
A Formal Guidance Approach for Correct
Process Configuration

Souha Boubaker1(B), Amel Mammar1, Mohamed Graiet2, and Walid Gaaloul1

1 SAMOVAR, Telecom SudParis, CNRS, Universite Paris-Saclay,
Évry, France

{souha.boubaker,amel.mammar,walid.gaaloul}@telecom-sudparis.eu
2 ISIMM, Monastir University, Monastir, Tunisia

mohamed.graiet@imag.fr

Abstract. Configurable process models are recently gaining momentum
as a basis for process design by reuse. Such models are designed in a
generic manner to group common and variable parts of similar processes.
Since these processes are usually large and complex, their configuration
becomes manifestly a difficult task. This is why, an increasing attention is
being paid to help achieving the process models configuration in a correct
and domain-compliant manner. In this work, we propose an Event-B
based formal approach that guides the process analyst to easily derive
correct process variants while considering business domain constraints
provided by configuration guidelines. To show the effectiveness of our
approach, we conduct experiments on a case study.

Keywords: Business process management · Configurable process
model · Process variants · Formal verification · Event-B

1 Introduction

Configurable process models are increasingly adopted by companies due to their
capability of grouping the common and variable parts of similar processes.
According to a specific business need, process models are configured and cus-
tomized by selecting one design option for each configurable element. The
obtained processes are called variants. Several approaches have been proposed
for the aim of process variants configuration [10,14,20]. A number of them have
attempted to help achieving this in a correct manner [2,3]. One of the most
important correctness criterion for Business Process Management (BPM) is the
soundness property [2]. Hence, the configurable process model should respect a
set of structural constraints (e.g. no isolated activities or dead flows). There-
fore, a design-time verification should be applied, since the initial configurable
processes should be correct. In addition, the resulting derived variants should
fulfill a set of behavioral constraints to avoid issues such as deadlock and lack of
synchronization.

Furthermore, configuration guidelines describing business domain constraints
have been introduced [19,20] in order to further limit the configuration decisions.
c© Springer International Publishing Switzerland 2016
Q.Z. Sheng et al. (Eds.): ICSOC 2016, LNCS 9936, pp. 483–498, 2016.
DOI: 10.1007/978-3-319-46295-0 30

484 S. Boubaker et al.

These guidelines denote the best practices in a given domain. While several
approaches have attempted to provide guidance to analysts in selecting config-
uration choices according to a specific domain requirements [8,17], these con-
figuration choices are most often applied manually leaving the designer the full
responsibility for applying correct ones. Thus, the correctness of resulting vari-
ants is most often difficult to preserve even if domain constraints are respected.

This work provides a systematic approach to guide the process analyst to
easily configure process models while, not only preserving correctness, but also
complying with domain requirements. The approach targets to answer two ques-
tions: (1) Is a configurable process model correct? (2) Which configuration
choices analyst should take to obtain a correct variant with respect to a
specific domain constraints? To do so, we define an Event-B based formal
approach allowing first to analyze and check the correctness of a configurable
process (Objective 1) and to produce correct variants (Objective 2). Configu-
ration guidelines rules are also injected to our formal model to ensure that the
obtained variants comply with their domain constraints (Objective 3). In essence,
we formally define and verify constraints related to (i) structural and behavioral
correctness properties; and (ii) domain-based configuration guidelines. Then, we
use Event-B tools to perform an incremental verification by checking these con-
straints at each intermediate step of the configuration procedure.

The remainder of this paper is organized as follows. In Sect. 2, we moti-
vate our approach using an example, used also to illustrate our contribution.
We present the related work in Sect. 3. Then, we present basic concepts of
Event-B method in Sect. 4. In Sect. 5, we give an overview of our approach.
Section 6 illustrates our formalization of process configuration and its corre-
sponding constraints using Event-B. The approach verification and validation
using the RODIN tool are depicted in Sect. 7. In Sect. 8, our approach is eval-
uated using a case study. Finally, we conclude and provide insights for future
work.

2 Motivation and Requirements

configurable business process integrates multiple process variants of a same busi-
ness process in a given domain through variation points. These points are referred
to as configurable elements. The configuration decision of a configurable element
is made at design-time [20]. The non-configurable elements represent the com-
monalities in the configurable model.

Motivating Example. An example of a configurable process model for hotel
reservation and car rental agency is captured by Fig. 1. This agency has many
branches in different cities and countries. Each branch performs one variant
of this process model which may differ in terms of its structure and behavior
according to its specific needs. The customer first submits a request through
a web form (a1). Next, five main functionalities are proposed: (1) the recom-
mendation, i.e. the process fragment starting from ops2 and ending with a6 ;
(2) hotels and cars searching, i.e. the process fragment starting from ops5 and

A Formal Guidance Approach for Correct Process Configuration 485

Fig. 1. A configurable hotel and car reservation process model

Fig. 2. A process variant derived from the configurable process in Fig. 1

ending with opj3 ; (3) checking phase, i.e. the process fragment starting from
ops6 and ending with opj5 ; (4) discount offer (a14); and, (5) payment, i.e. the
process fragment starting from ops8 and ending with opj6.

The process is modeled using the Configurable Business Process Model and
Notation (C-BPMN) [7], a configurable extension to BPMN. We consider four
main control flow elements: activity (represented with a rectangle), edge (control
flow edges represented with arrows), event (represented with a circle) and con-
nector (represented with a diamond). Three main connectors, OR (©), exclusive
OR (×) and AND (+) are used to model the splits (e.g. ops1) and joins (e.g.
opj1). C-BPMN includes two configurable elements: activities and connectors.
This example presents 24 configurable elements (13 connectors and 11 activities)
which are highlighted with a thicker border. For instance, activities a1 and a18
are non-configurable, so they should be included in every configured variant.
Whereas, the activity a11 and the connector ops1 may vary from one process
to another, as they are configurable.

Table 1. Constraints for
the configuration of con-
nectors [20]

FROM-TO OR XOR AND seq
OR

√ √ √ √
XOR

√ √
AND

√

A connector may be configurable to restrict its
behavior by (i) changing its type (e.g. from OR to
AND), or/and (ii) restricting its incoming or outgoing
branches. A connector may change its type according
to a set of configuration constraints [20] (see Table 1).
Each row corresponds to the initial type that can be

486 S. Boubaker et al.

mapped to one or more types in columns. For example, an OR type can be
configured to any type while an AND remains unchangeable. The connector
AND should never be configured to a sequence. Figure 2 shows an example of a
process variant derived from the configurable process of Fig. 1. In this variant,
the analyst does not need neither the recommendation functionality for cars (a4)
nor the option to rent a car (a9 and a10). This refers to configuring ops3 to a
sequence starting from a3 (i.e. the outgoing branch of ops3 starting from a4 is
removed) and configuring ops5 to a sequence starting with a7 (i.e. the outgoing
branch of ops5 starting from a9 is removed).

Also, a configurable activity may be needed in a process variant and not
in another depending on specific requirements. Hence, these activities can be
included (i.e. ON) or excluded (i.e. OFF) from the model [20]. In the process
variant of Fig. 2, the analyst does not need the card checking functionality but
does need the creation of a new user and the discount functionalities. This refers
to configuring a11 to OFF and a5 and a14 to ON: a11 is removed in the
resulting variant whereas a5 and a14 are kept.

Configuration Guidelines. To comply with specific domain business needs,
the process analyst needs further guidelines to derive specific variants. Config-
uration guidelines provide recommendations and proposed best practices for a
specific domain [8,20]. An example of such guidelines satisfied by the variant
of Fig. 2 is: “if the hotel recommendation functionality is included (i.e. a3) in
the derived variant, then the hotel searching functionality (i.e. a7) should be
also included.” These guidelines are expressed in the form of logical If-Then-
rules where the if and then parts contain configurations of different configurable
elements.

Correctness Checking. In Fig. 3a, ops5 has been configured to a sequence
starting from a9 (the edge between ops5 and a7 disappears). Thus, the produced
process is not sound, since activities a7 and a8 become unreachable from the
initial event: they are dead as they can never be executed. In this paper, we aim
at preventing these configurations by formally ensuring that every connector
configuration involving outgoing or incoming branches restriction is implicitly
followed by a transformation phase allowing to remove the isolated activities
from the resulting process. Thereafter, an isolated node is either unreachable
from the initial event, or are not on a sequence leading to a final event.

Besides checking structural correctness of the configurable process model,
we aim to also ensure the behavioral correctness of the derived process variants
[2]. Since processes may be complex with a large number of inter-dependencies
between the different configuration alternatives, configuring a process model
becomes a quite difficult task. Therefore, analysts may easily be mistaken in
their choices which undermine the correctness of the resulting variant. In the
following, we illustrate some soundness problems [22] that would happen during
the process configuration resulting from mismatches between splits and joins.

A Formal Guidance Approach for Correct Process Configuration 487

– In Fig. 3b, the join operator opj2 has been configured to an XOR while
the connector ops1 had been already configured to an AND-Split. The two
outgoing branches from the AND-split will be activated, however, the XOR-
join needs the completion of exactly one of its incoming branches. This leads
to an improper termination of the process.

– In Fig. 3c, the connector ops4 has been configured to an XOR-Split and the
corresponding join opj4 to an AND-join. This implies a deadlock, as only
one branch is activated after the XOR-join, whereas the AND-join needs the
completion of all its incoming branches.

Fig. 3. Examples of configuration mistakes from the configurable process in Fig. 1

In view of these situations, the process configuration options should be evaluated
with respect to all configuration soundness constraints as well as configuration
guidelines to derive correct variants. Hence, our contribution consists not only
in proving the correctness of the process configuration steps but also in guiding
analyst choices with respect to these constraints using the ProB model checker.

3 Related Work

Several approaches have been proposed to model variability in configurable
process models by restricting its behavior through configurable nodes [10,14,20].
A number of them tried to ensure the process configuration correctness [19].
Mainly, two criteria related to process variants correctness were defined: struc-
tural and behavioral correctness.

Table 2 provides a comparative overview of some configuration approaches in
light of our evaluation criteria (inspired from [19]). We further decompose the
Correctness Support column into three sub-criteria: (i) structural correctness, (ii)
soundness and (iii) compliance with domain-specific configuration guidelines.

In [1,2,20], Petri net was used to formalize and verify correctness and sound-
ness properties of Configurable EPC (C-EPC) processes. They highlight the
soundness property and they derive propositional logic constraints that guaran-
tee the behavioral correctness of the configured model. The approach in [3] used
partner synthesis. Authors in [13] discuss ensuring soundness of variant models

488 S. Boubaker et al.

in the Provop framework which extends the process variants by options[14]. In
[21], authors use CoSeNets (Configurable Service Nets) that allow to achieve
correctness because of their no cycles syntactic restrictions. However, even if
these proposals try to achieve configuration correctness, they nevertheless often
lack the necessary guidance to become adaptable to a given domain and do not
support the BPMN notation.

Existing approaches for assisting process analysts in selecting desirable con-
figuration choices according to specific domain requirements are most often man-
ual. The questionnaire-based approach in [17] offers guidance for configuring
process models using a set of questions defined by domain experts and answered
by designers. Authors in [16] introduce the use of configuration rules in order
to configure a reference process template. In [6,11], authors propose a feature-
oriented approach based on feature models to represent variability. Moreover, in
[20], the notion of configuration guideline is introduced in order to meet specific
domain requirements. Authors in [8] attempted to use configuration guidelines
for assisting analysts in BPMN configuration. However, they do not consider any
correctness criterion.

In our previous work [9], an Event-B based approach for deriving correct
process variants was proposed. The current work strengthens this previous one
by the integration of configuration guidelines, and conducting experiments with
a group of users allowing to prove the approach usefulness. Thus, our approach
intends to meet the defined criteria in Table 2. First, we consider three levels
of verification: structural correctness, soundness and compliance with domain-
specific configuration guidelines. These three issues were usually discussed indi-
vidually. Then, we define a systematic formal approach for guiding analyst
in deriving correct and domain-compliant BPMN variants using a step-based
Event-B model animated by the ProB tool. Event-B is of special interest, since
it supports incremental verification allowing to produce a correct specification
by construction by proving the different constraints of the model at each step.

Table 2. Evaluation of related configuration approaches

Approaches Criteria

Process modeling Correctness support Guidance Incremental Formal

language Structural Soundness Domain support verification specification

[1–3,20] C-EPC + + + − − +

[13] Block-structured + + − − − ±
[21] CoSeNets + ± − − − ±
[16] Block-structured + + − ± − ±
[6,11] Block-structured + + − ± − +

[17] C-EPC ± − + + − +

[8] C-BPMN − − + + − −
Our approach C-BPMN + + + + + +

A Formal Guidance Approach for Correct Process Configuration 489

4 The Event-B Method

Event-B [4] is a state-based formal method for modeling and analyzing systems.
It is based on classical logic and set theory. An Event-B model uses two types of
components to describe a system: machines and contexts. A machine contains
dynamic elements that describe the state of the system, which are variables v
and events E to describe the behavior of a system. Variables are constrained
by invariants I(v), which are supposed to hold whenever the state of the system
change. Whereas a context represents the static part of the model, consisting
of sets, constants, and axioms that specifies their properties. Machines can be
linked to each other by a refinement relation. To have access to its elements, a
context is seen by a machine and its refinements. A context may be also extended
by another to introduce more elements.

An event takes the form: evt � any x where G then Act end; where x is the
list of event parameters, G denotes a conjoined list of predicates defining the
guard that are the necessary conditions for the event to occur. An action Act is
a simple assignment to a state variable to describe the consequence of the event
occurrence. In this paper, we restrict ourselves to the deterministic assignment,
the becomes equal substitution, denoted by (x := e).

To cope with the complexity of a system, Event-B defines several abstraction
levels, using refinements, in order to gradually introduce the different elements
of a system. A step wise refinement approach produces a correct specification
by construction since we prove the different properties of the system at each
step. Event-B is supported by the eclipse based RODIN platform [5] on which
different external tools (provers, animators, model-checkers) can be plugged in
order to animate/validate a formal development.

5 Approach Overview

This section gives an overview of our contribution detailed in the next sections.
Figure 4 depicts the configuration procedure allowing to obtain correct process
variants using Event-B as a formal method. Basically, we defined two abstrac-
tion levels: the first level introduces our model for process model configuration
allowing to preserve correctness (machine M0, see Sect. 6.1). In this machine, con-
figuration steps and their correctness are ensured by events and invariants (see
Sect. 6.2). Next, configuration guidelines are formally integrated to our model in
the second abstraction level as model refinement of the first level (machine M1,
see Sect. 6.3). Event-B defines proof obligations to guarantee that the invariants
are preserved by all events (see Sect. 7.1).

First of all, the correctness of the configurable process is verified with respect
to the different invariants. The configuration can start only if all the invariants
are verified. This allows to achieve our objective 1 (defined in the Introduction).
Then, the analyst uses ProB animator [18] to perform configuration steps involv-
ing each element configuration (see Sect. 7.2): firstly, the guards of each event
are evaluated (step 1). These guards include both correctness and domain con-
straints. Then, only events whose guards are verified are enabled (step 2). Thus,
the configuration step can be applied (step 3).

490 S. Boubaker et al.

Fig. 4. Our approach overview

The set of potential configuration options is updated after each step. These
steps are repeated (step 4.i) while there are configurable elements. As a result,
the analyst derives a correct and domain-compliant process variant (step 4.ii),
satisfying our objectives 2 and 3.

6 Event-B Formal Modeling of Process Configuration

In this section, we use the Event-B method to formally specify our configura-
tion approach. Based on a correct Configurable process model (see Sect. 6.1), we
define configuration steps (see Sect. 6.2) allowing to derive correct process vari-
ants with respect to a set of configuration guidelines (see Sect. 6.3). Thereafter,
the analyst is able to generate correct variants thanks to this model. Due to lack
of space, we outline in this paper the basic elements of our formalization1.

6.1 Formalizing Configurable Process Models

We start by presenting the context C0 which holds the following finite sets: (i)
BPS, which defines the set of possible processes, (ii) NODES, which contains
three values denoting types of nodes: activities (i.e. ACTS), split connectors
(i.e. CON S), and join connectors (i.e. CON J), and (iii) TYPES, which defines
three types of connectors: OR, XOR and AND.

1
The complete Event-B model can be downloaded from our web page http://www-inf.it-sudparis.

eu/SIMBAD/tools/GuideBPMEventB.

http://www-inf.it-sudparis.eu/SIMBAD/tools/GuideBPMEventB
http://www-inf.it-sudparis.eu/SIMBAD/tools/GuideBPMEventB

A Formal Guidance Approach for Correct Process Configuration 491

Listing 1. M0’s variables and typing invariants

MACHINE M0 SEES C0
VARIABLES BP BP Nodes Initial F inal SEQ CON T ype
INVARIANTS

Inv1 : BP ⊆ BP S
Inv2 : BP Nodes ∈ BP ↔ NODES
Inv3 : Initial ∈ BP → ACT S
Inv4 : F inal ∈ BP ↔ ACT S ∧ dom(F inal) = BP
Inv5 : CON T ype ∈ P Nodes � (CON S ∪ CON J) → T Y P ES
Inv6 : SEQ ∈ BP → (NODES ↔ NODES)
Inv7 : Configurable Nodes ∈ BP Nodes → BOOL

Then, we define the
machine M0 which sees the
context C0 described above.
The variables of M0 and
their typing invariants are
given in Listing 1. We define
a variable BP to store the
created processes. To map
each process to its nodes, we introduce the relation BP Nodes from BP to
NODES (Inv2). We define the start and the end events as activities using respec-
tively the total function Initial (Inv3) and the relation Final (Inv4); since we
assume that a process has exactly one initial activity but may have several final
ones. In BPMN, each connector, either a split or a join, has a type. This is
modeled using the total function CON Type (Inv5). The control flow perspec-
tive describes activities and their execution ordering through different construc-
tors [15]. This execution order is modeled using the total function SEQ (Inv6).
Finally, we define a total Boolean function Configurable Nodes (Inv7) to state
whether a given node is configurable or not in each process in which it appears.

Structural Constraints. To ensure consistent and structurally correct process
control flow, we define a set of constraints to be respected. We illustrate some of
them in Listing 2: (i) except the initial and the final nodes, each activity have
exactly one outgoing (Inv11 2); (ii) a split connector has at least two outgoings
arcs (Inv14); and (iii) a join connector has exactly one outgoing arc (Inv15).

Listing 2. Structural constraints invariants

....

Inv11 : ∀bp.(bp ∈ BP ⇒ (ACT S � SEQ(bp)) ∈ ACT S ∩ BP Nodes[{bp}] \ F inal[{bp}]
→ BP Nodes[{bp}] \ Initial[{bp}]

...

Inv14 : ∀bp, nd.(bp ∈ BP ∧ nd ∈ CON S ∧ bp �→ nd ∈ BP Nodes ⇒ card(SEQ(bp)[{nd}]) ≥ 2)
Inv15 : ∀bp.(bp ∈ BP ⇒ CON J � SEQ(bp) ∈ CON J ∩ BP Nodes[{bp}] → NODES) ...

A process is considered to be sound if it fulfills the following two conditions:
(1) all nodes of the process can be activated, i.e. every node can be reached from
the initial activity, as depicted by Inv20 in Listing 3 where cls3 is the transitive
closure of a relation; and (2) for each activity in the process, there is at least one
possible path leading from this activity to a final activity, i.e. the termination is
always possible. This condition is captured by Inv21 of Listing 3.

Listing 3. Soundness constraints invariants

Inv20 : ∀bp, node.(bp �→ node ∈ BP Nodes ∧ node
= Initial(bp) ⇒ node ∈ (cls(SEQ(bp)))[{Initial(bp)}])
Inv21 : ∀bp, node.(bp �→ node ∈ BP Nodes ∧ node /∈ F inal[{bp}]⇒

(cls(SEQ(bp)))[{node}] ∩ F inal[{bp}]
= ∅)

2
A � f denotes a domain restriction: A � f = {x �→ y|x �→ y ∈ f ∧ x ∈ A}.

3
cls(r) denotes the closure of the relation r defined, for each relation (r ∈ S ↔ S), by: (1)

cls(r) =
⋃

i=1..∞ ri ; (2) r1 = r ; and (3) for each n >= 2rn = (r; rn−1) The transitive closure

formulations were expressed as machine theorems.

492 S. Boubaker et al.

Listing 4. Synchronization invariant

1 Inv22:∀bp, ops, n1, n2.(bp �→ ops ∈ BP Nodes � CON S
2 ∧ CON T ype(bp �→ ops) = AND
3 ∧ n1 ∈ SEQ(bp)[{ops}]∧
4 n2 ∈ SEQ(bp)[{ops}] ∧ n1
= n2
5⇒ (∀opj.opj ∈(∪t.t ∈ ((cls(SEQ(bp)))[{n1}] ∪ {n1})
6 ∩ ((cls(SEQ(bp)))[{n2}] ∪ {n2}) ∧
7 SEQ(bp) ∼ [{t}] ∩ (((cls(SEQ(bp)))[{n1}] ∪ {n1})
8 ∩ ((cls(SEQ(bp)))[{n2}] ∪ {n2})) = ∅ | {t})
9 ⇒ (CON T ype(bp �→ opj) = AND ∨
10 (CON T ype(bp �→ opj) = OR ∧
11 Configurable Nodes(bp �→ opj) = T RUE))))

Behavioral Constraints. The
configuration of a business process
model may affect the soundness by
two types of potential errors: lack
of synchronization and deadlocks
[22]. These situations result from a
mismatch between splits and joins.
To formally prevent these situa-
tions during configuration procedure, we defined six invariants: three for the
splits and three for the joins. These invariants should be preserved by all the
events defined to capture configuration operations. For instance, the lack of syn-
chronization could be captured by joining AND-split flows with XOR-join flows
(see Fig. 3b). Thanks to Inv22 (Listing 44), this situation is not allowed in our
model. Specifically, having a AND-split operator ops (line 2), for each couple of
outgoing nodes n1 and n2 (lines 3 and 4), the first common node5 opj (lines 4
to 7) should be an AND or a not yet configured OR connector that should be
eventually configured as an AND (lines 9 and 10). Similar invariants are defined
to ensure a deadlock-free control flow.

6.2 Formalizing Configuration Steps

In this section, we describe the formal modeling of the configurable elements:
activity, and connector. In this formalization, each configuration step is per-
formed by an appropriate event. In order to derive correct variants, we define a
set of constraints using invariants and we prove that each event preserves them.

Activity Configuration. A configurable activity could be included or excluded
in a process variant according to the analyst choice. To define this activity con-
figuration, two invariants and two events are introduced.

With regard to events, activity configuration is performed through either:
(i) ConfigureACTON event which keeps the activity; or (ii) ConfigureACTOFF
event which excludes it. We present in Listing 5 the ConfigureACTOFF event.
Based on a configurable process bp1, a configured process bp2 is a result of
excluding an activity act. As guard, act must be configurable (grd3). This event
allows bp2 to inherit from bp1 : (i) its nodes whilst removing act (act2), (ii)
its initial and final activities (act3 and act4), (iii) all its nodes relations (i.e.
SEQ(bp1)) while removing act dependencies and creating a new one connecting
act successor and predecessor (act5), (iv) its configurable nodes (act6), and
(iiv) types of its connectors. Finally, we define bp2 as a configuration of bp1
whilst excluding act (act8) [9]. Similarly, the event ConfigureACTON allows to
maintain the same process by keeping the configurable activity6.
4

The inverse of a function f , (f−1), is denoted in Event-B as (f ∼).
5

Having two nodes n1 and n2, the first common node is the first node which belongs to the

transitive closure of both nodes n1 and n2.
6

More details can be found in http://www-inf.it-sudparis.eu/SIMBAD/tools/GuideBPMEventB.

http://www-inf.it-sudparis.eu/SIMBAD/tools/GuideBPMEventB

A Formal Guidance Approach for Correct Process Configuration 493

Listing 5. Excluding activity event

ConfigureACTOFF � ANY bp1 bp2 act
WHERE

grd1: bp1 ∈ BP ∧ act ∈ ACT S ∧ bp1 �→ act ∈ BP Nodes ∧ bp2 ∈ BP S \ BP
grd2: Configurable Nodes(bp1 �→ act) = T RUE

...

THEN

act1: BP := BP ∪ {bp2}
act2: BP Nodes := BP Nodes ∪ ({bp2} × (BP Nodes[{bp1}] \ {act}))
act3: Initial(bp2) := Initial(bp1)
act4: F inal := F inal ∪ ({bp2} × (F inal[{bp1}]))
act5: SEQ(bp2) := (({act} � SEQ(bp1)) � {act}) ∪((SEQ(bp1)) ∼ [{act}] × SEQ(bp1)[{act}])
act6: Configurable Nodes := Configurable Nodes ∪ (� node.node ∈ BP Nodes[{bp1}] \ {act}

| {bp2 �→ node �→ Configurable Nodes(bp1 �→ node)})
act7: CON T ype := CON T ype ∪ (� con.con ∈ BP Nodes[{bp1}] ∩ (CON S ∪ CON J)

| {bp2 �→ con �→ CON T ype(bp1 �→ con)})
act8: Is Configuration OF F Act := Is Configuration OF F Act ∪ {bp2 �→ bp1}

Connector Configuration. A connector configuration has to consider the fol-
lowing requirements: (1) the configuration constraints for each type of connector,
(2) only configurable nodes can be removed, and (3) the connectors types match-
ing checking in order to prevent erroneous situations.

Concretely, in order to obtain a well-structured configured process, an invari-
ant for each configuration choice should be respected. These configuration choices
are insured by two events (either split or join) for each connector type. For
instance, the event ConfigureORSplit allows configuring a configurable split con-
nector from OR type to any type (according to Table 1) while preserving the
number of branches greater than two. Recall that each branch can be removed
only if all its nodes are configurable. Furthermore, all events should not lead
to deadlock or lack of synchronization: for example, for every pair of outgoing
branches if the corresponding join is an AND, then the split should be configured
to an AND as well. More details about this event and other similar ones (e.g.
ConfigureORJoin) are given in [9].

Finally, a connector can be configured to a sequence Seq(N) by keeping a
single branch starting by the node N. This is modeled using the event Config-
ureCONSToSeq for a split connector (resp. ConfigureCONJToSeq for a join).

6.3 Injecting Configuration Guidelines in the Model

Process providers may define specific business domain constraints for their
process configurations. Thus, configuration guidelines are introduced to depict
relevant inter-dependencies between the configuration decisions in order to be
inline with domain constraints and best practices. Such guidelines are expressed
via logical expressions of the form If-Then-rules. Both the if and then parts
contain statements about binding configurable nodes to concrete values [20]. An
example of such rules is: “if a9=OFF and ops5=Seq(a7) then a14=OFF”, i.e.
if the car searching and selection functionalities are excluded in a given variant,
then the discount activity is excluded too. Note that the if part may contain
many conditions and the then part contains only one statement.

In order to integrate these domain constraints in our model, we define a
second abstraction level M1 that refines the first one, M0. We define for each type

494 S. Boubaker et al.

of then statement one invariant. For instance, the relation ConfigurationG ACT

(inv1, Listing 6) defines a guideline related to the configuration of an activity.
Thus, the guideline may have five different conditions: an activity configuration
(line 1), a split or join configuration to a type (line 2), and a split or join
configuration to a sequence (line 3). Similarly, ConfigurationG CONS defines the
guideline for a split connector configuration.

Listing 6. Guidelines invariants

1 Inv1 : ConfigurationG ACT ∈ P(ACT S × CONF) ×
2 P(CON S × T Y P ES×P1(NODES)) × P(CON J × T Y P ES×P1(NODES)) ×
3 P(CON S × NODES) × P(CON J × NODES) ↔ ACT S × CONF
4 Inv2 : ConfigurationG CONS ∈ P(ACT S × CONF) ×
5 P(CON S × T Y P ES×P1(NODES)) × P(CON J × T Y P ES×P1(NODES)) ×
6 P(CON S × NODES) × P(CON J × NODES) ↔ CON S × T Y P ES×P1(NODES)

...

As each configuration step must fulfill the configuration guidelines, we refined
our abstract events by adding one guard for each guideline. For instance, consid-
ering the same example above, we have {a9 �→ OFF} �→ ∅ �→ ∅ �→ {ops5 �→ a7} �→
∅ �→ (a14 �→ OFF) ∈ ConfigurationG ACT. Thus, we have two conditions consist-
ing of {a9 �→ OFF} and {ops5 �→ a7} that if satisfied, a14 should be mapped to
OFF. Hence, we added a guard in the event ConfigureACTON to ensure that in
order to set an activity to ON at least one condition is not satisfied in a guideline
leading to the configuration of this activity to OFF. In this particular case, a14
can be set to ON if a9 and op5 have been both configured and a9 has been
set to ON or ops5 has not been configured as a sequence of a7. Reciprocally,
the configuration a14 to ON is not allowed if at least one of a9 and op5 is not
configured yet or both have been configured according to the guideline.

7 Verification and Validation

7.1 Verification Using Proof Obligations

In order to demonstrate that the formal specification of configurable process
models is correct, a the number of generated proof obligations (POs) should be
discharged. Using the Rodin tool [5], our model generated 358 proof obligations;
most of them (272 POs � 76%) were automatically discharged; more complex
ones (86 POs � 24%) required the interaction with the provers to help them
find the right rules to apply but also to define additional rules that may lack in
the rule base of the prover. These POs ensure that the invariants which model
the different constraints on the configurable business processes and the derived
variants, are always satisfied (i.e. they hold initially; and each event preserves
them). For each event of the form (WHEN G THEN Act) with G and Act
representing the guard and the action respectively, the following proof obligation
is generated to verify that the execution of the action Act under the guard G
permits to preserve the invariant [4]: (Inv ∧ G) ⇒ [Act]Inv.

An example of the proofs, we have established, concerns the event Config-
ureACTOFF correctness with respect to the invariant inv20: we have to prove

A Formal Guidance Approach for Correct Process Configuration 495

that even if an activity act is removed (set to OFF), it remains possible to reach
each node from the initial one. This holds since we have added a control from
linking the predecessor of act to its successor. To discharge this proof that refers
to the closure of a relation, we have added the rule defining the closure of the
union of two relation s and r:

r ∈ t ↔ t ∧ s ∈ t ↔ t ⇒ cls(r ∪ s) = cls(r)((id(t) ∪ cls(r)); s)+; (id(t) ∪ cls(r))

7.2 Validation by Animation

Now, based on a correct model, we validate our Event-B specification by ani-
mation and model checking using the ProB plugin [18]. Concretely, we play and
observe different scenarios and check the behavior of our model by showing at
each step the values of each variable, which events are enabled or not.

For instance, we process the animation of the scenario captured by Fig. 3b
as follows. After initializing the model using the process in Fig. 1, all invari-
ants should be respected to ensure the correctness of the configurable process
model. Next, we process our scenario by triggering enabled events, and at each
configuration step, we observe that invariants are always re-established: (1) we
trigger the ConfigureORSplit event to configure the split operator ops1 from
OR to an AND (to = AND) while maintaining the same branches, (2) ops3 and
opj1 are configured (using ConfigureToSeq event) to a sequence starting from
a3 (a3 is set to ON as well), (3) the activity a7 is set the to ON (using Con-
figureACTON) since a3 in included in the previous step (the mapping of a7 to
OFF is not allowed in accordance with the guideline defined in Sect. 2), (4) ops5

Fig. 5. The connector opj2 con-
figuration restriction using ProB

and opj3 are also configured to a sequence start-
ing from a7 (only this branch could be pre-
served, since the second branch nodes are con-
figurable), next, (5) when configuring the join
operator opj2, the only allowed alternative is to
fire the event ConfigureORJoin with the con-
nector type parameter AND (see Fig. 5). By
restricting configuration choices, we guaranteed
that the resulted variant have not improper ter-
mination caused by the lack of synchronization.

8 Case Study

In order to evaluate the practical usefulness and identify the opportunities of
using our approach, we conducted a case study with a group of business process
experts and analysts. We examine its objectives, analyze and discuss its practical
experience in conducting business process model configuration in the following.

Objective. The main goal of our work is to evaluate how our approach helps
and guides analysts in generating correct and domain-compliant process con-
figuration. Therefore, we define the following research question: How can our
approach assist process analyst in applying correct configuration steps?

496 S. Boubaker et al.

To answer this question, we formulate three hypotheses: our approach allows
(H1) to save time and facilitate the identification of the configuration steps; (H2)
to guarantee a correct process model at each configuration step; and (H3) to
derive domain-compliant process variants based on the configuration guidelines.

Design, Data Collection and Execution. Our case study is a real con-
figurable supervision process adopted by Orange, a French telecom industrial
partner. Different variants of this process are used by Orange affiliates in differ-
ent cities and countries according to their specific needs. Based on 28 variants,
a set of configuration guidelines was generated by an automated approach and
validated by a domain expert [8].

With a population of 9 participants that are familiar with process configu-
ration, we targeted experiments to derive a set of different variants using the
considered configurable process model. With this purpose, we divided the popu-
lation into three groups of 3 people each. After a workshop organized to explain
the basics needed in this study, the first group (G1) is asked to manually derive
a maximum of process variants without any guidance. Then, the second group
(G2) is also asked to manually derive process variants, but, while providing them
with the generated configuration guidelines rules. Whereas, the third group (G3)
is provided with the complete Event-B model (installed under the RODIN tool)
and asked to generate process variants with respect to the allowed configuration
choices by the model checking. So, participants of latter group can apply only
configuration steps that are allowed by our model. As mentioned in the previous
sections, this model includes correctness and domain constraints. However, the
first two groups take the burden of verifying the correctness of their choices.

The resulted process variants are then collected for comparison. In order to
answer the identified research question and confirm its hypotheses, we evaluated
the results according to two parameters: (1) the time needed to derive process
variants for the different groups, (2) the number of errors for the identified
correctness and domain constraints.

Results Analysis and Findings. Regarding the time needed to derive vari-
ants, the group G1 took in average 16 min and the group G2 took in average
14 min, whereas the group G3 took only 5 min. Table 3 shows the distribution
of the time according to the correctness and the business criteria. Through this
table, we notice that the more participants of G1 and G2 take time in deriving
variants the less correctness errors are detected. This can explain that partic-
ipants are making a special effort. Also, it is clear that the first two groups
took much more time in deriving correct and domain-compliant variants than
the group G3. It is worth noting that all derived variants by G3 contain nei-
ther structural nor behavioral correctness errors. No domain errors are detected
as well. Moreover, the participants of group G3 affirmed that the ProB model
checker is quite straightforward to use and it assisted them in defining appropri-
ate configuration steps. They easily followed the enabled events to make their
choices which helped them to be compliant not only to correctness constraints

A Formal Guidance Approach for Correct Process Configuration 497

but also to domain recommendations. As a result, it can be concluded that our
approach allows (1) to save time and to assist users in defining their configura-
tion choices, which supports the hypothesis H1 ; and (2) to respect correctness
and domain constraints, supporting H2 and H3.

Table 3. The average time in minutes unit spent to derive variants either correct (C)
or not (¬C), and either business-complaint (B) or not (¬B)

Group Variant

C & B C & ¬B ¬C & B ¬C & ¬B

G1 23 17 15 8

G2 17 × 11 ×
G3 5 × × ×

Threats to Validity. First, the small number of the collected process variants,
used to generate our configuration guidelines, can be considered as a threat of
validity. However, in this study we have chosen 28 variants that are relevant
and depict various business needs. Secondly, one case study has been only con-
ducted by 9 participants. We believe that a larger group of participants with
varied backgrounds need to be used to highlight the validity and reliability of
the experiments results. We leave this to future work.

9 Conclusion

In this paper, we propose a formal Event-B based approach to derive correct vari-
ants from well-defined configurable processes. To do so, we introduce a step-based
configuration approach to guide the analyst by providing at each step the poten-
tial configuration choices. We have succeeded to verify structural constraints of
configurable process model (e.g. each node reachable from the initial activity,
has always the option to complete). We have also reached our goal in preserving
the variants soundness (no deadlocks and lack of synchronization situations).
Finally, our approach respects domain requirements provided by configuration
guidelines as well. As future work, we plan to extend the proposed approach by
considering the required configurable cloud resource allocation [12] and adding
a formal verification phase.

References

1. van der Aalst, W.M.P., Dumas, M., Gottschalk, F., ter Hofstede, A.H.M., La Rosa,
M., Mendling, J.: Correctness-preserving configuration of business process models.
In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 46–61.
Springer, Heidelberg (2008)

498 S. Boubaker et al.

2. Aalst, W.V.D., et al.: Preserving correctness during business process model con-
figuration. Formal Aspects Comput. 22(3–4), 459–482 (2008)

3. Aalst, W.V.D., Lohmann, N., Rosa, M.L.: Ensuring correctness during process
configuration via partner synthesis. Inf. Syst. 37(6), 574–592 (2012)

4. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

5. Abrial, J.R., et al.: Rodin: an open toolset for modelling and reasoning in Event-B.
STTT 12(6), 447–466 (2010)

6. Asadi, M., Mohabbati, B., Grner, G., Gasevic, D.: Development and validation of
customized process models. J. Syst. Softw. 96, 73–92 (2014)

7. Assy, N.: Automated support of the variability in configurable process models
(2015)

8. Assy, N., Gaaloul, W.: Extracting configuration guidance models from business
process repositories. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.)
BPM 2015. LNCS, vol. 9253, pp. 198–206. Springer, Heidelberg (2015)

9. Boubaker, S., Mammar, A., Graiet, M., Gaaloul, W.: An Event-B based approach
for ensuring correct configurable business processes. In: The 23rd IEEE Interna-
tional Conference on Web Services, ICWS (2016)

10. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H., La Rosa, M.: Con-
figurable workflow models. Int. J. Coop. Inf. Syst. (IJCIS) 17(2) (2008)

11. Groner, G., Boskovic, M., Silva Parreiras, F., Gasevic, D.: Modeling and validation
of business process families. Inf. Syst. 38(5), 709–726 (2013)

12. Hachicha, E., Assy, N., Gaaloul, W., Mendling, J.: A configurable resource alloca-
tion for multi-tenant process development in the cloud. In: Nurcan, S., Soffer, P.,
Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 558–574. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-39696-5 34

13. Hallerbach, A., Bauer, T., Reichert, M.: Guaranteeing soundness of configurable
process variants in provop. In: IEEE Conference on Commerce and Enterprise
Computing, CEC, pp. 98–105 (2009)

14. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process
models: the provop approach. J. Softw. Maintenance Evol. 22(6–7), 519–546 (2010)

15. Kiepuszewski, B., Hofstede, A.T., Aalst, W.V.D.: Fundamentals of control flow in
workflows. Acta Informatica 39(3), 143–209 (2002)

16. Kumar, A., Yao, W.: Design and management of flexible process variants using
templates and rules. Comput. Ind. 63(2), 112–130 (2012)

17. La Rosa, M., Van Der Aalst, W., Dumas, M., ter Hofstede, A.: Questionnaire-based
variability modeling for system configuration. Softw. Syst. Model. 8(2), 251–274
(2008)

18. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
Int. J. Softw. Tools Technol. Transf. 10(2), 185–203 (2008)

19. Rosa, M.L., Aalst, W.V.D., Dumas, M., Milani, F.: Business process variability
modeling: a survey (2013)

20. Rosemann, M., Aalst, W.V.D.: A configurable reference modelling language. Inf.
Syst. 32(1), 1–23 (2007)

21. Schunselaar, D.M.M., Verbeek, E., van der Aalst, W.M.P., Raijers, H.A.: Creating
sound and reversible configurable process models using CoSeNets. In: Abramowicz,
W., Kriksciuniene, D., Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117, pp. 24–35.
Springer, Heidelberg (2012)

22. Van Dongen, B., Mendling, J., Aalst, W.V.D.: Structural patterns for soundness of
business process models. In: Enterprise Distributed Object Computing Conference,
pp. 116–128 (2006)

http://dx.doi.org/10.1007/978-3-319-39696-5_34

	A Formal Guidance Approach for Correct Process Configuration
	1 Introduction
	2 Motivation and Requirements
	3 Related Work
	4 The Event-B Method
	5 Approach Overview
	6 Event-B Formal Modeling of Process Configuration
	6.1 Formalizing Configurable Process Models
	6.2 Formalizing Configuration Steps
	6.3 Injecting Configuration Guidelines in the Model

	7 Verification and Validation
	7.1 Verification Using Proof Obligations
	7.2 Validation by Animation

	8 Case Study
	9 Conclusion
	References

