
Confining Adversary Actions via Measurement

Paul D. Rowe(B)

The MITRE Corporation, Bedford, USA
prowe@mitre.org

Abstract. Systems designed with measurement and attestation in mind
are often layered, with the lower layers measuring the layers above them.
Attestations of such systems must report the results of a diverse set of
application-specific measurements of various parts of the system. There is
a pervasive intuition that measuring the system “bottom-up” (i.e. mea-
suring lower layers before the layers above them) is more robust than
other orders of measurement. This is the core idea behind trusted boot
processes. In this paper we justify this intuition by characterizing the
adversary actions required to escape detection by bottom-up measure-
ment. In support of that goal, we introduce a formal framework with a
natural and intuitive graphical representation for reasoning about lay-
ered measurement systems.

1 Introduction

Security decisions often rely on trust. Many computing architectures have been
designed to help establish the trustworthiness of a system through remote attes-
tation. They gather evidence of the integrity of a target system and report it to a
remote party who appraises the evidence as part of a security decision. A simple
example is a network gateway that requests evidence that a target system has
recently run antivirus software before granting it access to a network. If the virus
scan indicates a potential infection, or does not offer recent evidence, the gate-
way might decide to deny access, or perhaps divert the system to a remediation
network. Of course the antivirus software itself is part of the target system, and
the gateway may require integrity evidence for the antivirus software for its own
security decision. This leads to the design of layered systems in which deeper
layers are responsible for generating integrity evidence of the layers above them.

A simple example of a layered system is one that supports “trusted boot” in
which a chain of boot-time integrity evidence is generated for a trusted comput-
ing base that supports the upper layers of the system. A more complex example
might be a virtualized cloud architecture. The virtual machines (VMs) at the
top are supported at a lower layer by a hypervisor or virtual machine monitor.
Such an architecture may be augmented with additional VMs at an intermedi-
ate layer that are responsible for measuring the main VMs to generate integrity
evidence. These designs offer exciting possibilities for remote attestation. They
allow for specialization and diversity of the components involved, tailoring the
capabilities of measurers to their targets of measurement, and composing them
in novel ways.
c© Springer International Publishing AG 2016
B. Kordy et al. (Eds.): GraMSec 2016, LNCS 9987, pp. 150–166, 2016.
DOI: 10.1007/978-3-319-46263-9 10



Confining Adversary Actions via Measurement 151

However, the resulting layered attestations are typically more complex and
challenging to analyze. Given a target system, what set of evidence should an
appraiser request? What extra guarantees are provided if it receives integrity
evidence of the measurers themselves? Does the order in which the measurements
are taken matter?

This paper begins to tame the complexity surrounding attestations of these
layered systems. We provide a formal model of layered measurement and attes-
tation systems that abstracts away the underlying details of the measurements
and focuses on the causal relationships among component corruption and mea-
surement.

Limitations of Measurement. Our starting point for this paper is the recog-
nition of the fact that measurement cannot prevent corruption; at best, mea-
surement only detects corruption. In particular, the runtime corruption of a
component can occur even if it is launched in a known good state. An appraiser
must therefore always be wary of the gap between the time a component is
measured and the time at which a trust decision is made. If the gap is large
then so is the risk of a time-of-check-to-time-of-use (TOCTOU) attack in which
an adversary corrupts a component during the critical time window to under-
mine the trust decision. A successful measurement strategy will limit the risk
of TOCTOU attacks by ensuring the time between a measurement and a secu-
rity decision is sufficiently small. The appraiser can then conclude that if the
measured component is currently corrupted, it must be because the adversary
performed a recent attack.

Shortening the time between measurement and security decision, however,
is effective only if the measurement component can be trusted. By corrupting
the measurer, an adversary can lie about the results of measurement making
a corrupted target component appear to be in a good state. This affords the
adversary a much larger window of opportunity to corrupt the target. The cor-
ruption no longer has to take place in the small window between measurement
and security decision because the target can already be corrupted at the time of
(purported) measurement. However, in a typical layered system design, deeper
components such as a measurer have greater protections making it harder for an
adversary to corrupt them. This suggests that to escape the burden of perform-
ing a recent corruption, an adversary should have to pay the price of corrupting
a deep component.

Formal Model of Measurement and Attestation. With this in mind, our
first main contribution is a formal model designed to aid in reasoning about
what an adversary must do in order to defeat a measurement and attestation
strategy. Rather than forbid the adversary from performing TOCTOU attacks
in small windows or from corrupting deep components, we provide results that
help to characterize and confine where such undesirable adversary actions must
occur if the adversary is to corrupt a component without detection. Thus our
model explicitly allows an adversary to corrupt (and repair) arbitrary system
components at any time.



152 P.D. Rowe

The model also features a true concurrency execution semantics which allows
us to reason more directly about the causal effects of corruptions on the outcomes
of measurement without having to reason about unnecessary interleavings of
events. An important side benefit of this semantics is that it admits a natural,
graphical representation that helps an analyst quickly understand the causal
relationships between events of an execution. This pairs nicely with our analysis
method based on characterizing executions consistent with some hypotheses,
because it allows an analyst to quickly evaluate these executions without having
to specify in advance a particular security goal.

Strategy for Measurement. We demonstrate the utility of this formal model
by validating the effectiveness of an important strategy for measurement. An
intuition manifest in much of the literature on measurement and attestation is
that trust in a system should be based on a bottom-up chain of measurements
starting with a hardware root of trust for measurement. This is the core idea
behind trusted boot processes, in which one component in the boot sequence
measures the next component before launching it. Theorem1, which we refer to
as the “recent or deep” theorem, validates this common intuition and character-
izes exactly what an adversary must do to defeat such bottom-up measurement
strategies. It roughly says the following:

If a system has measured deeper components before more shallow ones,
then the only way for the adversary to corrupt a component t without
detection is either by recently corrupting one of t’s dependencies, or else
by corrupting a component even deeper in the system.

Paper Structure. The paper is structured as follows. We motivate our intu-
itions and informally introduce our model in Sect. 2. In Sect. 3 we formally define
the systems of study and their executions. In Sect. 4 we prove some important
facts about executions. We also define bottom-up measurement strategies and
prove they confine adversary corruptions to be either recent or deep. Section 5
discusses some relevant related work. Finally, we conclude in Sect. 6.

2 Motivating Examples of Measurement

Consider an enterprise that would like to ensure that systems connecting to its
network provide a fresh system scan by the most up-to-date virus checker. The
network gateway should ask systems to perform a system scan on demand when
they attempt to connect. We may suppose the systems all have some compo-
nent A1 that is capable of accurately reporting the running version of the virus
checker. Because this enterprise values high assurance, the systems also come
equipped with another component A2 capable of measuring the runtime state
of the kernel. This is designed to detect any rootkits that might try to under-
mine the virus checker’s system scan. We may assume that A1 and A2 are both
measured by a hardware root of trust for measurement (rtm) as part of a secure
boot process. Thus, the architecture for systems in this enterprise might look



Confining Adversary Actions via Measurement 153

Fig. 1. Example measurement system.

something like Fig. 1 in which the (virtual) trusted platform modules ((v)TPMs)
serve to store and report the measurement values to a remote appraiser.

We are thus interested in a system consisting of the following components:
{sys, vc, ker , A1, A2, rtm}, where sys represents the collective parts of the system
scanned by the virus checker vc, and ker represents the kernel. Based on the sce-
nario described above, we may be interested in the following set of measurement
events

{ms(rtm, A1),ms(rtm, A2),ms(A1, vc),ms(A2, ker),msker (vc, sys)}
where msC (o1, o2) represents the measurement of o2 by o1 while C provides the
runtime context. These measurement events generate the raw evidence that the
network gateway can use to make a determination as to whether or not to admit
the system to the network.

If any of the measurements indicate a problem, such as a failed system scan,
then the gateway has good reason to believe it should deny the system access to
the network. But what if all the evidence it receives looks good? How confident
can the gateway be that the version and signature files are indeed up to date?
The answer will depend on the order in which the evidence was gathered. The
problem of determining the order in which measurements were taken given a
set of signed quotes from (v)TPMs is addressed in [12]. In what follows, we
assume the appraiser has some way of accurately determining the order in which
measurements are taken. To get some intuition for why the order of measurement
matters, consider the three different specifications pictured in Fig. 2 (in which
time flows from top to bottom) for how to order the measurements. (The bullet
after the first three events does not represent a separate event. It is inserted only
for visible legibility, to avoid crossing arrows, so that each of the events on the
top row occurs before both events on the next row down.)

Specification S1 ensures that both vc and ker are measured before vc runs its
system scan. Specifications S2 and S3 each relax one of those ordering require-
ments. Let’s now consider some executions that respect the order of measure-
ments in each of these specifications in which the adversary manages to avoid
detection.



154 P.D. Rowe

Fig. 2. Three orders for measurement

Execution E1 of Fig. 3 is compatible with Specification S1. The adversary
manages to corrupt the system by installing some user-space malware sometime
in the past. If we assume the up-to-date virus checker is capable of detecting
this malware, then the adversary must corrupt either vc or ker before the virus
scan represented by msker (vc, sys). That is, either a corrupted vc will lie about
the results of measurement, or else a corrupted ker can undermine the integrity
of the system scan, for example, by hiding the directory containing the malware
from vc. In the case of E1, the adversary corrupts vc in order to lie about the
results of the system scan, but it does so after ms(A1, vc) in order to avoid
detection by this measurement event.

In Execution E2, which is consistent with Specification S2, the adversary is
capable of avoiding detection while corrupting vc much earlier. The system scan
msker (vc, sys) is again undermined by the corrupted vc. Since vc will also be
measured by A1, the adversary has to restore vc to an acceptable state before
ms(A1, vc). Execution E3 is analagous to E2, but the adversary corrupts ker
instead of vc, allowing it to convince the uncorrupted vc that the system has
no malware. Since Specification S3 allows ms(A2, ker) to occur after the system
scan, the adversary can leverage the corrupted ker to lie about the scan results,
but must restore ker to a good state before it is measured.

Execution E1 is ostensibly harder to achieve for the adversary than either
E2 or E3, because the adversary has to work quickly to corrupt vc during the
attestation. In E2 and E3, the adversary can corrupt vc and ker respectively at
any time in the past. He still must perform a quick restoration of the corrupted
component during the attestation, but there are reasons to believe this may be



Confining Adversary Actions via Measurement 155

Fig. 3. Three system executions

easier than corrupting the component to begin with. The results of this paper
provide a way of characterizing where and when adversary actions must occur
in order to avoid detection by measurement. This leads to a result that any exe-
cution consistent with S1 in which the adversary corrupts sys without detection
forces the adversary to perform either a recent or a deep corruption.

3 Measurement Systems

In this section we formalize the intuitions we used for the examples in the pre-
vious section.

System Architecture. We start by describing the core types of dependencies
that make a system layered.

Definition 1 (Measurement Systems). We define a measurement system
to be a tuple MS = (O,M,C), where O is a set of objects (e.g. software com-
ponents) with a distinguished element rtm. M and C are binary relations on O.
We call

M the measures relation, and
C the context relation.



156 P.D. Rowe

We say M is rooted when for every o ∈ O\{rtm}, M+(rtm, o), where M+ is the
transitive closure of M .

M represents who can measure whom, so that M(o1, o2) iff o1 can measure
o2. rtm is the root of trust for measurement. For this reason we henceforth
always assume M is rooted and M+ is acyclic (i.e. ¬M+(o, o) for any o ∈ O).
This guarantees that every object can potentially trace its measurements back
to the root of trust, and there are no measurement cycles. As a consequence, rtm
cannot be the target of measurement, i.e. for rooted, acyclic M , ¬M(o, rtm) for
any o ∈ O. The relation C represents the kind of dependency between ker and
vc in the example above in which one object provides a clean runtime context for
another. Thus, C(o1, o2) iff o1 contributes to maintaining a clean runtime context
for o2. (C stands for context.) We henceforth always assume C is transitive (i.e.
if C(o1, o2) and C(o2, o3) then C(o1, o3)) and acyclic. This means that no object
(transitively) relies on itself for its own clean runtime context.

Given an object o ∈ O we define the measurers of o to be M−1(o) = {o′ |
M(o′, o)}. We similarly define the context for o to be C−1(o). We extend these
definitions to sets in the natural way.

We additionally assume M ∪ C is acyclic. This ensures that the combina-
tion of the two dependency types does not allow an object to depend on itself.
Such systems are stratified, in the sense that we can define an increasing set of
dependencies as follows.

D1(o) = M−1(o) ∪ C−1(M−1(o))
Di+1(o) = D1(Di(o))

So D1(o) consists of the measurers of o and their context. As we will see later,
D1(o) represents the set of components that must be uncompromised in order
to trust the measurement of o.

We can represent measurement systems pictorially as a graph whose vertices
are the objects of MS and whose edges encode the M and C relations. We use
the convention that M(o1, o2) is represented by a solid arrow from o1 to o2, while
C(o1, o2) is represented by a dotted arrow from o1 to o2. The representation of
the system described in Sect. 2 is shown in Fig. 4.

Fig. 4. Graphical representation of an example measurement system.



Confining Adversary Actions via Measurement 157

Events, Executions, and Outputs. The components o ∈ O and the adversary
on this system perform actions. In particular, objects can measure each other
and the adversary can corrupt and repair components in an attempt to influence
the outcome of future measurement actions. Additionally, an appraiser has the
ability to inject a random nonce n ∈ N into an attestation in order to control
the recency of events.

Definition 2 (Events). Let MS be a target system. An event for MS is a
node e labeled by one of the following.

a. A measurement event is labeled by msC−1 (o2 )(o2, o1) such that M(o2, o1). We
say such an event measures o1, and we call o1 the target of e. When C−1(o2)
is empty we omit the subscript and write ms(o2, o1).

b. An adversary event is labeled by either cor(o) or rep(o) for o ∈ O\{rtm}.
c. The attestation start event is labeled by att-start.

When an event e is labeled by � we will write e = �. We will often refer to the
label � as an event when no confusion will arise.

An event e touches o iff o is an argument to the label of e.

The att-start event serves to bound events in time. It represents the choice
by the appraiser of a random nonce. Typically the measurements will be cryp-
tographically bound to this nonce before sending them back to the appraiser. In
this way, the appraiser will know that anything occurring after this event can
reasonably be said to occur “recently”. Regarding the measurement events, the
rtm is typically responsible for measuring components at boot-time. All other
measurements are load-time or runtime measurements of one component in O by
another. Adversary events represent the corruption (cor(·)) and repair (rep(·))
of components. Notice that we have excluded rtm from corruption and repair
events. This is not because we assume the rtm to be immune from corruption,
but rather because all the trust in the system relies on the rtm: Since it roots all
measurements, if it is corrupted, none of the measurements of other components
can be trusted.

As we saw in the motivational examples, an execution can be described as a
partially ordered set (poset) of these events. We choose a partially ordered set
rather than a totally ordered set because the latter unnecessarily obscures the
difference between causal orderings and coincidental orderings. However, due
to the causal relationships between components, we must slightly restrict our
partially ordered sets in order to make sense of the effect that corruption and
repair events have on measurement events. To that end, we next introduce a
sensible restriction to these partial orders.

A poset is a pair (E,≺), where E is any set and ≺ is a transitive, acyclic rela-
tion on E. When no confusion arises, we often refer to (E,≺) by its underlying set
E and use ≺E for its order relation. Given a poset (E,≺), let e↓= {e′ | e′ ≺ e},
and e↑= {e′ | e ≺ e′}. Given a set of events E, we denote the set of adversary
events of E by adv(E) and the set of measurement events by meas(E).

Let (E,≺) be a partially ordered set of events for MS = (O,M,C) and let
(Eo,≺o) be the substructure consisting of all and only events that touch o. We



158 P.D. Rowe

say (E,≺) is adversary-ordered iff for every o ∈ O, (Eo,≺o) has the property
that if e and e′ are incomparable events, then neither e nor e′ are adversary
events.

Lemma 1. Let (E,≺) be a finite, adversary-ordered poset for MS, and let
(Eo,≺o) be its restriction to some o ∈ O. Then for any non-adversarial event
e ∈ Eo, the set adv(e↓) ∩ Eo is either empty or has a unique maximal element.

Proof. Since (E,≺) is adversary-ordered, adv(Eo) is partitioned by adv(e↓) and
adv(e↑). Suppose e↓ is not empty. Then since Eo is finite, it has at least one
maximal element. Suppose e′ and e′′ are distinct maximal elements. Thus they
must be ≺o-incomparable. However, since (E,≺) is adversary-ordered, either
e′ ≺o e′′ or e′′ ≺o e′, yielding a contradiction. �	
Definition 3 (Corruption State). Let (E,≺) be a finite, adversary-ordered
poset for MS. For each event e ∈ E and each object o the corruption state
of o at e, written cs(e, o), is an element of {⊥, r, c} and is defined as follows.
cs(e, o) = ⊥ iff e �∈ Eo. Otherwise, we define cs(e, o) inductively:

cs(e, o) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c : e = cor(o)
r : e = rep(o)
r : e ∈ meas(E) ∧ adv(e↓) ∩ Eo = ∅
cs(e′, o) : e ∈ meas(E) ∧ e′ maximal in adv(e↓) ∩ Eo

When cs(e, o) takes the value c we say o is corrupt at e; when it takes the value
r we say o is uncorrupt or regular at e; and when it takes the value ⊥ we say
the corruption state is undefined.

We now define what it means to be an execution of a measurement system.

Definition 4 (Executions). An exectuion of a measurement system MS is
any finite, adversary-ordered poset E for MS.

Since executions are finite and adversary-ordered, for every o, we can always
determine the corruption state of o at every event e touching o. We can there-
fore use these corruption states to determine the outputs of measurements.
Abstractly, we assume that for each target of measurement ot, every measurer
of ot outputs values within some set MV(o).

The question of measurement accuracy is complicated because there are two
primary sources of inaccuracy. First, the measurer may not produce values that
strongly correlate to the corruption state of the target. For example, an asset
inventory tool may only output the version numbers of software installed, and
this cannot detect undiscovered (and thus unpatched) vulnerabilities. Second,
the appraiser is ultimately the one to interpret the output. That is, the appraiser
partitions MV(o) into G(o) and B(o). The first set G(o) represents measurement
values the appraiser believes represent an uncompromised component, while B(o)
are those values the appraiser believes represent a corrupted component. Thus



Confining Adversary Actions via Measurement 159

the composition of measurement output with appraiser interpretation forms a
classifier for the corruption state of the target whose false positive and negative
rates depend on both the measurer and the appraiser.

In this work, to simplify the analysis, we assume there are no false positives or
negatives as long as the measurer and its context are uncorrupted. However, we
assume a corrupted measurer (or its context) can always convince the appraiser
that the target of measurement is uncorrupted.

Assumption 1 (Measurement Accuracy). Let G(o) and B(o) be a partition
for MV(o). Let e = ms(o2, o1). The output of e, written out(e), is defined as
follows.

out(e) =

{
v ∈ B(o1) cs(e, o1) = c and ∀o ∈ {o2} ∪ C−1(o2) . cs(e, o) = r

v ∈ G(o1) otherwise

If out(e) ∈ B(o1) we say e detects a corruption. If out(e) ∈ G(o1) but
cs(e, o1) = c, we say the adversary avoids detection at e.

Given an execution E, Assumption 1 says we can always determine the
appraiser’s classification. However, it can also be used to infer the corrup-
tion states of some components given the corruption states of others and
the classification. That is, suppose we know the adversary avoids detection
at e = msC−1 (o)(o, ot). Then we can conclude that at least one member of
{o} ∪ C−1(o) is corrupt at e. This is an important inference for our main result.

One can imagine weakening Assumption 1 to account for imperfect classifi-
cation. For example, it would be interesting to perform a probabilistic analysis
accounting for false positive and negative rates. However, we leave such investi-
gations for future work.

Although executions always allow us to infer the corruption state of com-
ponents at events and the outputs of measurements, this only holds if we have
accounted for all the adversary actions. The main goal of our framework is to
allow an appraiser to infer what adversary events must have occurred and when,
assuming some basic facts about an execution. To that end we introduce spec-
ifications, which formalize the partial knowledge an appraiser has about the
execution of the system.

Definition 5 (Specifications). A specification for measurement system MS,
is a finite adversary-ordered poset S with some (possibly empty) set of assump-
tions about measurement events regarding

1. the corruption states of some of their arguments, or
2. the output classification (G(o) or B(o)).

A specification S admits execution E iff there is an injective, label-preserving
map of partial orders α : S → E preserving assumptions on corruption states and
output classifications. The set of all executions admitted by S is denoted E(S).



160 P.D. Rowe

We can annotate our diagrams in order to convey the assumptions about
measurement events. In particular, we underline the corrupted components and
display them in red, and we use bold typeface for the uncorrupted components
and display them in green. We can also annotate measurements with a � (resp.
X) to indicate the output is in G(o) (resp. B(o)). This allows for a quite com-
pact graphical representation of the relevant information as seen, for example,
in Figs. 3 and 5. We omit these visual annotations from executions when the
diagram is too cluttered because they can be inferred.

4 Confining Adversary Behavior

In this section we explore what an appraiser can infer about E(S), given a speci-
fication S. In particular, we are interested in characterizing the ways in which an
adversary can corrupt a component without the execution giving any indication
of corruption. We thus start with some simple general results about executions,
before presenting our main theorem.

Lemma 2. Let E be an execution of MS, and let e be an event of E touching o.
If cs(e, o) = c, then there is a most recent corruption event e′ � e.

Proof. This follows immediately from Lemma 1 and Definition 3. �	
This lemma is useful for inferring the existence of a corruption event before

some given event e. However, since we are also interested in the recency of
corruption, we would like to infer the existence of a corruption event after a
given event. The following lemma allows us to do just that.

Lemma 3. Let E be an execution of MS, and let e1 ≺ e2 be measurement
events touching o such that cs(e1, o) = r (resp. c) and cs(e2, o) = c (resp. r).
Then there exists a corruption (resp. repair) event e′ such that e1 ≺ e′ ≺ e2.

Proof. Let A1 = adv(e1↓)∩Eo and A2 = adv(e2↓)∩Eo. Since e1 ≺ e2, A1 ⊆ A2.
By Lemma 1, A2 is either empty or has a unique maximum. However, it can’t
be empty because then A1 would also be empty and Definition 3 would imply
that cs(e1, o) = cs(e2, o) = r, contrary to the hypothesis. So let e′ be the unique
maximum of A2. Since (E,≺) is adversary ordered, either e′ ≺ e1 or e1 ≺ e′.
In the first case, e′ would also be a maximum of A1 since A1 ⊆ A2. But this
would imply cs(e1, o) = cs(e′, o) = cs(e2, o) violating our assumption. Thus
e1 ≺ e′ ≺ e2, and since the corruption state of o is different at e1 and e2, e′ must
change the corruption state. �	

We now turn to a formalization of the rule of thumb at the end of Sect. 2. In
particular, we characterize what a bottom-up measurement strategy guarantees.
That is, if whenever o1 depends on o2 we measure o2 before measuring o1, then
we seek to understand the constraints this puts on the adversary actions in order
to avoid detection. For this discussion we fix a target system MS. Recall that
D1(o) represents the measurers of o and their runtime context.



Confining Adversary Actions via Measurement 161

Definition 6. A measurement event e = ms(o2, o1) in execution E is well-
supported iff either

i. o2 = rtm, or
ii. for every o ∈ D1(o1), there is a measurement event e′ ≺E e such that o is the

target of e′.

When e is well-supported, we call the set of e′ from Condition ii above the support
of e. An execution E measures bottom-up iff each measurement event e ∈ E is
well-supported.

Theorem 1 (Recent or Deep). Let E be an execution with well-supported
measurement event e = ms(o1, ot) where o1 �= rtm. Suppose that E detects no
corruptions. If the adversary avoids detection at e, then either

1. there exist o ∈ D1(ot) and o′ ∈ M−1(o) such that ms(o′, o) ≺E cor(o) ≺E e
2. there exists o ∈ D2(ot) such that cor(o) ≺E e.

Proof. Since the adversary avoids detection at e, ot is corrupt at e, and by
Assumption 1, there is some o ∈ {o1}∪C−1(o1) ⊆ D1(ot) that is also corrupt at e.
Also, since e is well-supported, and o1 �= rtm, we know there exists e′ = ms(o′, o)
with e′ ≺E e. We now take cases on cs(e′, o).

If cs(e′, o) = r then we apply Lemma 3 to conclude there must be a corruption
cor(o) between e′ and e satisfying Clause 1.

If cs(e′, o) = c, then since E detects no corruptions, then by Assumption 1,
there must be some o∗ ∈ {o′} ∪ C−1(o′) ⊆ D2(ot) such that cs(e′, o∗) = c. We
then apply Lemma 2 to infer there must be a previous corruption cor(o∗) ≺E

e′ ≺E e satisfying Clause 2. �	
This theorem says, roughly, that if measurements indicate things are good

when they are not, then there must either be a recent corruption or a deep cor-
ruption. This tag line of “recent or deep” is particularly apt if (1) the system
dependencies also reflect the relative difficulty for an adversary to corrupt them,
and (2) the higher level measurements occur after the att-start event. By order-
ing the measurements so that more robust ones are measured first, it means
that for an adversary to avoid detection for an easy compromise, he must have
compromised a measurer recently (i.e. since it itself was measured and typically
after the att-start event), or else, he must have previously (though not necessarily
recently) compromised a more robust component. In this way, the measurement
of a component can raise the bar for the adversary. If, for example, a measurer
sits in a privileged location outside of some VM containing a target, it means
that the adversary would also have to break out of the target VM and compro-
mise the measurer to avoid detection. The skills and time necessary to perform
such an attack are much greater than simply compromising the end target.

Let’s illustrate this result in the context of the example of Sect. 2. Consider
the specification S′ in Fig. 5, which is like specification S1 from Fig. 2, except
that it is annotated with more assumptions in order to satisfy all the hypotheses
of Theorem 1. Since these facts are (by definition) preserved by homomorphisms



162 P.D. Rowe

Fig. 5. Specification S′.

Fig. 6. Executions in E(S′) that do not detect corruption of sys.

α : S → E(S), all executions in E(S) must satisfy them too. Execution E1

illustrates an example of the first clause of the conclusion being satisfied. There is
a “recent” corruption of vc in the sense that vc is corrupted after it is measured.
Since the measurement of vc occurs after the start of the attestation, this is
truly recent, in that the adversary has very little time to work. The appraiser
can control this by ensuring that attestations time out after some fixed amount
of time.

Theorem 1 also indicates other possible executions in which the adversary can
undetectably corrupt sys. There could be a recent corruption of vc, or else there
could be some previous corruption of either A1 or A2. All the various options
are shown in Fig. 6 in which the corruption events guaranteed by the theorem



Confining Adversary Actions via Measurement 163

are boxed. Our theorem allows us to know that these executions essentially
characterize all the cases in which a corrupted sys goes undetected.

Automation. The analysis above was performed by hand. It would be possible
to automate the reasoning steps codified by Assumption 1 and Lemmas 2 and 3.
An automated algorithm would have to implement the process of building an
execution consistent with (a) the reasoning principles laid out above, and (b)
the initial assumptions given by a specification. This is an instance of the more
general problem of model finding. That is, given a logical theory and a set of
assumptions about a structure, model finding techniques can produce a set of
models consistent with the theory and the assumptions.

General purpose tools have been developed that can automate the model
finding process [8,13]. We have not yet attempted to use these tools for the
analysis of measurement systems. As such, it is unclear if the general algorithms
they use will yield efficient analyses, or if they will suffer from combinatorial state
space explosions. We have also not investigated the computational complexity
of finding a minimal set of executions consistent with a given specification. This
would be an interesting question for future work. It is worth noting, however,
that Theorem 1 obviates the need to perform such case-by-case analyses when
the specification in question is already bottom-up. The value of automated algo-
rithms is greatest when an analyst is unable to apply Theorem1, for example if
the measurement system has cycles in M ∪ C. Such cyclic dependencies are sur-
prisingly common in production systems because the necessary isolation provided
by hardware virtualization is still relatively rare. Thus we believe an automated
tool implementing the reasoning principles presented in this paper would be a
valuable asset for the analysis of layered attestations.

5 Related Work

There has been much research into measurement and attestation. While a com-
plete survey is infeasible for this paper, we mention the most relevant highlights
in order to describe how the present work fits into the larger context of research
in this area.

Much of the early work on measurement and attestation was focused on tech-
niques for measuring low-level components that make up a trusted computing
base (TCB). These ideas have matured into implementations such as Trusted
Boot [11]. Recognizing that many security failures cannot be traced back to the
TCB, Sailer et al. [14] proposed an integrity measurement architecture (IMA) in
which each application is measured (by hashing its code) before it is launched.
More recently, there has been work trying to identify and measure dynamic prop-
erties of system components in order to create a more comprehensive picture of
the runtime state of a system [5,9,10,15]. All these efforts try to establish what
evidence is useful for inferring system state relevant to security decisions. The
present work takes for granted that such special purpose measurements can be
taken and that they will accurately reflect the system state. Rather, our focus
is on developing principles for how to combine a variety of these measurers in



164 P.D. Rowe

a layered attestation. We envision a system designer choosing the measurement
capabilities that best suit her needs and using our work to ensure an appraiser
can trust the integrity of the result.

In [4], Datta et al. introduce a formalism that accounts for actions local
to the target machine as well as network events such as sending and receiving
messages. Although they give a very careful treatment of the effect of a corrupted
component on an attestation, their work differs in two key ways. First, the
formalism represents many low-level details making their proof rather complex,
sometimes obscuring the underlying principles. Second, their framework only
accounts for static corruptions, while ours is specifically designed around the
possibility of dynamic corruption and repair of system components.

Cabuk et al. [1] have proposed an architecture designed to support layered
platforms with hierarchical dependencies. It introduces trusted software into the
TCB as a software-based root of trust for measurement (SRTM). Although they
explain how measurements by the SRTM integrate with the chain of measure-
ments stored in a TPM, they do not study the effect corruptions of various
components have on the outcome of attestations. In [2], Coker et al. identify
five guiding principles for designing an architecture to support remote attes-
tation. They also describe the design of a (layered) virtualized system based
on these principles, although there does not appear to be a publicly available
implementation at the time of writing. Of particular interest is a section that
describes a component responsible for managing attestations. The emphasis is
on the mechanics of selecting measurement agents by matching the evidence
they can generate to the evidence requested by an appraiser. There is no dis-
cussion or advice regarding the relative order of measurements or the creation
of an evidence bundle to reflect the order. More recently, modular attestation
frameworks instantiating [2]’s principles have been implemented [3,6,7]. These
are integrated frameworks that offer plug-and-play capabilities for measurement
and attestation for specific usage scenarios. It is precisely these types of systems
(in implementation or design) to which our analysis techniques would be most
useful. We have not been able to find a discussion of the potential pitfalls of
misconfiguring these complex systems. Our work should be able to help guide
the configuration of such systems and analyze particular attestation scenarios
for each architecture.

Finally, we mention a companion paper to the present work [12]. While the
present work helps us characterize how a given measurement order can confine
the actions of an adversary, it does not address the question of how a remote
appraiser learns the order and results of measurements. This is typically done
by storing the evidence in a trusted platform module (TPM) and quoting the
results. In [12] it is shown that some methods of using a TPM allow an adversary
to bypass Theorem 1 by convincing the appraiser that measurements were taken
bottom-up when in fact they were not. The main result is a proposed method
for storing and reporting evidence using TPMs ensuring that if an adversary
successfully avoids the hypothesis of Theorem 1, then he must nonetheless submit
himself to its conclusions.



Confining Adversary Actions via Measurement 165

6 Conclusion

In this paper we have developed a formalism for reasoning about measurement
in layered systems. Within this framework we have demonstrated some reusable
principles for inferring properties of adversary actions in executions, and we have
applied those principles to justify the intuition (pervasive in the literature on
measurement and attestation) that it is important to measure a layered system
from the bottom up (Theorem 1). Our model admits natural graphical represen-
tations of measurement systems, specifications and executions. We believe this
graphical representation makes the formalism more intuitive to use, as it allows
an analyst to apply her intuitions more immediately to the diagrams.

We believe the model is also relatively extensible in that further types of
components and events could be added without disrupting the current results.
Indeed, in our companion paper [12], we add events for interacting with a Trusted
Platform Module (TPM) in order to perform a more complete analysis of how
not just the outcomes of measurements but also their order can be conveyed
to a remote appraiser. This is a crucial part of an end-to-end analysis as the
appraiser cannot directly observe the order of measurements.

In future work, we would like to consider relaxing Assumption 1 to allow for
some probabilistic errors in the classification of measurement targets. Disentan-
gling how much of those errors is due to inaccurate measurement and how much
to inaccurate interpretation of the measurement could yield more fine grained
results that allow a more nuanced risk decision on the part of the appraiser. We
also believe the model could benefit from tool support. The basic problem of
discovering adversary actions given assumptions on an execution can be viewed
as an instance of model finding. As such, tools such as [8,13] that have been
developed for that purpose could be applicable here.

Acknowledgments. I would like to thank Pete Loscocco for suggesting and guid-
ing the direction of this research. Many thanks also to Perry Alexander and Joshua
Guttman. Their valuable feedback on during the formation of these ideas was invalu-
able. Thanks also to Sarah Helble and Aaron Pendergrass for lively discussions about
implementations of measurement and attestation systems. Finally, I would like to thank
the anonymous reviewers as well as the GraMSec participants for their insightful com-
ments and suggestions for improving the paper.

References

1. Cabuk, S., Chen, L., Plaquin, D., Ryan, M.: Trusted integrity measurement and
reporting for virtualized platforms. In: Chen, L., Yung, M. (eds.) INTRUST 2009.
LNCS, vol. 6163, pp. 180–196. Springer, Heidelberg (2010)

2. Coker, G., Guttman, J.D., Loscocco, P., Herzog, A.L., Millen, J.K., O’Hanlon, B.,
Ramsdell, J.D., Segall, A., Sheehy, J., Sniffen, B.T.: Principles of remote attesta-
tion. Int. J. Inf. Secur. 10(2), 63–81 (2011)

3. Intel Corporation: Open attestation. Accessed 16 Dec 2015



166 P.D. Rowe

4. Datta, A., Franklin, J., Garg, D., Kaynar, D.K.: A logic of secure systems and
its application to trusted computing. In: 30th IEEE Symposium on Security and
Privacy (S&P 2009), Oakland, California, USA, 17–20 May 2009, pp. 221–236
(2009)

5. Davi, L., Sadeghi, A.-R., Winandy, M.: Dynamic integrity measurement, attesta-
tion: towards defense against return-oriented programming attacks. In: Proceedings
of the 4th ACM Workshop on Scalable Trusted Computing, STC 2009, Chicago,
Illinois, USA, 13 November 2009, pp. 49–54 (2009)

6. Fisher, C., Bukovick, D., Bourquin, R., Dobry, R.: SAMSON - Secure Authentica-
tion Modules. Accessed 16 Dec 2015

7. Trusted Computing Group. TCG Trusted Network Connect Architecture for Inter-
operability version 1.5 (2012)

8. Jackson, D.: Software Abstractions: Logic Language and Analysis, 2nd edn. MIT
Press, Cambridge (2012)

9. Kil, C., Sezer, E.C., Azab, A.M., Ning, P., Zhang, X.: Remote attestation to
dynamic system properties: towards providing complete system integrity evidence.
In: Proceedings of the IEEE/IFIP International Conference on Dependable Sys-
tems and Networks, DSN 2009, Estoril, Lisbon, Portugal, 29 June–2 July 2009, pp.
115–124 (2009)

10. Loscocco, P., Wilson, P.W., Pendergrass, J.A., McDonell, C.D.: Linux kernel
integrity measurement using contextual inspection. In: Proceedings of the 2nd
ACM Workshop on Scalable Trusted Computing, STC 2007, Alexandria, VA, USA,
2 November 2007, pp. 21–29 (2007)

11. Maliszewski, R., Sun, N., Wang, S., Wei, J., Qiaowei, R.: Trusted boot (tboot).
Accessed 16 Dec 2015

12. Rowe, P.D.: Bundling evidence for layered attestation. In: Franz, M., Papadimi-
tratos, P. (eds.) TRUST 2016. LNCS, vol. 9824, pp. 119–139. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-45572-3 7

13. Saghafi, S., Dougherty, D.J.: Razor: provenance and exploration in model-finding.
In: 4th Workshop on Practical Aspects of Automated Reasoning (PAAR) (2014)

14. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of
a TCG-based integrity measurement architecture. In: Proceedings of the 13th
USENIX Security Symposium, San Diego, CA, USA, 9–13 August 2004, pp. 223–
238 (2004)

15. Wei, J., Calton, P., Rozas, C.V., Rajan, A., Zhu, F.: Modeling the runtime integrity
of cloud servers: a scoped invariant perspective. In: Cloud Computing, Second
International Conference, CloudCom 2010, Indianapolis, Indiana, USA, Proceed-
ings, 30 November–3 December 2010, pp. 651–658 (2010)

http://dx.doi.org/10.1007/978-3-319-45572-3_7

	Confining Adversary Actions via Measurement
	1 Introduction
	2 Motivating Examples of Measurement
	3 Measurement Systems
	4 Confining Adversary Behavior
	5 Related Work
	6 Conclusion
	References


