyword search on encrypted data

3. Public key encryption: Our scheme makes use of the public key encryption to
protect keys. When the public server asks the private server for the owner’s
server key, the private server would first encrypt it with server’s public key.
And the public server would decrypt the received key by using its own private
key before using it. Similarly, when an authorized user asks the private server
for owner’s short-term data key or short-term keyword key, the private server
would encrypt it with the user’s public key to protect the security of keys.

The advantages of our scheme include:

1. When owner adds a new authorized user or revokes a user, there is no influ-
ence to other authorized users.

2. Every file has different short-term key to enhance the security of owners’
data.

3. By using the asymmetric encryption to protect keys, authorized users could
not be forged.

4. The access control of different files is achieved.

3.3 Design of Proposed Scheme

We divided our system into the following main areas.

• Key Generation
• Key Management
• Create Secure Index/Data
• Authentication Mechanism
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Key Generation. First, we create two basis secret keys for an individual
user. KD is used to encrypt original files that are secret and KW is used to
create secure index for secret files. Besides these two keys, we also create a
pair of public keys to protect keys KP, private key KM, a server key KS and
a symmetric master key KMsymmetric to generate short-term keys (for details
please see Sect. 4).

Key Management. We need a private server (Fig. 3) which is fully trusted.
It stores a set of keys of each user, including the corresponding short-term key
for data, the short-term key for keywords, server key KS and a public key KP of
user. Also it stores the shareable authorized user list (SAUL) for every file. When
an user asks for keys, it would first check SAUL. If the user is authenticated, it
would find the public key of user and use it to encrypt the owner’s short-term
key, then send the result to the user. The user needs to decrypt the key with
his own master key to decrypt the data which he is allowed to access. Other
long-term keys such as KD, KW and KMsymmetric are still stored in the client
side.

Create Secure Index/Data. We use two different modes of AES. One is
the CFB mode to create secure index, using KW or short-term keyword key. The
other one is CBC mode to encrypt the original file, using KD or short-term data
key.

Authentication Mechanism. We use the Password-Based Key Derivation
Function 2 (PBKDF2). We also utilize the public key encryption to implement
the key protection system. Before the private server sending any key to anyone
(either the server or the user), it would use their public keys to encrypt the key
to prevent intruders from hijacking users’ short-term keys or the server key KS.

3.4 Definition of Shareable Keyword Search

According to the Multi-user Searchable Encryption of Sect. 2, the basic collec-
tion of a general MUSE scheme are (Setup, AddUser, Encrypt, Trpdr, Search,
Decrypt, RevokeUser). Below are the definition of our system. It consists of 10
algorithms.

1. Setup(1k) It is run by every user to generate the secure parameter K = (KD,
KW, KM, KP, KS, KMsymmetric), where KD and KW are symmetric keys
which are used to encrypt secret data and its keywords and are stored in the
client side. KM and KP are the master key and the public key, respectively.
KP is public and stored on private server while KM is private and stored in
the client side to identify users. KS is the corresponding server key used to
encrypt the data and keywords after data owner encrypt them at first time.

2. AddUser(KM , idui) It is run by the data owner to add a new authorized
user ui. The data owner encrypts authorized user id by using KM and sends
the result to the private server. After receiving the ciphertext, the private
server decrypts the user id by using KP. If the user ui exists, then it adds ui

to the shareable authorized user list (SAUL).
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3. Semi-Encrypt(short-termKD, short-termKW ,Data) It is run by the data
owner to encrypt the data and create the secure index. When the owner
uploads a shared data, the system would generate two short-term keys (short-
term KD, short-term KW) based on KMsymmetric (please refer to Sect. 4 for
more details). The owner would use them (short-term KD, short-term KW)
to encrypt the data and generate index. The outputs of this function is the
semi-ciphertext semi-C and semi-index semi-I which will be sent to the public
server.

4. Encrypt(semi-C,semi-I,KS) It is run by the public server. After receiving
semi-C and semi-I from the data owner ui, the public server would act as
below:

(a) Ask the private server for the server key of ui, it runs AskServerkey(ui).
The output of this function is the ciphertext of the server key serverkey-C by
using the public key of server KPserver.
(b) After receiving serverkey-C, the public server would decrypt it with its
own master key KMserver and get the KS of ui.
(c) Run Encrypt(semi-C,semi-I,KS) and get final ciphertext of data C and
index I.

5. Semi-Trpdr(short-termKW ,W ) It is run by the user ui to generate the trap-
door of keyword W semi-Tr. Short-term KW is a key set including the short-
term KW of data. Before executing the function, user would act as below:

(a) Ask the private server for the keyword key of other users, the private
server first checks SAUL and gets the keyword key short-term KW of data.
(b) The private server encrypts the short-term KW by using KP of the user
ui then sends keywordkey-C to the user ui.
(c) User ui decrypts the keywordkey-C and gets short-term KW set. User uses
those short-term KW to create semi-Tr and other users set G including ui,
and sends them to the public server.

6. Trpdr(KS , semi-Tr, G) It is run by the public server. Before executing this,
the public server executes AskServerkey(G) to get KS of G. And use them
to generate the final trapdoors.

7. Search(I, Tr) It is run by the public server to search trapdoor Tr and return
the results which contain keyword W to the user.

8. Semi-Decrpyt(KS , C) It is run by the public cloud. Before executing this,
the public cloud needs to execute AskServerkey(ui) and gets semi-plaintext
semi-P.

9. Decrypt(KD, semi-P) It is run by the user. Before executing the function,
user would first do the actions below:
(a) Ask the private server for data key of the data owner, the private server
first checks SAUL and gets the data key short-term KD of data.
(b) Private server encrypts the short-term KD by using KP of user ui then
sends datakey-C to user ui.
(c) User ui decrypts the datakey-C and gets short-term KD. User uses short-
term KD to decrypt semi-P and gets the original data.



290 W.-T. Lu et al.

10. RevokeUser(KM , idui) It is run by the data owner to revoke the autho-
rized user ui. After receiving it, the private server removes the user ui from
shareable authorized user list (Table 1).

Table 1. Notations used in this thesis

Notation Description

KD The symmetric key used to encrypt/decrypt secret data (data without
sharing) and is stored in the client side

short-term KD The symmetric key used to encrypt/decrypt shared data, it is generated
before data upload and stored on the private server

KW The symmetric key used to generate the secure index of the secret data
(data without sharing) and it is stored in client side

short-term KW The symmetric key used to generate secure index of shared data, is
generated before data upload and is stored on the private server

KP The public key for every user and it is stored on the private server

KM The private key(master key) for every user and is stored secretly in the
client side

KMsymmetric The symmetric private key(symmetric master key) to create short-term
KD and short-term KW

KS The symmetric server key used to encrypt/decrypt data and generate
final trapdoor

KPserver The public key for public server and is stored in private server

KMserver The private key (master key) for public server and is stored secretly on
public server

SAUL Shareable Authorized User List

ui User i

G A group of data owners who allow users to access their files

semi-C Semi-Ciphertext of data. It is generated by the data owner by using
short-term KD and sends to public server

semi-I Semi-Index. It is generated by data owner by using short-term KW and
sends to public server

semi-Tr Semi-Trapdoor. It is generated by users by using short-term KW and
sends to public server

semi-P Semi-Plaintext of data. It is generated by the public cloud by using KS

to decrypt Ciphertext C

C Ciphertext of data. The public server encrypts semi-C by using KS and
stores it

I Secure Index. Public server receives semi-I and generate it by using KS

Tr Final Trapdoor. After the public server receives semi-Tr, it uses KS to
generate Tr
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4 Key Generation

4.1 Generating Password for Authentication

We concatenate users’ password with his email address, username and domain
name. After concatenation, we need to do PBKDF2 function to generate user
passwords for authentication. We illustrate it as: (Table 2)

concat = (pw‖email‖username‖domainname)
pw’ = PBKDF2(concat,S,c,dkLength)

Table 2. Notations used for password generation

pw The original password that users type in

S Salt which is stored on the private server

c Iteration count

dkLength Intended length in octets of the derived

pw’ The password stored on private server and used in our system
to authenticate the identity of users

4.2 Generating Short-Term KD and Short-Term KW for Different
Shared Files

As described before, we apply different short-term data keys and short-term
keyword keys to different shared data to enhance security. Our long-term key is
KMsymmetric stored in the client side and no one else would have the knowledge
of it. We use it to generate our short-term key for different files. Notations we
would use is described below (Table 3).

To obtain higher entropy for generated keys, we create semi-key by perform-
ing bit-wise exclusive or operator with two different random numbers (R1, R2).

Table 3. Notations used in generating short-term KD and short-term KW

pw’ The user password stored on private server

short-term KD The short term symmetric key used to encrypt/decrypt shared
data

short-term KW The short term symmetric key used to generate secure index of
shared data

R1 Random number is generated when data upload and used for
creating short-term KD

R2 Random number is generated when data upload and used for
creating short-term KW
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These random numbers are generated when data uploaded and every file uses
different random numbers. To protect semi-keys, we apply AES encryption. We
use owners’ master symmetric key KMsymmetric to generate final short-term keys
by encrypting semi-keys. This method makes dictionary and brute-force attacks
too slow.

semi-keyD = pw′ ⊕ R1 semi-key for data

semi-keyW = pw′ ⊕ R2 semi-key for index

short-term KD = AES(semi-keyD,
KMsymmetric)

Short term symmetric key used to
encrypt/decrypt a file

short-term KW =
AES(semi-keyW, KMsymmetric)

Short term symmetric key used to create
index

5 Implementation

5.1 Programming Language and Server Database

The proposed system is implemented in the C#.Net programming language.
Users can only install some .Net Framework by clicking some buttons and could
easily execute the system. We employ Virtual Studio 2012 to design an user
interface that is simple for users. For cryptography operations, we use Sys-
tem.Security.Cryptography namespace (Fig. 2).

Fig. 2. Architecture overview of our system

In the public server part, we use FTP server as data storage. Xenserver
as the service provider. Internet Information Server (IIS) 7 as a Web Server
software application running on Windows Server 2008. We also build a Zen
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load balancer between users and the public server to achieve optimal resource
utilization, maximize throughput and minimize response time.

In the private server part, we use Microsoft SQL server 2010 to store key-
words of different files, SAUL (Shareable Authorized User List), different keys
of different shared data, and distinct keys (KP, KS, KPserver) of every user.

5.2 System Operations

Signup. After registered, they could upload and perform various keyword search
on their data.
Login Process. We concatenate user’s password with his username, email and
domain name, perform PBKDF2 function, transfer to the server and compare
with pw’ on the private server.
Upload the File. We divide this operation into two parts, one is uploading
a secret file without sharing, the other one is uploading shared files and let
authorized users have access to them. Meanwhile all files would be compressed
before being encrypted. In order to improve the efficiency of the keyword search,
we apply the same data key KD and keyword key KW to these files. Hence, we
introduce how we generate data key KD and keyword key KW for secret files.

As described in Sect. 4, to obtain higher entropy, we calculate semi-keys by
doing bit-wise exclusive or operator with two different random numbers (R′

1,
R′

2) generated when users signing up. These two random numbers are stored in
the client PC and they are different from R1 and R2 in Sect. 4. The comparison
between (R1, R2) and (R′

1, R
′
2) is shown in Table 4.

We also apply a slow hash function to avoid dictionary attacks. It computes
the hash value by re-hashing it many times. We derive the real keys for secret
files in the following steps:

If only the owner can access the file, the procedure of uploading is shown
in Fig. 3. For every unsharable file, we use the same KD to encrypt data and
the same KW to generate index. These keys could only be accessed by the data
owner and are stored in the client side. For the secret data, we only encrypt once
to improve the efficiency of uploading and retrieval.

If the data owner wants to share his file with others, he needs to fill the
usernames of authorized users in the Shared Id field when uploading the data.

Table 4. Comparison between (R1, R2) and (R′
1, R

′
2)

(R1, R2) (R′
1, R

′
2)

Is used to generate short-term key for
shared data

Is used to generate KD and KW for secret
data

Is generated when uploading a shared file Is generated when users signing up

Stored on the private server Stored secretly in the client side

Every shared file has different R1, R2 R′1, R′2 is always the same number for an
user
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semi-KD = pw′⊕ R′
1 semi-key for data

semi-KW = pw′⊕ R′
2 semi-key for index

KD = SHF(semi-KD) Used to encrypt/decrypt a secret file

KW = SHF(semi-KW) Used to create index for a secret file

Fig. 3. Flow chart of uploading a secret file

The system would generate two random number R1 and R2, and use pw’,
R1, R2 and KMsymmetric of data owner to create the short-term KD for data and
short-term KW for keyword. We also generate another index when uploading.
That is encrypted by the owners’ secret KW. And this index set is stored on
our server. After encrypting the data and keywords, the ciphertext semi-C and
semi-I (encrypted by short-term KW) would be uploaded to public server and
encrypted by using data owner’s KS where the ciphertext is stored on the public
server (before encryption, the public server would ask the private server for data
owner’s KS.). SAUL, short-term KD and short-term KW of the data would stored
on the private server. The flow chart of uploading procedure is shown in Fig. 4.

Retrieval. Secure index generation for secret files.
After the user types the keywords that he wants to search, our system would

first search keywords on secret files and run procedure below:
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Fig. 4. Flow chart of uploading a shared file

1. Create Secure Index of each keyword by using CFB procedure and KW.
2. Generate a query using obtained Secure Indexes from previous step.
3. Submit the query to the public server.
4. Decrypt the result query by using KW from the public server to obtain the

final result.

Download the desired secret files from the result of query:

1. Create a connection to the public server and download the encrypted file.
2. Decrypt them by using KD and decompress the file.

Fig. 5. Retrieval for secret files
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Secure index generation for shared files: After performing the keyword search
on secret files, our system would generate index trapdoor of files. When a user
signs up for a new account, the system would create a directory named “Shared-
Pool” to store the files that other users allow you to access. According to these
files, we could create different trapdoors for different files to perform the keyword
search on shared files (Figs. 5 and 6).

The steps of index generation procedure is as follow:

• According to the files stored in SharedPool directory, ask private server for
different short-term KW.

• When the private server receives the user query, checks the shared Id filed
from SAUL, and if the user is authenticated, it returns short-term KW of
data to the user.

• Create Secure Index of each keyword using CFB procedure and short-term
KW of data.

• Generate a query using obtained Secure Indexes from previous step and submit
it to the public server.

• After the public server receives the query, it asks the private server for KS of
data owner.

• The public server encrypts the secure index by using KS and does keyword
search.

• The public server decrypts result query by using KS and sends to the user.
• After the user receives the query from the public server, system would decrypt

it by using short-term KW to obtain the final result.

Download the desired shared files from the result of query:

• Create the connection to the public server, public server would first check
SAUL for authentication.

• If the user is authenticated, public server would ask private server for KS of
data owner and decrypt the file.

• User downloads the encrypt file, and asks the private server for short-term
KD of data.

• The private server checks SAUL and sends the short-term KD of the file to
user.

• The user decrypts the file by using short-term KD and decompresses it.

5.3 Experimental Results

We compared our system with the single user searchable encryption [8] with the
same documents and users.

Here we increase the number of users. In this test, the database contains
greater than 50,000,000 documents and each document contains more than 100
keywords.

Table 5 is the result of single user searchable encryption system. An user
stores 50, 100, 200 documents on his own storage and generates queries of dif-
ferent numbers of keywords and common prefix search.
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Fig. 6. Retrieval for shared files

Table 5. Search duration of single user searchable encryption system

Number of queried keywords 50 documents 100 documents 200 documents

1 keyword 1.5 s 2.98 s 6.62 s

5 keywords 4.2 s 5.71 s 9.31 s

10 keywords 7.55 s 9.32 s 12.92 s

Common prefix search 1.15 s 1.18 s 1.29 s

Table 6. Search duration of our system (Shareable Keyword Search on Encrpyted
Data System)

Number of queried keywords 50 documents 100 documents 200 documents

1 keyword 1.768 s 6.02 s 10.821 s

5 keywords 2.97 s 6.98 s 12.4 s

10 keywords 5.74 s 10.07 s 17.76 s

Common prefix search 1.685 s 1.768 s 1.943 s

Table 6 below is the result of our system (MUSE system). And the search
duration of common prefix search would not increase while adding more docu-
ments.
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6 Conclusion

We described an authentication mechanism which ensures it is impossible for
hijacker to steal user information even if they apply users’ credentials from other
systems. Our special key generation system for shared data uses different short-
term keys to guarantee the security. Each key is generated by the data owner,
who owns a secret symmetric key KMsymmtric. KMsymmtric and Random number
R1, R2 are used to generate two short-term symmetric keys KD and KW for
encrypting shared data and generate secure index. We also add some steps to
obtain higher entropy for generated keys.

In the implementation part, most important functional requirements is search
functionality. Besides the exact keyword search, conjunctive (And, Or) keyword
search is also included. Moreover, the common prefix search is also available
which enhances system functionality and makes system more practical. The
experimental results are shown in Sect. 5. If we construct them on real server
instead of virtual machine, our performance will become better.
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Abstract. There has been considerable research in specifying autho-
rization policies for XML documents. Most of these approaches consider
only hierarchical structure of underlying data. They define authoriza-
tion policies by directly identifying XML nodes in the policies. These
approaches work well for hierarchical structure but are not suitable for
other required characteristics we identify in this paper as semantical
association and scatteredness.

This paper presents an attribute based protection model for JSON
documents. We assign security-label attribute values to JSON elements
and specify authorization policies using these values. By using security-
label attribute, we leverage semantical association and scatteredness
properties. Our protection mechanism defines two types of policies called
authorization and labeling policies. We present an operational model to
specify authorization policies and different models for defining labeling
policies. Finally, we demonstrate a proof-of-concept for the proposed
models in the Swift service of OpenStack IaaS cloud.

1 Introduction

JavaScript Object Notation (JSON) is a human and machine readable represen-
tation for text data. It is widely used because of its simple and concise structure.
For example, Twitter uses JSON as the only supported format for exchange
of data starting from API v1.1 [5] and YouTube recommends uses of JSON
for speed from its latest API [6]. JSON is being adapted increasingly in large
and scalable document databases such as MongoDB [4], Apache Casandra [2]
and CouchDB [3]. Besides these, JSON is also widely used in lightweight data
storages for example in configuration files, online catalogs or applications with
embedded-storage.

In spite of high adoption from industries, JSON has received little attention
from academic researchers. To the best of our knowledge, there is no formal work
published on the protection of JSON documents.

On the other hand, considerable work has been done for protection of XML
documents. Although syntactically JSON and XML formats are different, seman-
tically both of them form a rooted tree hierarchical structure. In fact, JSON
data can equivalently be represented in XML form and vice versa. This brings
c© Springer International Publishing AG 2016
J. Chen et al. (Eds.): NSS 2016, LNCS 9955, pp. 303–317, 2016.
DOI: 10.1007/978-3-319-46298-1 20
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an obvious question - whether we can utilize authorization models used for XML
documents for protection of JSON data.

Before we answer the preceding question, we look into some of the salient
characteristics of data represented in JSON (or XML) format, given below.

– Hierarchical relationship. Data often exhibits hierarchical relationship. For
example, a residential address consists of pieces like house number, street
name, district/town and state name organized into an strictly hierarchical
structure.

– Semantical association. Different pieces of data are often related seman-
tically and may need same level of protection. For example, phone number,
email address, Skype name may all represent contact information and require
same level of protection.

– Scatteredness. Related information can be scattered around a document. For
example, different pieces of contact information might be located in different
places in a document. Some pieces of data can even be repeated in more than
one place in the same document or across documents.

Interestingly, most of XML authorization models [8–10,17] consider structural
hierarchy only. These models have an implicit assumption that information has
been organized in the intended hierarchical form. These models attach autho-
rization policies directly on nodes in the XML tree and propagate them using
the hierarchical structure. For example, Damiani et al. [15] specify authorization
policy as a tuple 〈subject, object, action, sign, type〉 where subject is specified as
user, user group, IP address or semantic name; object is specified with XPath
expression; example of actions are read or write; signs are positive and negative;
and example of types are local, global and DTD which determines the level of
propagation. In this model, if similar data items requiring same level of pro-
tection are placed in structurally unrelated nodes, it is required to attach same
authorization policy to all these nodes. This results in duplication of authoriza-
tion policies which is caused by lack of recognition of semantical association and
scatteredness properties.

Duplication incurs significant overhead in maintenance of authorization poli-
cies. For instance, if requirements for storing or publishing contact information
(e.g. email, phone, fax) change, it is required to update policies for all different
pieces of data that represent contact information. Organizations often collect
different types of data including personal identifiable information of employees
and customers. So, they are compliant to different internal and external parties
including government and standard bodies. This increases the likelihood that
authorization requirements change frequently over time.

While most XML authorization models directly identify nodes in their autho-
rization policies, our proposed model adds a level of abstraction by using security-
label attribute values. The proposed model specifies two types of policies called
authorization policies and labeling policies. Authorization policies are specified
using security-label attribute values. These values are assigned to JSON data
using labeling policies. A conceptual overview of existing XML authorization
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models and our proposed model is shown schematically in Fig. 1(a) and (b)
respectively. By using security-label attribute values to connect nodes and poli-
cies, we can assign semantically related or scattered data same attribute values.
This eliminates the need to specify duplicated policies.

Fig. 1. (a) Existing XML models (b) the proposed model

The proposed model additionally offers flexibility in specification and main-
tenance of authorization and labeling policies. These two types of policies can
now be managed separately and independently. For instance, given security-label
attribute values, higher level, organization-wide policy makers can specify autho-
rization policies using these values without knowing details of JSON structure.
On the other hand, local administrators knowledgeable about details of specific
JSON documents can specify labeling policies.

We believe, the presented model can easily be generalized for data represented
in trees and be instantiated for other representations, for example, YAML [1].
For simplicity, we only focus on JSON here.

The contributions of this paper are as follows. We have identified underlying
characteristics of data represented in XML/JSON form. While, existing XML
authorization models address only structural hierarchy, we additionally focus
on semantical association and scatterredness properties. We have designed an
attribute-based protection mechanism for JSON documents including an oper-
ational and two different labeling models. We have demonstrated a proof-of-
concept for the proposed models in the Swift service of OpenStack IaaS cloud
platform.

The rest of the paper is organized as follows. In Sect. 2, we discuss underlying
concepts of JSON documents and existing works relating to the protection of
these documents. Section 3 presents the operational model. The labeling models
are described in Sect. 4. Section 5 discusses the proof-of-concept implementation
of our proposed models. Finally, we conclude the paper in Sect. 6.

2 Background and Related Work

In this section, we briefly review JSON and discuss related work.

2.1 JSON (JavaScript Object Notation)

JSON or JavaScript Object Notation is a format for representing textual data
in a structured way. In JSON, data is represented in one of two forms—as an
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Fig. 2. Example of (a) JSON data (b) corresponding JSON tree

object or an array of values. A JSON object is defined as a collection of key,value
pairs where a key is simply a string representing a name and a value is one of
the following primitive types—string, number, boolean, null or another object
or an array. The definition of a JSON object is recursive in that an object may
contain other objects. An array is defined as a set of an ordered collection of
values. JSON data manifests following characteristics.

– JSON data forms a rooted tree hierarchical structure.
– In the tree, leaf nodes represent values and a non-leaf nodes represent keys.
– A node in the tree, can be uniquely identified by a unique path.

Figure 2(a) shows the content of a JSON document where strings representing
values have been replaced by “...” for ease of presentation. Figure 2(b) shows
the corresponding tree representation. Any node in the tree can be uniquely
represented by JSONPath [18] which is a standard representation of paths for
JSON documents.

2.2 Related Work

There is limited academic research published on security of JSON data. To the
best of our knowledge, we are the first to propose a protection model for it.

On the other hand, XML security has long been investigated by many
researchers. A fundamental line of work in this area is about specifying authoriza-
tion policies for the protection of XML documents [8–10,17]. All of these models
attach authorization policies directly on nodes in the XML tree. Most of these
models use XPath [14] to specify a node in the tree. For example, Damiani et al.
[15] specify authorization policies as a tuple of 〈subject, object, action, sign, type〉
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where an object is identified by an URI (Uniform Resource Identifier) along with
a XPath expression.

Another direction of work is about effective enforcement of authorization
mechanisms for secure and efficient query evaluation. For example, in [16] the
authors derive security views comprising exactly the set of accessible nodes
for different user groups. Based on the security view, they provide a unique
DTD view for each user group. Similar works in this direction include [19,20]
which use query preprocessing approaches. These models uses preprocessed finite
automatas for authorization policies, document and Schema/DTD, and deter-
mine if a query is safe before running it. Unsafe queries can be rewritten.

The idea of associating labels with protected objects has been proposed
before. For example, in purpose based access control (PBAC) [13], the authors
associate intended purposes with data items and access purpose with users. If
access purpose of a user is included in the intended purposes of the requested
objects, the request is granted. Our approach is similar. While PBAC man-
ages intended purposes using RBAC [22], we use attributes with attribute-based
access control (ABAC). Most significantly, PBAC does not specify how to anno-
tate objects with access purposes, which we emphasize in this paper via labeling
policies. Adam et al. [7], have applied concepts and slots on digital objects which
work at a finer grained content level. They have also specified an access control
model based on expressions using concepts and slots. This model also does not
specify how to assign concepts and slots to objects.

The concept of attaching organized labels to users and objects and controlling
access based on these labels is the underlying idea of Lattice Based Access Con-
trol (LBAC [21]), sometime also referred as Mandatory Access Control (MAC).
The operational model, AtOM , presented in Sect. 3 resembles LBAC but it is
fundamentally different from LBAC. AtOM is based on enumerated authoriza-
tion policy ABAC model named EAP-ABAC [11,12]. EAP-ABAC is a general
purpose ABAC model which supports larger set of attributes contrary to sin-
gle label in LBAC and based on enumerated authorization policies. Correlation
between EAP-ABAC and LBAC is presented in [12].

3 The Operational Model

This section presents the Attribute-based Operational Model (AtOM ) for pro-
tection of JSON documents. AtOM adapts enumerated authorization policies
from [11,12].

Figure 3 presents components of AtOM . In the figure, the set of users is
represented by U . Each user is assigned to one or more values of an attribute
named user-label or uLabel in short. These values are selected from the set of
all possible user-label values UL which are partially ordered. The partial order
is represented by ULH. An example showing user-label values and hierarchy is
presented in Fig. 4(a). On the other hand, the set of JSON elements are spec-
ified as JE. JSON elements may subsume other JSON elements, and form a
tree structured hierarchy. The hierarchy is represented by JEH. Each JSON ele-
ment is assigned values of an attribute named security-label or sLabel in short.
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Fig. 3. The Attribute-based Operational Model (AtOM )

Table 1. Definition of AtOM

I. Sets and relations
- U, JE and A (set of users, JSON elements and actions resp.)
- JEH (hierarchy of JSON elements, represented by �j)
- UL and ULH (finite set of uLabel values and their partial order denoted as �ul resp)
- SL and SLH (finite set of security-label values and their partial denoted as �sl resp)
- uLabel and sLabel (attribute functions on users and JSON objects resp.) Formally,

uLabel : U → 2UL; sLabel : JO → 2SL

II. Policy components

- Policy-tuples = UL × SL
- Policya ⊆ Policy-tuples for a ∈ A
- Policy = {Policya|a ∈ A}

III. Authorization function

- can access(u : U, a : A, o : JE) = (∃(ul, sl) ∈ Policya)[ul ∈ uLabel(u) ∧ sl ∈ sLabel(o)]
- is authorized(u : U, a : A, jei : JE) = (can access(u, a, jej))[jei �sl jej ]

These values are selected from the set of security-label values SL which are also
partially ordered. The partial order is represented by SLH. An example show-
ing security-label values and hierarchy is presented in Fig. 4(b). A JSON tree
annotated with security-label values is given in Fig. 4(c). These components and
relationship among them are formally specified in Segment I of Table 1.

In Fig. 3, the set of authorization policies is represented by Policy. There
exists one authorization policy per action which is shown by the one-to-one rela-
tion between Policy and A. In Table 1, Policyread presents the authorization
policy for action read. An authorization policy may contain one or more micro-
policies and one micro-policy can be associated with more than one authoriza-
tion policies. This is represented by the many-to-many relation between Policy
and Policy-tuples. Policyread, as mentioned above, contains four policy-tuples
including (manager, sensitive). The tuple (manager, sensitive) while contained
in policy Policyread specifies that users who are manager can read objects that
have been assigned values sensitive. Formally, we represent a policy-tuple a pair
of atomic values (ul, sl) where ul ∈ UL and sl ∈ SL. The formal definition of
policies and policy-tuples is given in Segment II of Table 1. We use the terms
policy-tuples and micro-policies equivalently to represent sub-policies.
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Fig. 4. (a) User-label values, (b) security-label values and (c) annotated JSON tree

Table 2. Example of an authorization policy and authorization requests

I. Enumerated authorization policies

Policyread ≡ { (manager,sensitive), (HR,employment),
(employee, enterprise), (guest, public)}

II. Authorization requests

is authorized(Alice, read, emp-rec) = true, assuming uLabel(Alice) = {manager}
is authorized(Bob, read, emp-rec) = false, assuming uLabel(Bob) = {employee}
is authorized(Bob, read, con-info) = true, assuming uLabel(Bob) = {employee}
is authorized(Charlie, read, sen-info) = false, assuming uLabel(Charlie) = {HR}

The authorization function is authorized() is specified in Section III of
Table 1. We define the helper function can access(u, a, o) which specifies that
the user u can access the object o for action a if there exists a policy-tuple in
Policya for that allows it. A user is authorized to perform an action on the
requested JSON element if he can access the requested element and all its sub-
elements. For example, let us assume, Alice as a manager wants to read emp-rec
which has been assigned value enterprise as shown in Fig. 4(c). The tuple (man-
ager, sensitive) in Policyread specifies that Alice can read object labeled with
sensitive or junior values. Thus, the request is authorized(Alice, read, emp rec)
is evaluated true. On the other hand, assuming Bob as an employee, the request
is authorized(Bob, read, emp-rec) is evaluated false as an employee cannot read
sen-info which is sub-element of emp-rec. Additional examples of authorization
request is given in Segment II of Table 2.

4 Labeling Policies

In this section, we discuss specification of labeling policies for the operational
model given in Sect. 3. We broadly categorize the policies used in the operational
model into specification of authorization policies and assignment of security-label
values or labeling policies. Policy scope of the operational model is schematically
shown in Fig. 5. Here, we focus on the later type of policies.

We specify two different approaches to assign security-label values to elements
in a JSON document, viz. content-based and path-based. These approaches are
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Fig. 5. Policy scope

fundamentally different in how a JSON element is specified. While a path is
described starting from the root node of the tree, content is specified starting
from the leaf nodes of the tree. These two contrasting approaches offer flexibility
in assignments and propagation of security-label values.

4.1 Control on Labeling Policies

For specification of labeling policies, we define two types of restriction that con-
trol assignments and propagations of security-label values. In the first type, we
restrict how security-label values are selected and assigned on tree nodes. We
call this assignment-control . In the second type, we specify how assigned values
are propagated along nodes in the tree. We call this propagation-control .

Fig. 6. (a) Assignment of security label values (b) assignment controls

The motivation of assignment-control is to restrict arbitrary assignments of
security-label values. This enables administrators to restrict future assignments
after some assignments have been carried out. These controls are specified during
the assignments. If any attempting assignment does not comply with assignment-
controls of existing assignments, it will be discarded. We define five possible
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options for assignment-control as no-restiction, senior-up, senior-down, junior-
up and junior-down. The type no-restriction does not specify any restriction. If
we assign a value valuei in nodei, with senior-up restriction, all up/ancestors
of nodei must be assigned values senior to valuei possibly including valuei. In
type senior-down restriction, all down/descendants of nodei must be assigned
values senior to valuei possibly including valuei. Similarly, the types junior-
up and junior-down, specify that ancestors and descendants of nodei must be
assigned values junior to valuei, possibly including valuei. Figure 6 schematically
illustrates assignment-control . In Fig. 7, the node con-info is assigned a value
enterprise with option junior-down which regulates that its descendant nodes
namely {email, work-phone} must be assigned values enterprise or its juniors,
in this case from the set {enterprise, public} (using security-label values given in
Fig. 4(b)). In the same figure, the node sen-info is assigned value sensitive with
option senior-down which mandates that its descendant nodes namely {SSN,
salary} must be assigned values from sensitive or its seniors in this case from
the set {sensitive}.

Fig. 7. Assignments with assignment controls

Once we assign security-label values on an element in a JSON tree, the value
can be propagated to other elements in the tree. We define following types for
propagation-control as no-prop, one-level up, one-level down, cascading up and
cascading down. Assigned values are not propagated in type no-prop. From a
node, assigned values are propagated to parent and all its siblings in the type one-
level up. Assigned values are propagated to all ancestor nodes in type cascading
up. Similarly, from a selected item, assigned values are propagated to direct
children in type one-level down and to all descendants in type cascading down.

4.2 Content-Based Labeling

This section shows how to assign security-label values by matching content and
propagating the labels.

We adapt the concept of query object available in MongoDB [4] which
matches content in a JSON document. Query objects discover content start-
ing from the value nodes of the JSON tree. It accepts regular expression to
find value nodes or key nodes conveniently. MongoDB has built-in functions to
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Fig. 8. Content-based labeling model

Table 3. Definition of content-based labeling

I. Basic sets and relations
- QO (set of query objects).
- AC (assignment control) AC= {no-restriction, senior-up, junior-up}.
- PC (propagation control) PC = {no-prop, one-level-up, cascade-up}.
- SCOPE ⊆ AC × PC
- SL (set of security-label values).

II. Assignments of security-label values

- LabelAssignments ⊆ QO × SCOPE × 2SL

express regular expressions and compare values matched by the regular expres-
sions.

A model to assign security-label values based on query objects is given in
Fig. 8. In the figure, QO represents the set of all query objects and SL is the set
of security-label values. The set AC represents assignment-control and PC repre-
sents propagation-control discussed earlier. AC and PC together define labeling
scopes. A labeling scope determines how values are assigned and propagated in
the tree. As content is matched from the value/leaf nodes of the tree, we con-
sider assignment and propagation control only for the ancestors of the matching
nodes.

The formal definition of the model is given in Table 3. Segment I of the table
specify basic sets and relations. In Segment II, the relation LabelAssignments
defines rules for assigning security-label values. An assignment rule is a triple
of a query object to match content, a scope and a set of values to be assigned.
Section I of Table 4 gives some examples of query objects and their interpretation
in plain English. Segment II of Table 4, presents examples of assignment policies
based on query objects.

4.3 Path-Based Labeling

In this section, we show how we assign security-label values by matching paths
in the JSON tree and propagate them along the tree.
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Table 4. Examples of query objects and content-based labeling policies

I. Query objects

- ob1 = {“email”: { $regex:“/.*@example.com/”} } (matches email addresses
from domain example.com)

- ob2 = { $elemMatch: { $regex: “RE EMAIL” } } (matches any key having value
corresponding to the given regular expression)

- ob3 = {$elemMatch:{ $regex: “RE SSN”}, $elemMatch: {“RE CREDIT CARD”}}
(matches all objects containing both social security and credit card number)

II. LabelAssignments

- LabelAssignments= { (ob1, (no-prop, unrestricted), {enterprise}), (ob2,
(no-prop, unrestricted), {enterprise}), (ob3, (no-prop, restricted), { sensitive} }

Fig. 9. Path-based labeling model

We adapt JSONPath [18] to specify path-based labeling policies. This model
is very similar to the content-based labeling model except we use JSONPath
instead of query objects. While, query objects are matched starting from the leaf
nodes, JSONPath specifies elements starting from the root node (or any node
in case of relative path) and traverses towards leaf of the tree. As a result, this
model apply assignment control and propagation control towards descendants
of matching nodes. The components of the model and its formal definition are
given in Fig. 9 and Table 5 respectively. Examples of JSON paths and path based
labeling policies are presented in Segment I and II of Table 6.

5 Implementation in OpenStack Swift

We have implemented our proposed operational model and path-based label-
ing scheme in OpenStack IaaS cloud platform using OpenStack Keystone as
the authorization service provider and OpenStack Swift as the storage service
provider. Our choice of OpenStack is motivated by its support for independent
and inter-operable services and a well defined RESTful API set.

We have modified OpenStack Keystone and Swift services to accommodate
required changes. A reference architecture of our testbed is given in Fig. 10.
Details of the implementation is shown in Fig. 11. Required changes are presented
as highlighted rectangles in Fig. 11.
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Table 5. Definition of path-based labeling

I. Basic sets and relations
- JPath (set of JSONPaths).
- AC (assignment control) AC= {no-restriction, senior-down, junior-down}.
- PC (propagation control) PC = {no-prop, one-level-up, cascade-up}.
- SCOPE ⊆ AC × PC, relation to assign and propagate values.
- SL (set of security-label values).

II. Assignments of security-label values

- LabelAssignments ⊆ JPath × SCOPE × 2SL (assign security-label values on
JSON elements matched and propagate values based on defined scope)

Table 6. Examples of JSONPath and path-based labeling policies

I. JSONPaths
- path-to-email=$.emp-rec.con-info.email
- path-to-salary=$.emp-rec.sen-info.salary

II. LabelAssignments

- LabelAssignments= { (path-to-email, (no-prop, unrestricted), {enterprise}),
(path-to-salary, (no-prop, unrestricted), {sensitive}) }

Fig. 10. Reference architecture of the implementation testbed

Fig. 11. Implementation in OpenStack IaaS cloud platform
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5.1 Changes in OpenStack Keystone

OpenStack Keystone uses roles and role-based policies to provide authorization
decisions. In our implementation, we uses roles to hold user-label attribute val-
ues. A set of valid security-label values are also stored as part of the Keystone
service.

Among two different types of policies - authorization and labeling policies,
the former is managed in the Keystone service. We assume, a higher level admin-
istrators (possibly at the level of organization) adds, removes or updates these
authorization policies. We add a policy table in Keystone database to store these
enumerated authorization policies.

5.2 Changes in OpenStack Swift

In Swift side, we store security-label values assigned to JSON objects and path-
based labeling policies applied to them. Security-label values and labeling policies
are stored as metadata of the stored objects, JSON documents in this case. For
simplicity, we assume object owner (Swift account holder in this case) can update
security-label values or labeling policies for stored JSON document.

During evaluation, we intercept every requests to Swift (from the Swift-proxy
server) and reroute a request to be passed through JSONAuth plugin if it is a
request for a JSON document. In this case, the request additionally carries a
requested path and authorization policies applicable to the user. JSONAuth
plug-in retrieves the requested JSON document, apply path-based labeling poli-
cies to annotate the document and uses authorization policies to determine if
the user is authorized for the requested content of the file.

Fig. 12. Performance evaluation
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5.3 Evaluation

An evaluation of our implementation is shown in Fig. 12. The evaluation has
been made against concurrent download requests to the Swift proxy server. The
X-axis shows size of the JSON document requested for download while the Y-
axis shows the average download time for 10 concurrent request. Our evaluation
shows a performance hit of nearly 60 % over no authorization protection.

6 Conclusion

This paper presents an attribute based protection model for JSON docu-
ments. In the proposed model, JSON elements are annotated with security-label
attribute values with labeling policies. We specify authorization policies using
these attribute values. The advantage of the separation of labeling and autho-
rization policies is that they can be specified and administered independently
possibly by different level of administrators. In this regard, we have presented
an operational model to specify authorization policies that evaluates access
request. Further, we have specified two different models for assigning security-
label attribute values on JSON elements based on content and paths. We have
presented a proof-of-concept of the proposed models in OpenStack IaaS cloud
platform.
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Abstract. Several attribute-based access control (ABAC) models have
been recently proposed to provide finer-grained authorization and to
address the shortcomings of existing models. In particular, Servos et al.
[33] presented a hierarchical group and attribute based access control
(HGABAC) model which introduces a novel approach of attribute inher-
itance through user and object groups. For authorization purposes the
effect of attribute inheritance from groups can be equivalently realized
by direct attribute assignment to users and objects. Hence the practi-
cal benefit of HGABAC-like models is with respect to administration. In
this paper we propose the first administration model for HGABAC called
GURAG. GURAG consists of three sub-models: UAA for user attribute
assignment, UGAA for user-group attribute assignment and UGA for
user to user-group assignment.

Keywords: Attribute based access control · Attribute inheritance ·
Group hierarchy · Group attribute administration · User-group
assignment

1 Introduction

Interest in attribute-based access control (ABAC) has been developing over the
past two decades, in part due to limitations of the widely deployed role-based
access control (RBAC) model [32]. A number of ABAC models have been pub-
lished over the years [10–12,15,27,34,36,37], although none of these is quite
regarded as the definitive characterization of ABAC.

Since ABAC access mechanism revolves around the attributes of entities,
Servos et al. [33] proposed the hierarchial group and attribute-based (HGABAC)
model, which leverages user and object groups for allocating attribute values to
users and objects. In this model, a user can be assigned to a user-group and
instead of assigning attributes individually to each user in the group, a collection
of attribute values is assigned to the group and inherited by all users in that
group. A similar mechanism applies on the object side with object groups.

The essential benefit of HGABAC is convenient administration of attribute
values for users and objects. Our contribution in this paper is to present the
c© Springer International Publishing AG 2016
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first administrative model for HGABAC, called GURAG. GURAG builds upon
the GURA model [14] for user attribute assignment (UAA) but further adds
components for user-group attribute assignment (UGAA) and user to user-group
assignment (UGA). For this purpose we introduce an alternate formalization of
the HGABAC model which is compatible with the GURA and GURAG models.

Remaining paper has been organized as follows. An overview of HGABAC
followed with re-formalized model is discussed and specified in Sect. 2. In Sect. 3,
we propose a formal role and attribute based administration model for user
and user groups (GURAG). Section 4 discusses some limitations of the proposed
model. Section 5 reviews previous work related to ABAC and administration
models, followed by conclusion in Sect. 6.

2 HGABAC Model

This section gives an informal characterization of groups in HGABAC [33], fol-
lowed by a formal specification. Our formalization is in the style of ABACα [15],
different from but equivalent to the formalization of Servos et al. [33]. Our alter-
nate formalization of HGABAC enables us to build upon the GURA adminis-
trative model [14] for ABACα in Sect. 3.

2.1 Groups in HGABAC

Similar to many ABAC models, HGABAC recognizes the entities of users, sub-
jects and objects. A user is a human being which interacts directly with the
computer, while subjects are active entities (like processes) created by the user
to perform actions on objects. Objects are system resources like files, applica-
tions etc. Operations correspond to access modes (e.g. read, write) provided by
the system and can be exercised by a subject on an object. The properties of
entities in the system are reflected using attributes. Users and subjects hold the
same set of attributes whereas objects have a separate set of attributes reflecting
their characteristics. We assume all attributes are set valued. Also each attribute
has a finite set of possible atomic values from which a subset can be assigned to
appropriate entities.

In addition to the above familiar ABAC entities, HGABAC further introduces
the notion of a group as a named collection of users or objects. Each group has
attribute values assigned to it. A member of the group inherits these values from
the group. Users will inherit attributes from user groups and objects from object
groups. A partially ordered group hierarchy also exists in the system where senior
groups inherit attribute values from junior groups.

An example user-group hierarchy is illustrated in Fig. 1. Senior groups are
shown higher up and the arrows indicate the direction of attribute inheritance.
Since Graduate group (G) is senior to both CSD and UN, G will hold the
attribute values directly assigned to it as well as values inherited from CSD
and UN. The values of univId and college attributes for group G are respec-
tively inherited from UN and CSD, values of userType and studType are directly
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Fig. 1. Example User Groups (values in black are direct and in gray are inherited)

assigned to G while the values of roomAcc are a mix of directly assigned val-
ues, 2.03 and 2.04, and inherited value 3.02 from CSD. Each user is assigned
to a subset of user groups. Similarly there is an object-group hierarchy wherein
attribute values of objects are analogously inherited.

The core advantage of introducing groups is simplified administration of user
and object attributes where an entity obtains a set of attributes values by group
membership in lieu of assigning one value at a time. In context of Fig. 1 assigning
an attribute value to CSD potentially saves hundreds or thousands of assign-
ments to individual student and staff. Likewise changing the CSD level room
from 3.02 to, say, 3.08, requires only one update as opposed to thousands.

2.2 HGABAC Model: An Alternate Formalization

We now develop a formalization of the HGABAC model different from that of
Servos et al. [33]. This alternate formalization will be useful in the next section
where we develop the GURAG for administration of HGABAC. Our formal-
ization uses the conceptual model of HGABAC shown in Fig. 2. The complete
HGABAC formalization is given in Table 1, which we will discuss in the remain-
der of this subsection. An example configuration of HGABAC is given in the
next subsection.

Basic sets and functions of HGABAC are shown at the top of Table 1. U,
S, O and OP represent the finite set of existing users, subjects, objects and
operations respectively. UG and OG represent sets of user and object groups in
the system. UA is the set of user attributes for users, user groups and subjects.
OA is similarly the set of object attributes for objects and object groups. All
these sets are disjoint.

Attribute values can be directly assigned to users, objects, user groups and
object groups (we will consider subjects in a moment). These are collectively
called entities. Each attribute of an entity is set valued. The value of an attribute
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Fig. 2. A Conceptual Model of HGABAC

att for an entity is some subset of Range(att) which is a finite set of atomic values,
as indicated by the functions attu and atto in Table 1. These functions specify
the attribute values that are directly assigned to entities. The function directUg
specifies the user groups to which the user is assigned, and similarly the function
directOg specifies the object groups to which an object is assigned.

User group hierarchy (UGH) is a partial order on UG, written as �ug, where
ug1 �ug ug2 denotes ug1 is senior to ug2 or ug2 is junior to ug1. This many to
many hierarchy results in attribute inheritance where the effective values of user
attribute function attu for a user-group ug (defined by effectiveUGattu(ug)) is
the union of directly assigned values for attu and the effective attribute values
of all groups junior to ug. The assignment of a user to a user-group will inherit
values from this group to that user. The function effectiveattu maps a user to the
set of values which is the union of the values of attu directly assigned to the user
and the effective values of attribute attu from all user groups directly assigned to
the user. Similar sets and functions are specified for objects and object groups.

A subject is created by a user, denoted by the SubUser function. The effective
attribute values of a subject are under control of its creating user. These values
are required to be a subset of the corresponding effective attribute values for
the creator. In general these values can change with time but cannot exceed
the creator’s effective values. The exact manner in which a subject’s effective
attributes are modified by its creator is not specified in the model, and can be
realized differently in various implementations.

Each operation op ∈ OP in the system has an associated boolean authoriza-
tion function Authorizationop(s,o) which specifies the conditions under which
subject s ∈ S can execute operation op on object o ∈ O. The condition is specified
as a propositional logic formula using the policy language given in Table 1. This
formula can only use the effective attribute values of the subject and object in
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Table 1. HGABAC: An Alternate Formal Model
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Table 2. Example HGABAC Configuration

Basic Sets and functions

– UA = {studId, userType, skills, studType, univId, roomAcc, college, jobTitle, studStatus}
– OA = {readerType}
– OP = {read}
– UG = {UN, CSD, G, UGR, S}, OG = { }
– UGH is given in Fig. 1, OGH = { }
– Range of each attu in UA, denoted by Range(attu):

studId = {er35, abc12, fhu53}, userType = {faculty, staff, student},

skills = {c, c++, java}, studType = {Grad, UnderGrad},

univId = {12345}, roomAcc = {1.2, 2.03, 2.04, 3.02},

college = {COS, COE, BUS}, jobTitle = {TA, Grader, Admin},

studStatus = {graduated, part-time, full-time}
– Range of each atto in OA, Range(readerType) = {faculty, staff, student}
Authorization Function:

Authorizationread(s : S, o : O) ≡ effectiveuserType(s) ∈ effectivereaderType(o) ∧ java ∈ effectiveskills(s)

Fig. 3. Example Access Request Flow

question. The authorization functions are specified by the security policy archi-
tects when the system is created. Thereafter, a subject si ∈ S is allowed to
execute operation op on object o oj ∈ O if and only if Authorizationop(si, oj)
evaluates to True.

2.3 Example HGABAC Configuration

An example HGABAC configuration is given in Table 2, utilizing the user group
hierarchy of Fig. 1. For simplicity, we do not include any object groups. The
authorization policy for the read operation is specified. The access request flow
in Fig. 3 assumes the user has the set of effective attributes shown. The subject
has the given subset of its creator’s effective attributes. The subject is thereby
allowed to read the object as the authorization policy for read is satisfied by the
effective attributes of the subject and object.
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Table 3. GURAG Administrative Model

Administrative Roles and Expressions

– AR: a finite set of administrative roles

– EXPR(UA): a finite set of prerequisite expressions composed of user attribute
functions as defined in Sects. 3.1 and 3.2

– EXPR(UA ∪ UG): a finite set of prerequisite expressions composed of user
attribute functions and user groups as defined in Sect. 3.3

Administrative Relations

– User Attribute Assignment (UAA) & User-Group Attribute Assignment
(UGAA):

For each attu in UA,

canAddattu ⊆ AR × EXPR(UA) × 2Range(attu)

canDeleteattu ⊆ AR × EXPR(UA) × 2Range(attu)

– User to User-Group Assignment (UGA):

canAssign ⊆ AR × EXPR(UA ∪ UG) × 2UG

canRemove ⊆ AR × EXPR(UA ∪ UG) × 2UG

3 The GURAG Administrative Model

The HGABAC model offers the advantage of easy administration of attributes
for users and objects. The novel approach of assigning attributes to groups and
users to groups is analogous to the permission-role and user-role assignment
in RBAC [32]. By assigning a user to a user-group, the user inherits all the
effective attribute values of that group in a single step, as compared to one by
one attribute value assignment. Further, if an inherited attribute value has to
be changed for multiple users, instead of changing per user, the value in a group
can be changed, making administration very convenient.

The essence of HGABAC model is in simple administration as the effect
of attribute inheritance can also be realized by direct attribute assignment for
authorization purposes. Changing the attribute values of a group can impact
large numbers of users and objects, thus reducing the administrative effort, and
leading to better comprehension of attribute values. For example, in Fig. 1 the
fact that groups G, UGR and S inherit the roomAcc value 3.02 from CSD is
visible because of the group structure.

This section presents the GURAG administrative model for managing the
user side of HGABAC. GURAG is inspired by the GURA model [14] which in
turn evolved from URA97 [30]. All these models require a set of administra-
tive roles AR that will be assigned to security administrators. Administrative
role hierarchy also exists, wherein senior administrative roles inherit permissions
from junior ones. GURAG regulates the powers of an administrative role with
respect to user attribute assignment (UAA), user-group attribute assignment
(UGAA) and user to user-group assignment (UGA) (see Fig. 2). The Add and
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Table 4. Example rules in UAA

canAddjobTitle rule:

(DeptAdmin, Grad ∈ effectivestudType(u), {TA, Grader})

canDeleteroomAcc rule:

(BuildAdmin, graduated ∈ effectivestudStatus(u), {1.2, 2.03, 2.04, 3.02})

Delete operations enable addition or deletion of attribute values from user and
user groups. Assignment or removal of a user from a user-group is accomplished
by Assign and Remove operations. Table 3 depicts the various sets and adminis-
trative relations required to administer the user side of HGABAC. The prereq-
uisite conditions are specified with slight modifications to the policy language
described in Table 1. We now define the three sub-models of GURAG.

3.1 The UAA Sub-model of GURAG

The UAA sub-model deals with addition or deletion of values to a set-valued
attribute of a user. It is composed of two relations as shown in Table 3. The
meaning of (ar,Expr(ua),Z) ∈ canAddattu is that a member of an administrator
role ar (or senior to ar) is authorized to add any value in the allowed range
Z of attribute attu of a user whose attributes satisfy the condition specified
in Expr(ua). EXPR(UA) is the set of all prerequisite conditions represented
as propositional logic expressions. The expressions return true or false and are
specified using earlier defined policy language (Table 1) with following changes.

set ::= attui(u) | effectiveattui
(u) | constantSet for attui ∈ UA

atomic ::= constantAtomic

The meaning of (ar,Expr(ua),Z) ∈ canDeleteattu is that the member of
administrator role ar (or senior) is authorized to delete any value in allowed
range Z of attribute attu of a user whose attributes satisfy the condition specified
in Expr(ua). The delete operation will only impact directly assigned attribute
value of the user (i.e. val ∈ attu(u)). If the value to be deleted is inherited from a
group, the operation will not have any effect. Further, if a value is both inherited
and directly assigned to user, deletion will only delete the direct value, thereby,
the user will still hold the value inherited from the group. It is worth mentioning
that any change in prerequisite conditions after the attribute value assignment
has been made, will not have any retrospective effect and the entity involved will
still retain the value. This is consistent with the GURA and URA97 models.

Table 4 illustrates example UAA relation. First rule allows administrator role
DeptAdmin (or senior to DeptAdmin) to add any value in {TA, Grader} to user
attribute jobTitle if the user’s studType attribute includes Grad. Second rule
allows administrator role BuildAdmin (or senior to BuildAdmin) to remove any
of the specified room values from the roomAcc attribute of a user whose status
includes graduated.
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Fig. 4. Example User-Group Attribute Assignment (UGAA)

Table 5. Example rules in UGAA

canAddroomAcc rule: (BuildAdmin, COS ∈ college(ug), {2.04})

canAddskills rule: (DeptAdmin, Grad ∈ studType(ug), {c++})

canDeleteroomAcc rule: (BuildAdmin, 2.04 ∈ roomAcc(ug), {3.02})

3.2 The UGAA Sub-model of GURAG

This sub-model controls addition and deletion of attributes to user-groups as
shown in Table 3. The relations for UAA and UGAA have slightly different policy
languages for EXPR(UA), which in UGAA is defined as follows.

set ::= attui(ug) | effectiveUGattui
(ug) | constantSet for attui ∈ UA

atomic ::= constantAtomic

The meaning of canAdd and canDelete are similar to those in UAA sub-
model. In particular, the delete operation in UGAA only impacts directly
assigned attribute values of a user-group (i.e. val ∈ attu(ug)) and will not delete
inherited values from junior groups.

Figure 4 shows addition and deletion of attribute values to user-group CSD
in context of Table 5. Addition of value 2.04 to roomAcc attribute of CSD group
by administrator role BuildAdmin (or senior to BuildAdmin) is allowed by first
rule in Table 5. Figure also shows deletion of 3.02 value from roomAcc attribute
authorized by third rule.

3.3 The UGA Sub-model of GURAG

The UGA sub-model is composed of two authorization relations in the lower part
of Table 3. These control the assignment of user to user-groups, as well as removal
of a user from a user-group. The meaning of (ar, expr, {g1, g2, g3}) ∈ canAssign
is that member of administrator role ar (or senior) can assign any user-group
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Fig. 5. Example User to User-Group Assignment (UGA)

Table 6. Example rules in canAssign UGA

Admin role Prereq. cond AllowedGroups

DeptAdmin {c, java} ⊆ effectiveskills(u) ∧ S /∈ effectiveUg(u) {G, CSD}
StaffAdmin {G,UGR} ∩ effectiveUg(u) = ø ∧ Admin ∈ effectivejobTitle(u) {S}
DeptAdmin U ∈ directUg(u) ∧ 3.02 ∈ roomAcc(u) ∧ S /∈ effectiveUg(u) {UGR, CSD}

in {g1, g2, g3} to a user which satisfy the conditions in expr. EXPR(UA ∪ UG)
now includes the current membership or non-membership of user in user-groups
along with user attributes. The policy language has the following changes.

set ::= attui(u) | effectiveattui
(u) | directUg(u) | effectiveUg(u) | constantSet

atomic ::= constantAtomic
where effectiveUg(u) = directUg(u) ∪ (

⋃
∀ugi ∈ directUg(u)

{ugj|ugi �ug ugj})

The canRemove relation in Table 3 controls the removal of a user from user-
group memberships. The remove operation is said to be weak in that it will only
impact explicit memberships of user. A user is an explicit member of group ug
if ug ∈ directUg(u) whereas a user is an implicit member of ug if for some ugi

∈ directUg(u), ug ∈ {ugj | ugi �ug ugj} exists. It should be mentioned that
removal of a user from any explicit membership ug will automatically result in
removal from all implicit membership due to ug.

Figure 5 shows assignment of user to user-group G allowed by first rule
in Table 6. This assignment results in updates on effective attributes of user
as user now inherits all attributes from group G along with direct attributes
assigned through UAA. In case of weak removal (using Fig. 1), suppose a user
is an explicit member of groups CSD and G and administrator role DeptAdmin
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Table 7. Example rules in canRemove UGA

Admin role Prereq. cond AllowedGroups

UniAdmin graduated ∈ effectivestudStatus(u) ∧ {G, UGR}
∩ effectiveUg(u) �= ø

{G,UGR}

DeptAdmin COS /∈ effectivecollege(u) {CSD}

Table 8. Operational Specification

Operations Conditions Updates

In following operations: V AL′ ∈ 2Range(attu ), val ∈ V AL′, expr ∈ EXPR(UA)

Add(ar, u, attu, val) if ∃〈ar, expr, V AL′〉 ∈ canAddattu
∧ expr(u) = True ∧ val /∈ attu(u)

att′
u(u) = attu(u)∪{val}

Delete(ar, u, attu, val) if ∃〈ar, expr, V AL′〉 ∈ canDeleteattu
∧ expr(u) = True ∧ val ∈ attu(u)

att′
u(u) = attu(u)\{val}

Add(ar, ug, attu, val) if ∃〈ar, expr, V AL′〉 ∈ canAddattu
∧ expr(ug) = True ∧ val /∈ attu(ug)

att′
u(ug) = attu(ug)∪{val}

Delete(ar, ug, attu, val) if ∃〈ar, expr, V AL′〉 ∈ canDeleteattu
∧ expr(ug) = True ∧ val ∈ attu(ug)

att′
u(ug) = attu(ug)\{val}

In following operations: UG′ ∈ 2UG, ug ∈ UG′, expr ∈ EXPR(UA ∪ UG)

Assign(ar, u, ug) if ∃〈ar, expr, UG′〉 ∈ canAssign

∧ expr(u) = True ∧ ug /∈ directUg(u)

directUg′(u) = directUg(u)∪{ug }

Remove(ar, u, ug) if ∃〈ar, expr, UG′〉 ∈ canRemove

∧ expr(u) = True ∧ ug ∈ directUg(u)

directUg′(u) = directUg(u)\{ug }

removes user from CSD (authorized by second rule in Table 7), the user will still
have attributes of CSD through its membership in G.

3.4 Operational Specification of GURAG

Table 8 outlines administrative operations required for user-group membership
and attribute assignment. In all operations: ar ∈ AR, u ∈ U, attu ∈ UA, ug ∈
UG. A request (first column) succeeds only if a tuple exists in administrative
relation and the entity satisfies the conditions (second column), in which case
the update (third column) is performed.

3.5 GURAG Model Extensions

This section proposes some enhancements to GURAG.
Strong Removal: We can define a strong removal operation as per the fol-

lowing example using Fig. 1. If a user is explicit member of CSD and G and
administrator role DeptAdmin removes this user from CSD (allowed by second
rule in Table 7), the user will also be removed from group G along with CSD
if allowed by authorization rules. If the user cannot be deleted from G, the
operation will have no effect.

Inherited Value Deletion in User: Let Alice have administrator role r1 and
Alice tries to delete inherited value val from attribute attu of user u1. Let there
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be a canDeleteattu rule (r, cond, allowedV al) and if r1 � r, val ∈ allowedV al
and u1 satisfies cond, find all user groups ug in directUg(u1) from where the
attribute value val is inherited. There are two possibilities: (i) If there exists
a canRemove rule (r, cond, allowedGroup) and if r1 � r, ug ∈ allowedGroup
and u1 satisfies the cond, remove u1 from all such ug groups. (ii) If such a rule
doesn’t exist or u1 cannot be removed from some ug groups, the operation will
have no effect.

Inherited Value Deletion in User Group: Let Alice have role r1, and Alice
tries to delete inherited value val from attribute attu of user group ug1. Let there
exists a canDeleteattu rule (r, cond, allowedV al) and if r1 � r, val ∈ allowedV al
and ug1 satisfies cond, find all user groups ug junior to ug1 which has val directly
assigned. Delete val from all such ug as if Alice did this delete. If any delete fails
this operation is aborted.

4 Discussion and Limitations

The principal advantage of HGABAC model is convenient and simplified
administration of attributes. GURAG proposes first administration model for
HGABAC. Reachability analysis in GURA [16] discusses whether a user can be
assigned specific values with a given set of administrator roles. Since GURAG

proposes the authorization relations in line with GURA, we conjecture that sim-
ilar reachability analysis is feasible for GURAG.

At the same time, GURAG inherits some weaknesses of URA97 and GURA
as discussed in [23]. Authorization rules in UAA and UGAA may require a user
or user-group to have attribute values to satisfy prerequisite conditions to get
other attribute values. To attain prerequisite attribute values, entity might need
to satisfy another condition which itself would require some other attributes and
so on. A single GURAG attribute assignment may require multiple attribute
assignments to get final attribute values, possibly involving several administra-
tors. These multi-step assignments may also result in some attribute values to
be assigned to an entity solely for administrative purposes, but not otherwise
needed.

Likewise, UGA rules may require a user having existing attribute values or
membership in groups, which might also require multiple user groups or attribute
pre-assignments and security administrators. If some rule has prerequisite junior
groups requirement to assign a senior group membership, it will unnecessarily
necessitate a user to be explicit member of junior groups, though same attribute
inheritance can be achieved through senior group membership only. Thus, junior
group assignments would be redundant and may lead to multiple step revoca-
tions when the user is deleted from system. An approach similar to [23] could be
proposed to resolve these shortcomings where users and user-groups are assigned
to organizational structure based user or group pools. Organizational pool is a
group of users or user-groups with similar goals. Entities are assigned to pools
and then attribute values depending on the requirements. Pools are used in pre-
requisite conditions instead of attributes overcoming multiple pre-assignments
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for user and user-groups. A similar approach can also be followed in user to
user-group assignment.

The object side of HGABAC has not been discussed but it seems to be a
pragmatic approach to extend URA97 for object administration as well. Though
user and object have different properties, for attribute assignments we believe it
will not make any difference. For user and object group hierarchies, RRA97 [30]
could be a base model to be worked upon.

5 Related Work

Several papers [4,7,8,22] have been published to associate attributes to
encrypted data, policies and keys. A fine grained ABAC for data outsourc-
ing system is discussed in [12]. Work in [28] proposes key distribution center
and encryption using cloud owner attributes. RBAC has been extended to use
attributes for role assignment [5,24]. [20] discussed approaches to relate roles and
attributes while RB-RBAC [3] dynamically assign roles to users using attribute
based rules. Role activation based on time constraints is explored in [17]. Muta-
ble attributes in access decisions is discussed in [25]. Xin et al. [15] also presented
an ABAC model with DAC, MAC and RBAC configurations. Lang et al. [21]
proposed a model by extending XACML [1] and SAML [2] to support multi-
policy ABAC. Using location attribute to secure social networks is discussed in
[9]. [13] enforces separation of duty in ABAC systems. Automatic security risk
adjustment based on attributes is presented in [18]. Yuan et al. [37] presented
an authorization architecture and policy formulation for ABAC in web services.
Wang et al. [36] provided framework using logic based programming to model
ABAC. Preference based authorization [19] is proposed by extending XACML.
Context based policy redeployment is discussed in [26]. [35] proposes an exten-
sion to assertion based policy language for federated systems. Administrative
models include URA97 [31], PRA97 [29], ARBAC97 [30], GURA [14] and work
by Crampton et al. [6].

6 Conclusion and Future Work

The paper presents first generalized URA97, called GURAG, for HGABAC
administration. Propositional logic conditions together with administrative roles
are used to make administrative authorization decisions. GURAG has three
sub-models: user attribute assignment (UAA), user-group attribute assignment
(UGAA) and user to user-group assignment (UGA). The authorization rela-
tions in UAA and UGAA control addition and deletion of direct attributes from
user and user-group. UGA governs assignment and removal of a user from user-
groups based on the current membership (or non-membership) and attributes of
user. Some extensions to GURAG have also been discussed. As GURAG proposes
manual assignment of attribute values and user-groups to users, a potential foray
can be to develop automated GURAG like model. An administrative model for
group hierarchies and objects can also be a future prospect.
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Abstract. Several access control models that use attributes have been
proposed, although none so far is regarded as a definitive characteriza-
tion of attribute-based access control (ABAC). Among these a recently
proposed model is the attribute-based access matrix (ABAM) model [14]
that extends the HRU model [4] by introducing attributes. In this paper
we consider the finite case of ABAM, where the number of attributes
is finite and the permissible values (i.e., domain) for each attribute is
finite. Henceforth, we understand ABAM to mean finite ABAM. A sepa-
rately developed model with finite attribute domains is PreUCONA [10],
which is a sub-model of the usage control UCON model [9]. This paper
explores the relationship between the expressive power of these two finite
attribute domain models. Since the safety problem for HRU is undecid-
able it follows safety is also undecidable for ABAM, while it is known
to be decidable for PreUCONA [10]. Hence ABAM cannot be reduced
to PreUCONA. We define a special case of ABAM called RL-ABAM2
and show that RL-ABAM2 and PreUCONA are equivalent in expressive
power, but each has its own advantages. Finally, we propose a possible
way to combine the advantages of these two models.

1 Introduction

Attribute-Based Access Control (ABAC) is a form of access control that has
recently caught the interest of both academic and industry researchers. High-
level definitions and descriptions of ABAC are generally accepted, but heretofore
there has been no particular unified model or standardization of ABAC. The
National Institute of Standards and Technology (NIST) recently described a high
level access control model that uses attributes [5,6]. Jin et al. [7] have proposed
a unified ABAC model that can be configured to the traditional access control
models (i.e., DAC, MAC and RBAC). Researchers have also studied combining
attributes with RBAC. Kuhn et al. [8] presented models that combine ABAC
and RBAC in various ways, while Yong et al. [13] proposed extending the roles
of the RBAC with attributes. Al-Kahtani et al. [1] introduced the notion of using
attributes in user-role assignment of RBAC model. Chadwick et al. [3] describe
the use of X.509 certificates to enforce RBAC. Bennett et al. [2] showed that
c© Springer International Publishing AG 2016
J. Chen et al. (Eds.): NSS 2016, LNCS 9955, pp. 333–346, 2016.
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online social network policies can be cast in an ABAC framework. Thus there
has been a tradition of research on combining or relating attributes to various
access control models, old and new.

A novel approach to combining attributes with the access matrix was devel-
oped by Zhang et al. [14], who defined the attribute-based access matrix (ABAM)
model by adding attributes to the classic HRU model [4]. In the HRU model each
cell [si, oj ] of the access matrix contains a set of rights that subject si can exer-
cise over object oj . In general, a subject is also an object while every object is
not necessarily a subject. Subjects and objects are collectively called entities.
ABAM additionally associates a set of attributes ATT (o) with each entity o.
A notable aspect of ABAM is that its commands not only test for and modify
rights in access matrix cells like in HRU, but can further test for and modify
attribute values. In the finite ABAM the set of attributes is finite and each
attribute can take values from only a finite fixed set. Henceforth we understand
ABAM to mean finite ABAM. The ABAM model is reviewed in Sect. 2.1.

The features of attribute testing and modification, also called attribute
mutability, were adapted in ABAM [14] from the earlier UCON model [9].
UCON incorporates various additional features such as ongoing authorization
and updates, as well as obligations and conditions. Here we focus on a sub-model
of UCON called PreUCONA [9,10] where attribute testing and modification are
carried out prior to allowing access. Similar to finite ABAM, in finite PreUCONA

the set of attributes is finite and each attribute of an entity can only take on a
finite set of permissible values. Henceforth, we understand PreUCONA to mean
finite PreUCONA. PreUCONA is reviewed in Sect. 2.2.

In this paper we investigate the theoretical relationship between ABAM and
PreUCONA. Our first observation is that ABAM is an extension of HRU and
thereby inherits the undecidable safety results of HRU. On the other hand
PreUCONA is known to have decidable safety analysis [10]. It follows that
ABAM cannot be reduced to PreUCONA. On the other hand, we show how
PreUCONA can be reduced to ABAM (Sect. 3). This construction inspires us
to define a restricted version of ABAM named RL-ABAM2, which stands for
right-less ABAM with two parameters as will be explained (Sect. 4). We then
prove that PreUCONA and RL-ABAM2 theoretically have equivalent expressive
power (Sect. 5). Section 6 concludes the paper.

2 Background

In the following we respectively review the ABAM and PreUCONA models.

2.1 The ABAM Model

ABAM is defined in terms of access control matrix and commands in the tradi-
tion of HRU [4], TAM [11] and other access matrix based formal models. The
basic components of the ABAM model are subjects and their attributes, objects
and their attributes, access rights, access matrix, primitive operations and com-
mands. These are explained below.
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Subjects and Objects. Entities in ABAM are objects O and subjects S.
Subjects are active entities that can invoke access requests or execute permissions
on objects. Subjects can be the target of access requests so S ⊆ O. Objects that
are not subjects are called pure objects. When an object is created, a unique
identity (ID) recognized by the system is given to that object and cannot be
changed after the creation. This ID is never reused.

Attributes and Attribute Tuples. In ABAM, the set of attributes GATT is
attached to each entity. Each attribute is a variable with a specific data type.
An attribute of an entity can be assigned an atomic value vi, which comes from
domain Vi for that attribute, or a set value {v1, .., vi, .., vk} ⊆ Vi. Also, a null
value will be assigned if the entity does not have that attribute. For entity o,
the set of attributes of o come from GATT = {a1, .., ai, .., an}, and the value vi

of each attribute ai is from the domain V (ai) = {v1, .., vi, .., vm}. The ordered
set of attributes and domains Gv = [a1:V (a1), ... , ai:V (ai) , ... , an:V (an)]
is a combination of GATT and V (ai). The attribute value tuple for entity o is
ATT (o) = (a1 = v1, ... , ai = vi, ... , an = vn), where vi ∈ Vi or vi ⊆ Vi for
1 ≤ i ≤ n. The result of updating ai from vi to v′

i changes ATT (o) to ATT ′(o)
= (a1 = v1, ... , ai = v′

i, ... , an = vn). An entity attribute is denoted as ent.att
where ent refers to entity name and att is the attribute name.

Fig. 1. ABAM access matrix [14]

Rights and Access Matrix. An access matrix is a matrix with columns repre-
senting all objects (subjects and pure objects), and rows representing the set of
all subjects. Each object in the columns and rows is associated with its attribute
tuple. Access rights in the [si, oj ] cell of the matrix specify the access that sub-
ject si has to object oj . All entities in rows (subjects) can access other entities
in the column (subjects and pure objects) by executing given access rights (e.g.,
read, write, execute). The set of all access rights is denoted by R and each cell
[s, o] is a subset of R. Figure 1 shows an example of an access matrix [14].

Attribute Predicates. A predicate P is a Boolean expression constructed
using attributes and constants with appropriate relation symbols. There are two
kinds of predicates. A unary predicate has one attribute variable and a constant,
e.g. Alice.credit ≤ 100. A binary predicate has two different attribute variables,
e.g. s1.roles ⊂ s2.roles. Binary predicates can be built over attributes from the
same entity or two different entities.
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Primitive Operations. A primitive operation is the basic action that a subject
can execute over an object which cause changes in the status of the access matrix.
The primitive operations are defined as follows.

1. Enter r into [s,o]: Enters generic right r into cell [s, o] in the access matrix.
2. Delete r from [s,o]: Deletes generic right r from cell [s, o] in the access matrix.
3. Create subject s:ATT(s): Creates a new subject s with attribute tuple

ATT (s).
4. Destroy subject s: Removes subject s and its attribute tuple from the system.
5. Create object o:ATT(o): Creates a new object o with attribute tuple ATT (o).
6. Destroy subject s: Removes object o and its attribute tuple from the system.
7. Update attribute ent.att = v′: Updates the attribute tuple ATT (o) to

ATT ′(o) = (a1 = v1, ... , ai = v′
i, ... , an = vn) where vi ∈ Vi and vi �= v′

i.

The first six are essentially similar to their counterparts in HRU, whereas
the seventh is new to ABAM.

Commands. A command in ABAM involves three parts: parameters (entities
with possibly new attribute values), conditions, and a sequence of primitive
operations. ABAM commands allow primitive operation to be executed if the
condition on existing rights is satisfied, as well as the specified predicates on
attributes of the entities evaluate to true. The set of all commands is Gα =
{α1, α2, .., αh}. Each individual command is defined as follows.

Command αi(X1 : ATT (X1),X2 : ATT (X2), ..,Xk : ATT (Xk))
if r1 ∈ [Xs1,Xo1] ∧ r2 ∈ [Xs2,Xo2] ∧ ...rm ∈ [Xsm,Xom] ∧ p1 ∧ p2 ∧ ...pn

then op1; op2; ...; opl end

The name of the command is αi. X1,X2, . . . , Xk are subject or object
parameters; r1, r2, ..., rm are generic rights; s1, s2, ..., sm and o1, o2, ..., om are
integers between 1 and k; ATT (X1), ATT (X2), ..., ATT (Xk) specify new val-
ues of attributes for the respective entities (if any is updated by the com-
mand); p1, p2, ..., pn are predicates built over old or new attribute tuples of
X1,X2, ...,Xk. The “if” part of the command is called the condition of α. Update
operations can update an attribute from an old value vi ∈ Vi to a different new
value v′

i ∈ Vi or from an old value set {v1, v2, .., vr} ⊆ Vi to a new different subset
of Vi. The operations op1; op2; ...; opl in the body of the command are executed
sequentially and the entire command executes atomically. Each opi consists of
one of the seven primitive operations enumerated above.

Command Example. The following ABAM command enables the first sub-
ject to update attribute a2 of the second subject to v′

i, provided the specified
condition is true.

Command Update(s1 : ATT (s1), s2 : ATT (s2))
if r1 ∈ [Xs1,Xs2 ] ∧ s1.a1 = vi ∧ s1.a2 ≤ s2.a2

then update attribute s2.a2 = v′
i end
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An ABAM command allows only conjunctive form of condition. In case of
a disjunctive form of condition, we need to have one command for each com-
ponent condition. For negated predicates, ABAM command accomodates it by
simply defining a normal predicate for a negated one. Therefore, without loss of
generality, we can consider the condition of ABAM command to be an arbitrary
propositional logic formula.

2.2 The PreUCONA Model

We now describe the PreUCONA model.

Subject, Objects, Attributes, and Rights. The PreUCONA model has
objects as resources and subjects as user processes. Similar to the ABAM model,
subjects are a subset of objects. Each object has a finite set of attributes and
a unique name. Object attributes can be accessed by using dot notation to
associate object name with attribute name, as in nameobject.nameattribute, e.g.,
o.security = ‘high’. This model supports the dynamic creation and deletion of
objects. The permission defined over an object is called a usage right.

Usage Control Scheme. There are three components of a usage control
scheme UΘ.

– an object schema OSΔ,
– a set of usage rights UR = {r1, r2, ..., rm}, and
– a set of usage control commands {UC1, UC2, ..., UCn}.

The object schema OSΔ is the combination of the attributes of objects and
domains from which attribute values come. OSΔ = (a1 : Ω1, a2 : Ω2, ..., an : Ωn),
where each ai is the name of an attribute, and Ωi is the domain of ai that has
a finite set of values which can be assigned to the attribute ai. Each object will
have an ordered attribute value tuple AV T =< v1, v2, ..., vn >, where n is the
number of attributes in the object schema and each vi ∈ Ωi. Attributes can be
assigned to an atomic value or a set value. Also, attributes can be set to a default
value from the domain at creation time.

Usage rights defines the rights ri that can be granted by a usage control
command. UR is finite. Giving a right to a subject to be executed on an object
depends on the attribute value of subjects and objects as specified by usage
control commands discussed below.

The usage control commands comprise a finite set of commands. Each com-
mand has a name that is linked with the authorized right r when executing this
command. There are two formal parameters for each command, s and o. Sub-
ject s is the actor that seeks to access the target object o with right r. Also,
commands can be either non-creating commands in which the object o exists
before the execution of the command, or creating commands in which the object
o is created during the execution of the command. The structure of creating and
non-creating commands is shown in Table 1.
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Table 1. PreUCONA commands

Non-Creating Commands Creating Commands

Command-Namer(s, o) Command-Namer(s)
PreCondition: fb(s, o) → {yes, no}; PreCondition: fb(s) → {yes, no};
PreUpdate: PreUpdate: create o;

s.ai1 := f1, ai1(s, o); s.ai1 := f1, ai1(s);
... ...
s.aip := f1, aip(s, o); s.aip := f1, aip(s);
o.aj1 := f2, aj1(s, o); o.a1 := f2, a1(s);
... ...
o.ajq := f2, ajq(s, o); o.an := f2, an(s);

In the PreCondition section, the Boolean function fb(s, o) takes the attribute
values of s and o as input and returns true or false. In case of false, the command
terminates without executing any updating or granting rights r, while in case of
true, the update attribute operations in the PreUpdate section will be executed,
and the operation permitted by right r is allowed. Zero or more of the attributes
of the input s and o are updated individually to new values that are calculated
from their old values, which existed before the command execution.

The structure of a creating command is mostly similar. The input parameter
is only s, and the function fb(s) is a Boolean function that takes the attributes of
s as an input and returns a true or false value. In case of false, the command
terminates without executing any creating, updating, or granting rights r, while
in the case of true, the command of creating an object should be executed before
doing any updating of the object attributes. Zero or more of the attributes of
the input s and new object o are updated individually to new values that are
calculated from old values of s, which existed before the command execution.

3 Expressing PreUCONA IN ABAM

In this section we consider how to express PreUCONA in ABAM. The reduc-
tions we consider in this paper are state-matching reductions [12], which is the
accepted formal criteria for theoretical equivalence of access control models.

There are two challenges in reducing PreUCONA to ABAM. First, the for-
mulas in the PreCondition part of Table 1 are arbitrary computable Boolean
functions, whereas ABAM only permits propositional logic formulas. Second,
the update functions in the body of a PreUCONA command are arbitrary com-
putable functions. In ABAM only specific new values are allowed in the update
operation. However, due to the finite domain assumption these functions from
PreUCONA can be computed for all possible attribute values of s and o, and
the results can be “compiled” into multiple ABAM commands. We show how to
do this for the body of the PreUCONA command. An analogous construction
applies to the PreCondition part, but is not shown here for lack of space and
straightforward similarity.
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The attributes assignment formulas can be handled by having an ABAM
command for each possible combination of attribute values. Consider an update
operation s.ai := f(s, o). There are only a finite number of possible results for the
value of s.ai, depending on the value domain of ai and whether ai is atomic or set
valued. For each possible value of ai we can determine which input combinations
of the attribute values of s and o will produce that result, if only by exhaustive
enumeration of f for these combinations. The example below illustrates this idea
more concretely.

The PreUCONA components are subjects (S), objects (O), usage rights (UR)
and an object schema OSΔ. To express PreUCONA in ABAM, we can define
the following analogous ABAM components where the subscript ABAM is used
to distinguish the ABAM component from the corresponding PreUCONA com-
ponent.

– OABAM = O and SABAM = S
– RABAM = UR = {ur1, ur2, ..., urk}
– MABAM with a row for every SABAM with its attribute tuple, and a column

for every OABAM with its attribute tuple.
– [si, oj ] = φ, where si ∈ SABAM , and oi ∈ OABAM

– GATT = {a1, .., ai, .., an}
– GV = OSΔ = [a1 : Ω1, a2 : Ω2, ..., an : Ωn].

We illustrate the construction of ABAM commands by the following example.
Let the object schema OSΔ = [a1 : {1, 2}, a2 : {2, 3}, a3 : {1, 2, 3}] and usage
rights UR = {update}. The initial values for s and o attributes are [1,2,3] and
[2,3,1] respectively for [a1, a2, a3]. Commandupdate is as follows:

Commandupdate (s, o)
PreCondition: s.a1 ≤ 2 ∨ o.a2 ≤ 3
PreUpdate: o.a3 := max(s.a3, o.a3);

Since s.a3 = 3 and o.a3 = 1, the new value of o.a3 is 3 which is the maximum
of two values. The corresponding ABAM components of the PreUCONA schema
will be as follows.

– OABAM = O and SABAM = S
– RABAM = UR = {update}
– MABAM with a row for every SABAM with its attribute tuple, and a column

for every OABAM with its attribute tuple.
– [si, oj ] = φ, where si ∈ SABAM , and oi ∈ OABAM

– GATT = {a1, a2, a3}
– GV = OSΔ = [a1 : {1, 2}, a2 : {2, 3}, a3 : {1, 2, 3}].

The possible ABAM commands for PreUCONA commandupdate are given in
Table 2. Since attribute a3 has only three possible values we need three ABAM
commands. This construction easily extends to multiple attributes. It is evident
will need a large number of commands for each PreUCONA command that uses
such formulas.
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Table 2. Possible ABAM commands

Updating to value 1 Updating to value 2 Updating to value 3

Command

update(s:ATT (s), o:ATT (o))

Command

update(s:ATT (s), o:ATT (o))

Command

update(s:ATT (s), o:ATT (o))

if s.a1 ≤ 2∨ o.a2 ≤ 3∧ (s.a3 =

1 ∨ o.a3 = 1)

if s.a1 ≤ 2∨ o.a2 ≤ 3∧ ((s.a3 =

1∧o.a3 = 2)∨(s.a3 = 2∧o.a3 =

1))

if s.a1 ≤ 2∨ o.a2 ≤ 3∧ ((s.a3 =

1∧o.a3 = 3)∨(s.a3 = 2∧o.a3 =

3) ∨ (s.a3 = 3 ∧ o.a3 = 1) ∨
(s.a3 = 3 ∧ o.a3 = 2) ∨ (s.a3 =

3 ∧ o.a3 = 3))

update attribute o.a3 = 1 update attribute o.a3 = 2 update attribute o.a3 = 3

enter update into [s, o]; enter update into [s, o]; enter update into [s, o];

delete update from [s, o]; delete update from [s, o]; delete update from [s, o];

end end end

4 Right-Less ABAM with Two Parameters (RL-ABAM2)

PreUCONA has the ability to grant a non-persistent right for each command. In
other words, by the end of any command execution, the given right is taken back
from the actor. In contrast, an ABAM command has the power of granting one
or more rights to the actor, maintaining the given rights in the corresponding
cell of the actor, and permitting two or more parameters (more targets) for each
command. These ABAM features will cause difficulties for expressing ABAM
in PreUCONA. Moreover, unrestricted use of rights in ABAM will result in
undecidable safety as in HRU [4], whereas PreUCONA has decidable safety [10].
Therefore, in general it is not possible to reduce ABAM to PreUCONA. These
considerations lead us to focus on a restricted form of ABAM inspired by the
construction in the previous section.

4.1 RL-ABAM2 Definition

RL-ABAM2 is the reduced model of ABAM, where RL indicates “right less” and
the two denotes the number of parameters required in a command. Object, sub-
ject, attributes, attribute tuples, rights, access matrix, predicates, and primitive
operations are all the same as in ABAM. However, an RL-ABAM2 command
has more limited characteristics than an ABAM command in terms of number of
parameters, the if statement section, and the existence of rights. In RL-ABAM2,
a command is defined as follows:

Command αi(X1 : ATT (X1),X2 : ATT (X2))
if p1 ∧ p2 ∧ ...pn

then
op1; op2; ...; opl ;
enter r1 into [X1,X2];
delete r1 from [X1,X2];
...
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enter rk into [X1,X2];
delete rk from [X1,X2];
end

In the above RL-ABAM2 command, the number of parameters is only two.
Moreover, the rights check part is eliminated in the “if” statement section, so
the predicates P are the only part that appears. The body of the command will
have all kinds of operations, but every right entered into any cell needs to be
deleted prior to the end of the command. In general, the RL-ABAM2 model is
a special case of ABAM model.

4.2 Expressing PreUCONA in RL-ABAM2

In Sect. 3, we discussed how to express the PreUCONA in the ABAM. In fact,
the result of expressing PreUCONA commands to ABAM commands is RL-
ABAM2 commands which have two parameters, no check for rights, and a delete
right operation for each entered right. Thus, we can state that Sect. 3 is already
expressing PreUCONA in RL-ABAM2.

5 Expressing RL-ABAM2 in PreUCONA

In this section we show how to reduce RL-ABAM2 to PreUCONA.

5.1 General Construction

Given an RL-ABAM2 schema with the following components: objects
ORL−ABAM2, subjects SRL−ABAM2, access rights RRL−ABAM2 = {r1, .., rk},
attributes tuple ATT (oi) = < a1 = v1, .., an = vn >, where oi ∈ ORL−ABAM2,
and a list of all attributes which are linked with their domains G−V{RL−ABAM2}
= [a1:V (a1), ... , ai:V (ai), ... , an:V (an)], each RL-ABAM2 commands will have
the following structure:

Command αi (si : ATT (si), oj : ATT (oj))
if p1 ∧ p2 ∧ ...pn

then
create object X2 : ATT (X2);
update attribute si.ak = v′

i;
update attribute oi.as = v′

j ;
enter ri into [si, oj ];
delete ri from [si.oj ];
end

This structure for RL-ABAM2 commands can be assumed without loss of
generality. The create operation (if present) comes first, followed by update oper-
ations, and at the end, all enter and delete operations. For each parameter, zero
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or more attributes of oj ∈ ORL−ABAM2 or si ∈ SRL−ABAM2 can be updated
from vi to v′

i, as well as one or more rights ri ∈ (RRL−ABAM2) can be entered
into cell [si, oj ] and deleted.

The corresponding PreUCONA components of the RL-ABAM2 schema are
as follows:

– Entity in PreUCONA are objects OPre UCONA

– OPre UCONA
= ORL−ABAM2

– SPre UCONA
= SRL−ABAM2

– URPre UCONA
= RRL−ABAM2

– OSΔ = G − V{RL−ABAM2}

As discussed above, RL-ABAM2 has the power of entering and deleting
many rights in one command, while a PreUCONA command grants a single
right. In the case of executing many operations over rights in the body of RL-
ABAM2, applying a singleton PreUCONA command can only cover one of the
RL-ABAM2 rights. Consequently, multiple PreUCONA commands are required
to cover RL-ABAM2 rights. To preserve atomicity of the RL-ABAM2 command
specific attributes are added as well as a special object for synchronization. Some
parts of the corresponding PreUCONA components of the RL-ABAM2 schema
are extended as follows:

– Entity in PreUCONA are objects OPre UCONA

– OPre UCONA
= ORL−ABAM2 ∪ Olock

– SPre UCONA
= SRL−ABAM2

– URPre UCONA
= Command − RRL−ABAM2

– Auxiliary − OSΔ = [lock:V (lock), type:V (type), R to select:V (R to select),
position:V (position)]

– OSΔ = G − V{RL−ABAM2} ∪ Auxiliary − OSΔ

The domain for each of these additional attributes is as follows: V(lock)
= {0, 1}, V(type) = {ordinary, lock}, V(R to select) = URPre UCONA

, and
V(position) = {1,2}. The initial values for the proposed attributes are set as
follows: For all o ∈ ORL−ABAM2: o.type = ordinary, o.lock = 0, o.position
= φ, and o.R to select = φ. For O lock: O lock.type = lock, O lock.lock = 1,
O lock.position = φ, O lock.R to select = φ.

To apply a RL-ABAM2 command in PreUCONA commands, a sequence of
steps is introduced as follows:

1- Give a lock to the first parameter of the RL-ABAM2 command
2- Decide the second parameter of the Rl-ABAM2 command
3- Implement a sequence of PreUCONA commands
4- Release the lock from the first parameter (actor) of the RL-ABAM2 com-

mand.
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To implement the first step, a command called get lock will be executed with
the first parameter of RL-ABAM2 si and the special object O lock:

Command get lock (si : ATT (si), O lock : ATT (O lock))
if si.type = ordinary ∧ O lock.type = lock ∧ si.lock = 0 ∧ O lock.lock = 1
then
update attribute si.lock = 1;
update attribute O lock.lock = 0;
update attribute si.position = 1;
update attribute si.R to select = URPre UCONA

end

Then, the actor needs to decide the second parameter, and the below com-
mand will take care of the second step:

Command pick target(si : ATT (si), oj : ATT (oj))
if si.type = ordinary ∧ si.lock = 1 ∧ oj .lock = ordinary ∧ si.position = 1 ∧
oj .position = φ
then
update attribute oj .position = 2;
end

The third step contains an ordered series of PreUCONA commands which
depend on the number of the operation over rights in the body of an RL-ABAM2
command (URPre UCONA

= {r1, r2, ..., rk}). The structure of the ordered series
of commands is as follows:

Command−r1(si, oj)
PreCondition: fb(si, oj) ∧

si.R to select = URPre UCONA
∧ si.lock = 1

∧ si.position = 1 ∧ oj .position = 2;
PreUpdate:

create o;
si.ak = v′

i;
oj .as = v′

j ;
si.R to select = URPre UCONA

− {r1}

Command−r2(si, oj)
PreCondition: si.R to select = URPre UCONA

− {r1} ∧ si.lock = 1
∧ si.position = 1 ∧ oj .position = 2;

PreUpdate:
si.R to select = URPre UCONA

− {r1, r2}
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....

....
Command−rk(si, oj)

PreCondition: si.R to select = {rk} ∧ si.lock = 1 ∧ si.position = 1
∧ oj .position = 2;

PreUpdate:
oj .position = φ
si.R to select = φ

Finally, the user can release the lock and give it back to the special object
O lock by using the following command:

Command release lock (si : ATT (si), O lock : ATT (O lock))
if si.type = ordinary ∧ O lock.type = lock ∧ si.lock = 1 ∧ O lock.lock = 0 ∧
si.R to select = φ
then
update attribute si.lock = 0;
update attribute O lock.lock = 1;
update attribute si.position = φ; end

5.2 An Example

The following example shows components of RL-ABAM2 schema. The command
add-survey allows contributors to add a new health survey to their list. The con-
tributors are required to be diabetics and never participated before. Moreover,
the add-survey command permits contributors to post answers to questions and
to close the survey after finishing. By the end of the survey, post and close rights
will be taken away. The RL-ABAM2 schema is as follows: (RRL−ABAM2) =
{post, close}, G−V{RL−ABAM2} = [disease:{diabetic, epileptic}, X:{0, 1}]. Fur-
thermore, RL-ABAM2 command will have the following structure:

Command add − survey (s : ATT (s), o : ATT (o))
if s.disease = diabetic ∧ s.X = 0
then
create object o : ATT (o);
update attribute o.disease = diabetes;
update attribute X = 1;
enter post into [s, o];
delete post from [s, o];
enter close into [s, o];
delete close from [s, o]; end

The corresponding PreUCONA components of the RL-ABAM2 schema will
be as follows:

– OPre UCONA
= ORL−ABAM2 ∪ Olock

– SPre UCONA
= SRL−ABAM2
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– URPre UCONA
= {post, close}

– Auxiliary − OSΔ = [lock:{0, 1}, type:{ordinary, lock},
R to select:{post, close}, position:{1, 2}]

– OSΔ = [disease:{diabetic, dpileptic}, X:{0,1}] ∪ Auxiliary − OSΔ

V(lock) = {0, 1}, V(type) = {ordinary, lock}, V(R to select) =
URPre UCONA

, and V(position) = {1,2}.
The initial values for the Auxiliary attributes are set as above, and to apply

a RL-ABAM2 command in PreUCONA commands, the four sequence steps will
be implemented as follows:

1- Give a lock to the first parameter of the RL-ABAM2 command by using the
get lock command.

2- Decide the second parameter of the Rl-ABAM2 command by using the
pick target command.

3- Implement a sequence of PreUCONA commands as follows:

Commandpost(s, o)
PreCondition: s.disease = disease ∧ s.X = 0 ∧

s.R to select = {post, close} ∧ s.lock = 1 ∧
s.position = 1 ∧ o.position = 2;

PreUpdate:
create o;
o.disease = diabetes;
s.X = 1;
s.R to select = {close};

Commandclose(s, o)
PreCondition: s.R to select = {close} ∧ s.lock = 1 ∧

s.position = 1 ∧ o.position = 2;
PreUpdate:

o.position = φ
s.R to select = φ

4- Release the lock from the first parameter (actor) of the RL-ABAM2 command
by using release lock command.

6 Conclusion

In this paper we have formally demonstrated the equivalence of PreUCONA and
RL-ABAM2, which are two finite domain ABAC models. We have argued that
ABAM being a superset of HRU cannot be reduced to PreUCONA, because of
the latter’s decidable safety result. Hence, equivalence of PreUCONA can only be
established to some proper sub-model of ABAM such as RL-ABAM2. Our con-
structions suggest the power of using formulas in PreUCONA, absence of which
in ABAM leads to having to an explosion of ABAM commands in the PreUCONA

to ABAM reduction. Conversely, the ability to activate multiple rights in a single
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RL-ABAM2 command leads to multiple PreUCONA commands in the ABAM
to PreUCONA reduction. These features could be combined in a more usable
model. Finally, the study of ABAM indicates that a safe application of access
rights could be based on the following principles. Firstly, do not use rights in the
if part of commands. Secondly, some rights could be left behind by commands
so their next use is more efficient. Our comparative study of PreUCONA and
ABAM suggests there is a meaningful place for access matrix rights, even as
access control research and practice is tending towards attributes.
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and CNS-1423481.
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Abstract. Cloud service provider that is equipped with tremendous
resources enables the terminals with constrained resources to perform
outsourced query or computation on large scale data. Security challenges
are always the research hotspots in the outsourced computation commu-
nity. In this paper, we investigate the problem of publicly verifiable out-
sourced matrix multiplication. However, in the state-of-the-art scheme,
a large number of computationally expensive operations are adopted to
achieve the goal of public verification. Thus, the state-of-the-art scheme
works inefficiently actually due to the fact that most of the time is
spent on the verification-related computing. To lower the verification-
related time cost, we propose an efficient scheme for public verification of
outsourced matrix multiplication. The two-dimensional matrix is trans-
formed into a one-dimensional vector, which retains the computing abil-
ity and is used as the substitute for subsequent verification-related work.
The security analysis demonstrates the security of the proposed outsourc-
ing scheme, and the performance analysis shows the running efficiency
of the scheme.

Keywords: Cloud computing · Outsourced computation · Public veri-
fication · Matrix multiplication

1 Introduction

Cloud computing offers a new choice for the entity including the company, the
organization and the individual. With cloud computing, there is no need for the
entity to deploy high performance hardware, and thus the trivial but indispens-
able routine maintenance work of hardware and system will decrease greatly.
The burdensome task of computation or data storage can be outsourced to the
cloud service provider that is equipped with tremendous resources. Benefiting
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from the cloud service, the entity can control the computation or manage the
data with resource-constrained terminal such as a personal computer, or even a
mobile phone. Almost all of the work previously done locally can be outsourced
to the cloud, such as data storage, database management, scientific computa-
tion, data mining, etc. The cloud service enables the entity to work with high
efficiency and low cost.

The research on outsourced computation started in the scientific computation
community in the 1990s, and with the advent of cloud computing, computation
outsourcing nowadays becomes a hot research topic. The focus of the outsourced
computation research concentrates mainly on the security challenges, among
which two have attracted intense attention. The first security challenge is the
data privacy. As the request data and the obtained result often contain sensitive
information, the service provider in the outsourced computation research com-
munity is generally assumed to be unreliable. Security measures, such as data
disguise, problem transformation, and homomorphic encryption, etc., should be
done on the data and the result to protect them from being detected by the
cloud service provider. The second security challenge is the result verification.
As the cloud service provider may be lazy or error may occur in the algorithm,
wrong result may be returned to the service requester. The service requester
should have some mechanism to check whether or not the result is correct.

Matrix, as a fundamental mathematical primitive, has been extensively uti-
lized in the scientific and engineering fields. In the outsourced computation
research community, the existing research on secure matrix computation now
covers matrix multiplication, matrix inversion, matrix determinant, systems of
linear equations, etc. For the problem of publicly verifiable outsourcing of matrix
multiplication, many efforts have been done [1–3]. Fiore et al. proposed a scheme
VCMatrix for publicly verifiable matrix multiplication in the amortized model [1],
where new pseudo-random functions with closed-form efficiency were developed
to handle matrix multiplication. Jia et al. developed an efficient scheme ESO-
LMM [3], where the security requirements in terms of unforgeability of proof
and privacy protection of outsourced data are achieved. Li et al. proposed an
efficient scheme [2], where only an element is computed for the verification key
in the ProbGen stage and the efficiency is improved correspondingly.

However, in light of our observation most of the time is wasted by the
verification-related computation in the state-of-the-art scheme. A large number
of computationally expensive operations are adopted in each step of the out-
sourced computation. In the KeyGen step, each element wi,j of the verification
matrix W is computed accordingly by the element mi,j of the matrix M , whose
time complexity is O(n2). In the subsequent Compute step, the verification-
related computing works with the same time complexity O(n2). Thus, the pub-
licly verifiable scheme works inefficiency due to the adoption of a large number
of computationally expensive operations for verification-related computing.

In this paper, we propose an efficient scheme MD-VCMatrix for publicly ver-
ifiable matrix multiplication. To lower the time cost of the verification-related
computation, matrix digest(MD) is constructed. By MD, the two-dimensional
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matrix is transformed into a one-dimensional vector, which retains the comput-
ing ability and is used as the substitute for subsequent verification-related work.
The time complexity of verification-related work in the two algorithms KeyGen
and Compute reduces dramatically from O(n2) to O(n).

Our main contributions of this paper are:

– We construct matrix digest for the original matrix as the substitute for the
verification-related work in each algorithm of the outsourced computation.

– We propose an efficient scheme MD-VCMatrix for publicly verifiable computa-
tion of outsourced matrix multiplication.

– We show the security of the proposed scheme.
– We give theoretic analysis and experiment results, which demonstrate the

efficiency of the proposed scheme.

The rest of the paper is organized as follows. The models and definitions are
given in Sect. 2. We propose a secure scheme for the outsourced matrix multipli-
cation and analyze the correctness in Sect. 3. In Sect. 4, we analyze the security
of the proposed scheme. The performance analysis is given in Sect. 5 including
theoretic analysis and experiment results. Section 6 overviews the related works.
Finally, we conclude the paper in Sect. 7.

2 Models and Definitions

2.1 System Model and Security Model

We study the problem of publicly verifiable computation of outsourced matrix
multiplication in this paper. The system model is illustrated in Fig. 1.

Fig. 1. System model.

There are three parties involved in the system model, i.e., the service provider,
the service requester, and the verifier. The service provider is a specific cloud ser-
vice provider deployed with abundant computing resources. The service requester
with constrained resources owns a large-scale matrix M and a vector x , and out-
sources the operation of M ·x to the service provider. The verifier is a third party
verifier, which performs public verification with necessary verification data on
the result from the service provider. The overall working process of outsourced
computation is given as follows:
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– The service requester performs computation on M,x to obtain necessary data
for later verification, and sends part of the obtained data to the verifier.

– At the same time, the service provider sends M,x and related data to the
service provider.

– Upon receiving the request from the service requester, the service provider
performs matrix multiplication to get the result and the related operation to
get the verification object, and sends the obtained result and the verification
object to the verifier.

– With the data from the service requester and the service provider, the verifier
checks whether or not the returned result is correct. If the result is correct,
the result is returned to the service requester.

In the given system model, the service requester is assumed honest, and the
service provider and the verifier is assumed semi-honest. The security issue of
public verification is taken into consideration, and privacy preservation is not
considered in this paper.

2.2 Definitions

Definition 1. A secure scheme VC for publicly verifiable computation of out-
sourced matrix multiplication is a four-tuple (KeyGen, ProbGen, Compute,
Verify) [1,4].

– KeyGen(1λ,M) → (SKM , EKM , PKM ): The service requester invokes the
algorithm KeyGen with the security parameter λ on the original matrix M
to get the secret key SKM , public key PKM , and EKM for later verification.
PKM is sent to the verifier.

– ProbGen(SKM ,x ) → V Kx: The service requester invokes the algorithm
ProbGen with the key SKM on the original vector x to get the verification
key V Kx, which is sent to the verifier.

– Compute(EKM ,x ) → (y , v): The service provider invokes the algorithm
Compute to get the result y and the corresponding verification object v, which
are both sent to the verifier.

– Verify(PKM , V Kx,y , v) → true/false: The verifier invokes the algorithm
Verify to determine the correctness of the returned result y with the keys
PKM , V Kx and the verification object v.

Definition 2. Matrix Digest is a vector generated by a matrix together with
chosen parameters.

By the characteristics of matrix, a matrix can be viewed as a set of column
vectors. Then, for a matrix A ∈ Z

n×d, we have A = (a1, . . . ,ad), where for i = 1
to d, a i ∈ Z

n is a column vector.
Then, for a matrix A ∈ Z

n×d and a vector p = (p1, . . . , pn) ∈ Z
n, the matrix

digest m of A can be obtained by

m = p · A ∈ Z
d. (1)

By (1), the matrix digest has the following properties:
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– deterministic. Given a matrix, the matrix digest is determined only that the
parameters, i.e. the vector p, are determined.

– computable. The obtained matrix digest is essentially a vector, which has
all the properties of vector and can be applied to the operation of vectors.

– irreversible. The computation of matrix digest is a one-way mapping. Given
a matrix digest, the matrix and the parameters cannot be detected. Even if
the matrix digest and the parameters are given simultaneously, the matrix
cannot be detected, too.

2.3 Security Preliminaries

Let q be a big prime, and G1, G2, GT be multiplicative cyclic groups of the same
order q, and g1, g2 be a generator of group G1, G2, respectively.

Definition 3. Unsymmetrical Bilinear Paring.
Suppose G1, G2, GT are equipped with a pairing e : G1 × G2 = GT , which

should satisfy the conditions described as follows:

– bilinear. ∀a, b ∈ Zq, equation e(ga
1 , gb

2) = e(g1, g2)ab holds.
– non-degenerate. For any g ∈ G1, if ∀h ∈ G2, equation e(g, h) = 1 holds,

g = 1.
– computable. The operations in groups G1, G2, GT , and operations of bilinear

map e are solvable in PPT.

Definition 4. co-Computational Diffie-Hellman problem (co-CDH).
The advantage of solving the co-CDH by an adversary A is defined as

ADVcdh
A (λ) = Pr[(q, g1, g2, ga

1 , gb
2) = gab

1 ],

where a, b ∈ Zq.
Then we say the co-CDH assumption ε-holds in G1, G2, if for every PPT

algorithm A we have ADVcdh
A ≤ ε.

Definition 5. External Diffie-Hellman problem (XDH).
The advantage of ADVcdh

A (λ) of deciding the XDH problem by an adversary
is defined as

ADVcdh
A (λ) = |Pr[A(q, g1, g2, ga

1 , gb
2, g

ab
1 )] − Pr[A(q, g1, g2, ga

1 , gb
2, g

c
1)]| ≤ ε,

where a, b, c ∈ Zq.
We say the XDH assumption ε-holds over G1, G2, GT , if for every PPT algo-

rithm A we have ADVxdh
A ≤ ε.

For any verifiable computation scheme VC, we follow Fiore et al. to define
the following experiment [1].
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Definition 6. Experiment ExpPubV er
A [VC, f, λ].

(SKf , EKf , Pkf ) ← KeyGen(1λ, f)
For i = 1 to q

xi ← A(EKf , x̂1, V Kx,1, . . . , x̂i−1, PKx,i−1, V Kx,i−1)
(x̂i, PKx,i, V Kx,i) ← ProbGen(fλ, PKf , E, M̂, SKf , xi)

x∗ ← A(EKf , x̂1, PKx,1, V Kx,1, . . . , x̂q, PKx,q, V Kx,q)
(x̂∗, PKx̂∗ , V Kx̂∗) ← ProbGen(fλ, PKf , E, Ê, SKf , x̂

∗)
REs′ ← A(EKf , x̂1, PKx,1, V Kx,1, . . . , x̂q, PKx,q, V Kx,q, x̂

∗, PKx̂∗ , SKx̂∗)
ŷ′ = V erify(PKx̂∗ , V Kx̂∗ , Res′)
y′ ← Decryption(ŷ′, H(Ê′))
IF ŷ′ �= ⊥ and y′ �= f(x∗) output 1, otherwise output 0.

In our scheme x, y are matrixes, x is in the domain of function f (where
f = M · x) is a function which will be delegated).

For any λ ∈ N , we define the advantage of an adversary A making at most
q = poly(λ) queries in the above experiment against VC as:

AdvPubV er
A [VC, f, q, λ] = Pr[ExpPubV er

A [VC, f, λ] = 1].

A verifiable computation scheme VC is secure for F if for any f ∈ F and any
PPT adversary A it holds that AdvPubV er

A [VC, f, q, λ] is negligible.

3 MD-VCMatrix: Proposed Scheme

We mainly focus on the security issue of public verification of outsourced matrix
multiplication in this paper. For the purpose of privacy preservation, an alter-
native would be that the original matrices can be hidden by multiplying sparse
matrices, which is utilized and analyzed in [5,6], etc. In this section, we propose
a scheme MD−VCMatrix for public verification of outsourced matrix multiplica-
tion, which works efficiently by using the matrix digest for the verification-related
computation.

3.1 Scheme

The main trick is to construct matrix digest for the original matrix, which
converts the two-dimensional matrix into a one-dimensional vector. The one-
dimensional vector is used as the substitute for the verification-related compu-
tation. The computationally expensive computation of exponentiation is then
decreased dramatically.

Let p be a large prime, and n ≥ 1, d ≥ 1 be integers. For a matrix M ∈ Z
n×d
p

and a vector x ∈ Z
d
p, the operation of y = M · x is to be obtained, which is

outsourced to the service provider. The verifier should have the ability to publicly
check the correctness of the result y .

The details of our proposed scheme MD-VCMatrix are given as follows.
KeyGen(1λ,M). Let M ∈ Z

n×d
p be a matrix. The service requester gener-

ates a description of bilinear groups (p, g1, g2,G1,G2,GT , e) ← G(1λ) with the
security parameter λ, a random vector p ∈ Z

n
p , an integer α ∈ Zp, and a secret

key K = (k0, k1, . . . , kd), where for i = 0 to d, ki ∈ Zp.
The service requester computes PKp,m ,w as follows:
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– PKp = (PK1, . . . , PKn), where PKi = e(gαpi

1 , g2).
– m = p · M .
– w = (w1, . . . , wd), where wi = gαmi

1 · FK(i).

Here, FK(i) is an algebraic pseudorandom function, which is adopted in [2]
and is computed as follows:

FK(i) = gk0ki
1 ,

where i = 1, . . . , d.
Output SKM = K, EKM = (M,w), and PKM = PKp.
ProbGen(SKM ,x ). Let x = (x1, ..., xd) ∈ Z

d
p be the input. The service

requester computes ρx =
∏d

i=1 FK(i)xi , and defines the verification key V Kx =
e(ρx, g2). Output (x , V Kx).

Compute(EKM ,x ). The service provider computes the result y = M · x ,
and the verification object v =

∏d
i=1 wxi

i as the proof. Output (y , v).
Verify(PKM , V Kx,y , v). The verifier checks if

e(v, g2) =
n∏

i=1

(PKi)yi · V Kx. (2)

If the equation holds then output y , otherwise output ⊥.

3.2 Correctness Analysis

Theorem 1. The proposed algorithm Verify is correct.

Proof. By the two algorithms KeyGen and Compute, we have m = p · M and
y = M · x , respectively.

Then, m · x = p · y . Thus, we have

d∑
i=1

mixi =
n∑

i=1

piyi. (3)

Then, in the Stage Verify, when the verifier checks if e(v, g2) =∏d
i=1 (PKi)yi · V Kx, we have

e(v, g2) = e(
d∏

i=1

wxi
i , g2)

= e(
d∏

i=1

gamixi
1 , g2) · e(

d∏
i=1

FK(i)xi , g2)

= e(g
∑d

i=1 amixi

1 , g2) · V Kx

=
n∏

i=1

e(gapiyi

1 ), g2) · V Kx

=
n∏

i=1

(PKi)yi · V Kx
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Thus, the algorithm Verify is correct.

4 Security Analysis

In this section, we follow the framework of [1,2] to give the security analysis of our
proposed scheme MD-VCMatrix for publicly verifiable computation of outsourced
matrix multiplication.

Theorem 2. If G is such that co-CDH assumption εcdh-holds, and F is εprf -
secure, then any PPT adversary A making at most q = poly(λ) queries has
advantage

ADV PubV er
A [MD − VCMatrix, f, q, λ] ≤ εcdh + εprf .

Then we define the following games, where Gi(A) is the output of Game i run
by the adversary A.

Game 0. this game is the same as ExpPubV er
A [MD − VCMatrix, f, q, λ].

Game 1. this game is similar to Game 0, except that PKM = (e(gap1
1 , g2),

. . . , e(gapn

1 , g2)) in the evaluation of the KeyGen algorithm.
Game 2. this game is similar to Game 1, except that the verification matrix

w = (w1, . . . , wd), where wi = gami
1 · Ri.

The proof of this theorem is based on Games defined above, and is obtained
by proving the following claims.

Claim 1. Pr[G0(A) = 1] = Pr[G1(A) = 1]

Proof. The only difference between the two games is the computation of public
key in the ProbGen algorithm. However, due to the security bilinear map, the
probability of the adversary winning in Game 1, i.e., Pr[G1(A) = 1], remains
the same.

Claim 2. |Pr[G1(A) = 1] − Pr[G2(A) = 1]| ≤ εprf

Proof. The difference between Game 2 and Game 1 is that we replace each
pseudorandom function FK with a random value of group Ri. Obviously, for
any adversary A, the difference between the possibility of winning two Games
accounts on the possibility of winning the pseudorandom function. Thus, the
possibility of winning Game must be lower than winning a pseudorandom func-
tion.

Claim 3. Pr[G2(A) = 1] ≤ εcdh

Proof. Assume by contradiction that there exists a PPT adversary A such that
the probability of A winning in Game 2 is a non-negligible function ε. Then,
we show that we can build an efficient algorithm B which uses A to solve the
co-CDH problem with probability εcdh ≥ ε.

B takes as input a group description (q, g1, g2, G1, G2, GT , e) and 2 random
elements ga

1 , gb
2 and proceeds as following steps.
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First, B randomly chooses p = (p1, . . . , pn) ∈ Z
n
p , B randomly chooses

w = (wi)d ← G1 for i = 1, . . . , d, sets EKM = (M,w). Let PKM =
(e(ga

1 , gb
2)

p1 , . . . , e(ga
1 , gb

2)
pn). Then, e(FK(i), g2) = e(wi, g2)/e(ga

1 , gb
2)

mi . Obvi-
ously, the public keys, evaluation keys and e(FK(i), g2) are distributed as same
as in Game 2.

Next, B runs A(PKM , EKM , e(FK(i), g2)) and answers its queries as follows.
Let x be the queried value. B computes

V Kx = e(
d∏

i=1

FK(i)xi , g2) =
d∏

i=1

e(FK(i), g2)xi =
d∏

i=1

(e(wi, g2)/e(ga
1 , gb

2)
mi)xi

and returns it to A. By the bilinear property of e(·, ·), this computation of V Kx

is equivalent to the one in Game 2.
Finally, let σ̂y = (ŷ, v̂) be the output of A at the the end of the game, such

that for some x ∗ chosen by A it holds V erify(PKM , V Kx∗ , σ̂y) = ŷ, ŷ 	= ⊥ and
y 	= M · x ∗. By verification, this means that

e(v̂, g2) =
n∏

i=1

PK ŷi

i · V Kx∗ =
n∏

i=1

e(ga
1 , gb

2)
piŷi · V Kx∗ (4)

Let y = M ·x ∗ be the correct output of the computation. The, by correctness
it also holds:

e(v, g2) =
n∏

i=1

e(ga
1 , gb

2)
piyi · V Kx∗ (5)

So, dividing the two verification Eqs. (4),(5), we obtain that

e(v̂/v, g2) =
n∏

i=1

e(gab
1 , g2)

∑d
i=1 pi(ŷi−yi) (6)

Because ŷi 	= yi for i = 1 to n,
∑d

i=1 pi(ŷi − yi) in (6) is generally not 0.
Thus,

gab
1 = (v̂/v)(

∑d
i=1 pi(ŷi−yi))

−1
mod q

Therefore, if A wins in Game 2 with probability εcdh, then B solves co-CDH
with the same probability.

5 Performance Analysis

In this section, we evaluate the performances of our proposed scheme in terms
of computation overhead by theoretic analysis and experimental result.
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5.1 Theoretic Analysis

Due to the difference of magnitude between the operations in Z and G, it is dif-
ficult to differentiate VCMatrix and MD-VCMatrix by the traditional notation O
for the analysis of time complexity. In this section, we give two notations OI , OE

to make as clear as possible comparisons. OI denotes the time complexity of oper-
ations in Z including integer addition, multiplication, etc. OE denotes the time
complexity of operations in G1,G2,GT including multiplication, exponentiation,
bilinear map, etc.

Let n denote the line number of matrix M and d denote the column number
of matrix M . The analysis result is given in Table 1.

Table 1. Comparison of computation overhead

Algorithm VCMatrix MD-VCMatrix

KeyGen OE(nd) OI(nd)+OE(d)

ProbGen OE(n + d) OE(d)

Compute OI(nd)+OE(nd) OI(nd)+OE(d)

Verify OE(n) OE(n)

It is obvious that MD-VCMatrix is superior to VCMatrix in the algorithms
ProbGen and Compute. The computation overhead of MD-VCMatrix for the
verification-related computation is OE(d) in the two algorithms. The computa-
tion overhead of VCMatrix for the verification-related computation is OE(n + d)
and OE(nd) respectively in the two algorithms. The computation overhead for
verification-related computation of VCMatrix and MD-VCMatrix in the algorithm
KeyGen is OE(d) and OE(nd) respectively, but OI(nd) is added for comput-
ing the matrix digest in MD-VCMatrix. Thus, it is ambiguous to differentiate
VCMatrix and MD-VCMatrix using OI and OE . The computation overhead of
the two schemes is same in the algorithm Verify, i.e. OE(n).

5.2 Experiment Results

We now discuss the running efficiency in practice of our proposed scheme for
publicly verifiable outsourced matrix multiplication with experiments. We imple-
ment the proposed algorithms including ProbGen, KeyGen and Compute.
The computation overhead of the two schemes in the algorithm Verify is same
according to the theoretic analysis, which will not be discussed by experiment.
The algorithms are implemented with Java program language and JPBC library
is used [7]. The experiments are conducted on a laptop with an Intel Core i5
CPU running at 2.50 GHz with 4 GB RAM. Each experiment is executed 100
times, and the average time cost is obtained. The comparison results are shown
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in Fig. 2. For clarity, d is set to be equal to n in Fig. 2. The horizontal axis rep-
resents the scale of the data, and the vertical axis represents the running time
of the algorithm.

It is ambiguous by theoretic analysis to compare the algorithm KeyGen
owning to the different magnitude of operations in Z and G. The computation
overhead of computing matrix digest is O(nd) in MD-VCMatrix, but the com-
putation is performed in Z, which works with high efficiency. The computation
in G is computationally expensive including exponentiation, bilinear map, etc.
The experiment result of the algorithm KeyGen is shown in Fig. 2(a), which
demonstrates the efficiency of MD-VCMatrix is superior to that of VCMatrix.
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Fig. 2. Comparison of two schemes

The experiment results of the algorithm ProbGen and Compute are shown
in Fig. 2(b) and (c) respectively. The running efficiency of MD-VCMatrix is supe-
rior to that of VCMatrix, which demonstrates the consistency with the the the-
oretic analysis.

6 Related Works

Atallah et al. first investigated the problem of outsourced scientific computations
and gave an outsourcing computation framework [8]. Benjamin et al. gave private
and cheating-free protocols for outsourcing expensive algebraic computations
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to two remote servers [9]. Combined with the Shamir’s secret share scheme,
Mohassel presented multiple non-interactive authorization protocols for private
and verifiable linear algebra calculation [10]. Atallah et al. proposed the improved
outsourcing protocols for secure outsourced matrix multiplication(OMM) [8].
With the techniques of bilinear map and random number, Fiore et al. presented
a publicly verifiable protocol for OMM [1].

Sparse matrix plays an important role in the research community of OMM,
with which the time cost of matrix multiplication decreases from O(n3) to
O(n2). Matrix multiplication using sparse matrix is used as the fundamental
technique. Hu et al. designed secure and efficient outsourcing protocols for out-
sourced matrix calculation including matrix multiplication, matrix inversion and
matrix determinant [5]. For the outsourced problem of computing large matrix
inversion, Lei et al. gave a secure scheme in [11]. And then, Lei et al. employed
matrix transformation to protect the data privacy for OMM, and a randomized
Monte Carlo verification algorithm is also proposed in [12]. Recently, Lei et al.
solved the outsourced problem of computing large matrix determinant [13].

Wang et al. first explored the problem of securely solving outsourced systems
of linear equations(OLE) in [14], where the iterative method was adopted. In [15],
Chen et al. further improved the scheme in several ways such as the protocol
security, the interaction round and the computational overhead. Chen et al.
proposed to solve OLE with a different method in [6], where the sparse matrix is
applied to hide the original matrix and the interaction is no longer needed with
the efficiency superior to the iterative method. Nie et al. further discussed the
no-solution case of OLE [16]. Salinas et al. transformed the problem of solving
linear systems of equations into an unconstrained quadratic program, and first
proposed a new definition of external memory I/O complexity for solving OLE
in [17], in which an algorithm with low memory I/O complexity was developed.

Murugesan et al. constructed two privacy preserving schemes for similar doc-
ument detection, where secure methods for inner product of vectors are applied
[18]. Sheng et al. gave a privacy preserving and verifiable scheme for the out-
sourced inner product of vectors where three parties are involved in the compu-
tation [19]. Backes et al. proposed novel cryptographic techniques to solve the
problem of outsourced quadratic polynomials over a large number of variables
[20]. Wang et al. first proposed and solved the problem of outsourced linear
programming in [21], where data privacy preservation and result verification are
both accomplished. Xiang et al. studied the problem of privacy preserving face
recognition in [22], where the large computation task is chosen to outsource to
the cloud server. In [23], Liu et al. focused on the secure computation prob-
lem of privacy preserving trajectory similarity. Jung et al. provided a solution
for privacy-preserving sum and product calculation respectively without secure
channel [24].

7 Conclusion

In this paper, we study the problem of outsourced large-scale matrix multipli-
cation in the model where three parties are involved. We propose a secure and
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efficient scheme, which aims at the security goal of both data privacy preserva-
tion and result correctness verification simultaneously. Concretely according to
the algebraic properties of matrix and matrix multiplication, we generate the
matrix digests for the original matrices involved in the matrix multiplication
calculation, with which the service requester can determine whether or not the
returned result matrix is correct, and the result verification can be done without
the original matrices. The data privacy is also preserved by multiplying sparse
matrices. The users and the server both work with high efficiency because only
basic numerical operation is used including addition and multiplication, and
no computationally expensive calculations used. In the future work, we plan to
extend the proposed secure scheme for outsourced matrix multiplication to be
publicly verifiable.
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Abstract. Reputation boards are popular tools because of their useful
information of products for consumers. In this paper, we propose a rating
scheme for the reputation boards. The feature of our rating scheme is
that it enables users to rate not only products but also their providers
expressively by using digital signatures with predications on ratees. First,
we define a syntax of such an expressive rating scheme. Then, we provide
a generic conversion of a cryptographic primitive called an attribute-
based signature scheme (ABS) into an expressive rating scheme. Using a
boolean formula on attributes of ratees, signatures with predications on
ratees are generated, which we call expressive ratings. Public linkability
of ABS is effectively used to prohibit double ratings. Also, employing an
ABS scheme of the Fiat-Shamir type, we construct a concrete efficient
expressive rating scheme.

Keywords: Reputation · Rating · Attribute · Predication · Digital sig-
nature

1 Introduction

Reputation is fundamental phenomenon in our world, even on the Internet. A
typical example can be seen as a reputation board in a website for transactions
such as “amazon.com”, where products by providers are rated by consumers.
Later, the system manager merges those individual ratings into a reputation on a
product by using a reputation function which is typically a statistical procedure.

Such reputation boards have been explored widely from the paradigm to real-
istic problems (for example, [3,9,11]). Especially, from the cryptographic point
c© Springer International Publishing AG 2016
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of view, reputation boards have been studied with interest [3,14,18] because
of the required functionality such as being unforgeable, anonymous, prohibiting
double rating, and being traceable. In cryptographic constructions, the central
building block is a group signature scheme [4–6,8].

A rating scheme for a reputation board consists of one authority called
the system manager (like “amazon.com”), and providers and consumers. A
provider’s product is purchased by a consumer through a transaction and used.
The system manager is assumed to be honest, and controls registrations of
both providers of products and consumers. In this paper, we also assume that
providers are honest because users of a product by a provider rate it and it is
critical for activity of the provider. On the other hand, we care the registration
of consumers, and simply call a consumer a user.

Here the above cryptographic requirements arise [7,13,19]; first, a rating by
impersonation should be prevented. Hence unforgeability of ratings is a require-
ment. Second, when a user rates a product, he should be anonymous to providers
and other users. That is, for honest ratings, a rating scheme must have anonymity
of raters. Third, double ratings on a single product should be detected. Publicly
linkability of ratings by a single user is useful for the detection. Fourth, when
a user acts illegitimately, he should be traced by the system manager; that is,
traceability is needed for realistic operation.

In the usage of a reputation board, a rater looks at a product he bought
from various points of view such as price, cost, functionality, quality, reliability,
warranty, etc. Currently the above properties are treated separately despite the
dependence among those properties. For example, price and cost should not be
separated when a user purchases a product repeatedly. In the case a rating can
be expressed as “price or cost is three stars (� � �)”. Moreover, it is often the
case for users (consumers) to need reputation not on individual products but on
a provider of them. For example, it will be useful if it exists statements of the
following type: “The provider’s products are either two stars on price and three
stars on reliability or three stars on price and four stars on reliability,
while they have five stars on warranty”. These examples show that there is a
need for users (raters) to evaluate products or providers (ratees) by ratings of
predication-type over attributes of ratees, which we call expressive ratings.

1.1 Our Contribution

In this paper, keeping this functionality in mind, we will provide an expressive rat-
ing scheme in which a rating accompanies a predication over attributes of ratees.

The first contribution is to define a syntax of an expressive rating scheme over
attributes of ratees. In previous works of Liu et al. [15] and Guo et al. [13], rating
schemes based on attributes of raters have been proposed. In contrast to those
works [13,15], our emphasis is on ratees’ attributes, and it enables an expressive
rating not only on, for example, products, but also on providers of products.
Note that treating attributes of raters functions as checking expressive rights of
voters, whereas treating attributes of ratees functions as describing predication
of voting. For example, our rating scheme is capable to rate a provider in the

http://www.amazon.com
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above way; in other words, “the price balances with quality, while the warranty
is always good”.

The second contribution is to provide a generic conversion of an attribute-
based signature (ABS) scheme into an expressive rating scheme. This conversion
is not trivial because in the construction of the conversion, public linkability of
ratings generated by a single user must be attained (carefully) from an ABS
scheme with attribute privacy. In the construction, a tag is chosen at random,
and the name of a product or a provider is concatenated with the tag to form a
message. The message is signed by ABS, and a rating is output as a concatenation
of the signature with the tag. Hence, none of the name, the tag and the signature
can be forged.

The third contribution is to provide an efficient expressive rating scheme in an
ad hoc manner. Using an ABS scheme of the Fiat-Shamir type, we construct an
expressive rating scheme concretely. In the construction, public linkability of the
ABS scheme is used as opposed the above generic conversion from ABS schemes
with attribute privacy; that is, no publicly linkable. The resulting scheme has
a feature of pairing-free. The (different but comparable) constructions in the
previous works [13,15] employ the ABS scheme of Maji et al. [17] which needs
more computational amount due to pairing-computations

The fourth contribution is to display a use-case of our rating scheme to
a reputation board. There is a system manager and he makes both quantita-
tive attributes (stars: � · · · �) and qualitative attributes (price, reliability,. . . :
at1, at2, . . . ) available to users, publicly. Then the system manager issues a rat-
ing ticket to each user for a user to rate a product or a provider. Technically, the
rating ticket is a private key for the above quantitative attributes. The public
linkability (of two ratings issued by a single user) of our rating scheme enables
the reputation board to restrain double rating.

1.2 Related Work

Nakanishi and Funabiki [19] gave a simple efficient anonymous reputation sys-
tem. In their reputation system, users are seller and buyers, and seller anonymity
is achieved by employing a group signature scheme. Blömer et al. [7] gave an
anonymous and publicly linkable reputation system by employing a group sig-
nature scheme. Guo et al. [13] gave a definition and construction of a privacy-
preserving attribute-based reputation system. Their system differs from our work
at the point that, in their scheme, attribute are of raters, not of ratees. Liu et al.
[15] proposed a survey system. The spirit is similar to ours, but their proposal
is a survey system based on attributes of raters.

The contributions and comparison are summarized in the Table 1. All schemes
of the above four approaches as well as ours have basic properties of unforgeabil-
ity, anonymity of rater and traceability. The requirement of prohibiting double
ratings is attained by public linkability in [7] and our approach, while other
schemes attain the property by other functionalities. The feature of our scheme
is characterized by fine-grained ratings on ratees (in other words, expressive
ratings).
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Table 1. Comparison of functionalities.

Unforgeability Anonymity Anonymity Public Traceability Fine Fine

(Rater) (Seller) link grained grained

(Rater) (Ratee)

Nakanishi et al. [19] � � � - � - -

Blömer et al. [7] � � - � � - -

Guo et al. [13] � � � - � - -

Liu et al. [15] � � - - � � -

Our approach � � - � � - �

1.3 Organization of the Paper

In Sect. 2, we summarize needed notations and notions. In Sect. 3, we define
the syntax of our expressive rating scheme with predication over attributes of
ratees. In Sect. 4, we provide a generic conversion of ABS into an expressive
rating scheme. In Sect. 5, we construct an expressive rating scheme in an ad
hoc manner. In Sect. 6, we explain a use-case of our expressive rating scheme
in a reputation board. In Sect. 7, we conclude our work and mention a future
direction.

2 Preliminaries

The security parameter is denoted by λ. A uniformly random sampling of an
element a from a set S is denoted as a ∈R S.

2.1 Rating Scheme, Reputation System

Based on previous work [4–6,8], we summarize the requirements for a rating
scheme for a reputation board from the cryptographic point of view.

Unforgeability means that no one without a legitimate secret key can produce
a rating on behalf of an honest user.

Anonymity means that signatures of honest users are indistinguishable.
Public linkability requires that any entity can determine whether two ratings

for a single product are generated by a single rater or not, where no secret
key is required. Note that public linkability, together with an “open” algorithm
operated by a system manager, implies that every rater can stay anonymous so
long as he rates a product only once.

Traceability means that it is impossible for any set of colluding users to create
ratings that can not be traced back to a user of the system.

2.2 Attribute-Based Signature[1,2,16]

Scheme. An attribute-based signature scheme, ABS, consists of four PPT algo-
rithms: ABS =(ABS.Setup, ABS.KG, ABS.Sign, ABS.Vrfy).
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ABS.Setup(1λ,U) → (MPK,MSK). It takes as input the security parameter
1λ and an attribute universe U = {at1, . . . , atu}. Each ati is an attribute. It
outputs a public key MPK and a master secret key MSK.

ABS.KG(MPK,MSK, id, S) → SKid,S. It takes as input the public key MPK,
the master secret key MSK, and an identity string id and an attribute set S ⊂ U .
It outputs a private key SKid,S that corresponds to the pair(id, S).

ABS.Sign(MPK,SKid,S , (m, f)) → σ. It takes as input a public key MPK, a
private key SKid,S , a pair (m, f) of a message ∈ {0, 1}∗ and an access formula.
It outputs a signature σ.

ABS.Vrfy(MPK, (m, f), σ) → 1/0. It takes as input a public key MPK, a pair
(m, f) of a message and an access formula, and a signature σ. It outputs a
decision 1 or 0. When it is 1, we say that ((m, f), σ) is valid. When 0, we say
that ((m, f), σ) is invalid.

We demand correctness of ABS; for any λ, any U , any S ⊂ U and any (m, f)
such that f(S) = 1,

Pr[(MPK,MSK) ← ABS.Setup(1λ,U),SKid,S ← ABS.KG(MPK,MSK, S),
σ ← ABS.Sign(MPK,SKid,S , (m, f)), b ← ABS.Vrfy(MPK, (m, f), σ) : b =
1] = 1.

Chosen-Message Attack on ABS. Intuitively, an adversary F ’s objective
is to make an existential forgery. F tries to make a forgery ((m∗, f∗), σ∗) that
consists of a message, a target access policy and a signature. The following
experiment Exprmteuf-cma

ABS,F (λ,U) of a forger F defines the chosen-message attack
on ABS to make an existential forgery.

Exprmteuf-cma
ABS,F (λ,U) :

(MPK,MSK) ← ABS.Setup(1λ,U)

((m∗, f∗), σ∗) ← FABSKG(MPK,MSK,·,·),ABSSIGN (MPK,SK·,·,(·,·))(MPK)
If ABS.Vrfy(MPK, (m∗, f∗), σ∗) = 1, then Return Win

else Return Lose

In the experiment, F issues key-extraction queries to its key-generation oracle
ABSKG and signing queries to its signing oracle ABSSIGN . Giving an identity
string idi and an attribute set Si, F queries ABSKG(MPK,MSK, ·, ·) for the
secret key SKidi,Si

. In addition, giving (idj , Sj) and a pair (m, f) of a message
and an access formula, F queries ABSSIGN (MPK,SK·,·, (·, ·)) for a signature σ
that satisfies ABS.Vrfy(MPK, (m, f), σ) = 1 when f(Sj) = 1.

The access formula f∗ declared by F is called a target access formula. Here
we consider the adaptive target in the sense that F is allowed to choose f∗ after
seeing MPK and issuing some key-extraction queries and signing queries. Two
restrictions are imposed to F on f∗. In key-extraction queries, Si that satisfies
f∗(Si) = 1 was never queried. In signing queries, (m∗, f∗) was never queried and



368 H. Anada et al.

Sj that satisfies f∗(Sj) = 1 was never queried.. The numbers of both queries are
bounded by a polynomial in λ.

The advantage of F over ABS in the game of chosen-message attack
to make existential forgery is defined as: Adveuf-cma

ABS,F (λ) def= Pr[Win ←
Exprmteuf-cma

ABS,F (λ,U)].

Definition 1 (Unforgeability ([16,20])). ABS is called existentially unforge-
able against chosen-message attacks if, for any PPT F and for any U ,
Adveuf-cma

ABS,F (λ) is negligible in λ.

Attribute Privacy of ABS. Roughly speaking, ABS is called to have attribute
privacy if any unconditional cheating verifier cannot distinguish two distributions
of signatures each of which is generated by different attribute set.

Definition 2 (Attribute Privacy (Perfect Privacy[16,20])). ABS is called
to have attribute privacy if, for all (MPK,MSK) ← ABS.Setup(1λ,U), for all
message m, for all attribute sets S1 and S2, for all signing keys SKS1 ←

ABS.KG(MPK,MSK, S1) and SKS2 ← ABS.KG(MPK,MSK, S2) and
for all access formula f such that f(S1) = 1 and f(S2) = 1 or
f(S1) �= 1 and f(S2) �= 1, two distributions ABS.Sign(MPK,SKS1 , (m, f))
and ABS.Sign(MPK,SKS2 , (m, f)) are identical.

3 Syntax of Expressive Rating Scheme with Predication
over Attributes of Ratees

In this section, we define the syntax of our expressive rating scheme based on
attributes. We need unforgeability, anonymity, public linkability and traceability
on our expressive rating scheme for later application to secure reputation boards.
For this sake we give definitions of those properties.

3.1 Terminologies of Entities

First, we define entities of our expressive rating scheme over attributes of ratees.

A system manager is an authority of our expressive rating scheme, and is
assumed to be honest. It issues a pair of system manager’s public key and
secret key, (MPK,MSK).
An item is a name of either a product or a provider of a product.
An attribute universe U is the set of all possible attributes of items.
A subset of U is denoted by S.
A rater is a user of a product, who is identified by an identity string id.
An id-List is the list of rater’s identities (idi)i. id-List is updated when a
rater, given a private key SKid,S , is registered by the system manager.
A ratee is an item which is rated.
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3.2 Expressive Rating Scheme Based on Attributes of Ratees

A expressive rating scheme RS with predication over attributes of ratees consists
of seven PPT algorithms: (RS.Setup, RS.Reg, RS.Rate, RS.Vrfy, RS.Eval,
RS.Open, RS.PubLink).

RS.Setup(1λ,U) → (MPK,MSK, id-List).

This PPT algorithm is run by the system manager in the set up phase. On
input the security parameter 1λ and the attribute universe U , it outputs a mas-
ter public key MPK, a master secret MSK and an empty id-List.

RS.Reg(U ,MPK,MSK, id, S, id-List) → (U ,MPK,SKid,S , id-List).

This PPT algorithm is run by the system manager in each registration of
a user. On input U , MPK, MSK, id that is a user’s ID, S ⊂ U and id-List, it
outputs the updated attribute universe U , the updated master public key MPK,
a private key SKid,S and the updated id-List.

RS.Rate(MPK,SKid,S , (item, f)) → rate.

This PPT algorithm is run by a user in each rating. On input MPK, SKid,S

and (item, f) that is a pair of an item item (typically it is a product’s name or
a provider’s name) and a boolean predicate f on U (which describes a rating
content), it outputs a rating string rate.

RS.Vrfy(MPK, (item, f), rate) → 1/0.

This deterministic polynomial-time algorithm is run by a provider in each
verification of a rating to the provider’s item. On input MPK, (item, f) and rate,
it outputs 1 or 0.

RS.PubLink(MPK, item, (f0, rate0), (f1, rate1)) → 1/0/⊥.

This deterministic polynomial-time algorithm can be run by any user to
decide whether two ratings, rate0 on (item, f0) and rate1 on (item, f1), are gener-
ated by a single user or not. On input MPK, ((item, f0), rate0), ((item, f1), rate1),
it outputs 1 or 0.

RS.Open(MPK,MSK, id-List, (item, f), rate) → id/⊥.

This deterministic polynomial-time algorithm is run by the system manager
to open a rating string rate. On input MPK,MSK, id-List, (item, f) and rate, it
outputs id or ⊥ (that means no ID is output).
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RS.Eval((item, f), (ratei)i) → r-count.

This deterministic polynomial-time algorithm is run by the system manager
in the phase of evaluating a rating value on an item. Let each ratei be a rating
string on (item, f) for all i. On input (item, f) and (ratei)i, it outputs an integer
r-count.

Correctness should hold: Pr[(MPK,MSK) ← RS.Setup(1λ,U), (U ,MPK,
SKid,S , id-List) ← RS.Reg(U ,MPK,MSK, id, S, id-List), rate ← RS.Rate
(MPK,SKid,S , (item, f)) : 1 ← RS.Vrfy(MPK, (item, f), rate)] = 1.

3.3 Definition of Properties

Given the above syntax, the properties of unforgeability, anonymity, public link-
ability and traceability are defined as follows.

Unforgeability. Informally speaking, unforgeability of an expressive rating
scheme RS assures that a rating rate cannot be generated without a secret key
SKid,S for some id and S. We assume that the communication between users
and the system manager is via secure channel. Let us think about the following
experiment.

Exprmteuf-ciaRS,A (λ,U) :

(MPK,MSK) ← RS.Setup(1λ,U)

((item∗, f∗), rate∗) ← ARSREG(U,MPK,MSK,·,·,·),RSRATE(MPK,SK·,·,(·,·))(MPK)
If RS.Vrfy(MPK, (item∗, f∗), rate∗) = 1, then Return Win

else Return Lose

In the experiment, A issues registration queries and rating-queries. Giving an
identity string idi, an attribute set Si and id-List, A queries its registration ora-
cle RSREG(U ,MPK,MSK, ·, ·, ·) for the secret key SKidi,Si

. Note that A receives
not only SKidi,Si

but also the updated U ,MPK and id-List. In addition, Giving an
identity string idi, an attribute set Si and a pair (item, f) of a name of an item and
a boolean predicate, A queries its rating oracle RSRATE(MPK,SK·,·, (·, ·)) for a
rating rate that satisfies RS.Vrfy(MPK, (item, f), rate) = 1 when f(Si) = 1.

The boolean predicate f∗ declared by A is called a target boolean predicate.
Here we consider the adaptive target in the sense that A is allowed to choose f∗

after seeing MPK and issuing some key-extraction queries and signing queries.
Two restrictions are imposed to A on f∗. In registration queries, Si that satisfies
f∗(Si) = 1 was never queried. In rating queries, (item∗, f∗) was never queried
and Sj that satisfies f∗(Sj) = 1 was never queried. The numbers of both queries
are bounded by a polynomial in λ.

The advantage of A over RS in the game of chosen-item attack to make
existential forgery of a rating is defined as:

Adveuf-cia
RS,A (λ) def= Pr[Win ← Exprmteuf-ciaRS,A (λ,U)].
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Definition 3 (Unforgeability). An expressive rating scheme RS is called exis-
tentially unforgeable against chosen-item attacks if, for any PPT A and for any
U , Adveuf-cia

RS,A (λ) is negligible in λ.

Note that the above unforgeability is usually called existential unforgeability
[1,2,20].

Anonymity. Informally speaking, anonymity of an expressive rating scheme RS
assures that an identity string id of a rater is hidden from a rating rate. Let us
think about the following experiment.

ExprmtanonymRS,A (λ,U) :

(MPK,MSK, id-List) ← RS.Setup(1λ,U)
(id0, S0), (id1, S1) ← A(MPK)
(U ,MPK,SKid0,S0 , id-List) ← RS.Reg(U ,MPK,MSK, id0, S0, id-List)
(U ,MPK,SKid1,S1 , id-List) ← RS.Reg(U ,MPK,MSK, id1, S1, id-List)
(item∗, f∗) ← A, If f∗(S0) �= f∗(S1), then abort

b ∈R {0, 1}, ˆrate ← RS.Rate(MPK,SKidb,Sb
, (item∗, f∗))

b∗ ← A( ˆrate)
If b = b∗, then Return Win, else Return Lose

The advantage of A over RS in the anonymity game is defined as:

Advanonym
RS,A (λ) def= |Pr[Win ← ExprmtanonymRS,A (λ,U)] − 1/2|.

Definition 4 (Anonymity). An expressive rating scheme RS is called to have
anonymity if, for any PPT A and for any U , Advanonym

RS,A (λ) is negligible in λ.

Public Linkability. Informally speaking, public linkability of an expressive
rating scheme RS assures that it is possible for any entity to decide whether two
ratings rate1 and rate2 on a single item are generated by a single rater or not.
Let us think about the following experiment.

Exprmtpub-linkRS,A (λ,U) :

(MPK,MSK, id-List) ← RS.Setup(1λ,U)
(id0, S0), (id1, S1) ← A(MPK)
(U ,MPK,SKid0,S0 , id-List) ← RS.Reg(U ,MPK,MSK, id0, S0, id-List)
(U ,MPK,SKid1,S1 , id-List) ← RS.Reg(U ,MPK,MSK, id1, S1, id-List)
b ∈R {0, 1}, ((item∗, f∗

x), rate∗
x) ← A(MPK,SKidb,Sb

)
Initialize state of A, ((item∗, f∗

1 ), rate∗
1) ← A(MPK,SKid1,S1 , item

∗)

b̂ ← RS.PubLink(MPK, item∗, (f∗
x , rate∗

x), (f∗
1 , rate∗

1))

If b �= b̂, then Return Win else Return Lose
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The advantage of A over RS in the public-linkability game is defined as:

Advpub-link
RS,A (λ) def= Pr[Win ← Exprmtpub-linkRS,A (λ,U)].

Definition 5 (Public Linkability). An expressive rating scheme RS is called
to have public linkability if, for any PPT A and for any U , Advpub-link

RS,A (λ) is
negligible in λ.

Traceability. Informally speaking, traceability of an expressive rating scheme
RS assures that an identity string id can be determined from a rating rate by
the system manager. Let us think about the following experiment.

ExprmttraceRS,A (λ,U) :

(MPK,MSK, id-List) ← RS.Setup(1λ,U)

((item∗, f∗), rate∗) ← ARSREG(U,MPK,MSK,·,·,·)(MPK)
d ← RS.Open(MPK,MSK, id-List, (item∗, f∗), rate∗)
If RS.Vrfy(MPK, (item∗, f∗), rate∗) = 1 ∧ [d =⊥],
then Return Win, else Return Lose

The advantage of A over RS in the public-linkability game is defined as:

Advtrace
RS,A (λ) def= Pr[Win ← ExprmttraceRS,A (λ,U)].

Definition 6 (Traceability). An expressive rating scheme RS is called to have
traceability if, for any PPT A and for any U , Advtrace

RS,A (λ) is negligible in λ.

4 Our Generic Conversion of ABS into Expressive Rating
Scheme

In this section, we provide a generic construction of an expressive rating scheme
based on attributes of ratees by converting an attribute-based signature scheme
(ABS). Basically, an attribute-based signature is used as a rating string. We
adapt ABS so that the resulting expressive rating scheme possesses public link-
ability and traceability defined in Sect. 3. We assume that the employed ABS is
able to add a new attribute after its setup phase with keeping all the com-
ponents of the input attribute universe U and the input master public key
MPK without changing the master secret key. Most of known ABS schemes
(for example, [16,17,20]) has this property, and we denote this algorithm as
ABS.MPKUp(1λ,U ,MPK,MSK) → (U ,MPK).

4.1 Our Generic Conversion

RS.Setup(1λ,U) → (MPK,MSK). This algorithm runs ABS.Setup(1λ,U) to
obtain (MPK,MSK), and initialize id-List := φ. It returns (MPK,MSK, id-List).
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RS.Reg(U ,MPK,MSK, id, S, id-List) → (U ,MPK,SKid,S , id-List). This algo-
rithm first chooses a string which we call a tag uniformly at random: τ ∈R

{0, 1}λ. Treating the tag τ as a new attribute, it updates the attribute universe as
well as the attribute set S: U := U∪{τ}, S := S∪{τ}. Then it runs the algorithm
of adding a new attribute: (U ,MPK) ← ABS.MPKUp(1λ,U ,MPK,MSK).
Then it runs ABS.KG(MPK,MSK, id, S) to obtain SKid,S . Finally it updates
id-List := id-List ∪ {id ‖ τ}. It returns the updated attribute universe U , the
updated master public key MPK, a private key SKid,S that is re-named as SKid,S

and the updated id-List. Note that SKid,S includes the tag string τ .

RS.Rate(MPK,SKid,S , (item, f)) → rate. This algorithm first extracts the tag
string τ (that is an attribute) from the secret key SKid,S . and puts m := item
and f := f ∧ τ . Then it runs ABS.Sign(MPK,SKid,S , (m, f)) to obtain an ABS
signature σ. Then it outputs a rating string rate as rate := σ ‖ τ .

RS.Vrfy(MPK, (item, f), rate) → 1/0. This algorithm first parses rate as σ ‖ τ ,
and puts m := item and f := f ∧ τ . Then it runs ABS.Vrfy(MPK, (m, f), σ)
to obtain a decision 1/0. It returns the decision: 1 or 0.

RS.PubLink(MPK, item, (f0, rate0), (f1, rate1)) → 1/0/⊥. This algorithm
parses rate0 and rate1 as σ0 ‖ τ0 and σ1 ‖ τ1, respectively. Then it puts m := item
and f0 := f0 ∧ τ0 and f1 := f1 ∧ τ1. It runs, for each (f, σ) = (f0, σ0), (f1, σ1),
ABS.Vrfy(MPK, (m, f), σ) to obtain decisions 1/0. If at least one decision is
not 1, then it returns ⊥. Otherwise, it checks whether τ0 = τ1 holds or not. If it
holds, then it returns 1, and otherwise, 0.

RS.Open(MPK,MSK, id-List, (item, f), rate) → id/⊥. This algorithm parses
rate as σ ‖ τ . It puts m := item and f := f ∧ τ . Then it runs
ABS.Vrfy(MPK, (m, f), σ). If 0, then it returns ⊥. Otherwise, it searches τ
in id-List to find the corresponding id; if it finds id, then it returns id, and
otherwise, ⊥.

RS.Eval((item, f), (ratei)i) → r-count. This algorithm parses ratei as σi ‖ τi

for each i. It puts m := item, f i := f ∧ τi, and r-count := 0. For each i, it
runs ABS.Vrfy(MPK, (m, f i), σi); if 1, then r-count := r-count + 1, otherwise
it retains the count r-count. After all the verification, it outputs r-count.

For the above generic construction, correctness holds from the correctness of the
employed ABS scheme.

4.2 Security

Security is discussed for our expressive rating scheme so that all properties which
an expressive rating scheme should have are attained.

Theorem 1 (Unforgeability). If the employed ABS is existentially unforge-
able against chosen-message attacks, then our expressive rating scheme RS is
existentially unforgeable against chosen-item attacks.
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Proof. For any given PPT adversary A on our RS, there exists a PPT adversary F
on the employed ABS; this is due to the following observation. The simulation of the
registration oracle of A goes perfectly by choosing a random string τ ∈R {0, 1}λ,
putting S := S ∪ {τ}, and asking the key-extraction oracle of F for SKid,S . The
simulation of the rating oracle of A goes perfectly by asking the signing oracle of F .
Getting a forgery ((item∗, f∗), rate∗) from A, F parses rate∗ as σ∗ ‖ τ∗. Setting
m∗ := item∗ and f∗ := f∗ ∧ τ∗, F returns an existential forgery ((m∗, f∗), σ∗);
hence we have an equality Adveuf-cia

RS,A (λ) = Adveuf-cma
ABS,F (λ). ��

Theorem 2 (Anonymity). If the employed ABS has attribute privacy, then our
expressive rating scheme RS has anonymity.

Proof. If ABS has attribute privacy, a rating ((item∗, f∗), ˆrate) where ˆrate = σ̂ ‖
τ̂ in the experiment ExprmtanonymRS,A (λ,U) leaks no information on the rater’s
identity string idb because σ leaks no information and τ is chosen uniformly at
random. That is, Advanonym

RS,A (λ) = 0. ��
Theorem 3 (Public Linkability). If the employed ABS is existentially
unforgeable against chosen-message attacks, then our expressive rating scheme
RS has public linkability.

Proof. For any given PPT adversary A on our RS in the public linkability game
Exprmtpub-linkRS,A (λ,U), we construct a PPT adversary F on the employed ABS

in the euf-cma game Exprmteuf-cma
ABS,F (λ,U), as follows. Receiving (id0, S0) and

(id1, S1) from A, F chooses random string τ0, τ1 ∈R {0, 1}λ, putting S0 :=
S0 ∪ {τ0} and S1 := S1 ∪ {τ1}, and asks its key-extraction oracle for SKid0,S0

and SKid1,S1
to give each of them to A according to the game. Suppose A wins

with b = 0 and b̂ = 1. There are a valid two ratings ((item∗, f∗
0 ), rate∗

0) and
((item∗, f∗

1 ), rate∗
1) with a common tag τ∗ satisfying either τ∗ �= τ0 or τ∗ �= τ1.

In the former case, F parses rate∗
0 as σ∗

0 ‖ τ∗, puts m∗ := item∗, f
∗

:= f∗
0 ∧ τ∗

and returns ((m∗, f
∗
), σ∗

0). This is a valid signature with f
∗
(S0) = 0; that is, an

existential forgery. Thus we have an inequality Advpub-link
RS,A (λ) ≤ Adveuf-cma

ABS,F (λ).
The discussions for the rest of cases are essentially the same. ��
Note that, though ratings generated by our generic RS is not unlinkable, it has
anonymity of raters. This is because the tag τ which is attached to id is chosen
uniformly at random.

Theorem 4 (Traceability). If the employed ABS is existentially unforgeable
against chosen-message attacks, then our expressive rating scheme RS has trace-
ability.

Proof. For any given PPT adversary A on our RS in the traceability game
ExprmttraceRS,A (λ,U), we construct a PPT adversary F on the employed ABS in the
euf-cma game Exprmteuf-cma

ABS,F (λ,U), as follows. A similar discussion to that of the
proof of unforgeability allows F to reply to the query (id, S, id-List) of A. Sup-
pose A wins. F parses rate∗ as σ∗ ‖ τ∗. Setting m∗ := item∗ and f∗ := f∗ ∧ τ∗,
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F returns ((m∗, f∗), σ∗). By the definition of the traceability game, σ∗ is a valid
signature on (m∗, f∗), and τ∗ is not in id-List. this is an existential forgery of
ABS. ��

5 Our Ad Hoc Concrete Construction of an Expressive
Rating Scheme

In this section, employing an ABS scheme of the Fiat-Shamir type [1,2], we
construct an efficient expressive rating scheme concretely. Roughly speaking,
attribute privacy of ABS is hard to attain, but fortunately we do not neces-
sarily need the strong property; that is, even if we employ an ABS scheme
without attribute privacy and with public linkability, there is possibility to
obtain an expressive rating scheme with even more efficiency in signature length
and computational amount. In addition, there is no need for the algorithm
ABS.MPKUp which is needed in Sect. 4.

5.1 Scheme

We will borrow the notation in [1,2] and describe the points of modification
to obtain an expressive rating scheme, RS = (RS.Setup, RS.Reg, RS.Rate,
RS.Vrfy, RS.Eval, RS.Open, RS.PubLink). Below, Σ = (Σ1,Σ2,Σ3,Σvrfy)
is a given Σ-protocol [10] and Σf = (Σ1

f ,Σ2
f ,Σ3

f ,Σvrfy
f ) is the boolean proof

system obtained from Σ and a boolean predicate f [1,2], which is a generalization
of the so-called OR-proof [10] to any monotone formula f .

RS.Setup(1λ,U) → (MPK,MSK, id-List): This algorithm chooses, on input 1λ

and U , a pair (xmst, wmst) at random from R = {(x,w)} by running InstR(1λ)
which are a statement and a witness of a Σ-protocol [10]. It also chooses a hash
key μ at random from a hash-key space Hashkeysp(λ). It outputs a public key
MPK = (xmst,U , μ) and a master secret key MSK = (wmst) as well as an empty
id-List.

RS.Setup(1λ,U) :

(xmst, wmst) ← InstR(1λ), μ ← Hashkeysp(λ)
MPK := (xmst, μ),MSK := (wmst), id-List := φ

Return(MPK,MSK, id-List)

RS.Reg(U ,MPK,MSK, id, S, id-List) → (U ,MPK,SKid,S , id-List): This PPT
algorithm chooses, on input U ,MPK,MSK, S, a pseudo-random function key
k from PRFkeysp(λ) and a string τ from {0, 1}λ uniformly at random. Then it
applies the credential bundle technique [16,17] to strings mat := (τ ‖ at), at ∈ S.
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Here we employ the Fiat-Shamir signing algorithm FS(Σ)sign.

RS.Reg(U ,MPK,MSK, id, S, id-List) :

k ← PRFkeysp(λ), τ ∈R {0, 1}λ

For at ∈ S :

mat := (τ ‖ at), aat ← Σ2(xmst, wmst)

cat ← Hashμ(aat ‖ mat), wat ← Σ3(xmst, wmst, aat, cat)
SKid,S := (k, τ, (aat, wat)at∈S), id-List := id-List ∪ {id ‖ τ}
Return (U ,MPK,SKid,S , id-List).

RS.Rate(MPK,SKid,S , (item, f)) → rate: This PPT algorithm is obtained by
adding Supp and StmtGen to Σ3.

Supp(MPK,SKid,S , f) → (aatj , watj )1≤j≤arity(f)

w := (watj )1≤j≤arity(f)

StmtGen(MPK, τ, (aatj )1≤j≤arity(f))
→ (xatj )1≤j≤arity(f) =: x

The above procedures are needed to input a pair of statement and witness, (x =
(xatj )1≤j≤arity(f), w = (watj )1≤j≤arity(f)), to Σ1

f . Note here that (xatj , watj ) ∈ R
for any ij ∈ S. On the other hand, (xatj , watj ) /∈ R for any ij /∈ S, without a
negligible probability, neg(λ).

Therefore, the message on the first move has to include not only commitments
(Cmtl)l but also a string τ and elements (aatj )1≤j≤arity(f) for the verifier V to
be able to produce the same statement x.

Hence a rating string is rate := (τ, (aatj )1≤j≤arity(f), (Cmtl)l,
(Chan)n, (Resl)l).

RS.Vrfy(MPK, (item, f), rate) → 1/0: This deterministic algorithm utilizes
StmtGen and Σvrfy

f to check validity of the pair of message and boolean pred-
icate, (m, f), and the rating string rate, under the public key MPK.

RS.PubLink(MPK, item, (f0, rate0), (f1, rate1)) → 1/0: This deterministic
algorithm decides whether two tags τ0 and τ1 which are in rate0 and rate1,
respectively, are the same or not. If so, then it returns 1 and otherwise, 0.

RS.Open(MPK,MSK, (item, f), rate) → {id,⊥}: This deterministic algorithm
searches, in id-List, the tag τ that is in rate, and returns the corresponding id.
If it finds no such id, it returns ⊥.

RS.Eval((item, f), (ratei)i) → r-count: This deterministic algorithm counts the
number r-count of ratei each of which has a different tag τi. It returns r-count.
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6 Use-Case to a Reputation Board

In this section, to show the features of our expressive rating scheme, we give
here examples of use-case to a reputation board (like “amazon.com”).

As quantitative attributes, let quanti be � · · · � (i-stars). As qualita-
tive attributes, let at1, at2, at3 and at4 be price, cost, reliability and
warranty, respectively.

Example 1 [Rating a Product]. An enhanced rating such as attaching stars
(�) for an “OR-statement” is possible by our expressive rating scheme. Suppose
that the following boolean predicate is chosen by a user.

f1 = [at1 ∨ at2] ∧ quant3.

The boolean predicate f1 means “price or cost is three stars (� � �)”.

Example 2 [Rating a Provider of Products]. Our expressive rating scheme
is expressive when it is applied to a higher level predication; especially in the case
of rating providers of products. Suppose that the following boolean predicate is
chosen by a user.

f2 = [ [ [at1 ∧ quant2] ∧ [at3 ∧ quant3] ]
∨ [ [at1 ∧ quant3] ∧ [at3 ∧ quant4] ] ]
∧ [at4 ∧ quant5].

The boolean predicate f2 means “The provider’s products have either two stars
on price and three stars on reliability or three stars on price and four stars
on reliability, while they have five stars on warranty”. In other words, the
boolean predicate f2 is saying that the price balances with quality, while the
warranty is always very good.

7 Conclusions

In this paper, we defined an expressive rating scheme that enables a rater to
generate a expressive rating as predication over attributes of ratees. We used as
an individual rating an attribute-based signature (ABS) on a boolean predicate.
We made the reputation function take as an input those signatures. Then, using
an ABS scheme of the Fiat-Shamir style, we constructed an expressive rating
scheme concretely.

In our generic construction, public linkability is for prohibiting double ratings
on a single ratee by a single rater. From a point of view of privacy, it is a useful
option if an expressive rating scheme has a property that two ratings on two
ratees by a single rater looks independent (that is, cannot be publicly linkable).
This property is called user-controlled linkability in the ABS scheme of Ghadafi
et al. [12]. To construct an efficient expressive rating scheme with user-controlled
linkability is a challenging problem.

http://amazon.com
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Abstract. In recent years, attacks involving polynomial cryptanaly-
sis have become an important tool in evaluating encryption algorithms
involving stream ciphers. Stream cipher designs are difficult to implement
since they are prone to weaknesses based on usage, with properties being
similar to one-time pad key-stream are subjected to very strict require-
ments. Contemporary stream cipher designs are highly vulnerable to
Algebraic cryptanalysis based on linear algebra, in which the inputs and
outputs are formulated as multivariate polynomial equations. Solving a
nonlinear system of multivariate equations will reduce complexity, which
in turn yields the targeted secret information. Recently, Addition Mod-
ulo 2n has been suggested over logic XOR as a mixing operator to guard
against such attacks. However, it has been observed that the complexity
of Modulo Addition can be drastically decreased with the appropriate
formulation of polynomial equations and probabilistic conditions. A new
model for enhanced Addition Modulo is proposed. The framework for
the new design is characterized by user-defined expandable security for
stronger encryption and does not impose changes in the existing layout
for stream ciphers such as SNOW 2.0, BIVIUM, CryptMT, Grain Fam-
ily, etc. The structure of the proposed design is highly scalable, boosts
the Algebraic degree and thwarts the probabilistic conditions by main-
taining the original hardware complexity without changing the integrity
of the Addition Modulo 2n.

Keywords: Algebraic attack · Modulo addition · Algebraic degree ·
Scalability · SNOW 2.0 · Trivium · S-Box · LFSR · NFSR · SAT solver ·
Stream cipher

1 Introduction

Algebraic cryptanalysis focuses on formulating multivariate polynomial equa-
tions between the inputs and outputs with low Algebraic degree. Stream ciphers
were first subjected to Algebraic Attacks in [8], where the keystream is used to
solve a system of multivariate polynomial equations related to the initial states
c© Springer International Publishing AG 2016
J. Chen et al. (Eds.): NSS 2016, LNCS 9955, pp. 383–397, 2016.
DOI: 10.1007/978-3-319-46298-1 25
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of the cipher. The significance of the attack is that the formulae exist with prob-
ability 1 or close to 1, unlike traditional probabilistic attacks, such as differential
cryptanalysis [1] and linear cryptanalysis [5]. As a result, solving such equations
successfully will always yield the desired value of the targeted variable. The pro-
cedure to set up the attack typically starts with the attacker finding a set of
equations that can describe the relationship between the input and the output.
Each equation in the set contains an Algebraic degree. Higher degree results in
higher difficulty to solve the equations. At the same time, it is very common
that the number of multivariate equations is less than the number of variables.
Therefore, an attacker would try to uncover ways that will lower the Algebraic
degree of the existing equations or new independent equations that will help
describe the relationship between input and output. Moreover, it is often possi-
ble that the degree can be lowered or that new equations can be formed based
on some probabilistic condition. Finally, solving the set of equations can be done
through techniques such as Gaussian reduction or methods described in [6,9].

1.1 Preview of Related Work

Addition Modulo 2n has been widely used as an elementary cryptographic mod-
ule in stream ciphers, such as CAST [1] and MARS [4], and block ciphers, such
as SOBER-t32 [12] and SNOW 2.0 [10]. Typically, it is used for mixing, which
combines two data sources to provide security. While the logic XOR operation is
also often used for mixing, Modulo Addition offers better security against Alge-
braic Attack [7] because it is partly non-linear in GF(2). A linear operation in
GF(2), such as XOR, can be described by an equation of Algebraic degree 1.
Modulo Addition is linear only at its least significant bit (LSB); therefore, it is
harder for an attacker to solve using Algebraic Attack.

1.2 Scope of Our Contribution

The Algebraic degree of formulae describing Modulo Addition can be reduced to
quadratic [7]. At the same time, conditional properties of the Modulo Addition
have been found to lower the Algebraic degree and create new independent equa-
tions. These techniques help tremendously to reduce the complexity of solving
Modulo Addition. As a result, this paper aims to devise a new structure that
will increase the Algebraic degree when compared to traditional Modulo Addi-
tion and simultaneously increase the difficulty of using the conditional properties.
The size of our structure is user-defined and highly adaptable to security require-
ments, providing users a scalable security model against Algebraic Attack.

1.3 Organization

Section 2 outlines basic notations and definitions used in the paper. Section 3
illustrates the details of the proposed design. Section 4 outlines design analysis
and differentiates the new model from traditional Modulo Addition. Section 5



A New Adaptable Construction of Modulo Addition 385

demonstrates the application with analysis of the new design in a common stream
cipher like SNOW 2.0. Section 6 concludes the paper by discussing future oppor-
tunities.

2 Notation and Definitions

2.1 Algebraic Immunity

The study on Algebraic Attack identified an important property for Boolean
functions, called Algebraic Immunity [13] used as a metric in crypto-systems.
Using good Algebraic Immunity, resistance against Algebraic Attacks can be
achieved i.e., using linearization. Defined as the minimum Algebraic degree in the
system of equations, Algebraic Immunity was deemed to be insufficient and con-
sequently a Describing Degree was devised. The Describing Degree D is defined
as the minimum Algebraic degree that an S-Box can be defined by system of
equations using corresponding degree [7].

2.2 Complexity for Generic Stream Cipher

The complexity for a stream cipher employing Algebraic Attacks is estimated as
the summation of binomial coefficients NCD given by,

T =
D∑

k=0

NCD (1)

where N is the number of variables or states in the stream cipher and T is the
number of monomials of degree ≤ D. The calculation for estimated complexity
is derived by multiplying T with the number of operations and the cycle time
required for each operation. As these parameters are either algorithm or platform
dependent or both, T by itself can be used to provide estimation.

2.3 Overview of Modulo Addition

A set of equations describing the relationship between the input and outputs
must be derived while viewing Modulo Addition from the perspective of Alge-
braic Attack. This is outlined in [11] for the n-bit Modulo Addition of Z = X�Y ,
and shown in (2).

Zi = Xi + Yi, for i = 0
Zi = Xi + Yi + Ci−1, with C = carry bit, 1 ≤ i ≤ n − 1

(2)
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The addition operation is denoted by + sign in GF (2), which is the logic
XOR operation. The carry variable obtained above can be described by (3).

Ci =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

XiYi , for i = 0
XiYi + (Xi + Yi)(Ci−1) , for 1 ≤ i < 2
XiYi + (Xi + Yi)(Xi−1Yi−1) +
i−2∑
k=0

XkYk

i∏
l=k+1

(Xl + Yl) , with 2 ≤ i < n − 2

(3)

By merging (2) and (3), we can observe that the Modulo Addition is not com-
pletely nonlinear since the least significant bit(LSB) of the resulting output
always stays linear. Also the carry terms dominate all other terms of the result-
ing Algebraic degree. Consequently, the degree increases linearly with the carry
terms as in (3). This is due to the fact that the more significantly positioned
carry terms not only depend on their corresponding input variables, which have
a degree 1, but also on the previous carry terms. As C0 is generated by X0 and
Y0, the degree of Z1 becomes 2. Similarly, C1 is generated by X1 and Y1, and
the degree of Z2 becomes 3. In general, for an n-bit output, we can define the
Algebraic degree for each output bit i as:

deg(i) = i + 1 , where 0 < i ≤ n (4)

Thus, the complexity of solving the equations is directly proportional to the
Algebraic degree. In [7], a set of equations was devised that describes Modulo
Addition but limits the Algebraic degree to 2. This property is described using
(5). Moreover the methods in [7] produced 6n−3 independent equations instead
of the original n equations. This effectively reduces the complexity of Algebraic
Attack on Modulo Addition even before the deployment of conditional proper-
ties.

Zi =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Xi + Yi for i = 0
Xi + Yi + XiYi for i = 1
Xi + Yi + Xi−1Yi−1 +
(Xi−1 + Yi−1)(Xi−1 + Yi−1 + Zi−1) 1 < i ≤ n − 1

(5)

2.4 The Characteristics of Modulo Addition

Output Characteristic. This can abet in linearizing the equations when the
output bits of the addition are all 1’s, or when the output is 2n − 1. In fact
when the carry-in is 0, all the output bits are 1’s only when the input bits are of
opposite polarity. Alternatively, for each pair of input bits, the two bits are either
{1, 0} or {0, 1}. This process is referred to as propagate [14] and the probability
of this occurring is 2−n. In this case, the Algebraic degree of the equations is
lowered to 1.
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Input Characteristic. Two input characteristics are utilized as a means to
linearize the equations. First, no carry is generated when one of the input is
simply 0. Second, there can be no carries generated when one of the inputs is
the two’s complement of the other input. The output bits of this input pairing
are always 0 in Modulo Addition. The distribution of the carry bits is as follows:
There will be no carries generated from the input pairs until the first {1, 1} pair.
Subsequent input pairs will always generate a carry. This provides a controlled
distribution to the carry bits. Consequently, if one of the inputs is a power of
2 and the other input is a two’s complement, then there is no generation of a
carry. Although these conditions can reduce the Algebraic degree, the probability
attached to these conditions is 2−n.

Carry Absence in Modulo Addition. A carry-less Modulo Addition will
have a completely linearized equation, i.e., the Algebraic degree of (2) is unity
when all carries are 0. The probability of occurrence for this condition can be
evaluated using (6) and can be approximated to 2−(n−1).

The Conditional Properties of Modulo Addition. This concept includes
all the characteristics for Modulo Addition outlined in the preceding sections and
was first introduced in [11]. The concept was later adapted to Modulo Addition
[3] and improved with expansion capability [7]. The aim of adapting conditional
equations in Modulo Addition is to lower the Algebraic degree of the equations
or to create more independent equations with lower degree. The occurrence of
these conditions is based solely on the manipulation of input bits and carry bits.
As discussed in preceding sections, the cost of these conditions is the probability.
When considering the input bits, the probability is assumed to be uniform, or
1/2; when considering carry bits, the probability can be generalized using (6).
The probability of a carry being 1 approaches 1/2 as the number of bits increases.

Pr(Ci = 1) =
2i − 1
2i+1

Pr(Ci = 0) = 1 − Pr(Ci = 1)

⎫
⎬
⎭ 1 ≤ i ≤ n (6)

3 Our Design

In our proposed design, a new type of cryptographic model is devised that pro-
vides user-defined scalable security against Algebraic Attack. The Algorithm1
clearly contrasts our new design with the traditional Modulo Addition.

The Expandable Input function F in() performs expansion of each input bit
into a 2m–bit string based on an n ∗ m-bit control string KI. The parame-
ter m is user-defined based on user security requirements. The input control
string KI can typically be generated within a cipher. In essence the expan-
sion function is very flexible. The user can substitute either existing or cus-
tom expanding functions instead of the proposed function defined here and the
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expanding function can be an Algebraic function or an S-Box. Our proposed
expansion function is an arithmetic relationship that can be easily scaled. Also,
every output bit is 0−1 balanced. We can define the Expandable Input func-
tion as follows: for any X = {xn−1, . . . x1, x0} in Z be an n-bit input and let
KIX =

{
KIxn−1 ,KIxn−2 . . . KIx1 ,KIx0 | KIxi

∈ {0, 1}m
, 0 ≤ i ≤ n − 1}. In

addition, we have KIxi
�KIxi,m−1 , . . ., KIxi,1 ,KIxi,0 ∀ KIxi,j

∈ {0, 1} with
0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1. Furthermore, let X ′ be the expanded input
where X ′=

{
x′

n−1, . . . x
′
1, x

′
0

}
and x′

i ∈ {{0, 1}w |w = 2m} and KIxi
are treated

as decimal numbers in (7) as follows.

x′
i = F in(xi, KIxi

)

F in(xi, KIxi
) = 2w − 1 − 2KIxi , for xi = 0

F in(xi, KIxi
) = 2KIxi , for xi = 1

⎫
⎪⎬
⎪⎭

(7)

It is recommended to define an user-defined parameter m ≥ 2 for (7) in order to
avoid repeating values. Figure 1 illustrates an example for m = 2.

Algorithm 1. New Design Model for Modulo Addition
Data: n-bit inputs X ←− {xi | 0 < i ≤ n} and
Y ←− {yi | 0 < i ≤ n} ∀ X,Y ∈ Z, 3 sets of control strings
∀ KIxi ,KIyi ,KOi ∈ {0, 1}m, for some user-defined m ∈ Z

∗.
Result: n-bit output Z ←− {zi | 0 < i ≤ n}

1 begin
2 perform input expansion for X
3 forall the xi ∈ X do
4 x′

i ←− F in(xi, KIxi)
5 end
6 perform input expansion for Y
7 forall the yi ∈ Y do
8 y′ ←− F in(yi, KIyi)
9 end

10 use expanded inputs and do modulo addition
11 Z′ ←− X ′ � Y ′

12 perform output compaction for Z′

13 forall the z′
i ∈ Z′ do

14 zi ←− Fout(z′
i, KOi)

15 end

16 end

Modulo Addition component of our new design takes the inputs X ′ ={
x′

n−1 , . . ., x′
1, x′

0}�
{

x′
(n−1)(w−1) , . . .,x′

(n−1)1, x′
(n−1)0, . . ., x′

1(w−1), . . ., x′
11,

x′
10, x′

0(w−1)1, . . ., x′
01, x′

00} and Y ′ =
{
y′

n−1 , . . ., y′
1, y′

0}�
{

y′
(n−1)(w−1) , . . .,

y′
(n−1)1, y′

(n−1)0, . . ., y′
1(w−1), . . ., y′

11, y′
10, y′

0(w−1)1, . . ., y′
01, y′

00} which were
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Fig. 1. Input expansion output states x′
i,j depending on control input KIxi,j for m = 2

the resultant outputs of the previous component after its expansion process was
completed. It is now apparent that the number of additions to be performed by
this particular component has increased from 2n to 2(n)(w) with w = 2m for some
user-defined m ∈ Z

∗. The output for the Modulo Addition component is given
by Z ′ =

{
z′

n−1 , . . ., z′
1, z′

0}�
{

z′
(n−1)(w−1) , . . ., z′

(n−1)1, z′
(n−1)0, . . ., z′

1(w−1), . . .,
z′
11, z′

10, z′
0(w−1)1, . . ., z′

01, z′
00}. In general, we can derive (8) using (5) or (2)

and (3) as follows.

z′
ij =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x′
ij + y′

ij for i = 0, j = 0;
x′

ij + y′
ij + x′

ij−1y
′
ij−1 +

(x′
ij−1 + y′

ij−1)(x
′
ij−1 + y′

ij−1 + z′
ij−1)

for 0<i≤n−1
0<j≤w−1

(8)

Output Compaction forms the last component of our new design. It is a
contraction function Fout that compresses {z′

i �→ zi | {0, 1}nw �→ {0, 1}n
, n,

w ∈ Z
∗} based on a n ∗ m-bit control string KO. This function is very flex-

ible depending on the type of contraction method chosen to implement the
task of compressing the summation output. In our design, we propose a 2m : 1
multiplexer (MUX) function (Note: The choice of function can be dependent
on the user’s security requirement). Let KO = {KOn−1 , . . ., KOi, . . ., KO1,
KO0 | KOi ∈ {0, 1}m

, 0 < i ≤ n − 1}. Thereby we have, Z = {zn−1 , . . ., z1,
z0} =

{Fout(z′
n−1,KOn−1) , . . ., Fout(z′

1,KO1), Fout(z′
0,KO0)}. Therefore the

expression for Fout can be generalized as in (9).

zi = Fout(z′
i, KOi)

Fout(z′
i, KOi) =

w−1∑
�=0

z′
i�

m−1∏
b=0

(−1)
�

2b +1KO�b

⎫
⎪⎪⎬
⎪⎪⎭

(9)
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In (9), (−1) refers to the complement of KO�b; summation refers to logic
XOR and multiplication refers to logic AND operations.

4 Design Analysis for the New Model

In this section, we analyze the design of the proposed model using Algebraic
cryptanalysis.

4.1 The Characteristics of the New Design

Output characteristic can be defined for the new design by initially considering
the traditional Modulo Addition where the output bits can be used directly to
derive potential carries and input pairings. In the new design however, the Out-
put Compaction function is lossy; thus, the attacker can only obtain n bits out
of 2nw bits even if the output control string KO is known. Therefore, these n
bits cannot provide enough information to derive the potential carries and input
pairings. It is still possible to have all 1’s in the sum of the Modulo Addition com-
ponent in the new design. This requires specific combinations of the two m-bit
input control strings KIxi

and KIyi
. In particular, the two input control strings

should to be the same while the corresponding inputs should be a propagate
pair. As discussed before, the probability of output being all 1’s in a traditional
Modulo Addition is 2−n. Thus the probability of this condition occurring in the
new design is decreased to (2−n)(2−mn).

Input characteristic can be evaluated by employing a similar procedure while
considering input characteristics of the traditional Modulo Addition component.
To begin with the expanded inputs will never be all 0’s when using the input
expansion function given in (7). Therefore, this characteristic becomes invalid.
Nevertheless, it is possible for the expanded inputs to be the Two’s Complement
of one another. By observing (7) carefully, it is evident that there are only 3 such
cases given any m and m ≥ 2. Thus, the probability is derived to be (3/22m+2),
which is significantly less than 2−n.

4.2 Carry Absence in Modulo Addition

We observe that the probability of carry has decreased from 2−(n−1) to 2−(wn−1)

for the same n-bit input pair as evident in (10). This results in an increase of
difficulty for an attacker to create a scenario without any carry, as discussed in
Sect. 2.4.

4.3 The Carry Probability

We can estimate the probability of carry for traditional Modulo Addition using
(6). As discussed in preceding sections, each bit of the expanded input is 0 − 1
balanced. We can view the Input Expansion component as an amalgamation of
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Boolean functions wherein each output bit corresponds to a {0, 1}m+1 �→ {0, 1}
function. However in this case, each Boolean function is 0−1 balanced since the
output of the function has an equal chance of producing either a 0 or 1. Using
this assumption, the probability of carry for the new design can be deduced as
given below. The ensuing result produces an equation which is very similar to
(6). Suppose the carry bits generated due to the summation of two expanded
inputs is given by C ′ =

{
c′
n−1 , . . ., c′

1, c′
0}�

{
c′
(n−1)(w) , . . ., c′

(n−1)0, . . ., c′
w, . . .,

c′
11, c′

10, c′
0w, . . ., c′

01, c′
00 | w = 2m,m ∈ Z

∗}, the probability as expressed as

Pr(c′
ij = 1) =

2i∗w+j − 1
2i∗w+j+1

Pr(c′
ij = 0) = 1 − Pr(Ci = 1)

⎫
⎬
⎭ for

1 ≤ i ≤ n − 1
1 ≤ j ≤ w,w = 2m

(10)

4.4 The Complexity Analysis for the New Model

The Algebraic degree must be obtained in order to evaluate the complexity of
solving the new design under an Algebraic Attack. This is possible by expressing
the new design in its Algebraic normal form (ANF), which describes a Boolean
function using logic XOR gates [9]. The Algebraic degree of each component is
first studied before considering the degree of whole design.

Algebraic Degree of Expanded Input is the monomial with the largest degree in
the Algebraic normal form. With regard to the Expanded Input function, each
expanded variable can be expressed in the ANF by considering itself a Boolean
function. Intuitively, the value of the expanded variable is a manipulation of the
original input value based on the value of the user-defined parameter m.

Effective Algebraic Degree of Addition Modulo can be evaluated for the new
model using (5) or (2) and (3). We notice that (5) limits the Algebraic degree to
quadratic in the original Modulo Addition by utilizing the output variables when
output is observable. However, in the new design, the output variables of the
Modulo Addition component may not be observable. But it is possible to define
them as additional variables so that the Algebraic degree of the expression can
be reduced. Assuming that additional variables are used, the Algebraic degree of
the Modulo Addition component is at most 2m. This is due to the fact that each
input variable now has a degree of m and the largest degree is quadratic using (5).
At this point, it can be observed that the Algebraic degree has already increased
by the user-defined parameter m. It is possible to express the Modulo Addition
using (2) and (3), and its Algebraic degree is outlined by (4). As mentioned
before, each input variable now has a degree of m. The LSB of the addition then
has a degree of m and the rest of output bits have a degree of (i ∗ w + j + 1)m
with 0 ≤ i ≤ n − 1, 0 ≤ j ≤ 2m − 1, w = 2m. The derivation approach is similar
to what is outlined in the preceding section. We also notice that the degree of
the carry terms increases linearly according to their bit positions. However, the
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degree increases in multiples of m because the expanded input variables have a
degree of m. As a result, the degree of z′

01 is generated by the multiplication of
two degree m variables x′

00 and y′
00. Similarly, the degree of z′

02 can be generated
by the multiplication of x′

01, x′
00, and y′

00, or the combination of y′
01, x′

00 and y′
00

whose degrees are 2m and 3m respectively. Therefore, each output variable of
the Modulo Addition, z′

ij , has a degree of (i ∗ w + j + 1)m. By comparison the
effective increase of Algebraic degree is m with regard to the traditional Modulo
Addition. A comparison summary of Algebraic degree is given in Table 1.

Table 1. A comparison of algebraic degrees for summation

In traditional modulo addition In our new design

Algebraic degree using (5) 1 → 2 m → 2m

Algebraic degree using (2) and (3) 1 → i+ 1 m → (i ∗ w + j + 1)m

Algebraic Degree of Output Compaction is determined. As specified in preceding
sections, this function is a 2m:1 logic Multiplexer (MUX) function defined by
(9). As this equation is itself in the Algebraic normal form (ANF), the degree
can be determined by observing (9). Consequently, the degree is m+1 since the
output of the MUX function depends on the values of all the select lines and the
input. The 1 comes from the assumption that the degree of input to the MUX
is 1. When the degree changes, it must be substituted accordingly.

4.5 Overall Algebraic Degree of New Design

The overall algebraic degree can be estimated by an union of degrees of all the
components in our new model. Table 1 provides a summary of the Algebraic
degree of the new design and a comparison to the traditional Modulo Addition.
Here the Algebraic degree of the traditional Modulo Addition is calculated using
(5). As described in Table 2, the Algebraic Immunity has increased by 2m, or at
least 4 for m = 2. The Describing Degree D has increased from 2 to at least 10
for m = 2 and n = 1. Also, an attacker can seek to lower the degree of the new
design by looking for additional independent equations with lower degree or by
creating extra variables. The benefit of these methods is to be determined by
the attacker. A corner case study is provided in Sect. 4.6 as a starting point.

4.6 A Corner Case Analysis for the New Design

A corner case for the new design can be derived by carefully observing for a
conditional property; a probabilistic condition can help reduce the Algebraic
degree. As described in Sect. 4.4, it is clear that the Algebraic degree of the
Input Expansion function depends on the multiplication of the input control
string variables. Therefore, if the variables are all known, the degree falls to 1.
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Table 2. A comparison of algebraic properties for traditional and new design modulo
addition

Specifically, if the input control string has all 0’s, the expanded inputs are either
the same as the inputs or the complement of the inputs. Under this condition, the
degree of addition becomes at least 1, which is the same as the traditional Modulo
Addition. In each block of expanded inputs, the expression of the summation of
expanded input variables can be reduced because many of the variables are the
same. In fact, the degree of the LSB in each block of expanded inputs is i + 1,
for 0 ≤ i ≤ n − 1. The rest of the summation bits from adding each block of the
expanded inputs have a degree of i + 2. Furthermore, the attacker would notice
that if the Output Compaction function is able to select the LSB in each block
of the summation, i.e., z′

i0, the Algebraic degree is the lowest. To reproduce this
condition, the output control string needs to be all 0’s. As a result, the degree
of the new design becomes i + 1 for z′

i with 0 ≤ i ≤ n − 1. Incidentally, this is
the same as the traditional Modulo Addition as shown in Table 1. The cost of
this condition has a probability of 2−3mn as all control bits need to be 0’s. The
traditional Modulo Addition and our new design can be viewed as S-Boxes and
their complexity against Algebraic Attack can be approximated as S-Boxes. For
the traditional Modulo Addition, the required parameters have been studied in
[7]. A comparison for the same has been listed in Table 3. While referring to the
corner case, the T is still larger because of the increased number of variables and
Algebraic degree. Simultaneously, the complexity has also increased by attaching
the conditional cost.

5 Case Study: New SNOW 2.0

In this section, we demonstrate the application of our new design using a stream
cipher, which utilizes combiner with memory [10]. SNOW 2.0 uses a length 16
LFSR over GF (232). In other words, the LFSR has 16 elements, or states, but
each state contains a 32-bit word. Let S0, S1, . . . , S15 denote the states of the
LFSR. The feedback function is defined as the XOR combination of S0 multiplied
by α, S2 and S11 divided by α. To produce the output key stream, a Finite State
Machine (FSM) is used in conjunction with the LFSR. The FSM contains two
32-bit registers R1 and R2. The value of R2 is determined by feeding the value
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Table 3. A complexity comparison for the corner case analysis

of R1 through a set of AES S-Boxes and the AES Mix Column function. The
value of R1 is determined by performing Addition Modulo 232 between R2 and
S5. Finally, the output combiner function is defined as first performing Addition
Modulo 232 between R1 and S15, then XOR-ing the result with R2, and finally
XORing the result of the former with S0.

Applications Using the New Design. The new design is used to replace
the two Modulo Additions and the user-defined parameter m is chosen to be 3.
There are 288 extra bits required to supply the input and output control strings
of each addition, because for each input bit of the 32-bit addition, a 3-bit control
string is needed. Therefore, 576 bits in total are required for two additions. The
extra bits can be generated in my ways. In this case, S14 is used to generate 288
bits and the same set of bits is used for the two insertions of the new design.
The logic behind this generation is as follows:

1. For each bit of the first input X, a total of 3 input control bits are needed.
They will be the 3 LSBs of the 3-bit circular-left-shifted S14. For example:
KIx0 = (S14,2, S14,1, S14,0) and KIx1= (S14,31, S14,30, S14,29).

2. For each bit of the second input Y, the 3 input control bits will propagate
from the 3 LSBs of the 3-bit circular-right-shifted and inverted S14. Let S′

14

denote the bit-wise inverted S14. Then, KIy0 = (S′
14,2, S

′
14,1, S

′
14,0) and KIy1

= (S′
14,5, S

′
14,4, S

′
14,3).

3. For the output control string, each 3 output control bits arrives from the 3
LSBs of the 3-bit circular-right-shifted S14. For example: KO0 = (S14,2, S14,1,
S14,0) and KO1 = (S14,5, S14,4, S14,3).

This setup can at least guarantee that the input control bits for the first input
pair will not be all 0’s simultaneously. The new SNOW 2.0 setup is shown in
Fig. 2.



A New Adaptable Construction of Modulo Addition 395

Fig. 2. Schematic for the new SNOW 2.0 design

5.1 Analysis of New SNOW 2.0

The Algebraic Attack on SNOW 2.0 has been studied extensively in [3,7]. Two
methods have been proposed to linearize the Addition Modulo 232 in the stream
cipher. The first method is relatively straightforward, as the Modulo Addition
can be completely linearized when there are no carries. The probability of this
occurring can be estimated using (6). The condition is satisfied as long as each
input pair does not generate a carry. The probability of this happening is (3/4)31

because the probability of an input pair generating no carries is (3/4). The author
in [3] seeks to use this condition for both additions and for 17 consecutive cycles.
The probability of this is (3/4)31∗2∗17 ≈ 2−438, which is close to exhaustive search
2−576. In SNOW 2.0, the exhaustive search includes the search for 512 bits in the
LFSR states and two 32-bit registers. In the new SNOW 2.0, the cost of having
no carries has greatly increased. As m = 3 in this application, the length of the
Modulo Addition component in the new design becomes 32 ∗ 23 = 256. To fix the
carries for one Modulo Addition, the probability is estimated to be 2−(31∗8∗17)

= 2−4216 by using (6). This is much larger than exhaustive search. The second
method sees the attacker trying to manipulate the output characteristics of the
Modulo Addition to linearize the equations, as described in [7]. In particular, 9
consecutive values of the register R1 are fixed. The desired output values from
the summation are R11 = 0, R12 = 232 − 1, R13 = 0, R14 = 0, R15 = 0,
R16 = 0, R17 = 0, R18 = 0, and R19 = 0. The value of R1 comes from
summing R2 and S5 but the value of R2 comes from feeding R1 through the
ASE S-Boxes and Mix Column operation. Therefore, only S5 needs to be fixed.
Due to the nature of LFSR, 9 states need to be fixed, namely: S5, S6, S7,
S8, S9, S10, S11, S12, and S13. The associated probability is 2−32∗9 = 2−288.
With the new design applied; however, the output characteristic may not be
applicable. As discussed in Sect. 4, the probability of fixing all outputs to be
1 in the new design is 2−n(m+1). In this scenario, the probability has become
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Table 4. Analysis of results for the new SNOW 2.0

Type By method 1 By method 2 Corner case

Fix carries to 0 Fix consecutive outputs

SNOW 2.0 2−248 2−288 –

New SNOW 2.0 2−4216 2−1768 NA

2−32(3+1) = 2−128. In addition, the probability of fixing all outputs to be 0 in the
new design is (3/22m+2)n. Again, the probability becomes (3/22∗3+2)32 ≈ 2−205.
For a total of 9 consecutive cycles, the probability has become 2−205∗8 ∗ 2−128 =
2−1768. In essence, the adversary may want to utilize the corner case of the new
design to lower the Algebraic degree. However, the control string generation
logic, outlined in Sect. 5, guarantees that the input control strings for the LSBs
of the two inputs will not be 0 simultaneously. Therefore, the set of equations
cannot be completely linearized, as illustrated in Table 4.

6 Conclusion and Future Work

In this paper, a new type of Modulo Addition is proposed to defend against Alge-
braic Attack. It contains three components: Input Expansion, Addition Modulo,
and Output Compaction. In addition, the new design utilizes an expanding and
compacting structure that can be user-defined to fit into various cryptographic
systems. Our model develops more adaptable functions to substitute the existing
Input Expansion and Output Compaction modules in order to provide different
requirement based security enhancements. Future plans involve further inves-
tigation and development of additional Algebraic cryptanalysis to create extra
independent equations with lower degrees [2].
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Abstract. In the FSE 2015 conference, Li et al. introduced a new
method to construct differential characteristics of block ciphers by
exploiting the meet-in-the-middle like technique. Inspired by the method,
in this paper we obtain general results on truncated differential charac-
teristics of block ciphers with Feistel structure. Applying the result to
RoadRunneR, which is a fast bit-slice lightweight block cipher proposed
in the LightSec 2015 conference for low cost 8-bit processors, we find 5-
round truncated differential characteristics with probability 2−56. Using
the truncated differential characteristics, we present a attack on 7-round
RoadRunneR-128 without whitening keys, with data complexity of 255

chosen plaintexts, time complexity of 2121 encryptions, and memory com-
plexity of 268. This is the currently best known attack on RoadRunneR
block cipher.

Keywords: Truncated differential · Meet-in-the-middle technique ·
Lightweight block cipher · RoadRunneR

1 Introduction

With the applications of small embedded devices such as RFIDs and sensor
networks, lightweight block ciphers (with smaller block and key sizes) designed
for such environment are increasingly popular. Many lightweight block ciphers
have been proposed in recent years, including PRESENT [9], LED [14], LBlock
[29], PRINCE [10], and two lightweight block ciphers SIMON and SPECK [3]
designed by the U.S. National Security Agency. In this context, evaluating the
security of such lightweight ciphers is currently receiving considerable attention.

Differential cryptanalysis [5], which was proposed by Biham and Shamir in
1990 to analyze the block cipher DES, is one of the most principal and effec-
tive attacks on block ciphers. Based on the differential cryptanalysis, there are
many variants of differential analysis, such as related-key differential attack [4],
c© Springer International Publishing AG 2016
J. Chen et al. (Eds.): NSS 2016, LNCS 9955, pp. 398–411, 2016.
DOI: 10.1007/978-3-319-46298-1 26
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high-order differential attack [16], multiple differential attack [8], impossible dif-
ferential attack [6], boomerang attack [28], truncated differential attack [16] and
so forth.

Truncated differential cryptanalysis, developed by Knudsen in 1994, is a gen-
eralization of differential cryptanalysis. Different from the differential charac-
teristic, the truncated differential considers differences that are only partially
determined. Namely, the truncated differential includes a set of differential trails
that have the same active S-boxes. Truncated differential cryptanalysis has been
applied to many ciphers, such as SAFER [17], IDEA [18], Skipjack [19], E2 [22],
Twofish, Camellia [20,25], CRYPTON [15], and even a stream cipher Salsa20
[11]. In FSE’15, by exploiting the meet-in-the-middle like technique, Li et al.
[21] proposed a new method to construct truncated differential characteristics
of block ciphers.

RoadRunneR [2] is a new lightweight block cipher which was recently pro-
posed by Adnan Baysal and Sähap Şahin in LightSec’15. RoadRunneR is a small
and fast bit-slice block cipher designed for low cost 8-bit processors. While most
of lightweight block ciphers with high software implementation efficiency lack
thorough security proofs, the security of RoadRunneR is provable against differ-
ential and linear attacks. RoadRunneR is a Feistel-type block cipher with 64-bit
block size and 80-bit or 128-bit key size. Its two versions for 80-bit and 128-bit
key, i.e., RoadRunneR-80 and RoadRunneR-128, have respectively 10 and 12
rounds of Feistel iterations.

Our Contribution. First, inspired by a meet-in-the-middle technique recently
proposed by Li et al. [21] for finding truncated differentials of block ciphers, we
obtain general results on truncated differential characteristics of block ciphers
with Feistel structure. Second, applying the result we find to RoadRunneR, we
get its 5-round truncated differential characteristics. By extending the truncated
differential characteristic to two rounds forwards, we successfully launch a trun-
cated differential attack on 7-round RoadRunneR-128 without whitening keys,
with data complexity of 255 chosen plaintexts, time complexity of 2121 encryp-
tions and memory complexity of 268.

Organization of this paper. Sect. 2 presents a brief description of the block
cipher RoadRunneR. In Sect. 3, extending the method of meet-in-the-middle
technique for truncated differential, we propose a general result on truncated
differential characteristic of Feistel structure ciphers. In Sect. 4, applying the
result to RoadRunneR, we launch a truncated differential attack on 7-round
RoadRunneR-128. The paper is concluded in Sect. 5.

2 Brief Description of RoadRunneR

2.1 Description of RoadRunneR Block Cipher

In this section, we briefly review the design of the block cipher RoadRunneR,
and refer the reader to [2] for more details.
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Recently, there are many lightweight ciphers designed for better performance
in hardware implementation. RoadRunneR is a small and fast bit-slice block
cipher suitable for low cost 8-bit processors. The designers of RoadRunneR
pointed out that this cipher has a very low code size and is efficient for 8-bit
software implementation. Moreover, RoadRunneR is proved to be resistant to
differential and linear attacks.

RoadRunneR is based on the iterative Feistel structure, with 64-bit block
size and 80-bit or 128-bit key size. The version of 80-bit key size needs 10 rounds
of iterations and the other needs 12 rounds.

The F -Function. The F -function is a 4-round SPN structure, and the detail
can be seen in Fig. 1, which is redrawn from [2]. The first three rounds have the
same function called SLK, which is the consecutive application of S-box layer,
diffusion layer and key addition, and the last round only has S-box layer. After
the second SLK function, a round constant is XORed to the least significant byte
of the state. For round i = 0, 1, · · · , NR− 1, the round constant is Ci = NR− i,
where NR is the number of total rounds. The 4-round SPN-like structure ensures
a high number of active S-boxes for an active F -function.

The S-box Layer. Lately, bit-slice techniques increase in popularity. Block
ciphers such as NOEKEON [12], SEA [24], PRIDE [1] and RECTANGLE [30]
all use bit-slice S-boxes but with different S-box layer design strategies. Bit-slice
S-box structure has advantages in both hardware and software implementations
[13]. In RoadRunneR, the designers adopted an efficient bit-slice S-box, as illus-
trated in Table 1.

Fig. 1. Feistel structure (on left), F function (on top right), and SLK function (on
bottom right)
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Table 1. S-box of RoadRunneR

x 0 × 0 0 × 1 0 × 2 0 × 3 0 × 4 0 × 5 0 × 6 0 × 7 0 × 8 0 × 9 0 × a 0 × b 0 × c 0 × d 0 × e 0 × f

S(x) 0 × 0 0 × 8 0 × 6 0 × d 0 × 5 0 × f 0 × 7 0 × c 0 × 4 0 × e 0 × 2 0 × 3 0 × 9 0 × 1 0 × b 0 × a

The Diffusion Layer. In the block cipher RoadRunneR, the linear layer L is
of the form as

L(x) = (x ≪ i) ⊕ (x ≪ j) ⊕ (x ≪ k),

where x ≪ i represents the i−bit left rotation of the word x. This form of L
guarantees that the linear layers are invertible and all have branch number 4. Due
to good diffusion and performance of L, the designers chose L(x) = x ⊕ (x ≪
1) ⊕ (x ≪ 2) as the diffusion layer matrix.

The Key Schedules. RoadRunneR has two versions: RoadRunneR-80 and
RoadRunneR-128, which take 80-bit and 128-bit key respectively. For these two
versions, the key scheduling part generates 96-bit round keys with the same
method. The initial whitening key starts from the beginning of the master key.
Then for the round keys, when a new 32-bit of key material is required, the key
schedule generates a 32-bit from the master key in a circular way. At last, the
final whitening key is generated by the same way. The details of round keys used
in RoadRunneR-80 and RoadRunneR-128 are given in Table 2.

2.2 Security Analysis on RoadRunneR Against Standard
Differential Attack

In [2], RoadRunneR is proved immune to standard differential attack. The
designers have given the minimum number of active S-boxes in standard differen-
tial characteristics. Carrying out the mixed integer programming based method
[23,26,27], we have computed the same results of the minimum number of active

Table 2. Key schedules of RoadRunneR

80-bit key schedule 128-bit key schedule

Master key: A‖B‖C‖D‖E Master key = A‖B‖C‖D
Initial whitening = A‖B Initial whitening: A

Rounds Key words Rounds Key words

0,5 (C‖D) − (E‖A) − (B‖C) 0,4,8 B − C − D

1,6 (D‖E) − (A‖B) − (C‖D) 1,5,9 A − B − C

2,7 (E‖A) − (B‖C) − (D‖E) 2,6,10 D − A − B

3,8 (A‖B) − (C‖D) − (E‖A) 3,7,11 C − D − A

4,9 (B‖C) − (D‖E) − (A‖B)

Final whitening:C‖D Final whitening:B
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Table 3. Minimum number of active S-boxes

No. of rounds 4 5 6

Min.# Act. S-boxes 26 36 48

S-boxes as in [2]. As shown in Table 3, the highest probability of 5-round differ-
ential characteristic is at most 2−72 which is smaller than 2−64, it follows that
there is no useful differential in 5 or more rounds of RoadRunneR.

3 Extension of Meet-in-the-Middle Technique
for Truncated Differential

In [21], Li et al. proposed the meet-in-the-middle technique to find the truncated
differential of block ciphers. Inspired by the method, we obtain general results on
truncated differential characteristics of block ciphers with Feistel structure. We
first give the definition of truncated differential and the proposition proposed by
Li et al.

Definition 1 [7]. For a block cipher E with a parameter key K, the truncated
differential characteristic (Γin

E−→ Γout) is a set of differential trails, where Γin

is a set of input differences, and Γout is a set of output differences. The expected
probability of such truncated differential (Γin

E−→ Γout) is defined by

Pr(Γin
E−→ Γout) =

1
|Γin|

∑
a∈Γin

Pr((EK(X) ⊕ EK(X ⊕ a)) ∈ Γout)

=
1

|Γin|
∑

a∈Γin

Pr(a → Γout).

Proposition 1 [21]. For a block cipher E = E1 ◦ E0, there are two truncated
differential characteristics with high probability, i.e., Pr(Γ0

E0−−→ Γ1) = p, and

Pr(Γ2
E−1

1−−−→ Γ1) = 1, where Γ0 is the input difference set of E, and Γ1 and Γ2

are the output difference sets of E0 and E, respectively. Then the probability of
the truncated differential Γ0

E−→ Γ2 is p × |Γ2|
|Γ1| , where |Γ2| ≤ |Γ1|, displayed in

Fig. 2.

For a block cipher E with Feistel structure, we assume that the block size is
n bits, thus the branch size is n/2 bits. The input value of round i is denoted by
(Li−1, Ri−1), and the round function is denoted by f .

Theorem 1. For a block cipher E with Feistel structure, if there exists a 1-round
truncated differential (Γα, 0) 1−round−−−−−−→ (Γα, Γβ) with probability 1 (|Γα| = 2a,
|Γβ | = 2b, a < n/2, b < n/2), there is a 5-round truncated differential character-

istic with high probability, i.e., Pr((0, Γα) 5−round−−−−−−→ (0, Γα)) = 2−n+a+n/2−b.
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Fig. 2. Meet-in-the-middle technique for truncated differentials

Fig. 3. The 5-Round truncated differential characteristic

The probability of the truncated differential characteristic (0, Γα) 5−round−−−−−−→
(0, Γα) obtains 2n/2−b advantage over the uniform probability 2−n+a.

Proof. We first denote the 5-round cipher as E with the first three rounds defined
as E0 (the first two rounds defined as E0

0 and the third round defined as E1
0)

and the last two rounds defined as E1, as indicated in Fig. 3.
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Since the set of input differences is Γ0 = (0, Γα), it follows that the set of out-
put differences after 3-round encryption satisfies Γ1 = (Γα, Γβ) with probability
2−(n/2−a), i.e.,

Pr(Γ0
E0−−→ Γ1) = Pr(Γ0

E0
0−−→ Γ01) × Pr(Γ01

E1
0−−→ Γ1) = 1 × 2−n/2+a = 2−n/2+a.

Similarly, for the set of differences Γ2 = (0, Γα), the corresponding set of
output differences after two rounds decryption coincides to Γ1 = (Γα, Γβ) with

probability 1, i.e., Pr(Γ2
E0−−→ Γ1) = 1.

By the Proposition 1, the probability of 5-round truncated differential char-
acteristic is

Pr((0, Γα)
5−round−−−−−−→ (0, Γα)) = Pr(Γ0

E−→ Γ2) = 2−(n/2−a) × 2a/2a+b = 2−n+a+n/2−b.

By Definition 1, we know that the uniform probability of the trun-
cated differential characteristic is Pr(Γ0

E−→ Γ2) = |Γ2|
2n−1 = 2a

2n−1 ≈
2−n+a. The probability of the truncated differential (0, Γα) 5−round−−−−−−→ (0, Γα)
obtains 2n/2−b advantage over the uniform probability 2−n+a. �

Noted that the 5-round truncated differential characteristic is much different
from the 5-round impossible differential characteristic pointed out by the design-
ers in [2]. Specifically, for 5-round truncated differential characteristic, there is a
set of input differences and output differences rather than a fixed input difference
and a output difference for 5-round impossible differential characteristic.

Theorem 2. For a block cipher E with Feistel structure, if there exists a
R−round truncated differential characteristic (Γα0 , Γα1)

R−round−−−−−−→ (Γβ0 , Γβ1)
with probability 1 (|Γα0 | = 2a0 , |Γα1 | = 2a1 , |Γβ0 | = 2b0 , |Γβ1 | = 2b1 ,
a0, a1, b0, b1 < n/2), there is a (2R+1)-round truncated differential characteristic

with probability Pr((Γα0 , Γα1)
(2R+1)−round−−−−−−−−−−→ (Γα0 , Γα1)) = 2−n+(a0+a1)+n/2−b1 ,

which is relatively high compared with the corresponding probability 2−n+(a0+a1)

for a random iterative cipher and achieves an improvement of factor 2n/2−b1 .

Proof. The proof of this theorem can be completed by the method analogous to
Theorem 1. Define the (2R + 1)-round cipher as E with the first R + 1 rounds
defined as E0 and the last R rounds defined as E1, as shown in Fig. 4.

The probability of truncated differential characteristics is 2b0−n/2, i.e.,

Pr(Γ0
E0−−→ Γ1) = Pr(Γ0

E0
0−−→ Γ01) × Pr(Γ01

E1
0−−→ Γ1) = 1 ×

2−n/2+b0 = 2b0−n/2. Due to truncated characteristics with the probability
1, i.e., Pr(Γ2

E0−−→ Γ1) = 1, the probability of 2R + 1 round truncated

differential is Pr((Γα0 , Γα1)
(2R+1)−round−−−−−−−−−−→ (Γα0 , Γα1)) = Pr(Γ0

E−→ Γ2) =
2b0−n/2 × 2a0+a1/2b0+b1 = 2−n+(a0+a1)+(n/2−b1). Clearly, the probability of the
truncated differential obtains 2n/2−b1 advantage over the uniform probability
2−n+(a0+a1). �	
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Fig. 4. (2R + 1)-round truncated differential characteristic

Obviously, Theorem 1 is a special case for Theorem 2. Combining the property
that a cipher has an R-round truncated differential with probability 1 and the
meet-in-the-middle technique for truncated differential, we obtain (2R+1)-round
truncated differential characteristic. Without loss of generality, the result can be
used to estimate the security of block ciphers with Feistel structure. Applying
to RoadRunneR, we present a truncated differential attack.

4 Application to RoadRunneR

In this section, we describe our truncated differential attack on the 7-round
RoadRunneR-128 without whitening key. Applying the result of Sect. 3 to Road-
RunneR, we gain 5-round high probability truncated differentials. Further we
provide the truncated differential attack on RoadRunneR-128 in detail.
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4.1 Truncated Differentials of RoadRunneR

Notations. We define the round function of RoadRunneR as F and use ΔF I

and ΔFO to denote the input difference and the output difference of the function
F . The input of the round i is denoted by Li−1 and Ri−1. Analogously, the input
difference of round i is denoted by ΔLi−1 and ΔRi−1. 0, ? and 0 denote a inactive
bit, a unknown difference bit and a sequence of inactive bits, respectively. With
two branches, each of these blocks has n/2 = 32 bits.

Proposition 2. Let the set of input differences of the F-function is ΔF I =
(0 · · · 0?, 0 · · · 0?, 0 · · · 0?, 0 · · · 0?), then after the F-function, the set of output
differences is ΔFO = (0? · · ·?, 0? · · ·?, 0? · · ·?, 0? · · ·?) with probability 1.

Proof. F -function is a 4-round SPN structure. Let the first three SLK function
as f1, f2 and f3. Due to the set of input differences of the F -function ΔF I =
(0 · · · 0?, 0 · · · 0?, 0 · · · 0?, 0 · · · 0?), there is one active S-box in f1. Since the linear
layer is L(x) = (x ≪ 0) ⊕ (x ≪ 1) ⊕ (x ≪ 2), the set of output differences
after f1 is fO

1 = (0 · · · 0???, 0 · · · 0???, 0 · · · 0???, 0 · · · 0???) with probability 1.
Similarly, the set of output differences after f2 is

fO
2 = (000?????, 000?????, 000?????, 000?????) and after f3 the set of output

differences is fO
3 = (0? · · ·?, 0? · · ·?, 0? · · ·?, 0? · · ·?). It is easy to show that there

is only 7 active S-boxes at the last S-layer. Thus the set of output differences after
the F -function is ΔFO = (0? · · ·?, 0? · · ·?, 0? · · ·?, 0? · · ·?) with probability 1.

If adding extra linear layer after the last S-layer, all 32 bits will be active after
the F -function. Therefore we couldn’t get the 5-round truncated differential. �

Based on Theorem 1, we obtain the following proposition.

Proposition 3. Let a set of input differences be Γin = (ΔL0,ΔR0) =
((0,0,0,0), (0 · · · 0?, 0 · · · 0?, 0 · · · 0?, 0 · · · 0?)), then after a 5-round encryp-
tion of RoadRunneR, the probability of a set of output differences satisfying
Γout = (ΔR5,ΔL5) = Γin = ((0,0,0,0), (0 · · · 0?, 0 · · · 0?, 0 · · · 0?, 0 · · · 0?)) is
about 2−56.

Proof. Similar to Theorem 1, we denote the 5-round cipher as E with the first
three rounds defined as E0 (the first two rounds defined as E0

0 and the third
round defined as E1

0) and the last two rounds defined as E1. Since

Γ0 = Γin = (ΔL0,ΔR0) = (0, Γα)
= ((0,0,0,0), (0 · · · 0?, 0 · · · 0?, 0 · · · 0?, 0 · · · 0?)),

Γ1 = (ΔL3,ΔR3) = (Γα, Γβ)
= ((0 · · · 0?, 0 · · · 0?, 0 · · · 0?, 0 · · · 0?), (0? · · ·?, 0? · · ·?, 0? · · ·?, 0? · · ·?)),

Γ2 = Γout = (ΔR5,ΔL5) = (0, Γα)
= ((0,0,0,0), (0 · · · 0?, 0 · · · 0?, 0 · · · 0?, 0 · · · 0?)),

we acquire that a = 4, b = 28. By Theorem 1, the probability of the 5-round
truncated differential is

Pr(Γin
5−round−−−−−−→ Γout) = Pr(Γ0

E−→ Γ2) = 2−64+4+32−28 = 2−56.
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From Definition 1, we know that the uniform probability of the truncated differ-
ential characteristic is Pr(Γ0

E−→ Γ2) = |Γ2|
264−1 = 24

264−1 ≈ 2−60.
For both RoadRunneR-80 and RoadRunneR-128, there is 5-round truncated

differential characteristic with probability 2−56. �	

4.2 Truncated Differential Attack on 7-Round RoadRunneR-128

With the 5-round truncated differential characteristic on 1–5 round, we are able
to extend this truncated differential characteristic by adding two rounds to the
output and attack 7-round RoadRunneR-128. Our proposed attack consists of
two phases:

Data Collection Phase. By expanding two rounds after the 5-round truncated
differential characteristic, we deduce that the set of plaintexts differences is

ΔP = (ΔL0,ΔR0) = ((0,0,0,0), (0 · · · 0?, 0 · · · 0?, 0 · · · 0?, 0 · · · 0?))

and the set of ciphertexts differences should satisfy

ΔC =(ΔR7,ΔL7)
=((0? · · ·?, 0? · · ·?, 0? · · ·?, 0? · · ·?), (? · · ·?, ? · · ·?, ? · · ·?, ? · · ·?)),

referring to Fig. 5 for the detail. The gray color nibbles stand for active S-boxes
and the white nibbles symbolize passive S-boxes.

Construct Ns = 251 structures, in each of which, plaintexts fix in bits 24,
16, 8, 0 and traverse in other 60 bits. For one structure, there are 24 plaintexts
and corresponding ciphertexts which consist of 27 pairs. The expected number of
right pairs is 251×27×2−56 = 4. After 7-round encryption, the ciphertexts differ-
ences satisfy ΔC = ((0? · · ·?, 0? · · ·?, 0? · · ·?, 0? · · ·?), (? · · ·?, ? · · ·?, ? · · ·?, ? · · ·?)),
which makes 2Ns × 27 × 2−4 = 2Ns+3 pairs left.

Key Recovery Phase.

–Step 1. Guess 68 bits: D,A and B[24, 16, 8, 0], then do the following steps for
every remaining pair of plaintexts. We use the method of table look-up to
recovery the following 56 bits of key: B[31 : 25, 23 : 17, 15 : 9, 7 : 1] and
C[30 : 24, 22 : 16, 14 : 8, 6 : 0].
(a) In the 7-th round, because of knowing D,A and ciphertexts’ values CL,

we could calculate each pair’s the input difference and output difference
of the last S-box layer. Then looking up the concrete distribution table
by its input difference and output difference of 7 S-boxes, we get 28 bits
values B[31 : 25, 23 : 17, 15 : 9, 7 : 1] of 7 nibbles. In general, each pair of
plaintexts will be excluded with probability 1/2. For each of remaining
pairs, we get 2 candidates for B[31 : 25, 23 : 17, 15 : 9, 7 : 1].

(b) In the 6-th round, for each pairs of remaining plaintexts we obtain the
values of A,B and the input values of F-function. Therefore, we could
calculate each pair’s input difference and output difference of the last S-
box layer. Similar to (a), we get 28 bits values C[30 : 24, 22 : 16, 14 : 8, 6 :
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Fig. 5. The truncated differential attack on 7-round RoadRunneR-128

0] of 7 nibbles by looking up the concrete distribution table. On average,
each pair of remaining plaintexts will be excluded with probability 1/2.
For each of remaining pairs, we get 2 candidates for C[30 : 24, 22 : 16, 14 :
8, 6 : 0].

(c) In this way, about 4 pairs expected left for the right key and about 2−2

pairs expected to left for the wrong keys. Choose the key whose count is
the largest as the candidate of right key.

–Step 2. Ultimately, there are 268 survived candidates after Step 1. For each
survived candidate, we compute the seed key by doing an exhaustive search
for other 4 bits.

Complexity Analysis.

– Data Complexity. In our work, we choose Ns = 51, the expected count of the
right key is 2−56 × 251 × 27 = 4. The data complexity is 251 × 24 = 255.

– Time Complexity. We analyze the time complexity in each step. In the data
collection phase, the time complexity is 255 7-round encryptions. In step 1,
we need 2Ns+3 = 254 pairs chosen plaintexts, which cost 268×(254×2×1/7+
254 × 2 × 1/7) ≈ 2121 encryptions. In step 2 for the exhaustive searching, the
time complexity is 268 × 24 × 1 = 272 encryptions. Therefore, the total time
complexity is 2121 encryptions.

– Memory Complexity. For storing the counters of 56 bits key, the memory
complexity is 256. For storing the 268 survived candidates in Step 1, the
memory complexity is 268. Hence, the memory complexity is 268.
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Overall, we have proposed a successful attack on 7-round RoadRunneR-128
with the data, time and memory complexities are 255, 2121 and 268, respectively.

5 Conclusion

In this paper, by exploiting the meet-in-the-middle technique for truncated dif-
ferential introduced in FSE 2015, we present a general result on truncated dif-
ferential characteristics of block ciphers with Feistel structure. Based on our
observation, we obtain 5-round truncated differential characteristic of Road-
RunneR, and accordingly propose a truncated differential attack on 7-round
RoadRunneR-128 without whitening key, with data complexity of 255 chosen
plaintexts, time complexity of 2121 encryptions and memory complexity of 268.
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Abstract. Oblivious RAM (ORAM) is a security-provable model that
can be used to protect a client’s access pattern to remote storage. Exist-
ing ORAM constructions were designed mainly for communication effi-
ciency, but the server-side storage efficiency was generally neglected. This
paper proposes DF-ORAM, which has the following features when N
blocks each of B bits are outsourced: (i) server-side storage overhead is
3N bits (i.e., no dummy blocks); (ii) no server-side computational cost;
(iii) server-client communication cost is O(log N · B) bit per query; and
(iv) client-side storage cost is O(λ · B) bits where λ is a security para-
meter. Asymptotical and implementation-based evaluation demonstrate
DF-ORAM to be the most communication-efficient and storage-efficient
one among the existing ORAMs that do not require server-side compu-
tation.

1 Introduction

Cloud storage services have become popular, but clients of these services may
outsource their data with reservation. As a base line of security and privacy
defense, the clients may encrypt their sensitive data before outsourcing. Data
encryption alone is however insufficient, because a client’ privacy and data
secrecy can still be exposed, if her access pattern to the data is revealed [7].

The oblivious RAM (ORAM) model [2], which works by continuously shuf-
fling data as the data are accessed, is a well-known security-provable approach
for data access pattern protection. Recently, numerous ORAM constructions
[1,3–6,8–20] have been proposed to reduce the cost of employing this technology.
Most research on ORAM has focused on the communication efficiency improve-
ment, but the storage efficiency has not received much attention. To host N
data blocks, the state-of-the-art ORAM constructions generally need the stor-
age server to also store O(N) or O(N log N) dummy data blocks. Hence, a new
design is needed to reduce both the storage and communication overhead.

This paper proposes DF-ORAM, a ORAM construction that simultaneously
accomplishes the following features: (i) The server storage does not store any
dummy block; instead, it introduces only a small overhead of 3N bits, given
that N real data blocks are outsourced. (ii) The server is not required to conduct
c© Springer International Publishing AG 2016
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computation. (iii) The client-server communication cost is O(log N · B) bits per
query, given that a block size is B bit. (iv) The client storage cost is O(λ · B)
bits, where λ is security parameter.

DF-ORAM organizes the server-side storage as a binary tree. Initially, all
outsourced data blocks are randomly stored to the nodes of this storage tree.
When a block is queried by the client, the path that contains the query tar-
get is accessed. For each non-leaf node on the selected path, two blocks are
accessed: one has been accessed before and the other has not; for each leaf node
on the path, one block that has not been accessed is accessed. Such an access
pattern is followed in every query process to make the process oblivious. After
every a certain fixed number of queries, an eviction process is launched, which
evicts the data stored at the client back to the server-side storage tree. For
obliviousness, every eviction process selects a path from the tree following the
reverse-lexicographic order, and the eviction operations regarding each node on
the selected path follow the same pattern: all blocks on the node are retrieved
to the client, updated and re-encrypted, and then uploaded back to the node.

In addition, DF-ORAM evicts data blocks from a node to its child nodes
only when the node has at least 3s blocks, where s ≥ 4.2λ and λ is a security
parameter; then, among these blocks, at most s blocks are selected to evict to
the left child, and meanwhile the same number of blocks are selected to evict
to the right child. This is based on the following observation: among any 3s or
more blocks in a node, with a probability of 1 − O(2−λ), at least s blocks can
be evicted to the left child and at least s blocks can be evicted to the right
child, given that each of the 3s blocks can choose to be evict-able to the left or
right child uniformly at random. Therefore, data blocks can always be found for
eviction and there is no need to introduce dummy blocks.

Extensive analysis has verified the security of the DF-ORAM construction.
Asymptotical and implementation-based comparisons have also been conducted
for DF-ORAM, Path ORAM, and SE-ORAM, the state-of-the-art ORAM con-
structions without server-side computation. Compared to Path ORAM, DF-
ORAM reduces the communication cost by a factor of 2, the query delay by a
factor of 4 to 5, and data access delay per query by a factor of 2, besides reduc-
ing the server-side storage overhead from 9N · B bits to 3N bits. Compared to
SE-ORAM, DF-ORAM reduces the communication cost by a factor of log N ,
though increasing the server-side storage overhead by 3N bits.

In the following, Sect. 2 reviews related works. Section 3 presents security def-
inition. Section 4 presents DF-ORAM, followed by security analysis in Sect. 5.
Section 6 compares DF-ORAM to state-of-the-art ORAM schemes, asymptoti-
cally and via implementation-based evaluation. Section 7 concludes the paper.

2 Related Work

ORAM constructions fall roughly into two classes: hash-based and index-based
ORAMs.

Hash-based ORAMs [2–6,8,11,18–20] organize the server storage as a hier-
archy of layers. Each layer contains either a series of buckets [2,18–20], or a
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pair of Cuckoo Hash tables with stash [3–6,8,11]. In a bucket ORAM proposed
in [2], the server needs to additionally store (2 log N − 1)N dummy blocks in
order to host its client’s N real data blocks; its communication cost is O(log3 N)
blocks per query, with a constant client-side storage. In a bucket ORAM pro-
posed in [18–20], the server additionally stores at least N dummy blocks and
cN bits (0 < c < 1) of Bloom Filters for each layer; its communication cost
is O(log2 N log log N) blocks per query, with a client-side storage of O(log2 N)
blocks. In a Cuckoo Hash ORAM [3–6,8,11], the server stores at least 7N dummy
data blocks; its communication cost is O(log2 N) blocks per query with a con-
stant client-side storage, or O(log N) blocks per query with a client-side storage
of O(N c) blocks (0 < c < 1).

Index-based ORAMs [1,9,10,12–16] use index table for data lookup. They
require the client to either store the index table locally, or outsource it to
the server recursively in a way similar to storing their data, at the expense
of increased communication cost. Representative index-based ORAMs include
Path ORAM [13], C-ORAM [10] and SE-ORAM [9]. Path ORAM [13] stores
data blocks in a binary tree. In order to store N real data blocks, the height of
tree needs to be log N , each tree node stores Z (a system parameter with default
value 5) data blocks, and therefore, 2Z · N data blocks (including (2Z − 1) · N
dummy blocks) are stored on the tree. To query a data block, the client retrieves
all the data blocks along a path containing the query target, finds the target,
re-encrypts the blocks, and uploads as many as possible of the blocks back to
server. The blocks that cannot be stored back are kept in a local stash. Overall,
Path ORAM incurs a communication cost of O(log N · B) bits and a server-side
storage overhead of O(N ·B) bits; it does not require server computational cost.
C-ORAM [10] also stores data blocks in a binary tree. To accommodate N real
data blocks, the height of tree is set as L, L ∈ O(log N). Each node can store
up to z data blocks (z is a system parameter and N ≤ z · 2L−1). Therefore, at
least 4N data blocks (note: the 4N blocks include 3N noisy or empty blocks;
the size of each block has to be expanded due to being encrypted with some
homomorphic encryption algorithm) are stored on the tree. To query a data
block, the client first obliviously merges all blocks along a path containing the
query target to leaf node, then issues a PIR-read to retrieve the query target.
After accesses the query target, client re-encrypts it and writes it back to root
node using PIR-write and then conducts an eviction process. In eviction process,
client guides server to obliviously merge all blocks along the evicting path from
root to leaf node. A post eviction process is used to remove one noise block from
leaf node to avoid leaf node from overflow. Overall, C-ORAM incurs a commu-
nication cost of O(B) bits and server-side storage overhead is O(N ·B) bits; but
it requires expensive server computational cost.

3 System Model and Security Definition

We consider a system as follows. A client exports N equal-size data blocks to
a remote storage server. The client accesses the exported data every now and
then, and wishes to hide the pattern of the accesses from the server.
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Each data request from the client, which should be kept private, is one of
the following two types: (i) read a data block D of unique ID i from the storage,
denoted as a 3-tuple (read, i,D); or (ii) write or modify a data block D of unique
ID i to the storage, denoted as a 3-tuple (write, i,D). To accomplish a private
data request, the client needs to access some locations at the remote storage.
Each access to a location at the remote storage, which is observable by the server,
can be one of the following types: (i) retrieve (i.e., read) a data block D from a
location l at the remote storage, denoted as a 3-tuple (read, l,D); or (ii) upload
(i.e., write) a data block D to a location l at the remote storage, denoted as a
3-tuple (write, l,D).

We assume the client is trusted, while the remote server is honest but curious;
that is, the server stores data and serves the client’s requests according to the
protocol that we deploy, but it may attempt to figure out the client’s access
pattern. The network connection between the client and the server is assumed
secure; in practice, this can be achieved using well-known techniques such as
SSL. Similar to the security definition of existing ORAMs [2,13,16], we define
the security of our proposed ORAM as follows.

Definition 1. Let x = 〈(op1, i1, D1), (op2, i2, D2), · · · 〉 denote a private
sequence of the client’s intended data requests, where each op is either a read or
write operation. Let A(x) = 〈(op′

1, l1,D
′
1), (op′

2, l2,D
′
2), · · · 〉 denote the sequence

of the client’s accesses to the locations at the remote storage (observable by the
server), in order to accomplish the client’s private data requests. Let λ be a secu-
rity parameter. An ORAM system is said to be secure if (i) for any two equal-
length private sequences x and y of intended data requests, their corresponding
observable location access sequences A(x) and A(y) are computationally indis-
tinguishable; and (ii) the probability that the ORAM system fails to operate is
O(2−λ).

4 The DF-ORAM Construction

4.1 Server-Side Storage

The server-side storage is organized as a binary tree, on which each node has
a unique ID. The root node n0 has ID 0. For any other node nx whose parent
node is np, if nx is the left child of np, x = 2p + 1; if nx is the right child of np,
x = 2p + 2.

Each node ni contains the following components: a container of data blocks,
an access bitmap (denoted as ABi) indicating which blocks have been accessed,
an encrypted tag bitmap (denoted as TAGi) indicating each block’s eviction
orientation (1 if the block must be evicted to the right child of this node, or 0 if
the block can be evicted to the left or right child with equal possibility), a tag
counter (denoted as TCi) indicating the number of blocks tagged with 1, and an
eviction bit (denoted as EBi) indicating the next evicting node (0 if left child
or 1 if right child).
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The storage tree is initially a full binary tree. Each node stores 2s data blocks,
where s ≥ 4.2λ. The ABi, TAGi, TCi and EBi for each node ni are initialized
to all-zero. Let h + 1 denote the height of tree. Then, the total number of data
blocks stored in the tree is N = 2(2h+1 − 1)s. Note that, the storage does not
store any dummy data block.

Each data block di is encrypted probabilistically to Di, using a symmetric
cipher (e.g., AES), before exported to the server. Specifically, Di = E(ri|di),
where ri is a random nonce. Then, the blocks are randomly distributed to the
nodes on the tree.

As the data blocks are queried and evicted, the tree may become unbalanced.
Specifically, if a node does not contain any data block, the node is deleted; if a
leaf node contains more than 3s blocks, the node will be expanded into a 2-level
binary subtree rooted at itself.

4.2 Client-Side Storage

The client maintains an index table at its local storage. Each of the N outsourced
data blocks has an entry in this table. The entry for the block of ID i is a 〈node(i),
offset(i), tag(i)〉 tuple, which indicates that the data block is stored at node
node(i) with offset offset(i) and the block is tagged with tag(i). The client also
allocates a permanent stash space to store up to s data blocks that have been
queried most recently, and a temporary cache space to facilitate data query and
shuffling.

4.3 Data Query

When the client wants to query data block Dt, it checks whether Dt is in its local
stash. If so, the block is accessed and retained in its original position; otherwise,
the client looks up its local index table to obtain node(t), offset(t) and tag(t).
Then, the client acts as follows.

The client randomly selects a layer-(h + 2) node, denoted as nt′ , which is
a descendant of node(t). Note that, we select the descendant node from layer
h+2 is because the height of the tree is bounded by h+3 with an overwhelming
probability of 1−2−λ according to our analysis in Sect. 5.3. Moreover, if tag(t) =
1, nt′ must be a descendant of the right child of node(t); otherwise, nt′ can
be any layer-(h + 2) descendant of node(t). Then, the client sends a message
bitmapReq(t′) to the server.

On receiving bitmapReq(t′), the server constructs an ordered sequence that
contains all the existing nodes on the path from the root to nt′ , and returns the
access and tag bitmaps of these nodes.

Let us denote the sequence as n′
0, n

′
1, · · · , n′

l, where n′
0 is the root and n′

l

is the furthest away from the root. Depending on the current topology of the
server-side storage tree, there are four cases regarding the shape of the subtree
rooted at node n′

l (as shown in Fig. 2): shape (i) - n′
l itself is a leaf node; shape

(ii) - n′
l has only right child node; shape (iii) - n′

l has only left child and its tag
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Fig. 1. Query examples. The initial tree height h + 1 = 4. In (a), query target Dt is
at node n5. The client randomly selects node n47 as the layer-5 (i.e., layer-(h + 2))
descendant of n5; that is, it selects the path from the root to n47 to access. As n47

does not exist in the current storage tree, the client actually accesses two data blocks
(including Dt) from each of the nodes n0, n2, n5, n11 and n23. n23 is a leaf node;
hence, the block read from n23 is moved to the position where Dt resided, after the
query. In (b), query target Dt is at node n1, and the client randomly n37 as the layer-5
descendant of n1. As nodes n8, n18 and n37 on the path from n0 to n37 do not exist,
the client actually accesses two blocks (including Dt) from each of the nodes n0, n1

and n3 on the selected path. Because n3 is a non-leaf node and all of its blocks are
tagged with 0, the server allows the client to access a block from node n16, which is
one of the furthest descendants of n3. Also, the block accessed from n16 is moved to
the place where Dt resided after the query.

count (TC) is greater than 0 (i.e., at least one block in n′
l is tagged with 1);

shape (iv) - n′
l has only left child and its TC is 0. If n′

l is a non-leaf node, and
meanwhile it has a right child or TC is 0 (i.e., shape (ii) or (iv) in Fig. 2), the
server further finds a leaf node (denoted as n′

l+1) which is the furthest descendant
node of n′

l, and returns the access bitmap of n′
l+1.

According to the access bitmaps received from the server, the client selects
two blocks D′

i,0 and D′
i,1 from each n′

i where i = 0, · · · , l, as follows.

– Case I: Dt is in n′
i. Depending on if Dt has already been accessed, the follow-

ing are two subcases. (i) Case I-A: Dt has been accessed in n′
i. In this case,

D′
i,0 is set to Dt, and a data block D′

i,1 is randomly selected from the blocks
that have not been accessed in n′

i. (ii) Case I-B: Dt has not been accessed in
n′

i. In this case, a data block D′
i,0 is randomly selected from the set of blocks

that have been accessed in n′
i, and D′

i,1 is set to Dt.
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Fig. 2. Shapes of the subtree rooted at n′
l

– Case II: Dt is not in n′
i. In this case, a block D′

i,0 is randomly selected from
the blocks that have been accessed in n′

i; another block D′
i,1 is randomly

selected from the blocks that have not been accessed in n′
i.

If n′
l is not a leaf node, the client needs to take further actions as follows.

– Case I: n′
l has right child or TC of n′

l is 0 (i.e., shape (ii) or (iv) in Fig. 2). In
this case, the access bitmap of n′

l+1 should have been returned to the client.
In response, the client randomly selects one block, denoted as D′

l+1,0, from
the blocks that have been accessed in n′

l+1.
– Case II: n′

l has left child and TC of n′
l is not 0 (i.e., shape (iii) in Fig. 2).

In this case, n′
l is the last node to access during this query process. After the

client has selected the blocks to access, as elaborated above, if the selected
block D′

l,1 is tagged with 0, it should update the tag bitmap of n′
l by changing

one of the 1 bits to 0; this way, one less block is tagged with 1. In response,
server decreases TC by one.

The client sends the positions of the above selected blocks to the server, and
the server returns the blocks requested by the client in an ordered sequence as

D′
0,0,D

′
0,1, · · · ,D′

l,0,D
′
l,1

if n′
l is last node to access, or

D′
0,0,D

′
0,1, · · · ,D′

l,0,D
′
l,1,D

′
l+1,0

if n′
l+1 is the last node to access.
On receiving the ordered sequence of data blocks from the server, the client

accesses block Dt and stores it in its local stash. Meanwhile, the client re-encrypts
the rest blocks, and then permutes and uploads them back to the server such
that: if Dt is the last one of the returned blocks, all but the last one of the
returned blocks are uploaded; otherwise, the last of the returned block replaces
the position where Dt resided. Consequently, the position at the server-side
storage tree that is previously occupied by the last one of the returned blocks
becomes empty.

Finally, the client updates the access bitmaps to reflect which blocks have
been recently accessed, re-encrypts the tag bitmaps of the nodes, and upload
them back to the server. The client also updates its local index tables to reflect
the permutation of data blocks.
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Note that, according to the above algorithm, each query process accesses a
sequence of non-leaf nodes and/or a leaf node. From each non-leaf node, two
data blocks are accessed. From the leaf node, only one data block is accessed
and removed. If the block is the query target, it is kept by the client; otherwise,
it is moved to the place where the query target block resides. Figure 1 shows two
examples to illustrate the query process in two different scenarios.

4.4 Data Eviction

After every s queries, the client launches a data eviction process, in which the
client evicts the s data blocks in its stash to a path on the tree. The eviction
operations can be evenly spread over the time period of s queries; however, to
simplify the presentation, we elaborate the eviction as an isolated process as
follows.

At the beginning, the client re-encrypts the s data blocks in its stash, and
selects the root node as the first evicting node.

Let e denote the ID of the current evicting node. The procedure of evicting
data blocks from stash of the client to node ne, denoted as evict(ne), is as follows.
The client downloads for ne the eviction bit EBe, the tag bitmap TAGe and all
the data blocks in the node. Then, it decrypts TAGe and re-encrypts the data
blocks. Based on whether ne is a leaf node, as well as the values of EBe and
TAGe, there are the following cases.

Fig. 3. Eviction case I.

Case I: ne is a non-leaf node and EBe = 0. In this case, ne has 2s data blocks.
As illustrated in Fig. 3, the client merges the s blocks in its stash with the 2s
blocks downloaded from ne, randomly permutes them, and tags each of these
3s blocks with 0 or 1 randomly. According to our analysis in Sect. 5.1, with a
probability of 1 − O(2−λ), at least s among the all 3s blocks are tagged with 0
and at least s data blocks are tagged with 1.

From the 3s blocks, the client selects s blocks tagged with 0, and retains
them in its stash. For the rest 2s blocks, the client selects s blocks tagged with
1, re-tags the rest s blocks with 0, encrypts and stores the tags in TAGe, and
uploads the 2s blocks together with TAGe back to ne. In response, the server
updates its EBe to 1, initializes ABe to all-zero and sets TCe to s.
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Further, the client updates its index table to record which blocks are now
stored at node ne as well as the offsets and tags of these blocks, and then acts
as follows: (i) if ne has a left child, the client selects the left child as the new
evicting node, denotes it as ne, and repeats the procedure evict(ne) to evict
the data blocks in its stash to ne; (ii) otherwise (i.e., ne has no left child), the
client requests the server to construct a left child for ne, uploads the s blocks in
its stash to this left child, uploads an all-zero tag bitmap for these blocks, and
finishes this round of eviction. In response, the server initializes ABe and EBe

to all-zero.

Fig. 4. Eviction case II.

Case II - ne is a non-leaf node and EBe = 1. In this case, node ne has s blocks
tagged with 0, but TC ranges from 0 to s. Figure 4 illustrates one example for
this case.

The client merges the s blocks in its stash with the s blocks tagged with 0,
permutes them randomly, and uploads them back to ne. Also, it initializes TAGe

to all zero, re-encrypts it, and then uploads it back to ne as well. In response,
the server initializes ABe, EBe and TCe to all zero. Meanwhile, the client keeps
the blocks tagged with 1 in its stash.

Next, regarding whether ne has right child, there are the following sub-cases.
(i) Sub-case II-A: ne has a right child. In this sub-case, ne has s blocks tagged
with 1. Hence, the client selects the right child as the new evicting node, denotes
it as ne, and repeats procedure evict(ne) to evict the s data blocks in its stash
to ne. (ii) Sub-case II-B: ne has no right child. If ne has no block tagged with 1,
the client finishes the current round of eviction. Otherwise, the client requests
the server to construct a right child for ne, uploads the blocks in its stash to this
right child, and finishes this round of eviction.
Case III - ne is a leaf node and it has no more than 2s data blocks. In this case,
the client merges the s blocks in its stash with the blocks from ne, permutes
these blocks randomly, and uploads them back to ne. The client also uploads an
encrypted all-zero tag bitmap for the node. In response, the server updates the
access bitmap and tag bitmap of ne to all zero. Finally, the client updates its
local index table accordingly, and finishes this round of eviction.
Case IV - ne is a leaf node and it has more than 2s blocks. Note that ne cannot
have 3s or more blocks according to our query and eviction algorithms. As
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Fig. 5. Eviction case IV.

illustrated by Fig. 5, the client merges the s blocks in its stash with all the
blocks from ne, and randomly permutes them. Let the number of merged blocks
be s′. The client tags each of the s′ blocks with 0 or 1 randomly. Since s′ > 3s,
with a probability of 1 − O(2−λ), at least s data blocks are tagged with bit 0
and at least s data blocks are tagged with bit 1. Then, from these blocks, the
client requests the server to create a left child for ne, and selects � s′−2s

2 � (which
is less than s) blocks tagged with 0 to be stored at this left child node. Also,
the client requests the server to create a right child for ne, and selects 	 s′−2s

2 

blocks tagged with 1 to be stored at this right child node. The rest 2s blocks are
uploaded back to node ne. The client also uploads encrypted all-zero tag bitmaps
to the above three nodes. In response, the server initializes the access bitmaps,
tag bitmaps, eviction bits and TC of these three nodes to all-zero. Finally, the
client updates its index table to reflect the current distribution of the blocks on
these three nodes, and then finishes this round of eviction.

5 Analysis

In this section, we study the security strength of DF-ORAM in terms of failure
probability and obliviousness. We also analyze the upper bound of the height of
the server-side storage tree, which is important for the design and cost evaluation
of DF-ORAM.

5.1 Failure Probability Analysis

The probabilities for DF-ORAM to fail in a query process and an eviction process
are stated in Lemmas 1 and 3, respectively.

Lemma 1. DF-ORAM fails in a query process with a probability no larger than
2−λ.
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Proof. During a query process, two data blocks are accessed from each non-leaf
node on a selected path that contains the query target. Among them, one block
has been accessed since the most recent eviction process involving this node,
while the other block has not. The query process fails at a non-leaf node if the
client cannot find a block that has not been accessed in the node.

For each non-leaf node nl on layer l, it is selected as an evicting node after
every s · 2l queries; and for each query, it has a probability of 1

2l
to be on the

query path. Let X be a random variable counting the number of query processes
which (i) access nl and (ii) occur between two consecutive eviction processes
that access nl. Hence,

E[X] = s · 2l · 1
2l

= s.

According to the Chernoff bound and the fact that s ≥ 4.2λ ≥ 3λ in DF-
ORAM, the probability for X ≥ 2s is

Pr[X ≥ 2s] ≤ e−s/3 < 2−s/3 ≤ 2−λ.

Given the fact each non-leaf node nl in DF-ORAM has 2s data blocks, the
probability for a query process to fail in accessing nl is upper-bound by 2−λ.

For each leaf node accessed by a query process, one data block is accessed
and removed. If the block is the query target, it is retrieved and kept by the
client; otherwise, it is moved to replace the query target. Hence, the process will
not fail at a leaf node.

Therefore, we have proved that DF-ORAM fails in a query process with a
probability upper-bounded by 2−λ.

To facilitate the probability for DF-ORAM to fail in an eviction process, we
first introduce and prove the following lemma.

Lemma 2. Consider 3s data block, where s ≥ 4.2λ. Each of the blocks is ran-
domly tagged with 0 or 1. Let k0 and k1 represent the number of blocks that are
tagged with 0 and 1, respectively. Then,

Pr[k0 < s] = Pr[k1 < s] < 2−λ.

Proof. Due to the symmetry between 0 and 1, it is obvious that Pr[k0 < s] =
Pr[k1 < s]. Hence, we only consider Pr[k0 < s] in the following.

Pr[k0 < s] =
s−1∑
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Lemma 3. The probability for DF-ORAM to fail in an eviction process is
O(2−λ).

Proof. As elaborated in Sect. 4, the process of evicting data blocks to an evicting
node ne has one of four cases. Among them, Case III will never fail, but Case I,
II or IV can fail if the client cannot find s blocks tagged with 0 or s blocks tagged
with 1 after each of 3s blocks has been tagged randomly with 0 or 1. According
to Lemma 2, each of these cases occurs with a probability no greater than 2−λ.
So, DF-ORAM fails in an eviction process with a probability no greater than
O(2−λ).

According to the above lemmas, we have the following theorem.

Theorem 1. The probability for DF-ORAM to fail is O(2−λ).

5.2 Obliviousness Analysis

Lemma 4. When a data block is queried, it has the same probability to be on
any of the paths that connecting the root and a layer-(h + 2) node.

Proof. (sketch) The proof includes three parts. Part I: At the first time when a
data block is queried, it is obvious that it has the same probability to be on any
of the (h+2)-hop paths due to the initially random distribution of blocks to the
server-side storage tree.

Part II: After a block has been queried, we can prove by induction that the
block can be evicted back to the server-side storage tree on any of the (h+2)-hop
paths with the same probability. (i) Base case: As elaborated in the DF-ORAM
eviction algorithm, when a data block is evicted from the client’s stash to the
server-side storage tree, it has the same probability to be evicted to the left or
right child of the tree root, or it is evicted to the root node tagged with 0, and
thus it can be queried from any (h + 2)-hop path with the same probability.
(ii) Inductive step: Once a block is in a node of the tree, with the DF-ORAM
eviction algorithm, it can be evicted to the left or right child with the same
probability or stay in the node tagged with 0, and therefore can be queried from
any path from the node towards a layer-(h + 2) node with the same probability.

Part III: In a query process, a data block on a lower layer may be moved
to an upper layer to replace the query target block. This case is equivalent to
backtrack to an earlier step in the process of evicting this data block. Hence, the
backtracking does not change the probability that a data block can be queried
from any (h + 2)-hop path with the same probability.

Theorem 2. The query and eviction processes in DF-ORAM are oblivious.

Proof. (sketch) According to Lemma 4, a block has the same probability to be
distributed on any of the paths from the root to a layer-(h + 2) node. Hence,
the distribution of querying path is uniformly random. Also, during each query
process, location access follows the same pattern: each non-leaf node on the
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querying path has two data blocks accessed, among which one has been accessed
and the other has not; each leaf node has one block accessed and removed.
Therefore, the query process is oblivious.

An eviction process is launched after every s queries. The paths selected for
eviction follows the reverse lexicographic order. During each eviction process,
the location access on the selected path also follows the same pattern: all blocks
in each evicting node are downloaded to the client; then client re-encrypts,
permutes and then stores blocks back to the server. The permutation is kept
unknown from the server, and each data block is re-encrypted before uploaded.
Hence, the eviction process is also oblivious.

5.3 Upper Bound of the Height of Storage Tree

Lemma 5. In DF-ORAM, the height of the storage tree is upper-bounded by
h + 3 with a probability of at least 1 − 2−λ, given that s ≥ 4.2(λ + 1).

Proof. In DF-ORAM, the total number of outsourced data blocks is N =
2(2h+1 − 1)s, and the total number of layer-(h + 2) nodes is P = 2h+2. Both the
initial distribution and the eviction process distribute the N data blocks to the
P paths each connecting the root and a layer-(h+2) node, uniformly at random.

Next, we estimate the maximum number of data blocks that are distributed
to each path that connects the root and a layer-(h+2) node. This can be achieved
by utilizing the standard balls and bins model, where N = 2(2h+1 − 1)s balls
thrown into P = 2h+2 bins. The average number of balls distributed to each bin
is N/P < s. According to the Chernoff bound, if each bin has a capacity of 2s,
the probability for a bin to overflow is bounded by e−s/3, which is less than 2−λ,
due to s ≥ 4.2λ. As a capacity of a leaf node in DF-ORAM is 3s, a layer-(h + 2)
node overflows only with a probability lower than 2−λ. Hence, the theorem has
been proved.

6 Performance Comparison

We first compare DF-ORAM with several state-of-the-art ORAM constructions,
including Path ORAM [13], C-ORAM [10] and SE-ORAM [9], in terms of asymp-
totical storage, communication, and computational costs. Then, based on system
implementations of DF-ORAM and Path ORAM, we compare their performance
in practical settings.

6.1 Asymptotical Comparison

From Table 1, we can see that both Path ORAM and C-ORAM incurs a server-
side storage overhead of O(N · B) bits. Particularly, Path ORAM needs the
server to store 9N · B bits when the client exports N · B bits of data; C-ORAM
needs to store 3N ·B extra dummy and empty blocks; also, each data and dummy
block should be encrypted with a certain homomorphic encryption, which incurs
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Table 1. Asymptotical Comparison of Communication and Storage Cost. N data
blocks each of B bits are outsourced. λ is the security parameter for DF-ORAM. For
all the listed ORAM constructions, the index table is supposed to be stored at the
client and thus its storage cost is not considered in the comparison. The server storage
overhead is defined as the extra cost in addition to the outsourced data blocks (i.e.,
the N · B bits).

ORAM Client storage cost Server storage overhead Communication cost

Path ORAM [13] O(logN · B) · ω(1) O(N · B) O(logN · B)

C-ORAM [10] O(B) O(N · B) O(B)

SE-ORAM [9] O(log2 N · B) 0 O(log2 N · B)

DF-ORAM O(λ · B) < 3N O(logN · B) 0

further storage overhead. The recently proposed SE-ORAM incurs no server-side
storage overhead. Though DF-ORAM does incur storage overhead at the server,
the overhead is less than 3N bits. In practical settings where B ≥ 16KB is
typical, this overhead is less than a small fraction (i.e., less than 1

216 ) of the
amount of data exported by the client.

As shown in Table 1, the client-side storage cost of DF-ORAM is O(λ · B)
bits, because both the permanent stash and temporary cache are of size O(s · B)
bits and s ≥ 4.2λ. Path ORAM requires the client to maintain a cache of
O(log N · B) · ω(1) bits in order to store blocks that cannot be written back to
server. C-ORAM only needs a client-side storage of O(B) bits and SE-ORAM
requires a client-side storage of O(log2 N · B) bits. Though DF-ORAM requires
a larger client-side storage than the compared schemes, the cost is not high in
practice. Particularly, even when λ = 80 and B = 256K bytes, the cost is only
336M bytes, which is affordable by a mobile phone.

From Table 1 we can see that, DF-ORAM has the same level of asymptotical
communication cost as Path ORAM. As we will show in Sect. 6.2, the actual com-
munication cost of DF-ORAM is around 1/2 of that of Path ORAM. Compared
to SE-ORAM, DF-ORAM reduces the communication overhead by an order
of log N . Although DF-ORAM has higher communication cost than C-ORAM,
C-ORAM incurs expensive computational cost which can overshadow the reduc-
tion in communication cost and result in even longer data access delay [10].

From Table 2 we can see that, C-ORAM requires the server and the client to
conduct expensive homomorphic encryption, decryption, addition and multipli-
cations. None of DF-ORAM, Path ORAM and SE-ORAM requires the server to
conduct computation, and DF-ORAM incurs the same level of client-side com-
putational cost as Path ORAM, i.e., encryption and decryption of data blocks
with symmetric cryptographical primitives. Also, as we will show in Sect. 6.2,
DF-ORAM reduces the client computational cost by a factor of 2, compared to
Path ORAM. Compared with SE-ORAM, DF-ORAM reduces the client com-
putational cost by an order of log N .
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Table 2. Asymptotical comparison of computational cost. N data blocks each of B
bits are stored. For C-ORAM, since it uses additive homomorphic encryption as prim-
itives, we use the following two parameters to measure the performance of homomor-
phic encryption: b denotes the plaintext size in bits and CAH denotes the computa-
tional cost for one homomorphic operation, including encryption/decryption, addition
and multiplication. CReg denotes the computational cost of one symmetric encryp-
tion/decryption operation.

ORAM Client computational cost Server computational cost

Path ORAM [13] O(B log N · CReg) 0

C-ORAM [10] O(CAH · B/b) O(log2 N · CAH · B/b)

SE-ORAM [9] O(B log2 N · CReg) 0

DF-ORAM O(B log N · CReg) 0

Also note that, Path ORAM, SE-ORAM and DF-ORAM support small block
size, i.e. they only require B ∈ Ω(log2 N) bits, while C-ORAM requires block
size B ∈ Ω(log4 N) bits.

6.2 Implementation-Base Comparison

We implement DF-ORAM and compare it with Path ORAM [13] which is the
state-of-the-art ORAM scheme without server computational cost. Note that, we
do not compare DF-ORAM with C-ORAM [10], as C-ORAM requires expen-
sive computations at both the server and client sides, which can overshadow
the benefit introduced from the reduced communication cost. Particularly, as
reported in [10], it costs 7 min to retrieve a data block of size 100k bits, and
most of the time is spent on computation. Also, as DF-ORAM has much lower
communication cost than SE-ORAM, we do not compare them in this section
either.

Parameter and System Settings. We choose 216 ≤ N ≤ 224 and 16KB ≤ B ≤
256KB in the implementation-based evaluation. For DF-ORAM, we set λ = 20
and s = 100. For Path ORAM, we set the node size Z = 5. Such a setting
makes both schemes to have a failure probability of around 2−20. We use two
virtual machines as the client and the server, respectively. Each of them has a
CPU of AMD Opteron 63xx 2.4 GHz and 8 GB memory. The network bandwidth
between them is 20 Mbps.

Storage Cost. The server storage cost in Path ORAM is 10N · B bits; in DF-
ORAM, the data blocks take N · B bits and the meta-data takes less than
6 MB. In both schemes, the index tables are stored locally and have same size of
O(N · log N). But each entry in DF-ORAM is bigger than that of Path ORAM.
In our experimental setting, node(i) takes 32 bits, offset(i) takes 16 bits and
TAG(i) takes 8 bits. So the index table in Path ORAM is less than 64 MB.,
while the one in DF-ORAM is less than 112 MB.
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Path ORAM has a permanent stash of O(log N · B) bits to store blocks that
cannot be sent back to server, and a temporary cache of 5 log N · B bits to store
blocks retrieved from server. These two parts consumes less than 42 MB. In DF-
ORAM, a stash can hold s data blocks and a cache can hold 3s data blocks. In
our setting, s = 100, so these two parts consume less than 100 MB.

To sum up, the client-side storage cost in DF-ORAM is less than 212 MB
and in Path ORAM is less than 106 MB.

Communication Cost. Table 3 shows the communication cost of Path ORAM
and DF-ORAM, in terms of the number of blocks transferred between the client
and the server per query. As we can see, DF-ORAM incurs a communication cost
between 75 to 127 while Path ORAM incurs 160 to 240. DF-ORAM reduces the
communication cost by a factor of 2, compared with Path ORAM.

Table 3. Communication Cost.Unit: number of blocks. Path ORAM has 10 log N
communication cost and DF-ORAM incurs around 1/2 as of Path ORAM.

ORAM N = 216 N = 218 N = 220 N = 222 N = 224

DF-ORAM 75 90 102 115 127

Path ORAM [13] 160 180 200 220 240
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Fig. 6. Response time for DF-ORAM and Path ORAM [13]. Compared with Path
ORAM, DF-ORAM reduces query delay by a factor of 4 to 5 and access delay with a
factor of 2.

Response Time. We define the query delay as the time from when the query
request is issued until when the client receives and decrypts the target data
block. We also define the access delay as the time from the moment when the
client issues the query request to the moment when both the query and the
associated eviction task completes. Note that, both the query delay and the
access delay include the computational time and the block transfer time. From
Fig. 6(a), (b) and (c), we can see that DF-ORAM reduces the query delay by
a factor of 4 to 5, and the access delay by a factor of 2, compared with Path
ORAM. We can also see that, the access delay of DF-ORAM is between 800
milliseconds to 14 s, which is much shorter than that incurred by C-ORAM [10].
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7 Conclusion

This paper proposes DF-ORAM, a practical dummy-free ORAM construction
which incurs O(log N · B) communication cost and small storage overhead at
the server. Asymptotical analysis and implementation-based evaluations demon-
strate that DF-ORAM is the most communication-efficient and storage-efficient
one among the existing ORAM constructions that do not require server-side
computation. Specifically, compared with Path ORAM in practical settings, DF-
ORAM reduces communication cost by a factor of 2, reduces query delay by a
factor of 4 to 5 and has access delay by a factor of 2, while introducing less than
6 MB. storage overhead to the server.
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Abstract. To enhance the performance of single intrusion detection sys-
tems (IDSs), collaborative intrusion detection networks (CIDNs) have
been developed, which enable a set of IDS nodes to communicate with
each other. In such a distributed network, insider attacks like collusion
attacks are the main threat. In the literature, challenge-based trust mech-
anisms have been established to identify malicious nodes by evaluating
the satisfaction between challenges and responses. However, we find that
such mechanisms rely on two major assumptions, which may result in a
weak threat model and make CIDNs still vulnerable to advanced insider
attacks in practical deployment. In this paper, we design a novel type
of collusion attack, called passive message fingerprint attack (PMFA),
which can collect messages and identify normal requests in a passive
way. In the evaluation, we explore the attack performance under both
simulated and real network environments. Experimental results indicate
that under our attack, malicious nodes can send malicious responses to
normal requests while maintaining their trust values.

Keywords: Intrusion Detection System · Collaborative network ·
Insider threats · Collusion attacks · Challenge-based trust mechanism

1 Introduction

Intrusion detection systems (IDSs), either network-based (NIDS) or host-based
(HIDS), have been deployed in computer networks at large, aiming to identify
various intrusions [17]. In particular, HIDSs protect an end system or network

W. Meng was previously known as Yuxin Meng.

c© Springer International Publishing AG 2016
J. Chen et al. (Eds.): NSS 2016, LNCS 9955, pp. 433–449, 2016.
DOI: 10.1007/978-3-319-46298-1 28



434 W. Li et al.

application through auditing system and event logs. By contrast, NIDSs can
monitor network traffic for attacks, by sitting outside the firewall on the demil-
itarized zone (DMZ), or anywhere inside the private network [8].

With the increasing complexity of intrusions, former studies have revealed
that a single or isolated IDS may be easily bypassed by novel attacks and can-
not detect some certain attacks such as denial-of-service (DoS) attacks, which
may cause potential damage if failed to detect timely (i.e., causing paralysis of
the entire network) [21]. In order to enhance the detection capability of single
IDSs, collaborative intrusion detection networks (CIDNs) have been developed
that enable various IDS nodes to communicate required information with each
other [4,21]. Although CIDNs can help improve the overall detection perfor-
mance, such networks are vulnerable to insider attacks [3], e.g., collusion attacks
where malicious nodes may collaborate to provide false alarm ranking informa-
tion to reduce the effectiveness of alarm aggregation. As a result, identification
of insider attacks is a major challenge for current CIDNs.

In order to protect CIDNs against insider threats, trust mechanisms should
be built in such networks. In the literature, challenge-based trust mechanisms
(shortly challenge mechanisms) are proposed, where challenges are sent to eval-
uate the trustworthiness of other nodes. Under this mechanism [4–7], a challenge
can contain a set of alarms requesting for severity. As the testing node knows
the severity of the alert located in the requests, it can use the received feedback
to derive a trust value (e.g., satisfaction level) for the tested node. It is proved
that such mechanism can prevent insider attacks like collusion attacks.

Contributions. However, we identify that such challenge mechanism depends
heavily on two assumptions [4,5]: (a) challenges are sent out in a way that makes
them difficult to be distinguished from normal messages; and (b) malicious nodes
always send feedback opposite to its truthful judgment. In practical implemen-
tations, it is aware that malicious nodes may act more dynamic and complex;
thus, these assumptions may be not realistic and leave CIDNs still vulnerable
to advanced insider attacks. In this work, we develop a novel type of collusion
attack, called passive message fingerprint attack (PMFA), which can compromise
the challenge mechanism in real scenarios, through passively collecting messages
and distinguishing normal requests. Our contributions of this work can be sum-
marized as below:

– We begin by reviewing existing challenge-based CIDNs and then analyze the
adopted threat model including assumptions. It is shown that challenge-based
CIDNs may still be vulnerable to advanced insider attacks.

– Based on our analysis, we develop a novel type of collusion attack, called
passive message fingerprint attack (PMFA), where a set of malicious nodes can
collaborate to collect messages and distinguish normal requests from messages.
In this case, these nodes can send false information to only normal requests
but give truthful feedback to challenges. This may enable malicious nodes to
maintain their trust values.

– In the evaluation, we explore the attack performance under both simulated and
real CIDN environments. Experimental results demonstrate that our attack
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Fig. 1. The high-level architecture of a typical challenge-based CIDN including its
major components.

is feasible and effective to compromise the challenge mechanism in real-world
applications. Afterwards, we discuss some potential countermeasures to defend
against our attack.

It is worth noting that challenge mechanisms are an important means to pro-
tect CIDNs against common insider attacks. The major purpose of this work is
to analyze its robustness on some advanced attacks. Our work aims to stimulate
more research in enhancing challenge-based CIDNs in practical scenarios.

The remainder of this paper is organized as follows. We introduce the back-
ground of challenge-based CIDNs in Sect. 2. In Sect. 3, we analyze the adopted
threat model by challenge mechanisms and describe passive message fingerprint
attack (PMFA) in detail. Section 4 presents our evaluation and analyzes the
results. Section 5 reviews related work. Finally, we conclude the work with future
directions in Sect. 6.

2 Background of Challenge-Based CIDNs

In the literature, challenge-based trust mechanisms are one of the effective solu-
tions to defend collaborative networks against insider attacks. Figure 1 depicts
the high-level architecture of a typical challenge-based CIDN.

Network Interactions. In the architecture, each IDS node can choose its part-
ners or collaborators based on to its own policies and experience. These IDS
nodes can be associated if they have a collaborative relationship. Each node can
maintain a list of their collaborated nodes, called partner list (or acquaintance
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list). Such list is customizable and stores information of other nodes (e.g., public
keys and their current trust values). Before a node asks for joining the network,
it has to register to a trusted certificate authority (CA) and obtain its unique
proof of identity (e.g., a public key and a private key). As shown in Fig. 1, if node
C wants to join the network, it needs to send an application to a network node,
say node A. Then, node A makes a decision and sends back an initial partner
list, if node C is accepted.

CIDNs allow IDS nodes exchange required messages in-between to enhance
their performance. There are two major types of messages for interactions.

– Challenges. A challenge contains a set of IDS alarms asking for labeling their
severity. A testing node can send a challenge to other tested nodes and obtain
the relevant feedback. As the testing node knows the severity of the sent
alarms, it can use the received feedback to derive a trust value (e.g., satisfac-
tion level) for the tested node.

– Normal requests. A normal request is sent by a node for alarm aggregation.
Other IDS nodes should send back alarm ranking information as their feed-
back. Alarm aggregation is an important feature for CIDNs, which can help
improve the detection performance, and it usually considers the feedback from
trusted nodes.

Network Components. Intuitively, an IDS component is essential for a CIDN
node. Besides, A node in a typical challenge-based CIDN often contains several
components including trust management component, collaboration component
and P2P communication.

– Trust management component. This component is responsible for evaluating
the trustworthiness of other nodes. Under the challenge mechanism, the trust-
worthiness of other nodes is mainly computed by evaluating the received feed-
back. Each node can send out either normal requests or challenges for alert
ranking (consultation). To protect challenges, it is worth noting that chal-
lenges should be sent out in a random manner and in a way that makes them
difficult to be distinguished from a normal alarm ranking request.

– Collaboration component. This component is mainly responsible for assisting a
node to evaluate the trustworthiness of others by sending out normal requests
or challenges, and receiving the relevant feedback. If a tested IDS node receives
a request or challenge, this component will help send back its feedback. As
shown in Fig. 1, if node A sends a request/challenge to node B, then node B
will send back relevant feedback.

– P2P communication. This component is responsible for connecting with other
IDS nodes and providing network organization, management and communica-
tion among IDS nodes.

Effectiveness. Challenge-based trust mechanisms can enhance a CIDN frame-
work in detecting common insider attacks including Sybil attack, newcomer
attack, betrayal attack and collusion attack [4–7].
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– Sybil attack. This attack occurs when a malicious node creates a lot of fake
identities [2]. This malicious node can utilize fake identities to gain larger
influence on the alert aggregation. Referred to Fig. 1, an IDS node should
register to a CA and obtain a unique proof identity, hence this kind of attack
can be mitigated.

– Newcomer (re-entry) attack. This attack occurs when a malicious node reg-
isters as a new user aiming to erase its bad history. Challenge-based CIDNs
begin by giving low initial trust values to all newcomers, so that they cannot
make an impact on alarm aggregation.

– Betrayal attack. This attack occurs when a trusted node becomes a malicious
one suddenly. To defend this attack, the above model employs a strategy: a
high trust should be taken a long-time interaction and consistent good behav-
ior to build, while only a few bad actions to ruin it. In particular, it employs
a forgetting factor to give more credits to recent behaviors.

– Collusion attack. This attack happens when a group of malicious peers cooper-
ate together by providing false alarm rankings in order to compromise the net-
work. Challenge-based trust mechanisms can uncover malicious peers through
sending challenges. The trust values of malicious nodes can decrease rapidly
if their untruthful feedback is detected.

Overall, challenge-based CIDNs can not only provide collaboration among
IDS nodes, but also detect common insider threats. However, in real deploy-
ment [11,12], we find that challenge-based trust mechanisms rely on two main
assumptions, which may be vulnerable to some advanced insider attacks.

3 Our Developed Attack

In this section, we analyze the threat model made by challenge-based trust mech-
anisms, discuss adopted assumptions and describe our developed attack.

3.1 Threat Model Analysis

As stated above, challenge-based trust mechanisms are effective to defend against
most common attacks. However, in real implementations [11,12], we notice that
the defense of collusion attacks depends primarily on two assumptions (or con-
ditions) as below.

– Challenges are sent out in a random way and in a way that makes them
difficult to be distinguished from normal messages.

– Malicious nodes always send feedback opposite to its truthful judgment.

Basically, these two assumptions aim to protect challenges, as they are the
key to identify malicious nodes under various insider attacks. The first assump-
tion has two conditions: random manner and hard to distinguish. These two
conditions ensure that an IDS node cannot distinguish a challenge from normal
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requests, so that malicious nodes have a trivial possibility of identifying and
bypassing challenges, and have to give response to each message.

The second assumption describes that malicious nodes always send feedback
opposite to its truthful judgment, resulting in a rapid decrease of trust values
of malicious nodes. Based on [6,7], this is called maximal harm model where an
adversary always chooses to report false feedback with the intention to bring the
most negative impact to the request sender. For example, when a malicious node
receives a ranking request, it will send feedback ‘no risk’ for an alarm whose real
risk level should be ‘medium’, because this feedback can maximally deviate the
aggregated result at the sender side.

Discussions. These assumptions are reasonable in some cases, in which attack-
ers are naive and choose a maximal harm model (we call these attacks as naive
attacks). However, in real scenarios, advanced attackers may perform more
dynamic and complex behaviors to compromise a CIDN (i.e., attackers may
employ different strategies to reduce the detection risk). Even for a malicious
node, it can send out truthful feedback, pretending to be a benign one in order
to maintain its trust value. In this work, ‘advanced attack’ refers to the situa-
tion where attackers can perform complicated operations, as compared to naive
attacks (under maximal harm model).

Thus, these assumptions may result in a weak threat model in real-world
applications and leave CIDNs still vulnerable to advanced attacks. For exam-
ple, we accept that challenges can be send out in a random way and in a way
that makes them difficult to be distinguished from messages. However, it is still
possible for attackers to distinguish normal requests from messages.

3.2 Passive Message Fingerprint Attacks

As analyzed above, challenge-based CIDNs are effective to detecting common
insider attacks, but may be still vulnerable to advanced attacks. In this part, we
develop a kind of advanced collusion attack, called passive message fingerprint
attack (PMFA), where malicious nodes are able to maintain their trust, through
passively exchanging received messages and distinguishing normal requests.

Basic idea. Under the challenge-based trust mechanism, it is a difficult task
for an IDS node to distinguish challenges from messages. However, it is possible
to distinguish normal requests from messages. It is worth noting that normal
requests are sent out for alarm ranking of one or several alarms (i.e., used for
alarm aggregation). Therefore, a set of (trusted) IDS nodes can receive this
request and give feedback. We notice that such request will contain the same
alarm set, so that a request is distinguishable through comparing the received
messages among several nodes. If several nodes receive the message containing
the same alarm set, this message should be a normal request rather than a chal-
lenge. Taking advantage of this, malicious nodes can choose to send untruthful
feedback to only requests, but give truthful response to other messages.

In Fig. 2, we illustrate how this attack works. Suppose node A is a testing
node that sends out messages including challenges to its partner nodes, where
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Fig. 2. A case of passive message fingerprint attack (PMFA) on challenge-based CIDNs.

a challenge is used to evaluate their trustworthiness. After receiving a message,
all tested nodes will give feedback. If nodes B, C and D are malicious, then the
steps in PMFA can be described as below:

– Step 1. Under the attack, each malicious node can collect and store all
received messages from the testing node. We accept that a challenge is sent in
a random manner and cannot be distinguished from normal messages, so that
all malicious nodes are not able to identify a challenge.

– Step 2. Malicious nodes start exchanging information of received messages
with each other. In real scenarios, normal requests will be sent out to all
trusted nodes for alarm ranking, so it is possible to compare the messages
and check whether it is a normal request. For instance, nodes B, C and D
exchange their received messages and update others’ database. Then, nodes
B compares the messages received by nodes C and D. If a match is identified,
then the relevant message should be a normal request.

– Step 3. After identifying a normal request, node B can send back malicious
feedback to this message (i.e., affect the alarm aggregation of node A). But
for other messages, node B still sends back its truthful answers.

To summarize, our attack enables malicious nodes to collaboratively dis-
tinguish normal requests from messages, and give untruthful feedback to only
requests but truthfully response to other messages. This can greatly reduce the
possibility of detection by challenges. As a result, malicious nodes can make a
negative impact on alarm aggregation while maintaining their trust values.
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4 Evaluation

In this section, we present a study to evaluate the performance of passive message
fingerprint attack (PMFA) under both simulated and real network environment,
respectively. We totally conduct three experiments as follows.

Table 1. Simulation parameters in the experiment.

Parameters Value Description

λ 0.9 Forgetting factor

εl 10/day Low request frequency

εh 20/day High request frequency

r 0.8 trust threshold

Ts 0.5 Trust value for newcomers

m 10 Lower limit of received feedback

d 0.3 Severity of punishment

– Experiment-1. In this experiment, we aim to explore the performance of naive
collusion attacks under the assumptions discussed in Sect. 3.1.

– Experiment-2. In the second experiment, we aim to study the feasibility of
passive message fingerprint attack (PMFA) in attacking a simulated challenge-
based CIDN.

– Experiment-3. In this experiment, we cooperate with an information center
and evaluate the real attack performance in a real wired CIDN.

In the remaining parts, we introduce CIDN settings (i.e., how to compute
trust values and satisfaction levels) and discuss experimental results.

4.1 CIDN Settings

There are 20 nodes in the simulated CIDN environment, which are randomly
distributed in a 5 × 5 grid region. We use Snort [19] as IDS plugin that can be
implemented in a node. Each IDS node can connect to other nodes and establish
an initial partner list based on the distance. The initial trust values of all nodes
in the partner list are set to Ts = 0.5 based on [5,6].

To evaluate the trustworthiness of partner nodes, each IDS node can send
out challenges randomly to its partners with an average rate of ε. There are two
levels of request frequency: εl and εh. For a highly trusted or highly untrusted
node, the request frequency is low, since it should be very confident about the
decision of their feedback. On the other hand, the request frequency should
be high for other nodes whose trust values are close to threshold. To facilitate
comparisons, all the settings can be referred to [5,6,12]. It is worth emphasizing
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that we set low request frequency to 10 per day, which is more strict than [5,6].
The detailed parameters are summarized in Table 1.

Node Expertise. Three expertise levels are employed for an IDS node as low
(0.1), medium (0.5) and high (0.95). The expertise of an IDS can be using a beta
function described as below:

f(p′|α, β) =
1

B(α, β)
p′α−1(1 − p′)β−1

B(α, β) =
∫ 1

0

tα−1(1 − t)β−1dt

(1)

where p′(∈ [0, 1]) is the probability of intrusion examined by the IDS.
f(p′|α, β) means the probability that a node with expertise level l responses
with a value of p′ to an intrusion examination of difficulty level d(∈ [0, 1]). A
higher value of l means a higher probability of correctly identifying an intrusion
while a higher value of d means that an intrusion is more difficult to detect. In
particular, α and β can be defined as [5]:

α = 1 +
l(1 − d)
d(1 − l)

r

β = 1 +
l(1 − d)
d(1 − l)

(1 − r)
(2)

where r ∈ {0, 1} is the expected result of detection. For a fixed difficulty
level, the node with higher level of expertise can achieve higher probability of
correctly detecting an intrusion. For example, a node with expertise level of 1
can accurately identify an intrusion with guarantee if the difficulty level is 0.

Node Trust Evaluation. To evaluate the trustworthiness of a target node, a
testing node can send a challenge to the tested node through a random genera-
tion process. The testing node then can compute a score to reflect its satisfaction
level. Based on [4], we can evaluate the trustworthiness of a node i according to
node j as follows:

T j
i = (ws

∑n
k=0 F j,i

k λtk

∑n
k=0 λtk

− Ts)(1 − x)d + Ts (3)

where F j,i
k ∈ [0, 1] is the score of the received feedback k and n is the total

number of feedback. λ is a forgetting factor that assigns less weight to older
feedback response. ws is a significant weight depending on the total number of
received feedback, if there is only a few feedback under a certain minimum m,
then ws =

∑n
k=0 λtk

m , otherwise ws = 1. x is the percentage of “don’t know”
answers during a period (e.g., from t0 to tn). d is a positive incentive parameter
to control the severity of punishment to “don’t know” replies. More details about
equation derivation can be referred to [4,5].

Satisfaction Evaluation. Suppose there are two factors: an expected feed-
back (e ∈ [0, 1]) and an actual received feedback (r ∈ [0, 1]). Then, a function
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F (∈ [0, 1]) can be used to reflect the satisfaction by measuring the difference
between the received answer and the expected answer as below [5,6]:

F = 1 − (
e − r

max(c1e, 1 − e)
)c2 e > r (4)

F = 1 − (
c1(r − e)

max(c1e, 1 − e)
)c2 e ≤ r (5)

where c1 controls the degree of penalty for wrong estimates and c2 controls
satisfaction sensitivity. A large c2 means more sensitive. In this work, we set
c1 = 1.5 and c2 = 1 based on the simulation in [5].

4.2 Experiment-1

In this simulation, we conduct an experiment to show the robustness of challenge-
based CIDNs against naive collusion attacks, where a set of dishonest nodes
collaborate to always send false alarm ranking. We accept the assumptions that
challenges are sent out in a random way and malicious nodes always send feed-
back opposite to its truthful judgment (maximal harm model). The results are
depicted in Figs. 3 and 4.

In Fig. 3, we show the convergence of trust values regarding different expert
nodes. It is worth emphasizing that there are three expertise levels: low (I = 0.1),
medium (I = 0.5) and high (I = 0.95). Our results are in line with the results
in [4,5], in which nodes with higher expertise can achieve bigger trust values.
In addition, it is noticed that the trust values of all nodes become stable after
around 20 days in the simulated network.

As a study of naive collusion attacks, we randomly select three expert nodes
(I = 0.95) starting to send out untruthful feedback in a constant way from Day
45. For simplicity, we name these nodes as malicious node 1, malicious node 2
and malicious node 3. Figure 4 describes the trust values of these malicious nodes
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during the attack period. It is noted that trust values of malicious nodes can drop
quickly below the threshold of 0.8 (within 2–3 days). Because malicious nodes
always send untruthful feedback to messages including challenges, challenge-
based CIDNs are able to detect naive collusion attacks in a short period. The
results demonstrate that the challenge-based trust mechanisms work well in iden-
tifying malicious nodes under the naive collusion attack and disables them to
make any impact on alarm aggregation.

4.3 Experiment-2

In this experiment, we aim to investigate the feasibility of passive message finger-
print attack (PMFA) on attacking challenge-based CIDNs. Similar to the above
experiment, we also use the same expert nodes of malicious node 1, malicious
node 2 and malicious node 3 to launch our attack. The trust values of malicious
nodes and average false rates are depicted in Figs. 5 and 6, respectively. The
main observations can be described as below.

– Figure 5 illustrates that the trust values of three malicious nodes are main-
tained above the threshold and cannot be detected by the challenges. This
validates that normal requests can be distinguished from messages under our
attack. As a result, these nodes can still make an impact on alarm aggregation.

– Figure 6 describes the average false rates in alarm aggregation under two dif-
ferent attack models. False rates include both false positions (FP) and false
negatives (FN). The false rates are about 18.3 %−20% under naive collusion
attack, whereas reach 30 %−38% under our attack.

Overall, these results demonstrate the feasibility of our attack, where mali-
cious nodes can send malicious feedback to only normal requests, but still give
truthful response to other messages. This enables them to act abnormally (i.e.,
increasing false rates in alarm aggregation), but maintain their trust values (i.e.,
without detection by challenges).
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4.4 Experiment-3

In this experiment, we mainly evaluate our attack in a real CIDN environment to
explore its practical performance. We cooperate with an information center and
utilize a wired CIDN that consists of 15 nodes, in which the incoming network
traffic is about 1105 packets/s on average. The basic network settings can be
referred to Table 1. Before the experiment, we first run the whole network and
wait trust values to become stable. Then, we randomly select three expert nodes
as malicious ones to perform passive message fingerprint attack (PMFA). The
results are described in Figs. 7 and 8, respectively. The major observations can
be summarized as follows.

– Figure 7 depicts that no malicious node can be identified under our attack
(i.e., none of their trust values are below the threshold of 0.8). Thus, they can
keep making a negative impact on alarm aggregation.

– As malicious nodes can keep sending malicious feedback to cause a large dis-
agreement in alarm agreation, false rates would be increased. Figure 8 presents
that average false rates in a real CIDN can reach 30 %−33%.

These results demonstrate the effectiveness of our attack in a real CIDN and
uncover that challenge-based trust mechanisms should be further improved to
deal with more advanced insider threats in real deployment.

4.5 Mitigation Strategies

As stated above, we have demonstrated the feasibility and effectiveness of passive
message fingerprint attack (PMFA) in compromising the robustness of challenge-
based CIDNs. To defend against such advanced attacks, several potential coun-
termeasures can be considered to improve the challenge mechanisms.
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– Challenge improvement. In practice, each node can receive a challenge, but
the contained alarms may be different. This because challenges are sent in
random, so that alarms will be extracted randomly from an alarm database.
To defend against our attack, challenges can be designed to contain the same
alarms, making malicious nodes unable to identify normal requests.

– Sending strategy improvement. To further increase the difficulty of identifying
normal requests, CIDNs can send normal requests and challenges in a cross
way. In this case, nodes may not receive the messages with the same content,
causing that malicious nodes have to give truthful feedback.

It is worth noting that the above strategies can mitigate but may not com-
pletely prevent advanced attacks. Hence, there is a need to combine several
strategies and employ a more robust CIDN framework. To sum up, our study
validates that advanced insider attacks may compromise challenge-based CIDNs
in real scenarios. To defend against these threats, more advanced threat models
should be considered in designing practical trust mechanisms for CIDNs.

5 Related Work

It is intuitive that a single IDS has no information about the whole environment
that it was deployed, so that it is very likely to be bypassed by some complex
intrusions [21]. To mitigate this issue, collaborative intrusion detection networks
(CIDNs) have been proposed and implemented, which enable an IDS node to
achieve more accurate detection by collecting and communicating information
from/with other IDS nodes. Several related distributed systems can be classified
as below.

– Centralized/Hierarchical systems: Emerald [16] and DIDS [18];
– Publish/subscribe systems: COSSACK [15] and DOMINO [22];
– P2P Querying-based systems: Netbait [1] and PIER [9].

More specifically, the system of EMERALD (Event Monitoring Enabling
Responses to Anomalous Live Disturbances) [16] was a distributed tool suite,
which tracks malicious activity across various abstract layers in a large net-
work. It combines models from distributed high-volume event-correlation with
traditional intrusion detection. Similarly, distributed Intrusion Detection System
(DIDS) [18] aimed to combine distributed monitoring and data reduction with
centralized data analysis module to monitor a heterogeneous computer network.
COSSACK system [15] was developed for mitigating DDoS attack in an auto-
mate way. Such system requires no manual intervention and supports indepen-
dent attack signature. Moreover, DOMINO (Distributed Overlay for Monitoring
InterNet Outbreaks) [22] was an architecture for a distributed intrusion detection
system, which enhances collaboration among heterogeneous nodes within a net-
work. The overlay design enables this system to be heterogeneous, scalable, and
robust to attacks and failures. Also, it can detect spoofed IP sources, reduce false
positives, and enable attack classification in a timely manner. For querying-based
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systems, PIER [9] was an Internet-scale query engine, which supports massively
distributed, database-style dataflows for snapshot and continuous queries. It is
intended to serve as a building block for a diverse set of Internet-scale informa-
tion centric applications (i.e., tapping into the standardized data).

However, it is well-recognized by the literature that such collaborative net-
works are vulnerable to insider attacks. For example, Li et al. [10] identified
that most distributed intrusion detection systems (DIDS) relied on centralized
fusion, or distributed fusion with unscalable communication mechanisms, and
then proposed a DIDS based on the emerging decentralized location and routing
infrastructure. However, their approach assumes that all peers are trusted which
is vulnerable to insider attacks (i.e., betrayal attacks where some nodes suddenly
become malicious).

To protect CIDNs against insider threats, building proper trust models is
one of the promising solutions. Following this idea, Duma et al. [3] proposed
a P2P-based overlay for intrusion detection (Overlay IDS) that mitigated the
insider threat by using a trust-aware engine for correlating alerts and an adap-
tive scheme for managing trust. The trust-aware correlation engine is capable
of filtering out warnings sent by untrusted or low quality peers, while the adap-
tive trust management scheme uses past experiences of peers to predict their
trustworthiness. Tuan [20] then utilized game theory to model and analyze the
processes of reporting and exclusion in a P2P network. They identified that if a
reputation system was not incentive compatible, the more numbers of peers in
the system, the less likely that anyone will report about a malicious peer.

Later, challenge-based trust mechanism have been proposed. For example,
Fung et al. proposed challenge-based CIDNs, in which the trustworthiness of a
node depends on the received answers to the challenges. Initially, they proposed a
HIDS collaboration framework [4] that enables each HIDS to evaluate the trust-
worthiness of others based on its own experience by means of a forgetting factor.
The forgetting factor can give more emphasis on the recent experience of the
peer. Then, they improved their trust management model by using a Dirichlet-
based model to measure the level of trustworthiness among IDS nodes according
to their mutual experience [5]. This model had strong scalability properties and
was robust against common insider threats and the experimental results demon-
strated that the new model could improve robustness and efficiency. As feedback
aggregation is a key component in a challenge mechanism, Fung et al. [6] further
applied a Bayesian approach to feedback aggregation to minimize the combined
costs of missed detection and false alarm.

Following the framework, Li et al. [11] identified that different IDS nodes
may have different levels of sensitivity in detecting different types of intrusions,
so they proposed a notion of intrusion sensitivity that measures the detection
sensitivity of an IDS in detecting different kinds of intrusions. For example, if a
signature-based IDS node has more numbers of signatures (or rules) in detecting
DoS attacks, then it should be considered as more powerful in detecting such
attacks than other nodes (which have relatively fewer related signatures). This
notion is very helpful when making decisions based on the collected information
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from different nodes, as it can help detect intrusions and correlate IDS alerts
through emphasizing the impact of an expert IDS.

Later, They proposed an intrusion sensitivity-based trust management
model [12] for CIDNs and automated the allocation of intrusion sensitivity
using machine learning techniques in practice (e.g., knowledge-based KNN clas-
sifier [14]). As a study, they described how to apply intrusion sensitivity for
aggregating alarms and investigated its effect on defending against pollution
attacks in which a group of malicious peers cooperate together by providing false
alert rankings [13]. The experimental results indicated that the use of intrusion
sensitivity can decrease the trust values of malicious nodes more quickly. They
also pointed out several challenges in this field. For instance, it is a big challenge
to objectively and correctly assign the values of intrusion sensitivity based on
expert knowledge, as experts may have different views regarding the settings of
IDS nodes. To address this issue, one of the potential solutions is to study the
criterion for evaluating the intrusion sensitivity.

6 Conclusion

Challenge-based trust mechanisms are well-developed to protect CIDNs against
insider threats like collusion attacks. However, in real-world applications, we
identify that such mechanisms rely on two major assumptions and may be still
vulnerable to advanced insider attacks. In this paper, we develop an advanced
collusion attack, called passive message fingerprint attack (PMFA), where mali-
cious nodes can maintain their trust values, through passively exchanging
received messages and distinguishing normal requests. Under this attack, mali-
cious nodes are able to give untruthful feedback to only requests but truthfully
response to other messages. The evaluation, under both simulated and real net-
work environments, validates the feasibility and effectiveness of our attack. Our
work attempts to stimulate more research in designing robust CIDN frameworks
in real-world scenarios. There are many future directions, which could include
exploring other advanced insider attacks on challenge-based CIDNs and enhanc-
ing existing framework to against complex attacks.
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Abstract. Iris recognition system has demonstrated its strong
capability in performing personal verification and identification with
promising recognition accuracy. However, the conventional iris recogni-
tion system stores the unprotected iris templates in a database, which is
potentially being compromised. Even though biometric template protec-
tion provides a feasible solution to secure biometric template, a trade-off
between security and recognition accuracy is incurred. That is, the higher
security level always trades with poor recognition accuracy and vice
versa. In this paper, a new iris template protection scheme is proposed,
namely “Indexing-First-One” (IFO) hashing. IFO hashing transforms
the binary feature into index value with Jacaard distance preservation.
The resultant template offers a good indication of inheriting similarity
from the IrisCode and strong concealment of IrisCode against inversion
attack as well as other major security and privacy attacks. Experiments
on CASIA-v3 data set substantiate that the proposed scheme can achieve
as low as 0.54 % equal error rate and well preservation of recognition per-
formance before and after IFO hashing.

Keywords: Biometric · IrisCode · Cancellable · Template protection ·
Security

1 Introduction

Traditional authentication mechanisms rely on user’s password, PIN numbers
or physical keys to allow the legitimate individual get access into the system.
However, this method has suffered from certain inherent limitations such as “too-
many-passwords”. Moreover, password, ID cards or access card are easy to be
forgotten, stolen and lost. That leads to the compromise of security, especially
when all of this information is known and shared by others. On the other hand,
biometric traits have been used to identify individuals based on the physiological
and behavioral characteristics of human being. The most popular traits used
in biometric-based authentication systems are irises, face, and fingerprint [10].
Since the biometric traits/identifiers are inherently bound to individual, this
means that people no longer need to worry about the password or ID card being
stolen or forgotten. Furthermore, biometrics cannot be share and lost.
c© Springer International Publishing AG 2016
J. Chen et al. (Eds.): NSS 2016, LNCS 9955, pp. 450–463, 2016.
DOI: 10.1007/978-3-319-46298-1 29
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Among all the biometric identifiers, human iris is considered as a highly reli-
able biological trait for personal identification and verification [5,6]. It is gener-
ally conceded that iris recognition is the most promising approach as compare
to others biometric recognition system [4,16].

Conventional iris recognition system stores the generated iris templates in
database, which is potentially being attacked or compromised. Once this data-
base is compromised, the attacker can use the stolen template to perform imper-
sonation. Due to the fact that human iris is permanently associated with each
individual, this implies a permanent loss of identity for each user. Moreover,
information of human iris is very limited as every individual only possesses two
irises for iris template generation. Thus, the compromised template cannot be
revoked easily and further hinders the usage of the human iris in recognition
purpose. The security and privacy issues become a major concern for a user and
a solution is needed.

Biometric template protection is introduced to solve the existing security and
privacy problems for a biometric recognition system. The notions of cancellable
biometric [10,19] that achieves the following properties was introduced:

1. Diversity: Different templates are used for different purposes. There is no
cross-matching between the generated templates for different applications.

2. Revocability: The generated template must be able to be revoked when a
database is compromised.

3. Non-invertibility: Generated template need to be non-invertible to make sure
it is computationally hard for the attacker to reconstruct the original tem-
plate.

4. Performance: The newly generated template must preserve or at least come
with insignificant degradation on the recognition performance.

2 Literature Review

For cancellable biometric, it can be classified into biometric salting and non-
invertible transformation [10]. Generally, in biometric salting, independent aux-
iliary data such as user specific password or token are combined with original
biometric data to generate a distorted version of the new biometric template in
order to protect the original biometric data. On the other hand, non-invertible
transformation refers to one-way transformation function is used to transform
the original biometric data into its non-invertible version.

In biometric salting, a well-known instant, S-IrisCode encoding is proposed
by Chong et al. [4] to generate cancellable iris template. It is essentially an exten-
sion of biometric salting approach (i.e. Biohashing [19]). The amplitude of the
complex iris Gabor-feature was projected into a lower and more discriminative
feature space through iterated inner products with a set of user-specific random
vectors. Similar in salting approach, the original iris information is distorted due
to the inner product multiplication with a random vectors. The projected vectors
are then quantized into binary bits. A noise mask is introduced to eliminate the
weak inner product and improve the recognition performance. Cancellability is
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achieved through replacing the user-specific random vectors to allow new tem-
plate to be generated in case of compromised database event happen. Another
cancellable iris template based on biometric salting approach was proposed by
Pillai et al. [16]. Pillai et al. partitioned the iris into several sectors and projected
these sectors to a lower dimensional space by using a external token (i.e. random
Gaussian matrix). The projected vectors are further quantized into binary bits
to generate cancellable iris template whereby new random Gaussian matrix can
be used to reissue a new iris template and replace the old template.

For non-invertible transformation, one way transformation function is applied
to generate cancellable Iris template. In [21], cancellable iris template is gener-
ated through non-invertible transformation by combining the rows of the iris
feature or IrisCode. Before this, the iris feature or IrisCode is row shifted. Non-
invertibility was achieved due to the distortion of the original iris information
after different rows of iris feature or IrisCode were combined through certain
operation (e.g. addition/multiplication or XOR). User-specific keys are used to
select two number of rows as the input of aforementioned operation. This method
can preserve the original recognition performance. However, the recognition per-
formance will be deteriorated when same key is used. This implies that the
vulnerability in stolen token case occurred in Biohashing would be suffered in
this method as well.

Block remapping method is used to perform non-invertible transform in [7].
The normalized iris texture is first partitioned into several image blocks. Then,
the image blocks are permuted by using random permutation key. A many-to-
one image blocks remapping technique is then used to generate cancellable iris
template. Same image blocks can be remap to a target texture (same size with
original iris texture) during block remapping process. The redundant iris texture
not involve during remapping process induced some information loss. Thus non-
invertibility can be archived. Different permutation keys can be used for new
template generation to replace the compromised template.

A tokenless non-invertible transformation named Bio-encoding was proposed
by Ouda et al. [14,15]. Ouda et al. first extracted the consistent bits from the
original IrisCode generated from several iris image samples for each user. After
that, the consistent bits are split into multiple binary codewords and encoded
by a random generated binary sequence to produce a new random set, namely
BioCode which can be securely stored in database. However, the IrisCode can
be regenerated from the BioCode when the Boolean function used to generate
the random sequence is known by an adversary [12].

A new alignment-free non-invertible transformation is used to generate can-
celable iris template from IrisCode using bloom filter [17]. A bloom filter b is a
bit array of length n initialized with zero. In this method, the IrisCode is split
into i equal size blocks. Each block constitute to a single bloom filter bi. Then,
a number of hash functions hi are used to add an elements of ‘1’ into a bloom
filter. The hash function can be described as hi = T ⊕ xj , where T denotes
a secret key to enable cancellability while xj denotes the column codewords
in each block with size w where ∀j ∈ [1, w]. Same columns code words will
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output same hashing result induced a many-to-one mapping, thus, non-
invertibility can be achieved. The recognition performance is able to be preserved
after the transformation is employed. However, Hermans et al. [8] proposed a
false positive matching attack against bloom filter approach with a undesired
low time complexity of 225.

Vast majority of existing iris template protection scheme is able to maintain
the recognition performance but still noted with certain vulnerabilities:

1. Token storage problem: Biometric salting technique [4,16] showed significant
degradation in recognition performance when same seed is used [11]. This
implies the user-specific token used in salting technique is required to be
securely stored in order to achieve better recognition performance.

2. Trade-off problem: [7,17], failed to achieve non-invertibility as the adversary
can launch false positive matching attack. This is the drawback of maintaining
the recognition performance by preserving more original iris features. Notice
that information loss is required to achieve stronger non-invertibility [13].

In this paper, a new iris template protection scheme inspired from the con-
cept of Min-hashing is proposed. The proposed scheme generates protected iris
template while breaking the tradeoff between accuracy and security. Essentially,
the scheme utilizes the implicit ordering of IrisCode (location of binary bits)
instead of absolute binary value of IrisCode, which permits more original binary
information can be loss from the IrisCode while maintaining its discriminative
representation to achieve stronger non-invertibility without significant deterio-
rates the recognition performance. Besides, no user-specific token is required,
hence, eliminated the key storage issue.

3 Preliminary

MinHash is a method for speedy estimating how similar two sets are. MinHash
was initially used in the search engine to detect duplicate web pages and remove
them from search results as well as in the large-scale clustering problems [1,2].
Min-hashing, records the index of first ‘1’ occurrence for a number of permu-
tation, i of binary vectors, for i = 1, 2, . . . ,m where m denoted the number
of permutations applied. Different index vectors, which may encoded in binary
form, can be formed by using the different permutation seeds on a binary vector.
Let A and B be two index vectors generated from the binary vector and h be
a hash function that maps the members of A and B to distinct indexes, and
for any set S define min hi(S) to be the minimal member of S with respect
to h. Now, if we apply min h to both A and B, we will get the same value
exactly when the element of the union A ∪ B with minimum hash value lies in
the intersection A ∩ B. The probability of this being true, which also known as
hash collision rate, is the ratio above, and hence Pr[min hi(A) = min hi(B)] =
JS(A,B)± ε with an estimation error ε, and JS(A,B) is the Jaccard similarity
defined as JS(A,B) = |A∩B|

|A∪B| , 0 � JS � 1, where JS = 1 indicates a perfect
match. The error ε can be minimized by increase the number of m with a pay
back of higher hashed code storage is required [9] (Fig. 1).
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Fig. 1. Min-hashing process ([1]).

4 The Proposed Scheme

Inspired from the concept of Min-hashing, the IFO hashing has utilizes m inde-
pendent hash functions h1, h2, . . . , hm, each hash function is derived from differ-
ent permutation set which contain P number of random generated permutation
vectors. The iris template is generated by concatenating all the hashed output
values of an IrisCode (X) which can be described by an IFO hashing func-
tion denoted as H(X) = {hi(X)|i = 1, 2, . . . ,m}. The detailed procedure of IFO
hashing function is described as follow:

1. Random Permutation: Generate a permutation set contains P number of ran-
dom generated permutation vectors. Column-wise permute the input IrisCode
X ∈ {0, 1}n1×n2 using the permutation vectors to generate permuted IrisCode
X′ = {Xl

′|l = 1, 2, . . . , P}
2. Hadamard product code generation: Generate the P th- ordered conjunctions

Hadamard product code XP by multiplying all the permuted IrisCode which
can be described as XP =

∏P
l=1(Xl

′).
3. For each row in the product code XP , select the first K elements, while

1 ≤ K ≤ n2.
4. Among the selected first K elements, record down the index value denoted

as CX corresponding to the first binary bit ‘1’.
5. Modulo thresholding: A simple threshold function is imposed to alleviate the

leakage of the original IrisCode by choosing a security threshold value τ ,
where 0 ≤ τ < K. For every CX > K − τ , output CX

′ = CX mod (K − τ).
6. Continue step 1 to 5 using different permutations set θ(i,l), while i ∈ [1,m], l ∈

[1, P ] to form an n1 × m iris template CX
′ = {CXi

′ ∈ Zn1 | i = 1, 2, . . . ,m},
while CX

′ ∈ [0,K − τ − 1].
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Each single permutation constitute to a independent hash function hi(X),
thus, hi(X) = CXi

′ (Fig. 2). The final IFO hashed code formed by concatenating
CXi

′ for i = 1, 2 . . . , m as discussed in step 6.
IFO as an extension version of Min-hashing not only increased the complex-

ity in generating the hash code through hardamard multiplication and modulo
thresholding, it inherited the useful properties which the similarity between two
input feature vector X and Y can be estimated based on the probability of
their hashed code to be identical. This similarity measure can be described as
Pr[hi(X) = hi(Y)] and is essentially equivalent to the Jacaard similarity mea-
surement as discussed in Min-hashing [1,9]. IFO hashing enjoys this benefit
in protecting the IrisCode with Jacaard distance preservation for the original
IrisCode recognition.

Before matching, a pre-align process is needed to tackle the rotational incon-
sistencies caused by the head tilt of a person. Before apply the proposed scheme,
The IrisCode is column-wise shifted left for 1, 2, . . . , 16 bits, and then followed
by right shifted with 1, 2, . . . , 16 bits. Each of the shifted IrisCode is then applied
the proposed scheme yielding 16 ∗ 2 = 32 shifted query instances. Matching is
perform between each of the query instances with the enrolled IFO hashed code.

Let denotes the IFO hashed code for enrolled IrisCode (X) as CX
′ and the

IFO hashed code for the query IrisCode (Y) as CY
′. The similarity S ∈ [0, 1]

between CX
′ and CY

′ can be calculated based on the probability for their hashed
output value to be the same. This refers to the case when CX(j,i) = CY (j,i), for
i ∈ [1,m] and j ∈ [1, n1]. In practice, the failure case in locating the first binary
‘1’ need to be filter out in order to increase the matching efficiency. This can be
done by only included the non-zero elements in the matching process which can
be described as:

S(CX
′,CY

′) =
|BX ∩ BY ∩ QXY |

|BX ∩ BY | , |BX ∩ BY | 	= 0 (1)

In Eq. (1), BX , BY ∈ {0, 1}n1×m denotes the binary vector which is ‘1’
when CX(j,i)

′, CY (j,i)
′ 	= 0, and ‘0’ when CX(j,i)

′, CY (j,i)
′ = 0. Hence, |BX ∩BY |

actually act as a filter mask for both CX
′ and CY

′. This ensure only non-zero
elements in both CX

′ and CY
′ are included during matching process. By doing

so, the failure case in locating the first binary ‘1’ during IFO hashing can be
excluded for matching. Meanwhile, QXY ∈ {0, 1}n1×m denotes the binary vector
which recorded the collision event. This collision event refers to the scenario when
Pr[hi(X) = hi(Y)]. The collision event is measured in element-wise manner
during matching. For instant, QXY is initiated with all zeros. By comparing CX

′

and CY
′, each QX(j,i)Y (j,i) will be added an element ‘1’ into it when CX(j,i)

′ =
CY (j,i)

′. Together with the filter mask, the validity of the recorded collision
between CX

′ and CY
′ also can be confirmed. In this context, any failure case

in locating the binary ‘1’ during IFO hashing, neither contribute to a collision
nor non-collision event. Hence, the matching efficiency can be increased. By
measuring the collision between CX

′ and CY
′, the Jacaard similarity between

the enrolled IrisCode X and the query IrisCode Y able to obtained. Higher
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Fig. 2. Example of IFO hashing based on single hash function (h) with setting K =
3, τ = 1

collision imply higher similarity between CX
′ and CY

′. Where S(CX
′,CY

′) = 1
indicates perfect match.

5 Experiment Studies

To measure the recognition performance of the proposed iris template protection
scheme, CASIA database v3-interval [3] is used. This dataset contains 2639 iris
images from 396 different classes (eyes). In our experiments, only left eye images
are considered. To standardize the matching, from all the left eye images, we
only selected the classes which included at least 7 iris samples, resulted a total
classes of 124 classes are selected, and 124 * 7 = 868 iris images are used. For
intra-class comparisons, each iris template is matched against the templates
generated from other iris samples of the same classes, leading to a total of 2604
genuine comparisons. For inter-class comparisons, every template is matched
with all other templates generated from different iris samples of different classes,
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yielding a total 373674 impostor comparisons. Equal error rate (EER) has been
used to evaluate the recognition performance where the false acceptance rate
(FAR) and false rejection rate (FRR) are equal.

5.1 IrisCode Generation

The IrisCode generation technique is adopted from Rathgeb et al. [17]. The iris
region is first detected by applying the weighted adaptive Hough transform. After
that, a 2-stages segmentation process is used to segment the iris and pupil bound-
aries [20]. Followed by a normalization process is used to unwrap the iris region
into a fixed dimension array namely rubber sheet model [6]. The normalized iris
texture is enhanced as a rectangular texture, lower fourteen rows are eliminated
to form the new iris texture with size of 50 × 512. The purpose of eliminat-
ing the lower fourteen rows is to reduce the effect of pupil dilation/contraction
which induce noises during matching. The pixels of every five rows are averaged
to result a new one-dimensional signal. By convolving this signal with 1-D log-
Gabor filter, a complex iris Gabor features with the size of 10×512. Finally each
complex value of the iris Gabor features is phase-quantized into 2 binary bits to
generate the IrisCode with the length of 2 × 10 × 512 = 10240 bits.

5.2 Recognition Performance Evaluation

The recognition performance for the original IrisCode [17] is first evaluated by
calculating their hamming distance during matching with shifted bits of ±16.
Next, The same experiment has been carried out by applying the proposed iris
template protection scheme on the original IrisCode with the setting of m =
10, 20, 30, 40, 50, 100, and 200, P = 3 and τ = 0. The result shown in Table 1
implies that the increase of m yields the decrease of EER (increased recognition
performance) for different selected K-window size.

Table 1. EER for different number of hash functions m, Hadamard multiplication with
order P = 3 and security threshold τ = 0

Equal error rate (%)

K m = 10 m = 20 m = 30 m = 40 m = 50 m = 100 m = 200

50 3.37 1.46 1.17 0.99 0.94 0.58 0.54

100 3.41 1.41 0.98 0.88 0.86 0.76 0.54

200 3.05 1.29 0.97 0.86 0.82 0.60 0.54

Original IrisCode [17] 0.38

Notice that the template generated from the proposed scheme is with the
EER that is very close to the original IrisCode. This shows that the recognition
performance can almost preserved after the proposed scheme is applied.
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5.3 Non-invertible Analysis

In this section, we analyze the security of proposed scheme in term of non-
invertibility. For non-invertibility analysis, the proposed transformation has
transformed the binary IrisCode into real index values. It is difficult for an
adversary to guess the original IrisCode information directly from any stolen iris
template. Thus, the adversary first needs to reconstruct the K-window bits in
order to obtain the binary information of the input IrisCode(X).

The modulo thresholding technique is included to prevent the case happen
when CX(j,i) = K for i ∈ [1,m] and j ∈ [1, n1]. When CX(j,i) = K, this implies
the first binary bit ‘1’ appeared in the last index of the K-window, an adversary
can easily conclude that the entire row of the product code is [0, 0, 0, . . . , 1K ].
Consequently, the adversary can reconstruct the K-window bits information by
only a single trial.

In this case, the security threshold (τ) indicates the minimum number of
trials to reconstruct the K-window bits. This can be explained by Letting τ =
K − CX(j,i), then CX(j,i) = K − τ . For 0 ≤ τ < K, the max (CX(j,i)) of the
IFO hashed codes can be changed by computing CX(j,i)

′ = CX(j,i) mod (K − τ)
when CX(j,i) > K − τ . By doing so, CX(j,i)

′ is always smaller than K where
CX(j,i)

′ ∈ [0,K − τ − 1]. Thus, CX(j,i)
′ will never equal to K and subsequently

increased the minimum number of trials for an adversary to reconstruct the
K-window bits which can be described as 2τ (Fig. 3).

To evaluate the effect of the security threshold on recognition performance
in term of EER, another experiment has carried out for different value of τ and
K, while m = 50, P = 3. Figure 4 shows the EER versus security threshold τ for
different values of K. Based on the result shown in Fig. 4, the recognition per-
formance has maintained by increasing τ up to certain threshold (approximately
90 % of K). As discussed, the non-invertibility properties able to strengthen up
by increasing the value of τ . This imply the proposed scheme has constrained
the trade-off problem between recognition and non-invertibility in a very small

Fig. 3. K-window bits information reconstruction before and after thresholding
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Fig. 4. Graph equal error rate (EER) vs security threshold (τ)

range of τ (when τ > 0.9K). When out of this range, the non-invertibility able
to increased without deteriorating the recognition performance.

Attack via Record Multiplicity (ARM): ARM refers to the attack which
utilized multiple compromised templates and keys to reconstruct the original
template information [18]. We have make used of an simple example to study
the non-invertibility of proposed scheme from the effect of ARM. For non-
invertibility analysis, we always assume all the parameters (i, P,K, τ) and per-
mutation token being known by adversary.

Let the input Iriscode denotes as X ∈ {0, 1}1×N , the product code formed by
carry out P permutation of the IrisCode and followed Hadamard multiplication
denoted as XP . Each of the elements in the product code XP

q , for q ∈ [1, N ]
can be described as multiplication of P elements randomly choose from X1, X2,
X3, . . . , XN which refer to the 1st, 2nd, 3rd, . . . , Nth elements of the original
IrisCode (X) respectively. Let P = 2, τ = 1, and K = N = 4. When P = 2,
means two permutation is used to generate the product code. In this case, we
simply described the two permutation to be [1, 2, 4, 3] and [2, 4, 3, 1]. For one
single hashing (i = 1), the equations described each elements in the product
code XP

q can be formed when the permutation token is known by an adversary.
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This equations formed can be described as:

X2
1 = X1X2,

X2
2 = X2X4,

X2
3 = X4X3,

X2
4 = X3X1.

(2)

As mentioned, K = N = 4, the K-window bits essentially equal to the prod-
uct code can be described as XP

K =
{
X2

q |q = 1, 2 . . . , K
}
. By follows Eq. (2), it

is obvious when X2
1 = 1, X1X2 must be also ‘1’. This indicates the first and

second elements of original IrisCode are both ‘1’. By repeating this for the fol-
lowing X2

q for q = 1, 2, . . . ,K, certain amount of binary ‘1’ able to regenerate in
the original IrisCode (X). For this instant, by simply initiate a sparse code same
size with X, the entire original IrisCode (X) able to regenerate with the knowl-
edge of when XP

q = 1. On the other words, the IrisCode regeneration process
now merely depend on the number of binary bits ‘1’ left inside the product code
(or K-window, when K 	= N) after Hadamard multiplication. By using single
compromised IFO hashed code, it is computational infeasible to regenerate the
IrisCode due to the loss of information induced by the Hadamard multiplication,
hence, resulted a lot of ‘0’ in the product code. For ARM, multiple IFO hashed
code are assumed to be compromised which makes the regeneration of entire
IrisCode become probable.

However, due to the incorporated modulo thresholding in IFO hashing, this
increased the difficulty of ARM to regenerate the original IrisCode. For instant,
based on Eq. (2), let X2

1 = 0, X2
2 = 0, X2

3 = 0, and X2
4 = 1. During IFO

hashing, the position of the first binary ‘1’ will be encoded which refers to CX =
4. Previously, we have defined τ = 1, and K = N = 4. Now, the modulo
thresholding process will output CX

′ = CX mod (K−τ). After modulo operation,
CX will set to CX

′ = 1 which denotes the final IFO hashed value. When the
adversary has constructed the equation X2

1 = X1X2 as shown in Eq. (2), this will
lead to a wrong reconstruction due to the shifted output CX from 3 to 1. As the
actual initial value of X2

1 = 0 will be wrongly defined by the adversary as X2
1 =

1. This resulted an invalid equation formed and consequently the regenerated
IrisCode will comes out with error. Although new equations can be constructed
from different compromised IFO hashed codes, the adversary is still hard to
determine the actual value of CX from the final IFO hashed value CX

′. This
shows how the proposed ARM withstand to ARM.

5.4 Cancellability Analysis

To evaluate the cancellability, 100 hashed codes for each IrisCode have been
generated with 100 random permutation sets. The first hashed code is matched
and compared with other 99 new hashed codes. The whole process is repeated
and produce in a 99 ∗ 7 ∗ 124 = 85932 pseudo-imposter scores. The genuine,
imposter, and pseudo-imposter distribution are given in Fig. 5 and computed
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Fig. 5. The genuine, imposter and pseudo-imposter distribution plot

with experiment setting of P = 3,K = 50,m = 50 and τ = 0. Note that the
numbers of computed scores are different for the imposter and pseudo-imposter
matching, this is because in pseudo- imposter matching, we only focus on the
matching scores between the first hashed code and the newly generated hashed
code for each iris image (same user) for cancellability evaluation.

From Fig. 5, a large degree of overlapping occurs between the imposter and
pseudo-imposter distributions. This implies the newly generated templates using
the given 100 random permutation sets act as different iris template even though
it is generated from the same IrisCode (same users). In terms of verification
performance, we obtain EER = 0.12 % in which intersection of genuine and
pseudo-imposter distribution is taken. This verifies that IFO Hashing satisfies
the cancellability property requirement.

6 Conclusion

We have proposed a robust hashing technique to protect the iris template stored
in a database. The robust hashing technique has been applied on the original
IrisCode. A comprehensive experimental evaluation shows that a very close equal
error rate has been obtained as compared with the recognition performance of
original IrisCode without template protection. Besides, the protected template is
represented in real features domain. This offers another layer of security in term
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of non-invertibility. For an adversary trying to regenerate the IrisCode from the
protected template, he/she required to reconstruct the binary information from
the protected template which experiment result has shown that it is compu-
tationally hard. Moreover, experiment result also supported that cancellability
of proposed scheme is satisfied. Last but not least, the proposed technique can
potentially be extended for any other biometric features provided that the input
features can be represented as binary vectors.
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Abstract. The Web has long become a major platform for online crim-
inal activities. URLs are used as the main vehicle in this domain. To
counter this issues security community focused its efforts on developing
techniques for mostly blacklisting of malicious URLs. While successful
in protecting users from known malicious domains, this approach only
solves part of the problem. The new malicious URLs that sprang up all
over the web in masses commonly get a head start in this race. Besides
that Alexa ranked trusted websites may convey compromised fraudulent
URLs called defacement URL. In this work, we explore a lightweight app-
roach to detection and categorization of the malicious URLs according to
their attack type. We show that lexical analysis is effective and efficient
for proactive detection of these URLs. We provide the set of sufficient
features necessary for accurate categorization and evaluate the accuracy
of the approach on a set of over 110,000 URLs. We also study the effect
of the obfuscation techniques on malicious URLs to figure out the type
of obfuscation technique targeted at specific type of malicious URL.

Keywords: Malicious URLs · Lexical features · URL obfuscation ·
Machine learning

1 Introduction

With ubiquitous use of Internet technology, the concern with security comes
to the forefront. The web has been used as a hub for a variety of malicious
activities from malware hosting and propagation to phishing websites’ tricking
users to provide their personal user information. Malicious URLs are intended
for malicious purposes. Visitors of such URLs are under the threat of being
victim to certain attacks [9]. According to the latest Google Safe browsing report,
Google search blacklisted over 50,000 malware sites and over 90,000 phishing sites
monthly [1].

Blacklisting is a typical approach to deal with malicious websites which is
simple and provide better accuracy. This technique is effective only when lists
are timely updated and websites are visited extensively for finding malicious
webpages. Unfortunately, it falls short for providing timely protection of online
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users. Since blacklists (IP addresses and URLs information) are extracted from
expensive and sometimes complex filtering technologies, companies would not
sell their updated list to market for free. Moreover, due to the cloaking applied
on webpages and attackers recurrently change the URL and IP of the malicious
webpages, new webpages are less likely to get checked against the blacklists.
Besides that trusted websites may host fraudulent or hidden URL known as a
defacement URL that contains both malicious and legitimate web pages. These
URLs cannot be reached by crawling the legitimate web site within up to the
third level of depth. Detection of these malicious URLs are effective when they
perform in real time, detect new URLs with high accuracy, and specially recog-
nize specific attack type (e.g., phishing URL).

Heuristic-based technique in [18] can identify newly created malicious web-
sites in real-time by using signatures of known attack payloads. However, this
approach would fail to detect novel attacks that result in zero-day exploits and
signature detection is often evaded by attackers using change in patterns and
obfuscation techniques.

Machine learning techniques are used to classify malicious websites through
features taken from URLs, web content and network activity. The detection
methods and tools which adopt the approach of patrolling web content may
consume more computation time and resource. Therefore, URL based detection
techniques for malicious URL detection are largely limited to classification of
URLs in general or any specific attack i.e. spam [3,6,20]. Meanwhile research
shows that the characteristics of malicious URLs differ with the type of technique
used for exploitation (e.g., spam, adware, phishing, drive-by-downloads etc.) [19].

In this study, we adapted machine learning techniques to the detection and
categorization of the malicious URLs. We look at four types of malicious use of
URLs such as spam URLs, phishing URLs, website URLs distributing malware,
and defacement URLs where pages belong to the trusted but compromised sites
and identify a set of significant lexical features that can be used in recognizing
the types of URL attack.

Obfuscation techniques used by the attacker to evade static detection in
malicious URLs. Since obfuscation based features have been widely used for
phishing attacks [3,23], we also study the effect of the obfuscation techniques
on different type of malicious URLs to determine which attack type is mostly
affected with what kind of obfuscation technique.

We select 79 features related to lexical analysis and 4 features related to
obfuscation techniques for primary analysis. After applying the feature selection
algorithm on the dataset, we end up with five sets of mostly relevant features for
multi label and multi-class classification for any type of malicious URL detection.

We evaluated this approach on around 110,000 URLs taken from different
sources, and achieved a prediction accuracy (with low false positive rate) of
nearly 99 % in detecting URLs of the attack type and approx. 93–99 % in identi-
fying attacks with multi-class classifier. It appears that selective lexical features
can find the better accuracy for identifying the different types of URL attacks.
Although obfuscation techniques are widely used in the literature as a part of
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Malicious URL detection (e.g. [23]). However, from our experiment, we found no
significant impact on statistical analysis.

2 Related Work

Using lexical features with a proposed classification engine gives high accuracy
in classifying the URLs. Domains used for phishing purpose have shown to have
different lengths and diverse location. McGrath et al. in [14] analyze the dif-
ferences between benign and phishing URLs using features such as URL and
domain length.

Based on the behavior of domains in phishing websites, Ma et al. in [6],
manage to identifying suspicious URLs by using lexical and blacklisted host
based features. They believe that there are certain red flag keywords tend to
appear in malicious URLs such as appearing ebayisapi for spoofing ebay web
pages. However, in the following works, Ma et al. in [15] use supervised learning
across both lexical and host-based features. In this case, authors argue that their
approach is complementary to both blacklisting and system based evaluation
such as site content and behavior analysis where one cannot predict seeing only
the status of previously unseen URLs. Moreover, this requires visiting potentially
dangerous sites. They figure out that using appropriate classifiers, it is possible
to identify most predictive features for automatically classifying malicious or
benign URLs.

In [5], authors use lexical, host and page-content based features for identifying
malicious URLs collected from spam messages in twitter and emails. Choi et al.
in [8], present a machine learning method to detect malicious URLs and identify
attack types such as spamming, phishing, and malware. Their studies include
multiple types of malicious URLs using features from six different areas namely
lexicon, link popularity, web page content, DNS, DNS fluxing and network traffic.
However, their result shows that using lexical features yield lower accuracy for
spam and malware URL dataset.

Authors in [21] use descriptive features of URL to complement lexical fea-
tures. They combine the lexical information and static characteristics of URL
string to classify malicious URLs. Without host and content based analysis, in
this experiment, they were able to deal with two million URLs in five minutes
and their proposed method misses around 9 % of malicious instances.

The effectiveness of machine learning based phishing detection with known
protected websites has been studied by Chu et al. in [10]. Based on only lexical
and domain features authors propose several highly effective features with detec-
tion rate over 91 %. In [22], authors study hidden fraudulent URLs which are
embedded to the trusted URLs and also defacement URLs which are legitimate
pages belonging to trusted but compromised web sites. They provide a dataset
that can be useful for evaluating the performance of a classifier for aforemen-
tioned malicious URLs.

Obfuscation techniques are commonly used by spammers and scammers in
order to obscure (hide and confuse) any malicious URL. It’s often appeared
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in unsolicited emails, ad-related URLs and web-site owner intending to evade
recognition of a linked address. Obfuscated URL parts can help the malicious
URL parts to evade the detection system. In this work, our target was to see the
obfuscation techniques used by Malicious, Phishing and Spam URLs separately.
Gerara et al. in [23] mentioned several URL obfuscation techniques used in mali-
cious URLs. Le et al. in [3] identified four of them that are commonly used in
domain are obfuscating with IP address, another domain, large host names or,
unknown and misspelled. Ma et al. [6] mentioned three prominent obfuscation
types for avoiding detection. They are benign tokens in the URL, free hosting
services used, sites with international TLD.

However, the malicious owner can also use these obfuscation techniques to
evade detection and tempt users to hit. Therefore, Su et al. in [2] proposes to
dissect URLs to several portions and use logistic regression for detection. Apart
from the work of Choi et al. in [8] where authors evaluates the performance of
a classifier for discriminating three types of malicious URLs (Spam, Phishing,
Malware), most of the related works focus on either malicious URLs in gen-
eral or any specific type of URLs (e.g. Phishing). Regarding feature selections,
most of the works depend on various kind of features: lexical, content, obfusca-
tion, DNS etc. In this work, we consider four different types of malicious URLs
(Defacement, Spam, Phishing, Malware) for experiments. By applying only static
lexical features for classifying URLs (to achieve high performance), our malicious
URL detector produces a promising as well as competitive performance to some
existing works.

3 Background

3.1 Lexical Analysis

Lexical features are the textual properties of URL such as length of hostname,
URL length, tokens found in the URL etc. Due to lightweight computation1,
safety2 and high classification accuracy lexical features become one of the most
popular sources of features in machine learning [3].

Features collected from URLs are not dependent on any application like
email, social networking websites, games etc. Since many malicious URLs have
short life span, lexical features remain available even when malicious webpage
are unavailable [10].

In this research, we study five main components of the URLs to be inspected
for analysis: URI, domain, path, argument and file name. Following are the brief
description of all the features considered for analysis.

1 Using web content as features requires downloading and analysis of page contents.
Moreover inspecting millions of URL and its contents per unit of time may create a
bottleneck.

2 Access to malicious webpage may cause risk since such webpages may contain mali-
cious content such as Javascript functions.
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– Entropy Domain and Extension: Malicious websites often insert additional
characters in the URL to make it look like a legitimate. e.g, CITI can be
written as CIT1, by replacing last alphabet I with digit 1. English text has
fairly low entropy i.e., it is predictable. By inserting characters the entropy
changes than usual. For identifying the randomly generated malicious URLs,
alphabet entropy is used.

– CharacterContinuityRate: Character Continuity Rate is used to find the sum
of the longest token length of each character type in the domain, such as
abc567ti = (3 + 3 + 1)/9 = 0.77. Malicious websites use URLs which have
variable number of character types. Character continuity rate determine the
sequence of letter, digit and symbol characters. The sum of longest token
length of a character type is divided by the length of the URL [21].

– Features related with Length Ratio: The length ratio of the parts of URL
is computed to find the abnormal parts [21]. The combination of URL part
consist of argument, path, domain and URL such as argPathRatio (Ratio of
argument and path), argUrlRatio (Ratio of argument and URL), argDomain-
Ratio (Argument divided by domain), domainUrlRatio (Domain divided by
URL), pathUrlRatio (Path divided by URL), PathDomainRatio (Path divided
by Domain).

– Features related to count of Letter, Token and Symbol: The frequency of char-
acters in the URL are calculated in the form of letters, tokens and symbol
[5,10,18]. These characters are categorized and counted from these compo-
nents of URLs:
• Symbol Count Domain: A dictionary of delimiters such as ://.:/?=,;()]+ are

calculated from domain. Phishing URLs e.g. have more dots compared to
benign ones [15,17].

• Domain token count: Tokens are taken from the URL String. The Malicious
URLs use multiple domain tokens. Number of tokens in the domains are
calculated.

• Query Digit Count: Number of digits in the query part of the URL.
• tld: Some phishing URL use multiple top level domain within a domain

name.
– Number Rate of Domain, DirectoryName, FileName, URL, AfterPath: Num-

ber rate calculate the proportion of digits in the URL parts of directory name,
domain, filename, URL itself and part after the path. [21].

– Features related to Length: Length of URL gets longer due to addition of
variables or redirected URL. [11,18]. such as, Length of URL (url Len),
domain (domain Len) and file name (file Name Len), Arguments’ Longest-
WordLength3, Longest Path Token Length [8], Average length of path token
[10] (avgpathtokenlen).

– ldl getArg: In phishing URLs masquerading is done by adding digits in the
letters. For detection of these deceiving URLs, sequence of letter digit letter
in URL and path is calculated [21].

3 URLs which originating from pages that are written in server side scripting lan-
guages, often have arguments [3]. The longest variable value length from arguments
of URL is calculated.



472 M.S.I. Mamun et al.

– spcharUrl: URLs use special characters which are suspicious such as // and
they have higher risk of redirection [11].

Table 1. Feature selection for lexical analysis

Dataset Features

Spam (CfsSub + Best First) Domain token count, tld, ldl getArg, Number of
Dots in URL, delimiter path, Symbol Count
Domain

Phishing (CfsSub + Best First) Domain token count, tld, url Len, domain
length, file Name Len, dpath url Ratio,
Number of Dots in URL, Query Digit Count,
Longest Path Token Length, delimiter
Domain, delimiter path, Symbol Count
Domain, Entropy Domain

Malware (CfsSub + Best First) Domain token count, tld, url Len, arg Doman
Ratio, Number of Dots in URL, Number Rate
Domain, Symbol Count Domain, Entropy
Domain, Entropy Extension

Defacement (CfsSub + Best First) Domain token count, avgpathtokenlen, tld,
ArgUrlRatio, NumberofDotsinURL,
Arguments LongestWordLength, spcharUrl,
delimeter Domain, delimeter path,
NumberRate DirectoryName, SymbolCount
Domain, Entropy Domain

All (Infogain + Ranker) Entropy Domain, argPathRatio, ArgUrlRatio,
ArgDomanRatio, pathurlRatio,
CharacterContinuityRate, NumberRate
FileName, domainUrlRatio, NumberRate
URL, PathDomainRatio, NumberRate
AfterPath, avgpathtokenlen

3.2 Obfuscation

Obfuscation is used as a common method for masking malicious URLs. An
attacker intending to evade static analysis on lexical URL features use obfus-
cation techniques so that malicious URLs become statistically similar to the
benign ones [11]. The obfuscation techniques on URLs is analyzed for the intent
of malicious activity in this research. We analyzed mainly two type of URL
obfuscation techniques used by attackers:

– Type I: Obfuscating the hostname:
• Obfuscating the domain with IP (IP obfus): In this type of attack host

name is obfuscated by the IP address instead of domain name. Use of IP
address as a domain name of the URL alludes the owner is tempting to
access private information of the user [16,18].



Detecting Malicious URLs Using Lexical Analysis 473

• Obfuscating domain with legitimate name (Prefix obfus): In this type of
attack the domain is a prefix with a legitimate domain such as brand name.
The purpose of brand name prefix is to find the URL which use legitimate,
benign domain in their prefix. Therefore, the user might be tempted to
click on the URL through the brand prefix. Legitimate domain name such
as domain name from Alexa is used in variation to make the malicious
URL look like a legitimate one [12]. For example, in the following legiti-
mate URL http://widget.b2b.com/relationship/, b2b is a benign first level
domain name known as a brand name. However, in case a custom domain
name that has name or brand in it, http://detail.b2b.hc360.com/detail/
or http://detail.b2b1.com/detail/, although hc360 or ab2b is not a benign
domain, a brand name b2b is used as a second level domain or a prefix to
distract users.

– Type II: Obfuscating the directory:
• Obfuscation with encoding (Encoding obfus): In this attack type string of

characters are obfuscated by the use of alternate encoding schemes i.e.,
Unicode, Base64, Hexadeimal, Decimal characters [7]. Unicode encoding
allow the characters to be referenced and saved in multiple bytes. UTF-8 is a
common encoding format. It preserves the full ASCII character code range.
The standard character can be encoded in longer escape-code sequence.

• Obfuscating using redirected URLs (RedirectURL obfus): The content
coming between protocol name and the ‘@’ character is ignored which allow
the addition of obfuscated URLs. URLs for redirection are embedded in the
links. These links deviate the user to link which has no link to the actual
page [18]. These redirected URL are attached in malicious links by attackers
[13].

• Obfuscating using hexadecimal form (Hex obfus): Characters of a path is
represented by their corresponding numbers in the hexadecimal form where
numbers are preceded by a “%” symbol to recognize a hexadecimal repre-
sentation of the character. For instance, “%63ur%65” is the hexamdedimal
form of “cure”. It is mainly used to use spaces and special characters in the
URL. However, the same techniques can be used to inject malicious items.

• Authentication type obfuscation (AuthString Obfus): This type of obfus-
cation is used for automatic authentication when login name or password is
required for accessing a web page. But if the site requires no authentication,
the additional authentication text will have no effect e.g. http://www.xyz.
com/index.htm.

4 Experiment

4.1 Dataset

Around 114,400 URLs were collected initially containing benign and malicious
URLs in four categories: Spam, Malware, Phishing and Defacement. Four single-
class datasets by mixing benign and malicious URLs and one multi-class dataset

http://widget.b2b.com/relationship/
http://detail.b2b.hc360.com/detail/
http://detail.b2b1.com/detail/
http://www.xyz.com/index.htm
http://www.xyz.com/index.htm
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Fig. 1. URL classification architecture

by combining all four malicious URLs and benign URLs were generated for
experiment (See Fig. 1).

– Benign URLs: Over 35,300 benign URLs were collected from Alexa top web-
sites. The domains have been passed through Heritrix webcrawler to extract
the URLs. Around half a million unique URLs are crawled initially and then
parsed to remove duplicate and domain only URLs. Later the extracted URLs
have been checked through virustotal to filter the benign URLs.

– Spam URLs: Around 12,000 spam URLs were collected from publicly available
web spam dataset in [24].

– Phishing URLs: Around 10,000 phishing URLs were taken from OpenPhish
website [26] which is a repository of active phishing sites.

– Malware URLs: More than 11,500 URLs related to malware websites were
obtained from DNS-BH [25] which is a project that maintain list of malware
sites.

– Defacement URLs: In [27], authors select 2500 URLs provided by Zone-H [28]
and extend the lists by adding URLs of pages reached by crawling the compro-
mised sites up to the third level. After necessary filtration (e.g. URLs whose
path is empty or equal to index.html, URLs whose domain is an IP address),
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they labelled 114,366 URLs as Defacement. However, for our experiment we
randomly choose 45,457 URLs.

4.2 Features Selection, Test and Validation

The motive of evaluation and search strategy is to find the features which are
significant and contribute most in the analysis. In this paper, we used CFSSub-
setEval and Infogain as feature selection algorithms.

CfsSubsetEval evaluates the worth of a subset of features by considering the
individual predictive ability of each feature along with the degree of redundancy.
Infogain searches the space of feature subsets by greedy hill-climbing strategy
augmented with a backtracking facility. Later a ranker ranks features by their
individual evaluations.

Initially 79 features were selected from components such as URL, domain,
path, file-name and argument. After applying feature selection algorithm on
each dataset, different sets of features have been chosen (See Table 1) for further
experiment.

Classification of data is done through two groups of algorithms. K-Nearest
Neighbours algorithm (KNN) [30], a pattern recognition method used for classifi-
cation by assigning weight to the neighbours according to the their contributions.
Euclidean function was used as a distance function for KNN. Tree based classi-
fiers namely C4.5 [29] and RandomForest [31] used to present results as a tree.
To evaluate the quality of the classifiers, we used two common metrics: Precision
(Positive Predictive value) and Recall (Sensitivity).

Precision(Pr) =
TP

TP + FP
Recall(Rc) =

TP

TP + FN

During training we tuned up several parameters of Random Forest to achieve
better and efficient model with less error. For example, the number of trees to
be generated is set to 80 for Spam, 100 for Malware and Phishing, 150 for
Defacement, 120 for multi-class datasets.

We divided our experiment in testing and validation, therefore, split the
datasets accordingly (80 % for test - 20 % for validation) using pre-processing
function (resample with noReplacement) in Weka.

5 Analysis and Results

As mentioned earlier two set of features have been selected as part of the analysis:
(i) Analyzing lexical features to recognize benign and malicious URLs based on
selected set of features in Table 1, (ii) Analyzing Obfuscation techniques against
different attack types.
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Table 2. Classification results (single-class)

Dataset Algorithm Result
Pr Re

Spam
C4.5 0.98 0.98
KNN 0.98 0.98
RF 0.99 0.99

Phishing
C4.5 0.97 0.97
KNN 0.97 0.97
RF 0.99 0.99

Malware
C4.5 0.98 0.98
KNN 0.98 0.98
RF 0.99 0.99

Defacement
C4.5 0.99 0.99
KNN 0.99 0.99
RF 0.99 0.99

(a) Lexical Features

Dataset Algorithm
Result

Pr Re

Spam
C4.5 0.752 0.388
KNN 0.753 0.388

Phishing
C4.5 0.382 0.844
KNN 0.383 0.844

Malware
C4.5 0.857 0.398
KNN 0.857 0.398

Defacement
C4.5 0.795 0.741
KNN 0.795 0.741

(b) Obfuscation Features

Table 3. Classification results based on lexical features (multi-class)

Dataset Labels C4.5 KNN RF

Pr Rc Pr Rc Pr Rc

Multi class Spam 0.96 0.971 0.96 0.97 0.962 0.986

Phishing 0.92 0.856 0.92 0.85 0.926 0.928

Malware 0.96 0.97 0.96 0.97 0.979 0.983

Defacement 0.93 0.97 0.93 0.97 0.969 0.973

Average 0.94 0.94 0.94 0.94 0.97 0.97

5.1 Lexical Analysis

Table 2a shows the results of lexical analysis on single-class datasets, the accuracy
of the all datasets with selected set of features are higher than 97 %. For example
in Spam and Malware datasets the accuracy were more than 98 % with 6 and 9
features or in the Defacement dataset, accuracy was 99 % with 13 features. The
same analysis has been done in the multi-class dataset which was the combination
of all four different types of malicious URLs with Benign ones. As Table 3 shows,
the average of accuracy in all ML algorithms are more than 95 %.

We observe that tree based classifiers, with Random Forest yields highest
accuracy among the classifiers tested. While efficient in identifying certain type of
URL individually (≈99 %), Random Forest has also outperformed as a multiclass
classifier (≈97 %). Among other classifiers examined, KNN and C4.5 classifiers
have approximately the same performance (≈94 %) for multiclass classifer with
the worst accuracy for phishing (around 80 %). Since Random Forest appears
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Table 4. Soft pediction based on SD (C0= Benign, C1= Dataset class)

Dataset Filters

Yellow Green Orchid Blue Red

(0< SD≤ .1) (.1< SD≤ .2) (.2< SD≤ .3) (.3< SD≤ .4) (SD> .4)

C0 C1 C0 C1 C0 C1 C0 C1 C0 C1

Defacement 847 640 341 247 119 95 50 27 17 21

Phishing 2077 725 810 534 308 295 192 285 72 125

Malware 1793 1496 997 804 349 288 142 111 75 43

Spam 3974 94 124 177 54 218 39 158 2 2

to be effiencient in both binary and multiclass classification, we select Random
Forest classifier for further investigation.

Confidence interval of a prediction known as prediction interval, a well-
defined concept in statistical inference, estimates the prediction interval based
on member decision tree scores. At the time of prediction Random Forest pro-
duces a hard decision based on the maximum votes of the individual trees for a
class to get elected [4]. However, a soft prediction can also be determined from
the individual trees’ voting which provides a confidence score for the prediction.
This confidence score can be used for hard decision once it exceeds a threshold
value. For this experiment, we train a regression-type Random Forest model for
the datasets. For all binary classifiers (Spam, Phishing, Malware, Defacement),
Benign is labelled as 0 and any respected class (e.g. Spam) is labelled as 1.

The scatter plot of experiment (“Actual class” versus “Predicted class”) are
given in the Fig. 2 below. Figure 2 depicts the data points overlaid with error
bars. The error bars corresponding to a soft prediction is represented by a Stan-
dard Deviation (SD) of uncertainty for a certain class. Due to the large number
of data points and to achieve a holistic view of data, we filter the result in four
steps:

– Yellow-filter contains data points whose SD is greater than 0 but less than or
equal to .1

– green-filter contains data points whose SD is greater than .1 but less than or
equal to .2

– Orchid-filter subset contains data points whose SD is greater than .2 but less
than or equal to .3

– Blue-filter contains data points whose SD is greater than .3 but less than or
equal to .4

– Red-filter contains data points whose SD is greater than .4

Results of four binary classifiers are given in Table 4. Lifted SD indicates
considerable fluctuating among member decision tree scores. Higher lifting can
be realized with prospective statistical outliers.
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(a) Spam (b) Malware

(c) Defacement (d) Phishing

Fig. 2. Predection interval based on decision tree score (Color figure online)

Most of the URLs are grouped into the closest range of its respective class
(0 or 1). For instance, in case of Defacement dataset a total of 13,308 URLs
out of 15,712 observed in extremity of the range (aligned with average) while
2404 URLs with any SD and in the worst case Phishing dataset shows a total
of 5423 URLs out of 15,368 observed with any SD. In addition there is no URL
data point with (SD > .5) and the majority of URLs are overlaid with yellow
and Green error bars. It is interesting to note that the highest SD (Red filter)
corresponding to overestimating/underestimating errors, has very few of either
kind of URL, in the range of 2 (Spam) and 75 (Malware) for Benign URL and 2
(Spam) to 125 (Phishing) for any other URLs. This ensures that soft prediction
is not uniformly distributed. Some range of soft prediction values where the SD
is very small for example Yellow, Green, and Orchid filters must be used for an
infallible prediction. Considering these facts, we can answer how much risky a
URL is? If the soft prediction is closer to 1 with a small threshold value of SD
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(a) Spam (b) Malware

(c) Phishing (d) Defacement

(e) All

Fig. 3. Random forest variable importance

score (e.g. up to Orchid filter), the URL is risky. In the opposite way, the closer
the URL is to 0 with a small SD score, the more secure it is.

Random forest computes various measure of variable importance that can
be very informative to understand how much each variable contributing to the
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accuracy of the model. Figure 3 exhibits two different Variable importance graph
for all four binary-class and a multi-class: MeanDecreaseAccuracy that is the
mean decrease in accuracy and MeanDecreaseGini that is the Gini index or
Mean decrease in Node Impurity.

5.2 Obfuscation

As mentioned in Sect. 3.2, we study six obfuscation types (Brand name, Auth-
String, IP, RedirectURL, Encoding, Hex) for analysis. However, no significant
output has been noticed for obfuscation type AuthString and Hex for any of our
datasets.

Obfuscation detection rate found on all four dataset is shown in the Table 5.
As the result shows, Spam URLs contains the most number of Prefix obfus
(brand name) obfuscation (38 %), that refers using of legitimate domains in
the spam URLs to trick the user for visiting the webpage. The phishing URLs
have some amount of brand name (13 %) and redirect obfuscation (5 %). The
malware URLs have a large number of encoding obfuscation (40 %), which shows
that malware URLs use a number of encoding techniques to evade from static
detection. A few percentage of URLs shows combination of multiple encoding
techniques applied in a URL.

Table 5. Obfuscation detection rate in the malicious URL

Obfuscation technique Dataset

Defacement Spam Phishing Malware

Brand name 0.71 % 38% 13.33% 1.58 %

Redirect 0.64 % 5.20 % 4.61 % 0.08 %

Encoding 5.57 % 4.48 % 2.04 % 39.01%

IP 0.73 % - 1.54% 0.29 %

Using AttributeSelection with InfoGainAttributeEval as attribute evaluator
and Ranker as search method, we found three features Encoding, Brand name,
RedirectURL to be useful. We try to use machine learning classifiers on the
obfuscation features with no promising result (See Table 5). For instance, C4.5
can distinguish phishing URL with 84 % TP rate (the best result in our exper-
iment). However, the Precision (40 %) and ROC area (.65) value for the same
classifier is too low to accept the result.

5.3 Comparison

Our research result is very close to that of the work done by Choi et al. in [8].
Although a major part of our experiment datasets (benign, phishing, malware,
a portion of spam) are identical, we have extended our dataset with Defacement
dataset. Regarding lexical classification outcomes of Choi et al. (Spam 73 %
Phishing 91.6 % and Malware 70.3 %), authors did not mention precisely whether
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their result stems from applying multi-class or single-class classifier. Note that
using multi-class classification with additional dataset must degrade the overall
performance and accuracy. However, our Random Forest classifier outperforms
their lexical feature results in either case of individual and aggregated (multi-
class) classifiers yielding around 99 % and 97 % accuracy respectively even with
an addition of Defacement URL dataset.

6 Conclusion

This paper explored an approach for classifying different attack types of URL
automatically as benign, defacement, spam, phishing and malware through
supervised learning relying on lexical features. This technique is an addon for
the blacklist techniques, in which new malicious URLs cannot be identified and
efficient for analyzing large number of URLs. Selected feature sets applied on
supervised classification on a ground truth dataset yields a classification accuracy
of 97 % with a low false positive rate. Our prediction interval filtering experi-
ment can also be helpful to improve classifier accuracy. In addition, it can be
extended to calculate risk rating of a malicious URL after parameter adjustment
and learning with huge training data. Despite random forest classification accu-
racy is able to identify approx. 97 % of the malicious or benign URL, by using
proper SD filter we could reach up to around 99 % accuracy. As future work we
are planning to develop a real time tool for computing SD filter dynamically and
detection of malicious URLs.
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Abstract. Microblogging sites, such as Sina Weibo and Twitter, have gained
significantly in popularity and become an important source for real-time infor‐
mation dissemination. Inevitably, these services are also used to spread false
rumors and misinformation, usually with the unintentional collaboration from
innocent users. Previous studies show that microblog information credibility can
be assessed automatically based on the features extracted from message contents
and users. In this paper, we address this problem from a new perspective by
exploring the human input in the propagation process of popular microblog posts.
Specifically, we consider that the users are the gatekeepers of their own media
portal on microblogging sites, as they decide which information is filtered for
dissemination to their followers. We find that truthful posts and false rumors
exhibit distinguishable patterns in terms of which gatekeepers forward them and
what the gatekeepers comment on them. Based on this finding, we propose to
assess the information credibility of popular microblog posts with Hidden Markov
Models (HMMs) of gatekeeping behavior. The proposed approach is evaluated
using a real life data set that consists of over ten thousand popular posts collected
from Sina Weibo.

Keywords: Online social networks · Microblogging · Weibo · Information
credibility · HMM

1 Introduction

Microblogging sites like Sina Weibo [1] and Twitter [2, 3] have gained significantly
in popularity in recent years. With the large active user base and the natural, effort‐
less and instantaneous way to share information in the form of microblog, these sites
become an important source for real-time information sharing and news dissemina‐
tion. Inevitably, false rumors and misinformation also find their way to attract public
interest and spread widely through these sites. A series of incidents show that such
malicious messages can pose significant threats of damages far beyond the social
media platforms. For example, a hoax Tweet posted by the compromised Twitter
account of Associated Press claimed that two explosions in the White House injured
the US President [4]. The message not only caused a nationwide panic but also rocked
the financial market with a $200 billion lost. Moreover, a Twitter spam campaign that
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spread DDoS attack malware in the guise of leaked nude photos of Hollywood celeb‐
rities caused a nationwide Internet meltdown in New Zealand [5].

In order to mitigate the threats of misinformation and false rumors, a number of prior
studies have addressed the problem of information credibility assessment on micro‐
blogging sites. In general, the state of the art approaches can be divided into two cate‐
gories, i.e., assessment with external information sources and assessment using only the
signals on the social media platform itself. The approaches in the first category resort to
either the verified content from external news sources or the help of active human
experts. In contrast, the approaches in the second category extract a range of features
from message content, user, topic, and propagation attributes, and then build classifiers
using machine learning (ML) algorithms. In this work, we revisit the problem from a
new perspective, in which we take advantage of the human input that is already available
on the platform. The idea is to infer the information credibility by mining the opinions
of interested and relevant users who participate in the propagation of popular microblog
posts.

In this paper, we introduce the concept of gatekeepers on microblogging platforms.
The rationale is that the users are not only information consumers but also information
gatekeepers. They decide which message is filtered for dissemination to their followers
and they can append their personal comments. Moreover, these interactions will affect
the further propagation of the message. Being a gatekeeper here does not mean that the
user has the authority or resources to confirm whether the information is truthful or not.
Instead, the gatekeepers just make their own judgement based on their knowledge and
background, and their motivation can be either personal interest or other purposes. In
addition, they may have different beliefs about the message they are gatekeeping, such
that they may show positive, neutral or negative attitude towards it.

The propagation process of any particular microblog can be expressed as a sequence
of gatekeeping output symbols. That is, every time the post is forwarded or commented,
a new symbol is generated and appended to the output sequence. The symbol is derived
by analyzing the gatekeeper’s confidence level and attitude. Specifically, the confidence
level is estimated based on some measurable attributes that reflect the credibility of the
users and the chance of the users knowing the event or topic discussed in the message.
The attitude of gatekeeper is inferred by performing sentiment analysis on the appended
comments. We find that the gatekeeping output sequences of truthful information and
false information exhibits different patterns. Therefore, we propose a microblog infor‐
mation credibility assessment approach based on gatekeeping behavior modelling. The
approach consists of two stages. The first stage trains a Hidden Markov Model (HMM)
from a set of truthful microblog posts. In the next stage, the model is used for real-time
misinformation detection.

We conduct experiments on a data set collected from Sina Weibo. The experimental
results suggest that the proposed approach obtains better accuracy for microblog infor‐
mation credibility assessment in comparison with several existing methods.

The rest of the paper is organized as follows. Section 2 presents a brief review of
the microblog information credibility assessment methods proposed in recent studies.
In Sect. 3, the gatekeeping behavior analysis and modeling method is described, and
a novel misinformation detection scheme is proposed. Section 4 discusses the data
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set and evaluation methods, along with experimental results and analysis. Finally,
we conclude the paper in Sect. 5.

2 Related Work

The problem of information credibility on microblogging platforms has attracted a lot
of research interests in recent years. This section presents a brief review of these works.

Al-Khalifa et al. [6] present a prototype system that measures the credibility levels
of news content published on Twitter according to the similarity with verified content
from external news sources, such as Google News. Suzuki et al. [7] propose a similar
approach to assess the credibility of messages in social media based on the content
similarity with credible Wikipedia [7] articles. Wikipedia itself is a user generated
content website, so the authors develop a method to assess the credibility of Wikipedia
articles by using the edit history. Liang et al. [9] propose a microblog misinformation
identification framework that involves active human participation. Specifically, they
maintain an index of user expertise based on the user generated content. When a suspect
rumor message needs to be assessed, help requests are sent to those users whose expertise
matches with the given message. In general, this type of methods rely on the availability
of similar content from external sources or appropriate experts, which makes them not
suitable for assessing real-time data.

Several recent studies have shown that the information credibility on microblogging
sites can be assessed by using the signals on the platform itself (without external source
of information). Castillo et al. [10] train supervised classifiers to automatically predict
whether a tweet on Twitter is newsworthy and credible. In particular, they introduce
four types of features, including message-based, user-based, topic-based, and propaga‐
tion-based attributes. The first three types of features are extracted from the content of
tweets or the profile of authors. Propagation-based characteristics consist of the number
of initial tweets of the topic and several measurements of the retweet tree, such as the
total size, maximum level size, maximum and average depth, and maximum and average
degree. Their experimental results show that the classifiers can achieve an accuracy of
89 % for deciding if a tweet is newsworthy, along with an accuracy of 86 % for deciding
if the news is credible.

Gupta et al. [11] investigate the credibility of Twitter events, which are collec‐
tions of tweets and represented by Twitter Trend words. They propose an automatic
approach to establish event credibility by analyzing not only the attributes of
different entities (i.e., user, tweet and event), but also the inter-entity credibility rela‐
tionships. Specifically, the features proposed in [9] are adopted, along with a few
novel ones, to train a SVM classifier, and then the predictions given by the SVM
classifier are used to initialize the credibility of different nodes in a graph of tweets,
users and events. PageRank-like credibility propagation and event graph optimiza‐
tion methods are used to obtain the final assessment results. The authors report an
accuracy of 86 % for the proposed method, which outperforms the classifier approach
(72 %) on their data sets.
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Xia et al. [12] study the credibility of emergency events circulating on Twitter. They
first propose a sequential K-Means algorithm to detect a sudden burst of related tweets,
which is considered as an indicator of emergency situation. When an emergency situa‐
tion is detected, they use Bayesian Network-based classifier to predict if the tweets
related to the situation is credible or not. Four types of features, including author-based,
content-based, topic-based, and diffusion-based, are used for the classification.

Yang et al. [13] present one of the earliest studies on information credibility on Sina
Weibo, i.e., the leading microblogging service in China. The authors highlight that the
difference in language and in the types of trending topics could make some useful
features on Twitter not applicable to Weibo. In this regard, they select a set of content-
based, account-based, and propagation-based features that are common on both plat‐
forms, and they also introduce the unique features available on Weibo, such as the client
program and event location. Their experimental result suggests that the new features
can increase the accuracy of the SVM classifiers.

In addition, a series of studies [14–17] address the detection of Twitter spam partic‐
ularly. The approaches proposed in these works share common concepts and mecha‐
nisms with information credibility assessment, but they are not directly applicable.

3 Gatekeeping Behavior Analysis

On microblogging sites like Weibo and Twitter, users are not only information
consumers but also information gatekeepers. In other words, the users act (e.g., retweet)
and response (e.g., reply) so as to express their opinions, feelings, or simply interests on
the posts they happen to read on the platform. Their interactions could have effects on
further propagation of the message. It can be observed that the gatekeeping behavior
sequences of truthful microblogging posts and false rumors exhibit different patterns.
In this section, we present a gatekeeping behavior model and described a novel method
for detecting misinformation.

3.1 Gatekeeping on Weibo

We define the gatekeepers of a Weibo message as the group of users who are actively
involved in the propagation of the particular message. Specifically, the users on Weibo
can perform gatekeeping in the following ways:

• Forward: users sharing the message with their followers. On Twitter, this feature is
called “retweet”. In this case, the original message is reposted and no new information
is added.

• Forward and Comment: users adding their own comments as they forward the
message. On Twitter, this feature is called “retweet with comment”. It allows the orig‐
inal message to be embedded within a new message, so that the followers of the user
will see the original message alongside the comments.

• Comment: users posting a comment upon the message. Unlike the “reply” feature
implemented on Twitter, Sina Weibo supports the feature of commenting directly on
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a message. Therefore, each Weibo message comes with a label that indicates the
number of comments towards the message. By clicking this label, the followers can
open an expanded view, in which the comments are displayed after the original
message.

Typically, a popular message on Weibo will have a large number of gatekeepers, as
it is forwarded and commented by the crowd in a short period of time. The gatekeepers
are merely the regular users who are interested in the message such that they decide to
repost it in their circle or post some comments. Therefore, being a gatekeeper does not
necessarily mean that the user has put in the effort to confirm whether the information
is true or false. Nevertheless, it is inevitable that the gatekeepers have their own judge‐
ment based on their knowledge and background, and their opinion will somehow reflect
in their action and comment.

3.2 Gatekeeping Behavior Analysis

In order to take advantage of the judgements and opinions expressed by the gatekeepers,
we propose to model their behavior from two perspectives, i.e., who they are and what
they think.

Firstly, we describe who they are by defining the confidence of gatekeepers, which
reflects their ability of determining the truthfulness of the message. In specific, the
confidence level is estimated based on a number of measurable attributes of gatekeepers.
On one hand, we include some features that reflect the credibility of the user, such as
the number of followers, the number of followings, the number of authored posts, the
number of forwarded posts, registration age, and verification status. On the other hand,
we include some features that reflect the relationship between the user and the message,
so that we can infer whether the user has a better chance to know the event or the topic
discussed in the message. Such features are the number of user keywords (including the
keywords and hashtags in the user’s profile and previous posts) matched in the message
and the distance of geolocation between the user and the message whenever available.
Based on the features, we can classify the gatekeepers into K groups (for example, we
consider K = 5 in this work), where each group represents a different confidence level.

Secondly, we estimate what they think by analyzing the actions and comments (when
available) of the gatekeepers. Specifically, we consider three types of attitudes (that is,
positive, neutral and negative), which can be inferred from the appended comments by
performing sentiment analysis. When the gatekeepers forward the message without
appending any words, it is difficult to derive their actual thoughts. In this case, we adopt
the assumption that forwarding without comment indicates a neutral opinion.

Based on the above definitions, the propagation process of a popular microblog post
can be described as a sequence of observations, i.e., O1, O2,… , Ot,…, in which Ot is the
observation on the tth time that this message gets forwarded or commented (see Fig. 1).
Moreover, the value of Ot is determined by the confidence level and the attitude of the
tth gatekeeper:
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Ot =

⎧
⎪
⎨
⎪
⎩

c if attitude is positive

c + K if attitude is neutral,
c + 2K if attitude is negative

where c is the confidence level of tth gatekeeper, i.e., c ∈ {1, 2,… , K}.

Fig. 1. Gatekeeper behavior sequence

As shown in Fig. 1, we consider that the gatekeeping behavior output is driven by
the Hidden Markov Model (HMM) [18]. That is, there are a number of underlying states
such that the gatekeeper in each step can be in any of these states and its behavior output
is determined by the current state (which is unobservable). The rationale of considering
a hidden layer of different states is twofold. Firstly, the gatekeepers can have different
purposes (e.g., benign or malicious) when they forward or comment a post. Secondly,
a gatekeeper’s confidence level and attitude can change over time, especially when they
acquire more relevant information.

3.3 Hidden Markov Model

Consider the microblog propagation process that can be described in any step as being
in one of a set of N distinct underlying states, S1, S2,… , SN, and producing one of a set
of M distinct observable output symbols, v1, v2,… , vM. We denote the steps as
t = 1, 2,…, the state in step t as qt, and the observable symbol in step t as Ot. The
underlying state is hidden because it is not observable.

The propagation begins in a random state that is governed by the initial state distri‐
bution, 𝜋 =

{
𝜋i

}
, where

𝜋i = P
[
q1 = Si

]
, 1 ≤ i ≤ N.

In each following step, the process undergoes a transition of state (shift back to the
same state is possible) according to a set of state transition probabilities, A =

{
aij

}
, in

the form of

aij = P
[
qt+1 = Sj

|
|qt = Si

]
, 1 ≤ i, j ≤ N,
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with the coefficients aij obeying the following standard stochastic constraints aij ≥ 0 and
N∑

j=1
aij = 1. That is, the process of state transition is a Markov chain, where the probability

distribution of the next state qt+1 depends only on the current state qt.
Besides, the observation Ot in step t is governed by a probabilistic function of the

state, B =
{

bi(k)
}
, where

bi(k) = P
[
Ot = vk

|
|qt = Si

]
, 1 ≤ i ≤ N, 1 ≤ k ≤ M.

In short, with N and M specified, the model can be described by the following
parameter set:

𝜆 = {A, B,𝜋}.

Given an observation sequence O = O1,… , OT for training, the forward-backward
algorithm [18] can be used to derive 𝜆 such that P(O|𝜆) is locally maximized.

Firstly, we define the forward variable as 𝛼t(i) = P
(
O1, O2,… , Ot, qt = Si|𝜆

)
 and the

backward variable as 𝛽t(i) = P
(
Ot+1, Ot+2,… , OT |qt = Si, 𝜆

)
, which can be derived

recursively as
{

𝛼1(i) = 𝜋ibi

(
O1

)

𝛼t+1(j) =
[∑N

i=1 𝛼t(i)aij

]
bj

(
Ot+1

)

and
{

𝛽T (i) = 1
𝛽t(i) =

∑N

j=1 aijbj

(
Ot+1

)
𝛽t+1(j)

.

Secondly, given 𝜆 and O, we define the probability of being in state Si at step t and
state Sj at the next step as 𝜉t(i, j) = P

(
qt = Si, qt+1 = Sj|O, 𝜆

)
, and the probability of being

in state Si at step t as 𝛾t(i) =
N∑

j=1
𝜉t(i, j). Therefore, we have:

𝜉t(i, j) =
𝛼t(i)aijbj

(
Ot+1

)
𝛽t+1(j)

P(O|𝜆)

and

𝛾t(i) =
𝛼t(i)𝛽t(i)

P(O|𝜆)
=

𝛼t(i)𝛽t(i)
∑N

i=1 𝛼t(i)𝛽t(i)
.

Based on the above definitions, the maximum likelihood estimate of 𝜆 is as follows:
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�̄�i = 𝛾1(i),

āij =
∑T−1

t−1
𝜉t(i, j)∕

∑N

j=1
𝛾t(i),

b̄j(k) =
∑T

t=1
s,tOt=vk

𝛾t(j)∕
∑T

t=1
𝛾t(j).

3.4 Misinformation Detection Using HMM

The proposed method for microblog misinformation detection involves two stages. The
first stage is for model training, which takes as input a training data set that consists of
truthful microblog posts. An HMM is derived using the algorithm discussed in the last
section. The second stage is for real-time detection, where the popular microblog posts
are monitored constantly. Every time a post is forwarded or commented, the observation
sequence Otest will be updated and tested against the trained HMM 𝜆. Specifically, we
calculate the log likelihood of P

(
Otest|𝜆

)
, i.e., Q = log P

(
Otest|𝜆

)
. Recall the definition

of the forward variable, Q can be calculated as follows:

Q = log
∑N

i=1
𝛼T (i).

Finally, if Q is smaller than a predefined threshold, the post will be classified as false
information and it will be removed from the monitoring targets. Otherwise, when Q is
larger than the threshold, the post is considered as truthful at the moment, and the detec‐
tion process will be repeated whenever it is forwarded or commented again.

4 Evaluation

4.1 Data Set

In this work, we focus on analyzing popular posts on Sina Weibo (referred to as Weibo
in the following for simplicity). The popular posts are defined in terms of being
forwarded (i.e., retweeted) by at least 1000 different users.

Due to the law and regulation in China, Weibo comes with official (manual) rumor
busting services, which are deeply integrated into the platform. It allows users to raise
suspect rumor reports, which will be inspected by the rumor busting team. If a post is
confirmed to be misinformation, warning alerts will be appended to the post. Figure 2
shows an example of a confirmed rumor that has already been forwarded over 10 thou‐
sand times. The post gives a photo of two women and claims that they are suspected
baby traffickers. In addition, Weibo maintains an official Rumor Refuter account that
posts some confirmed rumors that are widely spread. This allows us to obtain a data set
with accurate ground truth. Specifically, we have collected 1360 popular confirmed
rumors with the complete traces of the gatekeepers and their comments.
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Fig. 2. An example of widely spread false rumor

Weibo also maintains a real-time trending list of the most popular posts, from which
we can collect the samples of true information. Due to the existence of the rumor busting
mechanism, most of the trending posts are truthful. Nonetheless, we have carried out
extra procedures to establish the ground truth. In specific, we recruit 9 student volunteers
to assess the collected trending posts. They are divided into 3 groups, and each group is
assigned with a different set of posts. The volunteers are asked to choose from three
options (that is, “True”, “False”, and “Not Sure”). Only the posts that are considered as
true by the whole group are included in the data set. In this way, we have obtained 12210
popular truthful posts with complete traces. The data set is summarized in Table 1. The
dates of these collected posts are between May 2012 and June 2015.

Table 1. Data set

Weibo posts Total Training set Testing set
True information 12210 8000 4210
False information      1360 – 1360

We have derived the statistics of several typical user features from the data set in
terms of the author of true/false information and the gatekeeper of true/false information.
In Fig. 3, the proportion of verified and non-verified account in each category is showed.
The difference regarding authors is significant. That is, around 70 % of the valid posts
are published by verified users, in contrast to about 12 % of those rumor posts. The
difference for gatekeepers is minor in this regard. In specific, verified users constitute
11 % and 17 % of the gatekeepers of false rumors and valid posts respectively. In addi‐
tion, statistics on number of followers, number of followings, registration age, and
number of posts/reposts are given in Figs. 4, 5, 6 and 7. We can see that each distribution
varies among these four categories.
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Fig. 3. Statistics on account verification Fig. 4. Statistics on number of followers

Fig. 5. Statistics on registration age Fig. 6. Statistics on number of followers

Fig. 7. Statistics on number of posts/reposts

4.2 Gatekeeper Confidence Estimation

From the training data set, we first extract all of the predefined features of gatekeepers
and perform K-Means clustering on the data. In particular, the gatekeepers are grouped
into five clusters (i.e., K = 5). After that, a thousand gatekeepers are randomly selected
from each cluster to construct the gatekeeper confidence estimation training set. Based
on this, we can train a supervised classifier to predict the confidence level of any given
gatekeepers in the real time. For evaluation purpose, we compare a number of popular
supervised learning algorithms, including Random Forest (RF), C4.5 decision tree,
Naïve Bayes (NB), Support Vector Machine (SVM), and K Nearest Neighbor (KNN).

Figure 8 presents the accuracy results of different learning algorithms, which are
obtained by using 10-cross validation. We can see SVM achieves the best accuracy rate
at 97 %, followed by Random Forest and C4.5 at 96 % and 95 % respectively. In contrast,
the accuracy of Naïve Bayes and KNN is relatively low at around 90 %.
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Fig. 8. Accuracy of gatekeeper confidence analysis

Figure 9 compares different algorithms in terms of training time and testing time in
seconds. Note that the result is obtained on a computer with Intel i7 960 CPU and 8 GB
RAM. Firstly, C4.5 and Naïve Bayes finish training within 0.2 s, while Random Forest
and SVM take around 3 s. Besides, KNN does not require any training. Secondly,
Random Forest and C4.5 are the fastest in testing, both finishing within 0.1 s. KNN takes
over 5 s, while Naïve Bayes and SVM use around 2 s.

Fig. 9. Runtime performance of gatekeeper confidence analysis

In summary, Random Forest algorithm is the best option for gatekeeper confidence
estimation, as it offers good classification accuracy and fastest classification speed.

4.3 Sentiment Analysis

In order to infer the attitude of gatekeepers from their comments written in Chinese, we
modify the sentiment analysis method proposed in [19]. In particular, we train Random
Forest models that classify any given Chinese text into three classes, that is, positive,
neutral, and negative. For the purpose of evaluation, we construct a data set by manually
labeling 3,000 random comments for each class from our Weibo data.

The accuracy result obtained from a 10-cross validation is presented in Fig. 10. In
particular, RF represents the Random Forest classifier we use in our work, and SVM
stands for the original classifier used in [19]. We can see that the Random Forest model
achieves an accuracy rate of 66 % while SVM model yields only 59 % accuracy.
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Fig. 10. Accuracy of sentiment analysis

In addition, Fig. 11 illustrates the training time and testing time results in terms of
seconds for Random Forest and SVM classifiers. In specific, Random Forest takes less
than 2 s to train and finishes classifying the testing data in less than 0.1 s. In contrast,
the SVM classifier takes 2.9 s to train and 1.5 s to classify the testing data.

Fig. 11. Runtime performance of sentiment analysis

In short, the proposed sentiment analysis method based on Random Forest classifier
outperforms the SVM-based method in terms of both prediction accuracy and runtime
performance. Therefore, it is more suitable for opinion mining in real time.

4.4 Misinformation Detection

In this section, we evaluate the effectiveness of the proposed approach for information
credibility assessment on microblog sites. As showed in Table 1, we randomly selected
8000 posts out of the 12210 truthful Weibo posts to train the HMM. The rest 4210 posts
with true information and 1360 posts with false information are used for testing. Based
on the testing data, we can measure the true positives and false positives as well as the
precision and recall rates.

Figure 12 presents the ROC (Receiver Operating Characteristic) curve of the resul‐
tant HMM. For example, when the threshold is set as –4.76, the false positive rate is 6 %
and the true positive rate is around 80 %. In general, the true positive rate can be raised
to above 99.9 % at the cost of higher false positive rate at around 14 %.
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Fig. 12. ROC Curve of the HMM

Figure 13 shows the precision and recall results of the proposed HMM approach, in
comparison with three existing methods, including C4.5 [10], Bayesian Network [12],
and SVM [13]. The results indicate that HMM achieves the best precision and recall at
92 % and 90 % respectively, followed by C4.5 that yields 85 % precision and 84 % recall.
The precision and recall for Bayesian Network is 80 % and 81 % respectively, and that
for SVM is 73 % and 72 % respectively.

Fig. 13. Comparison with existing approaches

In summary, the experiment results obtained from real world data indicate that the
proposed approach is more effective in assessing information credibility for microblog sites.

5 Conclusion

This paper investigates the problem of information credibility assessment in micro‐
blogging sites. We consider the users who are actively involved in the propagation
process of popular microblog messages to be gatekeepers. Based on the concept, we
propose to analyze the gatekeeping behavior from the perspectives of ‘who they are’
and ‘what they think’. Accordingly, we train HMMs using the gatekeeping output
sequences of truthful microblogs. The experimental results obtained based on Sina
Weibo data show that the model can detect misinformation more accurately than existing
approaches.
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Abstract. Pattern mining is a branch of data mining used to discover
hidden patterns or correlations among data. We use rare sequential pat-
tern mining to find anomalies in critical infrastructure control networks
such as supervisory control and data acquisition (SCADA) networks. As
anomalous events occur rarely in a system and SCADA systems’ topol-
ogy and actions do not change often, we argue that some anomalies can
be detected using rare sequential pattern mining. This anomaly detec-
tion would be useful for intrusion detection or erroneous behaviour of a
system. Although research into rare itemsets mining previously exists,
neither research into rare sequential pattern mining nor its applicability
to SCADA system anomaly detection has previously been completed.
Moreover, since there is no consideration to events order, the applicabil-
ity to intrusion detection in SCADA is minimal. By ensuring the events’
order is maintained, in this paper, we propose a novel Rare Sequential
Pattern Mining (RSPM) technique which is a useful anomaly detection
system for SCADA. We compared our algorithm with a rare itemset
mining algorithm and found anomalous events in SCADA logs.

Keywords: Frequent pattern · Rare pattern · SCADA · Generator
pattern

1 Introduction

Anomaly detection is one step of several safeguarding measures applied in critical
infrastructure (CI) control networks, such as supervisory control and data acqui-
sition (SCADA). The SCADA system is used to monitor and control the CIs from
a remote location. SCADA systems are interlinked with each other, so attacks
on SCADA can cause devastating impacts to other dependent infrastructures,
environments and even to human lives [1]. Many SCADA systems use conven-
tional IT technology as a backbone to communicate with field devices, so they
are prone to be attacked using standard IT network vulnerabilities. Anomaly
detection for SCADA systems is important and challenging because of the con-
stant changes in attack patterns. Therefore, it is almost impossible to keep the
system protected from increasingly diversified attacks [2].

SCADA are distinguished from traditional IT networks because the normal or
regular behaviour of SCADA systems can be predicted using frequent sequential
c© Springer International Publishing AG 2016
J. Chen et al. (Eds.): NSS 2016, LNCS 9955, pp. 499–506, 2016.
DOI: 10.1007/978-3-319-46298-1 32
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pattern or regular system behaviour. However, rare pattern or irregular behavior
of this system which deviates from normal behaviour could be considered as
anomalous events. Therefore, in this paper, we assume that rare or infrequent
sequence of actions can be considered as an anomalous event, and if analyzed we
can find the cause could be either cyber-attacks, system failures, or later inclusion
of a benign or novel event. In this paper, we propose a novel Rare Sequential
Pattern Mining (RSPM) method for anomaly detection from SCADA logs.

2 Related Work

There has been research in finding anomalies in SCADA systems from diverse
perspectives. Some works are at the communication protocol level [3]; however,
only a single work uses SCADA logs where Hadžiosmanovič et al. [4] used itemset
mining for threat identification. Manganaris et al. [5] show that the absence of
frequent events or set of events can be considered as an anomaly. Clifton and
Gengo [6] applied a data mining technique to identify the normal behavior of
a system based on the frequent occurrence of an alarm event and later filtered
them out from suspicious events lists. Barbara et al. [7] defined users normal
behavior using data mining association rules from network traffic data to train
a model. Later, in their model they looked for any deviation in association rules
and considered as an abnormal or anomalous behavior of the system and users.

So, there have been some works in finding rare or infrequent itemset mining.
However, these works can not be used to find anomalies in SCADA systems
as they do not preserve itemsets’ order [4,8]. To the best of our knowledge,
until now there has been no work in rare sequential pattern mining for anomaly
detection. We are motivated by the work of Szathmary et al. [8] where the
authors used minimal frequent itemset generators to find rare patterns. However,
their method cannot find correlation among events. We apply a similar idea,
but instead of itemsets we use a sequence which preserves the events’ order of
occurence that results in correlation among the events. Therefore, in this paper,
we use rare sequential pattern mining (RSPM) which is a branch of sequential
pattern mining first introduced by Agrawal and Srikant [9].

3 Proposed Method

To define our problem, we introduce some related theories from [10] which are
applied in our RSPM algorithm, and in other sections of this paper.

Definition 1 (Sequence): Let I = {i1, i2, ..., il} be a set of all items. An item-
set Ix = {i1, i2, ..., im} ⊆ I is a nonempty and unordered set of distinct items.
A sequence s is an ordered list of itemsets or events denoted as 〈I1, I2, I3, ...,
In〉 such that Ik ⊆ I (1 ≤ k ≤ n).
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Definition 2 (Sequential Database SDB): A sequential database SDB is a set
of sequences, i.e., SDB = {s1, s2, s3, ..., sp}, where sj is a sequence, 1 ≤ j≤p.
For example, Table 1 shown below is an example of a sequential database SDB
containing four sequences. The first sequence SID1 is composed of 5 itemsets.
The first itemset is {1} which is followed by itemset {1, 2, 3}. For application
domains, the items in one itemset are often considered occur at the same time.

Definition 3 (Sequence containment): A sequence Sa = 〈A1, A2, ..., An〉 is
said to be contained in a sequence Sb = 〈B1, B2, ..., Bm〉 if and only if there
exist integers 1 ≤ i1 ≤ i2 ≤ ... ≤ in ≤ m, such that, A1 ⊆ Bi1, A2 ⊆ Bi2 ,
..., An ⊆ Bin and this is denoted as Sa � Sb. In this case Sa is considered as a
sub-pattern of Sb and Sb is also said to be super-pattern of Sa.

For example, in Table 1 sequence 〈{5}, {1, 6}, {2}〉 is contained in sequence
SID4.

Definition 4 (Support): The support of a sequential pattern Sa in a sequential
database SDB is determined by the number of sequences S ∈ SDB, such that, Sa

� S and it is denoted by supSDB(Sa). For example, the pattern 〈{1, 2}, {6}〉 is
found in 2 sequences in Table 1 and hence the support is 2.

Definition 5 (Frequent Sequential Pattern): Let minsup be a user-defined
threshold and SDB is a sequential database. A sequence S (also called a sequential
pattern) is considered frequent if and only if supSDB (S) ≥ minsup.

Definition 6 (Sequential Generator): A sequential pattern Sa is said to be a
generator if there is no other sequential pattern Sb such that Sb � Sa and their
supports are equal. For example, in the sequence database SDB given in Table 1
both 〈{5}, {2}〉 and 〈{6}, {3}〉 are Generator Sequential Patterns.

Table 1. A sequential database SDB

Sequence ID Sequences

SID1 〈{1}, {1, 2, 3}, {1, 3}, {4}, {3, 6}〉
SID2 〈{1, 4}, {3}, {2, 3}, {1, 5}〉
SID3 〈{5, 6}, {1, 2}, {4, 6}, {3}, {2}〉
SID4 〈{5}, {7}, {1 6}, {3}, {2}, {3}〉

3.1 Description of RSPM Algorithm

In rare sequential pattern mining, the sequences that fail to meet the minsup are
known as rare sequences. For example, if the user defined minsup is 2 then the
sequential patterns 〈{7}, {1}〉 and 〈{1}, {5}〉 are found to be rare since they fall
below the minsup. The basic idea is to form a new sequential pattern by combin-
ing two minimal generators and the infrequent combinations are considered rare
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patterns. We are motivated by the work presented in [8] that finds rare itemsets
based on minimal generators. However, we propose to find rare sequential pat-
terns based on sequential generators because they are the smallest or minimal
patterns of an equivalent class. Usually, shorter patterns are frequent, while by
nature, longer patterns are likely to be infrequent or rare and their combination
can be even more infrequent. Therefore, it is likely that a combination of two
minimal generators would be rare or infrequent, and this rare sequential pat-
tern can be considered interesting and deserves further investigation. Given two
sequential patterns, there could exist different ways to combine them to form a
new sequential pattern. For example, for the two frequent sequential patterns s1
= 〈{4}, {3}, {2}〉 and s2 = 〈{1, 2}, {6}〉 generated from the dataset in Table 1,
at the sequence level, we can combine them in two different orders 〈s1, s2〉 and
〈s2, s1〉. For example, 〈{4}, {3}, {2}, {1, 2}, {6}〉 and 〈{1, 2}, {6}, {4}, {3},
{2}〉. In this case, in the resulting sequence, each of the two original sequences is
intact. The order of itemsets from one original sequence is preserved. However,
if we only want to preserve the original order of itemsets and do not require the
integrity of the original sequences, we could have sequences like 〈{4}, {1, 2},
{3}, {2}, {6}〉, 〈{1, 2}, {4}, {3}, {6}, {2}〉, and much more. So, we preserved
both the integrity and itemset order of the original sequence.

The inputs of this algorithm (shown below) are a sequence database SDB
and a user defined threshold value as minsup. This algorithm will produce a list
of minimal rare sequential patterns. At the beginning, minimal sequential gener-
ator patterns (mSGP) and frequent sequential patterns are generated from the
sequence database SDB in steps 3 and 4. Then for each pair of generators’ combi-
nations are checked against the frequent sequential patterns (FSP) as described
in step 6 to step 12.

Algorithm 1. Rare Sequential Pattern Mining Algorithm

1: Input: SDB, minsup // A sequential database and minimum support
2: Output: RSP // A set of rare sequential patterns
3: G := 〈g1, g2, ...〉 // a list of minimal sequential generators
4: FSP := 〈s1, s2, ...〉 // a set of frequent sequenial patterns
5: RSP := { }
6: for gi in G do
7: for gj in G do
8: if 〈gi, gj〉 /∈ FSP and ∃s ∈ SDB and 〈gi, gj〉 � s then
9: RSP := RSP ∪ {〈gi, gj〉}

10: else
11: if 〈gj , gi〉 /∈ FSP and ∃s ∈ SDB and 〈gj , gi〉 � s then
12: RSP := RSP ∪ {〈gj , gi〉}
13: end if
14: end if
15: end for
16: Return RSP
17: end for
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4 Experimental Setup

We assume that attackers cannot alter or delete the SCADA logs that we use as
our datasets. We use four real SCADA logs Datasets. First dataset (Dataset-
1; shown in Fig. 1) was collected from the logs on an Intelligent Electronic
Device that controls an electrical substation while the second, third, and fourth
dataset (Dataset-2, Dataset-3, and Dataset-4 respectively) were collected from
our three different SCADA laboratory setup. In case of Dataset-1, Log data
includes recorded events on that substation which were recorded only when there
occurred any system errors.

Fig. 1. A partial view of Dataset-1

Dataset-2 comes from a water tank system in our laboratory, which consists of
two water tanks and a pump that moves water from a lower tank into the upper
tank. Gravity allows water in the upper tank to move back into the lower tank.
Dataset-3 is collected from a compressed air pipeline or reactor system. An air
compressor pumps air into the pipe system and increases the air pressure. At a
given value the air pressure is released. Once the air is released, the compressor
starts up again building pressure in the pipe system. Finally, Dataset-4 is a
conveyer system that moves objects along a conveyer belt. Dark and light objects
are separated into Left and Right directions before returning to the beginning
of the system. It is possible to sort objects in opposite directions.

A training session was held in our SCADA lab from 9.30am to 4.00pm. Three
system devices (Tank, Reactor, and Conveyer) were switched on and started
functioning smoothly. However, the system was compromised in the later half of
the day, and all events were recorded.

4.1 Data Preprocessing

In data preprocessing steps, the raw logs from all datasets (Dataset-1 to
Dataset-4) have been cleaned and the necessary informative features were
selected. It is to be noted that in the log entries of the electrical substation
(from where Dataset-1 created), it has been observed that during two minutes
time duration the system performs a series of sequential events to bring the sys-
tem to normal state from erroneous state. Therefore, these sequence of events
have been identified as a single sequence which build the sequential database
SDB-1 (shown in Fig. 2).

Here, the numbers represent individual events or itemsets of raw logs
(Dataset-1) while “−1” indicates ending of events or itemsets and consecutive
“−1−2” signals the end of a sequence. However, as in Dataset-2 through Dataset-
4, events are recorded in every second, these events are considered as a single item
in the sequence which build the databases SDB-2 through SDB-4 respectively.
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Fig. 2. A partial view of SDB-1

4.2 Experiment and Results

We performed our experiment with python programming and SPMF [11] tool,
which is an open source framework for sequential pattern mining. At first, we
generate frequent sequential patterns (FSP) and minimal sequential generator
patterns (mSGP). Later, the combination of mSGP are compared with FSP to
prune frequent patterns. The remaining rare patterns are once again compared
with the sequence database SDB. These patterns are once again found rare and
considered anomalous events. However, the rare patterns which are not found in
SDB are considered as non-present patterns.

Table 2. A partial view of results for Dataset-3.

Patterns by RSPM Patterns by rare Itemset

〈{19}, {57}〉 {19, 57}
〈{58}, {19}〉 {19, 58}
〈{100}, {74}〉 {74, 100}

We also applied Szathmary et al.’s rare itemset mining algorithm with the
same datasets (Dataset-1 through Dataset-4) used in our RSPM algorithm for
comparison. For example, their algorithm has identified rare itemset pattern {19,
58} against our RSPM algorithm’s rare sequential pattern 〈{58}, {19}〉 (shown
in Table 2); However, we checked with the original log sequence events and found
that the events occurrence order is 58 followed by 19 and not in events’ reverse
order. We argue that a particular sequential events’ order can lead to a particular
result and it is very important and significant in our experiment. For example,
the following sequential ordered events are a regular system profile for filling a
tank reservoir:

1. Turn on pump.
2. Wait for water level to reach 40 %.
3. Turn off pump.

If the system runs with the above events mentioned in the order, then the tank
pump turns off after the water level reaches to the 40 % of its capacity label. How-
ever, if the above events are performed in a different order as mentioned below:

1. Turn off pump.
2. Wait for water level to reach 40 %.
3. Turn on pump.
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then the system floods; therefore, we can say that only the rare patterns cannot
be effective in identifying intrusion rather we need rare patterns with ordered
events for effective intrusion detection into a system.

5 Discussion

The experimental results for all datasets (Dataset-1 to Dataset-4) show that
our RSPM algorithm found not only the rare patterns as identified by Sza-
thmary et al.’s algorithm but also keeps the events occurrence order, which
their algorithm did not consider. For example, rare pattern 〈{14}, {7}, {10}〉
from Dataset-4 has been identified by our algorithm; however, Szathmary
et al.’s algorithm identified this pattern as {7, 10, 14} even though these are
two different patterns considered in sequential pattern domain. Here, the num-
bers in the pattern 〈{14}, {7}, {10}〉 represents SCADA log sequence events
〈{Conv Read Conv HMI Direction(5) 0}, {Conv Read Conv Present PE(5) 0},
{Conv Run Status(5) 0}〉 in Dataset-4. We traced this rare pattern in the orig-
inal log dataset. However, we did not find pattern {7, 10, 14} identified by their
algorithm in the original log sequence as they did not preserve the sequence order.
Different ordered sequential events’ can produce different end results. Therefore,
our rare sequential pattern can be effective in finding the correlation between
consequences and actions.

Moreover, we found the original sequence as a frequent sequence which ends
with the event “Conv Run Status(5) −1”; however, in the rare sequence pattern
the sequence ends with “Conv Run Status(5) 0” which is a deviation from the
regular profile of the system. Later, we traced back this deviation in the log file
and found that during the events’ time period the converyer belt direction was
reversed although it was supposed to be moving in other direction. This abnor-
mal incident occured in the second part of the training day when the system was
compromised. Therefore, we came to the conclusion that this rare sequence was
an anomalous event which happened due to system compromise.

Similarly, we traced back rare sequential patterns 〈{19}, {57}〉, 〈{58}, {19}〉,
and 〈{100}, {74}〉 from Dataset-3 and 〈{29}, {50}〉 from Dataset-2. In all cases,
we found that these rare sequences should not happen in the logs during the
specified time period. Therefore, we also believe that these are anomalous events.
However, as we do not have a complete labeled test dataset from log files, we
cannot find the ratio of false positive and negative. But, to find whether our
algorithm can detect anomalous events, we have manually rearranged the order
of some sequences with Dataset-1, and our algorithm detects these changes as
rare sequences.

6 Conclusion and Future Work

In this paper we have presented RSPM, a novel approach for anomaly detec-
tion from SCADA logs using rare sequential pattern mining. However, it may
be possible for the adversaries provided that they repeat the malicious events
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multiple times to evade this technique. In future, we will extend this work to
generate all (from minimal to maximal) rare sequential patterns to test which
patterns become more effective in detecting intrusion. We will also validate and
find computational performances of our methodology with large volume of pub-
licly available labeled SCADA logs. Moreover, we will compare our algorithm
with other works as to anomaly detection using non sequential pattern outside
SCADA or CIs.
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Abstract. For exponentiation function modulo a composite fg,N (x) =
gx mod N , where |N | = n, an elegant algorithm is constructed by
Goldreich and Rosen to reprove that the upper and lower half bits of
this function are simultaneously hard separately under the factoring
intractability assumption. Here we improve their algorithm to reduce the
time by a factor O(log nε−1). If error probability 1

2(1−1/2c)m is tolerated,

the reduced factor could be O((nε−1)1/2c) for a constant c ≥ 2.

Keywords: One-way function · Bit security · Randomization
technique · Factoring assumption

1 Introduction

One-way function is easy-to-compute but hard-to-invert as the basis of modern
cryptography. An important concept closely linked to one-way function is hard-
core bit. For a one-way function f : {0, 1}n → {0, 1}n, we say that B : {0, 1}n →
{0, 1} is a hard-core bit of f , if, given y = f(x), the success probability for
guessing B(x) has only a negligible advantage comparing with 1/2. If a hard-core
bit is in x, we call it individually hard bit. The concept of simultaneously hard
bits is a generalization of that of individually hard bit, i.e. for given y = f(x),
some bits in x is indistinguishable with a random bit string of the same length.
By these concepts, the hardness of retrieving some bits of x and the hardness
of retrieving the whole are connected together. With these hard bits, we can
construct efficient pseudo-random generators and secure protocols.

In this realm of functions modulo a composite, fg,N (x) = gx mod N , since
the least significant bit of RSA and Rabin function were proven to be hard by
Alexi et al. [1] in 1988, many one-way functions have been studied about their
hard-core bits: For RSA and Rabin function modulo a composite, H̊astad and
Nüsland [4] proved that all the bits are individually hard, and for exponentiation
modulo a prime all but the last few bits are individuallly hard. In 1993, [5] proved
that under the factoring intractability assumption, all the bits are individually

This work is partially supported by NSF No. 61272039.

c© Springer International Publishing AG 2016
J. Chen et al. (Eds.): NSS 2016, LNCS 9955, pp. 509–516, 2016.
DOI: 10.1007/978-3-319-46298-1 33



510 K. Lv et al.

hard, and the upper half and lower half bits are simultaneously hard separately.
In 2002, by constructing an algorithm, Goldreich and Rosen [2] proved that
this function is still pseudo-random when the input was restricted to being half
the size. This is an equivalent conclusion with [5] and its reduction algorithm
is more elegant. The main idea of this algorithm is to construct a polynomial
list of bit strings with the same length and the right plaintext x is made sure
to be contained in this list. The list is constructed iteratively, and in each of
iteration the strings in it is one bit longer. As the size of the list is growing
bigger, “Trimming Rule” algorithm is applied to discard elements which have
been proven to be wrong until its size is reduced to polynomial. In the end, we
can get the right x by exhaustive search. For simplicity, we call this algorithm
“Goldreich-Rosen algorithm” (GR, for brevity). However, efficiency of GR could
still be improved as only one element in the list is discard by “Trimming Rule”
at once. If we look into the elements of the list more carefully, we could find some
consecutive elements may have the same performance in “Trimming Rule”. So
we could improve the algorithm and discard more elements at once. At the same
time we make sure the error probability is still tolerable.

In this paper, we Improve GR algorithm, which reduces time cost of GR by a
factor O(log nε−1). If we could tolerate higher error probability up to 1

2(1− 1
2c

)m
,

the factor could be increased to O((nε−1)
1
2c ), where c ≥ 2 is a constant.

Organization. In Sect. 2, we give some preliminaries and introduce
Goldreich-Rosen algorithm briefly. Improved GR algorithm is given in Sect. 3
and the improvement tolerating higher error probability is in Sect. 4. Our con-
clusion is in Sect. 5.

2 Preliminaries

Let | · | denote the length of a binary bit string. For an integer x, |x| = n, its
binary expansion is denoted by xn · · · x2x1, where xi is the ith bit and xi,j are
bits from xj to xi for j < i. N = pq is an integer, where p and q are odd primes
with the same length and |N | = n. g is an element in Z

∗
N whose order is denoted

by ord(g). Pn = {〈N, g〉 : |N | = n and g ∈ Z
∗
N}. a

r←− S means that a is chosen
randomly and uniformly from set S. PPT denotes probabilistic polynomial time.

We say ε(·)(for brevity, ε) is a non-negligible function, if there is a constant
c ≥ 2 such that ε(n) ≥ n−c. A function ν(·) (for brevity, ν)is negligible, if for
every constant d ≥ 0, there exists an integer nd such that ν(n) ≤ n−d for n ≥ nd.

Definition 1. Let x = xn · · · x2x1. We say the i-th bit xi of x for one-way
function f is hard, if, for any PPT algorithm A, any polynomial Q(·) and sig-
nificantly large n, given f(x), Pr[A(f(x)) = xi] < 1/2 + 1/Q(n) �

Definition 2. Let x = xn · · · x2x1. We say substring xi,j(j < i) of x for one-way
function f are simultaneously hard, if for any PPT algorithm A, any polynomial
Q(·) and significantly large n, given f(x), |Pr[A(xi,j , f(x)) = 1]−Pr[A(r, f(x)) =
1]| < 1/Q(n), where r is chosen uniformly from {0, 1}i−j+1 �
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Factoring Intractability Assumption. Let Hk = {N = pq : p, q are odd
primes and |p| = |q| = k}. Then, for any PPT algorithm A, any polynomial
Q(·), and significantly large k, Pr[A(N) = p : p | N, p 	= 1, N ] < 1/Q(k), where
the probability is taken over all n ∈ Hk and coin tosses of A. �

2.1 Goldreich-Rosen Algorithm

For convenience, we define some probabilistic distributions as follows:
Fulln = 〈N, g, gR mod N〉, Halfn = 〈N, g, gr mod N〉, Hi

n = 〈N, g, gx mod N〉,
where 〈N, g〉∈Pn, R

r←− [1, ord(g)], r
r←−{0, 1}� n

2 �, x
r←−{0, 1}i. So Halfn =H

� n
2 �

n .
There are two basic operations about these functions: One is Left shifting.

That is, for Y = fg,N (x) = gx mod N , we compute Y ′ = Y 2 = g2x mod N to
shift all the bits of plaintext to the left by one bit. The other is Zeroing. That
is, if the jth bit is 1, we compute Y =fg,N (x) · g−2j−1

mod N to zero it.
[2] proved that fg,N (x) is still pseudo-random even when its input is restricted

to being half the size, i.e. Fulln and Halfn are computable indistinguishable. By
hybrid technique and that Hn+ω(log n) is statistical close to Fulln, distinguishing
Fulln and Halfn can be reduced to distinguishing Hi and Hi+1 for i ≥ 
n/2�.
Then the distinguisher D is used as an oracle of predicting the i + 1th bit to
construct GR algorithm. In fact, for distinguisher D, let β = Pr[D(N, g, gx) =
1 : x ∈R {0, 1}i] and γ = Pr[D(N, g, g2

i+x) = 1 : x ∈R {0, 1}i], then γ(resp.β) is
the probability to get correct(resp. wrong) 1-answer from D, and |β − γ| ≥ 2ε.
Assume γ > β without loss of generality. Although D might give us erroneous
answers, the gap γ − β can be guaranteed. On the other hand, since we can not
tell whether a carry occurs when randomizing our queries to the oracle and get
the correct answer, the straightforward way fails.

In GR algorithm, given fg,N (x), where x is a binary string of i+1 bit length,
we guess the top m + 1 bits of x. There are at most 2m+1 guesses, which is a
polynomial on n. For each guess, we zero these bits one by one. For simplicity,
assume x is of length i − m, where m = 
log nε−1�. Initially, Let Li−m = {0, 1}.
A list Ll is constructed iteratively from l = i − m − 1 to 1 and all values 2u
and 2u + 1 are added into it for u ∈ Ll+1. But there exists an problem when
constructing list Ll, that is, the size of Ll is twice that of Ll+1, which leads
to the size of L1 exceeds the polynomial bound. So we must use “Trimming
Rule” to throw some out of Ll until its size is proper. Indeed, Since elements
in Ll compose a block of consecutive items, we order the list from the largest
vl

max to smallest vl
min. If vl

max −vl
min ≥ 2m, use Trimming Rule repeatedly until

vl
max − vl

min < 2m. Repeating this process until l = 1, the size of L1 is no more
than 2m, which is a polynomial. At last, we check all v ∈ L1 and see whether
Y = gv (mod N). So we can find the right x.

Note that at least one of vl
max and vl

min is not xi−m,l. So “Trimming Rule” is
used to remove one from list Ll. To do it, a target is defined as x′ = 
 22m

vl
max−vl

min

�·
(x−vl

min ·2l). Let the l+2m+1st position of x be the crucial position(shortly
denoted cp) for l ≤ i − m. So, if vl

min (resp. vl
max)is the correct candidate, i.e.,

vl
min = xi−m,l (resp. vl

max = xi−m,l), then the cp-bit in x′ is 0 (resp. 1), and so
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are m bits to its both right and left. For these two cases, to deduce the value of cp-
bit, we try to perform the randomization. We first shift x′ to the left by repeated
squaring until the cp-bit is placed in the i + 1st location, and then multiply the
result by gr for some randomly chosen r ∈ {0, 1}i. An error might occur if a
carry to the i + 1st location from the addition of r and shifted x′ happens. The
probability of a carry occurring is less than 1/2m. We use a polynomial number
of queries to oracle with independently chosen r’s and compare the fraction of
1-answers with β and γ to get the value of cp-bit. So we can discard one of vl

max

and vl
min. If neither vl

max nor vl
min is correct, a carry may reach the i + 1st

location since m bits to the right of the cp-bit in x′. Although the frequency
of 1-answers is altogether different from β and γ, “Trimming Rule” can discard
either one from the list safely. Using Chernoff bound, we can show that the error
probability of “Trimming Rule” is exponentially small.

For the right guess of these m + 1 bits, procedure “Finding x” output the
rest bits correctly with an overwhelming probability. As there is only polynomial
guesses, we can get the right plaintext with a non-negligible probability. Once
the plaintext of gN is retrieved, the factorization of N can be obtained, which
contradicts with the factoring intractability assumption, while the length of the
plaintext N mod ord(g) of gN is at most 
n/2� + 1. Assume the cost of one
query to the oracle is T . The total running time of GR algorithm is O(Tn7ε−4).

3 Improved Goldreich-Rosen Algorithm

In “Trimming Rule”, one element vl
max or vl

min is discarded each time. When
we observe the construction from list Ll+1 to list Ll in GR, l + 1 ≤ i − 2m, we
know that elements of list Ll+1 form a block of 2i−m−l consecutive strings. If
either vl

max or vl
min is not xi−m,l, then each in a small block neighbouring it is

not correct either since these elements may share the same performance under
“Trimming Rule”. In the small block, term less than 2O(�log m�)−1 − 1 must be
not correct. Note that at least one of vl

max and vl
min is not correct (i.e., not

xi−m,l), so we discard the small block of size 2O(�log m�) in the list once instead
of one such that efficiency can be improved. Thus we get “improved Trimming
Rule” and the improved Goldreich-Rosen algorithm (shortly by IGR) for given
fg,N (x) in Fig. 1. To complete this improvement, we define a new target

x′ = e · (x − vl
min · 2l) + 2m+l+O(�log m�)+1,where e = 
 22m

vl
max − vl

min

�.

Fact 1. If vmin + j is the correct xi−m,l for some j ∈ [0, 2O(�log m�) − 1], then
the cp-bit in x′ is 0, and at least m − O(
log m�) − 1 bits to its right are all 0.

Proof. Assume one of vmin+j for 0 ≤ j ≤ 2O(�log m�)−1 is the correct i−m−l+1
top bits of x′. When we trim Ll, 2m+1 ≥ vl

max − vl
min ≥ 2m. Then

x′ = e · (vl
min · 2l + j · 2l + xl,1 − vl

min · 2l) + 2m+l+O(�log m�)+1

≤ 2m · xl,1 + j · 2l+m + 2m+l+O(�log m�)+1

≤ 2cp−m−1 + 2cp−(m−O(�log m�))−1 + 2cp−(m−O(�log m�)−1)−1.



Improved Security Proof for Modular Exponentiation Bits 513

Finding x: input 〈N, g〉 ∈ Pn, index i and Y = gx (mod N), where |x| = i − m

1. Let Li−m = {0, 1}
2. For l = i − m − 1 to 1, do the following:

(a) Let Ll = {2u, 2u + 1 : u ∈ Ll+1}, order the list from the largest vl
max to

smallest vl
min.

(b) If vl
max − vl

min ≥ 2m, use Improved Trimming Rule repeatedly until
vl

max − vl
min < 2m.

3. Check all v ∈ L1, and see whether Y = gv (mod N). If yes, that is the right x.

Improved Trimming Rule(for current Ll, vl
max and vl

min):

1. Compute Y ′ = gx′
=

�
Y · g−vl

min·2l
�e

· g2m+l+O(�log m�)+1
, where Y = gx and

e = � 22m

vl
max−vl

min

�.
2. Shift x′ to the left by i + 1 − cp bits by computing Y ′′ = (Y ′)2

i+1−cp

.
3. Choose t(n) = n4/ε2 elements r1, · · · , rt(n) ∈ {0, 1}i randomly.
4. For each 1 ≤ k ≤ t(n), query the oracle for Y ′′ · grk (modN). Let bk denote its

answer(i.e. bk = D(gx′·2i+1−cp+rk )) and set M =
� t(n)

k=1 bk/t(n).
5. If M ≤ (β + γ−β

2
), discard vl

max − j, 0 ≤ j ≤ 2O(�log m�) − 1 from Ll. Otherwise

(i.e. M > (β + γ−β
2

)) discard vl
min + j, 0 ≤ j ≤ 2O(�log m�) − 1.

Fig. 1. Improved Goldreich-Rosen algorithm

So for each vmin + j, the cp-bit in x′ is 0, and the m − O(
log m�) − 1 bits
to its right are all 0. �

All vmin + j would share the same success probability in the randomization
technique, as they share the same error probability 1

2m−O(�log m�)+1 from a carry
into the (i + 1)st location for the addition of r and the shifted x′.

Fact 2. If one of vmax − j for j ∈ [0, 2O(�log m�) − 1] is the correct xi−m,l, then
the cp-bit in x′ is 1, and at least m − O(
log m�) − 2 bits to its right are all 0.

Proof. Assume one of vmax−j for 0 ≤ j ≤ 2O(�log m�)−1 is the correct i−m−l+1
top bits of x′. Then

x′ = e · (vl
max · 2l − j · 2l + xl,1 − vl

min · 2l) + 2m+l+O(�log m�)+1

= 22m+l + δ · (vl
max − vl

min) · 2l + e · xl,1 − e · j · 2l

+ 2m+l+O(�log m�)+1 ≤ 22m+l + 2m+l+O(�log m�)+1,

where δ = e− 22m

vl
max−vl

min

. Note that 2m+1 ≥ vl
max −vl

min ≥ 2m. Since δ · (vl
max −

vl
min) · 2l ≤ 2cp−m, e · xl,1 ≤ 2cp−m−1 and 0 ≤ 2m+l+O(log m)+1 − e · j · 2l ≤

2cp−m+O(�log m�), for each vmax − j, 0 ≤ j ≤ 2O(�log m�) − 1, the cp-bit in x′ is 1,
and the m − O(
log m�) − 2 bits to its right are all 0. �
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As to the case the correct xi−m,l is not in the intervals above, we do not care
about it, because whatever the algorithm discards, the correct xi−m,l is still in
the list. In order to prove that it is reasonable to discard 2O(�log m�) elements at
once, we only need to make sure “Improved Trimming Rule” is right for every
involved element. For this purpose, we need to study the success probability for
some particular element.

Lemma 1 (Chernoff bound). Let X1,X2, · · · ,Xn be mutually independent
random variables over {0, 1} and let μ =

∑n
i=1 E[Xi]. Then for any c > 0,

Pr

[∣∣∣∣
n∑

i=1

Xi − μ

∣∣∣∣≥ cμ

]
≤ 2−c2n/2.

We define event 1 to be that the correct item is discarded in a block, that
is, a correct element is discarded, and event 2 to be that the correct item is
in a block and the block is discarded by “Improved Trimming Rule”. Then the
probability of event 1 is estimated in Lemma 2 and that of event 2 is estimated
in Theorem 1 which involves ranging over all possible cases of the difference j
between vmin (or vmax) and the correct item.

Lemma 2. The probability of event 1 is exponentially small.

Proof. Since only one of vmin and vmax is correct, without loss of generality,
we assume that for some j, 0 ≤ j ≤ 2O(�log m�) − 1, vmin + j is the correct
i−m− l+1 top bits of x′. Let δ denote the shifted x′ by i+1− cp to its left, i.e.
δ = x′ · 2i+1−cp. By Fact 1 we know δ ≤ 2i−m+O(�log m�)+1. Each time we query
oracle distinguisher D, the expectation of oracle answer bk on gδ+rk is

E(bk) =Pr[D(gδ+rk ) = 1|0 ≤ rk ≤ 2i − 1 − δ] · Pr[0 ≤ rk ≤ 2i − 1 − δ]

+ Pr[D(gδ+rk ) = 1|2i − 1 − δ ≤ rk ≤ 2i − 1] · Pr[2i − 1 − δ ≤ rk ≤ 2i − 1]

≤ β · 2i

2i − δ
· 2

i − δ

2i
+ 1 · δ

2i
= β +

δ

2i
.

Pr[event 1on vmin + j] = Pr

⎡
⎣

t(n)∑
k=1

bk > (β +
γ − β

2
) · t(n)

⎤
⎦

≤ Pr

⎡
⎣

∣∣∣∣
t(n)∑
k=1

bk − E(
t(n)∑
k=1

bk)
∣∣∣∣> (β +

γ − β

2
) · t(n) − E(

t(n)∑
k=1

bk)

⎤
⎦

= Pr

⎡
⎣

∣∣∣∣
t(n)∑
k=1

bk − E(
t(n)∑
k=1

bk)
∣∣∣∣> λ · E(

t(n)∑
k=1

bk)

⎤
⎦ ,

where λ = (β+ γ−β
2 )·t(n)−E(

∑t(n)
k=1 bk)

E(
∑t(n)

k=1 bk)
. As λ ≥ ε

4 for significantly large n, by

Lemma 1, Pr[discard vmin + j] ≤ 2− λ2·t(n)
2 ≤ 2− n4

32 ≤ 2−O(n3). �
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Theorem 1. The success probability of retrieving x in IGR is exponentially
close to 1.

Proof. By Lemma 1, for a particular element, the success probability for
“Improved Trimming Rule” is greater than 1 − 2O(−n3). Discarding more
elements at once, the success probability is at least 1 − Pr[event 2occurs].
When event 2 occurs, discarding one of involved elements are wrong. So
Pr[event 2occurs] ≤ 1 − ∏

j(1 − Pr[event 1on vmin + j]). The success prob-

ability is at least (1 − 2O(−n3))2
O(�log m�)

> 1 − O( log nε−1

2n3 ), which is negligible
close to 1.

During the construction from Lj+1 to Lj , we use “Improved Trimming Rule”
for 2m

2O(�log m�) times at most, which is still a polynomial about n. At the same
time, we need to run “Improved Trimming Rule” for i−2m = O(n) list at most.
So for the right guess of the top m + 1 bits, we can retrieve the rest bits of
x with probability negligible close to 1. After checking all the guesses, we can
retrieve the right plaintext with a probability exponentially close to 1. The proof
is complete.

Theorem 1 shows it is reasonably to discard 2O(�log m�) at once. All vmin+j (or
vmax−j) have the same success probability in the randomization technique, since
they share the same error probability less than 1

2m−O(�log m�) from a carry into
the i+1st location with the addition of r and the shifted x′. Running “Improved
Trimming Rule”, we discard 2O(�log m�) consecutive elements at once, so running
time of IGR is 2m+1 · T · (i − 2m) · 2m

2O(�log m�) · n4/ε2 = O(Tn7ε−4/ log nε−1).
Comparing with GR algorithm, we reduce it by a factor O(log nε−1).

4 The Improvement Tolerating Higher Error Probability

In Sect. 3, we tolerate probability 1
2m−O(�log m�)−2 to have a carry. It is just slightly

larger than that of GR. If we could tolerate higher probability than GR, more
bits could be discard at once.

If we take 1

2(1− 1
2c

)m
as tolerable error probability, we construct algorithm

IGR’, similar to IGR except for x′ = e · (x − vl
min · 2l) + 2m+ m

2c+l+1. We discard
2

m
2c elements in “Improved Trimming Rule” at once. Similar to the analysis in

Sect. 3, we have

Fact 3. If vmin + j, j ∈ [0, 2
m
2c − 1] is the correct xi−m,l, then the cp-bit in x′

is 0, and m − m
2c − 2 bits to its right are all 0.

Fact 4. If vmin + j, j ∈ [0, 2
m
2c − 1] is the correct xi−m,l, then the cp-bit in x′

is 1, and m − m
2c − 2 bits to its right are all 0.

Theorem 2. The error probability of retrieving x with IGR′ is negligible.

Proof. the proof is almost identical to Theorem 1, except for δ ≤ 2i−m+ m
2c+1,

and λ ≥
ε− 1

2
m− m

2c
−2

2 ≥ ε− 4
n1−1/2cε1/2c

·ε
2 ≥ ε− 4

n1/4 ·ε
2 ≥ ε− 4ε

5
2 ≥ ε

10 .
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Similar to the analysis in Sect. 3, we discard 2
m
2c consecutive elements at once,

and the running time of IGR′ algorithm is 2m+1 · T · (i − 2m) · 2m

2
m
2c

· n4/ε2 =

O(Tn7ε−4/(nε−1)
1
2c ). We reduce it by a factor O((nε−1)

1
2c ) comparing with GR

algorithm.

5 Further Remarks

We improve Goldreich and Rosen’s algorithm on bit security of exponentiation
function modulo a composite. The Improved algorithm reduces the running time
of Goldreich and Rosen’s algorithm by a factor O(log nε−1). If we could tolerate
error probability 1

2(1− 1
2c

)m
, the factor would be O((nε−1)

1
2c ). Our improvement

could be also applied to all the algorithms using the “Trimming Rule” to better
their efficiency, such as in [5–8] and therein.
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Abstract. The cloud can be used to outsource data storage or data computation.
Data computation outsourcing enables to move computationally expensive oper‐
ations outside a mobile device. Many pairing-based cryptographic schemes are
designed to enable documents’ encryption while fulfilling some defined security
requirements. In practice, client applications should be implemented for mobile
devices. Their computational capabilities are significantly lower than standard
computers. Thus, advanced cryptographic calculations, like bilinear pairing
calculation, might take too much time for a good user experience. In this paper,
we analyse the possibilities to securely outsource bilinear pairings computation
from a mobile device to possibly dishonest servers. Several test scenarios were
implemented. Also, we have modified one of the pairing-based schemes that
allows to encrypt and decrypt documents and we have created its secure
outsourced version. Next, we have tested execution times of encryption and
decryption algorithms of the original scheme and its outsourced version. The tests
were conducted using different outsourcing models. The execution times showing
time spent on the mobile device and the server are presented and discussed. The
tests have shown that in certain conditions outsourcing bilinear pairing calculation
can speed up overall computation time. Also, it simplifies implementation on
different mobile operating systems.

Keywords: Secure outsourcing · Secure delegation protocol · Bilinear pairing ·
Encryption · Mobile device

1 Introduction

The cloud is often used in mobile applications to outsource data storage or computation.
Difficulty of implementation and code maintenance together with slower mobile
processors cause that moving complex and computationally intensive parts of the code
to external servers are often used to simplify mobile application.

The cloud can be used to outsource data storage or data computation. In recent years,
many cloud drive’ services became available. Some of them provide client-side encryp‐
tion (e.g., in a web browser) to ensure privacy, but privacy of most of the drives is based
on the assumption that the cloud servers are honest or trusted. Also, many techniques
have been proposed to better secure data. S. Foresti in [1] described a comprehensive
solution for protecting sensitive information when it is stored on third parties system
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outside owner’s sole control. An access control solution for data storage in outsourcing
scenarios using a re-encryption execution model was presented by [2]. The solution that
guarantee assured file deletion was proposed by [3] and the schema that allows unau‐
thorized modifications detection by [4]. M. Sujithra et al. [5] described how mobile data
can be securely stored in the remote cloud using cryptographic techniques with minimal
performance degradation.

Data computation outsourcing enables to move computationally expensive opera‐
tions outside a mobile device. When outsourcing computation to third party servers, one
must consider two questions. Firstly, is it required that data sent to be computed to remain
secret? Secondly, is it required to have a tool enabling results’ verification? Several
techniques that enable verifying outsourced computation results done by untrusted
servers have been proposed in the literature (e.g., [6]). More difficult is to process data
in such a way, that an untrusted server will not have possibility to see original data and
still it will be able to perform requested computation. It usually requires to do some pre-
and post-processing in a mobile device.

In new cryptographic schemes based on bilinear pairings, e.g., schemes that enable
document encryption, the number of computationally intensive operations (bilinear
pairing calculation, point multiplication or exponentiation on elliptic curves) can cause
that total decryption and encryption times will be too long for a good user experience.

1.1 Our Contribution

Many pairing-based cryptography schemes are designed to enable encryption or signing
of documents while fulfilling some defined security requirements. In practice, client
application should be implemented also for mobile devices. Their computational capa‐
bilities are significantly lower than standard computers.

In this paper, we show how computations can be outsourced from a mobile device
to a server using different outsourcing models and we discuss required infrastructure.
The possibilities to securely outsource bilinear pairings computation from a mobile
device to possibly dishonest servers were analysed. Several test scenarios were imple‐
mented using Miracl library [7]. Three algorithms for secure outsourced bilinear pairing
computation were tested. Also, we have modified one of the pairing-based schemes, i.e.,
IE-CBE scheme [8] (the scheme allows to encrypt and decrypt documents using implicit
and explicit certificates) and create its outsourced version called SO-IE-CBE. We have
tested speed of encryption and decryption algorithms of the original scheme and its
outsourced version. The tests were conducted using different outsourcing models. The
execution times showing time spent on the mobile device and the server are presented
and discussed.

Our main goal was to find a way to speed up our Implicit end Explicit Certificates-
Based Encryption (IE-CBE) scheme that was implemented and tested in our previous
research project. In the paper, we modify that scheme and show how in different
outsourcing scenarios calculations can be accelerated.
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1.2 Paper Organisation

The remainder of this paper is organized as follows. Section 2 contains short descriptions
of algorithms used further in tests, i.e., the algorithms for secure pairing outsourcing and
the implicit and explicit certificate-based encryption scheme. In Sect. 3, different possi‐
bilities for secure outsourcing of bilinear pairings are mentioned. Next, the secure
outsourced version of IE-CBE is introduced and discussed. The tests’ results for different
outsourcing scenarios are presented in Sect. 4. The paper ends with conclusions about
outsourcing bilinear pairings from a mobiles devices.

2 Delegation of Pairing Computation

In pairing-based cryptography, computation of a bilinear pairing is one of the most time-
consuming operation. Definition, notations and details about bilinear pairings can be
found in [9].

Delegation of pairing calculation must be performed in such a way that an untrusted
helper (an outsourced server) does not have possibility to find the values A, B from
ê(A, B) and outsourcer (a device with limited capabilities) can verify correctness of a
pairing value. Formal security definitions, models and notations for secure outsourcing
of cryptographic computations can be found in [10].

One of the secure paring delegation algorithms was presented by Chevallier-Mames
et al. [11, 12] (Alg. CM_1 further in the paper). The algorithm achieves unconditional
security (security is not based on any computational assumption). The algorithm takes
as an input two random points A, B ∈ G1, and the result is ̂e(A, B). The algorithm assumes
also that a computationally limited device (outsourcer T) and a server U receive the
generators P, Q ∈ G1, while additionally receives the value of ê(P, Q). The main draw‐
back of the algorithm is that it requires to perform some computationally expensive
operations like point multiplication and exponentiations.

We can use simpler approach, when we resign from the possibility to verify the
correctness of a pairing calculated by U. For example, when pairing calculation is dele‐
gated to U in some function performed by T and the received value is verified later in
the function. In that situation, we can use a simple, not secure pairing delegation algo‐
rithm mentioned by Chevallier-Mames et al. [11] (Alg. CM_2 further in the paper).

Another algorithm Pair [12] requires less expensive calculations than Alg. CM_1
and provides the similar level of security. However, it is secure in one-malicious version
of two untrusted program model [10]. In that model, we have U1 and U2 from which one
is honest. This model has an assumption that U1 and U2 communicate only trough T,
which might be difficult to achieve in real world scenarios. Also, in Alg. Pair T calls
subroutine Rand which returns a tuple of six values, including the result of the pairing.
The tuples can be pre-calculated, probably by some kind of a trusted server.

Computationally intensive operations in pairing-based cryptography are also point
multiplications and modular exponentiations. Time required to calculate point multi‐
plication in some cases is similar to time required to calculate Tate pairing [13]. Algo‐
rithms for outsource-secure modular exponentiations was presented in [10].
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We have proposed IE-CBE encryption scheme in 2014 [8]. The scheme has been
built on a new paradigm called Implicit and Explicit Certificates-Based Public Key
Cryptography (IEC-PKC). The idea of this paradigm is an extension of PKC paradigm
[14] and combines a strong authentication of the user’s identity, its public key and rela‐
tionship between these two elements. Moreover, any encryption scheme with this mech‐
anism should be immune to the DoD attack [15]. The IE-CBE scheme is IND-CCA and
DoD-Free secure in the random oracle model, relative to the hardness of the standard
k-CAA hard problem [8].

3 Secure Outsourced Implicit and Explicit Certificate-Based
Encryption Scheme

In this section, different possibilities of secure outsourcing of bilinear pairings are
mentioned. Next, the secure outsourced version of IE-CBE is introduced and discussed.

3.1 Outsourcing Models

The pairing computation can be outsourced from mobile devices because of three basic
reasons: implementation difficulty, computation speed and power efficiency.

The implementation of IE-CBE scheme requires to use a library for pairing calcu‐
lations. In case of mobile devices, current API of three most popular mobile operating
systems (i.e., Android, iOS, Windows Phone) does not support pairing computation. It
is possible to call C libraries like Miracl [7], but its integration might be difficult. The
most important reason for computation outsourcing is speed, which is expected to be
significantly lower on mobile devices.

The computation of pairing 𝛼 = ê(A, B) can be outsourced from a mobile device T
to a server U using the following models:

• Model 0 – No Outsourcing: calculations are done solely on a mobile device;
• Model 1 – Semi-Secure Outsourcing: U does not know A and B. If U is dishonest,

no mechanism exist that enables T to verify if α is correct.
• Model 2 – Secure Outsourcing: U does not know A and B. T can verify if α is correct.

U can be dishonest.
• Model 3 – Full Outsourcing: a mobile device is only a thin client (provides only an

interface), requires a fully trusted and honest U. A and B are send to U in an overt
form.

3.2 Outsourced Encryption Schemes

The SO-IE-CBE scheme is a modified version of the IE-CBE scheme that is using secure
outsource algorithm for pairing calculation (Model 2). The IE-CBE scheme, involves
three entities: a trusted authority TA, an encrypter S, a decrypter R. The S and R entities
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use four algorithms from the IE-CBE scheme: two from setup phase (Create-User, Set-
Private-Key) – executed only once per entity and two algorithms (Encrypt, Decrypt)
that can be used many times. However, algorithm Create-User does not involve pairing
calculations.

Two outsourced versions of IE-CBE scheme are proposed:

– SO-IE-CBE: SO-IE-CBE is IE-CBE scheme with three modified algorithms (SO-
Set-Private-Key, SO-Encrypt, SO-Decrypt). The scheme uses a secure outsourcing
algorithm SO-PAR for pairing calculation. The SO-PAR algorithm is a secure
outsourcing algorithm for a symmetric pairing calculation, that takes as an input A,
B ∈ G1 and returns ê(A, B) ∈ G2.

– O-IE-CBE: O-IE-CBE is IE-CBE scheme with three modified algorithms (O-Set-
Private-Key, O-Encrypt, O-Decrypt). The scheme uses a semi-secure outsourcing
algorithm O-PAR for pairing calculation. The O-PAR algorithm is a semi-secure
outsourcing algorithm for a symmetric pairing calculation, that takes as an input A,
B ∈ G1 and returns ê(A, B) ∈ G2.

SO-IE-CBE and O-IE-CBE schemes are similar. They use different algorithm for
outsourced pairing calculation. Also, the O-Encrypt algorithm has an additional step (f),
which is optional in SO-Encrypt (see below). The O-IE-CBE scheme is able to detect
potentials pairing error. However, the error can be indistinguishable for other possible
errors like a wrong secret key error. The SO-IE-CBE algorithms are as follows:

SO-Set-Private-Key. An entity R calculates a full private key SkIDR
.

(a) R calculates the values A1, B1, A2, B2:

A1 = Sk′
IDR

B1 = YIDR
+ qIDR

XIDR
+ q̄IDR

(
P̄0 + qIDR

P
)

A2 = P;B2 = s1IDR

s2IDR

P̄0

(1)

(b) R runs SO-PAR algorithm twice:

eAB1 = 𝐒𝐎 − 𝐏𝐀𝐑
(
A1, B1

)
; eAB2 = 𝐒𝐎 − 𝐏𝐀𝐑

(
A2, B2

)
(2)

(c) R verifies correctness of Sk′
IDR

:

eAB1 = eAB2 (3)

(d) R calculates a second part of the private key:

SkIDR
= s−1

1IDR

(
s2IDR

+ q̄IDR

)
Sk′

IDR

=
1

sTA + qIDR

YIDR (4)

(e) R formulates a private key for entity R in the form: SkIDR
=
(

s2IDR

, SkIDR

)
.

Secure Outsourced Bilinear Pairings Computation 523



SO-Encrypt. To encrypt the message m ∈ { 0, 1}n, the sender S:

(a) S calculates qIDR
= H1

(
CIIDR

)
;

(b) S calculates the values B1 and B6:

B1 = qIDR
YIDR

+ ZIDR
;B6 = r(qIDR

YIDR
+ ZIDR

) (5)

(c) S runs a SO-PAR algorithm six times:

eAB1 = 𝐒𝐎 − 𝐏𝐀𝐑
(
CertIDR

, B1
)
; eAB2 = 𝐒𝐎 − 𝐏𝐀𝐑

(
P, YIDR

)
(6)

eAB3 = 𝐒𝐎 − 𝐏𝐀𝐑
(
XIDR

, P̃0
)
; eAB4 = 𝐒𝐎 − 𝐏𝐀𝐑

(
YIDR

, P̄0
)

(7)

eAB5 = 𝐒𝐎 − 𝐏𝐀𝐑
(
ZIDR

, P
)
; eAB6 = 𝐒𝐎 − 𝐏𝐀𝐑

(
CertIDR

, B6
)

(8)

(d) S verifies the authenticity of the certificate CertIDR
:

eAB1 = eAB2 (9)

eAB3 = eAB4 = eAB5 (10)

Remark. When Eqs. (9) and (10) are true, then components of public key PkIDR
 are

authentic, which implies that a public key PkIDR
 belonging to the entity with an identity

IDR is authentic.

(e) if the verification result from the previous step is positive, then S chooses a random
number v ∈ { 0, 1}n and calculates:

r = H2
(
v, m, IDR, PkIDR

)
(11)

U = r
(
P̄0 + qIDR

P
)

(12)

k = H3
(
U, eAB6 , r

(
YIDR

+ qIDR
XIDR

))
(13)

V = v ⊕ k, W = m ⊕ H4(v) (14)

(f) Optional step (obligatory in O-IE-CBE scheme). S verify if the value eAB6 was
calculated properly:

eAB1 =
(
eAB6

) r
(15)

(g) S creates the ciphertext C = (U, V , W) and sends it to a recipient R.

SO-Decrypt. A decryption entity R reconstruct message m using the ciphertext C.
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(a) R runs a SO-PAR algorithm:

eAB1 = 𝐒𝐎 − 𝐏𝐀𝐑

(
SkIDR

, U
)

; (16)

(b) R calculates:

k′ = H3

(
U, eAB1 , s2IDR

U
)

(17)

v′ = V ⊕ k′ (18)

m′ = W ⊕ H4
(
v′
)

(19)

r′ = H2
(
v′, m′, IDR, PkIDR

)
(20)

(c) if U ≠ r′
(
H1

(
CIIDR

)
P + P̄0

)
, then decryption process is incorrect, otherwise m’ is

a correct plain text corresponding to the ciphertext C = (U, V , W).

The basic IE-CBE scheme is proven IND-CCA and DoD-Free secure [8] in the
random oracle model, relative to the hardness of the standard k-CAA hard problem. The
only difference between the SO-IE-CBE scheme (using secure outsourcing) and basic
scheme is a secure outsourcing algorithm for pairing calculations. The algorithm is
unconditionally secure (security is not based on any computational assumption, e.g.,
[11, 12]). Hence, usage of such algorithm does not change the security of the basic IE-
CBE scheme, as it provides the same security properties as a paring calculation algorithm
from a local resources.

The O-IE-CBE scheme uses semi-secure outsourcing algorithm for pairing calcula‐
tion. In this version of the scheme, the outsourcing algorithm is not proven to return
correct results. However, the O-IE-CBE has a few steps (Set-Private-Key: step (c);
Encrypt: steps (d) and (f); Decrypt step (c)) that allow to verify the results of pairing
calculation. In these steps incorrect results from the outsourcing algorithms will be
detected, because of that the O-IE-CBE has the same level of security as basic scheme.
Proof of that is trivial and will be omitted here.

4 Performance Tests

The pairing calculation is the most time consuming operation in the pairing-based cryp‐
tographic schemes. The IE-CBE scheme and its outsourced versions (O-IE-CBE, SO-
IE-CBE) were implemented to test their performance using different pairing outsourcing
models. O-IE-CBE uses outsourcing algorithm Alg. CM_1. SO-IE-CBE v1 and SO-IE-
CBE v2 use algorithm Alg. CM_1 and algorithm Alg. Pair, respectively.

The schemes were implemented using MIRACL library [7]. The test environment
consisted of a server (Intel Core i7-4700MQ processor - 7752 points in cpubench‐
mark.net benchmark, 32 GB RAM, 256 GB SSD drive, Windows 10 Pro 64 bit) and a
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tablet (Intel Atom Z3745 processor - 1118 points in cpubenchmark.net benchmark, 2 GB
RAM, 16 GB SSD drive, Windows 10). The server U and the tablet T were both
connected to a separated Wi-Fi network. In test, Type 1 symmetric pairing built on GF(p)
curve were used (in MIRACL library: MR_PAIRING_SSP, AES-128 security GF(p)).
Time was measured using C++ chrono library. All results are the average of 1,000
repetitions. All test programs are using a single thread.

The pairing calculation time is around 4 times longer on the tablet (Table 1). In the
test environment, the pairing time using algorithm Alg. CM_2 is comparable to calcu‐
lation time on the tablet. However, on the market is easy to find a server processor that
should be 2–3 faster on single core operations (based on performance tests from
www.cpu-benchmark.net benchmark). In that case, the Alg. CM_2 would be faster. The
Alg. CM_1 have a big overhead, and even with better ratio of server to tablet CPU speed,
it would be difficult to achieve faster speed than pairing calculation on the tablet. The
outsourced pairing calculation time includes 9 ms of time used to transfer data from T
to U and from U to T.

Table 1. The pairing calculation time

No. Operation Time [ms]
1 Server U - pairing 54,7
2 Tablet T - pairing 237,3
3 Outsourced pairing T + U (Alg. CM_1) 874,2
4 Outsourced pairing T + U (Alg. CM_2) 237,9
5 Outsourced pairing T + U (Alg. Pair) 233,7

It should be noted that algorithms Alg. CM_1 and Alg. Pair internally require to
calculate 4 pairings. The pairings can be calculated simultaneously. In such case overall
time would significantly shorter (around 70 ms for Alg. Pair).

The comparison of encryption and decryption time of AES secret key (32 bytes)
using different version of IE-CBE schemes is presented on the Fig. 1.

The IE-CBE Encryption algorithm requires to calculate 6 bilinear pairings.
Because of that, the SO-IE-CBE Encryption algorithm (using secure outsourcing Alg.
CM_1) execution time is more than 5 s, which is in practice unacceptable. The O-IE-
CBE and SO-IE-CBE v2 encryption algorithms are a little bit faster with comparison
to not outsourced version of the algorithm. Decryption algorithm contains only one
pairing operation, but the speed ratios of different version of the algorithms are
similar as that in Encryption algorithms. In the test scenario, the average data transfer
time between T and U was 9 ms and is almost invisible on the Fig. 1. In scenarios
involving communication over the Internet, data transfer time would be in usually
between 50 and 200 ms.
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5 Conclusions

Mobile devices like tablets and smartphones are very popular and in practice every
system that manages any kind of documents must include a mobile application. Three
types of infrastructure can be used to deploy the application using pairing-based
cryptographic schemes to a mobile device. Two boundary cases can be called mobile
only and thin client. In mobile only infrastructure, all cryptographic calculations are
done on a mobile device. The test have shown that in case of IE-CBE scheme it is
possible, though the encryption time below 2 s is on the threshold time accepted by
users. The time could be shortened using parallel pairings’ processing, but it would
increase the complexity of application. In our opinion, the complexity of implemen‐
tation (and later maintenance) of pairing based cryptographic schemes for three major
mobile operating systems is the major reason to move the most complicated opera‐
tions outside a mobile.

In a thin client type infrastructure (FO-IE-CBE version of IE-CBE scheme) the
mobile application is only an interface (it can be a web application). This is the
fastest option as servers are several time faster. Also, the implementation is simpler
and must be done only for one operating system. The main drawback of such solu‐
tion is the necessity to have a fully trusted, honest server for outsourcing all compu‐
tations. This could be acceptable in enterprise-wide applications, but in other cases,
it would be extremely difficult to setup such server that would be acceptable by
millions of users.

The intermediate approach (i.e., outsourcing only the most computation expensive
operation without compromising the security and without the need for an additional
trusted server) enables to increase the mobile application speed and lower the code

Fig. 1. Comparison of encryption and decryption time
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complexity. Outsourcing cryptographic computations to possibly dishonest servers is
more difficult as the function arguments must remain secret and it must be possible to
verify the result.

The test have shown that secure outsourcing of bilinear pairing computation can
provide the same or better overall time for IE-CBE encryption and decryption. During
the test, the server were processing pairing request sequentially. Parallel processing
could decrease server processing time fourfold (four pairing request are sent to servers
in Alg. CM_1). The Alg. CM_1 (used in SO-IE-CBE v1) requires many computationally
expensive operation (mostly point multiplication) for mobile device to prepare pairing
arguments and this algorithm should be used together with point multiplication secure
outsourcing algorithm. The Alg. CM_2 (used in O-IE-CBE) is very simple, but point
multiplication cause that is not fastest. Also, it does not have the possibility to verify if
results are correct. O-IE-CBE Encryption and Decryption algorithms have verification
statements that would catch such error, but they will be undistinguishable from other
errors (e.g., certificate errors).

The Alg. Pair (used in SO-IE-CBE v2) together with parallel pairing request
processing on the servers would be the best solution. However, its security model has
an assumptions that two servers U1 and U2 cannot communicate with each other directly.
This can be difficult to achieve in practice. Another practical drawback of Alg. Pair
algorithm is the need for pre-calculated tuple of values (including a pairing result). If
we assume that a mobile application does not have possibility to calculate pairing, then
an additional secure, honest server is required.
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Abstract. Bloom filter is a bit array (a one-dimensional storage structure) that
provides a compact representation for a set of data, which can be used to answer
the membership query in an efficient manner with possible false positives. It has
a lot of applications in many areas. In this paper, we further improve Bloom
filter by proposing the use of multi-dimensional matrix to replace the
one-dimensional structure. Based on our N-dimensional matrix structure, we
propose four kinds of filter implementation, namely OFFF, ZFFF, WOFF, FFF
(we refer it as Feng Filter). We prove that the false positive rate of our method is
lower than the traditional one-dimensional Bloom filter. We also present the
detailed implementation of our proposed filter. The traditional Bloom filter can
be regarded as a special case of the Feng Filter.

Keywords: Bloom filter � Multi-dimensional � Storage metrix

1 Introduction

Information representation and query processing are two core problems of many
computer applications, and are often associated with each other. Representation means
organizing information according to some formats and mechanisms, and making
information operable by the corresponding method. Query processing means making a
decision about whether an element with a given set of attribute values belongs to a
given set. For this purpose, Bloom filter (BF) can be an appropriate candidate.

Bloom filter, conceived by Burton Howard Bloom in 1970, is a simple space-
efficient randomized data structure for representing a set in order to support mem-
bership queries [1]. BFs may yield a small number of false positives in answering
membership queries; that is, an element might be incorrectly recognized as a member
of the set. Although Bloom filters allow false positives, for many applications, the
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savings in space and efficient searching time (constant time) outweigh this drawback
when the probability of false positives can be made sufficiently small.

Initially, BF was applied to database applications, spell checkers and file opera-
tions. In recent years, BFs have received a lot of attention in networking applications,
such as peer-to-peer applications, resource routing, security, and web caching [5, 6].
A survey on the applications of Bloom filters in distributed systems can be found in [7].
BFs are also being used in practice. For instance, Google Chrome uses a Bloom filter to
represent a blacklist of dangerous URLs.

The idea of a standard BF is to allocate a vector A of m bits, initially all set to 0, for
representing a set S = {x1, x2, …, xn} of n elements. The BF uses k independent hash
functions h1, h2, …, hk, each with range of {0, …, m − 1}. A BF is constructed as
follows. Each element x in S is hashed by k independent hash functions. All bits at
positions hi(x) in A are set to 1. A particular position in the vector A may be set to 1
multiple times, but only the first time has an effect, i.e., it is set to 1. In the querying
phase, to query for an element y, we check the bits at position hi(y) for all i = 1, 2, …,
k. If any of these bits are 0, the element is definitely not in the set. Otherwise, either the
element is in the set, or the bits have by chance been set to 1 during the insertion of
other elements, resulting in a false positive.

The contributions of this paper can be summarized as follows:
Multi-dimensional Storage Filter: we proposed a multi-dimensional Storage fil-

ter, which is an improvement of the traditional one-dimensional Bloom filter in terms of
both the accuracy and also the efficiency.

Four Different Mappings: Based of the different mapping methods, we proposed
four different kinds of Feng Filter: One First Feng Filter (OFFF), Zero First Feng Filter
(ZFFF), Whole One Feng Filter (WOFF), and Function Feng Filter (FFF). Users can
choose one of the four filters based on the application(s).

False Positive rate Analysis: We formally analyzed the false positive rate of Feng
Filter and showed that Feng Filter has much lower false positive rate in some cases.

System Design of Feng Filter: We provide the design and details of the imple-
mentation of the proposed Feng Filter.

Section 2 presents the basic idea, operation and design of Feng filter. Section 3
describes four different implementation of Feng filter while Sect. 4 analyzes the pos-
itive rate of Feng filter. Section 5 concludes this paper and provides some possible
future works for Feng Filter.

2 Feng Filter

In this section, we introduce the basic idea of Feng Filter. We first will discuss the basic
idea of multi-dimensional filter and the preconditions. Then, we will provide the details
of the basic operations.
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2.1 Basic Idea

Feng filter storage architecture is a multi-dimensional storage matrix, which is a com-
bination of different levels of storage space. One dimension of the storage matrix rep-
resents the bit vector array. Assume that we have n elements in the data set. In Feng filter,
using k hash functions, the n elements are mapped to a storage matrix M with N di-
mensions of size of m bits. The mapping is based on the followings: k hash functions,
N dimensional storage matrix, a perfect hash location adjust function L and the given
mapping relation. There are four different mapping methods, which we will discuss in
the next section of this paper. In each dimension, the row being selected is based on the
perfect hash location adjust function L, and the k hash functions. When there is a position
inM that meets the required mapping function, then this position will be set to 1 from 0.
Nothing will be done otherwise. Figure 1 shows the basic idea of Feng Filter.

There are several requirements that we need to make clear about the relation
between original data set and the data in set S.

1. The relation between original data set and the data in set S.

Elements are given based on the true situation, there is no similarity between any
two elements. Elements in the set can be equal to each other or otherwise it will not
affect the outcome of the filter.

2. Independence of the k hash functions.

One hash function on an element will not affect the other hash function. That is to
say, for a given hash function k, there is no certain mapping relationship, in which

Fig. 1. Basic idea of Feng filter
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function f represents the hash mapping relation. All hash functions have the same
extract range.

3. Bits in multi-dimensional storage matrix M can be set to 0 or 1:

0 represents that after one mapping relation, this bit is not selected while 1 rep-
resents that after a hash function, this bit is occupied. The bit in the matrix can only be
set to 0 or 1. At first, all the bits in matrix M are set to 0. With the operation of the hash
function and mapping, some bits will be set to 1.

4. Multi-dimensional storage matrix M.

In real implementation, one can choose to use two-dimensional matrix, then matrix
M is two-dimensional. If they need to use three-dimensional matrix, then matrix M is
three-dimensional. For simplicity, we suggest to choose a fixed dimensional for M. and
each dimension of matrix M is equal to the other dimensions.

5. Perfect hash location adjust function L.

For each k input position, the position needs to be divided into N group without any
changes to the k hash function results. For each group, there are k/N elements. The
range of the results of function L is restricted to [0, m)]. We designed the prefect hash
location adjust function; the range is from [0, m − 1]. We organize the k hash results
based on their values, and then divide them into N groups. The smallest is allocated to
the first group, which represents the first position in the first dimension. The second
smallest is allocated to the second dimension… the n smallest is allocated to the
n dimension. Then the n + 1 smallest will then be allocated to the second place in the
first dimension again, and so on. Totally there will be k/N elements in each group. This
is how we get all the bits in the matrix.

6. The mapping to matrix M is a strong relation.

Strong relation means that in a multi-dimensional storage matrix, there is a one to
one mapping relationship between the chosen place and the k hash functions, where
n represents the n dimensions, i represents the i-th position in dimension n which is
chosen. In OFFF, WOFF and FFF, as we will discuss later, there is a strong relation
needed. There can be exceptions too. For example, in ZFFF, weak relation is also
allowed. We will discuss the detailed mapping relation in the following sections. We
introduced a strong relation, to avoid the collision caused by mapping. But weak
relation may better make use of the space in the matrix.

7. Basic relations required.

The dimension N, hash function number k, storage matrix M space m, and original
dataset S and element number should follow the basic requirements. (1) N, k, m, n are
all positive integers; (2) k is a multiple of N.
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2.2 Basic Operations

There are two basic operations in Feng Filter: Insert and Query. When you need to
insert element x into the storage matrix M of Feng Filter, we follow the steps below:

• Apply k hash functions on x, and get k hash results.
• For the k hash results, use the perfect hash location adjust function L to get k lo-

cations, and then divide the k locations into N groups, and each group will be
mapped to the first dimension, second dimension, and so on. There are k/N elements
in each group, which means k/N positions in each dimension.

• Put k/N positions of the N dimensions as input, and based on the mapping function,
we obtain the positions in the N dimensions.

• Set each bit position of matrix M into 1 based on the results of the related function.

Query is to decide if a given element y is in the original data set or not. We can do
that by checking if y is in the Feng Filter storage. The basic process of element query is
as follows:

• Apply k hash functions on y to get k hash results.
• For the k hash results, use the perfect hash location adjust function L to get k lo-

cations, and then divide the k locations into N groups, and each group will be
mapped to the first dimension, second dimension, and so on. There are k/N elements
in each group, which means k/N positions in each dimension.

• Put k/N positions of the N dimensions as input, and based on the mapping function,
we will get the positions of the N dimensions.

• Check the related position in the matrix M to see if all bits in these positions are 1, if
the answer is no, that means element y is definitely not in the original dataset S. If
the answer if yes, that means under the reasonable false positive rate, this element is
in original dataset S.

After the discussing of the basic idea and basic operations of Feng Filter, the
following two pictures show the detailed design and the UML class diagram of Feng
Filter (Fig. 2).

Fig. 2. Design of Feng filter
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3 Mapping Relation of Feng Filter

Element x after applying k hash functions, and the operation of perfect hash location
adjust function L, will be divided into different groups,

L11; L12; � � � ; L1k
N

n o
; L21; L22; � � � ; L2k

N

n o
; � � � ; LN1; LN2; � � � ; LN k

N

n on o
which correspond to the N dimensional matrix. In which Lij represents the j-th position
in the dimension. The input of mapping relation is the positions of these N groups.
Feng Filter has four different implementations based on the four different mapping
algorithms, which will be described below.

3.1 One First Feng Filter, OFFF

For the positions of N group mapping values, starting with the smallest Li1, and set all
the related positions of M L11; L21; � � � ; LN1ð Þ as 1, after that, the second round will start
with Li2, and set all M L12; L22; � � � ;LN2ð Þ as 1, the third round will start with Li3, …,
and so on, until all the numbers are being set. In the process of setting some positions
of the N dimensional storage matrix M as 0 or 1, the mapping relation is based on the
ascending order of the mapping relation, and not every position will be set to 1. So we
name this type as One First Feng Filter, OFFF.

3.2 Zero First Feng Filter, ZFFF

For the positions of N group mapping values, starting with the smallest Li1, consider all
the related positions of M L11; L21; � � � ; LN1ð Þ, check if the position is 0, if yes, set this
bit into 1, after that, the second round will start with Li2, and set all
M L12; L22; � � � ; LN2ð Þ into 1, the third round will start with Li3, …, and so on, until all
the numbers are being set accordingly. In the process of setting the N dimensional
storage matrix M as 0 or 1, the mapping relation is based on the ascending order of the
mapping relation, and we will check if it is 0 or not. So we name this type of Feng
Filter as Zero First Feng Filter (ZFFF).

3.3 Whole One Feng Filter, WOFF

For the positions of N group mapping values, set the entire bits in the cross position as
1, that is to say, to set all the following positions into 1.

M L11; L21; � � � ; LN1ð Þ; M L12; L21; � � � ; LN1ð Þ; . . .;M L1N; L21; � � � ; LN1ð Þ
M L11; L22; � � � ; LN1ð Þ; M L12; L22; � � � ; LN1ð Þ; . . .; M L1N; L22; � � � ; LN1ð Þ
. . .

M L11; L2N; � � � ; LNNð Þ; M L12;L2N; � � � ; LNNð Þ; . . .;M L1N; L2N; � � � ; LNNð Þ
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In this mapping relation, because during the process of setting the N dimensional
storage matrix M as 0 or 1, the mapping relation is based on setting k=Nð ÞN as 1, So we
name this type of Feng Filter as Whole One Feng Filter (WOFF).

3.4 Function Feng Filter, FFF

The mapping relation of Function Feng Filter is based on the specific function. All the
three Feng Filters we discussed above can be regarded as a specific case of FFF. We
recommend the mapping relation of FFF to be a strong relation. In this mapping
relation, Because during the setting process of setting the N dimensional storage matrix
M as 0 or 1, the mapping relation is based on the specific function, So we name this
type of Feng Filter as Function Feng Filter (FFF).

4 False Positive Rate

In this section we will discuss the false positive rate of the proposed Feng Filter. Take
One First Feng Filter (OFFF) as an example, we will present the calculation of False
Positive Rate. And we will give out the results of the other three Feng Filter directly.

4.1 OFFF

In one operation, the possibility of one bit in the N dimensional storage matrix M to be
set to 1 is 1/m, and for one bit, the probability of it being set to 0 is 1�1=m, there are
n elements in the original dataset S, and for OFFF, each element in this filter will k/
N times operations, to sum up to a total of nk=N, we use p to represent the possibility of
one bit still is 0 in the two dimensional storage matrix M after nk=N times operation,
then:

p ¼ 1� 1
m

� � nk
Nð Þ

As we can see, the possibility of this bit to be 1 is 1 − p.
For a given query element y, to decide if y belongs to Feng Filter, the condition is

that after applying k hash functions on y, all the relation k/N is 1, so the false positive
function of y in the original dataset is:

fOFFF ¼ 1� pð Þk
N

Put this into the function, we will get the following results.

fOFFF m; n; k;Nð Þ ¼ 1� 1� 1
m

� �nk
N

 ! k
N
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4.2 ZFFF

fZFFF m; n; k;Nð Þ ¼ 1� 1� 1
m

� �nk
N

 ! k
N

4.3 WFFF

fWFFF m; n; k;Nð Þ ¼ 1� 1� 1
m

� � n k
Nð ÞN

� �0
@

1
A

k
Nð ÞN

4.4 FFF

fFFF m; n; k;Nð Þ ¼ 1� 1� 1
m

� �nt� �t

5 Conclusions

In this paper, based on the basic idea of Bloom, we further improve Bloom filter and
propose the use of multi-dimensional matrix storage structure as the store structure of
the filter. Our method extends the Bloom filter from one-dimensional vector storage
into N-dimensional matrix storage. To distinguish them clearly, we further put forward
the Feng Filter. From the perspective of the storage structure, the Bloom Filter can be
regarded as a special case of the Feng Filter in one-dimensional storage. Our paper
gives the definitions and detailed operation algorithms of multi-dimensional filter.
Depending on the mapping relationship, we propose four kinds of implementation for
Feng filter, namely OFFF, ZFFF, WOFF, FFF. The False Positive Rate of our method
is proved to be lower than that of the traditional Bloom Filter.
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