
Are REST APIs for Cloud Computing
Well-Designed? An Exploratory Study

Fabio Petrillo1,3,4(B), Philippe Merle2, Naouel Moha1,
and Yann-Gaël Guéhéneuc3

1 Département d’informatique, Université du Québec à Montréal, Montreal, Canada
fabio@petrillo.com, moha.naouel@uqam.ca

2 Equipe Spirals, Inria Lille - Nord Europe, Villeneuve d’Ascq, France
philippe.merle@inria.fr

3 DGIGL, École Polytechnique, Montréal, Montreal, Canada
yann-gael.gueheneuc@polymtl.ca

4 PPGC, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

Abstract. Cloud computing is currently the most popular model to offer
and access computational resources and services. Many cloud providers
use the REST architectural style (Representational State Transfer) for
offering such computational resources. However, these cloud providers face
challenges when designing and exposing REST APIs that are easy to han-
dle by end-users and/or developers. Yet, they benefit from best practices
to help them design understandable and reusable REST APIs.

However, these best practices are scattered in the literature and they
have not be studied systematically on real-world APIs. Consequently,
we propose two contributions. In our first contribution, we survey the
literature and compile a catalog of 73 best practices in the design of
REST APIs making APIs more understandable and reusable. In our sec-
ond contribution, we perform a study of three different and well-known
REST APIs from three cloud providers to investigate how their APIs are
offered and accessed. These cloud providers are Google Cloud Platform,
OpenStack, and Open Cloud Computing Interface (OCCI). In particu-
lar, we evaluate the coverage of the features provided by the REST APIs
of these cloud providers and their conformance with the best practices
for REST APIs design.

Our results show that Google Cloud follows 66 % (48/73), OpenStack
follows 62 % (45/73), and OCCI 1.2 follows 56 % (41/73) of the best prac-
tices. Second, although these numbers are not necessarily high, partly
because of the strict and precise specification of best practices, we showed
that cloud APIs reach an acceptable level of maturity.

1 Introduction

Cloud computing has transformed the Information Technology (IT) industry [1]
by hosting applications and providing resources (e.g., CPU and storage) as ser-
vices on-demand over the Internet [15]. Cloud providers, such as Google Cloud

c© Springer International Publishing Switzerland 2016
Q.Z. Sheng et al. (Eds.): ICSOC 2016, LNCS 9936, pp. 157–170, 2016.
DOI: 10.1007/978-3-319-46295-0 10

158 F. Petrillo et al.

Platform and OpenStack, usually offer these services in the form of REST (REp-
resentational State Transfer) [4] APIs, the de facto standard adopted by many
software organisations for publishing their services.

However, although cloud computing offers huge opportunities for the IT
industry and has gained maturity, there are still many issues that must be
addressed [15]. In particular, we observe that cloud providers, such as Google
Cloud Platform, present their own proprietary APIs. Other cloud APIs, although
proprietary such as OpenStack, provide open implementations of cloud services.
Conversely, open and standard cloud APIs have been proposed, such as the
Open Cloud Computing Interface (OCCI) [7], which is a neutral-vendor cloud
standard.

Consequently, there exists a wide variety of cloud APIs that might be difficult
to understand and use by developers, especially within a complex and technical
context as cloud computing. Moreover, well-designed REST APIs may attract
client developers to use them more than poorly designed ones, particularly in the
current open market, where Web services are competing against one another [6].
Indeed, client developers must understand the providers’ APIs while designing
and developing their systems that use these APIs. Therefore, in the design and
development of REST APIs, their understandability and reusability are two
major quality characteristics, which are reachable when best practices for REST
APIs design [6] are followed.

Several practices were proposed or identified in the literature [2,6,8,9,12] as
CRUD function names should not be used in URIs or Lowercase letters should
be preferred in URI paths. In particular, a valuable contribution is the one of
Massé [6], who compiles several design practices about REST APIs. Yet, despite
proposing a large list of 65 practices, Massé [6] did not propose a complete list.

Consequently, we propose two contributions. For our first contribution, we
review the literature extensively and compile a catalog of 73 best practices in
the design of REST APIs making APIs more understandable and reusable.

For our second contribution, we evaluate and compare the design of the
cloud computing REST APIs using best practices of this catalog. Compared to
previous works, including some of ours [2,8,9], we study the conformance with
best practices of REST APIs from the perspective of cloud providers.

After identifying and analysing 73 best practices, our results show that
Google Cloud Platform follows 66 % (48/73), OpenStack follows 62 % (45/73),
and OCCI 1.2 follows 56 % (41/73) of the best practices. Second, although these
numbers are not necessarily high, partly because of the strict and precise speci-
fication of best practices, we showed that cloud APIs reach an acceptable level
of maturity.

The reminder of the paper is organised as follows. Section 2 presents a sur-
vey about best practices on REST APIs to support our evaluation. Section 3
describes the study performed on the three cloud computing REST APIs.
Section 4 presents and discusses our results and the threats to their validity.
Section 5 presents some related work. Finally, Sect. 6 concludes the paper with
future work.

Are REST APIs for Cloud Computing Well-Designed? 159

2 Best Practices on REST API Design

REST APIs are hard to design [6] because they are not often based on precise
and documented specifications but only on an architectural style [4]. Thus, we
now present a catalog of REST API best practices, pertaining to understand-
ability and reusability, extracted from the literature and organised to support
our analysis on cloud REST APIs.

To build our catalog, we surveyed several studies of REST APIs elaborated
by Massé [6], Rodrigues et al. [2], Palma et al. [8,9], Vinoski [13], Stowe [12], and
Richardson and Ruby [11]. In particular, Massé [6] provides a concise catalog of
practices organised by categories. We analysed all the cited studies to identify
good practices and organise them by categories inspired from Massé’s work.

Table 1. Numbers of practices by category

Category Number of practices

URI 20

Request methods 8

Error handling 16

HTTP headers 10

Others 19

Total 73

Our literature review produced a catalog of 73 best practices to design under-
standable and reusable REST APIs, grouped into five categories. Table 1 lists
the categories and the numbers of practices per category. Tables 2, 3, 4, 5 and 6
describe the identified practices in each category with a short description, rele-
vant references, and the results of our analysis on the three Cloud REST APIs.
The analysis of each API is further discussed in Sect. 4.

The first category, URI practices, describes how URIs are exposed by services
(Table 2). The second category, Request Methods, describes how HTTP meth-
ods must be used by REST APIs (Table 3). Error Handling practices specify
how HTTP messages must be used as a response of a HTTP request method
(Table 4). HTTP Header practices describe how must be used HTTP headers
to complete requests with metadata or complementary data (Table 5). Finally,
Others is the category for grouping different and various practices as Media
Types, Message Body Format, Versioning, Security, Response Representation
Composition, Documentation and Hypermedia Representation (Table 6).

160 F. Petrillo et al.

Table 2. URI design best practices

Practices References Google OpenStack OCCI

1 Forward slash separator (/) must be used to

indicate a hierarchical relationship

[6,9,11] � � �

2 A trailing forward slash (/) should not be included

in URIs

[2,6,9] � � �

3 Hyphens (-) should be used to improve the

readability of URIs

[6,9] - - -

4 Underscores () should not be used in URIs [2,6,9] � � -

5 Lowercase letters should be preferred in URI paths [2,6,9] � � -

6 File extensions should not be included in URIs [6] � � -

7 Consistent subdomain names should be used for

your APIs

[6,9,11] � � �

8 A singular noun should be used for document

names

[6,9] � � -

9 A plural noun should be used for collection names [6,9] � � -

10 A plural noun should be used for store names [6,9] � � -

11 A verb or verb phrase should be used for controller

names

[6,9] � � -

12 CRUD function names should not be used in URIs [2,6,9] � � -

13 Use path variables to separate elements of a

hierarchy, or a path through a directed graph

[11] � � -

14 Avoiding version number in the path [2] - - -

15 API as part of the subdomain [2] � - -

16 The query component of a URI may be used to

filter collections or stores

[6] � � �

17 The query component of a URI should be used to

paginate collection or store results

[6] � � �

18 Keeping as much information as possible in the

URI, and as little as possible in request

metadata

[11] � � -

19 Avoiding version number in the query params [2] � � �
20 Avoiding CRUD actions in query params [2] � � �

Table 3. Request methods best practices

Practices References Google OpenStack OCCI

1 GET and POST must not be used to tunnel other

request methods

[2,6,8,12] � � �

2 GET must be used to retrieve a representation of a

resource

[6,11–13] � � �

3 HEAD should be used to retrieve response headers [6,11–13] � � -

4 PUT must be used to both insert and update a

stored resource

[6,11–13] - - �

5 PUT must be used to update mutable resources [6,11–13] � � �
6 POST must be used to create a new resource in a

collection

[6,11–13] � � �

7 POST must be used to execute controllers [6,12] � � �
8 DELETE must be used to remove a resource from

its parent

[6,11–13] � � �

Are REST APIs for Cloud Computing Well-Designed? 161

Table 4. Error handling best practices

Practices References Google OpenStack OCCI

1 200 (“OK”) should be used to indicate nonspecific

success

[6,12] � � �

2 200 (“OK”) must not be used to communicate

errors in the response body

[6,12] � � �

3 201 (“Created”) must be used to indicate

successful resource creation

[6,12] - - �

4 202 (“Accepted”) must be used to indicate

successful start of an asynchronous action

[6,12] - - -

5 204 (“No Content”) should be used when the

response body is intentionally empty

[6,12] - - �

6 302 (“Found”) should not be used [6,12] - - �
7 304 (“Not Modified”) should be used to preserve

bandwidth

[6,12,13] - - -

8 400 (“Bad Request”) may be used to indicate

nonspecific failure

[6,12] � � �

9 401 (“Unauthorized”) must be used when there is a

problem with the client’s credentials

[6,12] - � �

10 403 (“Forbidden”) should be used to forbid access

regardless of authorization state

[6,12] - - �

11 404 (“Not Found”) must be used when a client’s

URI cannot be mapped to a resource

[6,12] � - �

12 405 (“Method Not Allowed”) must be used when

the HTTP method is not supported

[6,12] - - �

13 406 (“Not Acceptable”) must be used when the

requested media type cannot be served

[6,12] - - �

14 409 (“Conflict”) should be used to indicate a

violation of resource state

[6,12] - � �

15 500 (“Internal Server Error”) should be used to

indicate API malfunction

[6,12] � - �

16 Use JSON as error message response [6,12] � � -

Table 5. HTTP header best practices

Practices Ref. Google OS OCCI

1 Content-type must be used [6,12,13] � � -

2 Content-length should be used [6] � � -

3 Last-modified should be used in responses [6] - � -

4 ETag should be used in responses [6,13] � � -

5 Stores must support conditional PUT requests [6] - - -

6 Location must be used to specify the URI of a newly

created resource

[6] - - -

7 Cache-control, expires, and date response headers should

be used to encourage caching

[6] � � -

8 Cache-control, expires, and pragma response headers may

be used to discourage caching

[6] - - -

9 Caching should be encouraged [6] � � -

10 Custom HTTP headers must not be used to change the

behavior of HTTP methods

[6] � � �

162 F. Petrillo et al.

Table 6. Other best practices

Practices Ref. Google OS OCCI

1 Application-specific media types should be used [6] - - �
2 Media type negotiation should be supported when multiple

representations are available

[6] - - �

3 Media type selection using a query parameter may be

supported

[6] - - -

4 JSON should be supported for resource representation [6] � � �
5 XML and other formats may optionally be used for resource

representation

[6] - - �

6 Additional envelopes must not be created [6] � � �
7 New URIs should be used to introduce new concepts [6] � � �
8 Schemas should be used to manage representational form

versions

[6] � - �

9 Entity tags should be used to manage representational state

versions

[6] - - �

10 OAuth may be used to protect resources [6,12] � � -

11 The query component of a URI should be used to support

partial responses

[6] - - �

12 The query component of a URI should be used to embed

linked resources

[6,11] - - -

13 Consistent subdomain names should be used for your client

developer portal

[6] - - -

14 Accompanying human-readable documentation [6,12] � � �
15 Interactive experiences to try/test API calls [12] � - -

16 Code examples for multiple languages [12] � - -

17 A consistent form should be used to represent links [6,8] � � �
18 A consistent form should be used to advertise links [6,8] � � �
19 A self link should be included in response message body

representations

[6,8] � � �

3 Study Design

This section presents the design of our study, which aims to address the following
four research questions:

RQ1 What are the main services provided by cloud REST APIs?
RQ2 How many best practices are followed by cloud REST APIs?
RQ3 What best practices are adopted by all APIs?
RQ4 What best practices are adopted by none of the APIs?

3.1 Objects

The objects of our study are three different cloud REST APIs including the
proprietary cloud API of Google Cloud Platform, the open source API of Open-
Stack, and the standard OCCI. We specifically target these APIs because they
represent the range of the different types of cloud APIs available: commercial
offer, open source implementation, and open standard.

Are REST APIs for Cloud Computing Well-Designed? 163

Here is a short description of each of the three studied APIs:

Google Cloud Platform is a proprietary cloud platform that consists of a set
of physical assets (e.g., computers and hard disk drives) and virtual resources
(e.g., virtual machines, a.k.a. VMs) hosted in Google’s data centers around the
globe. Google Cloud documentation is available at https://cloud.google.com/
docs.

OpenStack is an open source cloud platform that controls large pools of com-
pute, storage, and networking resources throughout a datacenter. OpenStack
documentation is available at http://docs.openstack.org.

Open Cloud Computing Interface (OCCI) is a cloud computing standard that
comprises a set of open community-lead specifications delivered through the
Open Grid Forum. OCCI is a protocol and API for all kinds of manage-
ment tasks. OCCI 1.2 documentation is available at http://occi-wg.org/about/
specification.

3.2 Procedure

We investigated and analysed manually in details the documentation of each
of the three APIs studied. More precisely, we identified the services provided
by each API and extracted the list of URIs. Then, we compared them with
each best practice as defined in our compiled catalog of best practices. The
analysis of OCCI has been cross-validated by two contributors of the standard.
We performed an analysis of the three APIs and reported the results of this
analysis in several tables given in the next section dedicated to the results.

4 Results

We now report the results of our analysis to answer our four research questions.

4.1 RQ1 What Are the Main Services Provided by Cloud REST
APIs?

We performed a manual analysis on each REST API documentation to identify
the services provided. This first analysis allows us to identify 11 services as
listed in Table 7. Our results show that Google Cloud Platform and OpenStack
provide all identified services (11/11) while OCCI describes only four services
in its specifications (4/11). We conclude that Google and OpenStack API
have a good support for several services while OCCI has yet some
lacks.

Indeed, current OCCI 1.2 official specifications only cover 4 of the 11 services
listed in Table 7: VM Managing, Storage, Networking, and Tagging. However,
OCCI-based services were proposed for Container Managing [10] and Monitoring
[3]. Image Managing, Scaling, Access Control, Data Processing and Machine
Learning would be addressed in future as there are key services for building
open standard cloud platforms.

https://cloud.google.com/docs
https://cloud.google.com/docs
http://docs.openstack.org
http://occi-wg.org/about/specification
http://occi-wg.org/about/specification

164 F. Petrillo et al.

Table 7. Service analysis comparing Google Cloud, OpenStack, and OCCI

Main services Google OpenStack OCCI

VM managing � � �
Container managing � � ✗

Image managing � � ✗

Storage � � �
Networking � � �
Scaling � � ✗

Access control � � ✗

Monitoring � � ✗

Tagging � � �
Data processing � � ✗

Machine learning � � ✗

4.2 RQ2 How Many Best Practices Are Followed by Cloud REST
APIs?

For each practice, we analysed the documentation of the corresponding API to
assess whether this provider follows or not the practice. Tables 2-6 present the
detailed results of this assessment for each API and the 73 best practices by
category. Table 8 presents a summary of this assessment by category of practices
and shows that on average 61% (44/73) of the practices are followed
by the three APIs. Google Cloud Platform follows 66 % (48/73), OpenStack
follows 62 % (45/73), and OCCI follows 56 % (41/73) of the best practices.

Moreover, OCCI follows only 35 % (7/20) of URI practices, while Google
Cloud Platform and OpenStack follow URI practices in 90 % (18/20) and 85 %
(17/20), respectively. OCCI 1.2 fails to support URI design best practices, but
future OCCI releases could improve this as the OCCI REST API is automatically
synthetised from a metamodel instead of designed by hand as in Google Cloud
Platform and OpenStack.

All APIs strongly apply Request Methods best practices listed in Table 3 with
87 % on average. Each API requires just one improvement on PUT method for
Google Cloud Platform and OpenStack, and on HEAD method for OCCI. For
the latter, OCCI implementations such as erocci1 and rOCCI2 already support
HEAD method best practice, so a consensus in the OCCI community should be
easily attainable to include this best practice into OCCI specifications.

Finally, Error Handling, HTTP Headers, and the other categories are the less
followed with only 52 %, 46 %, and 56 %.

1 http://erocci.ow2.org.
2 http://gwdg.github.io/rOCCI/.

http://erocci.ow2.org
http://gwdg.github.io/rOCCI/

Are REST APIs for Cloud Computing Well-Designed? 165

Error handling in Google Cloud Platform and OpenStack (6/16 or 37,5 % in
Table 8) requires to be strongly improved with a better documentation in the
error messages.

Regarding HTTP header best practices, all the three cloud REST APIs can
be improved but especially OCCI 1.2, which only supports 1 practice, i.e., 10 %
in Table 5. Here the OCCI 1.2 HTTP Protocol specification must be extended to
support more HTTP header best practices. For instance, this specification must
explicitly state that Content-Type must be used, Content-Length should be used,
Last-Modified should be used in responses, ETag should be used in responses,
Cache-Control, Expires, and Date response headers should be used to encourage
caching, Cache-Control, Expires, and Pragma response headers may be used to
discourage caching, and Caching should be encouraged. Let’s note that OCCI
implementations such as erocci and rOCCI already implement most of these
best practices, so the consensus into the OCCI community should be reasonably
attainable. In contrast, both stores must support conditional PUT requests and
location must be used to specify the URI of a newly created resource are best
practices that no API seems to want to support.

Table 8. Followed practices by category and API

Category Total Google OpenStack OCCI Average Avg/Total

URI 20 18 17 7 14 70 %

Request methods 8 7 7 7 7 87 %

Error handling 16 6 6 13 8 52 %

HTTP headers 10 6 7 1 4 46 %

Others 19 11 8 13 10 56 %

Total 73 48 45 41 44 61 %

4.3 RQ3 What Best Practices Are Adopted by All APIs?

In Table 9, we identified from our results the set of practices that all APIs
follow, forming a “consensus”. We found that only 32 % (24/73) of practices
were followed by all APIs. This means that the cloud API providers are not
yet in agreement on the main good practices to prioritise and might be guided
by technical decisions. However, it should be pointed out that the practices are
strict and detailed. This explains why this number is very low. Moreover, we
could identify that the majority of practices are adopted at least by one API.
Overall, the APIs, even if do not follow strictly all best practices, implement
relatively well all practices and are thus well-designed.

4.4 RQ4 What Best Practices Are Adopted by None of the APIs?

An opposite analysis allows us to identify the set of practices that none API
follows, forming a negative “consensus”. We found that only ten best practices

166 F. Petrillo et al.

Table 9. Practices followed by All APIs

Practices Categories

Forward slash separator (/) must be used to indicate a hierarchical

relationship

URI format

A trailing forward slash (/) should not be included in URIs URI format

Consistent subdomain names should be used for your APIs URI authority

The query component of a URI may be used to filter collections or stores URI query

The query component of a URI should be used to paginate collection or

store results

URI query

Avoiding version number in the query params URI query

Avoiding CRUD actions in query params URI query

GET and POST must not be used to tunnel other request methods Request methods

GET must be used to retrieve a representation of a resource Request methods

PUT must be used to update mutable resources Request methods

POST must be used to create a new resource in a collection Request methods

POST must be used to execute controllers Request methods

DELETE must be used to remove a resource from its parent Request methods

200 (“OK”) should be used to indicate nonspecific success Error handling

200 (“OK”) must not be used to communicate errors in the response body Error handling

400 (“Bad Request”) may be used to indicate nonspecific failure Error handling

Custom HTTP headers must not be used to change the behavior of HTTP

methods

HTTP headers

JSON should be supported for resource representation Message body

Additional envelopes must not be created Message body

New URIs should be used to introduce new concepts URI

Accompanying human-readable documentation Documentation

A consistent form should be used to represent links Hypermedia

A consistent form should be used to advertise links Hypermedia

A self link should be included in response message body representations Hypermedia

(14 %) are applied by none of the three APIs analysed. Table 10 lists the practices
followed by no API. This list could be analysed to understand why these practices
are not followed by more APIs. For example, as any cloud API provider performs
long running actions, e.g. starting a virtual machine takes some minutes, then
all cloud APIs must return 202 (“Accepted”) HTTP status to indicate successful
start of an asynchronous action. Another example is that 304 (“Not Modified”)
should be used by all cloud APIs to preserve network bandwidth.

4.5 Threats to Validity

As with any such empirical study, threats exist that reduce its validity, which
we attempted to mitigate or had to accept. We now discuss these threats and
the measures that we took with respect to them.

Threats to the construct validity of our study concern the relationship between
theory and observations. We assumed (1) that good practices can be codified and

Are REST APIs for Cloud Computing Well-Designed? 167

Table 10. Practices followed by No API

Practices Categories

Hyphens (-) should be used to improve the readability of URIs URI format

Avoiding version number in the path URI path

202 (“Accepted”) must be used to indicate successful start of an

asynchronous action

Error handling

304 (“Not Modified”) should be used to preserve bandwidth Error handling

Stores must support conditional PUT requests HTTP request

Location must be used to specify the URI of a newly created resource HTTP request

Cache-Control, Expires, and Pragma response headers may be used to

discourage caching

HTTP request

Media type selection using a query parameter may be supported URI format

The query component of a URI should be used to embed linked resources URI format

Consistent subdomain names should be used for your client developer portal URI authority

shared among developers and (2) that these good practices improve the quality
of the REST APIs of the cloud providers that follow them [15]. Although these
assumptions are legitimate and have been withheld by many researchers and
works before for example that of Zhang and Budgen [14], future work should
study whether these good practices apply universally to all cloud services.

Threats to internal validity concern confounding factors that can affect our
dependent variables. Although we did not carry any statistical analysis on the
characteristics of the studied REST APIs, we assumed that the good practices
were representative characteristics of the REST APIs. However, there may be
other characteristics that describe more accurately these REST APIs, in par-
ticular their understandability and reusability. Future work include analysing
and contrasting more APIs with more practices to uncover possible other char-
acteristics. We also related the APIs and the practices manually thanks to the
information provided in the literature and by the APIs documentations. Yet,
other researchers should perform similar analysis to confirm/infirm ours.

Threats to conclusion validity deal with the relation between the treatment and
the outcome. Again, we did not carry any statistical analysis between the REST
APIs and the identified good practices and the characteristics of understandabil-
ity and reusability. Yet, we argued that comparing these REST APIs according
to their use of the practices is sensible because they belong to the same design
space. We also accepted that external characteristics could influence their design
and, hence, their quality. We accepted this threat and future work could uncover
more novel characteristics and measures of REST APIs.

Threats to external validity concern the generalisability of our results. Although
we presented, to the best of our knowledge, the largest study on the design
of REST APIs based on an catalog of good practices from the literature, we
cannot generalise our results to all REST APIs. Future work is necessary to

168 F. Petrillo et al.

analyse more REST APIs, from other cloud providers, to confirm and–or infirm
our observations on their design quality characteristics.

5 Related Work

To the best of our knowledge, few work studied the evaluation of REST APIs.
Rodŕıguez et al. [2] evaluated the conformance of good and bad practices

in REST APIs from the perspective of mobile applications. They analysed large
data logs of HTTP calls collected from the Internet traffic of mobile applications,
identified usage patterns from logs, and compared these patterns with design
best practices. Zhou et al. [16] showed how to fix design problems related to the
use of REST services in existing Northbound networking APIs in a Software
Defined Network and how to design a REST Northbound API in the context of
OpenStack. Both of these two previous work made contributions to the design
evaluation of REST APIs for two specific domains, mobile and networking, while
we consider the domain of cloud services.

Maleshkova et al. [5] analysed a set of 220 publicly-available Web APIs,
including RPC, REST, and hybrid (a mix of RPC and REST) styles. They
investigated six characteristics of the APIs: general information, types of Web
APIs, input parameters, output formats, invocation details, and complementary
documentation. This work provides a view on how Web APIs are developed and
exposed. In particular, it shows that Web APIs are not necessarily REST and
that they suffer from under-specification because important information such as
data-type and HTTP methods are missing. This work supports our paper on the
need to study the design of REST APIs.

In our previous works [8,9], we evaluated the design of several REST APIs
based on REST patterns and antipatterns, which correspond to good and bad
practices in the design of REST services. However, the APIs evaluated were
selected from different and general domains. They included Facebook, Twitter,
Dropbox, and Bestbuy. So, it was not possible to compare and discuss the results
among the APIs. Moreover, the list of patterns and antipatterns was really lim-
ited compared to the catalog of best practices presented in this paper.

6 Conclusion and Future Work

In this paper, we claimed that well designing REST APIs is difficult for cloud
providers although there exist best practices pertaining to understandability and
reusability. We supported our claim by performing, to the best of our knowledge,
the first study evaluating and comparing the designs of the REST APIS of several
cloud providers. We included in our study the REST APIs provided by Google
Cloud Platform, OpenStack, and OCCI. We presented thus two contributions,
a catalog of best practices from the literature and an evaluation of the use of
these practices in three sets of APIs.

For our first contribution, we reviewed the literature extensively and compiled
a catalog of 73 best practices in the design of REST APIs making APIs more

Are REST APIs for Cloud Computing Well-Designed? 169

understandable and reusable. We believe that our catalog is exhaustive at the
time of writing. We hope that this catalog can be used by other researchers to
study some quality characteristics of REST APIs as well as practitioners when
designing, implementing, and assessing their own REST APIs.

For our second contribution, we evaluated and compared the design of the
REST APIs using best practices from the literature and showed that Google
Cloud follows 66 % (48/73), OpenStack follows 62 % (45/73), and OCCI 1.2
follows 56 % (41/73) of the best practices.

Thus, we showed that best practices can help evaluate REST APIs and design
better REST APIs in terms of understandability and reusability. Moreover, in
opposition of a recent assessment [2], we also showed that cloud APIs reach
an acceptable level of maturity when considering good practices pertaining to
understandability and reusability.

Future work includes studying whether these good practices apply universally
to all cloud APIs. In particular, we planned to analyse and contrast more APIs,
especially other commercial offers like Amazon Web Services and other open
source cloud stacks like Apache’s CloudStack, with more practices to uncover
possible other characteristics. Finally according to the results of this study, we
will contribute to the improvement of OCCI specifications in order to make them
more visible as OCCI is the only open standard addressing the management of
any cloud computing resource.

Acknowledgment. Thank to Boris Parak from CESNET and Jean Parpaillon from
Inria for their helps in evaluating the support by OCCI of our catalog of best practices.
This work is partially supported by the OCCIware research and development project
(http://www.occiware.org) funded by French Programme d’Investissements d’Avenir
(PIA).

References

1. Armbrust, M., Stoica, I., Zaharia, M., Fox, A., Griffith, R., Joseph, A.D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.: A view of cloud com-
puting. Commun. ACM 53(4), 50 (2010). http://portal.acm.org/citation.cfm?
doid=1721654.1721672

2. Rodŕıguez, C., Baez, M., Daniel, F., Casati, F., Trabucco, J.C., Canali, L.,
Percannella, G.: REST APIs: a large-scale analysis of compliance with princi-
ples and best practices. In: Bozzon, A., Cudré-Mauroux, P., Pautasso, C. (eds.)
ICWE 2016. LNCS, vol. 9671, pp. 21–39. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-38791-8 2

3. Ciuffoletti, A.: Application level interface for a cloud monitoring service.
Comput. Stand. Interfaces 46, 15–22 (2016). http://www.sciencedirect.com/
science/article/pii/S0920548916000027

4. Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures. Ph.D. thesis, University of California, Irvine (2000). http://www.ics.uci.
edu/fielding/pubs/dissertation/top.htm

http://www.occiware.org
http://portal.acm.org/citation.cfm?doid=1721654.1721672
http://portal.acm.org/citation.cfm?doid=1721654.1721672
http://dx.doi.org/10.1007/978-3-319-38791-8_2
http://dx.doi.org/10.1007/978-3-319-38791-8_2
http://www.sciencedirect.com/science/article/pii/S0920548916000027
http://www.sciencedirect.com/science/article/pii/S0920548916000027
http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm

170 F. Petrillo et al.

5. Maleshkova, M., Pedrinaci, C., Domingue, J.: Investigating web APIs on the
world wide web. In: 2010 Eighth IEEE European Conference on Web Services,
pp. 107–114. IEEE (2010). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=5693251

6. Masse, M.: REST API Design Rulebook, vol. 53. O’Reilly Media, Sebastopol (2011)
7. Merle, P., Barais, O., Parpaillon, J., Plouzeau, N., Tata, S.: A precise metamodel

for open cloud computing interface. In: 2015 IEEE 8th International Conference
on Cloud Computing, pp. 852–859, June 2015

8. Palma, F., Dubois, J., Moha, N.: Service-Oriented Computing. Lecture
Notes in Computer Science, vol. 8831. Springer, Berlin, Heidelberg (2014).
http://link.springer.com/10.1007/978-3-662-45391-9

9. Palma, F., Gonzalez-Huerta, J., Moha, N., Guéhéneuc, Y.G., Tremblay, G.: Are
RESTful APIs well-designed? Detection of their linguistic (anti)patterns. In:
Toumani, F., et al. (eds.) ICSOC 2014. LNCS, vol. 8954. Springer, Heidelberg
(2015). http://link.springer.com/10.1007/978-3-319-22885-3, http://link.springer.
com/10.1007/978-3-662-48616-0 11

10. Paraiso, F., Challita, S., Al-Dhuraibi, Y., Merle, P.: Model-driven management of
docker containers. In: Proceedings of 9th IEEE International Conference on Cloud
Computing (CLOUD) (2016, to appear)

11. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media Inc., Sebastopol
(2007)

12. Stowe, M.: Undisturbed REST: A Guide to Designing the Perfect API. MuleSoft,
San Francisco (2015)

13. Vinoski, S.: RESTful web services development checklist. IEEE Inter-
net Comput. 12(6), 95–96 (2008). http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=4670126

14. Zhang, C., Budgen, D.: What do we know about the effectiveness of software design
patterns? IEEE Trans. Softw. Eng. 38(5), 1213–1231 (2012)

15. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research
challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010). http://www.springerlink.
com/index/10.1007/s13174-010-0007-6

16. Zhou, W., Li, L., Luo, M., Chou, W.: REST API design patterns for SDN north-
bound API. In: 2014 28th International Conference on Advanced Information Net-
working and Applications Workshops, pp. 358–365. IEEE (2014). http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6844664

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5693251
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5693251
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-662-45391-9
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-319-22885-3
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-662-48616-0_11
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-662-48616-0_11
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4670126
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4670126
http://www.springerlink.com/index/10.1007/s13174-010-0007-6
http://www.springerlink.com/index/10.1007/s13174-010-0007-6
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6844664
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6844664

	Are REST APIs for Cloud Computing Well-Designed? An Exploratory Study
	1 Introduction
	2 Best Practices on REST API Design
	3 Study Design
	3.1 Objects
	3.2 Procedure

	4 Results
	4.1 RQ1 What Are the Main Services Provided by Cloud REST APIs?
	4.2 RQ2 How Many Best Practices Are Followed by Cloud REST APIs?
	4.3 RQ3 What Best Practices Are Adopted by All APIs?
	4.4 RQ4 What Best Practices Are Adopted by None of the APIs?
	4.5 Threats to Validity

	5 Related Work
	6 Conclusion and Future Work
	References

