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Preface

The present volume contains the proceedings of the Third International Workshop on
Graphical Models for Security (GraMSec 2016). The workshop was held in Lisbon,
Portugal, on June 27, 2016, in conjunction with the 29th IEEE Computer Security
Foundations Symposium (CSF 2016).

Using graphical security models to represent and analyze the security of systems has
gained increasing attention over the last two decades. Graphical models are used to
capture different security facets and address a range of challenges, including security
assessment, automated defensing, secure services composition, security policy vali-
dation and verification. GraMSec brings together academic researchers as well as
industry and government practitioners designing and employing visual models for
security. It creates a platform for the exchange of ideas, discussion, inspiration, col-
laboration, and dissemination of results in the field of graphical security modeling.
It contributes to the development of well-founded graphical security models, efficient
algorithms for their analysis, as well as methodologies for their practical usage.

GraMSec 2016 received 23 submissions, which represents a growth of 77 %
compared with the first and the second edition of the workshop. The papers are
co-authored by experts from 18 countries. Each article was reviewed by at least three
reviewers. Based on their quality and contribution to the field, nine papers were
accepted for presentation at the workshop and inclusion in the final proceedings. The
technical program was complemented by an invited talk by Xinming Ou, entitled
“Bottom-Up Approach to Applying Graphical Models in Security Analysis.” The
corresponding invited paper has been included in these proceedings.

We would like to express our deepest appreciation to all the people who volunteered
their time and energy to make this year’s workshop happen. In particular, we thank the
authors for submitting their manuscripts to the workshop and all the attendees for
contributing to the workshop discussions. We are also grateful to the members of the
Program Committee and the external reviewers for their work in evaluating and dis-
cussing the submissions, and their commitment to meeting the strict deadlines. A very
special recognition is dedicated to Pedro Adao — the General Chair of CSF 2016 —
for his invaluable support in organizing GraMSec 2016.

Our thanks also go to the European Commission’s Seventh Framework Programme
(EU FP7 grant no. 318003 TRESPASS), the University of Luxembourg, the Fonds
National de la Recherche Luxembourg (FNR-CORE grant ADT2P), and INSA Rennes
for their partial sponsorship of the workshop, as well as KTH Royal Institute of
Technology and the IRISA institute for their in kind contribution to GraMSec 2016.
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Finally, we would like to acknowledge Springer for accepting to publish these
proceedings as an LNCS volume as well as the EasyChair team for providing a very
practical tool supporting the workshop’s management and the preparation of these
proceedings.

August 2016 Barbara Kordy
Mathias Ekstedt
Dong Seong Kim
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A Bottom-Up Approach to Applying Graphical
Models in Security Analysis

Xinming Ou(®)
University of South Florida, Tampa, USA
xou@Qusf .edu

Abstract. Graphical models have emerged as a widely adopted approach
to conducting security analysis for computer and network systems. The
power of graphical models lies in two aspects: the graph structure can
be used to capture correlations among security events, and the quantita-
tive reasoning over the graph structure can render useful triaging deci-
sions when dealing with the inherent uncertainty in security events. In
this work we leverage these powers afforded by graphical model in secu-
rity analysis. Given that the analyst is the intended user of the model, the
most difficult task for research in this area is to understand the real world
constraints under which security analysts must operate with. Those con-
straints dictate what parameters are realistically obtainable to use in the
designed graphical models, and what type of reasoning results can be use-
ful to analysts. We present how we use this bottom-up approach to design
customized graphical models for enterprise network intrusion analysis. In
this work, we had to design specific graph generation algorithms based on
the concrete security problems at hands, and customized reasoning algo-
rithms to use the graphical model to yield useful tools for analysts.

1 Introduction

Intrusion analysis is the process of examining real-time events such as IDS alerts
and audit logs to identify and confirm successful attacks and attack attempts
into computer systems. The IDS sensors that we have to rely on for this purpose
often suffer from a large false positive rate. For example, we run the well-known
open-source IDS system Snort on our departmental network containing just a
couple of hundreds machines and Snort produces hundreds of thousands of alerts
every day, most of which happen to be false alarms. The reason for this are
well-known: to prevent false negatives, i.e. detection misses from overly specific
attack signatures, the signatures that are loaded in the IDS are often as general
as possible, so that an activity with even a remote possibility of indicating an
attack will trigger an alert. It then becomes the responsibility of a human analyst
monitoring the IDS system to distinguish the true alarms from the enormous
number of false ones. How to deal with the overwhelming prevalence of false
positives is the primary challenge in making IDS sensors useful, as pointed out
by Axelsson [3] more than 10 years ago.

This article was based on a previously published work [38].

© Springer International Publishing AG 2016
B. Kordy et al. (Eds.): GraMSec 2016, LNCS 9987, pp. 1-24, 2016.
DOI: 10.1007/978-3-319-46263-9_1
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Due to the lack of effective techniques to handle the false-positive problem, it
is common among practitioners to altogether disable IDS signatures that tend to
trigger large number of false positives. At one site we visited, the security analysts
did not use the standard Snort rule sets at all, but rather resorted to secret, i.e.
unpublished, attack signatures that are highly specific to their experience and
environment and with known (small) false negative rates. We were told by the
security analysts that secret signatures can only help capture some “low-hanging
fruit”, and that many attacks are likely missed due to the disabled signatures.
Turning off IDS signatures is like turning a blind eye to attack possibilities, which
we believe is a drastic consequence of the lack of effective solution techniques
to prioritize investigations of alerts from IDS and audit logs. But, lacking any
other significant distinguishing feature between the alerts, practitioners see no
alternative.

1.1 Quantifying Uncertainty

Current IDS systems do not distinguish nor help distinguish the alarms that
are highly likely to be true from those that have only a small chance of being
true. By treating each suspected or imputed attack as has been suggested in
earlier literature (see, e.g. [5] and references therein), merely as a hypothesis
whose validity needs to be established, an effective approach to dealing with
false positives can be formulated. The task then is to quantify the uncertainty in
the hypotheses ascribed to IDS alerts by correlating multiple-point observations
that are relevant to each alert. Given a list of intrusion hypotheses sorted by
confidence and annotated by the evidential support for each hypothesis, it would
be much easier for a human analyst to decide which hypotheses deserve further
investigation. Since most network intrusions involve multiple actions, if we can
relate observations from multiple events, a true successful attack will likely have
multiple pieces of corroborating evidence, thus increasing the certainty of the
attack hypothesis. Correspondingly, a false positive in one sensor is likely to
have less corroborating evidence, thus the particular attack hypothesis will have
a low score and be ignored. The key question then is how to calculate a difficult
formulation based on both the reasoning structure in which it is derived and the
quality of the evidence that supports it.

There have been past attempts [34,36] at achieving this. Bayesian analysis [14]
has been the standard and there have been some approaches using alternative the-
ories such as Dempster-Shafer theory [23]. However, a number of fundamental
issues in applying these mathematical theories to intrusion analysis remain to
be addressed. For Bayesian analysis, it seems difficult to establish adequate prior
probabilities such as the probability of a specific attack occurring in the environ-
ment or determine the conditional probabilities between system events in a robust
manner. For Dempster-Shafer theory, it is not clear how to model sensor quality,
where to obtain such parameters, and how to handle non-independent sources of
evidence.
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1.2 Owur Contributions

Dempster-Shafer theory has unique advantages in handling uncertainty in intru-
sion analysis, namely, the ability to deal with the lack of prior probabilities for
all (singleton) events and the ability to combine beliefs from multiple sources of
evidence [6,7,34]. In this paper we present an extended Dempster-Shafer model
that addresses the fundamental issues in applying DS in intrusion analysis, as
mentioned in Sect. 1.1. We have implemented our method on top of our IDS alert
correlation tool SnIPS [15,21], so that one can calculate a numeric confidence
score for each derived hypothesis and prioritize the results based on the scores.
Our contributions are:

Using “unknown” to capture sensor quality (see Sect.3.2). Dempster-
Shafer theory allows specifying a weight on “unknown” (or “to be determined”)
rather than specifying precise probabilities for every possible event in the space.
We use this ability to represent lack of knowledge to capture the intuitive notion
of IDS sensor quality (which usually turns out to be imprecisely described),
without suffering the non-intuitive effects of aggregation or forced classification
that have been observed by researchers [34].

Accounting for lack of independence among alerts (see Sect. 3.3). A long-
standing assumption in DS theory is that multiple pieces of evidence are inde-
pendent, which is a property that is hard to confirm in practice. This is especially
a problem in IDS alerts since many alerts are triggered by the same or similar
signatures. In combining these alerts to derive the overall belief on the attack sta-
tus, it is important that such non-independence be appropriately accounted for
so that the result is not skewed by over-counting. To the best of our knowledge,
our method is the first in applying sound non-independent DS belief combination
in IDS alerts.

Efficient calculation (see Appendix B). A direct application of DS formu-
las can result in exponential (in the number of hypotheses — in our case, IP
addresses) blow-up of belief combinations. We adopt a “translate-then-combine’
approach so that beliefs are propagated in a correlation graph and only combined
at join points in the graph. This produces an efficient algorithm with worst-case
running time quadratic in the number of IP addresses in the input alerts.

Linking to practical IDS tools (see Sect.4). We have implemented our app-
roach for the open-source IDS system Snort, and applied it on a production
network and a number of data sets. We rigorously evaluate our method by sep-
arating the tuning phase from the testing phase, so that we do not fit our tool’s
parameters to work well with just one particular data set. Our evaluation sug-
gests that the scores computed from our algorithm provide a useful ranking
for the correlated alerts based on the correlations’ trustworthiness. We have
validated the results both anecdotally as well as with data set ground truths
whenever available.

Robustness of solution (see Sect.4.4). We emphasize that our final goal is
to sort alerts by confidence, hence we are interested in the relative order of
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hypotheses by confidence, not in establishing absolute certainties about attacks.
Our application of DS requires the assignment of numeric values (constants) to
certainty levels {unlikely, possible, likely, probable} but there is no help in the
theory itself as to the manner of assignment. In a standard application of DS,
the numeric scores may affect the final conclusions. However, since we are inter-
ested only in relative belief strengths assigned to the hypotheses, our approach
is robust to small changes in these constants. Given any two related hypotheses,
the absolute belief values are irrelevant as long as the relative strengths of belief
remain unchanged when we slightly vary the numeric constants. Our experimen-
tal analysis shows that this is indeed true; the classifier’s operating characteristic
does not change when the constants’ values are varied within a small range.

2 Background on Dempster-Shafer Theory

A common example to illustrate the difference between probability theory and
Dempster-Shafer theory is that if we toss a coin with an unknown bias, proba-
bility theory will still assign 50 % for Heads and 50 % for Tails by the principle
of indifference ([11], p. 167), which states that all states of unknown probabil-
ity should be assigned equal probability. Dempster-Shafer theory, on the other
hand, handles this by assigning 0 % belief to {Head} and {Tail} and assigning
100 % belief to the set { Head, Tail}, meaning “either Head or Tail”. By allowing
us to assign 100 % belief to {Head, Tail} if warranted, DS does not force us to
pick a probability when there is no basis to assign it. More generally, the DS
approach allows for three kinds of answers: Yes, No, or Don’t know. The last
option of allowing ignorance makes a big difference in evidential reasoning. See
[13], Chap. 2 for a discussion of the relative merits of DS belief theory. In DS
theory, a set of disjoint hypotheses of interest, e.g., {attack, no-attack}, is called
a frame of discernment. The basic probability assignment, (bpa) function, also
called the mass distribution function (mg), distributes the belief over the power
set of the frame of discernment and is defined as:

me: 20 — [0,1] (1)

my({}) =0 and ng(:n) =1 (2)

zC#6

Definition 1. Let 0 be a frame of discernment and mg a bpa function. The
belief function is defined as

Bel(z) = ng(y),for xCHo (3)
yCx
2.1 Dempster’s Rule of Combination

The goal of combination is to fuse the evidences for a hypothesis from multi-
ple independent sources and calculate an overall belief for the hypothesis [22].
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Figure 1 illustrates this idea, where alerts, alerts are two alerts triggered by
independent IDS sensors. Independence means that knowing whether one sensor
is trustworthy or not will not influence the likelihood for the other being trust-
worthy or not. A common assumption is that if two sensors are independent if
they operate on completely unrelated features to determine attack possibilities.
Both alerts could indicate that machine ips is doing malicious probing of ips.
The question is how we combine the beliefs from the two evidence sources. In
general we have the following rule for fusing known as the Dempster’s rule of
combination.

1

mia(h) =% > ma(ha) - ma(he) (4)
hiNhs=h
K= > mi(h) ma(hy) (5)
hlﬂhgz{}

Where h;’s and h’s are subsets of H, hypotheses in the frame of discernment.
K is a normalization factor that is a measure of the conflict between the two
sources of evidence, which is equivalent to the measure of the cases of empty
intersection between the h;’s. The combined mass function must be normalized
by 1 — K when conflict exists [22,23].

The multiplication in formula 4 is only valid when the two evidence sources
are independent [22]. This is often not the case in practice and especially so in
IDS alerts since many alerts are generated by the same or related signatures. In
the next section we introduce our extension of the DS model to account for non-
independent evidence sources, so that the DS model can be correctly applied in
intrusion analysis.

6 : sendExploit(ip,ip2) 7 : probeOther M achine(ip2,ip3) 8 : probeOther M achine(ipz, ipa)

9 : compromised(ip2)

Fig. 1. Automatically generated correlation graph segment from SnIPS
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3 Applying Dempster Shafer on Intrusion Analysis

3.1 The SnIPS Framework

We have built our DS-based hypothesis prioritization model on top of the
SnIPS [15,21] intrusion analysis system from our past work. SnIPS can work
with the open-source Snort IDS system. It maps a triggered IDS alert to a
hypothesis such as “machine compromised.” It also maps the trustworthiness
of the hypothesis to a discrete tag such as “possible” and “likely”. Our past
work [21] showed that building the mappings does not require much additional
work, since the information already exists in an ad-hoc manner in the Snort
rule repository. We have developed a heuristic algorithm to automatically infer
the mappings by analyzing the Snort rules’ documentation. After the alerts are
mapped to hypotheses, the hypotheses are reasoned about efficiently based on
a succinct internal reasoning model, and an alert correlation graph is built that
shows the possible links among the hypotheses and alerts [29].

Ezxample of SnIPS Output. Figure 1 shows a sample segment of alert correlation
graph automatically generated by SnlPS. “compromised”, “sendFxploit”, and
“probeOtherMachine” are predicates used to describe various attack hypotheses.
The arrows’ direction in the graph is aligned with inference. Five groups of alerts
alert; — alerts, are triggered by four different sensors. The notion of a sensor in
our model is a bit different than other previous works. In our model we are not
using the notion of physical snort sensor (i.e. Network card), or IDS in general.
Instead, we are using each snort signature as a virtual sensor supporting the
correlation graph. This is under the assumption that snort alerts will be triggered
independently. For example in Fig.1 sensor; could be snort rule 1:1390. This
rule is usually trigged when an attempt is made to execute shellcode on a host [1].
The sensor nodes (the ones in dotted squares) are not part of the graph and are
added here for clarity. alert; is mapped to the fact that host ip; sent an exploit
to ipo; both alerts and alerts are mapped to the fact that ips did malicious
probing to ips, and so on. The rationale for this correlation graph is that after
ip1 sends an exploit to ips, ip2 may be compromised (node 9). Once the attacker
has compromised ips, he can send malicious probing from there. Thus these
alerts are all potentially correlated in the same underlying attack sequence. For
representational simplicity, time information is not shown in the example graph
(but is part of the reasoning process). In this example, alerts — alerts happened
after alert;. The arrow of the arcs indicate that all of alert; — alerts support
the hypothesis that ip, was compromised.

3.2 Metrics for Sensor Quality

False positive and negative rates have been the standard metrics for characteriz-
ing an IDS sensor’s quality. In this work we do not subscribe to such probabilis-
tic metrics. Rather, we will use the “unknown feature” provided by DS theory to
capture the case when we do not trust a sensor. The nature of unknown matches
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naturally with how humans interpret IDS alerts. When an alert is fired, we will
have some degree (say 10 %) of belief that an attack is going on. If we were to
use a probability interpretation, we would have to say that we have 90 % belief
that the attack is not going on. One may find it counter-intuitive to positively
assert that an attack is not going on based on seeing an alert. In probability the-
ory, this is addressed by comparing the probability of an attack before and after
seeing an alert. However, this would require the specification of the prior proba-
bility of attacks, which is hard if not impossible to obtain. By using DS, we can
assign 0.1 belief to “attack” ({true}), O belief to “no-attack” ({false}), and 0.9
belief to “Don’t know” ({true, false}). This is a more intuitive quantitative inter-
pretation of what an IDS alert provides: it gives some (small) belief that there is
an attack but it does not give us any belief for “no-attack.” Just because the sen-
sor is not trustworthy, does not mean an attack is not going on. There may still
be attack that is completely outside the scope of the sensor’s detection. Assigning
the remaining weight to the “unknown” state indicates that we acknowledge the
open-ended nature of attacks, which captures the reality of cyber security.

Using this method, we only need a single metric § to characterize a sensor’s
quality. 0 corresponds to the bpa of {¢rue} for the corresponding hypothesis when
the sensor fires. Then 1 — 6 will be assigned to {true, false} (denoted 6 thereafter).
In the example of Fig. 1, if we have § = 0.1 as sensory’s trustworthiness, alert; will
translate to 0.1 mass distribution for send Exploit(ipy, ip2) being true. 0.9 weight
will be distributed to send Exploit(ip1,ip2) being 6 (“unknown”). We view ¢ as a
metric solely dependent on the sensor’s trustworthiness. We also assume for sim-
plicity that shared IDS sensors only give us positive correlation, i.e. the trigger-
ing of one alert cannot cause us to decrease our belief in another correlated alert
but only to increase it or stay the same. IDS signatures often come with ad-hoc
natural-language descriptions that indicate the quality of the signature in terms of
how likely the triggered alerts will be false positives, using qualitative terms such
as “possible” and “likely.” SnIPS extracts such terms from the Snort rule docu-
mentation and assigns a corresponding “certainty tag” for alerts generated by the
rule [21]. In practice such tags can be provided easily by the rule writer if they are
standardized, since they are already used in an informal way. We use the SnIPS
certainty tags to map to the quantitative quality metrics for alerts generated by
the various Snort rules (sensors), in the scheme shown in Table 1.

Table 1. Mapping discrete certainty tags to quantitative sensor quality metrics

Measures Metrics | Measures Metrics
Unlikely | —0.01 Possible | —0.33
Likely — 1 0.66 Probable | — | 0.99

The intuition is that humans typically cannot distinguish small differences
in numerical parameters, thus a few discrete levels are sufficient to express the
various beliefs one can ascribe to an alert. Through our analysis of the Snort
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rules’ documentation, we found that four levels are sufficient to differentiate the
various belief levels reflected by the rule writers about an alert’s trustworthi-
ness [21]. There is a low belief 0.01 and a high belief 0.99. The other two levels
are evenly divided in the middle space. Another consequence of this model of
sensor quality is that there will be no conflict among alerts. When we do not
trust an alert, we just say “Don’t know” whether the hypothesis is true, rather
than assert that the hypothesis is false. This will not contradict the fact that we
may trust another alert which derives the same hypothesis to be true. Thus we
always have K = 0 in the combination formula (4).

3.3 Extending DS Combination Rule for Non-independent Evidence

Correlated alerts could provide falsely elevated belief that an attack is going on,
since multiple pieces of evidence point to the same conclusion. A key question
is whether these multiple pieces come from independent sources. Through our
research we discovered that we cannot ignore or avoid the overlapping nature of
evidence. Often times we see multiple alerts in correlation supporting a hypothe-
sis, but these alerts are triggered by the same or similar IDS signatures leading to
an unjustifiably high level of confidence if we apply the standard Dempster rule
of combination. In reality these multiple alerts should not significantly increase
our belief in the hypothesis.

There may also be “partial non-independence” between two sources of evi-
dence. In Fig.1, the main hypothesis is node 9: “whether machine ips is com-
promised.” This hypothesis is supported by the alert node 1-5. Node 1, an
alert triggered by semsori, has evidence supporting node 6. Node 2 and 3 have
evidence supporting node 7, so we combine the belief in 2 and 3 into node 7.
Similarly, the belief in 4 and 5 will be combined into 8. Then we need to combine
the belief in 6, 7, and 8 to answer the final question in node 9. Now we cannot
ignore the fact that these nodes have overlapping evidence. Specifically, both
node 7 and 8 partially rely upon alerts triggered by sensors. As a result, node 7
and 8 are not completely independent and we cannot simply apply the Dempster
rule of combination (Sect.2.1).

There are a number of approaches in the DS literature to account for such
dependence [10,24-26]. We adopt an idea proposed originally by Shafer [26]
which interprets combined bpa’s as joint probabilities. Based on this, we develop
a set of customized combination formulas to correctly account for the dependence
in evidence when combining beliefs in the alert correlation graph.

The Customized Combination Formula. The reason Dempster’s rule of
combination has to assume evidence sources are independent is that joint mass
function is calculated through multiplication (formula 4). For non-independent
evidence, multiplication of bpa’s from two sources is no longer valid [26]. Instead
of my(hy) - ma(hs), we use [hy, hs] to denote the joint bpa of the two sources.
We obtain the following new formula for combining possibly non-independent
evidence.
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mig(h) = Y lh, ho (6)

hiNha=h
One implication that arises from the application domain, namely intrusion analy-
sis, is that the only h;’s of interest are {true} (referred to as t hereafter)
and {true, false} (referred to as 0 hereafter). The following equations specify

Y[hy, hol,

Yt =ri-ma(t) + (1 —r1) - ma(t) -ma(?) (7)
Y[t 0] = (1 —r1) - ma(t) - ma(0) (8)
Y10, 1] = (1 —r2) - my(0) - ma(t) (9)
Y[0,0] =11 -mo(0) + (1 —r1) - m1(6) - ma(0) (10)

The values 1 and ro are overlapping factors which measure the amount of
overlapping in the evidence from the two sources. Intuitively, r; is the portion
of m1(t) that relies upon overlapping evidence from ms(t). The assumption is
that the amount of overlapping between two pieces of evidence will affect their
inter-dependence.

Estimation of the Overlapping Factors. We provide semantics for the over-
lapping factors using the probability theory. The detailed formulation can be
found in Appendix A. The definition of r; requires knowing certain conditional
probabilities (Prw;+1|w;] in the Appendix), which is not available. Thus we
need to estimate r; just as we need to estimate the bpa’s for the sensors. In
SnIPS each alert node is associated with a set of IDS signatures that triggered
it. We view these signatures as different sensors (Fig. 1). In our analysis the iden-
tities of the sensors that triggered an alert are propagated to the hypotheses it
supports and further along the graph to other hypotheses it implies. Thus each
hypothesis such as hy or hsy is associated with the set of sensors whose alerts
support it. Each sensor s has a quality metric d5 as discussed in Sect.3.2. Let
Ry and Rs be the two sensor sets associated with the hypothesis hy and ho to
be combined using formula 6, and R = Ry N Ry. We use formulas 11 or 12 to
estimate the overlapping between h; and hs.

>

7“1:36R , To=r1-a , a<l, (11)

Ty = , ri=ro-a , a>1, (12)

where « is defined in (A1) and can be computed as:

() - (1= ma(t)
ma(t) - (1 —ma (1))

(13)
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That is, we gauge the overlapping between the two sources by dividing the
weight of the overlapping part by the total weight of each source, where the
weight is calculated as the sum of the sensor quality metrics. Depending on the
value of «, we estimate one of 1, 7o and compute the other using «. The above
estimation ensures that both r1 and ry are within [0, 1]. Appendix A gives further
intuition behind the overlapping factor.

3.4 Belief Calculation Algorithm

Typically the alert correlation graph returned by SnIPS is not fully connected but
contains a number of correlation graph segments like the one shown in Fig. 1. The
algorithm in general takes a set of correlation graph segments and calculates the
belief value for each node on each graph. The graph segments are then sorted in
descending order based on the maximum belief values for the sink nodes. To cal-
culate the belief of the sink node, the algorithm propagates the quality metrics of
each alert in the graph. The propagation will use the translation relation between
the semantics of nodes. The algorithm applies the extended combination rule when
there are multiple arcs flowing into one node like node 9 in Fig. 1. IDS signature
identifications are propagated throughout the graph to be used in estimating the
overlapping factor using formulas 11 or 12. The complexity of this algorithm is
linear in the size of the graph. In the worst case the SnIPS-generated graph is
quadratic in the number of IP addresses in the alerts [29]. Appendix B has the
formal algorithm with its details.

3.5 An Illustrative Example

We use the example in Fig.1 to show the belief calculation process. It starts
by computing the belief values for the source nodes alerts (node 1-5), each
of which is associated with the sensor (IDS signature) that triggered it as in
Sect. 3.2. Then the belief values will be propagated through the graph using the
semantics of the source node to the destination node using a set of predefined
translation (compatibility) tables. Combination will be needed when multiple
derivation paths lead to a single node. Let us take node 9 as an example, which
has three pieces of evidence flowing into it from node 6,7,8. All the parent
nodes 6,7,8’s belief values based on their perspective semantics are translated
into the bpa on node 9’s semantics (compromised(ip2)). The algorithm sorts the
three branches based on the translated belief values and combines the highest
belief pair. In the similar manner the combined branches are further combined
with the rest branches. Let us assume that node 7 and 8 are the first pair to
combine. Node 7’s belief value after translation is m;(t) =0.68 and node 8’s
value is ma(t) =0.6. First we need to estimate the correlation factors r; and r9
using formulas (11) or (12). Let R1 and R2 be the two sensor sets for node 7 and
8. Ry = {sensorq, sensors} and Ry = {sensors, sensorys}. The quality metrics
for the sensors are dsensor, = 0.2, dsensors = 0.6, and dgensor, = 0.01. Using
formula 13, we have o = 1.42. After using formula 12, since @ > 1, we have
ro = 0.98,71 = 0.69. Then after applying rules 7-10, we get Table 2.
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Table 2. Combination example

(h1,h2) [Y(ha, h2) |h | (ha,h2) | (R, he) | B
(t,t) 0.596 {t} | (t, 6) |0.084 {t}
@,t) 0004 | {t} (6,6) 0316 | {6}

Finally, Bel({true}) = 0.68, calculated by summing up all the subsets of
{true} values. The final step is to combine this result with the belief from node
6, which will be in a similar manner. The sensor set associated with the combined
belief will be the union of the sensor sets from all branches.

3.6 A Note on Methodology

Absence of Evidence. Our current model just counts for the supporting evidence
when they are present. On the other hand, DS can handle the absence of evidence
as negative evidence by assigning weight to false in the computation table. Below
we discuss the reason why we did not include this functionality.

Besides the well-known poor priors problem in Bayesian inference, there is
a second challenge in real-world intrusion detection systems that needs to be
addressed as well, which is that we typically have a very poor understanding of
all the ways in which an attack occurs. IDS systems such as Snort are signature-
oriented in that they are designed to detect the occurrence of a specific event or
series of events that serve as an sensor for an underlying attack. By Bayesian
methodology we should be able to measure and use in predictive analysis both
the true positive and true negative rates of detection, when available. However,
because these rates are measured in the laboratory under different conditions
than the real environment traffic the claimed rates tend to be estimates of the
real rates whose quality is undetermined. From systems administrators’ experi-
ence we have learned that for signature-based systems true positive rates (i.e.
Prob(attack has occurred|alert has fired)) are usually close to accurate whereas
false negative rates (i.e. (Prob(no attack has occurred|alert has not fired) are
less so. The positive case is intuitive — the specificity of the signature in an
alert leads us to believe that the attack under question may have occurred. (Yet,
true positive rates are never 1 because multiple system behaviors, some of them
unknown to us, may satisfy the same signature leading to false positives.) For the
negative case, when a (possibly expected) signature event is not seen that may be
either because the attack has not occurred (a true negative) or because the attack
has occurred in an undetectable manner (a false negative). This is not symmetric
with the positive case because in the negative case we are modeling attack behav-
ior rather than system behavior. In keeping with our approach of making minimal
assumptions about attacks, our belief strength is currently built on the true pos-
itive rate alone. In future work we can consider the use of the true negative rate
for specific sensors that can reliably detect the absence of an attack. DS theory
can handle this type of negative evidence with the corresponding compatability
relations among positive and negative evidence defined. The computation formula
will also need to be extended to handle mixed positive/negative evidence.
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4 Experimental Results

We implemented the algorithms in Java, and have been applying the system on
our departmental network with about 200 servers and workstations (including
Windows, Linux, and Mac OS X). The Snort alert collection, correlation, and DS
algorithm application were all carried out on a Ubuntu server running a Linux
kernel version 2.6.32 with 16 GB of RAM on an eight-core Intel Xeon proces-
sor of CPU speed 3.16 GHz. So far we have not encountered any performance
bottleneck in our algorithm.

4.1 Evaluation Methodology

The objective of our evaluation is to examine whether the belief values calcu-
lated from our DS algorithm can help a security analyst to prioritize further
investigation. To that end, we assigned to an IDS alert the belief value which is
the highest belief of the hypotheses that supports. This can be easily calculated
from the alert correlation graph through linear traversal. If IDS alerts with high
belief values turn to be more likely true alerts than those with low belief values,
it is an indication of the effectiveness of our approach.

Moreover, to show that it is indeed the application of Dempster-Shafer theory
helps in alert prioritization, we compared the performance of our DS algorithm
against that of the following alternative methods:

1. Using sensor quality metrics only. In this method, we simply use the sensor
quality metrics assigned to each alert as described in Sect.3.2 as an alert’s
belief value.

2. Using the maximum sensor-quality metric in a correlation graph as the belief
value for all alerts in the graph.

3. Using the belief values calculated from the standard DS rule of combination,
instead of from our customized DS.

All these methods assign a belief value to an IDS alert. A threshold value
was chosen. Alerts with belief values above the threshold will be classified as
true alerts, and those below the threshold will be classified as false alerts.

We used the truth files that included in the data set to determine which alerts
are actually true alerts and which are actually false alerts. Then we compared
this against the classification provided by the belief values. The key metrics in
the classifier’s performance are precision, recall (true positive), and false posi-
tive. As the belief-value threshold is changed, the classifier will obtain different
operating points in terms of true positive and false positive. We draw receiver
operating characteristic (ROC) curves for the four methods and compared their
performance. ROC curve is a standard way to compare performance of IDS sys-
tems [3]. It shows the relationship between the detection rate (true positive) and
false positive rate of a classifier.

# true alerts above threshold
# alerts above threshold

precision =
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# true alerts above threshold
# total true alerts

# false alerts above threshold

# total false alerts

recall (true positive) =

false positive =

4.2 The Rationale for Using Lincoln Lab Data-Set

The first source of data we used in our evaluation is Snort alerts from the CIS
departmental network at Kansas State University. Due to the lack of ground
truth in such data from the production network, we provide anecdotal experi-
ences on the effectiveness of our algorithm. In addition, we tested our proto-
type on the MIT Lincoln Lab DARPA intrusion detection evaluation data set.
Although the Lincoln Lab data set has been criticized in the literature [16,17], it
still one of small number of usable publicly available data sets for IDS research.
This is due to its well-documented ground truth and the existence of both back-
ground and attack traffic. We believe the limitation of the (LL) dataset will not
significantly affect the validity of our evaluation for the following reasons.

1. Most of the identified problems in the (LL) dataset would affect anomaly-
based detection [16] where one needs to use the data for both training and
testing purposes. These defects will not affect as much signature-based IDS
such as Snort, which we use as the underlying alert source.

2. Our reasoning model is built a priori from existing Snort rule repositories, and
calibrated on our departmental network, completely unrelated to the (LL) data.

3. The problem in (LL) dataset’s background traffic [17] makes it hard to make
claims on the performance of the tested system on real networks. This is espe-
cially the case since it is a very old data set now. For this reason we will mainly
use the dataset to compare performance. The relative performance of the var-
ious methods is likely not affected as much as the absolute performance, since
they may all benefit or suffer from the specific features of the data set.

4.3 Lincoln Lab DARPA Data-Set Results

DARPA 1998 and 1999 Training Data. We obtained the training datal
in packet capture (pcap) format for both the 1998 and 1999 DARPA Intrusion
Detection Evaluation program. We ran Snort on the packet capture data, ran
SnIPS on the alerts triggered by Snort, and ran our DS calculation algorithm as
well as the other three methods mentioned in Sect.4.1 on the generated alerts
and correlation graphs. We created ground truth about alerts using the truth
files provided at the data set website. Each day has attacks targeted at specific
machines, as given in the truth files. We carefully went through each attack
described and checked against the alert database to pick out those alerts that
can be verified as true alerts. The rest of the alerts are false alerts. This ground
truth allows us to calculate the true positive and false positive of the various
classifiers and plot their corresponding ROC curves.

1 Only training data’s truth file is publicly available.
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Fig. 2. Lincoln lab 1998 ROC curves

In general the steeper and closer the ROC curve is to the left-up corner, the
better the classifier. A comparison of the ROC curves generated for both data
sets is shown in Figs.2 and 3. From the curves it is clear that our customized
DS algorithm outperforms the other three alternative methods. Some operating
points of the other three methods come close to the customized DS algorithm
for the (LL 98) data, e.g. point B and C. But these points become much more
inferior for the (LL 99) data. Whereas our DS algorithm produces the most
optimal operating point consistently for both graphs (point A, corresponding to
belief threshold 0.9).
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Fig. 3. Lincoln lab 1999 ROC curves
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4.4 Sensitivity Analysis

We also did experiments to test how the variation in the choice of sensor quality
metric values for the certainty tags affect our algorithm’s performance. We var-
ied the default mapping shown in Table1 in four different ways, each of which
perturbs the numeric value by about 10 %, e.g. from 0.33 to 0.3. We compared
the results from all the four cases along with the default case in the ROC curves
for the (LL 99) data (Fig.4). One can find that the five curves exactly overlap
with each other indicating that small perturbation in the values for the certainty
tags has virtually no effect at all on the performance of the classifier. We did the
same experiment for (LL 98) data and also obtained five overlapping curves.

Detection Rate

o T T T T
0 0.2 0.4 0.6 0.8 1

False Positive Rate

& Default -v-Case| > Casell
¢ Case |l 4 Case iV

Fig. 4. Lincoln lab 1999 sensitivity analysis’s ROC curves

4.5 Prioritization Effect

Our main objective of applying Dempster-Shafer theory is to use the relative
belief values to prioritize intrusion analysis. Figures5 and 6 show how the pre-
cision and recall changes when the threshold decreases from 1 to 0 (note that
0in the X axis corresponds to belief 1, and 1 corresponds to belief 0). When one
starts with alerts with high beliefs, the precision is high meaning more of the
effort is devoted to useful tasks. When the threshold decreases, the cumulative
precision decreases as well. This is a strong indication that the calculated belief
values can be used effectively to prioritize further investigation.

At the highest belief range (0 point at the X axis) the percentage of total
alerts captured is about 40 %, and the recall is about 80 %. This means that if
one only analyzes alerts with the highest belief (e.g., >0.9), it only includes 40 %
of all alerts whereas covers 80 % of all the true alerts. The recall curve is very flat
meaning that most of the attacks can be captured using a high threshold value.
This is certainly only the case for these two specific data sets, but nevertheless it
indicates the effectiveness of prioritization provided by the DS method. Without
it, one would have to look at twice as many alerts to achieve the same coverage.
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4.6 The Production Network Results

In our evaluation we had permission from the University IT Security team
to monitor the Snort alerts from the Computing and Information Sciences
departmental network. This process had little privacy concern because the
links between the machines’ IPs and the users were not given to us and Snort
only reveals limited payload data. All researchers involved in the experiments
had signed the University IT Personnel Ethics agreement, consistent with the
University policy.

Since it is hard to get ground truth in live systems, we presented the results
to the system administrator of our departmental network to get his feedback on
the tool’s effectiveness. Regarding the quantitative belief calculation, the sys-
tem administrator found that although the numbers themselves were hard to
interpret intuitively, the ranking would be useful in prioritizing further analysis.
He agreed that the higher-ranked correlations are indeed what he would like
to investigate further, compared with the lower-ranked ones. In most cases the
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investigation indicated false positive or turned out inconclusive. But the rank-
ing reduces the search scope for the system administrator which in real terms
may translate to many man-hours of intrusion analysis oversight by a human.
Certainly such anecdotal experiences cannot serve as validation of the method’s
effectiveness but real-world feedback is valuable in judging whether the tool is
likely to be useful in the future.

5 Related Work

Chen, et al. [7] described the general approach of applying standard DS theory
to combine multiple sensors’ reports for intrusion detection in ad-hoc networks.
Yu, et al. [34] extended Dempster-Shafer theory for alert fusion in the HPCN IDS
alert correlation systems [33]. They observed that direct application of Dempster-
Shafer theory in IDS alert fusion provides non-intuitive results and extended DS
to weight alerts based on their quality. Our approach is different in that we
directly capture sensor quality by assigning the remaining bpa to the unknown
case ({true, false}), instead of the {false} case. We feel that our approach better
captures the intuitive semantics provided by an IDS alert (Sect.3.2). Neither
Chen nor Yu addresses non-independence among evidence sources, which we
believe is an important issue and have designed a customized DS combination
rule to handle (Sect. 3.3).

There have also been approaches for alert fusion and prioritization based on
decision theories. Barreno, et al. [4] introduce an optimal approach for combining
binary classifiers using the Neyman-Pearson lemma. Guofei, et al. [12] propose
an alert fusion technique based on likelihood ratio test (LRT). We would like
to investigate the possibility that these techniques could be applied in an IDS
alert correlation framework and compare the result with that of our DS-based
approach.

Ou, et al. proposed an empirical approach to handling uncertainty in intru-
sion analysis [21]. They proposed using discrete tags to capture alert uncertainty
in correlation analysis and a “proof-strengthening” technique to elevate confi-
dence in a hypothesis where there are multiple derivation paths pointing to the
same conclusion. The proof-strengthening rule is based on empirical experience
and the authors did not provide the rationale behind it. Our approach takes dis-
crete input metrics, but uses a quantitative combination method which provides
a finer-grained result that can be used to rank hypotheses. Our quantitative app-
roach has a well-established theoretical foundation, and can potentially provide
better prioritization.

There have also been work on using Bayesian Network in intrusion detec-
tion [2] and IDS alert correlation [18,36]. The advantage of applying DS as
opposed to Bayesian theory is that one does not need to know all the prior prob-
abilities of events which are often unavailable. Indeed, DS is one of the various
so-called non-traditional theories for uncertainty that generalize specific proba-
bilities to an interval of probability, which also include Belief Theory, Subjective
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Logic, and Possibility Theory. Some of these other approaches have been pro-
posed in IDS alert fusion [30]. According to [22] the DS Belief Function theory
is superior to the other theories because of

— the relatively high degree of theoretical development in DS theory,

— the aspect of Dempster-Shafer theory as a generalization of traditional prob-
ability theory, namely, where probabilities are assigned to sets of events as
opposed to mutually exclusive singletons events,

— the versatility of DS theory in combining different types of evidence from
multiple sources, and

— the large number of applications of DS theory in engineering in the past ten
years.

IDS alert correlation [8,9,19,20,27,31-33,35,37] has been extensively studied
in the literature. However, just because a correlation exists does not automat-
ically mean the associated alerts are high confidence. The correlation itself are
often “false correlations”. From our conversation with system administrators, it
is highly desirable that alert correlation tools prioritize their output based on
the likelihood of true attacks. Our work provides one possible approach to this
prioritization.

Denceux’s work [10] explicitly raises and addresses the question of non-
independent sources in DS theory. They point out that lack of independence
in evidence is a valid concern in many applications and propose a new rule of
combination called the “cautious rule” to handle this case. The cautious rule is
designed to be as general as possible and is hence very complex and unintuitive.
Our combination rule follows the general idea proposed by Shafer [26] and is
based on a simple probabilistic semantics. It could be that our rule can be con-
sidered a highly specialized case of the general cautious rule, appropriate to our
application.

Sun et al. [28] present an application of DS theory to the risk analysis of
information systems security. They present an evidential reasoning approach
that provides a rigorous, structured model to incorporate relevant risk factors,
related counter measures and their interrelationships when estimating informa-
tion system risk. Chen et al. [6] present an application of DS to the detection of
anomalies in a variety of systems such as worm detection in email and learning
in biological data. They show that by combining multiple (independent) signal
sources using belief values and the Dempster combination rule, it is possible
to achieve better results (characterized by rate of classification error) than by
using a single signal. They point out that the advantage of using DS theory over
Bayesian is that no a priori knowledge is required, making it potentially suit-
able for anomaly detection of previously unseen information whereas Bayesian
inference requires a priori knowledge and does not allow allocating probability
to ignorance.
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6 Future Work

We will continue to apply our system on more production systems for extended
periods of time, and gather data to further analyze its performance on real
systems nowadays. There are more types of information than IDS alerts that
could be incorporated into intrusion analysis; and Dempster-Shafer theory could
be useful to reason about a much wider variety of dependency among various
types of sensors, including non-monotonic dependencies. There are also other
aspects such as temporal relationship that could affect the dependency. We plan
to investigate along these directions when we gain more empirical experience of
the method’s effectiveness on production systems.

7 Conclusion

In this paper we presented a practical approach to prioritizing intrusion analysis
using an extended Dempster-Shafer theory. The proposed DS application can
correctly combine non-independent evidence commonly found in correlated IDS
alerts. We proposed a DS model for capturing sensor quality that corresponds to
the intuitive interpretation, and designed an algorithm for calculating belief val-
ues for hypotheses on an alert correlation graph. The main goal of this work is to
reduce the workload on the system administrator by picking out those intrusion
alerts that are most likely to be true and hence worthy of further investigation.
We conducted rigorous evaluation of our approach on both a production net-
work and two additional data sets. The results of evaluation strongly indicate
that the ranking provided by the DS belief value gives good and robust pri-
oritization on correlated alerts based on their likelihood of being true attacks.
We believe our proposed approach will provide valuable practical tools to assist
security analysts.
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A Semantics of the Overlapping Factors

Since we only have two non-zero bpa subsets: ¢ and 6, in each hypothesis’s frame
of discernment, we use w; to denote the fact that we trust h; (h; = t) and w;
(negation of w;) to denote the fact that we do not trust h; (h; = 6). One may find
it strange that w; and w; appear to be not mutually exclusive, since 8 includes
both ¢ and f. This is exactly the unique way in which DS expresses disbelief
in a hypothesis — it differentiates clearly between not believing a hypothesis
and believing the negation of that hypothesis. When we trust a hypothesis, we
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believe its state is ¢ and when we do not trust a hypothesis, we do not know
what its state is, hence 6. Interested readers are referred to Shafer’s discussion
on how to handle non-independent evidence using this interpretation [26]. The
semantics of overlapping factor can be defined as:

Prlws|wy] — Pr|ws] S Prlw;|ws] — Pr[w]
Pr{s)] e Pr{u]

r =

Let us take r1 as an example to explain the semantics. If we condition on trusting
hypothesis h1, the probability that we also trust hs is greater than or equal to its
absolute probability since shared IDS sensors only give us positive correlation.
The bigger the difference, the stronger influence trusting h; has on trusting ho.
The extreme case is when Pr[ws|w;] = 1, which gives r; = 1. Both r; and 7o
measure the dependence between w; and ws, but from different directions.

Theorem Al

(14)

ro = -1y, where a =

Proof.
r1 + Pr{ws] - Priw] = Priwy,ws] — Prw] - Prlws]

ro + Priw] - Priws] = Prlwy,ws] — Prw] - Prlws]
We then have

r1 - Pr{ws] - Priwy] = re - Pr{w] - Priws)]

Theorem A2
¢[h1, hg} = Pr[wl, U}Q]

Proof. Let us substitute 7;’s into formulas (7)—(10). Let us also substitute the
following definitions:

m;(t) = Prlw;] m;(0) = Pr(w]

knowing that:

Prw;, ws]
P — L Rl
rlwsfw] Pr{w]
then substitute the above into the definition of r1, we get
r1 - Prws] - Prwi] = Prlwy, ws] — Prlw;] - Priws]

knowing that Pr[wy] =1 — Prlws], then:

Prlwy,ws] =ry - Priwi] + (1 —r1) - Pr[w] - Priws]
= '(/}[t7t]
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The importance of this theorem is that our way of calculating the joint bpa
¥[h1, ho] is sound in that it gives a generalization of the joint probability dis-
tribution of the trustworthiness of two (potentially) dependent sources. This
also follows Shafer’s general guide on how to handle non-independent evidence
sources in DS [26], although Shafer did not provide the specific formulations.

B Belief Calculation Algorithm

The main algorithm is DsCorr (Algorithm 1). This function takes GraphSet
which is a set of correlation graph segments. It iterates on each graph, and
returns a set of the graph segments sorted by the belief of the sink node (or
highest sink node for multiple sinks) in descending order.

Algorithm 1. Rank graph segments by belief
1: function DSCORR(GraphSet)

2: for each Graph in GraphSet do

3: MAKEAcYcLIC(Graph)

4: ProcessingQueue «— all the source nodes

5: while (ProcessingQueue is not empty) do

6: Node«PROCESSINGQUEUE.REMOVEHEAD
7 CoMPUTENODEBELIEF (Node)

8: Node.visited « true

9: for each c in Node.Children do

10: if all ¢’s parents are marked visited
11: AND c is not visited then

12: add c into ProcessingQueue

13: end if

14: end for

15: end while

16: record the highest belief value of sink nodes.
17: end for

18: return SORTGRAPHSETBYBELIEF( GraphSet)

19: end function

Algorithm ComputeNodeBelief (Algorithm 2) takes a node and returns
the belief value of it. There are three cases to consider for the node: (1) it is
a source node; (2) it has only one parent node, (3) it has multiple parents.
In the first case AssignBpaValues is called to compute the basic probability
assignment based on the method in Sect. 3.2. This case applies to the alert nodes,
e.g., node 1-5 in Fig. 1. In the second case the node has only one parent so the
translation function is called. The third case for combination is done by first
translating implicitly into the node and then combine.
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Algorithm 2. Compute the belief of a node

1: function CoMPUTENODEBELIEF(Node)

2:

9:
10:
11:

if Node has no parents then
ASSIGNBPAVALUES(Node)

else if Node has one parent p then
Node.belief «— TRANSLATE(p)
Node.sigSet «— p.sigSet

else if Node has multiple parents ps then
Node.belief «— COMBINE(ps)
Node.sigSet < union of ps.sigSet

end if

end function
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Abstract. We formally define three notions of soundness of an attack
tree w.r.t. the system it refers to: admissibility, consistency, and com-
pleteness. The system is modeled as a labeled transition system and the
attack is provided with semantics in terms of paths of the transition sys-
tem. We show complexity results on the three notions of soundness, and
the influence of the operators that are in the attack tree (see the recap
in Fig.5).

1 Introduction

Attack trees [4,5,8] are graphical representations of sets of attacks described in
a hierarchical manner. The hierarchy is reflected in the structure of the tree,
whose internal nodes represent abstract attack goals, and leaf nodes represent
atomic goals. Internal nodes of an attack tree have extra information, namely
the combinator (or operator) which expresses how the goal of the current node
decomposes into the combination of its children goals. Classic operators are the
“or” operator, the “sequential” operator, and the “and” operator.

Attack trees are a common tool used in risk analysis. The tree is used to
describe the attacks to which of a system is vulnerable. First, an attack tree is
constructed from a model of the system, and then it is analyzed for quantitative
results, like computing the likelihood of an attack. In this paper, we focus on the
qualitative part of attack trees, because our trees can be post-processed to take
likelihood into account by adding weights to the leafs and propagating them.

There are different ways of defining the semantics of attack trees, which
unsurprisingly strongly relies on the semantics of the set of operators. In [5], the
focus is put on quantitative interpretations: atomic goals are given values in a
domain, then, via the operators’ semantics, a bottom-up computation yields a
value at the (root node of the) tree that corresponds to, e.g. the length of the
shortest attack, the highest probability to achieve an attack, etc.

In this contribution, we propose various semantics of attack trees that enable
us to interpret them in the context of the system they refer to. This is strongly
motivated by the nature of the top-down manual design of attack trees by prac-
titioners, where the leaves a tree are iteratively refined into a combination of
sub-nodes. To our knowledge, this issue has not been addressed in the literature.

In our setting, the system the tree refers to is a standard transition system
S labeled over a set of atomic propositions Prop. It represents the operational

© Springer International Publishing AG 2016
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semantics of some domain, as done in [7] for military buildings, or in [6] for socio-
technical systems, leaving aside quantitative aspects (likelihood, time, cost). We
describe the attack goal of a node by an expression ¢ » ~, where ¢, € Prop
are atomic propositions that denote respectively the preconditions and post-
conditions of the goal (in the spirit of automated planning approaches). A natural
system-based denotational path semantics is given to an attack goal ¢» -y, where
¢ and -y are atomic propositions: the denoted set of paths is composed of all
paths of the fixed transition system S that start from a state labeled by the
precondition ¢ and that end in a state labeled by the post-condition . The
internal nodes of an attack tree carry an attack goal, together with the operator
that describes its decomposition into sub-goals!, hence a pair (v » v, 0); we call
such an internal node a O-node. In this paper, we let O range over {@, S, ®}
for the “or”, the “sequential and”, and the “and” operators respectively. In our
graphical representations of attack trees (see Fig. 2 on Page 8), the shapes of the
nodes emphasize the operator associated to the node: @-nodes are represented
with an ellipse, ©-nodes are represented with pentagons pointing rightwards,
and ®-nodes are represented with rectangles, and the leaf nodes are represented
with rounded corners rectangles.

In this paper, we address the soundness of an attack tree in terms of the
relationship between an internal node (¢ »«y,0) and the list of its children nodes
(11, 01)5e - -5 (Lo » Y, Oy) (from left to right). To do so, we compare? the set
of paths denoted by ¢ » v with the O-combination of the sets of paths denoted
by the children ¢; » ~; of that node.

We introduce three notions of soundness for attack trees w.r.t. the transition
system: admissibility, consistency, and completeness. Admissibility captures the
approach where practitioners decompose the main goal into a structured goal
some of whom achievements are also an achievements of the main goal. Consis-
tency expresses that the proposed decomposition of the main goal guarantees its
achievement. Finally, the intent of completeness is a complete characterization
of the main goal in terms of the proposed decomposition.

The three notions of soundness are defined by comparing the two sets of
paths denoted by ¢ » v and the O-combination of the sets of paths denoted by
the children. We use the three natural comparisons between sets, namely equal-
ity, inclusion, and non-empty intersection. Each notion of soundness entails a
decision problem, of whether a given attack tree is sound or not w.r.t. the tran-
sition system it refers to. We establish complexity results on the three notions of
soundness, and with regards to the kinds of operators that are allowed. We show
that the admissibility problem is in P for the operators @ and ©, but becomes
NP-complete for the operator ®. Next, we prove that the consistency problem
is in P for the operators @, co-NP? for the operator & and co-NP-complete
for the operator ®. The completeness problem is in CO-NP for the operators

! The children of the internal node.

2 See further for details.

3 That is the negative instances of the decision problem, i.e. those for which the answer
is “no”, are fully characterized by a polynomial-time non-deterministic algorithm.
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©@ and &, and in IT¥ for the operator ®. Recall that IT is a complexity class
of the polynomial hierarchy [10] composed of languages whose complement is in
XP or equivalently NP that are languages captured by a non-determinitsic
polynomial-time algorithm which can call a non-determinitsic polynomial-time
subroutine?.

The paper is organized as follows: In Sect. 2, we present preliminaries notions
used in the rest of the paper. In Sect. 3, we present transitions systems and formal
attack goals, and their paths properties. In Sect. 4, we present attack trees, and
the three soundness completeness, consistency and admissibility. In Sect. 5, we
show the complexity results for the three soundness. In Sect. 6, we discuss the
complexity result and conjecture about the harness that are not established yet.

2 Preliminaries

For i,j € N, we denote by [¢; j] the interval of integers ranging over {i,i+1,...j}.
For a finite set X, 2% is the powerset of X, |X| is the cardinal of X, X* is the
set of finite sequences of elements of X. For a binary relation R over a set X
(R C X x X), we say that R is left-total if for every x € X, there exists y € X
such that (z,y) € R. We denote by R* the reflexive and transitive closure of R.
We recall that P is the class of decision problems® that can be solved by a
deterministic polynomial-time algorithm, that NP is the class of decision prob-
lems that can be solved by a non-deterministic polynomial-time algorithm, and
CcO-NP is the class of decision problems whose complementary problem® is in
NP. As a typical representative of the class NP, we will consider the classical
decision problem SAT (We refer to [3] for these classic classes of complexity). We
end with the class IT¥ of the polynomial hierarchy which captures the decision
problems whose negative instances can be characterized by a non-determinitsic
polynomial-time algorithm which can call a non-determinitsic polynomial-time
subroutine”. We refer to [10] for details on the polynomial hierarchy.

3 Transition Systems and Attack Goals

In this section, we define transition systems, attack goals and the semantics of
the operators {©@, S, ®}.

3.1 Transition Systems

Without loss of generality and for technical reasons, transition systems will carry
no actions, but instead have all the necessary information in their states via a
labeling by atomic propositions.

4 Which is classically called an oracle.
® The answer is “Yes/No”.

5 The answers “Yes/No” are swapped.
7 Which is classically called an oracle.
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Definition 1 (Transition system). Let Prop be a finite set of atomic propo-
sitions. A transition system over Prop is a tuple S = (S, —, \), where:

- S is the finite set of states,
— —C S8 is the transition relation of the system (which is assumed left-total®),
— X : Prop — 29 is the valuation function.

The size of S s |S| = |S| + |—|.

Let S C S be a sub-set of states. We let Post(S") be the set of states that
are reachable from some state of S, and Pre5(S’) be the set of states that are
co-reachable from some state of S’. Formally,

— Posts(S') :=={s € S| there is some s’ € S" such that s —* s}
— Preg(S') :={s e S| there is some s’ € S such that s —* s'}.

We will use the following running example:

Ezample 1. The set Prop, is {i, f,mi,ma,e1,es, preq, posty, prey, posty, pree,
post.}, the system S, = (Se, —¢, Ae) Over Prop,, whose graphical representa-
tion is given in Fig. 1, is formally defined by: S, = {s;}o<i<s, where the tran-
sition relation —. contains the pairs (80781) (s0,82), (81,83), (82,83), (s2,54),
(83,85), (S4,86) Flnally, we let A\o(2) = Ae(preq) = {so}, Ae(f) = {55,586},
Ae(my) = Ae(post,) = {51, S2}, Ae(mg) = {83,54} Aeler) = {ss5}, Ae(e2) = {s6},
Ae(prey) = {s1,52,84}, Ae(posty) = {s3,86}, Ae(prec) = {s2,s3}, and finally,
Ae(post.) = {s4,85}. Also, Preg({s3}) = {s0,51,52,53} and Posts ({s1,56}) =
{51,583, 85,86}

{my, posty, pre.}

S1 @

@

{m,, post,, prep} {f, e1, post.}
{i, pres} {my, post,, pre;}
{m1, post,, prey, pre.} {f, e2, posty}

Fig. 1. Example of transition system: S..

Definition 2 (Paths, elementary paths, factors). A path in a system S is
a sequence of states of the form ™ = sgs1 ..., € S* for some n € N, such that
for all k € [0;n — 1], (8g, Sk+1) €—. An elementary path is a path sgsi ... s,
where Yk £ k' € [0;n], s, # s (i.e. there is no cycles). We denote by II1(S) the

8 This is classic and it is no loss of generality.
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set of paths of S. Let m = sg...s, € II(S). The length of w is n, written |r|. A
factor of m is a sequence s;...s; for some 0 <1 < j < n, that will be denoted
by m[i; j]. The interval [i; j] is an anchoring interval, or simply an anchoring, of
the factor w[i; j| in .

We define two notions of decomposition of a path that reflect the refinement
of attack tree nodes. Both are based on factors.

Definition 3 (Sequential and parallel decomposition of paths). Let
m € II(S) be a path. A sequence . .... 7 € II(S)* of paths is a sequential
decomposition of m if each 7; is a factor of m, there are ordered anchorings of
the m;’s that form a tiling of the interval [0;|x|]. In particular, this anchoring of
w1 is of the form [0;y] and this anchoring of my is of the form [z;|x|]. A set of
paths {m1,...,m} is a parallel decomposition of w € II(S) if each 7; is a factor
of m, and the anchorings of the paths m; cover the interval [0; |r|]. Notice that a
sequential decomposition is a particular case of a parallel decomposition.

Ezxample 2. Consider the path m = sps2s385 in system S.. The sequence
(s082)-(s28385) is a sequential decomposition of m, where the anchoring of sgs2 is
(unique and equal to) [0; 1] and the unique anchoring of s2s3s5 is [1;3]. The set
{28385, S0s283} is a parallel decomposition of 7, where the anchoring of sps3s5
is [1; 3] and the anchoring of sgsas3 is [0;2].

For the Sects. 3.2 and 4, we fix a transition system & = (5, —, A).

3.2 Attack Goals

Attack goals are descibed in a formal language meant to specify attack objectives
that internal nodes of an attack tree naturally carry.

Definition 4 (Attack goals). An attack goal is an expression of the form
either v » 7y, or a term of the form (11 » 1) O (L2 ¥2) O ... (tn » Yn), where
0€{@,5,0} and t,t1,...Lny Y, V1, Vn € Prop.

Ezample 3. iw» f, (i» e1) @ (i » e2) and (i » post,) S (post, » post.) S (post. »
posty,) are attack goals, whose interpretation will be given in system S. (see
Example4).

Definition 5 (Path semantics of attack goals). The path semantics of an
attack goal t, written [t]gath, is a subset of II(S) defined by: if t = v » vy, then

[t » ’y}gath ={r € I(S) | 7(0) € A(t) and w(|7|) € A(7)}, otherwise we
distinguish between the different operators O € {@, S, ®} according to:

ath ath
[(11 % 71) @ (12 72) On - (1 )5 = | [ea ]2
1<i<n
(1% 1) G (12 72) G - (1 > )2 = {7 | there is a

decomposition m1.7y . . ..7, of mand each m; € [1; » %]gath

[(L1 2 71) O (L2 72) Oy . (L > %)]ﬁ“th ={m | thereisa
parallel decomposition{my,ma, ..., 7, }of mand each 7; € [1; » ’yi]gath
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Ezxample 4. The attack goals of Example 3 have the following path semantics:

i[5 = {r € II(S.) | m(0)=so and 7(|7| € {s5,56}}
[(i > e1) @2 (i 62)]?:“1 =[in f]f%fth
[( » post,) ©3 (post, » post.) O3 (post. » postb)]g‘:th = {50525456 }

4 Attack Trees

We define the set of attack trees over a set Prop of atomic propositions. In
addition to the classical branching structure with nodes typed by a operator, we
decorate each node with an attack goal ¢ » 7y, representing the goal of the node.
This goal is a formalization of the what is usually written in plain text in nodes
of classical attack trees.

@i» f.0)
@i » my, ®) (ma2 > f,©)
(i » m,0) (my » my,©) (my » e1,0) (my » e,0)

Fig. 2. The attack tree Te.

An attack tree (over Prop) is either a leaf of the form (¢, ®) or a composed
tree of the form (¢wy,0) (T, Ts ... Ty,), where ¢,y € Prop, 0 € {©,5,0}, n > 2,
and Ty, Ts, 1..., T, are attack trees. We call the main node of a non-leaf tree a
O-node whenever it is of the form (¢ » v, 0)(T1,T5 ... Ty).

The path semantics of an attack tree (v » v,0)(T1,T%...Ty,) is naturally
defined as [¢ » 42" C I1(S).

Example 5. Figure2 represents the attack tree T, over Prop, where:

T. = (i» £,0)((i » ma,®)((i » m1,®), (M1 » ma, ®)),
(mg > f, @)((mg » e, @), (mg » eo, @)))

Another example of such an attack tree, using an ®-node, is (i» f, ®)(pre, »
postq, ®), (prep » posty, ®), (pre. » post., ®)).
For example, the path semantics of T, is IT(S.).

We now turn to more subtle semantics for attack trees that enable one to
relate a tree with its subtrees, or equivalently an internal node with its chil-
dren, in terms of their path semantics, hence the explicit reference to the system



On the Soundness of Attack Trees 31

the attack tree refers to. Our proposal yields three notions of soundness with
different interpretations from the point of view of the practitioner. The admissi-
bility property means that there is an attack that achieves the parent node goal
that decomposes with the ones of its children nodes (Eq. (1)). The consistency
property means that the combined children node goals yield attacks (if any) that
achieve the parent node goal (Eq. (2)). Finally, the completeness property means
that the combined children node goals fully characterize the parent node goal

(Eq. (3))-

r» y),0

//\

u >y L >y tn » Y

Fig. 3. A picture for Eq. (1).

Definition 6 (Admissibility). The attack tree (¢ » v, 0)(T1,T2...Ty) is
admissible w.r.t. S either when O is ®, or when Eq. (1) holds, where v; » ;
is the local attack goal of the tree T; (1 <i<n), see Fig. 3.

[Ty (e )2 N w8 £ 0 (1)

Then, the consistency and completeness properties are variants of the admis-
sibility property by replacing Eq. (1) of Definition 6 by Egs. (3) and (2), respec-
tively:

[Ofy (6w )8 S o 7)™ (2)
[ O e 3)

Remark 1. As Eq. (3) entails Eq. (2), completeness implies consistency.

For example, the attack tree (i» f,3)((i» ma, ®), (M2 » f,®)) is admissible
w.r.t. Se, whereas (pre, » post,, @)((prey, » posty, ®), (pre. » post.,®)) is not
admissible w.r.t. S..

5 The Decision Problems ADM(O), CONS(O), COMP(O)

We formalize the decision problems ADM(O),CONS(QO),COMP(O) respectively
related to the notions of admissibility, consistency and completeness, as intro-
duced in Sect. 4. Let O C {©, S, ®}.

Definition 7. The Admissibility problem ADM(Q) is defined by:

Input: 6 = ty1171 ... tpYn @ sequence of atomic propositions, O € O and S a
labeled transition system over {i,7v,t1,...,Vn}-

Output: “yes” if (t»v,0)((t1 »71,0), (L2 Y2, ®) ... (L » Y, ®)) s admissible
w.r.tS, “no” otherwise.
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We similarly define the decisions problems CONS(O) and COMP(O) in a natural
way, respectively called the the consistency problem and the completeness prob-
lem. In the sequel, we will denote by (6,0, S) an instance of ADM(Q), CONS(O),
or COMP(Q), where unless explicitly stated, 6 expands into tye171 ... tnYn-

5.1 Preliminary Complexity Results

We first establish useful technical propositions that will be used to prove our
main results on complexity for the three decision problems ADM(Q), CONS(Q),
and COMP(O).

Proposition 1. Given a path m, deciding whether or not m € [(v » 'y)]gath can

be done in constant time. As a consequence, deciding whether or not m € [ @1,

(e > ’yi)]gath is also in P.

Proof. For € [(v» ’y)]gath, the only thing to check is 7(0) € A(¢) and 7 (|7|) €

A(y). For m € [ @, (1t » v)]2*™", it amount to finding i € [1;n] such that

ath
™€ (i > yi) )2

The next two propositions address operators & and ®.

Proposition 2. Given a path 7, deciding whether or not w € [SI; (1% ;)2

is i P.

Proof. 1t sufficient to check that 7(0) € A(¢1) and 7 (|7]) € A(y) and to make a
traversal of 7 that seeks for a sequence of positions 0 < y3 < -+ < yp_1 < |7
such that m(y;) € A7) N A(tiy1), for all ¢ € [1;n — 1].

Proposition 3. Given a path 7, deciding whether or not m € [®F—; (i >w)]§“th
is in NP.

Proof. To verify that 7w € [®F_; (1; » 7;)]%*™" the algorithm guesses n factors of
m, or equivalently their sequence of anchorings [z1;v1],. .., [Tn;yn] and checks
they provide a parallel decomposition of 7. Namely, the algorithm needs to check
the following properties: (i) z; < y;, for each ¢ € [1;n], (ii) for each x € [0;]|x|],
there exists i € [1;n] such that z; < z < y;, and (iii) 7[z;;v:] € [1i» %]gath, that
is m(z;) € A(v;) and 7(y;) € A(7;). By the above propositions, it is clear that
Properties (i)-(iii) can be verified in polynomial time.

The two following propositions are helpful in order to bound the size of the
paths we will need to guess in our non-deterministic algorithms of Sect. 5.2.

Proposition 4. Let O € {®,5,@}. If [0, (t; » ’yi)]gath # (), then it contains
a path of size smaller than |S| (2n — 1). In particular, if n =1, we can consider
a path of length at most |S|, that is an elementary path.
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Proof. We first consider the case where 0 = ®. Let m € [®]; (t; > ’yi)]gath, and

let [z1;y1],- .-, [xn; yn] be the anchoring intervals of a parallel decomposition of
m, such that, for each 1 < i < n, w(x;) € Au;) and 7(y;) € A(7v:). Let 2 <
-++ < 29, be the resulting of sorting the elements x1,y; ..., Zn, yn. Notice that
the sequence 7[z1; za], m[22; 23], . . . , T[22n—1; 22s] 18 & sequential decomposition of
7. For 1 <i < 2n—1, let 7, be the elementary path obtained from [z;; z;11] by
removing the cycles. We have |7} < |S|. The path 7’ obtained by the sequential
composition of the paths 7} is in [ ®}_; (:; » %‘)]gath since the states 7 (z;) for
i € [1;2n] are still in 7’ and in the same order. Then we have |7'| < |S|(2n — 1),
which concludes. Regarding the case where O = S, it is enough to remark that
sequential decomposition is a particular parallel decomposition, and the case
0O = @ is obvious as even elementary paths suffice.

Finally, the following more involved Proposition5 plays a key role in our
proofs of Sect.5.2. The rest of this section is dedicated to its proof.

Proposition 5. Given a S = (S, —, ) be a labeled transition system over a set
of propositions Prop D {t,7,t1,...,Yn}, it is NP-complete to decide whether or

not [ Oy (1 » 1)/ 2" # 0.

NP-easyness: We describe the non-deterministic algorithm that decides [ ®]—;
(¢ > %)]g&th # (). This algorithm guesses a path 7 such that |7| < |S|(2n — 1)
(which is sufficient by Proposition4), and n anchoring intervals [z1;141], ...,
[0 yn] in 7. It then verifies that m € [®7_, (¢; » 7)]%*", which can be done in
polynomial time in (6, ®,S) according to Propositions 3.

NP-hardness: We reduce the classical NP-complete problem SAT [2] to [ ®]—,
(¢ > vi)]gath # (). An input of SAT is a set of clauses % over a set of proposi-
tions {pi,...p,}, where each clause C' € ¥ is a set of literals, that is either
a proposition p; or its negation —p;. The SAT problem amounts to answer-
ing whether or not ¥ is satisfiable, that is whether or not there is a valua-
tion of the propositions pi,...p, that makes all clauses of € true. Now, let
& = {C1,...Cp} over propositions {p1,...p,} be an input of the SAT prob-

lem; classically, |€| = Z |C|, where |%| is the number of literals that occur

Ce¥
in C. We introduce two fresh propositions ¢y and 7y and we define a labeled

transition system S¢ = (S¢, —¢, Aw) over Prop, = {t0,70,C1,...Cn}: In the
following, we let ¢; denote either p; or —p;, for every i € {1,...,r}. We let
S¢ = {s»t} U {ei}izl ----- ry T {(EiagiJrl) | (S [1;T - 1]} U {(8,81), (ér,t)},
and A¢ : Prop — 29 is such that A¢(19) = {s}, A¢(v0) = {t}, and A\ (¢) = C
whenever /¢ is a literal of C. An example of S¢ is depicted in Fig. 4. Notice that
by definition, |S¢| is polynomial in |€|.

In the following, let call a full path a path of S¢ from s to ¢t. The system
S¢ is designed in such a way that any full path visits either p; or —p; in an
exclusive manner, for each ¢ = 1,...,r. A full path 7 therefore unambiguously
denotes a valuation v, of the propositions. Reciprocally, every valuation v of the
propositions yields a unique full path m,. Additionally, a full path 7 visits a state
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G, (&}

Fig. 4. S¢ with € = {C1,C2} where C1 =pV ~gand Co =pVr

labeled by C € € if, and only if, v, makes the clause C true. Moreover, a full
path 7 visits a state labeled by C'if, and only if there is an anchoring [0; j] such
that 7(j) is labeled by C. The following concludes the proof of Proposition 5.

It remains to establish that [(co » Y0) ® (Lo » C1) B ... O (1o » Cry )]path #0
if, and only if, € is satisfiable.

Assume [(to»70) O (Lo C1) D ... O (to» Cpy )]pa::h # (), with some element 7.
The constraint (co » 7o) enforces 7 to be a full path. Now, the other constraints
enforce 7 to visits a state labeled by C for each C' € &, entailing the valuation
v, making all clauses true, so that % is a positive input of SAT. It is not hard
to see that conversely, if € is a positive instance of SAT, then any full path w,,
for some valuation v that makes all clauses true, is in [(c0 » Y0) @ (0 » C1) ®

. © (10 % Cr) 2

5.2 Complexity Results for ADM(O), CONS(O), COMP(O)
We successively study admissibility, consistency, and completeness.
Theorem 1. ADM({®,S}) is in P.

Proof. We consider the syntactic fragment of the temporal logic CTL [1] defined
by: ::=p| o Ap | ©Ve | Cp, where the only temporal operator is the “eventu-
ally” one denoted by <. The semantics of a formula ¢ of this fragment is given
with regard to a labeled transition system & = (S, —, A), and is noted [¢]s. We
define [¢]s C S by induction over ¢: [pls = A(p), [¢ A ¢'ls = [¢ls N [¢']s,
[eV¢'ls = [¢ls Ul¢ls, and [Op]s = Pres([¢]s), where Pref is defined in
Sect. 3.1, that is s € [O¢]s iff there is a path in S starting from s that visits a
state in [p]s. In the following we simply write [¢] instead of [¢]s. Note that
computing [¢] takes polynomial time in the size of S and ¢, see for example [9].

Let of := \/ Lt AL AO(y Ay;). Then [@7 (¢ » ’yJ]path New fy]gath # 0 if,
i=1

and only if, [[go@ﬂ 4 0. Indeed, if [@; (e » %)% N [ w42 £ 0, then let 7

be a path in [ @, (¢; » %)]path [ > 'y]path Then 7 go from ¢ to v and there

is an i € [1;n] such that © go from ¢; to 7;. Hence, m go from ¢ A ¢; to v A ;.

So m € [t A v AO(y A;)], which implies 7 € [¢%], which is then non-empty.
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Conversely, if [p2] # 0, then let 7 € [¢?]. Then there is an i € [1;7n] such that
m start from ¢; and eventually reaches ¢ Ay A~;. Let 7’ be the prefix of = that is
a path that go from 1; to ¢ Ay A We have 7/ € [@7_; (1% )] 2" N [ A2
so it is not empty.

Let @9@ = AL AO (V1 ALAO (YA .. <>(7n/\7))) Then [}~ l(Lzbm)]gathﬁ[Lb
AR £ () if, and only if, [p2] # 0 Indeed, if [SF (1% )% N [ew A2 £ 0,
then let 7 be a path in [S7_, (s » )%™ N 1w 4]%*". Then 7 go from ¢ to v and
is the concatenation of paths m; going from ¢; to ~;. Hence, 7 visits successively
LA, y1 Alg, ...and v, Ay. So T € [[go%]], which is then non-empty. Conversely,
if [p%] # 0, then let m € [p&]. Then  visits successively ¢ A t1, 71 A t2, ...and
’yn A 7. Let 7’ be the Ereﬁx of w that is a path that stops in 7, A . We have

e [of (1w )" V]Wth so it is not empty.

i

Theorem 2. ADM({®}) is NP-complete.

Proof. First, we show that ADM(®) is NP-easy by giving a non-deterministic
polynomial algorithm. According to Proposition 5, we can guess 7 € [®]— (¢; »
%)}path with a non-deterministic polynomial algorithm. Then, we check that
7€ [(t» 7)]Z*" by checking that 7(0) € A(z) and 7 (|7|) € A(y) which is done in
constant time, so the algorithm is still polynomial.

Second, we prove the NP-hardness by reducing the problem of
Proposition5. Let § = (S,—, ) be a labeled transition system over propo-
sitions {¢1,71,---,tn,n}. We extend S to &’ = (S,—,)\) over propositions
{61,715+ s tny Y} U {e, 7}, with X (v) = XN (y) = S and N coincide with A over
{1,715 s tny T} As [(L» 7)]271“1 = II(S’), deciding ADM(®) for S amounts to

)]path

deciding if [ ®]—; (¢ » Vi # (. So the reduction is straightforward, and

ADM(®) is NP—hard
Theorem 3. CONS({®@}) is in P.

Proof. We show a polynomial algorithm deciding CONS({@}).

Let (0,©,S) be an input of CONS({®}). First, we compute the sets of state
S(ti) = M) NVPres(A(v:)) and S(vi) = A(vi) N Posts(A(¢;)) for @ € [1;n|, which
is done in polynomial time by reachability analysis. S(¢;) (resp. S(7;)) represents
the states of A(¢;) (resp. A(7;)) from which there is a path to a state of A(v;)
(resp. from a state of A(¢;)). Then, check that for every i € [1;n], S(1;) C A(v)
and S(v;) € A(7)-

Theorem 4. CONS({&}) is in cO-NP.

Proof. We describe a polynomial non-deterministic algorithm deciding that an
input (0,5,8) of CONS({S}) is a negative instance’. Let (6,5,S) be an input
of CONS({&}). We first guess a path m, and check that 7w € [ S, (1; » ;)%™
the latter can be done by guessing anchoring intervals [z;; 2;11] of a sequential
decomposition of 7, and by checking that for all i € [1;n], x; < z;41, that

9 Namely that the answer is “no”.
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m(x;) € A(v;) and 7w(x;41) € A(7y;), and that 3 = 0 and z,41 = |7|. It then
remains to verify that = & [(v » 'y)]gath. Clearly all these checks can be done in

polynomial time.
Theorem 5. CONS({®}) is cO-NP-complete.

Proof. A negative instance (6, ®,S) of CONS({®}) is characterized by the exis-
tence of a path € [ @7, (i » )%™\ [(e» )5

Deciding that (0,®,S) is a negative instance of CONS({®}) is NP-easy:
According to Proposition5, we can guess m € [ ®F; (1; » *yi)]gath with a
non-deterministic polynomial-time algorithm. It then remains to check that
7 & [(t» 7)]%*™" which takes constant time, by Proposition 1.

Deciding that (6, ®,S) is a negative instance of CONS({®}) is NP-hard: we
reduce the problem of deciding [ ®; (¢; » v;)]%*™ # 0 (which is NP-complete
by Proposition5). Assume & = (S,—,)\) is a labeled transition system over
{t1,7, - stn,Vn}. We extend A to the set of propositions {¢1,71, ..., tn, Ynt U
{t,7}, by letting A\(¢) = A(y) = 0. By construction [(¢ » 7)]‘5"?“1 = 0, so that
(6, ®, S) is a negative instance of CONS({®}) is equivalent to [}, (1;» 7)) %" #
(), and we are done.

We now turn to the decision problems COMP(Q). By Remark 1, a negative
instance of CONS(O) necessarily is a negative instance of COMP(O).

Theorem 6. COMP({®, ®}) is in cO-NP.

Proof. Let (0,0, S) be a negative instance of COMP({@, &}). There are two cases:
(a) (6,0,8) is a negative instance of CONS(O), or (b) there exists a path = €
[(w )R\ [0, (15 » )] 2™, The algorithm guesses whether it is Case (a)
or Case (b). For Case (a) we use the polynomial-time algorithm in the proof
of Theorem 3 (recall P C co-NP) for operator @ and Theorem 4 for operator
S. Regarding Case (b), we use a variant of the proof of Theorem 4: the non-
deterministic polynomial-time algorithm that decides whether or not an input

(9,0, S) is a negative instance of COMP({@, ©}) consists in guessing a path 7, and

in checking that 7 € [(t»~)]2™\ [0, (s» ;)%™ First, the algorithm guesses
an elementary path 7 and checks 7 € [(c» 7)]%*"; this check is done in constant

time by Proposition 1. Next, the algorithm checks that 7 ¢ [ O, (5 » ;)2

If O = @, we apply Proposition 1, otherwise 0 = © and we use Proposition 2.

The last theorem shows that the operator ® is much harder to handle.

Theorem 7. COMP(®) is in I15 .

Proof. We show that negative instances of COMP(®) can be captured by a
polynomial-time non-deterministic algorithm that can call a polynomial-time
non-deterministic subroutine. Let (0, ®,S) be a negative instance of COMP(®).
Similarly to the case of Theorem 6, there are two possible cases: (a) (6,®,S)

is a negative instance of CONS(®), or (b) there exists m € [(v » ’y)}gath \ [,
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(i » 'yi)]gath. Therefore, the algorithm first non-deterministically guesses if it

is Case (a) or Case (b). For Case (a), it behaves like the polynomial-time non-
deterministic algorithm proposed for CONS(®) in the proof of Theorem 5. Regard-

ing Case (b), the algorithm guesses a path'® 7 and checks that = € [(v» 'y)]gath.

Then, the algorithm checks that 7 ¢ [ @, (t; » 7:)]%™. The latter can be

performed by running an NP oracle according to Proposition 3. Hence the set of
negative instances of COMP(®) is in NPN"| that is X4, which concludes.

ADM CONS COMP
(W) P P co-NP
S P co-NP co-NP
@® |NP-complete|co-NP-complete| 715

Fig. 5. Complexities of the three decision problems for each operator

6 Discussion

In this paper, we have developed a path semantics for attack trees that yields
three natural notions of soundness of attack trees: admissibility, consistency,
and completeness. Each soundness notion conveys a meaning of the practioners’
manual decomposition of internal nodes. We then have explored the complexity
of the associated decision problems.

As can be seen, operators @ and © are much simpler than the very classic
operator @® widely used in the literature; actually the complexity ITJ estab-
lished here for the decision problem COMP(®) is not proved to be optimal, but we
conjecture it is. This rather high complexity is not surprising since the notion
of parallel decomposition underlying the operational semantics of operator ®
features complex combinatorics. As future work, we wish to complete the com-
plexity classes picture by showing that, e.g. all complexities are tight.
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Abstract. Motivated by the practical importance of security assess-
ment, researchers have developed numerous model-based methodologies.
However, the diversity of different methodologies and tool designs makes
it challenging to compare their respective strengths or integrate their
results. To make it more conducive to incorporate them for practical
assessment tasks, we believe it is critical to establish a common foun-
dation of security assessment inputs to support different methodologies
and tools. As the initial effort, this paper presents an open repository
of Common Input Scenarios for Security Assessment (CISSA) for differ-
ent model-based security assessment tools. By proposing a CISSA design
framework and constructing six initial scenarios based on real-world inci-
dents, we experimentally show how CISSA can provide new insights and
concrete reference points to both security practitioners and tool develop-
ers. We have hosted CISSA on a publicly available website, and envision
that community effort in building CISSA would significantly advance the
scientific and practical values of model-based security assessment.

1 Introduction

Understanding the system security level against cyber threats is critical for
today’s IT or IT-enabled infrastructures, such as cloud storage and comput-
ing services, banking and payment systems, or cyber-physical systems such as
smart grids. Industries today adopt various compliance standards (e.g., NERC
CIP [17]) to exercise best practices in assessing their systems’ level of security.
Despite promoting security in general, such compliance practices often do not
sufficiently capture the inherent relationships among different security-related
aspects of the studied infrastructure. To provide deeper insight and more rig-
orous assessment into the overall security of the infrastructures, recent years
have witnessed a surge of interest in model-based security assessment. In model-
based security assessment, the various aspects of systems, threats, security
measures, and more importantly, how these aspects interact with each other,
© Springer International Publishing AG 2016

B. Kordy et al. (Eds.): GraMSec 2016, LNCS 9987, pp. 39-61, 2016.
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are abstracted into models, often through rigorously defined formalisms. Such
methodologies then use these underlying models to evaluate — often quantita-
tively via some forms of calculi — the security level of a system against specified
cyber threats [11,24,29].

Notable examples of model-based security assessment methodologies include
the attack tree [25] and its enhancements (e.g., Boolean logic Driven Markov
Process [23] and Attack-Defense Tree [10]), the attack graph [15,21] and its
embodiments (e.g., [18,26]), Unified Modeling Language (UML)-based for-
malisms (e.g., Cyber Security Modeling Language [27]), and Petri-net based
formalisms (e.g., ADversary Vlew Security Evaluation [14]). By applying tech-
niques from this impressive range of methodologies, security practitioners could
potentially assess the security of their systems in a systematic, rigorous, and
holistic manner.

However, these methodologies manifest great diversity in selecting the infor-
mation on system details and adversaries that are used as input, in representing
and processing them (i.e., the formalisms, the calculi, the tool designs etc.), as
well as in the aspects of security assessment (e.g., security metrics) they produce
as output [29]. It is therefore difficult to understand their different strengths,
compare their results, or integrate them in meaningful ways to present a mul-
tifaceted assessment of the systems. We have faced these challenges developing
our own model-based security assessment methodology [5,30], and we believe
that industry practitioners seeking to adopt security modeling tools face similar
dilemmas in vetting and selecting methodologies.

In this paper, we propose the creation of a set of common input scenar-
ios for security assessment (CISSA). As illustrated in Fig.1, a rich and open
repository of input scenarios would allow both the security practitioners and the
research community to better compare different methodologies, which in turn
will drive future research and development to address various real-world security
assessment needs and challenges. Our work propose a specification framework
for defining CISSA and provide six sample scenarios based on real-world attacks
against various IT and IT-enabled systems. We use the samples to analyze the
real-world security assessment needs and evaluate three representative model-
based assessment tools accordingly. Ultimately, we hope that our initial efforts

Diverse outputs:

Technical Operational Organizational
security metrics | | security metrics || security metrics

Diverse methodologies:
trees graphs

Common Input Scenarios for
Security Assessment (CISSA)

Fig. 1. Security assessment process driven by CISSA
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will encourage the community to build a rich repository of CISSA for many dif-
ferent systems. Such a repository can be referenced by both tool developers and
security practitioners in discussing the needs and features of security assessment.
In summary, we make the following contributions in this paper:

— We propose a first blueprint design (CISSA) for specifying common input
scenarios for different model-based security assessment tools.

— To initiate the effort, we construct six CISSA cases based on real-world inci-
dents, which are hosted on a public CISSA repository [1]. Such example cases
show the feasibility of building a diverse, realistic, structured, and precise set
of CISSA based on the framework.

— We experimentally demonstrate the potential usefulness of CISSA by lever-
aging the six CISSA cases to investigate real-world needs of security assess-
ment. We test three representative model-based security assessment tools and
demonstrate that CISSA could provide new insights and concrete references
to both security practitioners and tool developers.

In the rest of the paper, we propose our vision in Sect. 2, and then describe
the elements of common input scenarios in Sect. 3. Section4 reports our expe-
riences in constructing six input scenarios, while a more detailed illustration of
representing a real-world incident with the CISSA specification is presented in
Appendix A. Section 5 uses the CISSA cases to investigate the security assess-
ment needs and to test three representative security assessment tools. We discuss
the roadmap for further developing CISSA in Sect.6 and conclude in Sect. 7.

2 CISSA Vision

Devising effective means to assess the security of complex systems is one of the
greatest challenges in security research [24,29], but the reward for solving this
problem is profound. The complexity and diversity inherent in today’s enter-
prise IT systems and critical infrastructures make it important to leverage a
model-based approach to answer various security assessment questions, e.g.: How
to design more resilient systems? How to make better investment decisions for
different defense mechanisms? To realize the potential of model-based security
assessment methodologies, we believe it is necessary to establish widely-accepted
open input scenarios. Such common input scenarios will allow researchers and
industry stakeholders to better understand the data required for security mod-
eling, as well as the trade-offs and blind spots inherent in picking a tool or
formalism for their system.

Such common input scenarios need to include the inputs required by security
assessment tools based on individual real-world incidents or synthesized attacks.
For example, many tools require the network topology and system configurations,
as well as attacker capabilities as inputs to their assessment. Other tools may
require specific additional information as inputs, such as the details of security
countermeasures, and the estimated response time when suspicious behaviors are
detected. The common input scenarios should be as comprehensive as possible
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in covering the general classes of inputs required by major security assessment
tools. We envision that:

— For security practitioners, a common set of realistic CISSA cases will help them
to conduct meaningful comparison and integration among different methodolo-
gies. Since assessment methods are validated on common, openly available, and
realistic inputs, CISSA can help reduce the barrier to adoption for industry.

— For researchers and tool developers, a realistic, rich, and heterogeneous set of
CISSA will make it clear which aspects to model and the important questions
to answer. This will help guide the further development of the methodologies
to meet real needs.

— An open repository of CISSA cases will allow any interested parties to con-
tribute new cases that will be available to all. Overall, it will benefit the entire
community in tool development and security assessment with greater interac-
tions, synergy, and standard practices, enabling bigger impact of model-based
security assessment for real-world systems.

Of course, realizing this vision will require a concerted effort on the part
of the security assessment community. By proposing a blueprint for designing
CISSA cases, hosting an open CISSA repository with six input scenarios as initial
examples, we demonstrate the potential feasibility and usefulness of CISSA,
hence encouraging other security researchers and tool developers to share the
input scenarios they use.

3 Elements of an Input Scenario

Conceptually, an input scenario collects together the representation of the impor-
tant security-relevant information surrounding a system. For industry practition-
ers, the scenario representation should allow them to describe the system they
are responsible for and to express their concerns and design choices in cybersecu-
rity aspects. For academics, the scenario representation will provide a reasonable
proxy for real systems, to enable research and development of security assessment
tools and methodologies.

We make the following choices when designing an initial blueprint for the
CISSA framework:

— Methodology-independent: We decouple the raw security-related inputs/facts
from any specific assessment methodologies. This would ensure that the input
scenarios could be generally applied to study different security methodologies.

— Comprehensive: We want CISSA to cover different types of information, as
long as it is security-related, i.e., the inclusion of the information can poten-
tially affect the security assessment results. For example, CISSA should not
only include the details of the attack, but elaborate on the corresponding
environment (e.g., certain network topology, or specific software configuration)
where the attack can occur as well. Because CISSA is not bound to any specific
methodology, it is easy to define and further extend the framework to cover
additional aspects that arise from the different kinds of systems/scenarios.
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— Realistic: To help bridge the gap between academia and industry security
practitioners, we believe CISSA should be made as realistic as possible. One
way to ensure a high level of realism is to require CISSA to be based on real-
world systems and security incidents. We expect the development of a CISSA
uses the best information one can gather from the field.

— Precise: The information included in CISSA should represent different aspects
of information in a structured way, and strive for minimum ambiguity, so as
to enable objective and fair comparison among the tools.

Note that there are implicit conflicts and trade-offs among the different goals
we strive for, e.g., in order to make a case cover comprehensive information,
one often needs to include unstructured data; on the other hand, to ensure
that the included information is grounded, realistic, and precise, one often needs
to exclude hypothetical or unsubstantiated information, hence sacrificing the
comprehensiveness.

Guided by these design considerations, we propose a schema for represent-
ing security-relevant information. While there may be other ways to represent
such information, we believe that our schema (Fig.2) could serve as a valuable
starting point for the CISSA concept. Existing resources such as security incident
reports are largely unstructured, and it would require human comprehension and
transformation before they can be used by security assessment tools. Databases
such as NVD provide machine-readable format, but only include information on
the specifics of the vulnerabilities, which is far from sufficient for most model-
based security assessment tools. In the design of CISSA, the identified elements
and their attributes provide a unified way to represent information on both the
target system and the security incident.

As shown in Fig. 2, a common input scenario for security assessment consists
of seven core elements, which are interrelated: system components and network,
data, users, and operations, as well as undesirable outcomes, attacks, and coun-
termeasures. We represent these elements as a 7-tuple:

<N,D,U,0,X,A,C >.

We now elaborate on the characteristics of each element.

System Subject to X
o Undesirable Achieve
) Outcomes
Operations
U N Exploit A
Users Components Attacks

& Network /
D C Mitigate

Data Apply to | Countermeasures

Fig. 2. Elements in an input scenario and their relationships
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System Descriptions. The first four elements describe the system (in its gen-
eral definition) to be assessed: N specifies the components and network, includ-
ing both the specifications of the devices in the system (hardware/software,
their configurations, and vulnerabilities), as well as the inter-connections and
trust among them; D specifies the data that the system produces, stores, or con-
sumes; U specifies the key users that interact with the system; and O specifies the
routine operations that the system carries out. These four elements are tightly
coupled: take the operation O as an example, it is d