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14Cardiovascular Dysfunction  
Following Spinal Cord Injury
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Abstract
Cardiovascular issues following spinal cord injury (SCI) are of paramount 
importance considering they are the leading cause of death in this population. 
The disruption of autonomic pathways leads to a highly unstable cardiovascular 
system, with impaired blood pressure and heart rate regulation. In addition to low 
resting blood pressure, on a daily basis, the majority of those with SCI suffer 
from transient episodes of aberrantly low and high blood pressure (termed ortho-
static hypotension and autonomic dysreflexia, respectively). In fact autonomic 
issues, including the resolution of autonomic dysreflexia, are frequently ranked 
by individuals with SCI to be of greater priority than regaining motor function. 
Due to a combination of these autonomic disturbances and a myriad of lifestyle 
factors, the pernicious process of cardiovascular disease is accelerated after 
SCI. Unfortunately, these secondary consequences of SCI are only beginning to 
receive appropriate clinical attention. Immediately after high-level SCI, major 
cardiovascular abnormalities present in the form of neurogenic shock. After 
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 subsiding, new issues related to blood pressure instability arise, including ortho-
static hypotension and autonomic dysreflexia. The present chapter reviews auto-
nomic control over the cardiovascular system before injury and the mechanisms 
underlying cardiovascular abnormalities after SCI, while also detailing the end-
organ consequences including those of the heart, as well as the systemic and 
cerebral vasculature. The tertiary impact of cardiovascular dysfunction will also 
be discussed, such as the potential impediment of rehabilitation, impaired cogni-
tive function, and limitations to exercise capacity. In the recent past, our under-
standing of autonomic dysfunction has been greatly enhanced; however, it is 
vital to further develop our understanding of the long-term consequences of 
these conditions, which give us insight to cardiovascular disease morbidity and 
mortality in this population.

14.1  Introduction

Spinal cord injury (SCI) is a devastating condition with the capacity to change the 
trajectory of life resulting in increased morbidity and earlier mortality. Due to a 
combination of major autonomic disturbances and the related cardiovascular dys-
function, as well as a myriad of lifestyle-altering factors, the pernicious process of 
cardiovascular disease is extremely accelerated after SCI [1, 2]. Even after control-
ling for major risk factors, the risk of heart disease is almost threefold higher in 
those with SCI, while the risk for stroke is almost fourfold higher compared to those 
without SCI [3].

Disruption of the neuronal pathways of the spinal cord is well known to lead to 
paralysis, but also leads to major alterations of the autonomic nervous system. 
Although the site of injury to the spinal cord is generally localized to a small region 
(including neurons, supporting cells, as well as ascending and descending neuronal 
pathways), the effect of this disruption is frequently associated with a wide array of 
dysfunctions due to malfunction of the autonomic nervous system (see chapter 2).

Alterations in autonomic function are often dominated clinically by changes in 
spinal sympathetic control [4, 5]. Specifically, those with SCI often suffer from 
unstable blood pressure, including low resting blood pressure, severe drops in 
blood pressure when moving to the upright position (termed orthostatic hypoten-
sion (OH), and/or aberrant life-threatening bouts of acute hypertension termed 
autonomic dysreflexia (AD) [6]. The effect of SCI on autonomic/cardiovascular 
dysfunction is well reported in a variety of human and lower-order animal models 
(i.e., rodents) [6, 7].

Autonomic issues, such as cardiovascular dysfunction, are most frequently 
ranked by patients with SCI to be of greater priority to them than regaining their 
motor function [8]. Clinically, the importance of cardiovascular dysfunction is often 
overlooked and poorly understood and presents as part of complex and challenging 
clinical scenarios. In light of this, and the consideration that cardiovascular disor-
ders in both the acute and chronic stages of SCI represent the most common causes 
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of death in individuals with SCI [9, 10], it is imperative to understand the cardiovas-
cular consequences of this condition. It is only during the last decade, that in addi-
tion to the assessment of motor and sensory deficits [11], newly developed 
international Autonomic Standards were developed for clinical evaluation and man-
agement of autonomic dysfunctions following SCI [12].

The present chapter is focused on delineating cardiovascular dysfunction after 
SCI. Specific areas to be reviewed include: autonomic regulation of cardiovascular 
function, the underlying mechanisms of cardiovascular dysfunction after SCI, major 
cardiovascular clinical conditions after SCI such as orthostatic hypotension and 
autonomic dysreflexia, changes in cardiovascular disease risk factors and end-organ 
maladaptation after SCI, as well as management recommendations for SCI patients 
in order to mitigate cardiovascular dysfunction.

14.2  Autonomic Regulation of Cardiovascular Function

Arterial blood pressure and heart rate regulation are under constant control of the 
autonomic nervous system, which is comprised of two primary divisions: sympa-
thetic and parasympathetic (Fig. 14.1) [14, 15]. Activation of the sympathetic ner-
vous system plays an excitatory role (i.e., fight or flight response) and results in an 
increase in sympathetic peripheral nerve activity leading to increased heart rate, 
increase in cardiac contractility, and generalized systemic vascular constriction; 
together leading to increased arterial blood pressure. On the other hand, activation 
of the parasympathetic nervous system typically is limited to reducing heart rate and 
cardiac contractility (via vagal nerve), and is widely accepted to not extend to the 
vasculature itself, except in specific regions including blood vessels of the salivary 
glands, gastrointestinal glands, genital erectile tissue, and potentially the cerebro-
vasculature [16–18].

Although some cortical areas and hypothalamic regions [4] with tonic and 
inhibitory influences on cardiovascular functions have been identified, it is medul-
lary neurons within the rostral ventral lateral medulla that are considered to be the 
major sympathetic cardiovascular regulatory region responsible for maintenance 
and regulation of blood pressure [19]. These sympathetically active central neu-
rons project to the spinal cord and travel primarily through the dorsolateral funic-
ulus synapsing on the spinal sympathetic preganglionic neurons (SPNs), which 
are located predominately within the lateral horns of spinal gray matter in spinal 
segments T1–L2. The axons of SPNs (preganglionic fibers) exit the spinal cord 
via ventral roots and synapse on the sympathetic ganglionic neurons within para-
vertebral chain ganglia (ganglionic neurons) [20]. Finally, the postganglionic neu-
rons innervate target organs such as blood vessels (adrenergic sympathetic 
innervation), sweat glands, and piloerectors (cholinergic sympathetic innervation) 
[20]. Both the central and peripheral autonomic nervous systems provide crucial 
coordinated regulation of the cardiovascular system in order to provide appropri-
ate blood pressure throughout daily living including such activities as exercise 
and orthostatic challenges.
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In terms of the parasympathetic division, the vagal nerve exits the central ner-
vous system supraspinally and reaches target organs such as the heart and cerebral 
blood vessels without traversing the spinal cord. The parasympathetic division plays 
an important role in dynamically regulating the heart rate over very short time 
frames of 2–3 s [21], but does not play a major role in steady-state blood pressure 
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Fig. 14.1 Autonomic cardiovascular control. The cerebral cortex and hypothalamus project to the 
nuclei of the medulla oblongata, where autonomic cardiovascular control is coordinated and inte-
grated with input from baroreceptors, chemoreceptors. Parasympathetic control of cardiovascular 
systems exits at the level of the brainstem via the vagus nerve. The preganglionic fibers of the 
vagus nerve then synapse with postganglionic parasympathetic neurons in ganglia on or near the 
target organ. Descending sympathetic pathways provide tonic control to sympathetic pregangli-
onic neurons (SPNs) involved in cardiovascular regulation. Cell bodies of SPNs are found within 
the lateral horn of the spinal cord in segments T1–L2 and exit the spinal cord via the ventral root, 
and they then synapse with postganglionic neurons located in the sympathetic chain (paravertebral 
ganglia). Finally, the sympathetic postganglionic neurons synapse with target organs such as the 
heart and blood vessels. Considering Poiseuille’s law, blood pressure is affected to the fourth 
power by arterial diameter and only linearly by increases in flow [heart rate (HR)-derived changes 
in cardiac output]. As such, it is not surprising that the vasomotor branch of the baroreflex is much 
more important than the vagal branch for the maintenance of mean arterial blood pressure (MAP). 
TVC total vascular conductance, SV stroke volume (Modified from Phillips et al. [13])
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either in a supine or upright position [22]. Some sacral parasympathetic cell bodies 
of the parasympathetic division are located in the spinal segments S2–S4; however, 
they do not play a role in cardiovascular control. Both sympathetic and sacral para-
sympathetic preganglionic neurons receive supraspinal tonic and inhibitory nervous 
system control via spinal autonomic pathways that [23, 24], unfortunately, are fre-
quently disrupted after SCI [25].

The baroreflex is the primary mechanism responsible for short-term regulation of 
blood pressure [13, 26] and also plays a critical role in long-term blood pressure 
regulation [27]. The baroreflex is comprised of two interdependent systems [28, 29] 
that work in concert as one reflex system. The first, a low-pressure system, is made 
up of cardiopulmonary stretch receptors located in the heart and lungs, which aug-
ments sympathetic nervous system activity in response to reductions in central 
venous pressure and volume [30]. The second, a high-pressure baroreflex system, 
consists of stretch receptors located in the tunica adventitia of the aortic arch and 
carotid bulbs [31]. These spray-like nerve endings generate a more rapid rate of 
depolarization and hence increase the frequency of action potentials in afferent 
nerves during periods of increased wall distension [30]. The signal is transmitted 
from the carotid bulb via the glossopharyngeal nerve (vagal nerve) and the aortic 
arch via the vagal nerve to the nucleus of the solitary tract in the medulla oblongata 
[14]. This transmission, which provides surrogate information on systemic blood 
pressure, is integrated with other afferent information (such as chemoreceptor affer-
ent signals) in order to modulate efferent nervous activity transmitted through the 
vagal nerve and sympathetic system to target organs, with the aim of rapidly main-
taining blood pressure around a set point (Fig. 14.1) [30]. For example, when a 
human moves from the supine to upright position, approximately 500 ml of blood is 
translocated away from the heart and brain and toward the blood vessels of the gut 
and legs [32]. Central baroreceptors detect reductions in stretch and respond by 
decreasing vagal tone to the heart and increasing peripheral sympathetic activity. 
The increase in sympathetic tone results in an increased heart rate and peripheral 
vasoconstriction that is responsible for maintaining stable arterial blood pressure 
[13]. After SCI, although the baroreceptors certainly detect reductions in central 
blood volume during orthostasis, disrupted descending sympathetic pathways pre-
cludes the capacity to vasoconstrict, often resulting in abnormal fluctuations in 
blood pressure with changing body position [13]. Our most recent understanding, as 
well as mechanistic insight, surrounding these episodes and other cardiovascular 
conditions after SCI will be discussed in the following sections.

14.3  Mechanisms Underlying Abnormal Cardiovascular 
Control Following SCI

We are just beginning to unravel the mechanisms underlying abnormal cardiovascu-
lar function after SCI. Due to the lack of a suitable animal model of OH, most 
mechanistic studies have focused on AD as the clinical condition of interest. The 
morphological changes within the spinal autonomic circuits after SCI have been 
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established relatively recently [33]. Furthermore, the role these changes are playing 
in the development of autonomic dysfunction has only just been solidified [34–36]. 
A variety of autonomic circuits have been highlighted that possibly contribute to 
abnormal cardiovascular control after SCI [6]. The disruption of descending spinal 
cardiovascular pathways leads to a minimum of six neuroanatomical changes that 
influence autonomic cardiovascular control:

 1. Initial sympathetic hypoactivity due to loss of supraspinal tonic sympathetic 
excitation [37, 38].

 2. Alterations in the morphology of sympathetic preganglionic neurons (SPNs) 
[20, 33].

 3. Plastic changes of the spinal circuits (i.e., dorsal root afferent sprouting, poten-
tial formation of aberrant synaptic connections [39], or aberrant inputs to the 
spinal interneurons) [34].

 4. Altered sympatho-sensory plasticity [35].
 5. Altered peripheral neurovascular responsiveness [40].
 6. Cumulative effect of tertiary factors. These factors will be discussed below.

Autonomic Pathways and SPN Plasticity It is now appreciated that in the acute 
stage after SCI, SPNs atrophy. However, over time, they regain somewhat normal 
morphology (similar soma size as pre-injury but more dendritic arbor and aberrant 
connections) [15]. It is most likely that the loss of descending projections of medul-
lary neurons result in the initial atrophy of SPNs, as many of these are thought to 
synapse directly. In the very early phase after SCI, loss of descending inhibitory 
pathways predisposes individuals to early AD episodes, while, later atrophy of 
SPNs leads to an intermediate period where AD is less severe (Fig. 14.2) [15]. 
Disrupted descending pathways, as well as atrophied SPNs, likely contribute to the 
lack of sympathetic tone and very low resting blood pressure in the early phase of 
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injury as well as the extremely high prevalence of OH. As the phase of injury transi-
tions into the more chronic stage, AD manifests again [6, 41]. For example, AD is 
most commonly documented during the subacute and chronic stages of SCI. AD 
often becomes clear within 2–3 months after SCI in those with SCI above the T6 
spinal segment [42].

Dorsal Afferents and Intraspinal Plasticity Exaggerated sensory input to the spinal cord 
occurs caudal to the site of injury after SCI. For example, evidence from animal studies 
suggests that dorsal root afferents sprout along with an enlargement of soma size in the 
dorsal root ganglia after SCI [39, 43, 44]. Specifically, there is an intrusion of calcitonin 
gene-related peptide immunoreactive (CGRP+) afferent fibers further into the spinal cord 
(quantified as increased CGRP+ fibers in laminae II–V post-SCI) (see chapter 2) [45], 
accompanied by somal hypertrophy of the transient receptor potential cation channel 
subfamily V member 1 (TRPV1) in the dorsal root ganglia [35]. It is likely that primary 
afferents such as CGRP+ axons in the dorsal root ganglion sprout and extend from their 
proper location (laminae I–II) (see chapter 2) [15]. Increased sprouting of primary affer-
ents would generate new intraspinal circuits [34] and is a suspected mechanism for AD 
due to both similar time courses [34, 45–47] and its relation to AD severity [48].

Vasculature Peripheral Component An additional autonomic alteration associated 
with AD after SCI includes hyperresponsiveness of blood vessels to alpha- adrenergic 
stimulation. Specifically, it has been shown that the mesenteric artery is hyperrespon-
sive to the pressor agent phenylephrine in rodents after SCI due to increased sensitiv-
ity secondary to impaired neuronal reuptake [49, 50]. Furthermore, a number of 
studies have shown exaggerated pressor responses to alpha sympathomimetic admin-
istration [51–53]. It has also been shown that sympathetically correlated spinal inter-
neurons are hypersensitive to afferent stimuli after SCI [14, 15, 34]. Together, the 
combination of hyperresponsive interneurons and vascular smooth muscle, as well as 
the increased influence from primary afferents, creates a “perfect storm” of reorgani-
zation predisposing to episodes of transient hypertension in response to nociceptive or 
non-nociceptive afferent stimulation (i.e., AD). It is interesting to highlight however 
the multifaceted contributions to the presence of AD. For example, reductions in AD 
severity have been shown after interventions showing no reduction in blood vessel 
hyperresponsiveness [49], suggesting other factors such as altered sympatho-sensory 
plasticity may be playing a more central role.

Clearly, there are a number of factors after SCI that predispose to the frequent 
and widespread occurrence of AD and OH, which are major clinical conditions after 
SCI affecting both the quality and quantity of life in this population.

14.4  Cardiovascular Consequences Following SCI

Over the past 10 years, our knowledge regarding the underling pathophysiology of 
autonomic dysfunction after SCI has been enhanced greatly [5, 34, 41, 54]. The 
most prominent outcomes of mechanistic maladaptations described above are low 
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resting blood pressure [6] as well as extremely labile blood pressure characterized 
by frequent episodes of low blood pressure when assuming an upright position 
(OH) and episodes of high blood pressure in response to afferent stimuli below the 
level of injury (AD). These cardiovascular conditions will be discussed in detail 
throughout the next sections.

14.4.1  Low Resting Blood Pressure

In addition to hypotension during the acute period following SCI (neurogenic 
shock, see below) individuals with high thoracic and cervical SCI frequently 
experience low arterial blood pressure at rest that is notably lower than in able-
bodied individuals [55]. Clinical evidence indicate that the extent and severity of 
hypotension, correlates well with the level and severity of SCI (Fig. 14.3) [41, 
56–58]. Analysis derived from the non-SCI population has clearly illustrated that 
an inverted-U relationship exists in terms of resting blood pressure, whereas in 
addition to high blood pressure, there are significant clinical conditions associ-
ated with having a blood pressure that is too low [59–61]. This has recently been 
corroborated in the SCI population, where impaired cerebrovascular and cogni-
tive function has been shown to be associated with low resting blood pressure 
[62]. In the SCI population, low resting blood pressure is also associated with a 
number of conditions, including cognitive impairment, exacerbated dizziness, 
and the development of syncope, as well as poor mood, lethargy, and fatigue 
[63–67]. Following this, low blood pressure should be appreciated and addressed 
in those with SCI.

14.4.2  Autonomic Dysreflexia

Episodes of AD are characterized by an acute elevation of systolic blood pressure 
of at least 20 mmHg, which may or may not be accompanied by a decrease in heart 
rate [68], and occurs in response to peripheral painful or non-painful visceral or 
somatic stimulation below injury, including a full bladder or bowel (see Fig. 14.4 
for example of AD during bladder filling). It is now well appreciated that AD epi-
sodes can occur in both the acute and chronic phases of SCI [42, 69]. In fact, epi-
sodes of AD, where systolic blood pressure can rise above 300 mmHg, are now 
known to occur up to 40 times/day (average of 11 times/day) in the majority of 
those with high-level SCI above the T5 level [70]. Episodes of AD are often accom-
panied by a pounding headache, and flushing above the injury [6, 68, 71]. Left 
untreated, episodes of AD could result in life-threatening complications (Table 14.1) 
including cerebral hemorrhage, retinal detachment, seizures, cardiac arrhythmias, 
and death [152–154].

The most common stimuli to trigger AD include bladder and bowel distention, 
but can also be brought on by spasms, pressure sores, and even something as simple 
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(Modified from Furlan et al. [25])
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as a tight shoelace [5]. Catheterization and manipulation of an indwelling catheter 
can also lead to AD, in addition to urinary tract infection, detrusor-sphincter dys-
synergia, and bladder percussion. There are also a number of iatrogenic triggers 
such as cystoscopy, penile vibrostimulation or electrostimulation for ejaculation, as 
well as the electrical stimulation of muscles [89, 96, 155]. The intensity of AD epi-
sodes is variable, and not all episodes are severe, especially if the triggering stimu-
lus is resolved promptly. In fact, many AD episodes are asymptomatic (i.e., patient 
does not recognize it even though blood pressure is increasing) or characterized by 
sweating and/or piloerection alone [156]. The level and completeness of the injury 
are the critical determinants for the presence of AD which is three times more com-
mon in complete versus incomplete quadriplegics [157] and typically occurs 
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Table 14.1 Triggers and 
conditions associated with 
autonomic dysreflexia

Urogenital system

Bladder distension [72–77]

Urethral distention [78–81]

Urodynamics/cystoscopy [72, 76, 78, 82–84]

Urinary tract infections [79, 85–87]

Epididymitis [88]

Renal calculus [89, 90]

Electroejaculation [91–93]

Coitus [94, 95]

Penile stimulation to obtain reflex erection [96–98]

Vaginal dilation [99]

Uterine contractions [77, 100–105]

Testicular torsion

Gastrointestinal system

Bowel distention [76, 106, 107]

Anal fissures/hemorrhoids [99, 108, 109]

Esophageal reflux [110]

Enemas [111]

Gastric dilatation [99]

Gastric ulcer [112]

Acute abdomen (peritonitis, cholecystitis, appendicitis) [112]

Skin/musculoskeletal

Cutaneous stimulation [113, 114]

Sunburns [115]

Pressure sores [116, 117]

Ingrown toenails [76]

Functional electrical stimulation [118]

Spasticity [119]

Bone fractures [120, 121]

Intramuscular injection [122]

Hip instability [123, 124]

Surgical procedures/conditions

Surgical procedures [125–130]

Radiologic procedures [131]

Unstable fusion [132]

Lumbar spondylolisthesis [133]

Miscellaneous

Pulmonary embolism [134]

Range-of-motion exercises [135]

Position changes [136, 137]

Medications [74]

Emergence in cold water [138]

Acupuncture [139]

(continued)
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primarily when the SCI is at or above the T6 spinal segment (see chapter 2) [5, 41]. 
As discussed previously in this chapter, changes in the autonomic circuits in the 
spinal cord are major contributing factors to the development of AD [34].

Finally, it should be noted that, although AD is certainly a life-threatening emer-
gency [125] and known to be unpleasant [94], some individuals with SCI volun-
tarily induce AD in order to increase their blood pressure, as it may in some cases 
improve their athletic performance [140]. The inducement of AD is referred to as 
“boosting” and is considered unethical and illegal by the International Paralympics 
Committee Medical Commissions, leading to medical examinations before compe-
titions. The occurrence of boosting in competition is a testament to the devastating 
functional and performance limitations imposed by the autonomic cardiovascular 
dysfunctions present after SCI.

14.4.3  Orthostatic Hypotension

Episodes of OH are characterized by substantial declines in blood pressure when 
assuming the upright posture (Fig. 14.5). After SCI, the interruption of sympatho- 
excitatory pathways from the brainstem to the SPNs impairs the efficaciousness 
of the arterial baroreflex to cause vasoconstriction and maintain blood pressure 
[158, 159]. Although the cardiovagal baroreflex is impaired after SCI, it is the 
sympathetic system that is primarily responsible for blood pressure maintenance 
following the first 2–3 s of orthostatic challenge (before which the cardiovagal 
response is important) [13]. The result is both low venous return secondary to 
blood pooling in the vasculature caudal to the site of injury, as well as low arterial 
blood pressure/vessel tone [13]. Additionally, there are low resting catecholamine 
levels after cervical SCI and no discernable increase with central supraspinal 
sympathetic activation induced by upright tilt [7]. The presence of stiffer central 
arteries (which are responsible for detecting changes in blood pressure) after SCI 
further impairs baroreflex sensitivity [1]. Orthostatic hypotension is most 

Advantages of autonomic dysreflexia (AD)

Self-induced AD (intentional boosting) [140–142]

Signal of onset of serious medical complications [99, 112]

Complications of AD seizures [88, 143]

Retinal hemorrhages [82, 88]

Intracranial hemorrhage [88, 125, 144–146]

Transient aphasia [147]

Neurogenic pulmonary edema [148]

Cardiac arrhythmias [71, 149]

Cardiac arrest [150]

Death [88, 125, 151]

Table 14.1 (continued)
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common and severe in the acute phase of SCI, but also can be observed in the 
chronic phase among individuals with high cervical injuries [66, 160]. Similar to 
resting blood pressure, the severity and level of injury to descending cardiovascu-
lar autonomic pathways is directly associated with OH (Fig. 14.5) [7]. Together, 
this indicates that the extent of cardiovascular instability after SCI is related to the 
completeness of injury to autonomic pathways within the spinal cord. Clinically, 
OH is defined as a decrease in systolic blood pressure of 20 mmHg or more, or a 
decrease in diastolic blood pressure of 10 mmHg or more, when assuming an 
upright posture from the supine position, regardless of presence of symptoms 
[161]. This definition was agreed upon by the Consensus Committee of the 
American Autonomic Society and the American Academy of Neurology [161]. 
Presyncopal symptoms after SCI are no different from the able-bodied population 
[162]. These include light-headedness, dizziness, blurred vision, fatigue, nausea, 
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dyspnea, and restlessness [163, 164]. Orthostatic hypotension is extremely com-
mon in those with SCI. For example, one study showed that OH occurs in up to 74 
% of individuals with SCI when performing orthostatic maneuvers during physi-
cal therapy and mobilization [67]. Similar to AD, OH does not always lead to 
presyncopal symptoms, and many individuals have asymptomatic OH. In fact, 41 
% of those with SCI were asymptomatic during episodes of OH [7]. Recently, we 
have shown that often OH persists into the chronic stage of SCI; however presyn-
copal symptoms may partially subside [7]. In terms of prevalence, in the chronic 
phase of SCI, OH occurs in up to 50 % of cervical SCI patients and 18 % of tho-
racic patients; however, from this OH-positive group, presyncopal symptoms 
were only present in one third and one fifth of individuals [7]. This finding sug-
gests that tolerance to low blood pressure and cerebral perfusion pressure may 
improve with time after SCI [65, 165, 166]. Considering the association between 
OH and an elevated risk of stroke in the able-bodied population [167], as well as 
the fact that stroke risk is 3–4 times greater after SCI, it is logical to posit that the 
presence of OH after SCI plays a contributing role [3, 168].

Other factors contributing to the presence of OH after SCI include reduced 
plasma volumes caused by hyponatremia [163], insufficient increases in the effica-
ciousness of the renin-angiotensin system to maintain blood pressure [51], and 
potential cardiac deconditioning [169–171]. A similar contribution from these 
mechanisms leads to low resting blood pressure after SCI as well [6].

To summarize, episodes of OH can lead to syncope, nausea, fatigue, and dizzi-
ness and significantly impede rehabilitation. Over the long term, OH likely contrib-
utes to an elevated risk of stroke after SCI. Resting hypotension also plays a role in 
cognitive dysfunction by exacerbating the severity and frequency of orthostatic 
intolerance. Approaches to combat the abnormal cardiovascular responses after SCI 
are only in the early stages of development and will be discussed below.

14.5  Cardiovascular Changes with Time Following SCI

Spinal cord injury results in a number of acute and chronic alterations in physiology 
and behavior that together contribute to cardiovascular decline over the life-span of 
individuals with SCI (Fig. 14.2). This section will discuss acute and chronic condi-
tions after SCI and considerations related to cardiovascular decline that contribute 
to the high risk of developing cardiovascular diseases in this population.

14.5.1  Acute Cardiovascular Changes

It is clear at this point in the chapter that cardiovascular function itself is critically 
compromised by SCI. In the acute phase following high level of SCI, individuals 
present with severe hypotension and bradycardia [6]. These two issues are classic 
characteristics of the condition known as neurogenic shock [172]. Up to 100 % of 
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individuals with cervical SCI will experience severe hypotension in the acute phase 
after SCI, and roughly 50 % will require vasopressive therapy to maintain arterial 
blood pressure [6, 173]. Additionally, the majority of individuals with SCI will suf-
fer from abnormal heart rates in the acute phase following SCI. Specifically, brady-
cardia has been reported in 64–77 % of patients with cervical SCI (being most 
severe for up to 5 weeks after injury) [82, 174–177]. When SCI occurs in the mid- 
thoracic region or caudally, bradycardia is typically less severe, secondary to partial 
preservation of supraspinal influences over cardiac sympathetic neurons. Neurogenic 
shock has the potential to significantly impact long-term recovery from SCI, by 
delaying acute surgical management of the injury itself [178], and the arrhythmias 
that present during this phase of injury can require the implantation of a cardiac 
pacemaker [176, 177].

It is important to differentiate the terms “neurogenic shock” and “spinal shock,” 
both of which can occur during the acute phase of SCI, but represent two different 
conditions altogether [57, 179]. Although these terms are often used interchange-
ably, neurogenic shock describes the clinical outcomes of changes in autonomic 
blood pressure control after SCI, while spinal shock describes the clinical outcomes 
of changes in motor/sensory/reflex function after SCI (i.e., flaccid paralysis and 
areflexia) [179].

14.5.2  Long-Term Cardiovascular Considerations

14.5.2.1  Contributing Factors
It has been relatively recent that cardiovascular diseases were identified as the pri-
mary cause of death after SCI [10, 180]. In addition to the aforementioned lability 
in blood pressure (i.e., frequent episodes of AD and OH), we now appreciate that a 
number of interacting secondary conditions occur after SCI which likely increases 
the trajectory of cardiovascular disease progression throughout a patient’s life-span, 
including widespread physical inactivity [181, 182], type II diabetes [183–186], 
increased inflammation [187], suboptimal cholesterol profile [188], and accelerated 
arterial stiffening [1, 2]. Comprehensively reviewing these conditions is beyond the 
scope of this chapter; however the following sections will highlight these issues and 
management recommendations.

14.5.2.2  Physical Inactivity
In addition to increased mortality, reduced physical activity is related to a myriad 
of conditions including accelerating cardiovascular disease progression [189]. 
Those with SCI, due to a spectrum of physical and psychosocial conditions and 
barriers, are less physically active when compared to able-bodied peers [1, 190]. 
A number of studies have highlighted that physical inactivity in those with SCI is 
a critical mediating factor related to the propagation of subclinical prognostica-
tors for cardiovascular disease development [191]. Recent clinical guidelines for 
physical activity recommend for individuals with SCI to engage in aerobic 
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exercise twice weekly for a duration of at least 20 min, at moderate-to-vigorous 
intensity for health improvements indicative of mitigated cardiovascular disease 
risk [192]. Previous to this, clinical guidelines from American College of Sports 
Medicine recommended 3–5 exercise sessions per week at 50–60 % of maximum 
aerobic capacity for 20–60 min [193].

14.5.2.3  Impaired Glycemic Control
Hyperglycemia is well known to lead to diabetes or prediabetes. These abnormali-
ties are identified with elevated fasting glucose levels (≥7 mmol/L), an elevated 
routine (i.e., non-fasting) blood sugar with symptoms of diabetes (≥11.1 mmol/L) 
hemoglobin A1c (HbA1c ≥6.5 %), or with an abnormal glucose tolerance test (2 h 
post-75 g glucose ingestion ≥11.1 mmol/L; CDA, 2008). In those with SCI, the 
prevalence of abnormal glycemic control and diabetes itself is consistently higher 
than in the able-bodied population [186]. Exercise plays a role in mitigating glyce-
mic abnormalities in those with SCI as well as able-bodied individuals. Although 
the majority of studies reported improvements in glycemic control due to exercise 
after SCI, the modalities employed required expensive equipment and experienced 
training personnel (i.e., functional electrical stimulation of paralyzed limbs, body 
weight-supported treadmill exercise of lower limbs) [194–196]. No well-established 
recommendations exist for the management of glycemic abnormalities after SCI, 
although effective monitoring and standard treatment are encouraged.

14.5.2.4  Inflammation
Chronic inflammation is a key propagating factor in cardiovascular disease progres-
sion [197]. The measurement of highly sensitive C-reactive protein (hs-CRP) can 
clinically quantify the presence and severity of inflammation, which is statistically 
speaking an independent risk factor for the development of cardiovascular disease 
[198]. There are frequent infections in the chronic phase of SCI, including urinary 
tract infections and decubitus ulcers [199]. Therefore, inflammatory markers may 
spuriously represent underlying infection and not chronic inflammation. It should 
be appreciated however that in those with SCI, hs-CRP as well as other markers of 
systemic inflammation are significantly elevated, even without acute infection [200, 
201]. To date, there are no studies clearly linking chronic inflammation in those 
with SCI and the development of cardiovascular disease; however, considering the 
link in able-bodied individuals, it is highly likely that chronic inflammation plays an 
exacerbating role [197]. The current recommendations suggest close monitoring of 
inflammation in SCI; however, the management thresholds are not clearly estab-
lished and likely should be based on able-bodied individuals in the absence of SCI- 
specific data.

14.5.2.5  Lipid Abnormalities
Following SCI, there is consistent evidence of lipid profile abnormalities, particu-
larly reduced high-density lipoprotein, which is a well-established risk factor for 
cardiovascular disease development [188, 202, 203]. Most individuals require 
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pharmaceutical intervention in order to normalize suboptimal cholesterol profiles 
[204, 205], and the cardiovascular disease event reduction strategies have been 
adopted from other populations not suffering from SCI [205, 206]. A number of 
studies highlight that physical activity (either active lower body or functional elec-
trical stimulation of the lower body) can play a role in normalizing lipid profiles in 
those with SCI [207–210]; however no clear guidelines exist.

Unfortunately, all of the above risk factors are exaggerated in those with SCI, 
and no specific guidelines exist for these risk factors (with the exception of physical 
activity). In light of this, in most cases, it is suitable to follow standard (i.e., able- 
bodied) monitoring and treatment for well-established cardiovascular disease risk 
factors [3].

14.5.3  Cardiovascular End-Organ Maladaptation

14.5.3.1  Arterial Dysfunction
A great deal of interest has stemmed recently from the assessment of arterial health 
(e.g., arterial pulse wave velocity, endothelial responsiveness), both from the perspec-
tive of measuring subclinical cardiovascular disease progression in research, as well 
as in clinical practice for the capacity of arterial markers to be powerful predictive 
tools for future cardiovascular disease events [191, 211]. Arterial health markers also 
incorporate cardiovascular disease risk that is not captured by standard clinical assess-
ments such as Framingham scores [212, 213], suggesting that standard predictive 
tools do not accurately detect cardiovascular disease risk stemming from arterioscle-
rotic decline. A number of studies have examined arterial health and function in those 
with SCI [1, 2, 214, 215]. Currently, it appears that SCI elicits very little effect on 
endothelial function, although this is likely confounded by imprecise covariation for 
critical influencing factors such as a rapidly reducing arterial diameter post-injury, 
secondary to reduced metabolic blood flow requirements in downstream perfused tis-
sue [216, 217]. Aortic stiffness, however, as measured using pulse wave velocity, is 
consistently elevated by 2–3 m/s in those with SCI as compared to able-bodied indi-
viduals [1, 2], which corresponds to a 28–45 % increased risk of age-, sex-, and risk 
factor-adjusted likelihood of total cardiovascular events, cardiovascular mortality, and 
all-cause mortality [191]. Additionally, increased central arterial stiffness is shown to 
be a major cause of cardiac dysregulation after SCI, with recent data suggesting vas-
cular stiffening is the primary cause of cardiovagal baroreflex dysfunction in this 
population [214]. Although arterial stiffness is currently being strongly advocated for 
use in clinical practice [218, 219], there are no specific recommendations or guide-
lines for the treatment of arterial health after SCI; however, management should 
adhere to recommendations for the aforementioned risk factors.

14.5.3.2  Heart
Cardiovascular decline is apparent through a number of deleterious alterations in 
cardiovascular end organs, some of which occur at a remarkably rapid rate of mere 
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weeks after the SCI itself [216, 220–222]. Impairments in cardiac structure and 
function have been extensively reported in the literature in the recent past. 
Specifically, a number of studies in both rodents and humans have shown a reduc-
tion in cardiac size after high thoracic and cervical SCI, whereas those with lower 
thoracic injuries do not appear to undergo the same changes, despite reduced stroke 
volume [216, 222–224]. It has recently been demonstrated in the rodent model that 
high-level SCI (i.e., T3 complete spinal cord transection) results in marked reduc-
tions in cardiac size (i.e., end-diastolic/systolic volumes) after only 7 days [224]. 
These reductions in cardiac dimensions occurred in unison with decreased cardiac 
contractility as well as with increased relative wall thickness and myocardial fibrotic 
collagen expression in the left ventricle. Collectively, these changes are key tenants 
of cardiovascular decline and cardiovascular disease progression and indicate ele-
vated risk for cardiovascular disease [225].

To date, very few interventions have been examined for the mitigation of cardiac 
decline after SCI. One of the most promising therapies to date involves passive 
exercise in the early phase after injury [224]. In rodents who started passive exer-
cise only 5 days after injury, all cardiac impairments noted above were normalized 
to uninjured control levels after 1 month of intervention [224]. Volume unloading 
(i.e., incapacity to maintain sufficient venous return to the heart) seems to be the 
principle mechanism by which these cardiac changes occur after high-level 
SCI. Both rodent and human studies on prolonged bed rest support the idea that 
maintaining adequate venous flow back to the heart preserves normal cardiac 
dimensions and function [226–228] Certainly, human trials are needed and ongo-
ing; however, careful attention should be paid to the critical role volume unloading 
plays on the heart, especially as it appears that early participation in lower-limb 
exercise after SCI completely abrogates the majority of cardiac-specific decline in 
this population.

14.5.3.3  Cerebrovasculature
Unfortunately, the end organ of paramount complexity and importance also suffers 
significant and critical alterations after SCI. Although we know little about changes in 
brain morphology after SCI, as mentioned earlier, we do know that cognitive function 
(i.e., memory, attention/processing speed, executive function) is significantly 
impaired, and stroke risk is 3–4 times greater in this population [229–237]. Both of 
these conditions are considered to be at least partially vascular in origin, and we are 
just beginning to understand the extent of changes in cerebrovascular function after 
SCI [238, 239]. For example, we do know that people with high-level SCI are less 
able to maintain cerebral perfusion when undergoing an orthostatic challenge [65], 
and when blood pressure is low, the cerebrovascular reactivity to cognition (i.e., neu-
rovascular coupling, which describes the efficacious matching of blood delivery to 
cognitive/neuronal activation) is completely abrogated [240]. These cerebrovascular 
disorders are associated with declined cognitive performance in able-bodied individu-
als and those with SCI [62, 241]. It appears that low blood pressure is a major contrib-
uting factor to impaired cerebrovascular reactivity in those with SCI, which represents 
a similar causal factor as that which has been elucidated for cardiac decline  
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(i.e., reduced blood flow/loading) [62, 224, 227]. Please see Fig. 14.6 for detailed 
description of clinical findings leading to the above contention.

To date, very few studies have examined therapeutic interventions for improving 
cerebrovascular and cognitive function in those with SCI. Recently, normalizing 
hypotension by pharmaceutical administration of midodrine hydrochloride (10 mg 
tablet) was shown to improve cerebrovascular reactivity to cognition, and cognitive 
function in those with hypotension secondary to SCI [62]. It is important to note, 
however, that only a small component of cognitive function was measured in this 
study (i.e., verbal fluency), and although improved, pharmaceutical treatment did 
not completely normalize cognition as compared to able-bodied controls.

Taken together, systemic arteries, the heart, and cerebrovasculature are impaired in 
terms of health and function after SCI. These end-organ maladaptations contribute to 
a variety of clinical consequences such as increased risk of heart attack, stroke, ortho-
static intolerance, and cognitive dysfunction. Both cardiac and cerebrovascular func-
tions appear to be detrimentally influenced by reduced hemodynamic perfusion (i.e., 
low venous return and blood pressure), which can be improved by increasing circula-
tion to the respective organ, such as passive exercise for increasing venous return to 
the heart and increasing blood pressure to increase blood flow to the brain.

14.6  Managing Cardiovascular Function Following SCI

As cardiovascular dysfunction exhorts such critical effects on morbidity and mortal-
ity, a number of strategies have been explored for the prevention and treatment of 
autonomic/cardiovascular instability after SCI. These have included a number of 
treatments to be implemented in the acute phase of injury with the goal of limiting 
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damage to autonomic pathways of the spinal cord as well as interventions designed 
to treat cardiovascular dysfunction once it has presented after SCI. These topics will 
be discussed in the following section.

14.6.1  Preclinical Experimental Therapies for Prevention 
of Cardiovascular Dysfunctions After SCI

As outlined above, cardiovascular dysfunction after SCI is largely the result of dis-
ruption of descending autonomic pathways and the subsequent decentralization of 
the spinal and peripheral sympathetic circuits, resulting in alteration of the auto-
nomic/cardiovascular system. A number of therapeutic approaches have been devel-
oped and studied in order to regenerate or preserve descending sympathetic 
pathways and prevent the resulting cardiovascular dysfunction, although none of 
these approaches are currently approved for treating patients. These therapeutic 
approaches have been reviewed recently and will be highlighted below [242].

The preservation of descending supraspinal input using stem cells has been 
explored in a couple of interesting studies [243, 244]. Early work showed that olfac-
tory ensheathing cells harvested from the animals themselves (and grafted into site 
of SCI) were able to improve AD (i.e., to reduce the duration of AD episodes) fol-
lowing SCI; however no improvements in resting blood pressure were observed. 
Unfortunately, when examining the underlying mechanisms, no discernible 
improvements in CGRP+ sprouting or reduction in injury size occurred making it 
difficult to ascertain what factors led to the improved autonomic cardiovascular 
function after SCI. A recent study using brainstem- and spinal cord-derived neuro-
nal stem cell injection into the spinal cord reported a 50 % reduction in AD severity 
during colorectal distension, as well as a normalization of baseline blood pressure 
only when using brainstem-derived (but not spinal cord-derived) stem cells [243]. 
Mechanistically, brainstem-derived neurons led to catecholaminergic and seroto-
nergic neuron axon growth and greater innervation of caudal SPNs, further illustrat-
ing the importance of central sympathetic tonic support in the prevention of 
autonomic cardiovascular impairments after SCI [243].

Another strategy tested to preserve spinal cord pathways after SCI has been the 
reduction of inflammation. A significant portion of spinal cord damage occurs after 
the original insult or primary injury due to ischemia, which is considered the sec-
ondary injury. The triggering of inflammation leads to the activation of well- 
established inflammatory processes such as macrophage migration, as well as 
neutrophil, microglia, cytokine, and matrix metalloprotease influx [245–248]. 
Together, along with the subsequent free radical generation and lipid peroxidation, 
neuronal tissue degradation occurs, including destruction of neural and glial cells 
[249, 250]. The most promising therapy targeting inflammatory processes involves 
inhibiting leukocyte migration across the blood-brain barrier and, thereby, prevent-
ing it from potentially attacking neuronal structures [251–254]. In general this ther-
apy results in roughly a 50 % reduction of AD severity.
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A number of studies, using a variety of therapeutic strategies, have specifically 
targeted the reduction of CGRP+ sprouting in the dorsal horn, which as mentioned 
is a primary mechanism underlying the development of AD after SCI [39, 45, 48, 
251, 255, 256]. The majority of studies have shown that neutralizing the effect of 
nerve growth factor in the spinal cord after injury leads to improvements (i.e., 35–43 
% reduction) in AD [45, 255]. This reduction in AD severity is directly related, 
albeit through modest coefficients of variation (i.e., r2 = 0.36–0.64) [39, 48], to 
reductions in CGRP+ [255], sprouting, and inhibition of TRPV1 somal hypertrophy 
[35]. These modest coefficients of variation, combined with several studies showing 
improvements in AD (~50 %) without reductions in CGRP+ sprouting, suggest 
other major factors are influencing the development of AD after SCI, rather than 
just afferent sprouting alone [251, 256]. These studies represent preclinical animal 
models, and if any of these therapies are ever to be widely implemented into clinical 
practice, stringent human clinical trials are required. Considering the high priority 
of autonomic issues in those living with SCI, more rapid progress in this area could 
be achieved by the incorporation of cardiovascular outcome metrics into human tri-
als examining stem cell/anti-inflammatory strategies for motor/sensory issues after 
SCI, which would provide further insight into the potential benefits of these thera-
pies on autonomic function.

The preservation of descending sympathetic pathways would also provide sig-
nificant benefit for OH after SCI, and therefore regeneration/anti-inflammation 
strategies would be suitable for this condition. Due to the difficulty in generating an 
animal model of OH after SCI, however, there remains limited specific data on 
therapeutic approaches for OH. In human models, there is a variety of cardiovascu-
lar adjustments that may occur after SCI to mitigate or prevent the severity of 
OH. These include the recovery of spinal sympathetic reflexes, the development of 
spasticity, increased muscle tone, increased activation of the renin-angiotensin sys-
tem, maintained cerebral autoregulation and potentially increased tolerance to low 
cerebral perfusion pressure [5, 65, 166]. Although some of these factors may reduce 
the severity of OH and/or presyncopal symptoms, OH still is a major clinical prob-
lem after SCI, affecting the majority of this population.

14.6.2  Clinical Management of Abnormal Cardiovascular Control 
Following SCI

Managing episodes of AD and OH is critically important in the clinical setting, due 
to all of the aforementioned associated clinical outcomes such as heart attack, 
stroke, cognitive decline, and orthostatic intolerance. A number of interventions 
have explored pharmacological and non-pharmacological approaches to manage 
both of these conditions. Clearly, prevention is the first line of defense against epi-
sodes of AD and OH after SCI. Non-pharmacological and pharmacological options 
for management of blood pressure instability after SCI will be presented in this 
section.
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The first component of effective prevention of episodes of AD should include 
education of patients, caregivers, and family members on proper bladder, bowel, 
and skin care as triggers originating from these organs (urinary tract infections, 
constipations, pressure wounds) are among the most common. Second, manage-
ment of the developed AD event should initially include resolution of the trigger 
which most commonly will include bladder or bowel evaluation (although this 
may potentially initially exacerbate AD), but could also include mitigating a vari-
ety of noxious or non-noxious stimuli [257]. These immediate interventions should 
occur while the patient is in a seated position, or with the head elevated, in order 
to initiate orthostatically mediated declines in blood pressure and reduce the pres-
sor effect of AD. Once an AD event is triggered, and is unresponsive to treatment 
attempts (blood pressure continued to be elevated above 150 mmHg), it may be 
required to intervene pharmacologically. Most commonly nifedipine (a short-act-
ing calcium channel blocker), captopril (angiotensin-converting enzyme), or nitro-
paste (vasodilator) are recommended to mitigate this condition [258]. However, 
these drugs have been shown to also exacerbate low resting blood pressure [68]. 
This latter consideration is particularly relevant when considering treatment 
options for AD in those with SCI as they already suffer from low blood pressure 
[68, 259]. In an effort to overcome this side effect, the use of prazosin (alpha1 
antagonist) has been explored. Recently, prazosin (1 mg oral tablet) effectively 
reduced AD severity (due to penile vibrostimulation) while exerting no effect on 
resting blood pressure, suggesting it may be a viable option for treating AD [259]. 
For detailed guidelines on management of AD, see [68, 257]. It is also possible 
that botulinum toxin A can reduce the frequency and severity of AD secondary to 
detrusor muscle overactivity [260, 261]. Typically, 200 units of botulinum toxin A 
is injected per procedure (diluted in 15 mL saline to 20 U/mL), where it is injected 
into the detrusor muscle at 20 sites (10U per site), sparing the trigone (see clinical 
vignette).

In addition to AD, individuals with SCI can experience episodes of OH on a 
daily basis, which will require management. The majority of activities of daily 
living require individuals with SCI to be seated in an upright posture in their 
wheelchair, which predisposes them to orthostatic instability, as a significant 
amount of blood accumulates in their abdomen and lower extremities (see 
above). The initial, most simple, preventative strategies of OH include the fol-
lowing: ensuring appropriate fluid intake; avoiding diuretics, large meals (post-
prandial hypotension), and heat stress; as well as wearing compression bandages/
stockings and potentially engaging in a semi-upright sleeping position (i.e., 
10–20° increase) [63, 262–265]. The assumption of a recumbent or semi-recum-
bent position during daily living can often resolve OH but can significantly influ-
ence the patient’s quality of life. Pharmacological intervention may be required 
if these approaches are not effective at reducing OH. Typically these include 
volume expansion with fludrocortisone [264, 266] and/or increasing vascular 
tone with alpha1 agonist midodrine hydrochloride [65, 267, 268]. In fact, 
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maintaining cerebral blood flow using 10 mg of midodrine prevents OH and 
helps prevent presyncopal symptoms by preserving perfusion of the brainstem 
where discrete regions responsible for consciousness are located [269]. These 
approaches are most commonly used in combination, depending on the patient’s 
responsiveness to each intervention, and the severity of autonomic cardiovascu-
lar disturbances.

14.7  Summary

Cardiovascular dysfunction in those with SCI is a leading cause of morbidity 
and mortality in this population and therefore requires careful clinical consider-
ation. Disrupted autonomic pathways result in an unstable cardiovascular sys-
tem characterized by impairments in blood pressure and blood flow regulation. 
The majority of those with SCI suffer from daily episodes of blood pressure 
fluctuation including episodes of AD and OH, resulting in rapid and substantial 
increases and decreases in blood pressure, respectively. In addition, resting 
blood pressure is often very low in this population. The clinical community has 
recently become aware that autonomic issues, such as cardiovascular control, 
are most frequently ranked by patients with SCI to be of greater priority than 
regaining motor function. The trajectory of the natural age-related increases in 
cardiovascular disease progression is increased in those with SCI, resulting in 
accelerated development of morbid cardiovascular conditions and mortality. 
Secondary consequences of SCI are only beginning to receive appropriate clini-
cal attention. In the period immediately after high-level SCI, the first major 
cardiovascular abnormality presents itself in the form of neurogenic shock. 
After this, other autonomic cardiovascular conditions develop into chronic blood 
pressure instability. Other contributing factors to cardiovascular disease after 
SCI include widespread physical inactivity, impaired glycemic control, inflam-
mation, and lipid abnormalities. Together, autonomic dysfunction and these 
other factors accelerate the decline of end organs, such as the central arteries, 
heart, and brain blood vessels. The clinical consequences of these conditions 
extend beyond the obvious mortality risk through heart attack and stroke to also 
include orthostatic intolerance, cognitive dysfunctions, and impediments to 
rehabilitation. Although our understanding of blood pressure abnormalities fol-
lowing SCI has certainly been greatly enhanced, we still do not understand the 
long-term consequences of these conditions and the full extent of their underly-
ing clinical implications. Prevention/mitigation strategies for cardiovascular 
autonomic function due to SCI are still in their infancy having been explored 
mainly in animal models, while the majority of cardiovascular disease manage-
ment guidelines are based off of recommendations developed for non-SCI popu-
lations with tenuous relevance.

14 Cardiovascular Dysfunction Following SCI



348

References

 1. Phillips AA, Cote AT, Bredin SS, Krassioukov AV, Warburton DE (2012) Aortic stiffness 
increased in spinal cord injury when matched for physical activity. Med Sci Sports Exerc 
44:2065–2070

 2. Miyatani M, Masani K, Oh PI, Miyachi M, Popovic MR, Craven BC (2009) Pulse wave 
velocity for assessment of arterial stiffness among people with spinal cord injury: a pilot 
study. J Spinal Cord Med 32:72–78

Clinical Vignette (Patient): 60-Year-Old Male, C6/7, AIS B (34 Years Since Injury)
This SCI patient suffers from severe and frequent autonomic dysreflexia 
which was significantly impacting activities of daily living and leading to 
headache, confusion, and frequent sweating. The injection of botulinum toxin 
A into the detrusor muscle significantly reduced the severity and frequency of 
AD during urodynamics. Specifically, systolic blood pressure rose more than 
70 mmHg during urodynamics in this patient before treatment, which was 
reduced to only 37 mmHg after botulinum toxin A injection. Furthermore, 
symptoms of AD reduced substantially, and as shown below the frequency 
and severity of AD, as assessed by 24 h ambulatory blood pressure monitor-
ing, was drastically reduced. These data suggest that botulinum toxin A may 
be an effective strategy for treating AD due to detrusor overactivity in those 
with SCI. Red stars denote identified AD episodes.
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