
Detecting Cloud (Anti)Patterns:
OCCI Perspective

Hayet Brabra1,4(B), Achraf Mtibaa2, Layth Sliman3, Walid Gaaloul4,
Boualem Benatallah5, and Faiez Gargouri1

1 ISIMS Sfax, Miracl Laboratory, Sfax, Tunisia
brabra.hayeet@gmail.com, faiez.gargouri@gmail.com
2 ENETCOM Sfax, Miracl Laboratory, Sfax, Tunisia

achrafmtibaa@gmail.com
3 Efrei, Paris, France

layth.sliman@efrei.fr
4 TELECOM SudParis, CNRS UMR Samovar, Évry, France

walid.gaaloul@mines-telecom.fr
5 UNSW, Sydney, Australia

boualem.benatallah@gmail.com

Abstract. Open Cloud Computing Interface (OCCI) follows a set of
guidelines (i.e. best practices) to create interoperable APIs over Cloud
resources. In this paper, we identify a set of patterns that must be
followed and anti-patterns that should be avoided to comply with the
OCCI guidelines. To automatically detect (anti)patterns, we propose a
Semantic-based approach, relying on SWRL (Semantic Web Rule Lan-
guage) rules and in SQWRL (Semantic Query-Enhanced Web Rule Lan-
guage) queries to describe the (anti)patterns symptoms. An evaluation,
conducted on real world Cloud service APIs, shows the feasibility of the
proposed approach by assessing their compliance to OCCI standard.

Keywords: OCCI · Pattern · Anti-pattern · Ontology · SWRL ·
SQWRL

1 Introduction

Cloud Computing has emerged as a new technological paradigm that aims to
offer a novel vision to deliver computing resources with significant cost reduction.
However, its rapid evolution has reached a level of complexity due mainly to the
vast and heterogeneous amount of services and resources. More precisely, the
management of a potentially large number of Cloud services with heterogeneous
interfaces is a challenge [13]. The lack of interoperability solutions may hinder the
widespread adoption of Cloud Computing because organization fear of vendor
lock-in [6,12]. The latter refers to a situation in which once an organization has
selected a Cloud provider changing to another provider can be only very costly.

A common way for avoiding these issues is the use of open standards
[6,9,12]. Actually, many Cloud projects are developing standards for the Cloud.

c© Springer International Publishing Switzerland 2016
Q.Z. Sheng et al. (Eds.): ICSOC 2016, LNCS 9936, pp. 202–218, 2016.
DOI: 10.1007/978-3-319-46295-0 13



Detecting Cloud (Anti)Patterns: OCCI Perspective 203

However, the most popular one is Open Cloud Computing Interface (OCCI)
[1]. OCCI is an open standard defining a meta-model for Cloud resources and a
RESTful API for management tasks. A well-designed management API hides the
heterogeneity and evolution of the managed resources across various providers,
while providing unified and efficient access to them. Among the OCCI specifica-
tions, OCCI HTTP Protocol [16] provides a set of guidelines (i.e. recommended
best practices) to create unified APIs for managing Cloud resources. These best
practices represent together a minimal set to achieve the interoperability and
provide a uniform way to discover and manage Cloud resources across various
providers. The non-compliance or poor adoption of such practices in current
Cloud resource management APIs may negatively impact the interoperation of
Cloud services. Currently, OCCI members provide a textual description of sug-
gested guidelines in [16] as well as a compliance test tool [2] that does not provide
a clear and detailed description. This tool can be used to show the presence of
best practices, but never to show the absence of one of them. In this paper, we
aim at providing developer both good and poor practices in Cloud RESTful APIs
according to OCCI perspective and thus increasing its understandability. Some
efforts have been realized in the past to deal with RESTful APIs. For example,
Francis et al. [8] proposed a heuristic-based approach to detect (anti)patterns in
RESTful systems to enhance their understandability and reusability. Such app-
roach is tailored to deal with REST APIs like facebook and Twitter as it only
focuses on REST aspects. Therefore, they cannot be applied to RESTful APIs
developped for cloud services or ressources. Along with REST aspects, OCCI
provides guidelines that relate to the structure and definition of Cloud resources
that have not been so far considered in existing research work.

In this paper, we define non-compliance (respectively, compliance) to OCCI
RESTful API guidelines as OCCI REST Anti-patterns (respectively, OCCI
REST Patterns). We propose semantic-based detection of OCCI REST Pat-
terns and Anti-patterns in Cloud RESTful APIs. More specifically, we pro-
pose (1) a semantic specification of 28 common OCCI REST(anti)patterns for
Cloud RESTful APIs; (2) SWRL rules1 in conjunction with SQWRL queries2

for automatic detection of OCCI REST(anti)patterns (3) and a validation of
our approach by analyzing the 28 OCCI REST (anti)patterns on real world
Cloud RESTful APIs, including Openstack, COAPS, OpenNebula, Amazon S3,
Microsoft Azure and Rackspace. The remainder of the paper is structured as
follows: in Sect. 2 we discuss the related work. Section 3 presents the proposed
approach. Section 4 presents a validation of our solution. Finally, we conclude
the paper and provide insight for future works.

2 Related Work

Over the last years, several researches used patterns and anti-patterns to express
architectural concerns and solutions in Object Oriented Systems (OO systems),
1 https://www.w3.org/Submission/SWRL/.
2 http://protege.cim3.net/cgi-bin/wiki.pl?SQWRL.

https://www.w3.org/Submission/SWRL/
http://protege.cim3.net/cgi-bin/wiki.pl?SQWRL


204 H. Brabra et al.

Service Oriented Architectures (SOAs) and recently in RESTful APIs. In the
context of OO systems, Kessentini et al. [11] proposed an automated approach to
detect various types of design defects in the source code. The proposed approach
is based on detection rules that are defined as combinations of metrics and
thresholds that better conform to known instances of design defects. Fourati
et al. [7] proposed an approach that identifies anti-patterns in UML designs
through the use of existing and newly defined quality metrics. The proposed
approach examines the structural and behavioral information through the class
and sequence diagrams. Another interesting effort has been done in [20] which
proposed SPARSE, an OWL ontology based knowledge system that aims at
assessing software project managers in the anti-pattern detection process.

Other related works have focused on the detection of anti-patterns and pat-
terns in SOA. Dudney et al. [4] have defined a catalog of 53 anti-patterns related
to the architecture, design, and implementation of J2EE-based systems. In [15],
Moha et al. addressed the lack of methods and techniques for detecting SOA
anti-patterns in service-based systems (SBSs). The aim is to provide an app-
roach based on BNF grammar to detect the anti-patterns that may occur under
SBSs in order to help the software engineer in assessing the design and QoS.
This approach is also adapted to detect anti-patterns in Web Services [19].

However, we noted that both OO and SOA detection methods cannot be
directly applied to RESTful APIs because OO focuses only on classes and SOA
focuses on services and WSDL descriptions. In consequence, Francis et al. in
[8] proposed a heuristics-based approach to detect (anti)patterns in REST-
ful systems. Additionally, the same authors have proposed DOLAR approach
which applies syntactic and semantic analyses for the detection of linguistic
(anti)patterns in RESTful APIs [18]. Both approaches only define a set of
(anti)patterns focusing on properties related to REST architecture. Thus, they
cannot be applied to RESTful APIs developped for cloud services or ressources.
Motivated by these considerations, in this paper, we will focus on (anti)patterns
that relate to the structure and definition of Cloud resources that have not been so
far considered in previous research works. These (anti)patterns will be then used
to assess the compliance of current Cloud RESTful APIs to OCCI guidelines.

3 Approach Overview

Our approach is based on semantics solutions to formally define (anti)patterns
and ensure their automatic detection. The first reason to have such choice is
the need for a technique that deals with the structure and semantic relations
among resources, services, and parameters and able to resolve the ambiguity in
terminologies used by developer to describe a cloud RESTful API. The second
is to provide an automatic support to detect (anti)patterns through applying
a reasoning process to draw inferences from details in a Cloud RESTful API
with the assurance that the provided new knowledge is sound. In this section,
we present an overall overview of our proposed approach. As shown in Fig. 1,
our approach proceeds in three steps:



Detecting Cloud (Anti)Patterns: OCCI Perspective 205

%

Fig. 1. Approach overview

Step 1. Definition of OCCI REST (Anti)Patterns: This step allows to define
the core ontology that we call (Anti)Patterns Ontology. The proposed ontology
contains the relevant and necessary concepts for the detection purpose.
Step 2. Analysis and Definition of Detection Rules: This step consists of analyz-
ing the textual description of OCCI REST(anti)patterns from the OCCI REST-
ful Protocol [16] to identify their relevant features. We use these relevant features
to define semantic rules required for the detection of (anti)patterns. Both rules
and (Anti)Patterns Ontology are then stored in a knowledge base which can be
later interrogated with SQWRL queries for analysing the detection results.
Step 3. Detection of OCCI REST (Anti)Patterns: This step deals with the auto-
matic application of detection rules defined in Step 2 using our detection tool to
detect each (anti)pattern. This tool will return to the developer a set of detecting
OCCI REST (anti)patterns in a given RESTful API.

3.1 Definition of OCCI REST (Anti)Patterns

In this step, we perform a domain analysis on both OCCI descriptions for Cloud
resources and documentations of the RESTful API existing in the literature
in order to build (Anti)Patterns Ontology, a model that provides a semantic
definition of OCCI REST (anti)patterns using OWL 2 (OWL 2 Web Ontol-
ogy Language) [3]. (Anti)Patterns Ontology is specified as a set of interrelated
ontologies viz. Pattern Ontology, Anti-Pattern Ontology, REST API Ontology
and OCCI Ontology.

Pattern Ontology: The Pattern Ontology, as depicted in Fig. 2, captures the
necessary information defining an OCCI REST pattern in term of attributes
that are linked to its main concept Ptt:Pattern. Those attributes (i.e. equivalent
to data type properties in OWL language) are Ptt:name, Ptt:description and
Ptt:required its value is a boolean that depicts whether the pattern is required
or no. In addition, the Ptt:Pattern concept has two relationships which are
Ptt:Disjoint and Ptt:Concerns and represents a range of Rest:hasPattern, which
denotes that it can be an occurrence of the pattern either for a given API or its
elements. The Ptt:Disjoint relationship shows the corresponding anti-pattern for



206 H. Brabra et al.

Fig. 2. (Anti)patterns ontology

a given pattern. The Ptt:Concerns relationship indicates that a pattern concerns
a given OCCI Type (i.e. Resource, Mixin, etc.).

Anti-Pattern Ontology: As depicted in Fig. 2, the definition of Anti-Pattern
Ontology is similar to the Pattern Ontology. However, as opposed to OCCI
REST pattern, we use OCCI REST anti-pattern to capture a bad practice of
such OCCI RESTful API guidelines. For that reason, we add along with the
provided definition for a pattern except the attribute Ptt:required, the Att:Cause
and Att:Consequence as concepts defining respectively the cause of OCCI REST-
ful anti-pattern and the consequence that may result from its occurrence. Att:has
relationships links respectively the Att:AntiPattern concept with Att:Cause and
Att:Consequence concepts. In that way, we provide developer enough knowl-
edge overviewing the detected anti-pattern. Rest:hasAntipattern denotes that
the given API or one of its elements can have an anti-pattern.

REST API Ontology: The REST API ontology aims at providing a semantic-
based description of the structural and functional characteristics of the OCCI
RESTful API. OCCI RESTful API follows a RESTful API design, meaning
that applications use standard HTTP methods to retrieve and manipulate OCCI
resources. To define this ontology, we exploit the various documentations of the
RESTful API while taking OCCI RESTful API specificities into account. The
main concept is Rest:API (a REST API) which is linked, as shown in Fig. 3(b),
to the following three concepts: Rest:AuthorizationProtocol (an authorization
protocol used to access the API), Rest:Element (an abstract type describing
through its subclasses the possible components that we can find in a REST
API, including request header, response header, code status, operation, URL,
request, response, etc.) and Rest:Operation (a REST operation such as Create a
Server)

OCCI Ontology: All RESTful API operations are applied on OCCI types (i.e.
Category, Resource, etc.) that are already defined both in OCCI Core [17] and
OCCI infrastructure [14]. To allow such capability, we define OCCI ontology



Detecting Cloud (Anti)Patterns: OCCI Perspective 207

"""

"

Fig. 3. (a) OCCI ontology; (b) REST API ontology

that provides a semantic description of the real-world resources abstraction pro-
vided in these two specifications while taking the OCCI rendering syntax of
those resources [5] into account. The Fig. 3(a) gives an overview of the OCCI
Ontology. The heart of the OCCI Ontology is the Occi:Resource concept which
has three sub-concepts Occi:Storage, Occi:Compute and Occi:Network. In such
way, a Resource can be a virtual machine, a virtual switch, etc. Occi:Resource is
complemented by the Occi:Link concept which associates one resource instance
with another. The Link type can be a Storage Link or Network Interface and
contains a number of common attributes (e.g. Occi:source, Occi:target). Both
Occi:Resource and Occi:Link inherit the Occi:Entity concept. The Occi:Kind is
the core of the classification system built into the OCCI Core Model. Occi:Kind
is a specialization of Occi:Category and introduces additional capabilities in
terms of actions. Occi:Action identifies an invocable operation applicable to an
entity instance. The last type defined by the OCCI Core Model is the Occi:Mixin
type. An instance of Mixin can be associated with an entity instance to mix-in
additional capabilities at run-time [17].

3.2 Analysis and Definition of Detection Rules

In this step, we analyses the textual definitions of the (anti)patterns listed in
Tables 1, 2, and 3 to identify their relevant features. These features will then
be used to define the semantic rules required to detect (anti)patterns. We rely
on SWRL language to properly define these rules. A SWRL rule consists of two
parts which are called the Antecedent and Consequent. An Antecedent repre-
sents a conjunction of one or more atom aiming together to define the condi-
tions that must be met. Whereas, the Consequent specifies the fact that may
be resulted in case of fulfillment of the conditions defined in Antecedent. SWRL
rules can contain also SWRL built-ins (e.g. swrlb:matches) or SQWRL queries



208 H. Brabra et al.

Table 1. Management related (anti)patterns.

1.Query Interface Support vs Missing Query Interface

Description: To be compliant with OCCI, Query interface must be implemented. It allows the client to

discover all capabilities he refers to [16]. It represents three operations applied on Actions, Kind, and Mixin,

including retrieval of all registered Kinds, Actions and Mixins (HTTP verb GET must be used), adding

(HTTP verb POST must be used) and removing a Mixin(HTTP verb DELETE must be used). It must be

found at the path /-/ on the root of the implementation. The poor practice of query interface or the no

support of it leads to the Missing query interface anti-pattern

2. Compliant Create vs. Non-Compliant Create

Description: The Create operation that can be applied to whatever entity (i.e. Mixin, Resource) should be

compliant with the OCCI RESTful Protocol. This compliance requires the respect of the creation guidelines

regarding the type of the entity that may be created. These constraints are summarized as follows:

- To create a Mixin definition, the HTTP verb POST must be used and HTTP Category term, scheme and

location must be supported in this definition

- To create a Resource instance, the HTTP verb POST or PUT must be used and the request must contain

one and only one HTTP Category rendering which refers to a specific Kind instance defining the type of a

resource instance

The poor practice of one of those guidelines leads to the Non-Compliant Create anti-pattern

3. Compliant Update vs. Non-Compliant Update

Description: The Update operation, which can be applied to entities (i.e. Mixin, Resource) should be

compliant with the OCCI RESTful Protocol. This compliance requires the respect of the update guidelines

regarding the type of the entity that may be updated. These guidelines are summarized as follows:

- To full update a Mixin, HTTP verb PUT must be used and all URIs which are part of the collection must

be provided along with the request

- To partial update a Resource, HTTP verb POST must be used and the information which are updated

must be provided along with the request

- To full update a Resource, HTTP verb Put must be used in the request

The poor practice of one of those guidelines leads to the Non-Compliant Update anti-pattern.

4. Compliant Delete vs. Non-Compliant Delete

Description: The Delete (or Remove) operation that can be applied either to Mixin or Resource, should be

compliant with the OCCI RESTful Protocol. This compliance requires the respect of the Delete guidelines

regarding the type of the entity that may be deleted. These guidelines are summarized as follows:

- To remove a Mixin definition, HTTP verb DELETE must be used and the information about which Mixin

should be deleted must be provided

- To delete all Resources below a given path or only one, i.e. The HTTP verb DELETE must be used and

no other information should be added to the request

The poor practice of one of those guidelines leads to the Non-Compliant Delete anti-pattern

5. Compliant Retrieve vs. Non-Compliant Retrieve

Description: The Retrieve operation, which can be applied to Resource or Link, should be compliant with

the OCCI RESTful Protocol. This compliance requires the respect of the Retrieve guidelines regarding the

type of the entity that may be retrieved [16]. These guidelines are summarized as follows:

- To Retrieve a Resource or Link instance, the HTTP verb GET must be used in the request and the server

response must return at least the HTTP Category which defines the Kind of the Resource or Link and

associated attributes

- To Retrieve all Resources belonging to Mixin or Kind, HTTP verb GET must be used and a list containing

all resource instances which belong to the requested Mixin or Kind must be returned

The poor practice of one of those guidelines leads to the Non-Compliant Retrieve anti-pattern

6. Compliant Trigger Action vs. Non-Compliant Trigger Action

Description: The Trigger action that can be applied to a Resource should be compliant with the OCCI

RESTful Protocol, i.e. HTTP verb POST must be used and a query exposing the term of the Action must

be added to the URI. Additionally, the HTTP Category defining the Action must be also provided [16]. The

poor practice of one of those guidelines leads to the Non-Compliant Trigger Action anti-pattern

(e.g. sqwrl:select). SWRL built-ins are user-defined predicates, including basic
mathematical operators and functions for string manipulations. SQWRL queries
define a set of operators that can be seen as SQL-like operations used to exploit
the knowledge inferred by SWRL rules.



Detecting Cloud (Anti)Patterns: OCCI Perspective 209

Table 2. Cloud structure (anti)patterns.

1. Compliant Link between Resources vs. Non-Compliant Link between
Resources

Description: To create a Link between two resources, the HTTP POST verb must
be used and its kind as well as a “source” and “target” attributes must be provided.
The non existence of one of them leads to the Non-Compliant Link between Resources
anti-pattern

2. Compliant Association of resource(s) with Mixin vs. Non-compliant
Association of resource(s) with Mixin

Description: Association of resource(s) with a Mixin should be compliant, i.e. HTTP
POST verb must be used and the URIs which uniquely define the resources must be
provided in the request. The poor practice of one of those guidelines leads to the
Non-compliant Association of resource(s) with Mixin anti-pattern

3. Compliant Dissociation of resource(s) From Mixin vs. Non-compliant
dissociation of resource(s) From Mixin

Description: Dissociation of resource(s) from a Mixin should be compliant, i.e. HTTP
DELETE verb must be used and the URIs which uniquely define the resources must
be provided in the request. The poor practice of one of those guidelines leads to the
Non-compliant Dissociation of resource(s) From Mixin anti-pattern

Table 3. REST related (anti)patterns

1. Compliant URL vs. Non-Compliant URL

Description: A URL Path should be Compliant, i.e. Whenever the URL Path is
rendered it must be either a String or as defined in RFC6570 [10]. The non-Compliant
URL anti-pattern occurs as the consequence of the poor practice of such guidelines

2. Compliant Request Header vs. Non-Compliant Request Header

Description:A Request Header can be considered compliant, i.e. client (e.g. OCCI
client) should specify the media types its implementation data formats (e.g. OCCI
Data formats) support in the Accept header and the implementation (e.g. OCCI ver-
sion) version number in the User-Agent header and must specify the media type its
implementation data format (e.g. OCCI data format) support in the Content-type
header [16]. The poor practices of those guidelines leads to the Non-Compliant Request
Header anti-patern

3. Compliant Response Header vs. Non- Compliant Response Header

Description:A Response Header can be considered compliant, i.e. a server (e.g. OCCI
server) should specify the media types its implementation data formats (e.g. OCCI
Data formats) support in the Accept header, and must specify the media type its
implementation data format (e.g. OCCI data format) used in an HTTP response in
Content-type header and the implementation (e.g. OCCI version) version number in
the Server header [16]. The poor practices of all guidelines leads to the Non-Compliant
Response Header anti-patern



210 H. Brabra et al.

We distinguish three categories of (anti)patterns, two mainly focus on the
Cloud service aspects and one addresses general aspects of the REST services
according to OCCI perspective: Management Related (Anti)Patterns, Cloud
Structure Related (Aanti)Patterns, and REST Related (Anti)Patterns. In the
following, we define these categories, while explaining SWRL rules for detecting
an example of (anti)pattern under each one.

Management Related (Anti)Patterns: They represent the poor and best
practices in the main management operations applied on Cloud resources and
services, with respect to OCCI perspective (see Table 1). We identify 6 patterns
and its opposite anti-patterns respectively in Query interface, Create, Retrieve,
Update, Delete operations and in Trigger actions. Figure 4 illustrates the SWRL
rules we define for the Query interface support pattern and the Missing query
interface anti-pattern. The SWRL rule for Query interface support Pattern aims
to evaluate for each operation both the value of an URL and the used verb of an
HTTP Method. We report that the API has this pattern if we find at least an
URL value match“\- \” path and the verb of HTTP method is one of the com-
mon HTTP verbs. swrlb:matches(?urlval, “\-\”) consists to check whether the
URL value equal to“\-\”. detection: matches (?verb, “POST”, “PUT”, “GET”,
“DELETE”) is our custom built-in we create in order to check whether the
verb of the HTTP method (i.e. ?verb) contains one of the common HTTP verb.
The mechanism to extend the SWRL language in order to define new built-ins
is detailed in our project site (http://www-inf.it-sudparis.eu/SIMBAD/tools/
ORAP-DT/).

Figure 5 illustrates a partial instantiation of the (Anti)Pattern Ontology with
knowledge extracted from the REST operation (GET /-/ HTTP/1.1: that is
means what a Cloud provider can be provisioned) existing in an OpenStack
RESTful API. After executing the above SWRL rule, the object property “Rest:
hasPattern” in red color was added between the Rest:OS-Query (an instance
of REST:Operation concept) and Ptt:Query-interface-support (an instance of
Ptt:Pattern concept). Conversely, we report an occurrence of Missing query
interface Anti-pattern if we haven’t found the “\- \” path among all possible
URLs existing in an API. This is carried out through sqwrl:makeSet(?s1,?urlset)
that makes any URL its value equal to “\- \” in a set ?urlset and the built-in
sqwrl:isEmpty(?urlset) that ensures that the resulted set is empty.

*

./

Fig. 4. SWRL rule for query interface (anti)pattern

http://www-inf.it-sudparis.eu/SIMBAD/tools/ORAP-DT/
http://www-inf.it-sudparis.eu/SIMBAD/tools/ORAP-DT/


Detecting Cloud (Anti)Patterns: OCCI Perspective 211

Fig. 5. SWRL rule for Query interface support Pattern (a) before execution and (b)
after execution (Color figure online)

Cloud Structure Related (Anti)Patterns: They represent the poor and
best practices to link Cloud resources between each others as well as to create
a collection of resources using a Mixin, with respect to OCCI perspective (see
Table 2). We identify 3 patterns and their opposite anti-patterns respectively in
the creation of the Link between two Cloud resources, Association of resource(s)
with a Mixin and Dissociation of resource(s) from a Mixin.

Figure 6 illustrates the SWRL rule that we define for the Compliant Link
between Resources Pattern. The latter aims to evaluate for each operation applied
on the link type Occi:Link(?link) the used verb in the HTTP Method, the Kind
that identifies the link type and whether the link type contains both the source
and target attributes. We report that the given operation Rest:Operation(?op)
has the Compliant Link between Resources Pattern if we ensure firstly, that the
verb of the HTTP method is “POST” using (swrlb:matches(?verb, “POST”)),
secondly the kind type (?kind) has ethier “Network Interface” or “Storage Link”
as value for its attribute ?term using (detetion:matches(?term, “Storage link”,
“Network Interface”), non-empty value for its attribute ?Occi:scheme(?kind,
?scheme) and a “kind” value for its attribute ?class and finally if the link type
contains non-empty values for both source and target attributes. Conversely, we
report an occurrence of Non-Compliant Link between Resources Anti-pattern if
we detect poor practice of one of those constraints. The SWRL rules for this
anti-pattern as well as an instantiation of the (Anti)Pattern Ontology showing
the usefulness of those rules are available on our project Web site.

Fig. 6. SWRL Rule for Compliant Link between Resources Pattern



212 H. Brabra et al.

REST Related (Anti)Patterns: They represent the poor and best practices
in the main REST API components. Here, we note that some of the existing
REST (anti)Patterns already defined in [8,18], can be used, particularly, Verb-
less URIs (respectively, CRUDy URIs) and Ignoring Status Code (respectively,
Supported Status Code). Additionally, according to OCCI perspective, we iden-
tify 3 new REST (anti)patterns relating respectively to the URL, request header
and response header (see Table 3). Like management related (anti)patterns and
Cloud Structure (anti)patterns, the detection rules for the REST (anti)patterns
are also specified through SWRL language in conjunction with SQWRL queries.

3.3 Detection of OCCI REST (Anti)Patterns

This step consists of applying the detection rules defined in step 2 to detect
the possible OCCI (anti)patterns in Cloud RSTTful APIs. To do so, we have
implemented a detection tool to verify those APIs and automatically detect the
(anti)patterns may be occurred into them. The detection of (anti)patterns in a
given Cloud RESTful API requires firstly the instantiation of the different pro-
posed ontologies with the knowledge extracted from this API. The instantiated
ontologies as well as the defined SWRL rules construct together the knowledge
base that we apply in the reasoning process to detect such (anti)pattern.

4 Validation

This section discusses the validation of our approach. We have developed a proof
of concept implementation detailed on our project site3. Then we have used real
world Cloud REST APIs to conduct this evaluation. Our objective is twofold.
Firstly, we aim to show the effectiveness of our approach in terms of accuracy
(i.e. precision, recall and F-measure values). Then, we aim to explore whether
the selected Cloud providers respect OCCI REST patterns. In the following sub-
sections, we firstly describe our proof of concept and the used datasets. Secondly,
we discuss and analyze the experiment results.

4.1 Proof of Concept and Experiment Setting

Proof of Concept. We evaluate our approach through a proof of concept which
is a web-based application developed using J2EE integrating with a query and a
reasoning engine developed using OWLAPI and SWRLAPI. These APIs are used
to deal with SWRL rules and SQWRL queries. Our tool takes into account the
semantic base knowledge provided in order to detect the possible OCCI REST
(Anti)patterns. It is based on 65 SWRL rules, including 28 SWRL rules for the
patterns and 37 for the anti-patterns.

3 Description: http://www-inf.it-sudparis.eu/SIMBAD/tools/ORAP-DT/.

http://www-inf.it-sudparis.eu/SIMBAD/tools/ORAP-DT/


Detecting Cloud (Anti)Patterns: OCCI Perspective 213

Experiment Setting. We built the experimental datasets by performing an
analysis in the Cloud RESTful APIs of Cloud services. We choose only 6 candi-
dates, including OpenStack, COAPS, OpenNebula, Amazon S3, Microsoft Azure
and Rackspace, since its underlying REST operations are well explained. From
those operations, we have collected the required knowledge in order to semanti-
cally describe each API. Then, we have involved an expert manually evaluated
the REST operations in order to identify the true positives and false negatives
required to compute precision, recall and F1-measure values. Precision is the
ratio between the true detected (anti)patterns and all detected (anti)patterns
[18]. Recall is the ratio between the true detected (anti)patterns and all existing
true (anti)patterns [18]. Finally, the F1-measure represents the weighted har-
monic mean of the precision and recall values.

4.2 Experiment Results Analysis

Herein, we present the detection results in all selected Cloud REST APIs, the
validation of our development tool in terms of precision, recall, and F1-measure
values and show whether Cloud providers respect the OCCI REST patterns by
computing their compliance degrees to those patterns.

Table 4 shows detailed detection results for the 28 OCCI REST (anti)patterns
on 6 Cloud RESTful APIs. The first column lists the identified (anti)patterns.
The remaining columns present the analysed Cloud RESTful APIs. For each
(anti)pattern in each Cloud RESTful API, we report the total number of its
occurrences derived from our detection tool. The last column indicates the
occurrence percentage (OP) of each (anti)pattern compared to the total number
of operations that may contain such kind of (anti)pattern (i.e. the percentage
of Query interface support is computed compared to all existing query opera-
tions in the selected API). As specified in Table 4, in the management related
(anti)patterns category, the most frequent patterns are Compliant Delete and
Compliant Update Patterns. This means that the majority of the analyzed APIs
follows either explicitly or implicitly the OCCI guidelines in deleting and updat-
ing of a given Cloud resource. In contrast, the most frequent anti-patterns are
Non-Compliant Trigger Action and Non-Compliant Create. A clear majority of
Cloud RESTful APIs does not include the category rendering which refers to a
specific Kind instance defining the type of resource instance that will be created.
Likewise, for triggering an action on a resource, neither the query exposing the
term of the action, nor the HTTP Category defines the action were included in
the REST operation. With regard to Cloud Structure (Anti)Patterns, the most
frequent pattern is the Compliant Link between Resources. However, this pat-
tern is tested using a low number of operations related to a link type due to its
lack in the selected Cloud RESTful APIs. Additionally, we do not report any
occurrence of (anti)patterns related both to the association and dissociation of
resources from Mixin. Finally, with regard to REST Related (Anti)patterns, the
most frequent patterns are Compliant URL and Verbless URIs. The majority of
the analysed APIs did not include any CRUDy terms or any of their synonyms
and all used URIs were either string or follow the structure as defined in [10].



214 H. Brabra et al.

Table 4. Detection results of the 28 OCCI REST (anti)patterns

Cloud REST API Open-

Stack

(28)

COAPS

(18)

Open-

Nebula

(20)

Amazon

S3 (56)

Microsoft

Azure

(119)

Rack-

space

(62)

O.P %

Management Related (Anti)patterns

Query interface support (3/8) 3 0 0 0 0 0 3%

Missing query interface (5/8) 0 1 1 1 1 1 60%

Compliant Create (9/44) 5 1 0 1 2 0 20%

Non-Compliant Create (35/44) 0 1 3 8 13 10 80%

Compliant Update(34/50) 3 2 3 6 14 6 68%

Non-Compliant Update(16/50) 0 0 0 0 16 0 32%

Compliant Delete(41/44) 3 2 3 8 16 9 93%

Non-Compliant Delete (3/44) 0 0 0 1 2 0 7%

Compliant Retrieve(69/130) 10 5 5 19 30 0 54%

Non-Compliant Retrieve(61/130) 0 0 6 2 31 22 46%

Compliant Trigger Action(4/39) 4 0 0 0 0 0 10%

Non-Compliant Trigger

Action(35/39)

0 7 0 6 14 8 90%

Cloud Structure (Anti)patterns

Compliant Link between

Resources(4/4)

2 0 2 0 0 0 100%

Non-Compliant Link between

Resources (0/4)

0 0 0 0 0 0 0%

Compliant Association of resource(s)

with Mixin

0 0 0 0 0 0 -

Non-Compliant Association of

resource(s) with Mixin

0 0 0 0 0 0 -

Compliant Dissociation of

resource(s) from Mixin

0 0 0 0 0 0 -

Non-Compliant Dissociation of

resource(s) from Mixin

0 0 0 0 0 0 -

REST Related (Anti)patterns

Compliant URL(303/303) 28 18 20 56 119 62 100%

Non-Compliant URL (0/303) 0 0 0 0 0 0 0%

Compliant Request Header(62/303) 0 0 0 0 0 62 20%

Non-Compliant Request

Header(241/303)

28 18 20 56 119 0 80%

Compliant Response Header

(118/303)

0 0 0 56 0 62 39%

Non-Compliant Response

Header(185/303)

28 18 20 0 119 0 61%

Supported Status Code(303/303) 28 18 20 56 119 62 100%

Ignoring Status Code(0/303) 0 0 0 0 0 0 0%

Verbless URIs(297/303) 28 15 20 54 119 62 98%

CRUDy URIs(6/303) 0 3 0 2 1 0 2%

Table 5 shows the validation results of our detection tool on OpenStack,
Microsoft and Rackspace RESTful APIs. The first column lists the identified
(anti)patterns. The remaining columns list the three selected APIs for the vali-
dation followed by precision, recall and F1-measure values. For each (anti)pattern
in each Cloud RESTful API, we report precision, recall and F1-measure values
for the detection results. The last two rows show the average and total average



Detecting Cloud (Anti)Patterns: OCCI Perspective 215

Table 5. Complete validation results on Openstack, Microsoft and Rackspace REST
APIs

(Anti)Patterns OpenStack Microsoft Azure Rackspace

P R F1 P R F1 P R F1

Query interface support 100% 100% 100% - - - - - -

Missing query interface - - - 100% 100% 100% 100% 100% 100%

Compliant Create 100% 100% 100% - - - - - -

Non-Compliant Create - - - 86% 100% 92% 100% 100% 100%

Compliant Update 100% 100% 100% 87% 100% 93% 100% 100% 100%

Non-Compliant Update - - - 94% 100% 96% - - -

Compliant Delete 100% 100% 100% 100% 100% 100% 100% 100% 100%

Non-Compliant Delete - - - 66% 100 79% - - -

Compliant Retrieve 100% 100% 100% 96% 100 98% - - -

Non-Compliant Retrieve - - - 100% 100% 100% 100% 100% 100%

Compliant Trigger Action 100% 100% 100% - - - - - -

Non-Compliant Trigger Action - - - 100% 100% 100% 100% 100% 100%

Compliant Link between

Resources

100% 100% 100% - - - - - -

Non-Compliant Link between

Resources

- - - - - - - - -

Compliant Association of

resource(s) with Mixin

- - - - - - - - -

Non-Compliant Association of

resource(s) with Mixin

- - - - - - - - -

Compliant dissociation of

resource(s) from Mixin

- - - - - - - - -

Non-Compliant dissociation of

resource(s) from Mixin

- - - - - - - - -

Compliant URL 100% 100% 100% 100% 100% 100% 100% 100% 100%

Non-Compliant URL - - - - - - - - -

Compliant Request Header - - - - - - 100% 100% 100%

Non-Compliant Request

Header

100% 100% 100% 100% 100% 100% - - -

Compliant Response Header - - - - - - 100% 100% 100%

Non-Compliant Response

Header

100% 100% 100% 100% 100% 100% - - -

Supported Status Code 100% 100% 100% 100% 100% 100% 100% 100% 100%

Ignoring Status Code - - - - - - - - -

Verbless URIs 100% 100% 100% 100% 100% 100% 100% 100% 100%

CRUDy URIs - - - 100% 100% 100% - -

Average 100% 100% 100% 95% 100% 97% 100% 100% 100%

Total Average Precision=98% Recall = 100% F1-measure=99%

results of those values respectively. For the Openstack RESTful API which is an
OCCI-based API, we obtained the best results of the detection with a precision
of 100 %, signifying that all the detected (anti)patterns are in the list that the
expert determined manually. The recall in this sample is 100 %, signifying that
all (anti)patterns, that may occur, have been successfully detected by our tool.
The average of these values obtained for this API is 100 % for the precision,
100 % for the recall and 100 % for the F1-measure. We report the same values
for the Rackspace RESFful API. However, we obtain the detection results for



216 H. Brabra et al.

Microsoft API with average values that are lower than the previous ones, viz. a
precision of 95 %, a recall of 100 %, and an F1-measure of 97 %.

Finally, we aim at showing whether the Cloud providers respect the OCCI
REST patterns. To do so, we have computed for each Cloud RESTful API its
compliance degree. The compliance degree indicates the percentage of OCCI
REST patterns that each API has over all its operations. The compliance degree
is defined as follows:

Compliance degree =
1
14

∗
∑14

i=1
(

∑
Pi∑

OPP i
)

where Pi is a pattern (e.g. P1 denotes the Query interface support pattern), 14
is the number of patterns,

∑
OPP i is the total number of operations that may

contain the pattern Pi (e.g. three operations that may contain the Query inter-
face support pattern in OpenStack RESTful API). As shows in Fig. 7, Openstack
RESTful API represents the most compliant API with OCCI patterns. This is
not surprisingly because this API is already based on OCCI standard. Addition-
ally, Rackspace as well as Amason S3 has acceptable compliance degrees, this
signifying that over 47 % of operations in those APIs follow implicitly the OCCI
standard. In contrast, although OpenNebula and COAPS RESTful APIs had
already based on OCCI, it seems that they did not carefully follow all OCCI
guidelines. Microsoft Azure RESTful API uses its own model to describe Cloud
resources, thus explaining the poor compliance degree it has.

Summarizing up, our detection approach performs better when dealing with
Cloud RESTful APIs have based on OCCI standard than with non OCCI-based
APIs. This is mainly due to the fact that our ontology defines the RESTful API
based on OCCI descriptions. However, we can resolve this limitation by adding
some semantic equivalence relations between the terminologies used to describe
Cloud resources according to OCCI perspective and those according to a specific
Cloud provider. Our detection tool has achieved a total average precision value
of 98 %, a recall value of 100 % and an F1-measure of 99 % in detecting of 28
(anti)patterns on three Cloud RESTful APIs. Moreover, the obtained compliance
degrees for the selected Cloud RESTful API shows their handful support of the
OCCI REST patterns.

Fig. 7. OCCI Compliance degrees of Cloud RESTful APIs



Detecting Cloud (Anti)Patterns: OCCI Perspective 217

5 Conclusion and Future Work

This paper identifies from OCCI Standard a set of (anti)patterns related to
Cloud management APIs. It proposes a Semantic-based detection approach of
OCCI REST (Anti)patterns in Cloud RESTful APIs. To validate this approach,
we conducted an evaluation by analyzing 28 OCCI REST (anti)patterns on a
real world Cloud RESTful APIs that invoking 303 operations. We showed that
the proposed approach allows the detection of the OCCI REST (anti)patterns
with good results in terms of precision, recall and F1-measure. We observed also
through the obtained compliance degrees that there is no widespread adoption
of the OCCI patterns in the selected Cloud RESTful APIs.

At short term, we want to apply our approach on other Cloud RESTful APIs
for better understanding the OCCI REST patterns in the Cloud and their appli-
cations. At long term, we will propose our management API based on those
identified patterns while avoiding their anti-patterns in order to resolve the het-
erogeneity and evolution problem of the managed Cloud resources.

References

1. Open Cloud Computing Interface. http://occi-wg.org/
2. OCCI Compliance Testing Tool (2011). http://occi-wg.org/2011/01/18/

occi-compliance-testing-tool/
3. OWL 2 Web Ontology Language Document Overview, 2nd edn. (2012). https://

www.w3.org/TR/owl2-overview/
4. Dudney, B., Asbury, S., Krozak, J.K., Wittkopf, K.: J2EE An-tiPatterns. Wiley,

Hoboken (2003)
5. Edmonds, A., Metsch, T.: Open cloud computing interface - text rendering. Tech-

nical report, Open Grid Forum (2016)
6. Edmonds, A., Metsch, T., Papaspyrou, A., Richardson, A.: Toward an open cloud

standard. IEEE Internet Comput. 16(4), 15–25 (2012)
7. Fourati, R., Bouassida, N., Abdallah, H.B.: A metric-based approach for anti-

pattern detection in UML designs. In: Lee, R. (ed.) Computer and Information
Science 2011. Studies in Computational Intelligence, vol. 364, pp. 17–33. Springer,
Heidelberg (2011)

8. Palma, F., Dubois, J., Moha, N., Guéhéneuc, Y.-G.: Detection of REST patterns
and antipatterns: a heuristics-based approach. In: Franch, X., Ghose, A.K., Lewis,
G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 230–244. Springer, Hei-
delberg (2014)

9. Garcia, A.L., del Castillo, E.F., Fernandez, P.O.: ooi: Openstack occi interface.
SoftwareX (2016, in press)

10. Gregorio, J., Fielding, R., Hadley, M., Nottingham, M., Orchard, D.: URI Tem-
plate. RFC 6570,423 Internet Engineering Task Force (2012). http://www.ietf.org/
rfc/rfc6570.txt

11. Kessentini, M., Vaucher, S., Sahraoui, H.: Deviance from perfection is a better
criterion than closeness to evil when identifying risky code. In: Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering, ASE
2010, pp. 113–122 (2010)

http://occi-wg.org/
http://occi-wg.org/2011/01/18/occi-compliance-testing-tool/
http://occi-wg.org/2011/01/18/occi-compliance-testing-tool/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/
http://www.ietf.org/rfc/rfc6570.txt
http://www.ietf.org/rfc/rfc6570.txt


218 H. Brabra et al.

12. Lewis, G.A.: The role of standards in cloud-computing interoperability. Technical
report, Software Engineering Institute, Carnegie Mellon University (2012)

13. Martino, B.D., Esposito, A., Cretella, G.: Semantic representation of cloud patterns
and services with automated reasoning to support cloud application portability.
IEEE Trans. Cloud Comput. PP(99), 1 (2015). doi:10.1109/TCC.2015.2433259

14. Metsch, T., Edmonds, A.: Open cloud computing interface - infrastructure. Tech-
nical report, Open Grid Forum (2016)

15. Moha, N., Palma, F., Nayrolles, M., Conseil, B.J., Guéhéneuc, Y.-G., Baudry,
B., Jézéquel, J.-M.: Specification and detection of SOA antipatterns. In: Liu, C.,
Ludwig, H., Toumani, F., Yu, Q. (eds.) Service Oriented Computing. LNCS, vol.
7636, pp. 1–16. Springer, Heidelberg (2012)

16. Nyren, R., Edmonds, A., Metsch, T., Parak, B.: Open cloud computing interface
- http protocol. Technical report, Open Grid Forum (2016)

17. Nyren, R., Papaspyrou, A., Metsch, T., Parak, B.: Open cloud computing interface
-core. Technical report, Open Grid Forum (2016)

18. Palma, F., Gonzalez-Huerta, J., Moha, N., Gueheneuc, Y.G., Guy, T.: Are REST-
ful APIs well-designed? Detection of their linguistic (anti)patterns. In: Barros, A.,
Grigori, D., Narendra, N.C., Dam, H.K. (eds.) Service-Oriented Computing. Lec-
ture Notes in Computer Science, pp. 171–187. Springer, Heidelberg (2015)

19. Palma, F., Moha, N., Tremblay, G., Guéhéneuc, Y.-G.: Specification and detection
of SOA antipatterns in web services. In: Avgeriou, P., Zdun, U. (eds.) ECSA 2014.
LNCS, vol. 8627, pp. 58–73. Springer, Heidelberg (2014)

20. Settas, D.L., Meditskos, G., Stamelos, I.G., Bassiliades, N.: SPARSE: a symptom-
based antipattern retrieval knowledge-based system using semantic web technolo-
gies. Expert Syst. Appl. 38(6), 7633–7646 (2011)

http://dx.doi.org/10.1109/TCC.2015.2433259

	Detecting Cloud (Anti)Patterns: OCCI Perspective
	1 Introduction
	2 Related Work
	3 Approach Overview
	3.1 Definition of OCCI REST (Anti)Patterns
	3.2 Analysis and Definition of Detection Rules
	3.3 Detection of OCCI REST (Anti)Patterns

	4 Validation
	4.1 Proof of Concept and Experiment Setting
	4.2 Experiment Results Analysis

	5 Conclusion and Future Work
	References


