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Preface

The present volume contains the proceedings of the Third International Workshop on
Graphical Models for Security (GraMSec 2016). The workshop was held in Lisbon,
Portugal, on June 27, 2016, in conjunction with the 29th IEEE Computer Security
Foundations Symposium (CSF 2016).

Using graphical security models to represent and analyze the security of systems has
gained increasing attention over the last two decades. Graphical models are used to
capture different security facets and address a range of challenges, including security
assessment, automated defensing, secure services composition, security policy vali-
dation and verification. GraMSec brings together academic researchers as well as
industry and government practitioners designing and employing visual models for
security. It creates a platform for the exchange of ideas, discussion, inspiration, col-
laboration, and dissemination of results in the field of graphical security modeling.
It contributes to the development of well-founded graphical security models, efficient
algorithms for their analysis, as well as methodologies for their practical usage.

GraMSec 2016 received 23 submissions, which represents a growth of 77 %
compared with the first and the second edition of the workshop. The papers are
co-authored by experts from 18 countries. Each article was reviewed by at least three
reviewers. Based on their quality and contribution to the field, nine papers were
accepted for presentation at the workshop and inclusion in the final proceedings. The
technical program was complemented by an invited talk by Xinming Ou, entitled
“Bottom-Up Approach to Applying Graphical Models in Security Analysis.” The
corresponding invited paper has been included in these proceedings.

We would like to express our deepest appreciation to all the people who volunteered
their time and energy to make this year’s workshop happen. In particular, we thank the
authors for submitting their manuscripts to the workshop and all the attendees for
contributing to the workshop discussions. We are also grateful to the members of the
Program Committee and the external reviewers for their work in evaluating and dis-
cussing the submissions, and their commitment to meeting the strict deadlines. A very
special recognition is dedicated to Pedro Adão — the General Chair of CSF 2016 —
for his invaluable support in organizing GraMSec 2016.

Our thanks also go to the European Commission’s Seventh Framework Programme
(EU FP7 grant no. 318003 TREsPASS), the University of Luxembourg, the Fonds
National de la Recherche Luxembourg (FNR-CORE grant ADT2P), and INSA Rennes
for their partial sponsorship of the workshop, as well as KTH Royal Institute of
Technology and the IRISA institute for their in kind contribution to GraMSec 2016.



Finally, we would like to acknowledge Springer for accepting to publish these
proceedings as an LNCS volume as well as the EasyChair team for providing a very
practical tool supporting the workshop’s management and the preparation of these
proceedings.

August 2016 Barbara Kordy
Mathias Ekstedt

Dong Seong Kim
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A Bottom-Up Approach to Applying Graphical
Models in Security Analysis

Xinming Ou(B)

University of South Florida, Tampa, USA
xou@usf.edu

Abstract. Graphical models have emerged as a widely adopted approach
to conducting security analysis for computer and network systems. The
power of graphical models lies in two aspects: the graph structure can
be used to capture correlations among security events, and the quantita-
tive reasoning over the graph structure can render useful triaging deci-
sions when dealing with the inherent uncertainty in security events. In
this work we leverage these powers afforded by graphical model in secu-
rity analysis. Given that the analyst is the intended user of the model, the
most difficult task for research in this area is to understand the real world
constraints under which security analysts must operate with. Those con-
straints dictate what parameters are realistically obtainable to use in the
designed graphical models, and what type of reasoning results can be use-
ful to analysts. We present how we use this bottom-up approach to design
customized graphical models for enterprise network intrusion analysis. In
this work, we had to design specific graph generation algorithms based on
the concrete security problems at hands, and customized reasoning algo-
rithms to use the graphical model to yield useful tools for analysts.

1 Introduction

Intrusion analysis is the process of examining real-time events such as IDS alerts
and audit logs to identify and confirm successful attacks and attack attempts
into computer systems. The IDS sensors that we have to rely on for this purpose
often suffer from a large false positive rate. For example, we run the well-known
open-source IDS system Snort on our departmental network containing just a
couple of hundreds machines and Snort produces hundreds of thousands of alerts
every day, most of which happen to be false alarms. The reason for this are
well-known: to prevent false negatives, i.e. detection misses from overly specific
attack signatures, the signatures that are loaded in the IDS are often as general
as possible, so that an activity with even a remote possibility of indicating an
attack will trigger an alert. It then becomes the responsibility of a human analyst
monitoring the IDS system to distinguish the true alarms from the enormous
number of false ones. How to deal with the overwhelming prevalence of false
positives is the primary challenge in making IDS sensors useful, as pointed out
by Axelsson [3] more than 10 years ago.

This article was based on a previously published work [38].

c© Springer International Publishing AG 2016
B. Kordy et al. (Eds.): GraMSec 2016, LNCS 9987, pp. 1–24, 2016.
DOI: 10.1007/978-3-319-46263-9 1



2 X. Ou

Due to the lack of effective techniques to handle the false-positive problem, it
is common among practitioners to altogether disable IDS signatures that tend to
trigger large number of false positives. At one site we visited, the security analysts
did not use the standard Snort rule sets at all, but rather resorted to secret, i.e.
unpublished, attack signatures that are highly specific to their experience and
environment and with known (small) false negative rates. We were told by the
security analysts that secret signatures can only help capture some “low-hanging
fruit”, and that many attacks are likely missed due to the disabled signatures.
Turning off IDS signatures is like turning a blind eye to attack possibilities, which
we believe is a drastic consequence of the lack of effective solution techniques
to prioritize investigations of alerts from IDS and audit logs. But, lacking any
other significant distinguishing feature between the alerts, practitioners see no
alternative.

1.1 Quantifying Uncertainty

Current IDS systems do not distinguish nor help distinguish the alarms that
are highly likely to be true from those that have only a small chance of being
true. By treating each suspected or imputed attack as has been suggested in
earlier literature (see, e.g. [5] and references therein), merely as a hypothesis
whose validity needs to be established, an effective approach to dealing with
false positives can be formulated. The task then is to quantify the uncertainty in
the hypotheses ascribed to IDS alerts by correlating multiple-point observations
that are relevant to each alert. Given a list of intrusion hypotheses sorted by
confidence and annotated by the evidential support for each hypothesis, it would
be much easier for a human analyst to decide which hypotheses deserve further
investigation. Since most network intrusions involve multiple actions, if we can
relate observations from multiple events, a true successful attack will likely have
multiple pieces of corroborating evidence, thus increasing the certainty of the
attack hypothesis. Correspondingly, a false positive in one sensor is likely to
have less corroborating evidence, thus the particular attack hypothesis will have
a low score and be ignored. The key question then is how to calculate a difficult
formulation based on both the reasoning structure in which it is derived and the
quality of the evidence that supports it.

There have been past attempts [34,36] at achieving this. Bayesian analysis [14]
has been the standard and there have been some approaches using alternative the-
ories such as Dempster-Shafer theory [23]. However, a number of fundamental
issues in applying these mathematical theories to intrusion analysis remain to
be addressed. For Bayesian analysis, it seems difficult to establish adequate prior
probabilities such as the probability of a specific attack occurring in the environ-
ment or determine the conditional probabilities between system events in a robust
manner. For Dempster-Shafer theory, it is not clear how to model sensor quality,
where to obtain such parameters, and how to handle non-independent sources of
evidence.
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1.2 Our Contributions

Dempster-Shafer theory has unique advantages in handling uncertainty in intru-
sion analysis, namely, the ability to deal with the lack of prior probabilities for
all (singleton) events and the ability to combine beliefs from multiple sources of
evidence [6,7,34]. In this paper we present an extended Dempster-Shafer model
that addresses the fundamental issues in applying DS in intrusion analysis, as
mentioned in Sect. 1.1. We have implemented our method on top of our IDS alert
correlation tool SnIPS [15,21], so that one can calculate a numeric confidence
score for each derived hypothesis and prioritize the results based on the scores.
Our contributions are:

Using “unknown” to capture sensor quality (see Sect. 3.2). Dempster-
Shafer theory allows specifying a weight on “unknown” (or “to be determined”)
rather than specifying precise probabilities for every possible event in the space.
We use this ability to represent lack of knowledge to capture the intuitive notion
of IDS sensor quality (which usually turns out to be imprecisely described),
without suffering the non-intuitive effects of aggregation or forced classification
that have been observed by researchers [34].

Accounting for lack of independence among alerts (see Sect. 3.3). A long-
standing assumption in DS theory is that multiple pieces of evidence are inde-
pendent, which is a property that is hard to confirm in practice. This is especially
a problem in IDS alerts since many alerts are triggered by the same or similar
signatures. In combining these alerts to derive the overall belief on the attack sta-
tus, it is important that such non-independence be appropriately accounted for
so that the result is not skewed by over-counting. To the best of our knowledge,
our method is the first in applying sound non-independent DS belief combination
in IDS alerts.

Efficient calculation (see Appendix B). A direct application of DS formu-
las can result in exponential (in the number of hypotheses – in our case, IP
addresses) blow-up of belief combinations. We adopt a “translate-then-combine”
approach so that beliefs are propagated in a correlation graph and only combined
at join points in the graph. This produces an efficient algorithm with worst-case
running time quadratic in the number of IP addresses in the input alerts.

Linking to practical IDS tools (see Sect. 4). We have implemented our app-
roach for the open-source IDS system Snort, and applied it on a production
network and a number of data sets. We rigorously evaluate our method by sep-
arating the tuning phase from the testing phase, so that we do not fit our tool’s
parameters to work well with just one particular data set. Our evaluation sug-
gests that the scores computed from our algorithm provide a useful ranking
for the correlated alerts based on the correlations’ trustworthiness. We have
validated the results both anecdotally as well as with data set ground truths
whenever available.

Robustness of solution (see Sect. 4.4). We emphasize that our final goal is
to sort alerts by confidence, hence we are interested in the relative order of
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hypotheses by confidence, not in establishing absolute certainties about attacks.
Our application of DS requires the assignment of numeric values (constants) to
certainty levels {unlikely, possible, likely, probable} but there is no help in the
theory itself as to the manner of assignment. In a standard application of DS,
the numeric scores may affect the final conclusions. However, since we are inter-
ested only in relative belief strengths assigned to the hypotheses, our approach
is robust to small changes in these constants. Given any two related hypotheses,
the absolute belief values are irrelevant as long as the relative strengths of belief
remain unchanged when we slightly vary the numeric constants. Our experimen-
tal analysis shows that this is indeed true; the classifier’s operating characteristic
does not change when the constants’ values are varied within a small range.

2 Background on Dempster-Shafer Theory

A common example to illustrate the difference between probability theory and
Dempster-Shafer theory is that if we toss a coin with an unknown bias, proba-
bility theory will still assign 50 % for Heads and 50 % for Tails by the principle
of indifference ([11], p. 167), which states that all states of unknown probabil-
ity should be assigned equal probability. Dempster-Shafer theory, on the other
hand, handles this by assigning 0 % belief to {Head} and {Tail} and assigning
100 % belief to the set {Head, Tail}, meaning “either Head or Tail”. By allowing
us to assign 100 % belief to {Head, Tail} if warranted, DS does not force us to
pick a probability when there is no basis to assign it. More generally, the DS
approach allows for three kinds of answers: Yes, No, or Don’t know. The last
option of allowing ignorance makes a big difference in evidential reasoning. See
[13], Chap. 2 for a discussion of the relative merits of DS belief theory. In DS
theory, a set of disjoint hypotheses of interest, e.g., {attack, no-attack}, is called
a frame of discernment. The basic probability assignment, (bpa) function, also
called the mass distribution function (mθ), distributes the belief over the power
set of the frame of discernment and is defined as:

mθ : 2θ → [0, 1] (1)

mθ({}) = 0 and
∑

x⊆θ

mθ(x) = 1 (2)

Definition 1. Let θ be a frame of discernment and mθ a bpa function. The
belief function is defined as

Bel(x) =
∑

y⊆x

mθ(y), for x ⊆ θ (3)

2.1 Dempster’s Rule of Combination

The goal of combination is to fuse the evidences for a hypothesis from multi-
ple independent sources and calculate an overall belief for the hypothesis [22].
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Figure 1 illustrates this idea, where alert2, alert3 are two alerts triggered by
independent IDS sensors. Independence means that knowing whether one sensor
is trustworthy or not will not influence the likelihood for the other being trust-
worthy or not. A common assumption is that if two sensors are independent if
they operate on completely unrelated features to determine attack possibilities.
Both alerts could indicate that machine ip2 is doing malicious probing of ip3.
The question is how we combine the beliefs from the two evidence sources. In
general we have the following rule for fusing known as the Dempster’s rule of
combination.

m1,2(h) =
1

1 − K
·

∑

h1∩h2=h

m1(h1) · m2(h2) (4)

K =
∑

h1∩h2={}
m1(h1) · m2(h2) (5)

Where hi’s and h’s are subsets of H, hypotheses in the frame of discernment.
K is a normalization factor that is a measure of the conflict between the two
sources of evidence, which is equivalent to the measure of the cases of empty
intersection between the hi’s. The combined mass function must be normalized
by 1 − K when conflict exists [22,23].

The multiplication in formula 4 is only valid when the two evidence sources
are independent [22]. This is often not the case in practice and especially so in
IDS alerts since many alerts are generated by the same or related signatures. In
the next section we introduce our extension of the DS model to account for non-
independent evidence sources, so that the DS model can be correctly applied in
intrusion analysis.

8 : probeOtherMachine(ip2, ip4)7 : probeOtherMachine(ip2, ip3)

9 : compromised(ip2)

sensor2sensor1 sensor4sensor3

2 : alert21 : alert1 4 : alert43 : alert3

6 : sendExploit(ip1, ip2)

5 : alert5

Fig. 1. Automatically generated correlation graph segment from SnIPS
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3 Applying Dempster Shafer on Intrusion Analysis

3.1 The SnIPS Framework

We have built our DS-based hypothesis prioritization model on top of the
SnIPS [15,21] intrusion analysis system from our past work. SnIPS can work
with the open-source Snort IDS system. It maps a triggered IDS alert to a
hypothesis such as “machine compromised.” It also maps the trustworthiness
of the hypothesis to a discrete tag such as “possible” and “likely”. Our past
work [21] showed that building the mappings does not require much additional
work, since the information already exists in an ad-hoc manner in the Snort
rule repository. We have developed a heuristic algorithm to automatically infer
the mappings by analyzing the Snort rules’ documentation. After the alerts are
mapped to hypotheses, the hypotheses are reasoned about efficiently based on
a succinct internal reasoning model, and an alert correlation graph is built that
shows the possible links among the hypotheses and alerts [29].

Example of SnIPS Output. Figure 1 shows a sample segment of alert correlation
graph automatically generated by SnIPS. “compromised”, “sendExploit”, and
“probeOtherMachine” are predicates used to describe various attack hypotheses.
The arrows’ direction in the graph is aligned with inference. Five groups of alerts
alert1 − alert5, are triggered by four different sensors. The notion of a sensor in
our model is a bit different than other previous works. In our model we are not
using the notion of physical snort sensor (i.e. Network card), or IDS in general.
Instead, we are using each snort signature as a virtual sensor supporting the
correlation graph. This is under the assumption that snort alerts will be triggered
independently. For example in Fig. 1 sensor1 could be snort rule 1:1390. This
rule is usually trigged when an attempt is made to execute shellcode on a host [1].
The sensor nodes (the ones in dotted squares) are not part of the graph and are
added here for clarity. alert1 is mapped to the fact that host ip1 sent an exploit
to ip2; both alert2 and alert3 are mapped to the fact that ip2 did malicious
probing to ip3, and so on. The rationale for this correlation graph is that after
ip1 sends an exploit to ip2, ip2 may be compromised (node 9). Once the attacker
has compromised ip2, he can send malicious probing from there. Thus these
alerts are all potentially correlated in the same underlying attack sequence. For
representational simplicity, time information is not shown in the example graph
(but is part of the reasoning process). In this example, alert2 −alert5 happened
after alert1. The arrow of the arcs indicate that all of alert1 − alert5 support
the hypothesis that ip2 was compromised.

3.2 Metrics for Sensor Quality

False positive and negative rates have been the standard metrics for characteriz-
ing an IDS sensor’s quality. In this work we do not subscribe to such probabilis-
tic metrics. Rather, we will use the “unknown feature” provided by DS theory to
capture the case when we do not trust a sensor. The nature of unknown matches
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naturally with how humans interpret IDS alerts. When an alert is fired, we will
have some degree (say 10 %) of belief that an attack is going on. If we were to
use a probability interpretation, we would have to say that we have 90 % belief
that the attack is not going on. One may find it counter-intuitive to positively
assert that an attack is not going on based on seeing an alert. In probability the-
ory, this is addressed by comparing the probability of an attack before and after
seeing an alert. However, this would require the specification of the prior proba-
bility of attacks, which is hard if not impossible to obtain. By using DS, we can
assign 0.1 belief to “attack”({true}), 0 belief to “no-attack” ({false}), and 0.9
belief to “Don’t know” ({true, false}). This is a more intuitive quantitative inter-
pretation of what an IDS alert provides: it gives some (small) belief that there is
an attack but it does not give us any belief for “no-attack.” Just because the sen-
sor is not trustworthy, does not mean an attack is not going on. There may still
be attack that is completely outside the scope of the sensor’s detection. Assigning
the remaining weight to the “unknown” state indicates that we acknowledge the
open-ended nature of attacks, which captures the reality of cyber security.

Using this method, we only need a single metric δ to characterize a sensor’s
quality. δ corresponds to the bpa of {true} for the corresponding hypothesis when
the sensor fires. Then 1−δ will be assigned to {true, false} (denoted θ thereafter).
In the example of Fig. 1, if we have δ = 0.1 as sensor1’s trustworthiness, alert1 will
translate to 0.1 mass distribution for sendExploit(ip1, ip2) being true. 0.9 weight
will be distributed to sendExploit(ip1, ip2) being θ (“unknown”). We view δ as a
metric solely dependent on the sensor’s trustworthiness. We also assume for sim-
plicity that shared IDS sensors only give us positive correlation, i.e. the trigger-
ing of one alert cannot cause us to decrease our belief in another correlated alert
but only to increase it or stay the same. IDS signatures often come with ad-hoc
natural-language descriptions that indicate the quality of the signature in terms of
how likely the triggered alerts will be false positives, using qualitative terms such
as “possible” and “likely.” SnIPS extracts such terms from the Snort rule docu-
mentation and assigns a corresponding “certainty tag” for alerts generated by the
rule [21]. In practice such tags can be provided easily by the rule writer if they are
standardized, since they are already used in an informal way. We use the SnIPS
certainty tags to map to the quantitative quality metrics for alerts generated by
the various Snort rules (sensors), in the scheme shown in Table 1.

Table 1. Mapping discrete certainty tags to quantitative sensor quality metrics

Measures Metrics Measures Metrics

Unlikely → 0.01 Possible → 0.33

Likely → 0.66 Probable → 0.99

The intuition is that humans typically cannot distinguish small differences
in numerical parameters, thus a few discrete levels are sufficient to express the
various beliefs one can ascribe to an alert. Through our analysis of the Snort
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rules’ documentation, we found that four levels are sufficient to differentiate the
various belief levels reflected by the rule writers about an alert’s trustworthi-
ness [21]. There is a low belief 0.01 and a high belief 0.99. The other two levels
are evenly divided in the middle space. Another consequence of this model of
sensor quality is that there will be no conflict among alerts. When we do not
trust an alert, we just say “Don’t know” whether the hypothesis is true, rather
than assert that the hypothesis is false. This will not contradict the fact that we
may trust another alert which derives the same hypothesis to be true. Thus we
always have K = 0 in the combination formula (4).

3.3 Extending DS Combination Rule for Non-independent Evidence

Correlated alerts could provide falsely elevated belief that an attack is going on,
since multiple pieces of evidence point to the same conclusion. A key question
is whether these multiple pieces come from independent sources. Through our
research we discovered that we cannot ignore or avoid the overlapping nature of
evidence. Often times we see multiple alerts in correlation supporting a hypothe-
sis, but these alerts are triggered by the same or similar IDS signatures leading to
an unjustifiably high level of confidence if we apply the standard Dempster rule
of combination. In reality these multiple alerts should not significantly increase
our belief in the hypothesis.

There may also be “partial non-independence” between two sources of evi-
dence. In Fig. 1, the main hypothesis is node 9: “whether machine ip2 is com-
promised.” This hypothesis is supported by the alert node 1–5. Node 1, an
alert triggered by sensor1, has evidence supporting node 6. Node 2 and 3 have
evidence supporting node 7, so we combine the belief in 2 and 3 into node 7.
Similarly, the belief in 4 and 5 will be combined into 8. Then we need to combine
the belief in 6, 7, and 8 to answer the final question in node 9. Now we cannot
ignore the fact that these nodes have overlapping evidence. Specifically, both
node 7 and 8 partially rely upon alerts triggered by sensor3. As a result, node 7
and 8 are not completely independent and we cannot simply apply the Dempster
rule of combination (Sect. 2.1).

There are a number of approaches in the DS literature to account for such
dependence [10,24–26]. We adopt an idea proposed originally by Shafer [26]
which interprets combined bpa’s as joint probabilities. Based on this, we develop
a set of customized combination formulas to correctly account for the dependence
in evidence when combining beliefs in the alert correlation graph.

The Customized Combination Formula. The reason Dempster’s rule of
combination has to assume evidence sources are independent is that joint mass
function is calculated through multiplication (formula 4). For non-independent
evidence, multiplication of bpa’s from two sources is no longer valid [26]. Instead
of m1(h1) · m2(h2), we use ψ[h1, h2] to denote the joint bpa of the two sources.
We obtain the following new formula for combining possibly non-independent
evidence.
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m1,2(h) =
∑

h1∩h2=h

ψ[h1, h2] (6)

One implication that arises from the application domain, namely intrusion analy-
sis, is that the only hi’s of interest are {true} (referred to as t hereafter)
and {true, false} (referred to as θ hereafter). The following equations specify
ψ[h1, h2],

ψ[t, t] = r1 · m1(t) + (1 − r1) · m1(t) · m2(t) (7)
ψ[t, θ] = (1 − r1) · m1(t) · m2(θ) (8)
ψ[θ, t] = (1 − r2) · m1(θ) · m2(t) (9)
ψ[θ, θ] = r1 · m2(θ) + (1 − r1) · m1(θ) · m2(θ) (10)

The values r1 and r2 are overlapping factors which measure the amount of
overlapping in the evidence from the two sources. Intuitively, r1 is the portion
of m1(t) that relies upon overlapping evidence from m2(t). The assumption is
that the amount of overlapping between two pieces of evidence will affect their
inter-dependence.

Estimation of the Overlapping Factors. We provide semantics for the over-
lapping factors using the probability theory. The detailed formulation can be
found in Appendix A. The definition of ri requires knowing certain conditional
probabilities (Pr[wi±1|wi] in the Appendix), which is not available. Thus we
need to estimate ri just as we need to estimate the bpa’s for the sensors. In
SnIPS each alert node is associated with a set of IDS signatures that triggered
it. We view these signatures as different sensors (Fig. 1). In our analysis the iden-
tities of the sensors that triggered an alert are propagated to the hypotheses it
supports and further along the graph to other hypotheses it implies. Thus each
hypothesis such as h1 or h2 is associated with the set of sensors whose alerts
support it. Each sensor s has a quality metric δs as discussed in Sect. 3.2. Let
R1 and R2 be the two sensor sets associated with the hypothesis h1 and h2 to
be combined using formula 6, and R = R1 ∩ R2. We use formulas 11 or 12 to
estimate the overlapping between h1 and h2.

r1 =

∑

s∈R

δs

∑

s∈R1

δs

, r2 = r1 · α , α ≤ 1, (11)

r2 =

∑

s∈R

δs

∑

s∈R2

δs

, r1 = r2 · α−1, α > 1, (12)

where α is defined in (A1) and can be computed as:

α =
m1(t) · (1 − m2(t))
m2(t) · (1 − m1(t))

(13)
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That is, we gauge the overlapping between the two sources by dividing the
weight of the overlapping part by the total weight of each source, where the
weight is calculated as the sum of the sensor quality metrics. Depending on the
value of α, we estimate one of r1, r2 and compute the other using α. The above
estimation ensures that both r1 and r2 are within [0, 1]. Appendix A gives further
intuition behind the overlapping factor.

3.4 Belief Calculation Algorithm

Typically the alert correlation graph returned by SnIPS is not fully connected but
contains a number of correlation graph segments like the one shown in Fig. 1. The
algorithm in general takes a set of correlation graph segments and calculates the
belief value for each node on each graph. The graph segments are then sorted in
descending order based on the maximum belief values for the sink nodes. To cal-
culate the belief of the sink node, the algorithm propagates the quality metrics of
each alert in the graph. The propagation will use the translation relation between
the semantics of nodes. The algorithm applies the extended combination rule when
there are multiple arcs flowing into one node like node 9 in Fig. 1. IDS signature
identifications are propagated throughout the graph to be used in estimating the
overlapping factor using formulas 11 or 12. The complexity of this algorithm is
linear in the size of the graph. In the worst case the SnIPS-generated graph is
quadratic in the number of IP addresses in the alerts [29]. Appendix B has the
formal algorithm with its details.

3.5 An Illustrative Example

We use the example in Fig. 1 to show the belief calculation process. It starts
by computing the belief values for the source nodes alerts (node 1–5), each
of which is associated with the sensor (IDS signature) that triggered it as in
Sect. 3.2. Then the belief values will be propagated through the graph using the
semantics of the source node to the destination node using a set of predefined
translation (compatibility) tables. Combination will be needed when multiple
derivation paths lead to a single node. Let us take node 9 as an example, which
has three pieces of evidence flowing into it from node 6, 7, 8. All the parent
nodes 6, 7, 8’s belief values based on their perspective semantics are translated
into the bpa on node 9’s semantics (compromised(ip2)). The algorithm sorts the
three branches based on the translated belief values and combines the highest
belief pair. In the similar manner the combined branches are further combined
with the rest branches. Let us assume that node 7 and 8 are the first pair to
combine. Node 7’s belief value after translation is m1(t) = 0.68 and node 8’s
value is m2(t) = 0.6. First we need to estimate the correlation factors r1 and r2
using formulas (11) or (12). Let R1 and R2 be the two sensor sets for node 7 and
8. R1 = {sensor2, sensor3} and R2 = {sensor3, sensor4}. The quality metrics
for the sensors are δsensor2 = 0.2, δsensor3 = 0.6, and δsensor4 = 0.01. Using
formula 13, we have α = 1.42. After using formula 12, since α > 1, we have
r2 = 0.98, r1 = 0.69. Then after applying rules 7–10, we get Table 2.
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Table 2. Combination example

(h1,h2) ψ(h1, h2) h (h1,h2) ψ(h1, h2) h

(t,t) 0.596 {t} (t, θ) 0.084 {t}
(θ, t) 0.004 {t} (θ, θ) 0.316 {θ}

Finally, Bel({true}) = 0.68, calculated by summing up all the subsets of
{true} values. The final step is to combine this result with the belief from node
6, which will be in a similar manner. The sensor set associated with the combined
belief will be the union of the sensor sets from all branches.

3.6 A Note on Methodology

Absence of Evidence. Our current model just counts for the supporting evidence
when they are present. On the other hand, DS can handle the absence of evidence
as negative evidence by assigning weight to false in the computation table. Below
we discuss the reason why we did not include this functionality.

Besides the well-known poor priors problem in Bayesian inference, there is
a second challenge in real-world intrusion detection systems that needs to be
addressed as well, which is that we typically have a very poor understanding of
all the ways in which an attack occurs. IDS systems such as Snort are signature-
oriented in that they are designed to detect the occurrence of a specific event or
series of events that serve as an sensor for an underlying attack. By Bayesian
methodology we should be able to measure and use in predictive analysis both
the true positive and true negative rates of detection, when available. However,
because these rates are measured in the laboratory under different conditions
than the real environment traffic the claimed rates tend to be estimates of the
real rates whose quality is undetermined. From systems administrators’ experi-
ence we have learned that for signature-based systems true positive rates (i.e.
Prob(attack has occurred|alert has fired)) are usually close to accurate whereas
false negative rates (i.e. (Prob(no attack has occurred|alert has not fired) are
less so. The positive case is intuitive – the specificity of the signature in an
alert leads us to believe that the attack under question may have occurred. (Yet,
true positive rates are never 1 because multiple system behaviors, some of them
unknown to us, may satisfy the same signature leading to false positives.) For the
negative case, when a (possibly expected) signature event is not seen that may be
either because the attack has not occurred (a true negative) or because the attack
has occurred in an undetectable manner (a false negative). This is not symmetric
with the positive case because in the negative case we are modeling attack behav-
ior rather than system behavior. In keeping with our approach of making minimal
assumptions about attacks, our belief strength is currently built on the true pos-
itive rate alone. In future work we can consider the use of the true negative rate
for specific sensors that can reliably detect the absence of an attack. DS theory
can handle this type of negative evidence with the corresponding compatability
relations among positive and negative evidence defined. The computation formula
will also need to be extended to handle mixed positive/negative evidence.
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4 Experimental Results

We implemented the algorithms in Java, and have been applying the system on
our departmental network with about 200 servers and workstations (including
Windows, Linux, and Mac OS X). The Snort alert collection, correlation, and DS
algorithm application were all carried out on a Ubuntu server running a Linux
kernel version 2.6.32 with 16 GB of RAM on an eight-core Intel Xeon proces-
sor of CPU speed 3.16 GHz. So far we have not encountered any performance
bottleneck in our algorithm.

4.1 Evaluation Methodology

The objective of our evaluation is to examine whether the belief values calcu-
lated from our DS algorithm can help a security analyst to prioritize further
investigation. To that end, we assigned to an IDS alert the belief value which is
the highest belief of the hypotheses that supports. This can be easily calculated
from the alert correlation graph through linear traversal. If IDS alerts with high
belief values turn to be more likely true alerts than those with low belief values,
it is an indication of the effectiveness of our approach.

Moreover, to show that it is indeed the application of Dempster-Shafer theory
helps in alert prioritization, we compared the performance of our DS algorithm
against that of the following alternative methods:

1. Using sensor quality metrics only. In this method, we simply use the sensor
quality metrics assigned to each alert as described in Sect. 3.2 as an alert’s
belief value.

2. Using the maximum sensor-quality metric in a correlation graph as the belief
value for all alerts in the graph.

3. Using the belief values calculated from the standard DS rule of combination,
instead of from our customized DS.

All these methods assign a belief value to an IDS alert. A threshold value
was chosen. Alerts with belief values above the threshold will be classified as
true alerts, and those below the threshold will be classified as false alerts.

We used the truth files that included in the data set to determine which alerts
are actually true alerts and which are actually false alerts. Then we compared
this against the classification provided by the belief values. The key metrics in
the classifier’s performance are precision, recall (true positive), and false posi-
tive. As the belief-value threshold is changed, the classifier will obtain different
operating points in terms of true positive and false positive. We draw receiver
operating characteristic (ROC) curves for the four methods and compared their
performance. ROC curve is a standard way to compare performance of IDS sys-
tems [3]. It shows the relationship between the detection rate (true positive) and
false positive rate of a classifier.

precision =
# true alerts above threshold

# alerts above threshold
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recall (true positive) =
# true alerts above threshold

# total true alerts

false positive =
# false alerts above threshold

# total false alerts

4.2 The Rationale for Using Lincoln Lab Data-Set

The first source of data we used in our evaluation is Snort alerts from the CIS
departmental network at Kansas State University. Due to the lack of ground
truth in such data from the production network, we provide anecdotal experi-
ences on the effectiveness of our algorithm. In addition, we tested our proto-
type on the MIT Lincoln Lab DARPA intrusion detection evaluation data set.
Although the Lincoln Lab data set has been criticized in the literature [16,17], it
still one of small number of usable publicly available data sets for IDS research.
This is due to its well-documented ground truth and the existence of both back-
ground and attack traffic. We believe the limitation of the (LL) dataset will not
significantly affect the validity of our evaluation for the following reasons.

1. Most of the identified problems in the (LL) dataset would affect anomaly-
based detection [16] where one needs to use the data for both training and
testing purposes. These defects will not affect as much signature-based IDS
such as Snort, which we use as the underlying alert source.

2. Our reasoning model is built a priori from existing Snort rule repositories, and
calibrated on our departmental network, completely unrelated to the (LL) data.

3. The problem in (LL) dataset’s background traffic [17] makes it hard to make
claims on the performance of the tested system on real networks. This is espe-
cially the case since it is a very old data set now. For this reason we will mainly
use the dataset to compare performance. The relative performance of the var-
ious methods is likely not affected as much as the absolute performance, since
they may all benefit or suffer from the specific features of the data set.

4.3 Lincoln Lab DARPA Data-Set Results

DARPA 1998 and 1999 Training Data. We obtained the training data1

in packet capture (pcap) format for both the 1998 and 1999 DARPA Intrusion
Detection Evaluation program. We ran Snort on the packet capture data, ran
SnIPS on the alerts triggered by Snort, and ran our DS calculation algorithm as
well as the other three methods mentioned in Sect. 4.1 on the generated alerts
and correlation graphs. We created ground truth about alerts using the truth
files provided at the data set website. Each day has attacks targeted at specific
machines, as given in the truth files. We carefully went through each attack
described and checked against the alert database to pick out those alerts that
can be verified as true alerts. The rest of the alerts are false alerts. This ground
truth allows us to calculate the true positive and false positive of the various
classifiers and plot their corresponding ROC curves.
1 Only training data’s truth file is publicly available.
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Fig. 2. Lincoln lab 1998 ROC curves

In general the steeper and closer the ROC curve is to the left-up corner, the
better the classifier. A comparison of the ROC curves generated for both data
sets is shown in Figs. 2 and 3. From the curves it is clear that our customized
DS algorithm outperforms the other three alternative methods. Some operating
points of the other three methods come close to the customized DS algorithm
for the (LL 98) data, e.g. point B and C. But these points become much more
inferior for the (LL 99) data. Whereas our DS algorithm produces the most
optimal operating point consistently for both graphs (point A, corresponding to
belief threshold 0.9).

Fig. 3. Lincoln lab 1999 ROC curves
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4.4 Sensitivity Analysis

We also did experiments to test how the variation in the choice of sensor quality
metric values for the certainty tags affect our algorithm’s performance. We var-
ied the default mapping shown in Table 1 in four different ways, each of which
perturbs the numeric value by about 10 %, e.g. from 0.33 to 0.3. We compared
the results from all the four cases along with the default case in the ROC curves
for the (LL 99) data (Fig. 4). One can find that the five curves exactly overlap
with each other indicating that small perturbation in the values for the certainty
tags has virtually no effect at all on the performance of the classifier. We did the
same experiment for (LL 98) data and also obtained five overlapping curves.

Fig. 4. Lincoln lab 1999 sensitivity analysis’s ROC curves

4.5 Prioritization Effect

Our main objective of applying Dempster-Shafer theory is to use the relative
belief values to prioritize intrusion analysis. Figures 5 and 6 show how the pre-
cision and recall changes when the threshold decreases from 1 to 0 (note that
0 in the X axis corresponds to belief 1, and 1 corresponds to belief 0). When one
starts with alerts with high beliefs, the precision is high meaning more of the
effort is devoted to useful tasks. When the threshold decreases, the cumulative
precision decreases as well. This is a strong indication that the calculated belief
values can be used effectively to prioritize further investigation.

At the highest belief range (0 point at the X axis) the percentage of total
alerts captured is about 40 %, and the recall is about 80 %. This means that if
one only analyzes alerts with the highest belief (e.g., >0.9), it only includes 40 %
of all alerts whereas covers 80 % of all the true alerts. The recall curve is very flat
meaning that most of the attacks can be captured using a high threshold value.
This is certainly only the case for these two specific data sets, but nevertheless it
indicates the effectiveness of prioritization provided by the DS method. Without
it, one would have to look at twice as many alerts to achieve the same coverage.
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Fig. 5. Prioritizing effect in Lincoln lab 1998

Fig. 6. Prioritizing effect in Lincoln lab 1999

4.6 The Production Network Results

In our evaluation we had permission from the University IT Security team
to monitor the Snort alerts from the Computing and Information Sciences
departmental network. This process had little privacy concern because the
links between the machines’ IPs and the users were not given to us and Snort
only reveals limited payload data. All researchers involved in the experiments
had signed the University IT Personnel Ethics agreement, consistent with the
University policy.

Since it is hard to get ground truth in live systems, we presented the results
to the system administrator of our departmental network to get his feedback on
the tool’s effectiveness. Regarding the quantitative belief calculation, the sys-
tem administrator found that although the numbers themselves were hard to
interpret intuitively, the ranking would be useful in prioritizing further analysis.
He agreed that the higher-ranked correlations are indeed what he would like
to investigate further, compared with the lower-ranked ones. In most cases the
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investigation indicated false positive or turned out inconclusive. But the rank-
ing reduces the search scope for the system administrator which in real terms
may translate to many man-hours of intrusion analysis oversight by a human.
Certainly such anecdotal experiences cannot serve as validation of the method’s
effectiveness but real-world feedback is valuable in judging whether the tool is
likely to be useful in the future.

5 Related Work

Chen, et al. [7] described the general approach of applying standard DS theory
to combine multiple sensors’ reports for intrusion detection in ad-hoc networks.
Yu, et al. [34] extended Dempster-Shafer theory for alert fusion in the HPCN IDS
alert correlation systems [33]. They observed that direct application of Dempster-
Shafer theory in IDS alert fusion provides non-intuitive results and extended DS
to weight alerts based on their quality. Our approach is different in that we
directly capture sensor quality by assigning the remaining bpa to the unknown
case ({true, false}), instead of the {false} case. We feel that our approach better
captures the intuitive semantics provided by an IDS alert (Sect. 3.2). Neither
Chen nor Yu addresses non-independence among evidence sources, which we
believe is an important issue and have designed a customized DS combination
rule to handle (Sect. 3.3).

There have also been approaches for alert fusion and prioritization based on
decision theories. Barreno, et al. [4] introduce an optimal approach for combining
binary classifiers using the Neyman-Pearson lemma. Guofei, et al. [12] propose
an alert fusion technique based on likelihood ratio test (LRT). We would like
to investigate the possibility that these techniques could be applied in an IDS
alert correlation framework and compare the result with that of our DS-based
approach.

Ou, et al. proposed an empirical approach to handling uncertainty in intru-
sion analysis [21]. They proposed using discrete tags to capture alert uncertainty
in correlation analysis and a “proof-strengthening” technique to elevate confi-
dence in a hypothesis where there are multiple derivation paths pointing to the
same conclusion. The proof-strengthening rule is based on empirical experience
and the authors did not provide the rationale behind it. Our approach takes dis-
crete input metrics, but uses a quantitative combination method which provides
a finer-grained result that can be used to rank hypotheses. Our quantitative app-
roach has a well-established theoretical foundation, and can potentially provide
better prioritization.

There have also been work on using Bayesian Network in intrusion detec-
tion [2] and IDS alert correlation [18,36]. The advantage of applying DS as
opposed to Bayesian theory is that one does not need to know all the prior prob-
abilities of events which are often unavailable. Indeed, DS is one of the various
so-called non-traditional theories for uncertainty that generalize specific proba-
bilities to an interval of probability, which also include Belief Theory, Subjective
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Logic, and Possibility Theory. Some of these other approaches have been pro-
posed in IDS alert fusion [30]. According to [22] the DS Belief Function theory
is superior to the other theories because of

– the relatively high degree of theoretical development in DS theory,
– the aspect of Dempster-Shafer theory as a generalization of traditional prob-

ability theory, namely, where probabilities are assigned to sets of events as
opposed to mutually exclusive singletons events,

– the versatility of DS theory in combining different types of evidence from
multiple sources, and

– the large number of applications of DS theory in engineering in the past ten
years.

IDS alert correlation [8,9,19,20,27,31–33,35,37] has been extensively studied
in the literature. However, just because a correlation exists does not automat-
ically mean the associated alerts are high confidence. The correlation itself are
often “false correlations”. From our conversation with system administrators, it
is highly desirable that alert correlation tools prioritize their output based on
the likelihood of true attacks. Our work provides one possible approach to this
prioritization.

Denceux’s work [10] explicitly raises and addresses the question of non-
independent sources in DS theory. They point out that lack of independence
in evidence is a valid concern in many applications and propose a new rule of
combination called the “cautious rule” to handle this case. The cautious rule is
designed to be as general as possible and is hence very complex and unintuitive.
Our combination rule follows the general idea proposed by Shafer [26] and is
based on a simple probabilistic semantics. It could be that our rule can be con-
sidered a highly specialized case of the general cautious rule, appropriate to our
application.

Sun et al. [28] present an application of DS theory to the risk analysis of
information systems security. They present an evidential reasoning approach
that provides a rigorous, structured model to incorporate relevant risk factors,
related counter measures and their interrelationships when estimating informa-
tion system risk. Chen et al. [6] present an application of DS to the detection of
anomalies in a variety of systems such as worm detection in email and learning
in biological data. They show that by combining multiple (independent) signal
sources using belief values and the Dempster combination rule, it is possible
to achieve better results (characterized by rate of classification error) than by
using a single signal. They point out that the advantage of using DS theory over
Bayesian is that no a priori knowledge is required, making it potentially suit-
able for anomaly detection of previously unseen information whereas Bayesian
inference requires a priori knowledge and does not allow allocating probability
to ignorance.
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6 Future Work

We will continue to apply our system on more production systems for extended
periods of time, and gather data to further analyze its performance on real
systems nowadays. There are more types of information than IDS alerts that
could be incorporated into intrusion analysis; and Dempster-Shafer theory could
be useful to reason about a much wider variety of dependency among various
types of sensors, including non-monotonic dependencies. There are also other
aspects such as temporal relationship that could affect the dependency. We plan
to investigate along these directions when we gain more empirical experience of
the method’s effectiveness on production systems.

7 Conclusion

In this paper we presented a practical approach to prioritizing intrusion analysis
using an extended Dempster-Shafer theory. The proposed DS application can
correctly combine non-independent evidence commonly found in correlated IDS
alerts. We proposed a DS model for capturing sensor quality that corresponds to
the intuitive interpretation, and designed an algorithm for calculating belief val-
ues for hypotheses on an alert correlation graph. The main goal of this work is to
reduce the workload on the system administrator by picking out those intrusion
alerts that are most likely to be true and hence worthy of further investigation.
We conducted rigorous evaluation of our approach on both a production net-
work and two additional data sets. The results of evaluation strongly indicate
that the ranking provided by the DS belief value gives good and robust pri-
oritization on correlated alerts based on their likelihood of being true attacks.
We believe our proposed approach will provide valuable practical tools to assist
security analysts.
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A Semantics of the Overlapping Factors

Since we only have two non-zero bpa subsets: t and θ, in each hypothesis’s frame
of discernment, we use wi to denote the fact that we trust hi (hi = t) and w̄i

(negation of wi) to denote the fact that we do not trust hi (hi = θ). One may find
it strange that wi and w̄i appear to be not mutually exclusive, since θ includes
both t and f . This is exactly the unique way in which DS expresses disbelief
in a hypothesis – it differentiates clearly between not believing a hypothesis
and believing the negation of that hypothesis. When we trust a hypothesis, we
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believe its state is t and when we do not trust a hypothesis, we do not know
what its state is, hence θ. Interested readers are referred to Shafer’s discussion
on how to handle non-independent evidence using this interpretation [26]. The
semantics of overlapping factor can be defined as:

r1 =
Pr[w2|w1] − Pr[w2]

Pr[w̄2]
, r2 =

Pr[w1|w2] − Pr[w1]
Pr[w̄1]

Let us take r1 as an example to explain the semantics. If we condition on trusting
hypothesis h1, the probability that we also trust h2 is greater than or equal to its
absolute probability since shared IDS sensors only give us positive correlation.
The bigger the difference, the stronger influence trusting h1 has on trusting h2.
The extreme case is when Pr[w2|w1] = 1, which gives r1 = 1. Both r1 and r2
measure the dependence between w1 and w2, but from different directions.

Theorem A1

r2 = α · r1, where α =
Pr[w1] · Pr[w̄2]
Pr[w2] · Pr[w̄1]

(14)

Proof.

r1 · Pr[w̄2] · Pr[w1] = Pr[w1, w2] − Pr[w1] · Pr[w2]
r2 · Pr[w̄1] · Pr[w2] = Pr[w1, w2] − Pr[w1] · Pr[w2]

We then have

r1 · Pr[w̄2] · Pr[w1] = r2 · Pr[w̄1] · Pr[w2]

Theorem A2
ψ[h1, h2] = Pr[w1, w2]

Proof. Let us substitute ri’s into formulas (7)–(10). Let us also substitute the
following definitions:

mi(t) = Pr[wi] mi(θ) = Pr[w̄i]

knowing that:

Pr[w2|w1] =
Pr[w1, w2]

Pr[w1]

then substitute the above into the definition of r1, we get

r1 · Pr[w̄2] · Pr[w1] = Pr[w1, w2] − Pr[w1] · Pr[w2]

knowing that Pr[w̄2] = 1 − Pr[w2], then:

Pr[w1, w2] = r1 · Pr[w1] + (1 − r1) · Pr[w1] · Pr[w2]
= ψ[t, t]
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The importance of this theorem is that our way of calculating the joint bpa
ψ[h1, h2] is sound in that it gives a generalization of the joint probability dis-
tribution of the trustworthiness of two (potentially) dependent sources. This
also follows Shafer’s general guide on how to handle non-independent evidence
sources in DS [26], although Shafer did not provide the specific formulations.

B Belief Calculation Algorithm

The main algorithm is DsCorr (Algorithm 1). This function takes GraphSet
which is a set of correlation graph segments. It iterates on each graph, and
returns a set of the graph segments sorted by the belief of the sink node (or
highest sink node for multiple sinks) in descending order.

Algorithm 1. Rank graph segments by belief
1: function DsCorr(GraphSet)
2: for each Graph in GraphSet do
3: MakeAcyclic(Graph)
4: ProcessingQueue ← all the source nodes
5: while (ProcessingQueue is not empty) do
6: Node←ProcessingQueue.RemoveHead

7: ComputeNodeBelief(Node)
8: Node.visited ← true
9: for each c in Node.Children do

10: if all c’s parents are marked visited
11: AND c is not visited then
12: add c into ProcessingQueue
13: end if
14: end for
15: end while
16: record the highest belief value of sink nodes.
17: end for
18: return SortGraphSetbyBelief(GraphSet)
19: end function

Algorithm ComputeNodeBelief (Algorithm 2) takes a node and returns
the belief value of it. There are three cases to consider for the node: (1) it is
a source node; (2) it has only one parent node, (3) it has multiple parents.
In the first case AssignBpaValues is called to compute the basic probability
assignment based on the method in Sect. 3.2. This case applies to the alert nodes,
e.g., node 1–5 in Fig. 1. In the second case the node has only one parent so the
translation function is called. The third case for combination is done by first
translating implicitly into the node and then combine.
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Algorithm 2. Compute the belief of a node
1: function ComputeNodeBelief(Node)
2: if Node has no parents then
3: AssignBpaValues(Node)
4: else if Node has one parent p then
5: Node.belief ← Translate(p)
6: Node.sigSet ← p.sigSet
7: else if Node has multiple parents ps then
8: Node.belief ← Combine(ps)
9: Node.sigSet ← union of ps.sigSet

10: end if
11: end function
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Abstract. We formally define three notions of soundness of an attack
tree w.r.t. the system it refers to: admissibility, consistency, and com-
pleteness. The system is modeled as a labeled transition system and the
attack is provided with semantics in terms of paths of the transition sys-
tem. We show complexity results on the three notions of soundness, and
the influence of the operators that are in the attack tree (see the recap
in Fig. 5).

1 Introduction

Attack trees [4,5,8] are graphical representations of sets of attacks described in
a hierarchical manner. The hierarchy is reflected in the structure of the tree,
whose internal nodes represent abstract attack goals, and leaf nodes represent
atomic goals. Internal nodes of an attack tree have extra information, namely
the combinator (or operator) which expresses how the goal of the current node
decomposes into the combination of its children goals. Classic operators are the
“or” operator, the “sequential” operator, and the “and” operator.

Attack trees are a common tool used in risk analysis. The tree is used to
describe the attacks to which of a system is vulnerable. First, an attack tree is
constructed from a model of the system, and then it is analyzed for quantitative
results, like computing the likelihood of an attack. In this paper, we focus on the
qualitative part of attack trees, because our trees can be post-processed to take
likelihood into account by adding weights to the leafs and propagating them.

There are different ways of defining the semantics of attack trees, which
unsurprisingly strongly relies on the semantics of the set of operators. In [5], the
focus is put on quantitative interpretations: atomic goals are given values in a
domain, then, via the operators’ semantics, a bottom-up computation yields a
value at the (root node of the) tree that corresponds to, e.g. the length of the
shortest attack, the highest probability to achieve an attack, etc.

In this contribution, we propose various semantics of attack trees that enable
us to interpret them in the context of the system they refer to. This is strongly
motivated by the nature of the top-down manual design of attack trees by prac-
titioners, where the leaves a tree are iteratively refined into a combination of
sub-nodes. To our knowledge, this issue has not been addressed in the literature.

In our setting, the system the tree refers to is a standard transition system
S labeled over a set of atomic propositions Prop. It represents the operational

c© Springer International Publishing AG 2016
B. Kordy et al. (Eds.): GraMSec 2016, LNCS 9987, pp. 25–38, 2016.
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semantics of some domain, as done in [7] for military buildings, or in [6] for socio-
technical systems, leaving aside quantitative aspects (likelihood, time, cost). We
describe the attack goal of a node by an expression ι � γ, where ι, γ ∈ Prop
are atomic propositions that denote respectively the preconditions and post-
conditions of the goal (in the spirit of automated planning approaches). A natural
system-based denotational path semantics is given to an attack goal ι�γ, where
ι and γ are atomic propositions: the denoted set of paths is composed of all
paths of the fixed transition system S that start from a state labeled by the
precondition ι and that end in a state labeled by the post-condition γ. The
internal nodes of an attack tree carry an attack goal, together with the operator
that describes its decomposition into sub-goals1, hence a pair (ι � γ,�); we call
such an internal node a �-node. In this paper, we let � range over {�,�,�}
for the “or”, the “sequential and”, and the “and” operators respectively. In our
graphical representations of attack trees (see Fig. 2 on Page 8), the shapes of the
nodes emphasize the operator associated to the node: �-nodes are represented
with an ellipse, �-nodes are represented with pentagons pointing rightwards,
and �-nodes are represented with rectangles, and the leaf nodes are represented
with rounded corners rectangles.

In this paper, we address the soundness of an attack tree in terms of the
relationship between an internal node (ι�γ,�) and the list of its children nodes
(ι1�γ1,�1),. . . , (ιn �γn,�n) (from left to right). To do so, we compare2 the set
of paths denoted by ι � γ with the �-combination of the sets of paths denoted
by the children ιi � γi of that node.

We introduce three notions of soundness for attack trees w.r.t. the transition
system: admissibility, consistency, and completeness. Admissibility captures the
approach where practitioners decompose the main goal into a structured goal
some of whom achievements are also an achievements of the main goal. Consis-
tency expresses that the proposed decomposition of the main goal guarantees its
achievement. Finally, the intent of completeness is a complete characterization
of the main goal in terms of the proposed decomposition.

The three notions of soundness are defined by comparing the two sets of
paths denoted by ι � γ and the �-combination of the sets of paths denoted by
the children. We use the three natural comparisons between sets, namely equal-
ity, inclusion, and non-empty intersection. Each notion of soundness entails a
decision problem, of whether a given attack tree is sound or not w.r.t. the tran-
sition system it refers to. We establish complexity results on the three notions of
soundness, and with regards to the kinds of operators that are allowed. We show
that the admissibility problem is in P for the operators � and �, but becomes
NP-complete for the operator �. Next, we prove that the consistency problem
is in P for the operators �, co-NP3 for the operator � and co-NP-complete
for the operator �. The completeness problem is in co-NP for the operators

1 The children of the internal node.
2 See further for details.
3 That is the negative instances of the decision problem, i.e. those for which the answer
is “no”, are fully characterized by a polynomial-time non-deterministic algorithm.
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� and �, and in ΠP
2 for the operator �. Recall that ΠP

2 is a complexity class
of the polynomial hierarchy [10] composed of languages whose complement is in
ΣP

2 , or equivalently NPNP, that are languages captured by a non-determinitsic
polynomial-time algorithm which can call a non-determinitsic polynomial-time
subroutine4.

The paper is organized as follows: In Sect. 2, we present preliminaries notions
used in the rest of the paper. In Sect. 3, we present transitions systems and formal
attack goals, and their paths properties. In Sect. 4, we present attack trees, and
the three soundness completeness, consistency and admissibility. In Sect. 5, we
show the complexity results for the three soundness. In Sect. 6, we discuss the
complexity result and conjecture about the harness that are not established yet.

2 Preliminaries

For i, j ∈ N, we denote by [i; j] the interval of integers ranging over {i, i+1, . . . j}.
For a finite set X, 2X is the powerset of X, |X| is the cardinal of X, X∗ is the
set of finite sequences of elements of X. For a binary relation R over a set X
(R ⊆ X × X), we say that R is left-total if for every x ∈ X, there exists y ∈ X
such that (x, y) ∈ R. We denote by R∗ the reflexive and transitive closure of R.

We recall that P is the class of decision problems5 that can be solved by a
deterministic polynomial-time algorithm, that NP is the class of decision prob-
lems that can be solved by a non-deterministic polynomial-time algorithm, and
co-NP is the class of decision problems whose complementary problem6 is in
NP. As a typical representative of the class NP, we will consider the classical
decision problem SAT (We refer to [3] for these classic classes of complexity). We
end with the class ΠP

2 of the polynomial hierarchy which captures the decision
problems whose negative instances can be characterized by a non-determinitsic
polynomial-time algorithm which can call a non-determinitsic polynomial-time
subroutine7. We refer to [10] for details on the polynomial hierarchy.

3 Transition Systems and Attack Goals

In this section, we define transition systems, attack goals and the semantics of
the operators {�,�,�}.

3.1 Transition Systems

Without loss of generality and for technical reasons, transition systems will carry
no actions, but instead have all the necessary information in their states via a
labeling by atomic propositions.

4 Which is classically called an oracle.
5 The answer is “Yes/No”.
6 The answers “Yes/No” are swapped.
7 Which is classically called an oracle.
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Definition 1 (Transition system). Let Prop be a finite set of atomic propo-
sitions. A transition system over Prop is a tuple S = (S,→, λ), where:

– S is the finite set of states,
– →⊆ S×S is the transition relation of the system (which is assumed left-total8),
– λ : Prop → 2S is the valuation function.

The size of S is |S| = |S| + |→|.
Let S′ ⊆ S be a sub-set of states. We let Post∗S(S′) be the set of states that

are reachable from some state of S′, and Pre∗
S(S′) be the set of states that are

co-reachable from some state of S′. Formally,

– Post∗S(S′) := {s ∈ S | there is some s′ ∈ S′ such that s′ →∗ s}
– Pre∗

S(S′) := {s ∈ S | there is some s′ ∈ S′ such that s →∗ s′}.
We will use the following running example:

Example 1. The set Prope is {i, f,m1,m2, e1, e2, prea, posta, preb, postb, prec,
postc}, the system Se = (Se,→e, λe) over Prope, whose graphical representa-
tion is given in Fig. 1, is formally defined by: Se = {si}0≤i≤6, where the tran-
sition relation →e contains the pairs (s0, s1), (s0, s2), (s1, s3), (s2, s3), (s2, s4),
(s3, s5), (s4, s6). Finally, we let λe(i) = λe(prea) = {s0}, λe(f) = {s5, s6},
λe(m1) = λe(posta) = {s1, s2}, λe(m2) = {s3, s4}, λe(e1) = {s5}, λe(e2) = {s6},
λe(preb) = {s1, s2, s4}, λe(postb) = {s3, s6}, λe(prec) = {s2, s3}, and finally,
λe(postc) = {s4, s5}. Also, Pre∗

S({s3}) = {s0, s1, s2, s3} and Post∗Se
({s1, s6}) =

{s1, s3, s5, s6}.

s0

s1

s2

s3

s4

s5

s6

{i, prea}

{m1, posta, preb}

{m1, posta, preb, prec}

{m2, postb, prec}

{m2, postc, preb}

{ f , e1 , postc}

{ f , e2 , postb}

Fig. 1. Example of transition system: Se.

Definition 2 (Paths, elementary paths, factors). A path in a system S is
a sequence of states of the form π = s0s1 . . . sn ∈ S∗ for some n ∈ N, such that
for all k ∈ [0;n − 1], (sk, sk+1) ∈→. An elementary path is a path s0s1 . . . sn

where ∀k �= k′ ∈ [0;n], sk �= sk′ (i.e. there is no cycles). We denote by Π(S) the

8 This is classic and it is no loss of generality.
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set of paths of S. Let π = s0 . . . sn ∈ Π(S). The length of π is n, written |π|. A
factor of π is a sequence si . . . sj for some 0 ≤ i ≤ j ≤ n, that will be denoted
by π[i; j]. The interval [i; j] is an anchoring interval, or simply an anchoring, of
the factor π[i; j] in π.

We define two notions of decomposition of a path that reflect the refinement
of attack tree nodes. Both are based on factors.

Definition 3 (Sequential and parallel decomposition of paths). Let
π ∈ Π(S) be a path. A sequence π1. . . . .πk ∈ Π(S)∗ of paths is a sequential
decomposition of π if each πj is a factor of π, there are ordered anchorings of
the πj’s that form a tiling of the interval [0; |π|]. In particular, this anchoring of
π1 is of the form [0; y] and this anchoring of πk is of the form [x; |π|]. A set of
paths {π1, . . . , πk} is a parallel decomposition of π ∈ Π(S) if each πj is a factor
of π, and the anchorings of the paths πj cover the interval [0; |π|]. Notice that a
sequential decomposition is a particular case of a parallel decomposition.

Example 2. Consider the path π = s0s2s3s5 in system Se. The sequence
(s0s2).(s2s3s5) is a sequential decomposition of π, where the anchoring of s0s2 is
(unique and equal to) [0; 1] and the unique anchoring of s2s3s5 is [1; 3]. The set
{s2s3s5, s0s2s3} is a parallel decomposition of π, where the anchoring of s2s3s5
is [1; 3] and the anchoring of s0s2s3 is [0; 2].

For the Sects. 3.2 and 4, we fix a transition system S = (S,→, λ).

3.2 Attack Goals

Attack goals are descibed in a formal language meant to specify attack objectives
that internal nodes of an attack tree naturally carry.

Definition 4 (Attack goals). An attack goal is an expression of the form
either ι � γ, or a term of the form (ι1 � γ1) � (ι2 � γ2) � . . . (ιn � γn), where
� ∈ {�,�,�} and ι, ι1, . . . ιn, γ, γ1, . . . γn ∈ Prop.

Example 3. i � f , (i � e1) � (i � e2) and (i � posta) � (posta � postc) � (postc �
postb) are attack goals, whose interpretation will be given in system Se (see
Example 4).

Definition 5 (Path semantics of attack goals). The path semantics of an
attack goal t, written [t]pathS , is a subset of Π(S) defined by: if t = ι � γ, then
[ι � γ]pathS = {π ∈ Π(S) | π(0) ∈ λ(ι) and π(|π|) ∈ λ(γ)}, otherwise we
distinguish between the different operators � ∈ {�,�,�} according to:

[(ι1 � γ1) �n (ι2 � γ2) �n . . . (ιn � γn)]pathS =
⋃

1≤i≤n

[ιi � γi]
path
S

[(ι1 � γ1) �n (ι2 � γ2) �n . . . (ιn � γn)]pathS = {π | there is a
decomposition π1.π2 . . . .πn of πand each πi ∈ [ιi � γi]

path
S }

[(ι1 � γ1) �n (ι2 � γ2) �n . . . (ιn � γn)]pathS = {π | there is a
parallel decomposition{π1, π2, . . . , πn}of πand each πi ∈ [ιi � γi]

path
S }
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Example 4. The attack goals of Example 3 have the following path semantics:

[i � f ]pathSe
= {π ∈ Π(Se) | π(0) = s0 and π(|π| ∈ {s5, s6}}

[(i � e1) �2 (i � e2)]
path
Se

= [i � f ]pathSe

[(i � posta) �3 (posta � postc) �3 (postc � postb)]
path
Se

= {s0s2s4s6}

4 Attack Trees

We define the set of attack trees over a set Prop of atomic propositions. In
addition to the classical branching structure with nodes typed by a operator, we
decorate each node with an attack goal ι � γ, representing the goal of the node.
This goal is a formalization of the what is usually written in plain text in nodes
of classical attack trees.

Fig. 2. The attack tree Te.

An attack tree (over Prop) is either a leaf of the form (ι�γ,�) or a composed
tree of the form (ι�γ,�)(T1, T2 . . . Tn), where ι, γ ∈ Prop, � ∈ {�,�,�}, n ≥ 2,
and T1, T2, l. . . , Tn are attack trees. We call the main node of a non-leaf tree a
�-node whenever it is of the form (ι � γ,�)(T1, T2 . . . Tn).

The path semantics of an attack tree (ι � γ,�)(T1, T2 . . . Tn) is naturally
defined as [ι � γ]pathS ⊆ Π(S).

Example 5. Figure 2 represents the attack tree Te over Prope where:

Te = (i � f,�)((i � m2,�)((i � m1,�), (m1 � m2,�)),
(m2 � f,�)((m2 � e1,�), (m2 � e2,�)))

Another example of such an attack tree, using an �-node, is (i�f,�)(prea �
posta,�), (preb � postb,�), (prec � postc,�)).

For example, the path semantics of Te is Π(Se).

We now turn to more subtle semantics for attack trees that enable one to
relate a tree with its subtrees, or equivalently an internal node with its chil-
dren, in terms of their path semantics, hence the explicit reference to the system
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the attack tree refers to. Our proposal yields three notions of soundness with
different interpretations from the point of view of the practitioner. The admissi-
bility property means that there is an attack that achieves the parent node goal
that decomposes with the ones of its children nodes (Eq. (1)). The consistency
property means that the combined children node goals yield attacks (if any) that
achieve the parent node goal (Eq. (2)). Finally, the completeness property means
that the combined children node goals fully characterize the parent node goal
(Eq. (3)).

Fig. 3. A picture for Eq. (1).

Definition 6 (Admissibility). The attack tree (ι � γ,�)(T1, T2 . . . Tn) is
admissible w.r.t. S either when � is �, or when Eq. (1) holds, where ιi � γi

is the local attack goal of the tree Ti (1 ≤ i ≤ n), see Fig. 3.

[ �
n
i=1 (ιi � γi)]

path
S ∩ [ι � γ]pathS �= ∅ (1)

Then, the consistency and completeness properties are variants of the admis-
sibility property by replacing Eq. (1) of Definition 6 by Eqs. (3) and (2), respec-
tively:

[ �
n
i=1 (ιi � γi)]

path
S ⊆ [ι � γ]pathS (2)

[ �
n
i=1 (ιi � γi)]

path
S = [ι � γ]pathS (3)

Remark 1. As Eq. (3) entails Eq. (2), completeness implies consistency.

For example, the attack tree (i� f,�)((i�m2,�), (m2 � f,�)) is admissible
w.r.t. Se, whereas (prea � posta,�)((preb � postb,�), (prec � postc,�)) is not
admissible w.r.t. Se.

5 The Decision Problems ADM(O), CONS(O), COMP(O)

We formalize the decision problems ADM(O), CONS(O), COMP(O) respectively
related to the notions of admissibility, consistency and completeness, as intro-
duced in Sect. 4. Let O ⊆ {�,�,�}.

Definition 7. The Admissibility problem ADM(O) is defined by:
Input: θ = ιγι1γ1 . . . ιnγn a sequence of atomic propositions, � ∈ O and S a
labeled transition system over {ι, γ, ι1, . . . , γn}.
Output: “yes” if (ι�γ,�)((ι1�γ1,�), (ι2�γ2,�) . . . (ιn �γn,�)) is admissible
w.r.t S, “no” otherwise.
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We similarly define the decisions problems CONS(O) and COMP(O) in a natural
way, respectively called the the consistency problem and the completeness prob-
lem. In the sequel, we will denote by (θ,�,S) an instance of ADM(O), CONS(O),
or COMP(O), where unless explicitly stated, θ expands into ιγι1γ1 . . . ιnγn.

5.1 Preliminary Complexity Results

We first establish useful technical propositions that will be used to prove our
main results on complexity for the three decision problems ADM(O), CONS(O),
and COMP(O).

Proposition 1. Given a path π, deciding whether or not π ∈ [(ι � γ)]pathS can
be done in constant time. As a consequence, deciding whether or not π ∈ [ �n

i=1

(ιi � γi)]
path
S is also in P.

Proof. For π ∈ [(ι � γ)]pathS , the only thing to check is π(0) ∈ λ(ι) and π(|π|) ∈
λ(γ). For π ∈ [ �

n
i=1 (ιi � γi)]

path
S , it amount to finding i ∈ [1;n] such that

π ∈ [(ιi � γi)]
path
S .

The next two propositions address operators � and �.

Proposition 2. Given a path π, deciding whether or not π ∈ [�n
i=1 (ιi �γi)]

path
S

is in P.

Proof. It sufficient to check that π(0) ∈ λ(ι1) and π(|π|) ∈ λ(γn) and to make a
traversal of π that seeks for a sequence of positions 0 ≤ y1 ≤ · · · ≤ yn−1 ≤ |π|
such that π(yi) ∈ λ(γi) ∩ λ(ιi+1), for all i ∈ [1;n − 1].

Proposition 3. Given a path π, deciding whether or not π ∈ [�n
i=1 (ιi �γi)]

path
S

is in NP.

Proof. To verify that π ∈ [ �n
i=1 (ιi � γi)]

path
S the algorithm guesses n factors of

π, or equivalently their sequence of anchorings [x1; y1], . . . , [xn; yn] and checks
they provide a parallel decomposition of π. Namely, the algorithm needs to check
the following properties: (i) xi ≤ yi, for each i ∈ [1;n], (ii) for each x ∈ [0; |π|],
there exists i ∈ [1;n] such that xi ≤ x ≤ yi, and (iii) π[xi; yi] ∈ [ιi �γi]

path
S , that

is π(xi) ∈ λ(ιi) and π(yi) ∈ λ(γi). By the above propositions, it is clear that
Properties (i)-(iii) can be verified in polynomial time.

The two following propositions are helpful in order to bound the size of the
paths we will need to guess in our non-deterministic algorithms of Sect. 5.2.

Proposition 4. Let � ∈ {�,�,�}. If [ �n
i=1 (ιi � γi)]

path
S �= ∅, then it contains

a path of size smaller than |S| (2n − 1). In particular, if n = 1, we can consider
a path of length at most |S|, that is an elementary path.
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Proof. We first consider the case where � = �. Let π ∈ [�n
i=1 (ιi � γi)]

path
S , and

let [x1; y1], . . . , [xn; yn] be the anchoring intervals of a parallel decomposition of
π, such that, for each 1 ≤ i ≤ n, π(xi) ∈ λ(ιi) and π(yi) ∈ λ(γi). Let z1 ≤
· · · ≤ z2n be the resulting of sorting the elements x1, y1 . . . , xn, yn. Notice that
the sequence π[z1; z2], π[z2; z3], . . . , π[z2n−1; z2n] is a sequential decomposition of
π. For 1 ≤ i ≤ 2n− 1, let π′

i be the elementary path obtained from π[zi; zi+1] by
removing the cycles. We have |π′

i| ≤ |S|. The path π′ obtained by the sequential
composition of the paths π′

i is in [ �
n
i=1 (ιi � γi)]

path
S since the states π(zi) for

i ∈ [1; 2n] are still in π′ and in the same order. Then we have |π′| ≤ |S| (2n − 1),
which concludes. Regarding the case where � = �, it is enough to remark that
sequential decomposition is a particular parallel decomposition, and the case
� = � is obvious as even elementary paths suffice.

Finally, the following more involved Proposition 5 plays a key role in our
proofs of Sect. 5.2. The rest of this section is dedicated to its proof.

Proposition 5. Given a S = (S,→, λ) be a labeled transition system over a set
of propositions Prop ⊇ {ι, γ, ι1, . . . , γn}, it is NP-complete to decide whether or
not [ �

n
i=1 (ιi � γi)]

path
S �= ∅.

NP-easyness: We describe the non-deterministic algorithm that decides [ �n
i=1

(ιi � γi)]
path
S �= ∅. This algorithm guesses a path π such that |π| ≤ |S| (2n − 1)

(which is sufficient by Proposition 4), and n anchoring intervals [x1; y1], . . . ,
[xn; yn] in π. It then verifies that π ∈ [ �n

i=1 (ιi � γi)]
path
S , which can be done in

polynomial time in (θ,�,S) according to Propositions 3.

NP-hardness: We reduce the classical NP-complete problem SAT [2] to [ �
n
i=1

(ιi � γi)]
path
S �= ∅. An input of SAT is a set of clauses C over a set of proposi-

tions {p1, . . . pr}, where each clause C ∈ C is a set of literals, that is either
a proposition pi or its negation ¬pi. The SAT problem amounts to answer-
ing whether or not C is satisfiable, that is whether or not there is a valua-
tion of the propositions p1, . . . pr that makes all clauses of C true. Now, let
C = {C1, . . . Cm} over propositions {p1, . . . pr} be an input of the SAT prob-
lem; classically, |C | =

∑

C∈C

|C|, where |C | is the number of literals that occur

in C. We introduce two fresh propositions ι0 and γ0 and we define a labeled
transition system SC = (SC ,→C , λC ) over PropC = {ι0, γ0, C1, . . . Cm}: In the
following, we let 	i denote either pi or ¬pi, for every i ∈ {1, . . . , r}. We let
SC = {s, t} ∪ {	i}i=1,...,r, →C= {(	i, 	i+1) | i ∈ [1; r − 1]} ∪ {(s, 	1), (	r, t)},
and λC : Prop → 2S is such that λC (ι0) = {s}, λC (γ0) = {t}, and λC (	) = C
whenever 	 is a literal of C. An example of SC is depicted in Fig. 4. Notice that
by definition, |SC | is polynomial in |C |.

In the following, let call a full path a path of SC from s to t. The system
SC is designed in such a way that any full path visits either pj or ¬pj in an
exclusive manner, for each i = 1, . . . , r. A full path π therefore unambiguously
denotes a valuation vπ of the propositions. Reciprocally, every valuation v of the
propositions yields a unique full path πv. Additionally, a full path π visits a state
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Fig. 4. SC with C = {C1, C2} where C1 = p ∨ ¬q and C2 = p ∨ r

labeled by C ∈ C if, and only if, vπ makes the clause C true. Moreover, a full
path π visits a state labeled by C if, and only if there is an anchoring [0; j] such
that π(j) is labeled by C. The following concludes the proof of Proposition 5.

It remains to establish that [(ι0 � γ0) � (ι0 � C1) � . . . � (ι0 � Cm)]pathSC
�= ∅

if, and only if, C is satisfiable.
Assume [(ι0 �γ0)� (ι0 �C1)� . . .� (ι0 �Cm)]pathSC

�= ∅, with some element π.
The constraint (ι0 � γ0) enforces π to be a full path. Now, the other constraints
enforce π to visits a state labeled by C for each C ∈ C , entailing the valuation
vπ making all clauses true, so that C is a positive input of SAT. It is not hard
to see that conversely, if C is a positive instance of SAT, then any full path πv,
for some valuation v that makes all clauses true, is in [(ι0 � γ0) � (ι0 � C1) �

. . . � (ι0 � Cm)]pathSC
.

5.2 Complexity Results for ADM(O), CONS(O), COMP(O)

We successively study admissibility, consistency, and completeness.

Theorem 1. ADM({�,�}) is in P.

Proof. We consider the syntactic fragment of the temporal logic CTL [1] defined
by: ϕ ::=p | ϕ∧ϕ | ϕ∨ϕ | �ϕ, where the only temporal operator is the “eventu-
ally” one denoted by �. The semantics of a formula ϕ of this fragment is given
with regard to a labeled transition system S = (S,→, λ), and is noted �ϕ�S . We
define �ϕ�S ⊆ S by induction over ϕ: �p�S = λ(p), �ϕ ∧ ϕ′

�S = �ϕ�S ∩ �ϕ′
�S ,

�ϕ ∨ ϕ′
�S = �ϕ�S ∪ �ϕ′

�S , and ��ϕ�S = Pre∗
S(�ϕ�S), where Pre∗

S is defined in
Sect. 3.1, that is s ∈ ��ϕ�S iff there is a path in S starting from s that visits a
state in �ϕ�S . In the following we simply write �ϕ� instead of �ϕ�S . Note that
computing �ϕ� takes polynomial time in the size of S and ϕ, see for example [9].

Let ϕθ
� :=

n∨

i=1

ι ∧ ιi ∧ �(γ ∧ γi). Then [ �n
i=1 (ιi � γi)]

path
S ∩ [ι � γ]pathS �= ∅ if,

and only if, �ϕθ
�� �= ∅. Indeed, if [ �n

i=1 (ιi � γi)]
path
S ∩ [ι � γ]pathS �= ∅, then let π

be a path in [ �
n
i=1 (ιi � γi)]

path
S ∩ [ι � γ]pathS . Then π go from ι to γ and there

is an i ∈ [1;n] such that π go from ιi to γi. Hence, π go from ι ∧ ιi to γ ∧ γi.
So π ∈ �ι ∧ ιi ∧ �(γ ∧ γi)�, which implies π ∈ �ϕθ

��, which is then non-empty.
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Conversely, if �ϕθ
�� �= ∅, then let π ∈ �ϕθ

��. Then there is an i ∈ [1;n] such that
π start from ιi and eventually reaches ι ∧ γ ∧ γi. Let π′ be the prefix of π that is
a path that go from ιi to ι∧γ ∧γi. We have π′ ∈ [�n

i=1 (ιi �γi)]
path
S ∩ [ι�γ]pathS ,

so it is not empty.
Let ϕθ

� := ι∧ι1∧�(γ1∧ι2∧�(γ2∧. . . �(γn∧γ))). Then [�n
i=1(ιi�γi)]

path
S ∩[ι�

γ]pathS �= ∅ if, and only if, �ϕθ
�� �= ∅ Indeed, if [�n

i=1 (ιi �γi)]
path
S ∩ [ι�γ]pathS �= ∅,

then let π be a path in [�n
i=1 (ιi �γi)]

path
S ∩ [ι�γ]pathS . Then π go from ι to γ and

is the concatenation of paths πi going from ιi to γi. Hence, π visits successively
ι ∧ ι1, γ1 ∧ ι2, . . . and γn ∧ γ. So π ∈ �ϕθ

��, which is then non-empty. Conversely,
if �ϕθ

�� �= ∅, then let π ∈ �ϕθ
��. Then π visits successively ι ∧ ι1, γ1 ∧ ι2, . . . and

γn ∧ γ. Let π′ be the prefix of π that is a path that stops in γn ∧ γ. We have
π′ ∈ [ �

n
i=1 (ιi � γi)]

path
S ∩ [ι � γ]pathS , so it is not empty.

Theorem 2. ADM({�}) is NP-complete.

Proof. First, we show that ADM(�) is NP-easy by giving a non-deterministic
polynomial algorithm. According to Proposition 5, we can guess π ∈ [ �n

i=1 (ιi �
γi)]

path
S with a non-deterministic polynomial algorithm. Then, we check that

π ∈ [(ι � γ)]pathS by checking that π(0) ∈ λ(ι) and π(|π|) ∈ λ(γ) which is done in
constant time, so the algorithm is still polynomial.

Second, we prove the NP-hardness by reducing the problem of
Proposition 5. Let S = (S,→, λ) be a labeled transition system over propo-
sitions {ι1, γ1, . . . , ιn, γn}. We extend S to S ′ = (S,→, λ′) over propositions
{ι1, γ1, . . . , ιn, γn} ∪ {ι, γ}, with λ′(ι) = λ′(γ) = S and λ′ coincide with λ over
{ι1, γ1, . . . , ιn, γn}. As [(ι � γ)]pathS′ = Π(S ′), deciding ADM(�) for S amounts to
deciding if [ �

n
i=1 (ιi � γi)]

path
S′ �= ∅. So the reduction is straightforward, and

ADM(�) is NP-hard.

Theorem 3. CONS({�}) is in P.

Proof. We show a polynomial algorithm deciding CONS({�}).
Let (θ,�,S) be an input of CONS({�}). First, we compute the sets of state
S(ιi) = λ(ιi)∩Pre∗

S(λ(γi)) and S(γi) = λ(γi)∩Post∗S(λ(ιi)) for i ∈ [1;n], which
is done in polynomial time by reachability analysis. S(ιi) (resp. S(γi)) represents
the states of λ(ιi) (resp. λ(γi) ) from which there is a path to a state of λ(γi)
(resp. from a state of λ(ιi) ). Then, check that for every i ∈ [1;n], S(ιi) ⊆ λ(ι)
and S(γi) ⊆ λ(γ).

Theorem 4. CONS({�}) is in co-NP.

Proof. We describe a polynomial non-deterministic algorithm deciding that an
input (θ,�,S) of CONS({�}) is a negative instance9. Let (θ,�,S) be an input
of CONS({�}). We first guess a path π, and check that π ∈ [ �

n
i=1 (ιi � γi)]

path
S :

the latter can be done by guessing anchoring intervals [xi;xi+1] of a sequential
decomposition of π, and by checking that for all i ∈ [1;n], xi ≤ xi+1, that
9 Namely that the answer is “no”.
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π(xi) ∈ λ(ιi) and π(xi+1) ∈ λ(γi), and that x1 = 0 and xn+1 = |π|. It then
remains to verify that π �∈ [(ι � γ)]pathS . Clearly all these checks can be done in
polynomial time.

Theorem 5. CONS({�}) is co-NP-complete.

Proof. A negative instance (θ,�,S) of CONS({�}) is characterized by the exis-
tence of a path π ∈ [ �

n
i=1 (ιi � γi)]

path
S \ [(ι � γ)]pathS .

Deciding that (θ,�,S) is a negative instance of CONS({�}) is NP-easy:
According to Proposition 5, we can guess π ∈ [ �

n
i=1 (ιi � γi)]

path
S with a

non-deterministic polynomial-time algorithm. It then remains to check that
π �∈ [(ι � γ)]pathS which takes constant time, by Proposition 1.

Deciding that (θ,�,S) is a negative instance of CONS({�}) is NP-hard: we
reduce the problem of deciding [ �

n
i=1 (ιi � γi)]

path
S �= ∅ (which is NP-complete

by Proposition 5). Assume S = (S,→, λ) is a labeled transition system over
{ι1, γ1, . . . , ιn, γn}. We extend λ to the set of propositions {ι1, γ1, . . . , ιn, γn} ∪
{ι, γ}, by letting λ(ι) = λ(γ) = ∅. By construction [(ι � γ)]pathS′ = ∅, so that
(θ,�,S) is a negative instance of CONS({�}) is equivalent to [�n

i=1 (ιi�γi)]
path
S′ �=

∅, and we are done.

We now turn to the decision problems COMP(O). By Remark 1, a negative
instance of CONS(O) necessarily is a negative instance of COMP(O).

Theorem 6. COMP({�,�}) is in co-NP.

Proof. Let (θ,�,S) be a negative instance of COMP({�,�}). There are two cases:
(a) (θ,�,S) is a negative instance of CONS(�), or (b) there exists a path π ∈
[(ι � γ)]pathS \ [ �

n
i=1 (ιi � γi)]

path
S . The algorithm guesses whether it is Case (a)

or Case (b). For Case (a) we use the polynomial-time algorithm in the proof
of Theorem 3 (recall P ⊆ co-NP) for operator � and Theorem 4 for operator
�. Regarding Case (b), we use a variant of the proof of Theorem4: the non-
deterministic polynomial-time algorithm that decides whether or not an input
(θ,�,S) is a negative instance of COMP({�,�}) consists in guessing a path π, and
in checking that π ∈ [(ι�γ)]pathS \ [�n

i=1 (ιi�γi)]
path
S . First, the algorithm guesses

an elementary path π and checks π ∈ [(ι�γ)]pathS ; this check is done in constant
time by Proposition 1. Next, the algorithm checks that π �∈ [ �

n
i=1 (ιi � γi)]

path
S .

If � = �, we apply Proposition 1, otherwise � = � and we use Proposition 2.

The last theorem shows that the operator � is much harder to handle.

Theorem 7. COMP(�) is in ΠP
2 .

Proof. We show that negative instances of COMP(�) can be captured by a
polynomial-time non-deterministic algorithm that can call a polynomial-time
non-deterministic subroutine. Let (θ,�,S) be a negative instance of COMP(�).
Similarly to the case of Theorem 6, there are two possible cases: (a) (θ,�,S)
is a negative instance of CONS(�), or (b) there exists π ∈ [(ι � γ)]pathS \ [ �

n
i=1
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(ιi � γi)]
path
S . Therefore, the algorithm first non-deterministically guesses if it

is Case (a) or Case (b). For Case (a), it behaves like the polynomial-time non-
deterministic algorithm proposed for CONS(�) in the proof of Theorem5. Regard-
ing Case (b), the algorithm guesses a path10 π and checks that π ∈ [(ι � γ)]pathS .
Then, the algorithm checks that π �∈ [ �

n
i=1 (ιi � γi)]

path
S . The latter can be

performed by running an NP oracle according to Proposition 3. Hence the set of
negative instances of COMP(�) is in NPNP, that is ΣP

2 , which concludes.

Fig. 5. Complexities of the three decision problems for each operator

6 Discussion

In this paper, we have developed a path semantics for attack trees that yields
three natural notions of soundness of attack trees: admissibility, consistency,
and completeness. Each soundness notion conveys a meaning of the practioners’
manual decomposition of internal nodes. We then have explored the complexity
of the associated decision problems.

As can be seen, operators � and � are much simpler than the very classic
operator � widely used in the literature; actually the complexity ΠP

2 estab-
lished here for the decision problem COMP(�) is not proved to be optimal, but we
conjecture it is. This rather high complexity is not surprising since the notion
of parallel decomposition underlying the operational semantics of operator �

features complex combinatorics. As future work, we wish to complete the com-
plexity classes picture by showing that, e.g. all complexities are tight.
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Abstract. Motivated by the practical importance of security assess-
ment, researchers have developed numerous model-based methodologies.
However, the diversity of different methodologies and tool designs makes
it challenging to compare their respective strengths or integrate their
results. To make it more conducive to incorporate them for practical
assessment tasks, we believe it is critical to establish a common foun-
dation of security assessment inputs to support different methodologies
and tools. As the initial effort, this paper presents an open repository
of Common Input Scenarios for Security Assessment (CISSA) for differ-
ent model-based security assessment tools. By proposing a CISSA design
framework and constructing six initial scenarios based on real-world inci-
dents, we experimentally show how CISSA can provide new insights and
concrete reference points to both security practitioners and tool develop-
ers. We have hosted CISSA on a publicly available website, and envision
that community effort in building CISSA would significantly advance the
scientific and practical values of model-based security assessment.

1 Introduction

Understanding the system security level against cyber threats is critical for
today’s IT or IT-enabled infrastructures, such as cloud storage and comput-
ing services, banking and payment systems, or cyber-physical systems such as
smart grids. Industries today adopt various compliance standards (e.g., NERC
CIP [17]) to exercise best practices in assessing their systems’ level of security.
Despite promoting security in general, such compliance practices often do not
sufficiently capture the inherent relationships among different security-related
aspects of the studied infrastructure. To provide deeper insight and more rig-
orous assessment into the overall security of the infrastructures, recent years
have witnessed a surge of interest in model-based security assessment. In model-
based security assessment, the various aspects of systems, threats, security
measures, and more importantly, how these aspects interact with each other,
c© Springer International Publishing AG 2016
B. Kordy et al. (Eds.): GraMSec 2016, LNCS 9987, pp. 39–61, 2016.
DOI: 10.1007/978-3-319-46263-9 3
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are abstracted into models, often through rigorously defined formalisms. Such
methodologies then use these underlying models to evaluate — often quantita-
tively via some forms of calculi — the security level of a system against specified
cyber threats [11,24,29].

Notable examples of model-based security assessment methodologies include
the attack tree [25] and its enhancements (e.g., Boolean logic Driven Markov
Process [23] and Attack-Defense Tree [10]), the attack graph [15,21] and its
embodiments (e.g., [18,26]), Unified Modeling Language (UML)-based for-
malisms (e.g., Cyber Security Modeling Language [27]), and Petri-net based
formalisms (e.g., ADversary VIew Security Evaluation [14]). By applying tech-
niques from this impressive range of methodologies, security practitioners could
potentially assess the security of their systems in a systematic, rigorous, and
holistic manner.

However, these methodologies manifest great diversity in selecting the infor-
mation on system details and adversaries that are used as input, in representing
and processing them (i.e., the formalisms, the calculi, the tool designs etc.), as
well as in the aspects of security assessment (e.g., security metrics) they produce
as output [29]. It is therefore difficult to understand their different strengths,
compare their results, or integrate them in meaningful ways to present a mul-
tifaceted assessment of the systems. We have faced these challenges developing
our own model-based security assessment methodology [5,30], and we believe
that industry practitioners seeking to adopt security modeling tools face similar
dilemmas in vetting and selecting methodologies.

In this paper, we propose the creation of a set of common input scenar-
ios for security assessment (CISSA). As illustrated in Fig. 1, a rich and open
repository of input scenarios would allow both the security practitioners and the
research community to better compare different methodologies, which in turn
will drive future research and development to address various real-world security
assessment needs and challenges. Our work propose a specification framework
for defining CISSA and provide six sample scenarios based on real-world attacks
against various IT and IT-enabled systems. We use the samples to analyze the
real-world security assessment needs and evaluate three representative model-
based assessment tools accordingly. Ultimately, we hope that our initial efforts

Fig. 1. Security assessment process driven by CISSA
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will encourage the community to build a rich repository of CISSA for many dif-
ferent systems. Such a repository can be referenced by both tool developers and
security practitioners in discussing the needs and features of security assessment.
In summary, we make the following contributions in this paper:

– We propose a first blueprint design (CISSA) for specifying common input
scenarios for different model-based security assessment tools.

– To initiate the effort, we construct six CISSA cases based on real-world inci-
dents, which are hosted on a public CISSA repository [1]. Such example cases
show the feasibility of building a diverse, realistic, structured, and precise set
of CISSA based on the framework.

– We experimentally demonstrate the potential usefulness of CISSA by lever-
aging the six CISSA cases to investigate real-world needs of security assess-
ment. We test three representative model-based security assessment tools and
demonstrate that CISSA could provide new insights and concrete references
to both security practitioners and tool developers.

In the rest of the paper, we propose our vision in Sect. 2, and then describe
the elements of common input scenarios in Sect. 3. Section 4 reports our expe-
riences in constructing six input scenarios, while a more detailed illustration of
representing a real-world incident with the CISSA specification is presented in
AppendixA. Section 5 uses the CISSA cases to investigate the security assess-
ment needs and to test three representative security assessment tools. We discuss
the roadmap for further developing CISSA in Sect. 6 and conclude in Sect. 7.

2 CISSA Vision

Devising effective means to assess the security of complex systems is one of the
greatest challenges in security research [24,29], but the reward for solving this
problem is profound. The complexity and diversity inherent in today’s enter-
prise IT systems and critical infrastructures make it important to leverage a
model-based approach to answer various security assessment questions, e.g.: How
to design more resilient systems? How to make better investment decisions for
different defense mechanisms? To realize the potential of model-based security
assessment methodologies, we believe it is necessary to establish widely-accepted
open input scenarios. Such common input scenarios will allow researchers and
industry stakeholders to better understand the data required for security mod-
eling, as well as the trade-offs and blind spots inherent in picking a tool or
formalism for their system.

Such common input scenarios need to include the inputs required by security
assessment tools based on individual real-world incidents or synthesized attacks.
For example, many tools require the network topology and system configurations,
as well as attacker capabilities as inputs to their assessment. Other tools may
require specific additional information as inputs, such as the details of security
countermeasures, and the estimated response time when suspicious behaviors are
detected. The common input scenarios should be as comprehensive as possible
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in covering the general classes of inputs required by major security assessment
tools. We envision that:

– For security practitioners, a common set of realistic CISSA cases will help them
to conduct meaningful comparison and integration among different methodolo-
gies. Since assessment methods are validated on common, openly available, and
realistic inputs, CISSA can help reduce the barrier to adoption for industry.

– For researchers and tool developers, a realistic, rich, and heterogeneous set of
CISSA will make it clear which aspects to model and the important questions
to answer. This will help guide the further development of the methodologies
to meet real needs.

– An open repository of CISSA cases will allow any interested parties to con-
tribute new cases that will be available to all. Overall, it will benefit the entire
community in tool development and security assessment with greater interac-
tions, synergy, and standard practices, enabling bigger impact of model-based
security assessment for real-world systems.

Of course, realizing this vision will require a concerted effort on the part
of the security assessment community. By proposing a blueprint for designing
CISSA cases, hosting an open CISSA repository with six input scenarios as initial
examples, we demonstrate the potential feasibility and usefulness of CISSA,
hence encouraging other security researchers and tool developers to share the
input scenarios they use.

3 Elements of an Input Scenario

Conceptually, an input scenario collects together the representation of the impor-
tant security-relevant information surrounding a system. For industry practition-
ers, the scenario representation should allow them to describe the system they
are responsible for and to express their concerns and design choices in cybersecu-
rity aspects. For academics, the scenario representation will provide a reasonable
proxy for real systems, to enable research and development of security assessment
tools and methodologies.

We make the following choices when designing an initial blueprint for the
CISSA framework:

– Methodology-independent: We decouple the raw security-related inputs/facts
from any specific assessment methodologies. This would ensure that the input
scenarios could be generally applied to study different security methodologies.

– Comprehensive: We want CISSA to cover different types of information, as
long as it is security-related, i.e., the inclusion of the information can poten-
tially affect the security assessment results. For example, CISSA should not
only include the details of the attack, but elaborate on the corresponding
environment (e.g., certain network topology, or specific software configuration)
where the attack can occur as well. Because CISSA is not bound to any specific
methodology, it is easy to define and further extend the framework to cover
additional aspects that arise from the different kinds of systems/scenarios.
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– Realistic: To help bridge the gap between academia and industry security
practitioners, we believe CISSA should be made as realistic as possible. One
way to ensure a high level of realism is to require CISSA to be based on real-
world systems and security incidents. We expect the development of a CISSA
uses the best information one can gather from the field.

– Precise: The information included in CISSA should represent different aspects
of information in a structured way, and strive for minimum ambiguity, so as
to enable objective and fair comparison among the tools.

Note that there are implicit conflicts and trade-offs among the different goals
we strive for, e.g., in order to make a case cover comprehensive information,
one often needs to include unstructured data; on the other hand, to ensure
that the included information is grounded, realistic, and precise, one often needs
to exclude hypothetical or unsubstantiated information, hence sacrificing the
comprehensiveness.

Guided by these design considerations, we propose a schema for represent-
ing security-relevant information. While there may be other ways to represent
such information, we believe that our schema (Fig. 2) could serve as a valuable
starting point for the CISSA concept. Existing resources such as security incident
reports are largely unstructured, and it would require human comprehension and
transformation before they can be used by security assessment tools. Databases
such as NVD provide machine-readable format, but only include information on
the specifics of the vulnerabilities, which is far from sufficient for most model-
based security assessment tools. In the design of CISSA, the identified elements
and their attributes provide a unified way to represent information on both the
target system and the security incident.

As shown in Fig. 2, a common input scenario for security assessment consists
of seven core elements, which are interrelated: system components and network,
data, users, and operations, as well as undesirable outcomes, attacks, and coun-
termeasures. We represent these elements as a 7-tuple:

< N,D,U,O,X,A,C >.

We now elaborate on the characteristics of each element.

Fig. 2. Elements in an input scenario and their relationships
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System Descriptions. The first four elements describe the system (in its gen-
eral definition) to be assessed: N specifies the components and network, includ-
ing both the specifications of the devices in the system (hardware/software,
their configurations, and vulnerabilities), as well as the inter-connections and
trust among them; D specifies the data that the system produces, stores, or con-
sumes; U specifies the key users that interact with the system; and O specifies the
routine operations that the system carries out. These four elements are tightly
coupled: take the operation O as an example, it is defined in respect to N (e.g.,
which device is being controlled by a command, and which connection transmits
the command), D (e.g., which sensor readings are used in an operation), and U
(e.g., who takes charge of which step of the operation).

Undesirable Outcomes. Given the above system description, X specifies the
undesirable outcomes, i.e., the security concerns, of the system. X is determined
by the nature of the system and reflects its security requirements, including but
not limited to the traditional Confidentiality, Integrity, and Availability triples.
For example, for a railway system, engine failure, train crash, and fare evasion
are some of the undesirable outcomes that can be potentially caused by attacks.

Attack. The element A describes the attack aspect, including both the concrete
attack steps taken by an attacker and the information about the attacker itself:
A :=<α,Σ>, where α denotes the concerned attacker, and Σ is a set of possible
attack steps.

Countermeasures. There are different types of countermeasures to safeguard
systems from potential attacks. These include system hardening mechanisms
that raise the difficulty of launching successful attacks (e.g., timely patching),
intrusion detection and prevention systems, as well as the resiliency mechanisms
to limit the potential damage caused by invasions from attackers. We define
countermeasures as a first-level element in CISSA to highlight their importance.
In relation to the other elements in CISSA, a countermeasure is about what
attacks it addresses and which parts of the system it hardens. When defining a
concrete input scenario, we expect one to list the actual countermeasures that
are in place.

4 Constructing Initial CISSA Cases

In this section we describe the six common input scenarios that we have defined
using the proposed CISSA schema in Sect. 3. We challenge ourselves by selecting
these scenarios from a diverse body of threats and application domains. We
have put the specification files for all of our six initial scenarios online [1]. In
AppendixA we illustrate the CISSA specification for one of the scenarios. We
conclude this section by summarizing our experiences of constructing these initial
CISSA cases.
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Table 1. Characteristics of Example CISSA Scenarios

CISSA scenario Unique characteristics

Stuxnet Multi-step, several zero-day exploits, broken
air-gap”, command and control

Maroochy Insider attack, poor auditing and access control
policy, sabotage

Dragonfly Targeted attack, watering hole, multi-step,
trojanized software update, command and control

Target Data breach, multi-step, integrated but insufficient
security mechanisms, delayed incident response

SK communications Highly targeted attack, data breach, poor security
policy, trojanized software update

Syrian electronic army Targeted attack, multi-step, evading detection and
defense

4.1 A Diverse Set of CISSA Cases

We challenge ourselves to construct a diverse set of cases, with their characteris-
tics summarized in Table 1. The following descriptions highlight for each of the
six cases their unique aspects that our CISSA cases manage to incorporate.

Stuxnet. The Stuxnet attack [7,12], widely publicized in 2010, is arguably the
most well-known example of a cyber attack targeting systems comprising of
both cyber and physical equipment. The Stuxnet attack targeted the centrifuge
machinery in Iranian nuclear enrichment facilities. The attack first enters into the
cyber systems via public Internet and escalates its privilege, just as any ordinary
cyber attack would do. This step involves multiple zero-day vulnerabilities. It
then attempts to bypass the “air-gap” that is supposed to physically segregate
the control networks from the Internet, by infecting USB storage devices. Once
in the control network, the attacker intermittently changes the spinning speed
of centrifuges, to cause lowered productivity and physical damage.

Maroochy. This scenario is based on the real-world incident that occurred in
Maroochy Shire, Australia in 2000 [2]. In that attack, a disgruntled former
employee stole a company laptop to send malicious radio commands to the
sewage treatment system in Maroochy Shire. The attacker disguised his com-
mands to appear as if coming from one of the pumping stations, causing pumps
to malfunction; he also disabled alarms to conceal the attack. As result, sewage
spilled at one of the pumping stations. The water treatment company noticed the
“faults” and dispatched technicians to apply some countermeasures that were
ineffective.

Dragonfly. The Dragonfly attack, publicized in 2014, was carried out by an
advanced persistent threat actor [9]. The attack, which seems to target orga-
nizations from the energy and/or pharmaceutical sectors [13,28] involves the
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installation of Remote Access Tools, ostensibly for the purpose of information
theft. Dragonfly was carried out via three attack vectors: (i) email spear phish-
ing, (ii) a watering-hole attack designed to compromise industrial control system
vendors’ systems, and (iii) trojanized software designed to spread from the com-
promised vendors to their customers’ systems.

Target. The data breach at Target Corporation in 2013 resulted in the loss of
credit card data from 40 million customers [3,8]. This multi-stage attack began
with the theft of an HVAC vendor’s credentials for Target’s vendor management
web portal. From there, attackers were able to penetrate deep into Target’s cor-
porate network, steal personally identifiable information (PII) from a database,
and deploy malware to pull customers’ credit card information off of Target’s
point-of-sale machines. Stolen data were exfiltrated via FTP from inside the cor-
porate network. We analyze this attack in greater detail as an example CISSA
in AppendixA.

SK Communications. This scenario is based on a 2011 incident involving
the theft of customer data from SK Communications: a South Korean internet
service provider [6]. The attackers compromised a software vendor, and created a
trojanized software update that installed a remote administration tool on more
than 60 machines in the corporate network. The attackers leveraged this malware
to exfiltrate personal information from over 35 million of SK Communications’
customers.

Syrian Electronic Army. In 2013, a hacktivist group thought to have ties to
the Syrian government initiated a number of phishing attacks against Western
media organizations [16]. The attack follows two stages: (i) an initial phishing
campaign from external email accounts to gain access to a user account in the
target organization, and (ii) a second, internal, phishing campaign to obtain
more desirable user accounts (e.g., with access to the company website’s content
management system). Once the attackers gain access to the company’s website or
social media account, they undertake web defacement or publication of material
supporting their political agenda.

4.2 Our Experiences Constructing CISSA Cases

One lesson learned from the process of defining CISSA cases is the need for
iteration. Since each of the real-world security incidents described above are
unique, there was a need to progressively update the input specification. In fact,
the users input U was added to the framework after identifying a gap in a
previous ontology related to the modeling of human-centric attack vectors such
as phishing. We believe future work and attention from the broader security
community will further strengthen the CISSA framework and case descriptions.

A second critical issue is the level of detail to provide for each input class
in the tuple. Real-world systems and cyber incidents are undoubtably complex,
and model-based assessment tools often require different representations of the
target system. We sought to address this by placing greater emphasis on what
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Table 2. Model-based security assessment tools used in experiments

Tool Category Features

MulVAL [19] Attack-graph-based Integrating network and system
vulnerability assessment

CySeMoL [27] UML-based Modeling various aspects of information
system, with built-in knowledge base
for quantitative evaluation

BDMP [22,23] Attack-tree-alike, with
extra modeling power

Modeling dynamic behaviors by
Markov-chain-enhanced attack trees

Table 3. CISSA elements used as inputs to assessment tools

Tool Network Data User Operations Undesirable
Outcomes

Attack Counter-
measure

MulVAL OVAL/Nessus/
Firewall
scan
reports

Nil Built-in
extensible
library,
e.g.,
hasAc-
count,
etc.

Nil Built-in
extensible
library,
e.g.,
execCode,
etc.

Nil Nil

CySeMoL Predefined
extensible
library,
e.g.,
Network
Zone,
NetworkIn-
terface,
etc.

Predefined
extensible
library,
e.g.,
Dataflow,
Datastore,
etc.

Predefined
extensible
library,
e.g.,
Person,
Account,
etc.

Technical,
opera-
tional,
organiza-
tional
levels
modeled in
templates

Nil Predefined
attack
steps

Predefined
defense
steps

BDMP User-
constructed
attack tree

User-
constructed
attack tree

Nil Nil Root of
attack
tree

Tree leaves,
e.g., AA,
ISE,
TSE

Enable/
disable
detection
mode

should be specified rather than how it should be represented. While there may
be no “right” level of detail, we believe one of the primary benefits of CISSA
is making clear the starting point for various model-based security assessment
efforts.

5 Putting CISSA into Use

As summarized earlier in Table 1, our small yet diverse set of scenarios exhibit
some unique characteristics, e.g., on the nature and design of the system, the
tactics, techniques, and procedures of the attack, and the response from the
victim. Based on these characteristics, we group the six scenarios into three cat-
egories corresponding to different security features that are typically assessed:
technical, operational, and organizational. As we discuss below, CISSA provides a
convenient and concrete context for security analysts to explore technical, oper-
ational, and organizational security aspects, and to understand which security
assessment tools or methods may be most appropriate for each one.
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Such a common context enables comparison of different security assessment
tools in their evaluations from various aspects. For instance, from the technical
aspect, CISSA allows security analysts using assessment tools to answer ques-
tions such as how do the network topology and configuration of the assessed
system affect its security standing, for a particular scenario? (Experiment I).
With a given CISSA scenario with details in the systems, security analysts can
tweak the network topology and configuration, and quickly re-evaluate the secu-
rity of the resulted systems under the same settings. From the operational aspect,
CISSA can assist analysts in answering questions like how much would a bet-
ter incident response procedure change the system’s resilience against the given
attack? (Experiment II). For example, in the Target case, it took weeks before
the victim confirmed the breach. If the response were more prompt, would the
impact be lowered? Such hypothetical questions can be assessed by adopting
different incident response options for the original CISSA case, and comparing
the evaluation results from various assessment tools. In addition, CISSA can be
useful in providing the context for evaluating questions like how effective could a
better security awareness program be at thwarting an attack in a given environ-
ment? (Experiment III). Such analysis will be especially relevant to studying
how cases such as Maroochy attack can be better prevented. Our experiments
as detailed next focus on the three aspects, demonstrating how CISSA can be
useful in comparing and informing different security assessment methodologies
and tools.

5.1 Using CISSA to Compare and Inform Methodologies

Ultimately, the usefulness of CISSA to security practitioners and security assess-
ment researchers depends on: (1) whether using CISSA provides insight on com-
paring and selecting existing security assessment tools; (2) whether using CISSA
reveals aspects where existing assessment tools are doing well and/or lagging
behind. To provide some initial insights into the usefulness of CISSA in the
above aspects, we focus on three representative model-based security assess-
ment methodologies with good tool support, among many others (e.g., ADTree,
ADVISE, NETSPA). As summarized in Table 2, the three tools we choose,
i.e., Multi-host, Multi-stage Vulnerability Analysis Language (MulVAL) [19],
Cyber Security Modeling Language (CySeMoL) [27], and Boolean logic Driven
Markov Process (BDMP) [22,23]1, use different formalisms to incorporate dif-
ferent security-related aspects, and subsequently (as we will show later), take in
significantly different information and format as inputs. Table 3 describes how
each tool takes in specific CISSA elements as input.

Feeding CISSA into the Tools. When conducting our experiments, we apply
a best-effort approach, by (1) applying CISSA scenarios to assessment tools as
much and as directly as possible, and (2) exploring the available features of the

1 In this paper, we refer to the particular tool available at http://researchers.edf.com/
software/kb3-44337.html.

http://researchers.edf.com/software/kb3-44337.html
http://researchers.edf.com/software/kb3-44337.html
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tools as much as needed—as we will show, this often involves the use of some
advanced features in the tools.

One practical benefit of having CISSA is to encourage different security
assessment tools to unify their input formats. This would help security practi-
tioners who need to work with different tools. Currently, our XML-based CISSA
scenarios [1] cannot be directly used by the three tools in an automatic way.
Instead, we manually convert the XML files into the appropriate input formats
for each tool. From this exercise, we see that it should be feasible to automat-
ically translate CISSA scenarios for use in some tools. For example, MulVAL
has built-in parsers to collect input from certain vulnerability scanners, and
CySeMoL supports XML import/export2 However, it is less clear how to auto-
mate the procedure to convert CISSA scenarios for use in tools like BDMP,
which is designed for manual use. One potential direction is to construct a basic
attack tree as a starting point for BDMP by chaining together different attack
steps using their pre-conditions and post-conditions.

While we strive to be comprehensive in CISSA, all three tools need extra
information (beyond CISSA inputs) to conduct their assessment. For example:

– BDMP requires the probability distributions for launching an attack step.
Since we cannot readily obtain such information from real-world measurements
and reports, it is not included in CISSA.

– MulVAL computes the risk associated with different vulnerabilities by obtain-
ing the corresponding vulnerability descriptions from a database.

– CySeMoL relies on built-in logical structures and probability relationships
among different security-related concepts, in order to cater for non-expert
users. While CySeMoL includes a meta-class editor to change these default
settings, CISSA does not provide enough information to allow us to do so.

In the future, we believe that CISSA will evolve to provide more complete cover-
age for different tools. However, we foresee that there will always be certain tool-
specific information that is not suitable for inclusion in CISSA. We believe that
each security assessment should explicitly state the input information that was
considered, and that any delta with the CISSA information should be made
explicit.

In the remainder of this section, we use the above inputs (both inside and out-
side of CISSA) to conduct several tool-based experiments attempting to address
three typical questions in the technical, operational, and organizational aspects.
The purpose of these experiments is to show how CISSA can provide a realistic
context for analyzing the processes used by the tools to gather inputs and pro-
duce these outcomes. It is not, however, intended to be a commentary on the
soundness of the tools nor the accuracy of the outcomes.

2 The PRM-based version in [27] provides XML import/export. However, we can-
not find the format and semantics of the files, nor available tools for generat-
ing/processing them.
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Experiment I (Technical Aspect). Here we challenge the tools to answer
this question: how does the network topology and configuration of the assessed
system affect its security standing for a particular scenario?

First, we use MulVAL to model the Stuxnet scenario, which is characterized
by a sophisticated multi-step attack and the utilization of several vulnerability
exploits as attack vectors. By design, MulVAL reports unpatched vulnerabilities
in a network by leveraging various sources, such as OVAL, the Nessus scanner,
NVD, etc. It integrates the discovery of such vulnerabilities into the assessment.
To model the Stuxnet scenario, we find that we need to use some advanced fea-
tures of MulVAL, e.g., creating new inference rules for generating attack graphs.
For example, the default MulVAL engine cannot model USB-based penetration
of the “air-gap”. Hence, we add a few new rules, including:

interaction_rule(
(execCode(Host, Perm) :-

vulExists(Host,_,Software,_,privEscalation),
localService(Host,Software,Perm),
usbMounted(Host,USB_Drive),
malwareLocated(USB_Drive)),
rule_desc(‘Exploit via Infected USB’,1.0)).

With these changes and the CISSA inputs, MulVAL generates a high-quality
attack graph that closely resembles the attack graph used in an in-depth Stuxnet
analysis report published by Tofino Security [4]3. In the generated graph, attack-
ers have more than 210 different possible attack paths to reach the process con-
trol network, by combinatorially exploiting seven different attack vectors over
multiple network segments. MulVAL produces an attack success probability of
0.861 for this scenario.

To assess how network topology affects the system’s security, we remove
the vulnerable Web Navigator server in the topology to implement a “true air-
gap”, i.e., physical segregation between enterprise and control network, instead
of firewall-isolated one. With this change, there are fewer than five attack paths
still available to attackers, and the attack success probability produced by Mul-
VAL decreases to 0.539 accordingly. We present the generated attack graphs for
comparison in Figs. 3 and 4, respectively. We also experiment with two alterna-
tive configuration setups: one with all USB drives prohibited, and the other with
remote employee access disabled. It turns out that security enhancement gained
from these is less obvious than a true air-gap. MulVAL produces 0.825 and 0.667
attack success probabilities, respectively, for the two alternatives. This experi-
ment shows how a tool like MulVAL can use information in CISSA to provide a
concrete answer for the question posed earlier.

We also test BDMP and CySeMoL with the same Stuxnet scenario. For
BDMP, unlike MulVAL which can automatically generate the attack graph, we
have to manually construct the model. This is more time consuming, especially
3 The main difference is that the hypothesis in [4] about Contractor Remote Access

attack vector is not included in our CISSA case.
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Fig. 3. Stuxnet: with Web Navigator
server

Fig. 4. Stuxnet: no Web Navigator server.
Figures 3 and 4 are presented to illustrate
the different number of attack paths for
the two settings, and not meant for show-
ing the details.

Table 4. Results on attack success probability for Stuxnet scenario from CySeMoL
and BDMP

Tool 10 days’ attack 30 days’ attack 180 days’ attack

CySeMoL .38 .43 .45

BDMP .05 .34 .60

when we vary the network topologies and configuration setup of the system,
such as removing the Web Navigator server to answer some “what if” questions.
With CySeMoL, we also need to manually construct the network topologies for
the assessed system. However, once it is constructed, it is fairly straightforward
to alter it and re-run the assessment.

Differed Inputs, Differed Outputs: A key observation is that although these
tools use similar metrics to represent the assessment result, i.e., the attack
success probability, they produce vastly different values for the same system
assessed. Part of the reason could be the presence of additional, tool-specific
inputs, as discussed previously.

Fig. 5. Target data breach modeling with BDMP
(partial)

Fig. 6. SEA modeling with
CySeMoL (partial)
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We now compare the attack success probabilities produced by the tools when
we model the same Stuxnet scenario. Since both CySeMoL (the latest version
of v2.3)4 and BDMP require the specification of attack duration in order to
compute the metric, while MulVAL does not have the notion of time, we can only
compare the results produced by CySeMoL and BDMP meaningfully. Table 4
shows the attack success probabilities produced by CySeMoL and BDMP for
the Stuxnet scenario under varying attack duration. As shown in the table, the
results differ between tools for the same attack duration, and the BDMP tool
exhibits much higher sensitivity to the attack duration. For security practitioners
to better interpret differences like these, it is necessary to clearly specify the extra
inputs used to conduct a security assessment.

Experiment II (Operational Aspect). Here we challenge the tools to answer
this question: how much would a better incident response procedure change the
system’s resilience against the given attack?

We have varying degrees of success in conducting operational-level security
assessment using the three tools. MulVAL does not have a built-in notion of time,
nor about reactive defense procedures. Although we were able to introduce some
customized rules for MulVAL in our last experiment, because the notions of time
and reactive countermeasures are so fundamental, it is unclear how to enhance
MulVAL to model these aspects. For CySeMoL, we can indirectly model the
impact of reactive countermeasures by varying the attack duration parameter.
We observe that the final risk value computed for the Target case is highly
influenced by this parameter, e.g., the attack success probability can be reduced
from 58 % to 14 % if the countermeasure can reduce the available time for the
attacker from 1 week to 1 day.

In comparison, we find that some advanced features offered by BDMP [22]
can be very useful in answering this question. In particular, BDMP allows a user
to express the detection effectiveness for each individual attack step directly
at four different stages: initial, ongoing, final, and a-posteriori. For the initial
(when an attack step gets started) and final (when an attack step completes)
steps, the user can specify a probability for the attack to be detected. For the
ongoing (when an attack step is being carried out) and a-posteriori (when an
attack step has been completed so the attacker can proceed to the next step if
any), the user can specify the mean-time-to-detection assuming the time follows
an exponential distribution.

We test these features by using BDMP to model the Target scenario (par-
tially shown in Fig. 5). To do so, we need to provide BDMP with the required
detection parameters. As argued earlier, getting ground-truth values for these
parameters is difficult in the real world, and thus they are not included in CISSA.
In our experiment, we compare the outputs of BDMP with an average ongoing/a-
posteriori mean-time-to-detection of 1 day and 1 week respectively. The results
show that the expected time for the attacker to stay in a state with access to
the credit card information, without being detected, increases by around 7 times

4 Earlier PRM-based versions of CySeMoL assume constant attack duration.
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under the two settings. This modeling capability can be very useful for secu-
rity practitioners to understand and promote the importance of rapid incident
response, if the required estimation for time-to-detection can be obtained with
reasonable accuracy.

While BDMP provides direct and detailed modeling for conducting these
studies for the Target scenario, we find that as of now the tool can only deal
with a one-time attack. This is insufficient to model repeated malicious attempts,
such as in the Maroochy case. One possible enhancement to BDMP would be to
integrate more complicated Markov models where a defeated attacker can adapt
and re-launch the attack.

Experiment III (Organizational Aspect). Here we challenge the tools to
answer this question: how effective could a better security awareness program
be at thwarting the attack in the given environment?

We find that organizational aspects are not well modeled by the studied tools:
only CySeMoL provides some simple modeling of a security awareness program.
We thus created a model (partially shown in Fig. 6) in CySeMoL for the Syrian
Electronic Army (SEA) scenario, exploring how the security awareness program
would affect the security assessment. Specifically, for a model without the aware-
ness program, CySeMoL produces a 28 % probability of success for the attacker to
access the victim’s Twitter account. After we enable the security awareness pro-
gram for the targeted organization, the risk reduces to 20 %. On the other hand,
a technical security mechanism like authentication protection can reduce the risk
from the original 28 % to 17 %. CySeMoL allows the combined application of both
organizational and technical security controls into the same model. For example,
with both security controls applied, the risk is reduced to 7 %.

Although it is interesting to see the modeling of organizational security con-
siderations together with other aspects in the same framework, we believe more
organizational security details can be included: for example, the existence (or
absence) of a policy for isolating different accounts (as in the SEA case), the
effectiveness of the auditing procedures for employees who leave a company (as
in the Maroochy case), or the trust policy for third-party vendors (as in the SK
Communications case).

6 CISSA: Benefits, Limitations, and Roadmap

Our experiments using example scenarios demonstrate how CISSA provides a
concrete context for analysis and identification of strengths and weaknesses of
security assessment tools. The pros and cons we discussed and the quantitative
values generated by the tools are provided only for the purposes of illustrating
potential benefits of using CISSA. Although the results could be further refined,
the process of using the different tools to answer specific security questions was
illuminating, and we believe that CISSA can play an important role in the con-
tinued development of this research area.
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6.1 Using CISSA to Advance the State-of-the-Art

From our evaluations we see three areas for improving model-based security
assessment methodologies.

Clarifying Inputs. As we mention in Experiment I, differing inputs and input
formats between different assessment tools has been a bottleneck, complicating
meaningful comparison of tools or corroboration of results. Our sample CISSA
scenarios have provided some initial but meaningful analysis on what different
assessment tools seem to agree on, and where they differ in terms of inputs. When
security practitioners need to conduct an assessment, they can have a better
understanding about which tool or tools would be most suitable by looking at
how they model similar scenarios.

Integrating Tools. Our experiments above demonstrate that different tools are
designed to focus on specific aspects of security assessment. Enhancing each one
individually to incorporate richer inputs is possible, albeit at the risk of making
them more complicated and hence reducing their usability. A better alternative
is to continue using different specialized tools to answer different questions, but
to find certain ways to integrate them together, e.g., the way MulVAL integrates
OVAL/Nessus scanning results. this front, common inputs are just the first step
towards interoperability between tools. Common interfaces, consistent outputs,
and methodologies or guidelines in partitioning assessment tasks also need to be
established after inputs are agreed upon by different tools.

Modeling Security Beyond the Technical Level. All three tools we exper-
iment with provide detailed modeling in the lower technical aspects. However,
our success decreases as we move up to the operational and organizational level.
Cross-reference between different levels is also preliminary in all three tools. By
designing CISSA to contain information at all three aspects (and in a more
balanced manner), CISSA can help promote a more holistic treatment of these
different levels.

6.2 Present Limitations

The main limitation of our current CISSA definition is that it does not guar-
antee on the completeness of information. However, the idea is to populate the
CISSA repository with such information as commonly required by popular secu-
rity assessment tools. CISSA can be readily extended to include additional infor-
mation about systems being assessed or the details about the threats as neces-
sary. However, CISSA at least makes input to security assessment explicit, which
can significantly avoid possible misunderstandings and misassumptions on how
systems are assessed.

Another potential limitation is that the conversion from CISSA cases to
tool-specific inputs is non-trivial. As a one-time effort, once a particular CISSA
case has been converted, it can be readily reused for similar scenarios by minor
edits. We plan to develop tools to help automate such processes. Our hope is the
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usefulness of CISSA demonstrated in practice will motivate gradual and eventual
converge in the format of inputs to different security assessment tools.

A third limitation could lie in the process of security analysts selecting most
relevant CISSA cases for the systems under assessment, when the CISSA repos-
itory grows much richer. In fact, we would encourage a worst-case analysis by
considering all attack scenarios. Ruling out security vulnerabilities is by itself
very challenging.

6.3 The Future of CISSA

Pinpointing areas where model-based security assessment can improve is one of
the key roles we believe CISSA can play. At the same time, in better shaping
security assessment methodologies we expect CISSA itself to evolve.

Our initial experiences in constructing sample CISSA scenarios indicate that
CISSA is more of an evolving effort than a static collection. The seven-element
CISSA framework we propose is also to be iteratively refined with additional
effort on constructing additional sample CISSA scenarios, e.g., in terms of
whether to include/exclude some information, how to define the delta accu-
rately, and how to enable automatic translation. We understand this has to be a
community-wide effort, and we plan to incorporate CISSA modeling and CISSA-
enabled comparison with other tools in the development of our own security
assessment software [30]. Furthermore, we plan to organize workshops to pro-
vide the forum for developers of security assessment tools to discuss how to make
CISSA more useful. We hope other security researchers will share our vision, so
we can work together to continue building an ever-richer CISSA repository.

We believe this type of sustained community effort will be the first step in
making model-based security assessment more scientific and valuable. Establish-
ing a commonly accepted input repository for security assessment will form a
basis for benchmarking security assessment tools. We have seen benchmarks in
many other areas, such as the JavaScript engine, GPU rendering, routing proto-
cols, etc. Unfortunately, we are not yet close to having common benchmarks to
gauge model-based security assessment tools, e.g., for evaluating their breadth
in taking all relevant information into account, their sensitivity to network topo-
logical changes, their run-time performance to assess a particular scenario, etc.
Security researchers first need to largely agree on the inputs, before they can
work out how the outputs from security assessment tools can be interpreted as
benchmarking results.

7 Conclusion

This paper presents an open repository of common input scenarios for security
assessment (CISSA). By constructing six sample input scenarios and experi-
menting with three assessment tools, we show the potential usefulness of CISSA
for security practitioners and for the future development of security assessment
tools. In particular, well specified common inputs could facilitate the comparison
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and integration of different assessment tools. We hope our work will promote a
concerted community effort to build a richer repository of CISSA for supporting
model-based security assessment studies.

Acknowledgements. This study is supported by the research grant for the Human-
Centered Cyber-physical Systems Programme at the Advanced Digital Sciences Center
from Singapore’s Agency for Science, Technology and Research (A*STAR).

A Appendix: CISSA Example

In this section we provide an example CISSA by describing the seven elements
(N , D, U , O, X, A, C) for the Target Corporation data breach. The input files
themselves are available online in XML format [1].

A.1 Brief Recap of the Target Incident

The data breach at Target Corporation in 2013 resulted in the loss of credit
card data from 40 million customers [3,8]. This multi-stage attack began with
the theft of an HVAC vendor’s credentials for Target’s vendor management web
portal. From there, attackers were able to penetrate deep into Target’s corporate
network, steal personally identifiable information (PII) from a database, and
deploy malware to pull customers’ credit card information off of Target’s point-
of-sale machines. Stolen data were exfiltrated via FTP from inside the corporate
network.

Fig. 7. Components and network for target input scenario
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A.2 CISSA Definition for the Target Scenario

To illustrate how CISSA specification can represent the details of read-world
incidents for security assessment, we briefly present how we define the Target
scenario under CISSA.

Components and Network N . A large retailer such as Target typically has
100s or 1000s of locations, each with numerous point-of-sale (POS) stations that
accept and process customer payments. Figure 7 depicts the network connec-
tions (EN ) and devices (VN ) considered in this scenario. The model includes K
store locations, each with TK POS machines which are connected via a switch
to a back-of-house (BoH) server. This BoH server connects to a central payment
server at the corporate network, which interfaces with external financial insti-
tutions to verify transactions. The corporate network also includes a directory
server, a web server, and a database server. We abstract other corporate services
from this model. In the XML files online [1] we specify additional information.

Data D. Data plays a central role in the Target CISSA. The attackers’ goal
was the theft of customer data, and this was made possible by the acquisition
of additional system-specific data. Table 5 describes the data items that are
modeled in this scenario. We provide a unique identifier for each data item IDD,
a description of the data’s properties LD, and a list of devices that interact with
the data MapD (network links are omitted for brevity).

Table 5. Data items in the target input scenario

Identifier (IDD) Description (LD) Mapping (MapD)

D1 Credit card number POS terminal, BoH server, Payment
server, Bank

D2 Customer PII (e.g.,
name, address)

POS terminal, BoH server, Payment
server, Bank, Database Server

D3 Admin access token Servers in corporate network

D4 Active Directory listing Directory server

Users U . In this scenario, several different user types are affected by the inci-
dent. In particular, credentials from a vendor and, later, a Domain Admin-
istrator, enabled the adversaries to steal sensitive information relating to the
company’s customers. Table 6 summarizes the relevant user information.

Operations O. Arguably the most important system operation in this scenario
is the handling of consumer credit card information during POS transactions.
Figure 8 depicts this process. Here the vertices VO denote the major operations
from the POS terminal, a store’s BoH Server, and the Bank responsible for clear-
ing the transaction, while the edges EO imply sequential order. The mapping
function MapO in this case assigns specific devices to the roles described above
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Table 6. Users in the target input scenario

Identifier (IDU ) Description (LU ) Access (MapU )

U1 Contractor with vendor web portal account Web server

U2 Domain Administrator for corporate network All devices/links in N

U3 Customer in a store POS terminal

(e.g., POS Terminal 5 in Store #300). Additional system operations in this sce-
nario could include the POS Terminal or BoH Server’s software update process,
or the processes for collecting and storing personally identifiable information
(PII) in the company’s database.

Fig. 8. Transaction operations for target input scenario

Undesirable Outcomes X . In this scenario we model the final undesirable
outcomes of the attack as loss of credit card data and loss of personally identifi-
able information, as specified in Table 7. Due to space limit, we do not elaborate
on intermediate undesirable outcomes x1 to x7 for each attack step, while pro-
viding brief summary in Table 8.

Attack A. The attacker input α is modeled with:

– Goal: theft of credit card data X1.
– Access: external attacker, with access to “Web” in N .
– Skills: use of existing tools and malware (no zero-days).

Table 7. Undesirable outcomes in the target scenario

Identifier (IDX) Description (LX) Mapping (MapX) Implications (ImpX)

X1 Loss of credit card data POS machine Fraud, legal liability

X2 Loss of PII Database server Legal liability, loss of goodwill
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Table 8. Attack steps for the target input scenario

Attack step (Lσ) Pre-condition (Preσ) Post-condition (Postσ)

1. Steal credentials <(Vendor’s network access),
(Server vulnerability
exploiting techniques)>

<(Credentials of Target’s
systems), (), x1 (Credential
leak)>

2. Expl. web server <(Credentials of Target’s
systems), (Server
vulnerability exploiting
techniques)>

<(Privilege to execute OS
commands), (), x2 (Privilege
leak)>

3. Steal token <(Access to Target’s servers),
(Know-how of collecting NT
hashes from memory)>

<(Corporate network admin
privilege), (), x3 (Privilege
escalation)>

4. Create account <(Admin privilege to add new
user to Domain), ()>

<(Access to corporate
network), (), x4 (Malicious
admin account)>

5. Steal PII <(Access to corporate
network), (Skill to use
database server)>

<(Access to customer records),
(), x5 (Unauthorized
access)>

6. Install malware <(Access to POS machines’
writable folders), (Malware
infection capabilities)>,

<(Access to data on POS), (),
x6 (Malware infection)>

7. Aggregate data <(Access to FTP servers in
corporate network, access to
sensitive data), (Basic file
transfer techniques)>

<(), (), x7 (Sensitive data
aggregated>

8. Exfiltrate data <(Access to outward-facing
internet connection, access
to sensitive data), (Skills to
stealthily exfiltrate files)>

<(), (), X1 ∪ X2 (Data leak)>

The attack on Target’s corporate network and POS system is thought to
consist of 11 steps [3]. We model a simplified 8-step attack, i.e., σ1: Steal creden-
tials of vendor, σ2: Exploit vulnerability on Target web portal, σ3: Steal Domain
Admin access token, σ4: Create new Domain Admin account, σ5: Steal PII from
database, σ6: Install malware on POS machines, σ7: Aggregate stolen data in
network, and σ8: Exfiltrate data via FTP.

The above text constitutes the attack step description input (Lω). In Table 8
we specify the pre-conditions (Preσ) and post-conditions (Postσ) for these
attack steps.

Countermeasures C . The credit card industry maintains a set of standards
for data protection [20]. In addition to those guidelines—which were followed in
this scenario—other countermeasures can potentially detect or prevent similar
attacks.
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Table 9. Countermeasures in the target input scenario

Identifier (IDC) Description (LC) Mapping (MapC)

C1 Multi-factor authentication Users U1, U2

C2 Application whitelisting POS terminal

C3 Real-time monitoring Directory server, Web server

– Multi-factor authentication for the outward-facing vendor portal, and for
the Domain Administrators.

– Application whitelisting for the point-of-sale machines and the servers
involved in transaction verification.

– Real-time monitoring of user lists and network queries to detect the addi-
tion of new user accounts (particularly admin accounts) and potentially iden-
tify lateral movement of an attacker within the network.

References

1. Public Repository for CISSA. http://www.illinois.adsc.com.sg/cissa
2. Abrams, M., Weiss, J.: Malicious control system cyber security attack case study

- Maroochy water services, Australia (2008)
3. Aorato Labs: The untold story of the target attack step by step, August 2014.

http://www.aorato.com/blog/untold-story-target-attack-step-step/
4. Byres, E., Ginter, A., Langill, J.: How stuxnet spreads - a study of infection paths

in best practice systems. www.tofinosecurity.com/how-stuxnet-spreads
5. Chen, B., Kalbarczyk, Z., Nicol, D.M., Sanders, W.H., Tan, R., Temple, W.G.,

Tippenhauer, N.O., An Hoa, V., Yau, David, K.Y.: Go with the flow: toward
workflow-oriented security assessment. In: NSPW (2013)

6. Command Five Pty Ltd.: SK Hack by an Advanced Persistent Threat, September
2011. http://www.commandfive.com/papers/C5 APT SKHack.pdf

7. Falliere, N., Murchu, L.O., Chien, E.: Symantec security response: W32.stuxnet
dossier. www.symantec.com/content/en/us/enterprise/media/security response/
whitepapers/w32 stuxnet dossier.pdf

8. iSightPartners: Kaptoxa point of sale compromise, January 2014. http://www.
securitycurrent.com/resources/files/KAPTOXA-Point-of-Sale-Compromise.pdf

9. Kaspersky Lab Global Research and Analysis Team: Energetic bear - crouching
yeti, July 2014. http://securelist.com/files/2014/07/EB-YetiJuly2014-Public.pdf
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Abstract. Differential privacy is an established paradigm to measure
and control private information leakages occurring as a result of dis-
closures of derivatives of sensitive data sources. The bulk of differential
privacy research has focused on designing mechanisms to ensure that the
output of a program or query is ε-differentially private with respect to
its input. In an enterprise environment however, data processing gener-
ally occurs in the context of business processes consisting of chains of
tasks performed by multiple IT system components, which disclose out-
puts to multiple parties along the way. Ensuring privacy in this setting
requires us to reason in terms of series of disclosures of intermediate and
final outputs, derived from multiple data sources. This paper proposes
a method to quantify the amount of private information leakage from
each sensitive data source vis-a-vis of each party involved in a business
process. The method relies on generalized composition rules for sensitiv-
ity and differential privacy, which are applicable to chained compositions
of tasks, where each task may have multiple inputs and outputs of dif-
ferent types, and such that a differentially private output of a task may
be taken as input by other tasks.

1 Introduction

The broad availability of rich consumer data is driving businesses to become
increasingly data-driven in their daily operations. In particular, it is becoming
common practice for businesses to exploit private data about their current or
potential customers to design, sell and deliver services. As a broader set of orga-
nizational stakeholders become involved in processing personal customer data –
sometimes across organizational boundaries – it becomes increasingly critical to
measure and control private information leakages.

Differential privacy [5] has emerged as a promising foundation to quantify
and control private information leakages stemming from access to sensitive data
sources. The bulk of research in this field has focused on designing mechanisms
to ensure that the output of a given program or query is ε−differentially private
with respect to a collection of input objects, for a given privacy budget ε. In other
words, the contribution of each object in the input collection to the output is
bounded by a term dependent on the privacy budget.
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In an enterprise environment however, data processing generally occurs in the
context of business processes consisting of complex chains of tasks performed by
a range of IT system components and human actors. Ensuring privacy in this
setting requires us to reason not only in terms of an individual disclosure of
the output of a program or query to one party, but rather in terms of series of
disclosures to a range of parties.

This paper addresses the problem of analyzing differential privacy in the
context of business processes that involve multiple tasks, such that the output of
one task may be used as input by other tasks, and such that intermediate or final
outputs are disclosed to multiple parties. The paper addresses this problem in the
setting where business processes are codified using graphical models consisting
of processing nodes that extract data from potentially sensitive data sources,
transform the extracted data, and disclose derivatives thereof using a differential
privacy mechanism. Given such a graphical model, the paper outlines a technique
to address the following question: How much information about individual objects
in each input data collection does one execution of a process model disclose to
each involved party?

To illustrate this problem, we consider a simplified process to produce a
report about combined (data and call) service usage at a telecommunication
services provider. This process is depicted in Fig. 1 using the standard Business
Process Model and Notation (BPMN) [13]. The telco provider is represented by
a pool.1 There is a separate pool below it, corresponding to a contractor hired
by the telco to provide business consultancy services. To provide its services,
the contractor needs to access weekly “service summary reports” produced by
the telco. Inside the telco’s pool, there are two roles represented by the lanes
labeled “Data Analyst 1” and “Data Analyst 2”. The process starts when a
new summary report is created (cf. the start event labelled “summary report
required”). First, Data Analyst 1 performs a task wherein a set of call records
are accessed in order to prepare a call summary table. We assume that this col-
lection of call records (represented by a data collection – rectangle with a folded
corner and three vertical stripes) contains sensitive data. Hence, Data Analyst
1 does not get the actual data collection, but only the result of a differentially
private query. As a result of this task, a “Call summary table” is produced.
Next, an automated task is executed that combines the previous “Call summary
table” with another collection of “Data connection records” in order to produce
a “Combined report”. Again, since collection “Data connection records” con-
tains sensitive data records, the program executing this latter task incorporates
a differential privacy mechanism, which ensures that the combined report is ε2-
(resp. ε3-) differentially private with respect to “Data connection records” (resp.
“Call summary table”). The combined report is then checked by Data Analyst
2, who may modify it. The process ends with a “message event” denoting the
fact that the combined report is sent out to the contractor.

1 A pool in BPMN (represented by a horizontal rectangle) represents an indepen-
dent organizational entity that communicates with other entities via message flows,
represented via dashed arrows.
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Fig. 1. Model of a report preparation process (in BPMN).

Given a graphical process model annotated with metadata about differen-
tially private data releases, the technique proposed in this paper calculates for
each stakeholder in the process (Data Analyst 1, Data Analyst 2 and Contrac-
tor) and for each input of the process (here the “Call records” and the “Data
connection records”), how much ε privacy budget the stakeholder consumes with
respect to the data collection in question during one execution of the process.
This output can be used by an analyst to fine-tune the process (e.g. by adjusting
the εi privacy budgets) in order to achieve a certain level of privacy vis-a-vis of
each stakeholder and each data collection.

The proposed technique relies on a theoretical foundation that provides com-
position rules to calculate sensitivity and differential privacy of chained compo-
sitions of tasks, where these tasks take multiple inputs and produce multiple
outputs of different types. The paper outlines an algorithm that applies these
composition rules iteratively in order to calculate end-to-end differential privacy
for a given process.

The rest of the paper is structured as follows. Section 2 introduces concepts
and associated notation used subsequently. Section 3 presents the definitions of
differential privacy and sensitivity and associated composition rules. Next, Sect. 4
introduces a notation for privacy-enhanced process modeling and presents an
algorithm for differential privacy analysis of such models. Finally Sect. 5 discusses
related work and Sect. 6 summarizes the contribution and outlines directions for
future work.

2 Notation and Preliminaries

We use R and N to denote the sets of real and natural numbers, respectively.
The sets of non-negative real and extended real numbers are denoted by R+ and
R

∞
+ = R+ ∪ {∞}. If a, b ∈ R, then [a, b] denotes the set {x ∈ R | a ≤ x ≤ b}.
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If X is a set then D(X) denotes the set of all countable probability distrib-
utions of X. The elements of D(X) are mappings χ : X → [0, 1], such that the
set supp(χ) = {x ∈ X |χ(x) > 0} is (at most) countable.

Given a probability distribution ψ ∈ D(X × Y ), we let proj1ψ ∈ D(X) and
proj2ψ ∈ D(Y ) denote its projections to the first and second component, respec-
tively. These are defined by proj1ψ(x) =

∑
y∈Y ψ(x, y) for all x ∈ X and similarly

for proj2ψ, where the sum is well-defined due to the support of ψ being count-
able. For χ ∈ D(X) and φ ∈ D(Y ) we let χ ⊗ φ ⊆ D(X × Y ) denote the set of
all such probability distributions ψ that satisfy proj1ψ = χ and proj2ψ = φ.

Let f : X → D(Y ) and g : Y → D(Z). There is an obvious way to “compose”
f and g, the result of which we denote with g ◦Kl f and which is defined by

Pr[(g ◦Kl f)(x) = z] =
∑

y∈Y

Pr[f(x) = y] · Pr[g(y) = z] (1)

for all x ∈ X and z ∈ Z.
The notion of sensitivity of mappings used in this paper relies on (extended)

metric spaces defined as follows.

Definition 1 (Metric Space). A metric space is a set X together with a metric
dX on it. A mapping dX : X × X → R+ is a metric if it satisfies the following
conditions:

– for all x, y ∈ X: dX(x, y) = 0 iff x = y;
– for all x, y ∈ X, dX(x, y) = dX(y, x);
– for all x, y, z ∈ Z, dX(x, z) ≤ dX(x, y) + dX(y, z).

An extended metric may also take the value ∞. An extended metric space is a
set X together with an extended metric on it.

3 Differential Privacy

Let R be the set of possible database records and X = N
R be the set of databases

(i.e. a database is a multiset of records). Let O be a set of possible outcomes
and M : X → O a probabilistic map (an information release mechanism). For
r ∈ R let x1

r∼ x2 denote that x1, x2 differ only by r, i.e. x1(r) = x2(r) ± 1 and
x1(r′) = x2(r′) for all r′ ∈ R\{r}. Two databases x1, x2 ∈ X are adjacent if
x1

r∼ x2 for some r ∈ R. Let dX be any (extended) metric on X.

Definition 2 (Differential Privacy [5]). Let ε ∈ R. The mechanism M is
ε-differentially private if Pr[M(x1) ∈ S] ≤ eε ·Pr[M(x2) ∈ S] for all S ⊆ O and
all adjacent databases x1, x2 ∈ X .

There are a number of ways to make information release mechanisms private,
but the most commonly used techniques amount to adding a certain amount of
noise to the output of the mechanism. The noise has to be sampled from the
correct distribution, in order to obtain the bounds on the ratio of probabilities,
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as demanded by Definition 2. The Laplacian distribution has the necessary prop-
erties [6]. The required magnitude of the noise depends on the function that is
computed by the mechanism. A function that may have very different outputs for
databases differing only a little requires more noise to be added than a function
that changes only slowly.

Sensitivity is a key tool to reason about the differential privacy of information
release mechanisms. It gives upper bounds for the ratio of the change in the value
of the function with respect to a change in the argument of the function. For
mechanisms that first compute a “useful” function and then add noise to it, the
differential privacy of the resulting mechanism is the ratio of the sensitivity of
that function and the magnitude of the added noise.

Definition 3 (Sensitivity). Let X and Y be two metric spaces with distances
dX and dY on them. Let c ∈ R+. We say that a function f : X → Y is
c-sensitive, if for all x1, x2 ∈ X, the inequality dY (f(x1), f(x2)) ≤ c · dX(x1, x2)
holds.

Differential privacy itself can also be seen as an instance of sensitivity. Indeed,
define the following extended metric ddp over D(Y ):

ddp(χ, χ′) = sup
y∈Y

∣∣ln(χ(y)/χ′(y))
∣∣.

Then a mechanism M from X to Y is dX -private iff it is 1-sensitive with respect
to the distances dX on X and ddp on D(Y ).

The well-known composition theorems of differential privacy are instantia-
tions of more general results on sensitivity of composed mappings. We start with
the simplest result for sensitivity.

Proposition 1. Let f : X → Y be c-sensitive with respect to the distances dX

on X and dY on Y . Let f ′ : Y → Z be c′-sensitive with respect to the distances
dY on Y and dZ on Z. Then f ′ ◦ f : X → Z is c · c′-sensitive with respect to the
distances dX on X and dZ on Z.

Proof. Let x, x′ ∈ X. Then dZ(f ′(f(x)), f ′(f(x′))) ≤ c′ · dY (f(x), f(x′)) ≤ c′ · c ·
dX(x, x′).

This proposition can be generalized to multivariate mappings. Let i ∈
{1, . . . , n}. We say that a mapping f ′ : Y1×· · ·×Yn → Z is c′

i −sensitiveinitsi−
thargument, if for all tuples (y1, . . . , yi−1, yi+1, . . . , yn) ∈ Y1×· · ·×Yi−1×Yi+1×
· · · × Yn, the univariate mapping f(y1, . . . , yi−1, ·, yi+1, . . . , yn) is c′

i-sensitive.

Proposition 2. For i ∈ {1, . . . , n}, let fi : X → Yi be ci-sensitive with respect
to the distances dX on X and dYi

on Yi. Let f ′ : Y1×· · ·×Yn → Z be c′
i-sensitive

with respect to the distances dYi
on Yi and dZ on Z (for all i ∈ {1, . . . , n}). Then

the mapping g : X → Z, defined by g(x) = f ′(f1(x), . . . , fn(x)), is
∑n

i=1 cic
′
i-

sensitive with respect to the distances dX on X and dZ on Z.
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Proof. Let x, x′ ∈ X. Let zi = f ′(f1(x), . . . , fi(x), fi+1(x′), . . . , fn(x′)). Then
z0 = g(x′), zn = g(x) and by Proposition 1, dZ(zi−1, zi) ≤ cic

′
i · dX(x, x′). The

claim of the proposition follows from the triangle inequality.

The sequential composition theorem for differential privacy [12, Theorem 3]
is really just a special case of Proposition 2. In their setting, there is a dataset
x ∈ X and information release mechanisms M1 and M2, which are respectively
ε1- and ε2-differentially private. Let the possible set of outcomes of Mi be Mi.
First M1 and then M2 are invoked on x; the exact invocation of M2 may
depend on the result of M1. Finally, the result of M2 is published. This result
may include the result of M1, because it affected the invocation of M2. Such
composition of M1 and M2 is shown to be (ε1 + ε2)-differentially private.

Propostion 2 applies to this setting in the following manner. We have M1 :
X → D(M1) and M2 : X × M1 → D(M2). Let M2 : X × D(M1) → D(M2) be
the lifting of M2 to probability distributions in its second argument:

Pr[M2(x, χ) = m2] =
∑

m1∈M1

χ(m1)Pr[M2(x,m1) = m2].

Consider the Hamming distance on X (two datasets in X are adjacent iff their
distance is 1), and the distance ddp on both D(M1) and D(M2). Let f1 ≡ idX ,
f2 ≡ M1 and f ′ ≡ M2. The sensitivity of f1 is 1, the sensitivity of f2 is ε1, and
the sensitivities of f ′ in its first and second argument are ε2 and 1, respectively.
The latter follows the fact that no post-processing of a differentially private
query can lower the privacy guarantees it provides. We now apply Proposition 2
and find that the composition of f ′ with f1 × f2 is (ε1 + ε2)-sensitive. This
composition corresponds to the invocation of M1 and M2 one after another, as
described above.

4 Privacy Analysis of Data Processing Workflows

In this section, we introduce a graphical notation for capturing data processing
workflows with differential privacy, and we define algorithms to analyze the end-
to-end differential privacy of such workflows.

4.1 Data Processing Workflows

In Sect. 1, we presented a motivating example of a business process using the
BPMN notation. While BPMN is a widely used standard, it is also rather com-
plex. It comprises several dozen types of notational elements, covering several
flavors of parallel and conditional branching, sequential and parallel repeti-
tion, exception handling and transactional constructs among others. For pri-
vacy analysis purposes, we propose to reason on a simpler and more abstract
graphical notation, herein called data processing workflow. This simpler process
modeling notation is focused on capturing how data sources taken as input by
a business process are transformed into intermediate and final outputs, each of
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which is disclosed to one or multiple parties. Below we introduce data processing
workflows without considering the notion of “disclosure to a party”. The latter
notion is added in Sect. 4.3.

A data processing workflow consists of data nodes, processing nodes and
data-flow arcs. A data-flow arc connects a data node to a processing node or
vice-versa. A data node without any incoming arc is called a source data node.
It corresponds to an object or collection of objects that are given as input to the
workflow. A data node without any outgoing arc is called an output node (i.e.
it is data produced by an execution of the workflow). A data node with both
incoming and outgoing arcs is called an intermediate node.

Figure 2 shows an example of a data processing workflow. Processing nodes
are represented as rounded rectangles, while data nodes are rectangles with their
top-right corner folded over.

A

B

C

D

x1

x2

x3

x4

x5

x6

x7

Fig. 2. Example of a data processing workflow

Formally, a Data Processing Workflow W is a tuple (D,P, F ), where D and
P are two finite, disjoint sets, and F is a relation on (D × P ) ∪ (P × D). For
convenience, we will refer to D ∪ P as the set of nodes N . The elements of
D are data nodes and the elements of P are processing nodes, that is, nodes
representing computations over some input data.

Given a node n ∈ N , we define •n = {m | (m,n) ∈ F} (the predecessors
of n) and n• = {m | (m,n) ∈ F} (the successors of n). A workflow W is said
well-formed if it induces an acyclic, weakly connected graph, with the following
additional restrictions: every node d ∈ D has at most one successor and at most
one predecessor, i.e. | •d | ≤ 1 and | d• | ≤ 12, and every node p ∈ P has at least
one predecessor and at least one successor node, i.e. | •p | ≥ 1 and | p• | ≥ 1. In
the following, we consider only well formed workflows.

2 Acyclicity is also required on data dependencies as way to simplify the presentation.
However, this restriction does not affect the generality of our approach. A cyclic
data dependency would usually stand for a data update access. The same intuition
can alternatively be represented with two data nodes: one data node representing
the read data object and the other one representing the written data.
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A privacy-enhanced workflow is a workflow annotated with differential pri-
vacy and sensitivity values, which we assume are derived separately via an
analysis of a program or query implementing the data processing node (as
discussed later in Sect. 5). Formally, a Privacy-enhanced workflow is a tuple
(W, E , C), where W = (D,P, F ) is a workflow and E and C are mappings of type⋃

p∈P •p×{p}×p• → R+, associating a differential privacy and sensitivity value
(respectively) to an output produced by a processing node, relative to an input
of this processing node.

For example, a privacy-enhanced version of the workflow shown in Fig. 2
is shown in Fig. 3. In the figure, we use εA[x1, x3] = 0.2 to denote the tuple
(x1, A, x3, 0.2) ∈ E , meaning that performing A is ε-differential private with
ε = 0.2, when processing x1 as input and producing x3. Similarly, cA[x1, x3] = 0.4
is used to denoted the tuple (x1, A, x3, 0.4) ∈ C, which means that A takes as
input x1 and produces x3 with a sensitivity of 0.4.

A

B

C

D

x1

x2

x3

x4

x5

x6

x7

εA[x1, x3] = 0.2
cA[x1, x3] = 0.4

εA[x1, x4] = 0.2
cA[x1, x4] = 0.4

εB [x2, x5] = 0.2
cB [x2, x5] = 0.4

εB [x3, x5] = 0.2
cB [x3, x5] = 0.4

εC [x4, x6] = 0.2
cC [x4, x6] = 0.4

εD[x5, x7] = 0.2
cD[x5, x7] = 0.4

εD[x6, x7] = 0.2
cD[x6, x7] = 0.4

Fig. 3. Example of a privacy-enhanced workflow

A workflow W = (D,P, F ) is interpreted in the following manner. For each
d ∈ D, there is a set Xd and a metric dd on D(Xd). For each p ∈ P and each
d ∈ p•, there is a mapping fp→d :

∏
d′∈•p Xd′ → D(Xd), which can be lifted to

fp→d :
∏

d′∈•p D(Xd′) → D(Xd).
Let S ⊆ D be the set of all source data nodes d, such that •d = ∅. For each

d ∈ D, an interpretation of W defines a mapping [[W ]]d :
∏

d′∈S D(Xd′) → D(Xd)
as follows. Let χd′ ∈ D(Xd′) for each d′ ∈ S and let X be the tuple (χd′)d′∈S .
Then

[[W ]]d(X) =

{
χd, if d ∈ S

fp→d(([[W ]]d′′(X))d′′∈•p), otherwise, where {p} = •d.

The mappings [[W ]]d are well-defined due to the acyclicity of W .
The annotations of a privacy-enhanced workflow (W, E , C) match the inter-

pretation of W if for all p ∈ P , d′ ∈ •p and d ∈ p•,



70 M. Dumas et al.

– the sensitivity of fp→d in its argument “d′” is cp[d′, d] with respect to the
distances dd′ on D(Xd′) and dd on D(Xd);

– the sensitivity of fp→d in its argument “d′” is εp[d′, d] with respect to the
distances dd′ on D(Xd′) and ddp on D(Xd).

These requirements talk about metrics over the sets of probability distribu-
tions D(Xd), and sensitivities of lifted mappings in terms of these metrics. In
AppendixA we discuss, how metrics on sets Xd can be lifted to probability dis-
tributions and what should the sensitivities of the original mappings fp→d be.

4.2 Data Node-Based Analysis of Workflows

As stated in Sect. 1, we are interested in computing upper bounds of the infor-
mation disclosed when data nodes are accessed by a user playing a given role in
the process. In order to do so, we leverage the concepts and definitions of Sect. 3
to design an algorithm that computes the differential privacy and sensitivity val-
ues of every intermediate and output data node in a privacy enhanced workflow,
relative to every source data node. Subsequently in Sect. 4.3, we show how to
aggregate the privacy and sensitivity values calculated in this way, in order to
compute a bound of the information that a party playing a given role can extract
from each source data node, given the data that are disclosed to them during
one execution of the workflow.

The proposed algorithm is given in Fig. 3. The input of the algorithm is a
privacy-enhanced workflow, while the output consists of two matrices, namely
ddp and dc, of size |S| × |O| where S is the set of source data nodes in the
workflow and O is the set of intermediate and output data nodes. A cell in ddp

(respectively dc) gives a differential privacy bound (resp. sensitivity bound) of a
given intermediate or output data node o relative to a source data node s. The
main idea of the algorithm is to iterate over the processing nodes in the workflow
in topological order (which requires that the workflow is well-formed and thus
acyclic). At each step, we compute the value of ddp[s, o] and dc[s, o] for each
output o of the current processing node p, using the previously computed values
for the input data nodes of p, as well as the formulas for composing sensitivity
values given in Propositions 1, 2 and 3 of Deliverable D1.1 and existing formulas
for composition of ε−differentially private information release mechanisms.

Example 1. We use the example in Fig. 3 to illustrate Algorithm1. To this end,
we consider the topological order [A,B,C,D] of processing nodes.3

During the first iteration, in line 1 the algorithm sets p to the processing
node A. In line 2, the algorithm iteratively selects a source data node (i.e. s ∈
D : |•s| = 0) and one successor of p such that the latter is reachable from the
selected source node. The first iteration of the inner loop then processes the pair
s = x1 and o = x3. Since x1 is a direct predecessor of A the algorithm will
perform lines 4–5. As a result, we have that ddp[x1, x3] = εA[x1, x3] = 0.2 and

3 Note that there exists another topological order of the processing nodes of the exam-
ple, namely [A, C, B, D]. Either one would produce the same output matrices.
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Algorithm 1. Differential privacy of a workflow
Data: A well-formed workflow (W, S), with W = (D, P, F )
Result: The matrices ddp and dc

1 foreach processing node p ∈ P in topological order do

2 foreach s ∈ D, o ∈ p• : |•s| = 0 ∧ (s, o) ∈ F+ do
3 if s ∈ •p then
4 ddp[s, o] = εp[s, o]
5 dc[s, o] = cp[s, o]

6 else

7 ddp[s, o] =
∑

i∈•p:(s,i)∈F+

min (ddp[s, i], dc[s, i] · εp[i, o])

8 dc[s, o] =
∑

i∈•p:(s,i)∈F+

(dc[s, i] · cp[i, o])

9 end

10 end

11 end
12 return ddp, dc

dc[x1, x3] = cA[x1, x3] = 0.4. The second iteration of the inner loop, in turn,
will process the pair s = x1 and o = x4. The latter will result in ddp[x1, x4] =
εA[x1, x4] = 0.2 and dc[x1, x4] = cA[x1, x4] = 0.4. This will complete the first
iteration of the outer loop because none of the successors of A is reachable from
x2. The following matrices summarize the outcome of the first iteration:

x3 x4 x5 x6 x7

x1 εA[x1, x3] = 0.2 εA[x1, x4] = 0.2
x2

ddp

x3 x4 x5 x6 x7

x1 cA[x1, x3] = 0.4 cA[x1, x4] = 0.4
x2

dc

In the second iteration, the algorithm sets p to the processing node B (line 1).
The inner loop first computes the values for source node x1 and the only successor
of B, that is x5. This time, the algorithm executes lines 7–8, because x1 is not a
direct predecessor of B. Note that x3 is the only direct predecessor of B which
is reachable from x1 and, as a result, there is only one term in the summation of
line 7. Therefore, in line 7 we have that ddp[x1, x5] = min(ddp[x1, x3], dc[x1, x3] ·
εB [x3, x5]) = min(0.2, 0.4 · 0.2) = 0.08 and in line 8 dc[x1, x5] = dc[x1, x3] ·
cB [x3, x5] = 0.4 · 0.4 = 0.16. In the second iteration of the inner loop, the
algorithm computes the values associated to the source node x2 and the only
successor of b, that is x5. Since x2 is direct predecessor of B, the algorithm sets
ddp[x2, x5] = εB [x2, x5] = 0.2 and dc[x2, x5] = cB [x2, x5] = 0.4.

The third iteration selects p = C and proceeds in a similar way as for the
second iteration. The following matrices summarize the values computed at the
end of this iteration.
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x3 x4 x5 x6 x7

x1 0.2 0.2 0.08 0.08
x2 0.2

ddp

x3 x4 x5 x6 x7

x1 0.4 0.4 0.16 0.16
x2 0.4

dc

In the final iteration, the algorithm computes the values by selecting p to
be the processing node D. In the inner loop, the algorithm will first select the
source node x1. Note that D has x7 as its only successor. However, there are
two direct predecessors of D, namely x5 and x6. Therefore the computation of
ddp involves the summation of the values that come from x5 and x6. Thus, we
have that:

ddp[x1, x7] = min (ddp[x1, x5], dc[x1, x5] · εD[x5, x7]) +
min (ddp[x1, x6], dc[x1, x6] · εD[x6, x7])

= min (0.08, 0.16 · 0.2) + min (0.08, 0.16 · 0.2)
= 0.064

and

dc[x1, x7] = (dc[x1, x5] · cD[x5, x7]) + (dc[x1, x6] · cD[x6, x7])
= (0.16 · 0.4) + (0.16 · 0.4)
= 0.128

In the final iteration of the inner loop, the algorithm computes the values
for s = x2 and o = x5. In this case however, there is only one term in the
summation. Therefore, ddp[x2, x7] = min (ddp[x2, x5], dc[x2, x5] · εD[x5, x7]) =
min (0.2, 0.4 · 0.2) = 0.08. Finally, dc[x2, x7] = dc[x2, x5] · cD[x5, x7] = 0.4 · 0.4 =
0.16. The following matrices summarize the outcome of the algorithm.

x3 x4 x5 x6 x7

x1 0.2 0.2 0.08 0.08 0.064
x2 0.2 0.16

ddp

x3 x4 x5 x6 x7

x1 0.4 0.4 0.16 0.16 0.128
x2 0.4 0.08

dc

The correctness of Algorithm 1 is established by the following theorem.

Theorem 1. Let (W, E , C) be a privacy-enhanced workflow with W = (D,P, F ).
Let W have an interpretation that matches the annotations E and C. Let x ∈
S and y ∈ O. Let the matrices ddp and dc be computed by Algorithm 1 from
(W, E , C). Then [[W ]]y is ddp[x, y]-differentially private and dc[x, y]-sensitive in
its argument “x” according to the distances dx on D(Xx) and dy on D(Xy).

Proof. The theorem is proved by induction over the data nodes of W , taken
in topological order. First we amend ddp and dc with columns corresponding to
data nodes in S, defining dc(x, x) = 1 and ddp(x, x) = ∞ for all x ∈ S, as well
as dc(x, y) = ddp(x, y) = 0 for all x, y ∈ S with x �= y. We now proceed with the
induction.
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Base case: y ∈ S. Then [[W ]]y takes the component “y” from its tuple of argu-
ments. The values ddp(x, y) and dc(x, y) describe the sensitivity and differential
privacy of the protection.

Induction step: let {p} = •y and let the differential privacy and sensitivity
claims hold for all [[W ]]y′ , where y′ ∈ •p. We note that fp→y is 1-sensitive for all
its inputs, if the distance on both the input and the output is ddp. The reason for
this is, that no post-processing can degrade the privacy level of a differentially
private mapping.

Let Cy′ be the sensitivity of [[W ]]y′ in its argument “x”. By induction hypoth-
esis, Cy′ ≤ dc[x, y′]. Proposition 2 now gives us that the sensitivity of [[W ]]y in its
argument “x” is at most

∑
y′∈•p Cy′ ·cp[y′, y] ≤ ∑

y′∈•p dc[x, y′]·cp[y′, y] = dc[x, y]
by Algorithm 1.

Similarly, let Ey′ be differential privacy level of [[W ]]y′ in its argument “x”;
by induction hypothesis, Ey′ ≤ ddp[x, y′]. On each D(Xy′), we may consider
either the distance dy′ or ddp. The sensitivity of [[W ]]y′ (in argument “x”) is
c1y′ = Cy′ according to dy′ or c0y′ = Ey′ according to ddp. The sensitivity of
fp→y in argument “y′” according to the distance dy′ [resp. ddp] on D(Xy′) and
the distance ddp on D(Xy) is ε1y′ = εp[y′, y] [resp ε0y′ = 1]. Let b[y′] ∈ {0, 1}
for each y′ ∈ •p. According to Proposition 2, the differential privacy of [[W ]]y is
∑

y′∈•p cb[y′]
y′ · εb[y′]

y′ , obtained by considering the distance dy′ (if b[y′] = 1) or ddp
(if b[y′] = 0) on D(Xy′). This bound for differential privacy holds for any choice
of bits b[y′]. Hence the differential privacy of [[W ]]y is

min
∀y′∈•p:b[y′]∈{0,1}

∑

y′∈•p

c
b[y′]
y′ · ε

b[y′]
y′ =

∑

y′∈•p

min(c0y′ · ε0y′ , c1y′ · ε1y′) =

∑

y′∈•p

min(Ey′ · 1, Cy′ · cp[y′, y]) ≤
∑

y′∈•p

min(ddp[x, y′], dc[x, y′] · cp[y′, y]) = ddp[x, y]

by Algorithm 1.

4.3 Role-Based Privacy Analysis of Workflows

So far, we have considered workflows without a notion of parties to whom data is
disclosed. To capture this latter aspect, we extend the notion of privacy-enhanced
workflow with a disclosure relation Disc ⊆ D × R, such that Disc(n, r) denotes
the fact that data node n is disclosed to role r. We assume here a classical role-
based access control model, entailing that all users who play role r are able to
access all data nodes disclosed to role r.

Given the matrices ddp and dc computed from a privacy-enhanced workflow
W and given the relation Disc capturing the disclosure of data nodes to roles,
we can now compute a differential privacy bound εr(s) of the information that a
given role r can extract from a given source data node s – i.e. how much a party
playing a given role can learn about individual records of a given input s of W :

εr(s) =
∑

(n,r) ∈ Disc : (s,n) ∈ F+

ddp[s, n] (2)
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Example 2. Given the matrices computed in the previous example:

x3 x4 x5 x6 x7

x1 0.2 0.2 0.08 0.08 0.064
x2 0.2 0.16

ddp

x3 x4 x5 x6 x7

x1 0.4 0.4 0.16 0.16 0.128
x2 0.4 0.08

dc

we can compute the differential privacy guarantee with respect to data node x1

that can be made for a party playing a role r that has access to both data nodes
x5 and x6 in the workflow shown in Fig. 3:

εr(x1) = ddp[x1, x5] + ddp[x1, x6]
= 0.08 + 0.08 = 0.16

In Eq. 2, we sum up the ε values calculated for each intermediate/output
data node that is disclosed to role r. This is a worst-case bound, applicable in
the case of “sequential composition” of differentially private release mechanisms.
The underpinning assumption is that if a role has access to two data nodes n1

and n2 produced from a given source data node s via two different paths in the
workflow, these two paths use the same or overlapping parts of data source s. If
this is not the case, meaning that n1 and n2 derive from independent parts of
s, a tighter bound may be applied – in the best case max(ddp[s, n1], ddp[s, n2])
instead of ddp[s, n1] + ddp[s, n2], based on existing results for so-called “parallel
composition” of differentially private release mechanisms. Hence, if we annotated
a privacy-enhanced workflow with additional metadata capturing independence
relations between multiple accesses to the same data source, we could refine the
calculation of the differential privacy budgets. Investigating this refinement is a
direction for future work.

5 Related Work

Differential privacy has been widely studied in the context of program analysis,
using e.g. types [10] or theorem proving [2]. These techniques allow one to reason
about the differential privacy of the output of a program relative to its input. In a
similar vein, techniques have been proposed to analyze sensitivity and differential
privacy for database queries expressed in SQL-like languages (e.g. PINQ) [12].
In this latter work, the aim is to ensure that the output of a given query is
differentially private with respect to the input tables, for a given privacy budget.
Again, these techniques are geared at analyzing that the output of a processing
node is differentially private with respect to its input. In this respect, these
proposals are complementary to ours: They can be used to analyze the sensitivity
and differential privacy of each data processing node in a workflow.

Perhaps the closest work to ours is Featherweight PINQ [7]. This latter work
defines a calculus that can be used to determine the sensitivity of parallel and
sequential compositions of queries defined in a workflow-like notation. However,
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it does not provide a framework that combines sensitivity and differential privacy
under the same roof as we do in our proposal.

Our work is also related to d-privacy [14]: a generalization of differential pri-
vacy that turns any metric on the set of possible datasets into a composable
privacy metric, of which differentially privacy is a special case. In this paper, we
build upon these and related ideas in [4,8] in order to define new composition
rules for processing nodes with differentially-private release mechanism, specifi-
cally rules that combine sensitivity and differential privacy in a way that allows
us to calculate differentially private bounds when a differentially-private output
of a node is fed as input to another differentially-private node.

Previous work on privacy analysis of business processes [1,9] relies on Petri
net reachability analysis and model checking to detect data objects that are
declassified to unauthorized parties either in full or in part. These approaches
adopt a multi-level security model, wherein the objects and subjects of the sys-
tem are divided in security levels. The goal of these techniques is to identify
cases where information from an object of a higher security level is copied to
an object with lower security level. However such techniques are Boolean: they
detect potential leakages but fail to quantify them, which is the goal of the
present paper.

The workflow notation employed in this paper is conceptually similar to
graphical workflow notations used in data warehousing [11] – where they are
referred to as Extract-Transform-Load (ETL) workflows – and also bears resem-
blances with data analytics workflow notations such as the one embodied in the
popular KNIME toolset [3]. The results presented in this paper can potentially
be applied to analyze workflows in these related notations.

6 Conclusion

To summarize, the main contributions of this paper are:

1. Theoretical results on sensitivity of composed mappings that generalize well-
known composition theorems of differential privacy and allow us to calculate
differential privacy bounds in the case where the differentially-private output
of a function is used as input to another differentially-private function.

2. A notion of privacy-enhanced workflow where tasks (processing nodes) trans-
form input objects into output objects using differentially private mechanisms
and each intermediate or output object is disclosed to one or more roles.

3. An algorithm that given a data processing workflow and given the sensitiv-
ity and differential privacy leakage of each processing node in the workflow,
estimates the differential privacy leakage generated by the disclosure of data
to each role involved in the workflow.

The proposed analysis technique has been implemented in a tool called
Pleak.4 Pleak allows one to: (i) model a process using the standard Business

4 The tool is available at http://pleak.io/ for research purposes.

http://pleak.io/
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Process Model and Notation (BPMN); (ii) annotate the elements of the process
model with sensitivity and differential privacy metadata; and (iii) obtain a table
stating the differential privacy budget consumed by each role (lane or pool) in
the process relative to each input data collection. Internally, the tool extracts
a data processing workflow from the BPMN model, and applies the technique
presented above. At present, only a subset of BPMN is supported, comprising
tasks, sequence flows, parallel gateways, data objects, lanes and pools. Also, the
input process models are assumed to be acyclic. These restrictions are meant to
ensure the BPMN model can be transformed into a data processing workflow.

In future, we will extend the notion of data processing workflow in order to
lift some of the restrictions imposed so far, particularly the restriction that data
processing workflows do not contain conditional branching nor cycles. To this
end, we need to extend the theoretical foundation to reason about conditional
branches in a differentially private computation. Also, as stated in Sect. 4.3, we
plan to enhance the workflow notation to capture independence relations between
multiple accesses to the same data source, so as to calculate tighter bounds
for differential privacy budgets when multiple computations access independent
parts of the same data collection (e.g. distinct sets of attributes).

Acknowledgments. This work is funded by DARPA’s “Brandeis” programme.

A Lifting Distances to Probability Distributions

To interpret a privacy-enhanced DP-workflow (W, E , C) (where W = (D,P, F )),
we have to give metrics dd on D(Xd) for each d ∈ D. Moreover, for the inter-
pretation to be matched by the annotations, the mappings fp→d between these
probability distributions must have the sensitivities given by E and C. It may be
more natural to assume that the interpretation gives us metrics on Xd, not on
D(Xd). It is also more natural to require the mappings fp→d to have a certain
sensitivity.

We thus define that a pre-interpretation consists of sets Xd for each d ∈ D
together with a metric d�

d on it, as well as the mappings fp→d for each p ∈ P and
d ∈ p•. We have to specify what kind of interpretation it generates, and when to
the annotations E , C match the pre-interpretation. The key for this is to specify
the metric dd on D(Xd).

Let X be a set and dX a metric on it. It turns out that the following definition
of a metric d#X on D(X) is a suitable one. Let χ, χ′ ∈ D(X). Then

d#X(χ, χ′) = inf
ψ∈χ⊗χ′

sup
(x,x′)∈supp(ψ)

dX(x, x′). (A.1)

The proposed metric d#X can be seen as a kind of “worst-case” earth mover’s
distance (or Wasserstein metric). In the “usual” earth mover’s distance, one
would take the average over ψ, not the supremum over supp(ψ).

The suitability of the construction (A.1) is given by the following two propo-
sitions. Note that the first of them would not hold for the “usual” earth mover’s
distance.
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Proposition 3. Let f : X → D(Y ) be ε-sensitive according to the distance dX

on X and distance ddp on D(Y ). Then the lifting f : D(X) → D(Y ) is ε-sensitive
according to the distance d#X on D(X) and ddp on D(Y ).

Proof. Let χ, χ′ ∈ D(X), ψ ∈ χ ⊗ χ′ and y ∈ Y . Then

Pr[f(χ) = y] =
∑

x∈X

χ(x) · Pr[f(x) = y] =
∑

x,x′∈X

ψ(x, x′) · Pr[f(x) = y] ≤
∑

x,x′∈X

ψ(x, x′) · eε·dX(x,x′)Pr[f(x′) = y] ≤
∑

x,x′∈X

ψ(x, x′) · esupx∈supp(ψ(·,x′)) ε·dX(x,x′)Pr[f(x′) = y] =

∑

x′∈X

χ′(x′) · esupx∈supp(ψ(·,x′)) ε·dX(x,x′)Pr[f(x′) = y] ≤

esupx,x′∈supp(ψ) ε·dX(x,x′) ·
∑

x′∈X

χ′(x′) · Pr[f(x′) = y] =

esupx,x′∈supp(ψ) ε·dX(x,x′) · Pr[f(χ′) = y],

where supp(ψ(·, x′)) denotes the set of all x ∈ X, such that ψ(x, x′) > 0. We
obtain

ddp(f(χ), f(χ′)) = sup
y∈Y

∣∣∣∣ln
Pr[f(χ′) = y]
Pr[f(χ) = y]

∣∣∣∣ ≤

inf
ψ∈χ⊗χ′

sup
x,x′∈supp(ψ)

ε · dX(x, x′) = ε · d#X(χ, χ′).

Proposition 4. Let f : X → D(Y ) be c-sensitive according to the distance dX

on X and distance d#Y on D(Y ), where d#Y is constructed from some distance dY

on Y according to (A.1). Then f : D(X) → D(Y ) is c-sensitive according to the
distance d#X on D(X) and d#Y on D(Y ).

Proof. Let χ, χ′ ∈ D(X). Define F as the following set of mappings of type
X × X → D(Y × Y ):

F = {ξ | ∀x, x′ ∈ X : ξ(x, x′) ∈ f(x) ⊗ f(x′)}.

Also consider the set Φ ⊆ D(Y × Y ), defined as follows:

Φ = {
∑

x,x′∈X

ψ(x, x′) · ξ(x, x′) |ψ ∈ χ ⊗ χ′, ξ ∈ F}.

In the definition of Φ, we take the averages over ξ(x, x′) with the weights given
by ψ(x, x′). We have Φ ⊆ f(χ)⊗f(χ′) because the first [resp. second] projection
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of any element of Φ is f(χ) [resp. f(χ′)]. We now have

d#
Y (f(χ), f(χ′)) = inf

φ∈f(χ)⊗f(χ′)
sup

(y,y′)∈supp(φ)

dY (y, y′) ≤

inf
φ∈Φ

sup
(y,y′)∈supp(φ)

dY (y, y′) = inf
ψ∈χ⊗χ′ inf

ξ∈F
sup

(x,x′)∈supp(ψ)

sup
(y,y′)∈supp(ξ(x,x′))

dY (y, y′) =

inf
ψ∈χ⊗χ′ sup

(x,x′)∈supp(ψ)

inf
φ∈f(x)⊗f(x′)

sup
(y,y′)∈supp(φ)

dY (y, y′) =

inf
ψ∈χ⊗χ′ sup

(x,x′)∈supp(ψ)

d#
Y (f(x), f(x′)) ≤ inf

ψ∈χ⊗χ′ sup
(x,x′)∈supp(ψ)

c · dX(x, x′) = c · d#
X(χ, χ′)

These two propositions tells us how to turn a pre-interpretation of a privacy-
enhanced DP-workflow into an interpretation. We define dd = (d�

d)
# for each

d ∈ D. The annotations E , C match the pre-interpretation if for all p ∈ P ,
d′ ∈ •p and d ∈ p•:

– the sensitivity of fp→d in its argument “d′” is cp[d′, d] with respect to the
distances d�

d′ on Xd′ and dd on D(Xd);
– the sensitivity of fp→d in its argument “d′” is εp[d′, d] with respect to the

distances d�
d′ on Xd′ and ddp on D(Xd).

In this way, the corresponding interpretation is also matched by the annotations.
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Abstract. Security risk treatment often requires a complex cost-benefit
analysis to be carried out in order to select countermeasures that opti-
mally reduce risks while having minimal costs. According to ISO/IEC
27001, risk treatment relies on catalogues of countermeasures, and the
analysts are expected to estimate the residual risks. At the same time,
recent advancements in attack tree theory provide elegant solutions to
this optimization problem. In this paper we propose to bridge the gap
between these two worlds by introducing optimal countermeasure selec-
tion problem on attack-defense trees into the TRICK security risk assess-
ment methodology.

1 Introduction

Recent attacks, such as Ashley Madison, Sony and Target, are well-known to
many of us. However, it is not only large or famous organizations that are tar-
geted by cyber criminals. Any company can be attacked, and companies have
to respond to this huge threat landscape by improving their security protection.
Nowadays the ability to better identify and prioritize security risks, and to detect
and mitigate incidents becomes critical. Companies need to look for the means
to pinpoint and quantify security gaps and to eliminate them by introducing
new security controls. Usually controls are selected following some established
guidelines. There exist generic security guidelines, e.g., IT-Grundschutz Cat-
alogues [4], ISO/IEC 27002 [13], NIST 800-53 [19], and domain-specific ones.
Examples of the latter are PCI DSS [22] in the banking domain, the controls
catalogue [6] in the air traffic management domain, ISO 27799 [10] for health
informatics, ISO 27019 [14] for the energy utility industry. Furthermore, controls
can be also identified by the interested parties and analysts in brainstorming [24].
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On the other hand, in the academic world there exist many techniques and
tools to select countermeasures in an optimal way. These techniques can be
roughly classified as more generic (e.g., optimal countermeasure selection on
attack trees [2,25]), or more domain-specific (for example, network hardening
techniques on attack graphs [1]).

These two worlds focused on the same problem of countermeasure selection
rarely engage with each other, one of the reasons being that industrial risk treat-
ment practices are entangled with many other practices and processes in the
company (governance and compliance, but also business operations), while aca-
demic solutions tend to be more isolated and focused on particular aspects. Fur-
thermore, design of new risk assessment methods generally follows the require-
ments and guidelines imposed by relevant standardization and regulation bodies
[23], i.e., ISO 27001 [12] and NIST Cybersecurity Framework [20]. Academic
solutions need to be introduced into risk management methodologies on top of
these guidelines. In this position paper we propose to bridge the two worlds of
practical risk management and theoretical results on optimal security control
selection in attack trees. As the security risk assessment method we apply the
TRICK Service framework developed and used in Luxembourg. We consider to
bridge this practical assessment process with an academic result concerning the
optimal countermeasure selection problem on attack trees, which is an instance
of approaches proposed by Roy et al. [25] and Aslanyan and Nielson [2].

The paper is structured as follows. We give an outline of the TRICK Ser-
vice in Sect. 2, and present a background on attack tree theory in Sect. 3. Our
proposal for bridging these two domains in the context of optimal selection of
countermeasures in risk treatment is presented in Sect. 4. We discuss possible
choices for selecting countermeasures in Sect. 5, and we present the optimization
problem that we solve for allocation of defensive nodes in attack trees in Sect. 6.
We illustrate our current approach on a private cloud use case in Sect. 7. We
then overview our next steps and conclude in Sect. 8.

2 The TRICK Service

TRICK Service (Tool for Risk management of an Information Security Man-
agement System based on a Central Knowledge base), developed by itrust con-
sulting in Luxembourg, is a web-based risk assessment and management tool for
identification, analysis and estimation of assets, threats, vulnerabilities, risk sce-
narios and security measures. It helps the analyst to determine a list of security
measures to be implemented in order to reduce the impact or the likelihood of
possible risk scenarios.

Risk analysis in TRICK starts with establishing the context by collecting
information about the type and business processes of the organisation and filling
in a table, according to ISO 27005:2011 [11]. This information is used by the
analyst to establish the most important assets considering the sector of the
organisation.

After the context definition, a brainstorming session identifies assets and risk
scenarios in the organisation. Qualitative risk assessment is performed at this
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stage to allow the analyst to estimate the exposure to identified threats, vulner-
abilities and risks. The next step consists in identifying the security measures
that are already implemented in the organization, and assessing their current
implementation rate and cost, referring to norms, such as ISO/IEC 27002 [13].

The analyst then estimates the annual loss expectancy (ALE) of each asset-
scenario pair, by multiplying the impact (in euros) that a scenario could have,
with the annual expected probability that a scenario could occur on the asset.

A risk reduction factor (RRF) parameter is associated to each asset-scenario-
countermeasure triple. The RRF is a coefficient that expresses the negative influ-
ence of a security control on the ALE generated by the occurrence of a scenario
on an asset. For a given security control in relation to a given scenario acting
on an asset, its RRF is a value between 0 and 1, where RRF=0 means that the
countermeasure is useless, and RRF=1 signifies perfect protection.

Implementation (or partial implementation) of a security control results in
an ALE reduction, based on the RRF and the implementation rate. For the sake
of simplicity we will not take the implementation rate of a security measure into
account, assuming that any countermeasure is fully implemented.

As we have seen from the description, in order to ensure that the overall risk
assessment, analysis and treatment process is correct, the analyst needs to come
up with a (sufficiently) complete list of scenarios and evaluate their respective
probabilities. If scenarios are too generic, it is very challenging to evaluate their
probabilities (or occurrence rates). At the same time, for simpler attack steps,
e.g., vulnerability exploitation, it might be more easy to evaluate their chances to
occur by relying, e.g., on the available statistics in the sector. To better estimate
the residual ALE, we proposed to apply the attack tree formalism summarized
in the next section.

3 Attack Tree Theory Background

Attack trees [26] are a graphical model useful for threat modelling and risk
assessment [18,21]. They are comprehensible to stakeholders with different back-
grounds and expertise, and they also enjoy various formal semantics [17] that
allow for qualitative and quantitative analysis of attack scenarios. In a typical
attack tree, the top node (the root) represents the goal of the attacker. For
instance, a possible goal is entering the system to manipulate the integrity (risk
scenario) of financial transactions (asset) by arranging a money transfer to the
attacker (impact).

The root is refined into a set of child nodes that represent the different
ways to achieve the goal. An or-refinement means that any child is sufficient to
achieve the parent goal, and an and-refinement states that all children need to
be achieved before the parent is achieved. Consequently, each child node can be
further refined, until the remaining nodes are simple enough and do not require
further refinement. These simple attack nodes are also called atomic attacks,
and they are leaf nodes of the attack tree.
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Probability computations on attack trees. For the scope of this paper we assume
that all atomic attacks in the tree are independent, and that all attack nodes
are unique in the tree. Then for two attack leaf nodes x and y that represent
independent events, with respective probabilities Pr(x) and Pr(y), we can cal-
culate their composed probability by Pr(x∧ y) = Pr(x)Pr(y); and Pr(x∨ y) =
Pr(x) + Pr(y) - Pr(x)Pr(y). A bottom-up evaluation can be further continued
on intermediate nodes until the probability of the root node of the attack tree
at, denoted as Pr(at), is computed. This evaluation can be done in, e.g., the
ADTool [8,15].

Attack-defense trees. Attack trees consider the situation only from the perspec-
tive of the attacker. However, the main goal of using attack trees in practice
is to systematize threat identification in order to improve risk treatment, i.e.
identification of relevant countermeasures. Therefore, extensions of attack trees
with defensive nodes emerged as a way to explicitly tackle the security control
problem. Notable extensions include defense trees [3], protection trees [5], attack-
countermeasure trees [25], and attack-defense trees [16]. In this work we focus
on attack-defense trees as this formalism integrates attacks and countermeasures
in the least restrictive way (i.e., defense nodes can be interleaved with attack
nodes, while in other formalisms they are typically only leaf nodes).

The problem of countermeasure selection is not novel in the context of attack
trees. Roy et al. considered the problem of optimal countermeasure selection for
attack-countermeasure trees in [25], and Aslanyan and Nielson investigated opti-
mal probability-cost balances on attack defense trees in [2]. Both of these works
consider a tree with already pre-selected countermeasures, and the solution of
the optimization problem is to find the subset of already placed countermeasures,
such that the probability of attacker’s success and the cost of selected controls
are minimal (a set of Pareto-efficient solutions is offered in [2]). Our goal is to
introduce optimal countermeasure selection akin to [2,25] into the TRICK risk
assessment methodology.

4 Proposal for Bridging the Gap

We consider that the analyst who is using TRICK will now express threat sce-
narios as attack trees, and will perform the subsequent risk treatment steps using
these trees.

The ROSI Function. The return on security investment (ROSI) function eval-
uates the investment made into security controls versus the obtained security
improvement [9]. The average yearly cost of implementing a set of new counter-
measures M (denoted as cost(M)) corresponds to the investment, and the total
ALE reduction obtained as a result of implementing these new countermeasures
(denoted ΔALE(M)) corresponds to the yearly gains. Thus, for a set of controls
M , ROSI(M) = ΔALEM − cost(M).

Considering that the Risk equals Impact multiplied by Probability [3],
we set the difference in the annual loss expectancy ΔALE(M) as the product
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of the Impact times the difference of yearly probability of occurrence without
and with implementation of the set of countermeasures M [25].

The probability for the attacker to reach the goal and to implement the
threat scenario can be evaluated through probabilities of atomic attack steps,
as discussed in Sect. 3. At the same time, the impact of the attack tree (i.e., the
impact in case the attacker reaches his/her goal and the threat scenario expressed
in the attack tree has occurred) can be estimated independently from the tree.
Thus we focus only on probability values and the selection of countermeasures
based on how well they can reduce the attack success probability.

We consider that each countermeasure t has a possible effect on each
attack node x. This effect is described by an effectiveness parameter, eff(t, x)
∈ [0, ], with eff(t, x) = 0 corresponding to a useless countermeasure for x, and
eff(t, x) = 1 defining perfect protection against x.

The effectiveness is defined so that the overall probability of the attack node x
mitigated by t, which we denote as xt, is defined as Pr(xt) = Pr(x)(1-eff(t, x)).
Thus, the higher the effectiveness parameter of the countermeasure in the given
context, the lower the resulting probability of attack.

The step of evaluating the security posture by considering already imple-
mented countermeasures in TRICK, can be directly executed on the attack tree.
The analyst will now place the existing countermeasures as defense nodes in the
attack tree. Computation of probabilities in presence of countermeasures and
their effectiveness can be done via the bottom-up evaluation algorithm; just like
for attack trees. As a result of this step of considering already existing counter-
measures, the analyst will obtain an attack-defense tree adt and will evaluate
the overall probability of the considered attack scenario as Pr(adt). For sim-
plicity, in this paper we consider that the analyst “starts from scratch”, i.e.,
the infrastructure does not have any security controls implemented yet, and the
analyst starts from an attack tree.

An important distinction of effectiveness from RRF in the context of TRICK
is that RRF measures global influence of the countermeasure on the particular
scenario occurring with the asset (i.e., on the whole attack tree), while effective-
ness is more localized as it applies to an attack node (sub-scenario) in the attack
tree, and reduces the probability of occurrence of only this node. The RRF in
the TRICK context could be further defined for a set of countermeasures as a
non-linear combination of their effectiveness parameters in the attack-defence
tree. Thus the process of creating an attack tree, estimating the effectiveness
parameters of available countermeasures, and selecting the optimal subset of
countermeasures can in the future serve as a methodology to better estimate
RRFs in the TRICK Service.

New Countermeasures From Catalogues. As we have mentioned, the de-facto
standard for risk treatment is to use catalogues of appropriate security mech-
anisms, such as [4,6,13,19,22]. TRICK also implements the catalogue of stan-
dard security controls defined by ISO/IEC 27002 [13], and others. Therefore,
a straightforward way to implement optimal countermeasure selection is to
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consider such a catalogue of countermeasures, and to define an optimization
problem on an attack-defense tree that maximizes the ROSI function.

Indeed, in practice an organization cannot implement all potential counter-
measures, and often even implementation of the most critical security controls
needs to be prioritized due to budget restrictions. Therefore, countermeasure
selection needs to be guided by the cost-benefit analysis, in which we will con-
sider costs of countermeasures versus their respective benefit (how well they can
reduce attack probabilities).

5 Choices for Countermeasure Selection

Several choices are possible for selecting countermeasures. In this section we
discuss these options in more detail.

Locality/Universality of Countermeasures. A countermeasure can be local, i.e., it
has effect only on the attack node it has been applied to in the tree. In this case,
if t is selected as a countermeasure for the attack node x, then it reduces the
probability of occurrence of the sub-tree x, but does not influence the probability
of occurrence of other attack nodes. However, this assumption does not preclude
t from being selected as a countermeasure at another applicable attack node
y, where it can then reduce the probability of occurrence (while inducing also
extra cost of a separate countermeasure). This solution will work well for the
cases when indeed separate security controls with the same name need to be
introduced in different locations of the infrastructure. For instance, if there are
two vulnerable doors that can be used by the attacker to get in, we will be able
to propose two door locks as separate protection mechanisms.

Yet, if, for example, an attack tree has the attack nodes “infiltrate the net-
work” and “probe the ports”, and the countermeasure “firewall” is applicable to
both of them, this countermeasure could be selected as a defense node twice in
our solution (so the approach could propose to pay twice for the same firewall).
Thus, an alternative is to assume countermeasures to be universal, meaning that
they are applied once to the entire tree and affect all attack nodes, unless the
effectiveness of a countermeasure on a given node has been set to zero (in this
case this countermeasure is not shown in the tree). It is also possible to con-
sider the combined approach, when some security controls are local, and some –
universal.

Unique/Multiple Countermeasures of the Same Type. One option is to consider
that each countermeasure can be applied to an attack node at most once. An
alternative solution is to allow multiple identical countermeasures to be applied
to the same node. Considering that each countermeasure is unique and can
be applied at most once allows to avoid trivial solutions when cheap controls
are applied several times. Furthermore, for the countermeasures defined in the
ISO/IEC 27002 standard, it makes sense to only apply them once in a given
context. Yet, certain defensive mechanisms can in fact improve protection if
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applied multiple times (e.g., several security guards may be better than one,
several locks on a door can be better than a single one).

Combinations of Defense Nodes. In general, catalogues suggest multiple counter-
measures against a single attack node. However, the semantics of attack-defense
trees only allow one single defense node per attack node [16]. To address this
limitation, one can aggregate several applicable countermeasures into a meta-
defense node for a given attack node. For example, we consider a combination
of defense nodes, expressed as an and-refinement, to be added to the tree. Con-
sidering t and q to be two countermeasures (extension to the general case of k
applicable countermeasures is trivial), we can add to the tree the defense node
t ∧ q, with eff(t ∧ q) = 1 - eff(t)eff(q). Intuitively it means that both t and
q simultaneously provide protection, but their effectiveness may not be fully
independent. Furthermore, cost(t ∧ q) = cost(t)+cost(q).

Alternatively, meta-defense nodes can be expressed as an or-refinement. In
this case, considering two applicable security controls t and q, the aggregated
meta-defense node t∨q can be added to the tree, with eff(t∨q) = 1−(1−eff(t))·
(1 − eff(q)). Again, cost(t ∧ q) = cost(t)+cost(q). The choice between these
two types of aggregated meta-nodes depends on the interpretation one has for
the defense nodes in the attack tree [16].

Defense Location-Sensitivity. If one considers countermeasures to be local, then
actual position of the countermeasure in the tree becomes an important fac-
tor further contributing to the complexity of the considered problem. We can
demonstrate that if a countermeasure t is applicable to both attack nodes x and
x ∨ y (what is very likely for attack trees expressed in natural language), then
assigning t to the parent node provides a better reduction of the risk. Indeed,
with the countermeasure assigned to the parent node x ∨ y, Pr(cp(x ∨ y, t)) =
Pr(x∨ y)(1-eff(t)) = (Pr(x) + Pr(y) - Pr(x)Pr(y))(1-eff(t)). In case t is allo-
cated with the child node x, we have Pr(cp(x, t)∨ y) = Pr(x)(1-eff(t)) + Pr(y)
- Pr(x)(1-eff(t))Pr(y). It is evident that Pr(cp(x ∨ y, t)) - Pr(cp(x, t) ∨ y) =
-Pr(y)eff(t) ≤ 0, given that 0 ≤ eff(t),Pr(y) ≤ 1. Therefore, the closer to the
root we place a defense, the better it can reduce the overall probability of the
considered attack.

We discuss the choices we have made for our implementation and the opti-
mization problem to be solved in the following section.

6 Attack Tree Refinement and Optimization Problem

Assumptions Made on Countermeasure Selection. In our current implementa-
tion we assume each security control to be universal. Thus, for each attack node
x and each countermeasure t, such that t is applicable to x (eff(t, x) > 0), we
consider that t can be applied to x as a defense node everywhere it is applica-
ble. Furthermore, we consider that each countermeasure, if selected, is applied
exactly once. These considerations imply that the total cost of each countermea-
sure is not affected by the number of times this countermeasure appears in the
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attack-defense tree (it is counted only once). We also consider that aggregated
meta-nodes are composed by the ∨-refinement.

The process to refine an estimation of probability for an asset-scenario pair
and to find the optimal set of countermeasures is as follows.

A. Assess Input Parameters.

1. Create an attack tree. Model the step or variant of the attack and describes
them in a pure attack tree at that does not contain any defence notes. Esti-
mate the success probability of each leaf node. Let n be the number of attack
nodes in the initial attack tree. Let aj denote the j-th node in this attack tree.
The ADTool [8,15] can be used to compute Pr(at), which is the success prob-
ability of the root note; it depends on the attack tree and the probabilities of
the leaf nodes.

2. Identify countermeasures. Prepare the list of potentially applicable counter-
measures from catalogues. Let m is the number of countermeasures in this
list. For each countermeasure, estimate the security implementation costs.

3. Estimate effectiveness values. Estimate the value of the (m×n) effectiveness
matrix E indicating the effectiveness of a countermeasure i on an attack
node j. We define E[i, j] = eff(i -th countermeasure, j -th attack).

B. Solve the Optimization Problem. A possible solution of the problem is
described by d = (d1, d2, ..., dm), an m-tuple indicating for each countermeasure
whether each corresponding countermeasure i will be implemented (if di = 1)
or not (di = 0). The cost of such a solution is given by cost(d) =

∑m
i=1(di×

cost(countermeasure i)).
Remark that we can have meta-defense nodes. Let the meta-defense node t

expresses the combined defenses applicable to the node ak. Then eff(t, ak) =
1 − ∏m

j=1(1 − dj × E[j, k]). In the attack tree language, this defense node is a
node consisting of an ∨-refinement of the selected countermeasures (dj = 1 and
E[j, k] > 0).

The Return On Security Investment (of the list of selected countermeasures
d) is defined as follows.

ROSI(d) = Impact · (Pr(at) − Pr(adtd)) − cost(d),

where the Impact is the loss achieved if the attack succeed (i.e., if the root
node of the attack tree occurs), adtd is the new attack-defense tree in which the
countermeasures selected by d have been added to the nodes according to the
effectiveness matrix E. Notice that adt can be constructed from at, d, and E.
The ADTool can be now used to compute Pr(adtd).

Our optimisation problem consists in finding the list of the selected coun-
termeasures d that maximizes ROSI(d).

Note that instead of maximizing ROSI(d), we can as well minimize Impact ·
Pr(adtd) + cost(d).
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Current Implementation. Our current implementation uses a branching algo-
rithm based on multiple parameters. We use a brute-force algorithm to find the
optimal d, by trying all 2m possible sets of countermeasures to implement. Our
tool called ADTop will be published as open-source.

General Optimization Problem. Notice that the generalized optimization prob-
lem for selecting countermeasures (considering various assumptions discussed in
Sect. 5) can be also solved by applying the approaches from [2,25]. To apply
these algorithms under the assumption of local countermeasures, we can con-
sider all security controls that have positive effectiveness and their combinations
as candidate defense nodes. Furthermore, in case of [2], we will also need to eval-
uate the resulting set of Pareto-efficient trees, and to select the one that gives
the global optimum to the ROSI function.

7 Illustration on a Use Case

We have applied our approach to a use case scenario of a private cloud attack.
The target of this scenario is a small/medium size enterprise (SME) with ten
employees sharing confidential documents, such as audit reports, studies, and
internal documents of customers. To allow continuous remote access to all doc-
uments, they are made available on a private cloud accessible via VPN and
installed in the SME’s IT room. Suppose that stealing these documents will
create a damage of 100.000 e.

Get data
0.2163

Access
remotely
0.094

Control
remote access

device
0.1045

Hack
remote access

device
0.005

Steal
remote access

device
0.1

Get
credentials

0.9

Social
engineering

0.8

Spy
0.5

Access
physically

0.135

Touch
server
0.15

Penetrate
server

0.9

Fig. 1. Initial attack tree with success probabilities for our private cloud attack use
case.
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Table 1. The effectiveness values and implementation costs of countermeasures.
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Management direction for inf. security 0.8 0.8 0.2 0.8 3.3

Internal organization 0.3 0.1 0.66

Mobile devices and teleworking 0.5 0.1 0.5 0.8 0.8 0.45

Prior to employment 0.1

During employment 0.2

Termination and change of employment 0.05

Responsibility for assets 0.375

Information classification 0.33

Media handling 0.15 0.4

Business requirements of access control 0.1 0.2 0.05 0.05 0.4 0.96

User access management 0.2 0.2 0.3 2.16

User responsibilities 0.3

System and application access control 0.7 0.55 0.1 0.7 0.5 1.86

Cryptographic controls 0.6 0.2 0.2 0.5

Secure areas 0.8 0.27

Equipment 0.05 0.2 0.5 0.45 0.53

Operational procedures and responsibilities 3.96

Protection from malware 0.4 0.05 0.1 0.5 0.8

Backup

Logging and monitoring 0.18

Control of operational software 0.1 0.15 0.2

Technical vulnerability management 0.35 0.05 0.3 0.05 0.66

Information systems audit considerations 0.312

Network security management 0.5 0.225

Information transfer 0.156

Sec. requirements of information systems 0.04 0.04 0.05 0.05 0.05 0.4

Sec. in development and support processes 0.05 0.78

Test data

Inf. security in supplier relationships 0.8

Supplier service delivery management

Management of incidents 0.6

Information security continuity 1.2

Redundancies

Compliance with laws and contracts 0.3

Information security reviews 2.4

Figure 1 presents the initial attack tree we produced for the considered use
case. It can be read as follows. To steal data, the attacker can remot7ely or
physically access the cloud file server. To access remotely, the attacker needs
to gain control of the remote access device and get the credentials to connect.
To gain control of the device, the attacker can hack it (which happens at a
success probability of 0.5 % within a timeframe of one year), or he/she can
steal it (success probability of 10 %). To get credentials, the attacker can make
the user to disclose them via social engineering (80 %), or, additionally to the
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hacking, he/she can spy on the privileged user, e.g., by installing a key logger,
or, before stealing the remote access device, by spying on the keyboard, e.g.,
via shoulder surfing (50 %). To access physically, the attacker needs to touch
the server(15 %) and to penetrate it, e.g., by plugging a USB stick or accessing
the hard disk (90 %). The probabilities were estimated by the customer, for her
implementation. The overall success probability of the root node “Get data” is
21.63 %, computed in the ADTool.

We consider as potential countermeasures the objectives taken from the
ISO/IEC 27002 standard (see Table 1). The customer has partially implemented
them, and has estimated the security implementation costs to achieve full compli-
ance to these objectives. We have evaluated the effect of these countermeasures
on each attack node of the initial attack tree by filling the matrix E, which was
filled for the eleven attack nodes and the thirty-five countermeasures, i.e., the
thirty-five objectives of the ISO/IEC 27002 standard. We identified the objec-
tives without any effect on the attack nodes and removed them, reducing the
complexity of the algorithm from 235 to 217 attack-defense trees to consider. The
optimal attack-defense tree adtopt found by our implementation is presented in
Fig. 2.

Figure 3 shows a screenshot of our ADTop tool that implements the approach
described in this paper. The optimal attack-defense tree adtopt found by ADTop
has the residual success probability for the attacker reduced to 1.28 % (instead of
the initial 21.63 %). The optimization function is computed as Impact· Proba-
bility(adtopt) + cost(selected countermeasures). For the optimal attack-defense
tree it is 100,000e · 0.0128 + 1750 = 3030. The corresponding ROSI is Impact·
(Probability(at) - Probability(adtopt)) - cost(selected countermeasures) =
100,000e · (0.2163 - 0.0128) - 1750e = 18,600e.

Fig. 3. Screenshot of the ADTop tool.
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8 Next Steps and Conclusions

In this position paper we have argued that there is a gap between practical risk
assessment methods and academic research. This gap explains why, on the one
hand, the practical impact of academic results is somewhat limited, while, on
the other hand, practical risk assessment methods do not include state-of-the-art
scientific results. Various factors influence this discrepancy. An example is the use
of different ontologies, leading to different interpretations of used notions, such as
combined defensive mechanisms (meta-defense nodes). Another possible factor
is implied by the fact that practical risk assessment methodologies often have a
wider scope than specific academic developments, which leads to an interfacing
problem between the two.

We argue that an important step forward can be made by bridging this
gap through extending practical methods with recent academic results. As an
example, we have looked at the extension of the TRICK methodology with
recent results on optimal countermeasure selection. In order to do so, we had to
agree on a common terminology and had to relate practical design details (like
countermeasure catalogues) to academic concepts (like attack-defence trees). In
this paper we provided a high-level description of the proposed extension of
TRICK and a special algorithm which has been implemented and is being tested
in the context of cloud security.

The next steps will focus on improving scalability by designing a better opti-
mization algorithm, and assessing whether the attack-defense-refined risk assess-
ment can be considered more reliable by the risk managers than the established
ALE in TRICK Service. Another future extension of this work is to consider
attack trees and attack-defense trees automatically generated from some system
model [7] as the starting point, instead of manually designed attack trees. This
will allow us to integrate the system also with the recent TREsPASS methodol-
ogy for assisted risk assessment [27].
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Abstract. The growing complexity of organizations and the increasing
number of sophisticated cyber attacks asks for a systematic and inte-
gral approach to Enterprise Risk and Security Management (ERSM). As
enterprise architecture offers the necessary integral perspective, includ-
ing the business and IT aspects as well as the business motivation, it
seems natural to integrate risk and security aspects in the enterprise
architecture. In this paper we show how the ArchiMate standard for
enterprise architecture modelling can be used to support risk and secu-
rity modelling and analysis throughout the ERSM cycle, covering both
risk assessment and security deployment.

Keywords: Enterprise architecture · Archimate · Risk and security
modelling · Risk analysis

1 Introduction

Until quite recently, IT security was the exclusive domain of security specialists.
However, due to the fact that the complexity of (networked) organizations and
their IT infrastructure is growing, and cyber attacks are getting more sophisti-
cated, traditional approaches to cyber security no longer suffice. In the last cou-
ple of years, organizations have started to realize that IT-related risks cannot be
seen in isolation, and should be considered as an integral part of Enterprise Risk
and Security Management (ERSM). ERSM includes methods and techniques
used by organizations to manage all types of risks related to the achievements
of their objectives.

It is only natural to place ERSM in the context of Enterprise Architecture
(EA), which provides a holistic view on the structure and design of the orga-
nization. Therefore, it is not surprising that EA methods such as TOGAF [6]
include chapters on risk and security (although the integration of these topics
in the overall approach is still open for improvement), and a security framework
such as SABSA [5] shows a remarkable similarity to the Zachman framework for
EA. And as a corollary, it also makes perfect sense to use the ArchiMate language
[8], the standard from The Open Group for enterprise architecture modelling, to
model risk and security aspects as an integral part of the architecture.

In this paper, we introduce this risk and security “overlay” of the ArchiMate
language (Sect. 2), and link these concepts to the phases of a typical ERSM

c© Springer International Publishing AG 2016
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process (Sect. 3). Subsequently, we show how the resulting models can be used as
input for qualitative risk analysis, inspired by the Open FAIR Body of Knowledge
[7] (Sect. 4). Using this analysis, the impact of different control measures to
mitigate the identified risks can also be assessed. We illustrate this approach
with a small example in Sect. 5. Finally, in Sect. 6, we draw some conclusions
and give some pointers to other possible applications of enterprise architecture-
based risk and security models.

2 Modelling Risk and Security in the ArchiMate
Language

The ArchiMate language [8] is the leading open standard for enterprise architec-
ture modelling, aimed at creating integrated models of the organization struc-
ture and business processes, supporting software applications and technology,
and underlying technical infrastructure, as well as the business motivation and
implementation and migration aspects. Although the ArchiMate language does
not natively support risk and security modelling, guidelines for using special-
izations of ArchiMate concepts for this purpose have been published in a white
paper from The Open Group [1].

To identify the relevant concepts in the ERSM field, several leading standards
and frameworks for risk and security have been studied, including the ISO/IEC
27001 standard on information security management, the Open FAIR Body of
Knowledge [7], and the SABSA framework [5], as well as scientific frameworks
such as ISSRM [2]. The concepts found in these standards and frameworks show
a lot of overlap, and it appears that most of the concepts used in these standards
and frameworks can easily be mapped to existing ArchiMate concepts, as sum-
marized in Fig. 1 (the original ArchiMate concepts are shown in brackets). Since
ERSM is concerned with risks related to the achievement of business objectives,

Fig. 1. Risk and security concepts as specializations of ArchiMate concepts
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it is not surprising that many of these concepts are from the ArchiMate motiva-
tion extension, but also some of the elements from the core language (business,
application and technical infrastructure layer) are used:

– Any core element represented in the architecture can be an asset, i.e., some-
thing of value susceptible to loss that the organization wants to protect. Assets
may have vulnerabilities, which may make them the target of attack or acci-
dental loss.

– A threat may result in threat events, targeting the vulnerabilities of assets,
and may have an associated threat agent, i.e., an actor or component that
(intentionally or unintentionally) causes the threat. Depending on the threat
capability and vulnerability, the occurrence of a threat event may or may not
lead to a loss event, i.e., an actual negative impact caused by the threat.

– Risk is a (qualitative or quantitative) assessment of probable loss, in terms of
the loss event frequency and the probable loss magnitude.

– Based on the outcome of a risk assessment, we may decide to either accept
the risk, or set control objectives (i.e., high-level security requirements) to mit-
igate the risk, leading to requirements for control measures. The selection of
control measures may be guided by predefined security principles. These con-
trol measures are realized by any set of core elements, such as business process
(e.g., a risk management process), application services (e.g., an authentication
service) or nodes (e.g., a firewall).

In the following sections, we will show how these concept can be used for
modelling and analysis in the different phases of the ERSM process.

3 The ERSM Process

Figure 2 sketches a typical iterative ERSM process, inspired on standards such
as ISO 31000 [3]. The figure also links the concepts from the ArchiMate “risk
overlay” to the phases of the process in which they are primarily used.

The left-hand side of this process (phases 1–4) are concerned with risk assess-
ment. Based on monitoring, experience or inspection of the model, potential vul-
nerabilities of assets in the organization are identified. Combined with potential
(internal or external) threats, these vulnerabilities may lead to loss events. An
assessment of these loss events, consisting of an indication of their frequency (or
likelihood) and the potential loss magnitude, results in an overview of risks.

The right-hand side of the process (phases 5–9) are about security deploy-
ment. The identified risks, together with existing security policies, are the input
for the control objectives, i.e., the desired level of security. This may also involve
a classification of assets, e.g., the required levels of confidentiality, integrity and
availability (the “CIA triad”) of different classes of information assets. Based on
the control objectives, possibly guided by security principles that the organiza-
tion has established, requirements for control measures (security controls) can
be formulated. Ultimately, these control measures are designed and implemented
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Fig. 2. The ERSM process

within the organization. This leads to a new baseline situation, which forms the
starting point of a new iteration of the ERSM process.

In the next two sections we will outline how ArchiMate models can be used
in the risk assessment and in the security deployment phases, respectively.

4 Qualitative Risk Analysis

Using the language customization mechanisms as described in the ArchiMate
standard [8], risk-related attributes can be assigned to the concepts introduced
above. The Factor Analysis of Information Risk (FAIR) taxonomy [7], adopted by
The Open Group, provides a good starting point for this. If sufficiently accurate
estimates of the input values are available, quantitative risk analysis provides the
most reliable basis for risk-based decision making. However, in practice, these
estimates are often difficult to obtain. Therefore, FAIR proposes a risk assess-
ment based on qualitative (ordinal) measures, e.g., threat capability ranging
from ‘very low’ to ‘very high’, and risk ranging from ‘low’ to ‘critical’. Figure 3
shows how these values can be linked to elements in an ArchiMate model, how
they are related, and how they can be visualized in ‘heat maps’:

A. The level of vulnerability (Vuln) depends on the threat capability (TCap) and
the control strength (CS). Applying control measures with a high control
strength reduces the vulnerability level. In case of multiple threats or mul-
tiple control measures, we assume that the maximum threat capability and
maximum control strength determine the outcome, although more advanced
ways to combine them are also conceivable.
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B. The loss event frequency (LEF) depends on both the threat event frequency
(TEF) and the level of vulnerability. A higher vulnerability increases the
probability that a threat event will trigger a loss event.

C. The level of risk is determined by the loss event frequency and the probable
loss magnitude (PLM).

Fig. 3. Summary of qualitative risk analysis

5 Example

The example in Fig. 4 shows a simple application of a vulnerability and risk
assessment. The “traffic lights” show the ordinal values of the risk attributes as
defined in the FAIR Body of Knowledge and summarized in Sect. 4.

A vulnerability scan of the transmission of payment data from a web shop to
an online payment provider has shown that the encryption level of transmitted
payment records is low (e.g., due to an outdated version of the used encryption
protocol). This is classified as a vulnerability level ‘high’. Also, the transmission
channel using the public internet is insecure, which is classified as a vulnerability
of level ‘medium’. These two vulnerabilities enable a man-in-the-middle attack,
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Fig. 4. Risk analysis example

in which a cyber criminal may modify the data to make unauthorized payments,
e.g., by changing the bank account number of the receiver. Assuming a cyber
criminal with medium skills (medium threat capability) and a medium threat
event frequency (e.g., on average one attempted attack per week), according to
the loss event frequency matrix shown in Fig. 3, the expected loss event frequency
is also medium. Finally, assuming a high probable loss magnitude (potentially,
a large sum of money may be lost), the resulting level of risk is high.

It is decided that this risk is unacceptable. Therefore, a control objective is
defined to prevent unauthorized access to payment data, together with a security
profile specifying the required security parameters for payment data: confiden-
tiality and integrity must be high (it should not be possible for unauthorized
persons to view or modify the data), and the required level of availability is
medium (payment data does not have to be available 24/7). This is illustrated
in Fig. 5. This profile can be translated to specific requirements for control mea-
sures. For example, as a preventive control measure that helps to achieve the
required levels of confidentiality and integrity, a stronger encryption protocol
is needed (which can be realized by, e.g., 256-bit encryption instead of 128-bit
encryption), and a secure transmission channel is needed (which can be real-
ized by using a VPN solution). By modifying the parameters, it can be shown
what the effect of the different control strengths is on the residual risk. Further
reduction of this risk may also require other measures, e.g., measures to limit
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Fig. 5. Risk mitigation example

the probable loss magnitude (e.g., by limiting the maximum amount of money
that can be transferred using this system).

6 Conclusions

Because of the increasing complexity of organizations and their IT infrastructure,
and the growing capabilities of cyber attackers, traditional information security
approaches no longer suffice: it becomes necessary to adopt an integrated app-
roach to Enterprise Risk and Security Management (ERSM).

The ArchiMate modelling language provides the hooks to integrate risk and
security aspects in the overall enterprise architecture. By linking risk-related
properties to specializations of ArchiMate concepts, risk analysis can be auto-
mated with the help of a modeling tool. In this way, it becomes possible to
analyze the impact of changes in these values throughout the organization, as
well as the effect of potential control measures to mitigate the risks. For example,
the business impact of risks caused by vulnerabilities in IT systems or infrastruc-
ture can be visualized in a way that optimally supports security decisions made
by managers.
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The modelling concepts and analysis technique described in this paper have
been implemented as a prototype in BiZZdesign’s modelling tool suite Enterprise
Studio. The approach and tool have been applied in a real-life case study to set
up an initial security architecture at a health insurance company. The focus of
this case study was on the systematic identification of control objectives and
requirements for control measures, and a gap analysis between the baseline and
target security architectures. This aspect is underexposed in this paper, but the
presented modelling concepts are also very suitable to support this. Another
option that has been explored is the import of the results of an automated
vulnerability scan (penetration test) of the IT infrastructure into an ArchiMate
model, thus making it possible to visualize the found vulnerabilities and their
impact throughout the rest of the enterprise architecture [4].
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Abstract. Security visualisation is a very difficult problem due to its
inherent need to represent complexity and to be flexible for a wide range
of applications. As a result, many current approaches are not particularly
effective. This paper presents several novel approaches for visualising
information security threats which aim to create a flexible and effective
basis for creating semantically rich threat visualisation diagrams. By
presenting generalised approaches, these ideas can be applied to a wide
variety of situations, as demonstrated in two specific visualisations: one
for visualising attack trees, the other for visualising attack graphs. It
concludes by discussing future work and introducing a novel exploration
of attack models.

Keywords: Visualisation · Security · Model · Attack tree · Attack
graph

1 Introduction

Understanding and assessing security threats has always been a key challenge to
security practitioners, exacerbated by the emergence of the digital era and the
increasingly intricate systems that make up the information security landscape.
As a result, developing methods that distill vast amounts of data into consum-
able visualisations or diagrams that are both engaging and informative remains
a critical problem. Many security models1 can be thought of as a giant machine
with tens, or even hundreds of levers and dials that must all be precisely cali-
brated in order to model each specific security scenario. This is particularly true
of the models being developed for use in the TRESPASS project2, which aims to
1 A model is defined as “a simplified description, especially a mathematical one, of

a system or process, to assist calculations and predictions” (Oxford English Dictio-
nary). When discussing visualisation of said models, it is in regards to making this
abstraction visible in some manner.

2 Technology-supported Risk Estimation by Predictive Assessment of Socio-technical
Security http://www.trespass-project.eu.
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create socio-technical models for security and risk estimation and in which this
research was performed. Because of the increasing complexity of security mod-
els, it is well worth spending the time to develop visualisations that complement
such models.

Visualisation is defined as (i) the formation of mental visual images and (ii)
the act or process of interpreting in visual terms or of putting into visible form.3

As it relates to information security, both senses of the word carry equal weight.
Visualisation is used not merely for aesthetics, but also to aid practitioners
and end users in forming mental models by providing a visual aid for the data
presented in a security model. Because the data presented in models such as
Attack Trees [14] tends to be tedious and rather complex, it is important that
a visualisation provides an abstraction that reduces the complexity while still
maintaining sufficient semantic detail.

Ideally, the visualisation also creates a narrative of the data in a consumable
or even actionable manner. It has the power to strongly influence a viewer’s
perception of a model and therefore requires careful consideration of all the
dimensions presented (or not presented). However, many traditional visualisa-
tions that have been used to visualise security models tend to fall short of this
goal, allowing visualisation of only two, sometimes three, parameters of this
multidimensional data. While they do a good job illustrating the relationship
between some aspects of their respective security models, attempts to visualise
a complete model or any more aspects will not be as simple.

In the next section, we present an overview of current approaches for attack
visualisation, explain our approach in Sect. 3, and provide examples of using this
approach in Sects. 4 and 5, followed by conclusions and ongoing explorations in
Sect. 6.

2 Survey of Current Approaches to Attack Visualisation

In the beginning of the TRESPASS project, one of the first steps was a survey
of state-of-the-art information security risk visualisations [3].

In general, information security visualisations depend very much on the pur-
pose (exploratory versus explanatory), topic (financial risks, environmental risks,
computer security etc.), and target audience, with very different levels of abstrac-
tion in presenting the vast amount of data typically available for the systems
under consideration. Therefore they range from dashboard-like presentations of
overall system state for awareness in an operations centre, to tools for investi-
gating very specific technical details, like packet flows across networks, for deep
diving into available data. This breadth makes it difficult to survey the complete
field. Some summarising reviews can be found in [6,13] and [8], for more general
risk visualisations and in [12] for the more technical oriented visualisations in
computer security.

Here we focus on a critical review of tools currently used by security prac-
titioners such as Carnegie Mellon’s OCTAVE [1] and Siemens’ CRAMM [2].
3 As defined by Merriam Webster.
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These findings, which serve as background and motivation for a new approach,
are summarised here.

Information security visualisations have traditionally been used to display
the degree of impact, measure of risk, and value of assets. Tools similar to those
mentioned previously use visualisations that map assets to threats and vulnera-
bilities, and often appear in dashboards. These visualisations cover a wide range
of graphic outputs, including visual metaphors to convey certain portions of
their security model. However, in most cases, visualisation approaches focus
more strongly on functional implementation and interaction than on aesthetics
and the narrative defined by the aesthetics. Many of these visualisations typically
do not provide a narrative for the motivations of attackers and defenders and
consequently require the users to perform their own analysis to draw meaningful
conclusions.

Often, visualisations depict the information security attack surface as having
only two parameters, requiring researchers to sometimes oversimplify a model
to represent it. However, in doing so, crucial interrelationships between actors
and elements of the system are not shown, and there is a risk of misrepresenting
the data or portraying it in a way that causes the viewer to misinterpret it. As
a result, it would be beneficial to explore methodologies of extending existing
visualisations to support higher dimensionality, more depth and influencing con-
nections. Visualisations must therefore be flexible, supporting visualisation of
individual aspects of the model as well as the model in its entirety. This does
not necessarily mean that practitioners should aim to visualise all available data,
but to choose the most important aspects to convey the message, visualise this
in the most relevant and convincing way, and/or allow viewing from different
perspectives.

3 A Parameterised Approach

3.1 Defining a Security Language

Taking language as a metaphor, before writing sentences and paragraphs, one has
to first define an alphabet. This alphabet is the domain from which everything
else in the language is formed. The richer the words, the more eloquent the
sentences that can be written. We are therefore in the process of learning how
to ‘speak’ by developing a language and using the corresponding ‘characters’ to
express the aspects of information security: transforming data into information,
information into knowledge, and knowledge into insight. All of these elements
themselves can be relatively simple and straightforward. But when combined in
an open-ended manner, they can convey complex information.

More concretely, this means to take the whole of a model and break it down
into its most elemental components. It is sensible to identify elements or parame-
ters of a model that have an effect on its outcome. This allows the assignment of
a certain hierarchy or ranking to the elements, depending on how influential they
are, i.e., picking and choosing the particular aspects to focus on and visualise.
For example, a typical step in the TRESPASS Attack Tree, part of its security
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model, has multiple parameters such as cost, time, probability, and difficulty.
These all can affect the outcome of the risk analysis for the model and thus form
the basis of the attack tree language.

3.2 A Visual Vocabulary

A visual vocabulary is composed of a set of symbols or graphics that function as
building elements for describing larger, more complex visual entities. A strong
visual language forms an important basis for representing security models as it
provides a suitable mapping from the model’s language to the visual vocabulary.
This vocabulary should also be extensible, allowing one to highlight and visualise
particular parts of interest, including uncertainty. Although uncertainty may
seem to go against highlighting important aspects in a security model, both
are critical for the understanding and evaluation of information, and should be
developed in concert with the remainder of the vocabulary. The core of any
visualisation is the selection and development of an effective visual vocabulary
and a mapping, or legend, that supports it. Such visual vocabularies are often
aided by the principles of Gestalt psychology.

Gestalt and Visual Thinking. The overall appearance and qualities, or
Gestalt, of a visualisation are very important properties. Gestalt is a term from
psychology defined as the ‘unified whole’. Being aware of and implementing the
principles of Gestalt theory in a visual language renders visualisations stronger
and more informed. These theories of visual perception were first developed by a
group of German psychologists [10,11] in the 1920s and describe how people tend
to organise visual elements into groups. Although there are certain faults with
some Gestaltist assumptions [16], it is important to be aware of those principles
in order to use and, at other times, also to creatively mis-use them:

Similarity. The principle of similarity states that things sharing visual charac-
teristics such as shape, size, colour, texture, value or orientation will be seen
as belonging together.

Continuation. The principle of continuity predicts the preference for continu-
ous figures.

Closure. The principle of closure applies when viewers tend to see complete
figures even if part of the information is missing.

Proximity. The principle of proximity or contiguity states that things which
are closer together will be seen as belonging together.

Figure and Ground. The terms figure and ground explain how viewers use
elements of the scene which are similar in appearance and shape and group
them together as a whole. Similar elements are contrasted with dissimilar
elements (ground) to give the impression of a whole.

Pre-attentive Variables and Layering. Pre-attentive variables operate most-
ly at a ‘subconscious’ level; people recognise trees, tables, and maps, and
immediately process the underlying data according to the first impressions



106 E. Li et al.

gained without any conscious analysis of actual data. Encoding via pre-
attentive factors relates to the general graphic design concept of ‘layering’.
When looking at well-designed graphics of any sort, different classes of infor-
mation are perceived on the page. Pre-attentive factors like colour cause visu-
als to perceptually ‘pop out,’ and any sense of similarity causes them to be
seen as connected to one another, as if each were on a transparent layer over
the base graphic. This is an extremely effective way of segmenting data, where
each layer is simpler than the whole graphic, and the viewer can study each
layer in turn, while relationships among the whole are preserved, emphasised,
and therefore are brought seamlessly to the analyst’s attention.

Pre-attentive variables, combined with certain cultural habits (the colour
red indicates stop or dangerous), can already lead to a basic understanding of
a visualisation by viewers. Therefore it is important that these pre-attentive
variables and habits correspond to rather than contradict the mapping chosen.
To be able to fully understand a visual vocabulary developed, every visualisation
needs a legend (which is in fact derived from the latin word legenda, meaning
“the things that need to be read”). A legend or key is often a box in the corner of
a map or visualisation, and is essential for understanding a visualisation. Having
an effective legend is crucial because it requires the designer to establish clear
goals in order to provide a clear mapping from the language of the model to the
visual vocabulary. It defines which aspects of the model are represented and how
they appear visually. As the legend is actually the most important element on a
visualisation, it should be the starting point for each project. This means that
the legend need not be a box in the corner, but can be a part of the information
presented and as integrated as possible.

3.3 Approaches for Developing Visualisations

Parameterisation of Visual Elements. Every type of visualisation or graph
will contain graphic elements whose rendering is modified by variables. A circle,
for example, has several variables, such as position, radius, fill and opacity, that
affect the final visual outcome. One can think of these variables as knobs that
can be adjusted depending on a certain input. This way of thinking allows the
creation of nearly unlimited combinations of visual elements.

For example, directed graphs4 are used heavily in security models because of
their ability to represent complex network relationships between entities. These
graphs consist of edges and vertices, visually often represented by the two essen-
tial elements of a line and a circle. Feedback from early explorations found that it
is most visually effective to parameterise at most three variables simultaneously.
A line can be defined, for example, by its thickness, colour, and opacity. By
applying a mapping from a derived security vocabulary (e.g. difficulty, time, and

4 Here we discuss graphs in the mathematical not the visual, context. So a graph in
this context is defined as a network of vertices or nodes connected by (directed or
undirected) edges.
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probability) to the visual vocabulary, it is possible to begin building the frame-
work for visualisation. Thickness can be mapped to indicate difficulty, colour
to indicate time, and opacity to indicate probability. Note that certain proper-
ties are more suitable for mapping to certain visual parameters. It does not, for
example, make sense to map time to opacity because a lower opacity implies
a weak link, whereas time only indicates the length to complete. More exam-
ples can be found in [5]. All of these parameters combined lead to a very rich,
yet simple visualisation that leaves no visual ‘stone’ unturned. One can apply a
similar approach to visualise information in a node.

Fig. 1. Legend for attack trees; difficulty is indicated as stroke width; time is indicated
as stroke colour; probability as stroke opacity. (Color figure online)

Stacking Visual Elements. There are often cases where the number of para-
meters that need to be visualised far outnumber the sensible variants to a partic-
ular visual element. In other cases, it may not be known what the total number
of parameters is (as they may shift depending on user input). An example might
be an entity, such as an attacker profile, for which the user has the freedom
to pick and choose the parameters to assign. In such cases, it makes sense to
develop a language that is extensible. An approach in which visual elements are
stacked provides a solution to the problem, as it can be applied to a wide range
of parameters.

First, it is important to establish a unified legend, where, for example, line
thickness and colour are used to indicate levels of risk. Quite often parameters
in security models can be mapped to a scale that ranges from low to high risk.
This means that a visual element becomes a generalised module for visualising,
allowing for adaptability and re-usability. Attacker profiles are a good example
because the number of parameters change depending on the situation. Intel
provides a good set of baseline attacker profiles in [5]. But there are cases where
perhaps some parameters may not matter. As a result, it is necessary to create a
visual system that allows for this. By using a unified legend, as described above,
where thickness and colour can represent threat level, it is possible to represent
an attacker profile as a set of stacked circles, in which each parameter is one of
the circles (Fig. 2). This technique allows extensibility if say, later on, a situation
calls for an additional parameter by providing the ability to stack an additional
circle. Again, it is important to pay attention to visual hierarchy as parameters
that are closer to the outside of a circle are weighted as visually more important.
This can be compensated by arranging the parameters in order of importance,
or preference, from inside to outside.
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Fig. 2. Legend for stacking circles, and resulting visualisation of attacker profiles. Demo
at: http://lustlab.net/dev/trespass/visualizations/profiles/. (Color figure online)

Semantic Zooming. Often, security visualisations will either be too simple in
their attempts to abstract a model, or too complex and confusing by trying to
show all the data. An approach to solve this issue is the idea of semantic zooming,
which applies meaning to different zoom levels. Semantic zooming is an approach
that displays different, semantically relevant, information at different levels of
zoom on a visualisation. More abstract representations can be used at a macro
view, whereas all the complex intricacies can be shown in a micro view. This is
similar to the appearance of additional details when zooming into an online map.

This approach complements stacking visual elements quite well as it allows
elements to be seen only when such detail is required. For example, when viewing
attacker profiles from a macro view, it is only important to show the total per-
ceived threat that an attacker has. As a result, the attacker can be represented
by a single circle whose radius is the sum of the stacked circles. Only when
zoomed into a more detailed view, where a viewer might want to inspect how
parameters differ between attackers, does the visualisation reveal the individual
stacked elements. By displaying this detail only when necessary, it is possible to
create visualisations that can be relatively simple without any loss of informa-
tion while still allowing the data to be understood in detail through taking a
closer look.

Multiple Views. Every visualisation foregrounds certain aspects of the data
it is representing, while backgrounding other aspects. As not all viewers are
interested in the same aspects, multiple views offer a good way to cater to this.
In addition to multiple views on the same data, it is also possible that a certain
model can be analysed by various tools. Each of these tools provides its own
outcomes and therefore needs its own visualisation, because each view tackles a
certain aspect of the security model. Viewed as a whole, often in a dashboard-like
view, they paint the entire picture of the visualisation.

Contextual Awareness and Highlighting. A key aspect in security visual-
isation is the ability to highlight key points of vulnerability. This tends to be

http://lustlab.net/dev/trespass/visualizations/profiles/
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much more effective than just textual output, as it also gives viewers the abil-
ity to contextualise potential points of interest in the model. Oftentimes there
are analytical tools that can provide insights such as the weakest or cheapest
path in an attack tree. It may also make sense to highlight certain connections
based on user interaction. It is also important to consider how and when certain
elements will be highlighted when developing a vocabulary. Depending on what
needs to be highlighted, certain approaches may be better than others. Contex-
tual awareness also allows a fine-grained representation of information without
overwhelming the viewer.

As mentioned, visualising uncertainty is often just as important as the data
itself, as it allows viewers to understand the accuracy or the fuzziness of certain
factors of the model. Existing work in visualising uncertainty can be found in [7,
9]. Possibilities to visualise uncertainty include transformations such as blurring
visual entities, or introducing a way of displaying multiple possible predictions
of a model, similarly to how a user might choose to highlight a certain path or
visual element.

4 Application to Attack Trees in the TRESPASS Project

Attack trees, as developed and used in the TRESPASS consortium, are a tool to
capture all possible attacks to reach a specific goal, as described in the root node.
To build such an attack tree, experts typically gather and, starting from the goal
node, try to enumerate possible ways of attack to reach this goal. Each subnode
can be iteratively refined as far as it seems fit. Individual intermediate nodes can
thereby be either conjunctive or disjunctive. A conjunctive node requires that
all of its children be fulfilled in order to proceed up the tree, whereas disjunctive
nodes only require one child to be satisfied in order to proceed. A complete
path of actions consists of any number of leaf and intermediate nodes leading
to the root node. Within the project, each leaf node is considered to contain
four parameters: difficulty, minimum cost, probability of success, and minimum
time required to complete. Depending on the effort put into the creation, these
attack trees can be very complex, comprising hundreds or thousands of nodes,
especially when they are generated programmatically from an underlying model
as it is the aim of the project. When attempting to visualise these trees, such
visualisations quickly become complex and unreadable.

In their traditional form, attack trees present a wide variety of important
and relevant information, but are not easily visualised, oftentimes shown as an
arrangement of text in a directed graph. From a visualisation perspective, attack
trees have several flaws; the tree structure gets very wide rapidly, repeating
lots of elements to eventually become effectively unreadable even in a medium
allowing arbitrary zooming. Also, because attack trees consist of conjunctive and
disjunctive nodes, it needs to become visually clear that in the case of conjunctive
nodes, all steps need to be fulfilled in order to proceed. We can counteract the
complexity by improving the way the tree is laid out and labelled, as well as by
testing alternative layouts that result in more compact trees, while maintaining
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Root
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root node

leaf node

Fig. 3. Example of a typical structure of an attack tree.

readability. Next to that, exploring interactivity allowing the user to zoom and
pan, and to collapse sub-trees at any level, makes it easier to concentrate only
on certain parts of the tree (Fig. 3).

The key components and their respective properties are the following:

Node Edge

Type of node (leaf, intermediate, root) Parent/Child nodes

Conjunctive or disjunctive node (if intermediate or root node)

Label

Minimum cost to complete node

Probability of success

Difficulty

Minimum time required to complete

A visual language can be developed based on this. It is important to keep in
mind that attack trees can vary greatly in size, as their construction is largely
dependent on the scenario and environment that they are trying to model. As a
result, the language should be scaleable to any size tree. In initial explorations,
feedback revealed that when representing the graph with directed graphs, edges
carry much more weight and information visually. Subsequently, most of the
parameters were mapped to the edge leading to parent nodes. This allows focus
to be placed much more on the path rather than each individual step. The
resulting legend was developed by parameterising the visual properties of a line
(Fig. 1) and creating a mapping to the attack tree vocabulary (Fig. 4).

4.1 Multiple Views

Visualising an attack tree in a tree structure may do a good job for displaying
how the nodes are connected, but it does a poor job for examining frequency.
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Fig. 4. Attack tree visualised in radial form where each node corresponds to an attack
step. The root node, i.e., the goal, is placed in the center. The edges are coloured
according to three parameters: difficulty is indicated as stroke width, time as stroke
colour, and probability as stroke opacity. (Color figure online)

Therefore, it makes sense to split this into two visualisations: an attack tree
visualisation structured as a tree, as well as a tree map visualisation that focuses
just on the relative frequency of each node (Fig. 5). The frequency of the node
determines the size of each box, while the colour depicts the relative difficulty of
each node. A hover over each box in the tree map shows its label and highlights
the nodes in the attack tree, allowing a user to understand the visualisation.
Together, they paint a more complete picture. We consider the tree map as part
visualisation and part legend.

Fig. 5. Tree map visualisation that shows frequency of an attack step. (Color figure
online)
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4.2 Attack Tree Linearisation

More simple elements are better than fewer, complex elements. A tree works
well in situations where the structure is fairly simple and small. However, the
attack trees that are used in TRESPASS are already more complex than can
comfortably be fit on a screen. Working with and studying attack trees from
a visualisation point of view, one can question the role of intermediate nodes.
Other than being a labelled container for their child nodes, they are not actually
steps along the attack path but nevertheless occupy a large part of the attack
tree. We can visually simplify attack trees by turning them into linear sequences
of their required children. This will result in more paths, but each path will
be easier to follow. The simplification and conversion to straight paths benefit
readability from a visualisation standpoint. One path now shows a user the steps
that need to be taken in a straight and easy to follow line (although it does not
usually imply a temporal or causal sequence).

4.3 Stacking Visual Elements

Another legend was also developed in the case that additional parameters to
each step may be needed. By mapping different visual elements (thickness and
colour to threat level) of a line to a scale of threat, it is possible to modularise
this element and stack it to any number of parameters.

Visually, this becomes just as effective as the original legend because a step
in which all parameters have a high perceived threat level will stand out much
more strongly than a step with a low perceived threat level. When combined
to form a path, as in Fig. 6, this legend is very informative on which steps and
connections are areas of vulnerability.

Fig. 6. Tree map plus radial attack tree visualisation, where the size in the tree map
shows the frequency of an attack step and the colour indicates difficulty. Both views
are linked in highlighting when selecting elements. (Color figure online)

4.4 Semantic Zooming

When applying the stackable legend developed in Sect. 4.3 to massive attack
trees, the overall visual effect of the visualisation becomes confusing and harder
to read. Viewers are not as able to follow paths as easily as before. However,
semantic zooming can be applied in multiple ways. Because the stacked lines
are only necessary at a very detailed level, it is perfectly fine to show the aver-
age threat level at a macro view with other paths or the entire tree (Fig. 6).
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Only when zooming in to view specific paths will the individual stacked lines be
revealed to the viewer. This eliminates the original complexity at a macro level
while still allowing specificity at a micro level.

This can be combined with a rearrangement of the linearised attack trees
to present the paths in a more understandable manner. By using a radial view
for the linearised attack trees at a macro view and transitioning to a table, in
which information about the total path can be displayed alongside each path
upon user interaction, it can be possible to sort and analyse paths in a way that
might otherwise be unwieldy at the macro level (Fig. 7). A viewer can then zoom
in even closer to see an individual path and its stacked line components, as well
as any intermediate labels that might not have been shown before.

Fig. 7. Semantic zooming applied to linearised attack paths. From left to right: an
attack tree in radial and straight path form, and the same paths as a table allowing
detailed inspection

5 Application to Attack Graphs

Attack graphs are a common tool used by security researchers to organise infor-
mation on all possible attack paths within a certain space. Although they gener-
ally are adapted for custom use, the general idea is the same: there is a directed
graph with a starting point and an end point (the goal), as well as nodes that
function as attack steps or entities (Fig. 8) (as used in [4]). The edges are pos-
sible paths from one entity to another. These nodes and edges carry with them
several parameters, such as probability, cost, and incident count.

For the remainder of this section, however, the attack graph referred to is
the one defined by Verizon in their annual Data Breach Investigations Report
(DBIR)5 [15] as a test case to see whether we could also apply the visualisation
principles laid forward in the preceeding chapters to graphs other than attack
trees. For 2016, there are seven action groups, with multiple sub-actions, as well
as three attribute groups, again with multiple sub-attributes. Within the graph
itself, actions lead to other actions or to compromised attributes. Compromised
attributes will lead either to the end of the breach or to another action by the
attacker.
5 Data link: https://github.com/vz-risk/VERISAG/tree/v2/static.

https://github.com/vz-risk/VERISAG/tree/v2/static
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Fig. 8. Example attack graph as used in the online tool 2016 DBIR Attack Surface
Analysis [4].

5.1 Visualising Attack Graphs

There are several goals that the visualisation of the attack graph aims to achieve:
(i) displaying and differentiating actions and attributes, (ii) displaying relative
threat of nodes and edges, (iii) displaying paths, and (iv) displaying a comparison
between different versions of the graph (either through mitigations or compar-
ison with previous years’ data). The principal flaw of traditional attack graph
visualisations is that they attempt to visualise all nodes and connections at once.
In cases such as the DBIR, this grows very complex and as a result, it becomes
hard to perform even simple tasks, such as determining the relative importance
of a node or discovering which nodes are connected. In fact, the version presented
at [4] mostly serves to illustrate how complex the attack space is.

As the principal structure is a directed graph, it is possible to immediately
identify the nodes and edges as elements of its vocabulary. Digging deeper, the
following characteristics make up these elements:

Node Edge

Type of node (action, attribute, start,
end)

Type of edge (edge to attribute,
action, or end)

Relative frequency of node (occurrences
within incidents)

Relative frequency of edge
(occurrences within incidents)

Sub-type of node (one of 5 actions or one
of 3 attributes)

The visual language begins with the same traditional elements of the directed
graph: nodes and directed edges. Traditionally, these graphs are visually composed
of circles that represent the nodes, and paths with arrows indicating direction.
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To begin building a visual vocabulary, each of the elements is parameterised.
Assigning radius and fill colour of the circle to represent frequency of incidents
creates an aesthetically informative visualisation of the node. Textual treatment
and visual treatment can then be applied to each circle to indicate the type of node.
Rather than by drawing an arrow as a path, direction on edges can be shown by
decreasing the stroke width of a path. This width can also be parameterised, as
well as the opacity of the edge, to show how frequently that edge occurred within
the incident space, resulting in the legend in Fig. 9. From this legend the visuali-
sation6 was developed based on the outlined approach.

Fig. 9. Legend for attack graph visualisation. (Color figure online)

Arc Diagram. Arc diagrams were chosen because of their ability to clearly
display multivariate data, even in complex situations. Building on the work of
Wattenberg [17], these graphs provide an easy way to visualise connections by
placing the nodes on the same line (Fig. 10). They also allow easy comparison of
nodes and edges, and give viewers a more linear ability to visualise this data. The
two-sided nature of this graph allows one to visualise edges going to attributes
on one side, and edges going to actions on the other, providing a clear visual
delineation between the two types of edges. When a comparison of different
versions of the graph should be shown, all edges can be moved to one side and
two versions of the graph can be shown simultaneously.

Semantic Zooming. Although visualisation of all 119 nodes in one view pro-
vides a good overview, this level of complexity is very hard to follow and unac-
tionable. To improve this, semantic zooming can be applied. The initial view
now becomes the eight macro categories of actions and attributes. This presents
a good overall sense of how certain attacks paths might be structured, as well as
the relative frequency of certain action or attribute categories within the attack
space. If viewers want to learn more about the composition and frequency of
each attack or attribute, they can click on it for a view containing all subgroups
(Fig. 11a). We choose to contain these sub-nodes within the overall node to visu-
ally show the hierarchy of nodes. At this level, viewers can see the count of each
node and determine which specific sub-node presents a greater threat. This also
applies to comparing graphs (Fig. 11b).
6 The interactive version of the DBIR Attack Graph can be found at http://lustlab.

net/dev/vzw/index.html.

http://lustlab.net/dev/vzw/index.html
http://lustlab.net/dev/vzw/index.html
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Fig. 10. Different visualisation views afforded by using an arc diagram. From left to
right: macro-view of 2016 DBIR Data, all nodes of the 2016 DBIR, and comparison
between 2015 and 2016 DBIR.

Fig. 11. From left to right: (a) Micro-view of 2016 DBIR data with highlighting, (b)
Micro-view of 2015/2016 DBIR data with highlighting, (c) Highlighting a specific node
and its target edges in the 2016 DBIR. (Color figure online)

Contextual Awareness and Highlighting. A level of interactivity is also
built into the visualisation that allows the viewer to highlight certain aspects
of the graph depending on the current zoom level. At the macro-view, hovering
over a node reveals the incident count of that node within the attack space,
and other child nodes (Fig. 11c). This allows viewers to pay attention to the
context in which they are highlighting the node. All other nodes are greyed
out for clarity, which further aids focusing on the relevant information. In the
micro-view, when a user hovers over a node in the graph, the incident count
at the bottom of the circle updates to also display information specific to the
currently highlighted node (Fig. 11a). Visual feedback is also given by turning
the highlighted node white to match the text colour. This contextual highlighting
provides information to the user only when requested and presents the wealth
of information in the graph in a non-overwhelming manner.

6 Conclusion and Future Work

Security-related visualisations have always been a particular challenge, due in
part to the complex, multi-dimensional, and wide ranging nature of the field.
Not only do models tend to be complex in order to capture the intricacies of
a particular scenario, but their usage varies from highly specialised technical
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people requiring very specific visualisation to security researchers attempting to
create layman infographics that aim to visualise an overall model, resulting in
visualisations that are not quite effective because they try to do too much or too
little. As designers begin to move into the era with interactive visualisations, we
should consider how all of these differing aspects will play a role in our approach
to security visualisation.

This paper presented an approach for developing effective visualisations of
complex security models. By first outlining goals for visualisation and then break-
ing down a model and defining a visual vocabulary, it is possible to create
a framework that allows nearly endless flexibility. From here, a visualisation
can be built by applying some combination of the approaches outlined. These
approaches offer ways of thinking about visualising complex data that are gen-
eral enough to be applied to almost any type of visualisation situation, including
those not related to security. We use attack trees from the TRESPASS project
as well as attack graphs from Verizon’s DBIR report as case studies to see how
this parameterised approach can be used to create effective visualisations.

Early versions of this visualisation approach have been presented to two
security practitioner feedback panels and the advisory board of the TRESPASS
project. Based on their feedback, visualisations were adjusted and developed
further. For instance, the stacking of visual elements is a direct result of feed-
back given, as many practitioners had a hard time combining more than two
parameters in one visualisation.

Currently we are implementing features in the code so that external data
can be loaded easily and can be applied to situations in which the input data is
dynamic and changing frequently. In that way, this visualisation approach can
cover an extensive range of media, from print to interactive and to time-based.
We can also then see if the concepts and vocabulary developed are applicable to
non-security-related sectors. The final code and designs will be made available
as open source so that third parties can use and extend this work.
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de la Population: Visualizing risk: the use of graphical elements in risk analysis
and communications. 3RG report, Eidgenössische Technische Hochschule Zürich,
Center for Security Studies CSS (2012). http://e-collection.library.ethz.ch/view/
eth:6286

14. Schneier, B.: Attack trees: modeling security threats. Dr. Dobb’s J. Softw. Tools
24(12), 21–29 (1999). https://www.schneier.com/cryptography/archives/1999/12/
attack trees.html

15. Verizon Enterprise Solutions: 2016 Data Breach Investigations Report. Technical
report, Verizon (2016). http://www.verizonenterprise.com/verizon-insights-lab/
dbir/

16. Ware, C.: Information Visualization: Perception for Design. Morgan Kaufmann
Publishers Inc., San Francisco (2000)

17. Wattenberg, M.: Arc diagrams: visualizing structure in strings. In: IEEE Sympo-
sium on Information Visualization, 2002, pp. 110–116. IEEE. (2002)

http://www.knowledge-communication.org/pdf/envisioning-risk.pdf
http://www.knowledge-communication.org/pdf/envisioning-risk.pdf
http://www.husdal.com/2001/10/31/can-it-really-be-that-dangerous-issues-in-visualization-of-risk-and-vulnerability
http://www.husdal.com/2001/10/31/can-it-really-be-that-dangerous-issues-in-visualization-of-risk-and-vulnerability
http://www.visualisingdata.com/2015/02/references-visualising-uncertainty/
http://www.visualisingdata.com/2015/02/references-visualising-uncertainty/
http://e-collection.library.ethz.ch/view/eth:6286
http://e-collection.library.ethz.ch/view/eth:6286
https://www.schneier.com/cryptography/archives/1999/12/attack_trees.html
https://www.schneier.com/cryptography/archives/1999/12/attack_trees.html
http://www.verizonenterprise.com/verizon-insights-lab/dbir/
http://www.verizonenterprise.com/verizon-insights-lab/dbir/


Quantitative Attack Tree Analysis:
Stochastic Bounds and Numerical Analysis

Nihal Pekergin1(B), Sovanna Tan1, and Jean-Michel Fourneau2
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Abstract. This paper presents an efficient numerical analysis of the
time dependence of the attacker’s success in an attack tree. The leaves
of the attack tree associated with the basic attack steps are annotated
with finite discrete probability distributions. By a bottom-up approach,
the output distributions of the gates, and finally the output distribution
at the root of the attack tree is computed. The algorithmic complex-
ities of the gate functions depend on the number of bins of the input
distributions. Since the number of bins may increase rapidly due to the
successive applications of the gate function, we aim to control the sizes of
the input distributions. By using the stochastic ordering and the stochas-
tic monotonicity, we analyze the underlying attack tree by constructing
the reduced-size upper and lower distributions. Thus at the root of the
attack tree, we compute the bounding distributions of the time when the
system would be compromised. The main advantage of this approach is
the possibility to have a tradeoff between the accuracy of the bounds
and the algorithmic complexity. For a given time t, we can compute
the bounds on the probability for the attacker’s success at time t. The
time-dependent behavior of attacks is important to have insights on the
security of the system and to develop effective countermeasures.

Keywords: Attack tree · Discrete probability distribution · Stochastic
bounds

1 Introduction

The notion of Attack Trees (AT) has been popular since the seminal work of
Schneier [10] to model security threats and/or risk analysis. Attack Trees are non-
state-space models which illustrate graphically complex scenarios. They have
been essentially proposed for computer security analysis but they can also be
applied for quantitative risk analysis. The probability at the root represents the
risk that the modeled system is subjected to. The goal is to enhance the threads
of the system, and to illustrate the impact of countermeasures of basic events on
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the global behavior of the system in order to define the priorities for reinforcing
the subsystems of the model.

A rich survey on the attack and defense models based on Directed Acyclic
Graph (DAG) models is given in [5]. The first models are static and have been
proposed in early 90s to adopt tree-based models of reliability engineering to
security engineering. These models are called threat trees, vulnerability trees,
attack trees, and they describe complex attack scenarios from the basic events
and logical connectors AND and OR. The probabilities of the occurrences of
basic events are the input parameters, and the output parameter is the proba-
bility of the event at the root of the underlying tree.

It is important to evaluate the success probabilities of an attack as a function
of time. As it has been the case for the reliability analysis, dynamical models
have been proposed by including the time to success of an attack, and also new
connectors taking into account temporal dependencies.

Attack Trees and Fault Trees have apparent similarities. In a Fault Tree,
component faults lead to high level faults. However in an Attack Tree the actions
are taken intentionally by attackers, while faults happen in a fault tree. In a
Fault Tree, the model is in general a consequence of the system architecture,
the safety may be reinforced by considering more reliable components and/or by
including the spares. In an Attack Tree a countermeasure implementation as a
consequence of the risk analysis may introduce other possible attacks. Thus the
system architecture may need to be revised.

Safety and security have developed as two distinct disciplines for many years.
Thus analysis methods and dedicated tools have been developed in each field by
separate communities. However they are closely related and share many com-
monalities. These observations have been made by many authors. For instance,
see [9] and the references therein for the cross-fertilization between safety and
security engineering.

The methods that have been proposed to analyze quantitatively Dynamical
Fault Trees (DFT) have been extended for the quantitative analyze of attack
trees [2,8]. This paper is the extension of the methodology proposed by some of
us [3] for efficient numerical analysis of DFT to the quantitative risk analysis for
systems specified by an attack tree. In [2], the quantitative analysis of attack trees
has been performed approximatively to overcome the algorithmic complexities.
The basic attack distributions are supposed to be acyclic phase type continuous
distributions, and the output distributions of gates obtained from the gate func-
tions are approximated as acyclic phase type distributions. In this work we apply
a similar idea but our technique is radically different. First we consider discrete
probability distributions, and control the increase of the size of the distributions
by replacing them with reduced-size bounding distributions in the sense of the
≤st order. Intuitively speaking, if two distributions are ordered in the sense of
this order: d1 ≤st d2, then it means that the cumulative probability distribution
of d1 is always greater or equal to the cumulative probability distribution of
d2. In other terms, d2 takes larger values than d1. The monotonicity properties
of gates (AND, OR, SEQ) have been proved in [3]: if the input distributions
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are replaced by bounding distributions the output provides a bounding distribu-
tions. Thus we derive lower, and upper bounding, reduced-size distributions not
the exact one. The system is then evaluated approximatively, however the results
provide bounds. By increasing the number of bins, it is possible to improve the
tightness of the bounds.

The paper is organized as follows. Section 2 is devoted to the Attack trees and
their evaluation. We first present Attack trees, and then explain our methodology
based on the use of bounding discrete distributions. In Sect. 3, two case studies
from the literature are analyzed with the proposed methodology.

2 Attack Trees and Evaluation

2.1 Attack Trees

The Attack Tree (AT) is a tree composed of basis attacks (BA) and logical
gates. The leaves are the basic attack steps. The complex attack scenarios are
specified by combining basic attacks with logical gates. Thus an AT may lead to
decompose complex scenarios into easier, understandable, quantifiable actions.
In the formalism of [10] the logical gates consist of conjunction (AND) and
disjunction (OR) gates. Sequential conjunction (SEQ) gates have been included
in [4].

Input distributions associated with the leaves represent the time that the
input will become True (the time at which the underlying BA would be suc-
cessful). Similarly, the output distribution of a gate corresponds to the time at
which the subsystem having this gate as root would be compromised. Therefore
the output distribution of the root of an Attack Tree denotes the time when the
attack for the whole system would be successful.

We refer to [4] for the general semantics of the attack trees. The temporal
semantics of the gates is given in the following. Let X1 and X2 be the random
variables representing the times that the corresponding input becomes True.
The inputs are assumed to be mutually independent. The cumulative probability
distribution for a random variable X will be denoted by FX :

FX(t) = Pr(X ≤ t).

– AND(X1,X2): The output of this gate is the random variable O with O =
max(X1,X2). The output becomes True at a time when both inputs become
True. The cumulative distribution of the output is computed by the product
of the cumulative distributions of X1 and X2.

FO(t) = FX1(t) × FX2(t).

– OR(X1,X2): The output of this gate is O = min(X1,X2). The output becomes
True at a time when one of the inputs become True. The reliability (survival)
distribution of the output is computed by the product of the reliability distri-
butions of X1 and X2.

1 − FO(t) = (1 − FX1(t)) × (1 − FX2(t)).
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– SEQ(X1,X2): The output of this gate is the random variable O = X1 + X2.
For the output becomes True, first the first input must become True, then
the second input becomes True. Thus, the output distribution is computed
by the convolution of the input distributions.

2.2 Analysis with Discrete Random Variables

The proposed methodology is based on the use of the discrete probability distri-
butions. In the sequel we call them equally histograms. Using histograms would
allow us to perform efficient numerical analysis to compute the bounding out-
put distributions of the gates. The histograms associated with the leaves (times
for basic attacks) may be general distributions which are not restricted to spe-
cial types. If the underlying distributions are continuous random variables, the
related histograms can be constructed by discretization. Moreover, empirical dis-
tributions can be constructed by means of measures and statistical methods, and
then they can be inputs of the AT model. We assume that the input distribu-
tions are mutually independent. As it is usual in DFT analysis, the temporal
analysis is limited by a Mission Time (MT ). Thus it means that the analysis is
done from time 0 to MT .

The output histogram of a gate is computed from its input histograms,
depending upon its type.

– OR gate:

Pr(O = a) = Pr(X1 = a)×Pr(X2 > a)+Pr(X2 = a)×Pr(X1 > a)+Pr(X1 = a)×Pr(X2 = a).

– AND gate:

Pr(O = a) = Pr(X1 = a)×Pr(X2 < a)+Pr(X2 = a)×Pr(X1 < a)+Pr(X1 = a)×Pr(X2 = a).

– SEQ gate:
Pr(O = a) =

∑

k

Pr(X1 = k) × Pr(X2 = a − k).

The sizes of the output distributions depend on the gates. Let l1 and l2
be the respective sizes of input distributions. The maximum size of the output
distribution are as follows:

– AND and OR gates: l1 + l2 − 1. For AND (resp. OR) the minimal (resp.
maximal) value among the values of the two histograms is not included in the
output histogram.

– SEQ gate: l1 × l2.

The computation of the output depends on the sizes of the input distribu-
tions. Let l = max(l1, l2). For AND and OR gates, if the input distributions
are ordered on the values of the histograms, the output can be computed by an
algorithm based on the fusion of the sorted lists (Θ(l)). Note that the input dis-
tributions can be sorted within complexity Θ(l × log l). The convolution can be
computed by a naive algorithm with complexity Θ(l1 × l2), and with complexity
Θ(l × log l) through Discrete Fast Fourier transformation.
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Due to its tree structure, the output distribution of an Attack Tree can be
evaluated by a bottom-up approach. However the sizes of histograms (the number
of bins) can increase rapidly due to the successive applications of the operations
associated with the gates. Especially, the convolution operation associated with
SEQ gates may increase the number of bins multiplicatively with the sizes of
the input histograms. The time complexity increases with the increase of the
histogram sizes.

2.3 Bounding Distributions

The ability to control the sizes of the histograms during the analysis of an AT is
of great importance for the point of view of the algorithmic complexity. In [3],
in the context of DFT analysis, we have shown that the reduced-size bounding
output distributions can be derived by considering bounding input distributions.
These bounding distributions are in the sense of the stochastic strong order, ≤st.
This stochastic order is associated with increasing functions, thus if two random
variables are ordered in the ≤st order then their increasing functionals are also
ordered:

X ≤st Y ⇔ E[f(X)] ≤ E[f(Y )] (1)

for all increasing function f , when the expectations E exist. For instance, if
X ≤st Y , then E[X] ≤ E[Y ]. More informations can be found in [3,6].

We now explain the methodology of the construction of reduced-size bound-
ing distributions in the context of Attack Tree analysis. Let X be a discrete
random variable taking values in a finite set SX of size nX . The probability
mass function (histogram) can be given by two vectors VX and PX . The ith
entry V, VX [i] denotes the ith value that X can take where PX [i] denotes the
corresponding probability. Without loss of generality, we assume that the vectors
are increasingly ordered with respect to the entries of the vector V. In order to
reduce the algorithmic complexity to derive the output distribution, only the
values for which PX [i] > 0, 1 ≤ i ≤ nX are specified in the histograms. Notice
that in the context of an AT analysis, the values are the dates at which the basic
attacks would be successful if the histograms are related to the leaves, otherwise
they are the dates at which the attacks represented by the related subtrees would
end up.

Example 1. Let X be the time at which a basic attack (a leaf in the AT) would
be successful. Let SX = {2, 5, 8.5, 10, 15}, then nX = 5. The histogram of X can
be specified by the following two vectors.

VX ||2 5 8.5 10 15
PX ||0.25 0.2 0.3 0.15 0.1

Therefore the input X turns to True at dates SX = {2, 5, 8.5, 10, 15} with
the corresponding probabilities given in the probability vector PX .
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Let U be an upper bounding distribution of X: X ≤st U . Then the following
inequalities must be satisfied between X and U :

i ∈ {nX , nX − 1, · · · , 2},
∑

{k|k≥i}
PX [k] ≤

∑

{j|VU [j]≥VX [i]}
PU [j]. (2)

It is assumed that the indexes of vectors start from 1. For the above inequalities
index 1 is not considered since the sum of the probabilities must be equal to 1.

Example 2. Let U take values SU = {4, 10, 15}, then nX = 3. It can be checked
that the inequalities (2) are satisfied between X and U .

VU ||4 10 15
PU ||0.25 0.65 0.1

It can be seen from Fig. 1 that the cumulative probability distribution (cdf)
of U is always smaller or equal to the cdf of X. (It is more probable to take
larger values for U than for X).

The probability that the attack related to the random variable X would be
successful at time t can be computed as follows:

∑

{i|VX [i]≤t}
PX [i]. (3)

As a direct consequence of Eqs. (2), and (3), we have the following inequalities
on the success probabilities of the attacks associated with X and U :

Proposition 1. If X ≤st U , then for every time t, the success probability before
or at time t for the attack whose time is associated with X is greater or equal to
the success probability before or at time t for the attack associated with U .

Fig. 1. X and U cumulative distributions.
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It has been proved in [3] that the AND, OR, SEQ gates are monotone. Hence
if the inputs of these gates are replaced by bounding distributions, then the out-
put distribution computed by the bounding input distributions would provide a
bounding distribution on the output distribution computed by the input distri-
butions. This monotonicity follows from the fact that the functions associated
with these gates are non decreasing. By using this monotonicity property, it is
possible to construct the reduced-size distributions. Obviously, dealing with the
reduced-size distributions decreases the underlying algorithmic complexity. In
the following example, we illustrate this concept by considering an AND gate.

Example 3. We consider an AND gate with inputs X and Y . The output of this
gate is computed first with inputs X and Y and then by taking bounding dis-
tributions on X such that L ≤st X ≤st U . In the following tables, distributions
Y , L are given while X and U are the same as given before.

VY ||5 7 9 13 20
PY ||0.3 0.1 0.25 0.15 0.2

VL||2 7 10
PL||0.45 0.45 0.1

In the following tables we illustrate the output distributions of respectively
O = AND(X,Y ), OU = AND(U, Y ), and OL = AND(L, Y ).

V0 ||5 7 8.5 9 10 13 15 20
P0 ||0.135 0.045 0.120 0.1875 0.095 0.135 0.08 0.2

VOL
||5 7 9 10 13 20

POL
||0.135 0.225 0.225 0.065 0.150 0.2

VOU
||5 7 9 10 13 15 20

POU
||0.075 0.025 0.0625 0.4225 0.135 0.08 0.2

In the following figure, we give the cumulative probability distributions of
these output distributions. It can be seen that the curve of AND(L, Y ) is always
above or equal than the other two curves, while the curve AND(U, Y ) is always
below or equal than the other two curves. Therefore the output distributions are
also ordered as follows:

AND(L, Y ) ≤st AND(X,Y ) ≤st AND(U, Y ).

It follows from Proposition 1, that for a given time t, a lower bound on the
attack success probability is obtained from AND(U, Y ) while an upper bound
on the attack success probability is from AND(L, Y ). For instance, at t = 7,
the success probability for AND(U, Y ) is 0.1, for AND(X,Y ) is 0.18 and for
AND(L, Y ) is 0.36.

Using bounding distributions is twofold: first reduced-size bounding distributions
can be constructed in order to decrease the algorithmic complexity. On the other
hand, it is extremely difficult to estimate temporal behaviors of basic attacks.
Deriving bounds in the context of the uncertainty is useful.
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Fig. 2. The distribution of AND(X,Y ) and the bounding distributions.

In this paper, the algorithms to construct reduced-size bounding discrete dis-
tributions are not presented. Different algorithms to build reduced-size bounding
algorithms are given in [1,3]. Intuitively, some bins of the original histogram are
deleted, and the related probabilities are moved by taking care of the inequalities
associated with the ≤st order.

2.4 Algorithm

In this subsection, we summarize our methodology as an algorithm. It is assumed
that the basic attacks which are represented as leaves in the corresponding AT
occur mutually independently. Let D = d1, · · · , dl be the set of distributions for
the leaves. Distribution di is a finite discrete distribution and it represents the
time of success of the ith attack. Let G = g1, · · · , gp be the set of gates of the
AT. An attack tree A is specified by the gates G, the tree structure defining
the dependence relations. The distributions associated to the leaves D are the
second set of input parameters.

The output parameter is the distribution at the root of an AT tree, and it is
computed by a bottom-up approach. For a gate g, if its input distributions are
the distributions at the leaves or are the output of other gates already computed,
its output distribution is computed depending on its type. Thus the gates G are
considered in a topological order depending on the structure of the attack tree A.

The algorithmic complexity of the output distribution depends on the sizes
(numbers of bins) of the input distributions. We aim to control the sizes of
the distributions by constructing the reduced-size bounding distributions. In the
previous section, this approach has been explained through some toy examples.
The computed results are approximative but they provide bounds. The main
idea here is to have a tradeoff between the tightness of the bounds and the algo-
rithmic complexity. Obviously, if the size of distribution is greater, the results
would be more accurate. The algorithms to construct bounding distributions are
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Algorithm 1. Computing bounds on the output distribution of an AT.
Input: AT: A

input distributions for the leaves: D
max number of bins of a distribution: n ∈ N

Output: Output distribution at the root of A.
1: Label the gates using the topological order from the bottom-up.
2: for all gates g in the ascending order of the labels do
3: Evaluate the output distribution of gate g
4: If the size of the output distribution is larger than n, reduce its size to n.
5: end for

given in [1,3]. There are different algorithms with different algorithmic complex-
ities so providing different accuracies. One of them provides optimal bounding
distributions with respect to increasing positive rewards (for instance expecta-
tion) but with a high complexity (Θ(N2n)), where N is the size of the original
distribution and n is the size of the bounding distribution). There is a greedy
algorithm with complexity (Θ(N log N)) which can provide sometimes optimal
distributions. Algorithms with linear complexities have also been given. Thus
depending on the required accuracy and the acceptable complexity, the user can
choose one of them.

We now illustrate the usefulness of bounds in the case when the quantitative
analysis is done to check some constraints. Let d be the output distribution of the
considered attack tree A, and dL (resp. dU ) be the lower (resp. upper) bounding
distributions:

dL ≤st d ≤st dU .

For a given time t, let p be the probability that the system is not compromised
at time t, that can be computed from distribution d by applying Eq. (3). Simi-
larly, pL and pU are computed through distributions dL and dU . It follows from
Proposition 1 that

pU ≤ p ≤ pL.

It is worth emphasizing that if we are only interested in checking if some prob-
abilistic constraints are satisfied or not, the bounds may be sufficient regardless
of their accuracy. For instance, if the quantitative evaluation of the attack tree
is done to check if the probability that the underlying system is not comprised
at time t is less or equal to threshold or not, then we can conclude

– if pL ≤ threshold, then the constraint is satisfied
– if pU > threshold, then the constraint is not satisfied
– otherwise, the bounds must be refined (the number of bins must be increased)

In this work, as it has been usually the case, we consider that the input
distributions of leaves are mutually independent. However this proposed app-
roach can be extended to the case when some basic attacks are dependent by
using conditional probabilities. In [3], it has been shown that the construction
of bounding distributions in the sense of the ≤st order is compatible with the
conditioning to consider the dependent distributions.
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3 Case Studies

In this section, we consider two case studies from the literature. The first one
is Steal Exam which models a student to steal the forthcoming exam [2]. The
attack tree given in Fig. 3 is composed of three kinds of attacks represented by
three subtrees: social interaction (subsystem S1), hacking (subsystem S2), and
steal hard copy (subsystem S3). In subsystems S1 and S3, the attack necessi-
tates sequential events, thus the root for these subsystems is a SEQ gate. For
instance in S3, first one must locate office, then get access to it, and finally find
print outs. For subsystem S2, either the mailbox or repository may be hacked,
thus the root is a OR gate. Success times of basic attacks to success have been
inspired from [2] and taken as truncated Erlang, and Exponential distributions.
Once the number of bins is fixed, the distributions for the leaves are discretized
by taking equal intervals to derive two discrete distributions inf and sup. For
distribution inf , within each interval, the value is taken as the smallest value of
the interval (left limit) with the probability which is the sum of the probability
of the interval. Similarly, for distribution sup, the value is taken as the greatest
value of the interval (right limit) with the probability of the interval. The missing
probabilities for distribution inf is added to the smallest time, while it is added
to the MT for distribution sup.

In Fig. 4, we give the bounding cumulative probability distributions of the
time to success (in hours) of the AT given in Fig. 3. For this example, the number
of bins is limited to 50 (resp. 200) for the leaves and the output distributions
of the intermediate gates reach 200 (resp. 1400) bins (for subsystem S3). Notice
that it results from the ≤st order that the distribution inf with 50 bins is less or
equal in the sense of the ≤st order than all other distributions (its cumulative
probability distribution is always greater than that of the others). The distri-
bution sup with 50 bins is less or equal in the sense of the ≥st order than all

Fig. 3. Attack tree Steal Exam.
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Fig. 4. The output distribution for Steal Exam (x axis is time in hours, y axis is the
distribution).

other distributions (its cumulative probability distribution is always greater or
equal than that of the others). It can be seen that the bounds computed with
200 bins for the distributions of leaves are tighter (they are placed between the
distributions with 50 bins). The bounds on the probability that the system is
comprised before or equal time t (let say p) can be deduced from these bounding
cumulative distributions. For instance, for t = 12, from bounding distributions
with 50 bins, it can be deduced that 0.57 ≤ p ≤ 0.76, while from bounding dis-
tributions with 200 bins, it can be deduced that 0.606 ≤ p ≤ 0.677. Obviously,
the more bins, the tighter the bounds. The quantitative analysis of attack trees
are very useful to highlight the impact of the potential countermeasures that can
be taken to reinforce the security of the system. We study the impacts of two
countermeasures. Countermeasure A consists in preventing the steal hardcopy,
thus to delete subsystem S3, while countermeasure B consists in forbidding to
send the exams via emails thus to delete subsystem mailbox. In Fig. 5, we illus-
trate the impact of these countermeasures where the size of the basic attack
distributions is limited to 200 bins. It can be seen that both countermeasures
have effect on the output distribution but the impact of countermeasure B is
more important. For instance, the probability that an attack would be successful
within time interval 12 h (0 ≤ t ≤ 12) with the original system is in the interval
[0.606− 0.677] and the system with countermeasure A is in [0.522− 0.593] while
it is [0.45 − 0.523] with countermeasure B. Notice that since the ATs for the
countermeasures and the original model are not the same, the output distribu-
tions are not comparable in the sense of the ≤st order (the distributions of the
original model and the countermeasures may cross).

The second example comes from [2,7,11]. The authors modeled the Stuxnet
attack against Iranian nuclear enrichment infrastructure which took place in
2010. Stuxnet is a computer worm with a malicious payload designed to
compromise the Programmable Logic Controllers (PLCs) and the Siemens
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Fig. 5. Left: countermeasure A; right: countermeasure B (x axis is time in hours, y
axis is the distribution).

Fig. 6. Attack tree Stuxnet.

Supervisory Control And Data Acquisition (SCADA) which controls the cen-
trifuges. The malware damaged the latter while deceiving the control room with
false previously collected values. The AT in Fig. 6 consists of two subtrees linked
by a SEQ gate. The left subtree represents the worm propagation and the right
one is the payload attack. Since the target network is not connected to the Inter-
net, the attack begins with an infection through a USB device corresponding to
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the leftmost BA. As in [2], we studied the impact of the different BAs. For each
BA, one at a time, we divided its expected execution time by two and computed
the inf and sup distributions at the AT root and compared it to the original
ones. The BA takes place sooner in the modified model.

The following table gives the four most influential BAs to the attack execu-
tion time. As in [2], we found that ‘collect data’, ‘infection of control PC’ and
‘intercept in/out signals’ have the greatest impact. Therefore the countermea-
sures should address them as a priority.

After 20 days After 40 days After 60 days

Original [0.015, 0.139] [0.422, 0684] [0.866, 0.948]

Collect data [0.055, 0.259] [0.682, 0.857] [0.967, 0.989]

Infection of control PC [0.060, 0261] [0.678, 0.844] [0.962, 0.986]

Intercept in/out signals [0.044, 0.246] [0.662, 0.850] [0.964, 0.989]

Injection via USB [0.022, 0.155] [0.463, 0.704] [0.883, 0.953]

In Fig. 7 we compare the original distribution and the distribution when
the “collect data” rate is double. The BA are discretized with 25 bins. The
distribution bounds at the Attack Tree root have around 1200 bins. With these
parameters, the computation takes a few seconds hence the distributions do not
need to be compressed during the computation process. Notice that curves for
different rate parameters may cross due to the bounding discretization of input
distributions. In Fig. 8 we show the results obtained when we increase the BA
size to 50 bins. The distribution bounds at the Attack Tree root have around
2500 bins. On our server the computation time is multiplied by a factor 6. When
comparing Figs. 7 and 8, we observe the impact of discretization on the accuracy

Fig. 7. The output distribution for Stuxnet and the distribution when “collect data”
has double rate with bin size 25 (x axis is time in day).
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Fig. 8. The original output distribution for Stuxnet and the distribution when “collect
data” has double rate with bin size 50.

of results. The more precise the discretization is, the more accurate the results
are. In both case studies, the reduction of the number of bins has been applied
for the leave distributions while the continuous distributions are discretized. The
number of bins of output distributions of gates are not reduced due to the rapid
overall computation times.

4 Conclusion

The proposed methodology is based on the stochastic comparison to derive
bounding distributions on the time to success of Attack Trees. Due to the sto-
chastic monotonicity properties of the AND, OR, SEQ gates, the upper and
lower discrete, reduced-size, bounding distributions can be derived. Although
an approximative analysis is performed, we build the stochastic bounds on the
output distribution of the Attack Tree. This is particularly relevant when the
quantitative evaluation is done to check security constraints. We illustrate our
methodology with two case studies of the literature. In future work, we aim to
analyze the impact of the algorithms to reduce the distribution sizes ([1,3]) on
the accuracy of results and the algorithmic complexities. The correlated distri-
butions can be also considered with this approach.
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Abstract. Computer systems are potentially targeted by cybercrimi-
nals by means of specially crafted malicious software called Advanced
Persistent Threats (APTs). As a consequence, any security attribute of
the computer system may be compromised: disruption of service (avail-
ability), unauthorized data modification (integrity), or exfiltration of
sensitive data (confidentiality). An APT starts with the exploitation of
software vulnerability within the system. Thus, vulnerability mitigation
strategies must be designed and deployed in a timely manner to reduce
the window of exposure of vulnerable systems. In this paper, we evalu-
ate the survivability of a computer system under an APT attack using a
Markov model. Generation and solution of the Markov model are facili-
tated by means of a high-level formalism based on stochastic Petri nets.
Survivability metrics are defined to quantify security attributes of the
system from the public announcement of a software vulnerability and
during the system recovery. The proposed model and metrics not only
enable us to quantitatively assess the system survivability in terms of
security attributes but also provide insights on the cost/revenue trade-
offs of investment efforts in system recovery such as vulnerability miti-
gation strategies. Sensitivity analysis through numerical experiments is
carried out to study the impact of key parameters on system secure sur-
vivability.

Keywords: APT · Cyberattacks · Markov chains · Stochastic reward
nets · Security metrics · Survivability · Transient analysis

1 Introduction

The number of incidents related to cyberattacks is increasing rapidly, according
to numerous reports [1–3]. These cyberattacks have a cost of downtime and
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cleaning up of compromised systems, besides loss of customer confidence and
of other possible long-term consequences due to loss and theft of information.
This situation becomes specially critical when cybercriminals attempt to attack
infrastructures that provide essential services to the society, such as financial
services, power distribution, or water treatment plants [4]. In these systems, an
intentional malfunction causing a discontinuity of service may lead to fatalities or
injuries. Unfortunately, the number and sophistication of cyberattacks targeting
these systems demonstrate an increasing trend [5,6].

Malicious software (malware) are pieces of software specially crafted by cyber-
criminals to achieve their malicious goals [7]. There exist different types of mal-
ware depending on their behavior, such as viruses, worms, botnets, or keyloggers,
among others [8]. When malware are designed to target a specific system, they
are known as Advanced Persistent Threats (APTs) [9]. The term “advanced”
means the target requires a sophisticated attack, since attackers make a previ-
ous reconnaissance of the target to know in advance as much as possible about
the system to compromise. The term “persistent” means the goal of the threat
is to maintain a presence on the targeted system for long-term control and data
collection (which are later exfiltrated).

One of the first APTs was Operation Aurora, publicized by Google in 2010.
Presumably coming from China and with an extremely wide-scale range, it
targeted companies of different domains, such as Yahoo, Google, Symantec,
Northrop Grumman, Morgan Stanley, and Dow Chemicals [10]. Another well-
known APT is the Stuxnet attack, also discovered in 2010. This cyber weapon,
attributed to the US and Israel, was specially designed to exploit Siemens PLCs
in SCADA networks affecting Iranian nuclear facilities [9,11]. APTs discovered
in the wild from 2007 to 2013 with political intent, such as GhostNet, Flame, or
DarkSeoul, among others, are summarized in [12].

An APT comprises of different stages. In entry point and exploitation stages,
the APT gains access to a targeted system by means of zero-day vulnerabilities
(i.e., a software flaw that is unknown to the vendor) or vulnerabilities already
known but not yet patched. For instance, Stuxnet used four different zero-day
vulnerabilities. After gaining access, the APT tries various methods to make
itself persistent into the system (infection stage) and starts looking for data
of interest to be stolen or modified (lateral movement stage). Once sensitive
data are obtained, the APT will modify or send those data out of the organiza-
tion’s network boundaries (denoted exfiltration stage), thus compromising data
integrity and confidentiality. In addition, the various actions undertaken during
the attack may crash the system and then reduce system availability.

Assessing the impact of APTs on a system is important to characterize the
system against these unexpected and intentional failures and to evaluate miti-
gation techniques that may be applicable. In this regard, survivability refers to
a system’s ability to withstand malicious attacks and support the system’s mis-
sion even when parts of the system are damaged [13]. This paper, in particular,
defines the system secure survivability as a transient measure of the ability of the
system to provide pre-specified service with a certain security assurance during
the system recovery from a vulnerability.
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In this paper, we assess the survivability of a computer system targeted by
an APT. A security model is developed to capture both the behavior of the sys-
tem’s response to a security attack and the actions performed by an attacker to
cause such an attack. We make a simplifying assumption that all relevant event
times are exponentially distributed and thus the model is a homogeneous contin-
uous time Markov chain (CTMC). Note that a number of techniques are available
to relax this assumption if needed [14]. We leave the relaxation of this assump-
tion for future work. The generation and solution of the proposed Markov model
is automated using a variant of stochastic Petri nets called Stochastic Reward
Nets (SRNs). SRNs have been successfully used in the analysis of several domains
[15–19], and can easily represent common characteristics of computer systems
such as concurrency, synchronization, conditional branches, looping, and sequenc-
ing. We furthermore define four survivability metrics (see Sect. 3.1 for details) that
account for: (i) system recovery, (ii) system availability, and (iii) data confidential-
ity and/or integrity loss; after the public announcement of a software vulnerability
and during vulnerability mitigation strategy is being deployed.

RelatedWork. Research has been conducted on survivability modeling and analy-
sis in various fields and from different perspectives [20–24]. Regarding survivabil-
ity metrics, little research has proposed quantitative evaluation metrics in terms
of survivability. Quantitative measures were proposed in [25] to analyze the sur-
vivability of a resilient database system against intrusions, modeled with CTMC.
This work was later extended to semi-Markov processes in [26]. Similarly, a gen-
eral approach for survivability quantification of networked systems using SRNs
was given in [27]. Survivability assessment of the Saudi Arabia crude-oil pipeline
network, modeled with Generalized Stochastic Petri nets, was performed in [28].
All these works only analyze availability under unexpected events.

However, to the best of our knowledge, no work exists that proposes a quan-
titative assessment of the system secure survivability. The developed model in
this paper not only considers the response of the system to a security attack, but
also the actions performed by an attacker to cause such an attack and consider
the transient behavior of the system in face of an attack. The proposed model
and metrics let us investigate system security attributes (namely, confidential-
ity, integrity, and availability [29]) during the transient period which starts after
a vulnerability discovery and through all the stages of an APT, until the vul-
nerability is fully removed from the system. This paper shows that the results
not only enable us to quantitatively assess the system survivability in terms of
security attributes but also provide insights on the cost/benefit trade-offs of the
investment in system recovery efforts such as vulnerability mitigation strategies.

This paper is organized as follows. Background on Petri nets and Stochastic
Reward nets is provided in Sect. 2. The system description and the model con-
sidered in this paper are presented in Sect. 3. Then, Sect. 4 deals with numerical
results and discussion. Finally, Sect. 5 concludes the paper and outlines future
work.
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2 Previous Concepts

A Petri net [30] (PN) is a 4–tuple N = 〈P, T,Pre,Post〉, where P and T are
disjoint non-empty sets of places and transitions, and Pre (Post) are the pre–
(post–)incidence non-negative integer matrices of size |P | × |T |. The pre- and
post-set of a node v ∈ P ∪T are respectively defined as •v = {u ∈ P ∪T |(u, v) ∈
F} and v• = {u ∈ P ∪ T |(v, u) ∈ F}, where F ⊆ (P × T ) ∪ (T × P ) is the set of
directed arcs.

Graphically, a PN is a bipartite directed graph having two disjoint types
of nodes: places, drawn as circles; and transitions, drawn as bars. A directed
arc that connects a place (transition) to a transition (place) is called an input
(output) arc of the transition. An arc never connects the same type of nodes.
A positive integer inscribed next to an arc specifies the multiplicity associated
with the arc. Places that connect to a transition by input arcs are named input
places of the transition. Similarly, places that are connected to a transition by
output arcs are named output places of the transition. Each place may contain
zero or more tokens, depicted by an integer (or black dots) within the circle
representing the place. The number of tokens of a place denotes the marking
of the place. A Petri net system, or marked Petri net S = 〈N ,m0〉, is a Petri
net N with an initial marking m0 ∈ Z

|P |
≥0 .

A transition t ∈ T is enabledwhen each of its input places has, at least, as many
tokens as the multiplicity of the corresponding input arc. An enabled transition t
can fire triggering, upon firing, two actions: first, a number of tokens equal to the
multiplicity of the corresponding input arc is removed from each of its input places;
and second, a number of tokens equal to the multiplicity of the corresponding out-
put arc is deposited in each of its output places. Thus, the firing of a transition
may yield a new marking of the Petri net, named reached marking. The reachabil-
ity set is defined as the set of all markings reachable through any possible sequence
of transitions, starting from the initial marking m0.

Stochastic Petri nets are Petri nets where each transition has an exponen-
tially distributed firing time. Generalized Stochastic Petri nets [31] (GSPN) allow
transitions that fires in zero time, named as immediate transitions and repre-
sented by thin black bars. The transitions that follow any distribution firing time
are named timed transitions and represented by unfilled rectangles. Immediate
transitions have always priority over timed transitions to fire. Similarly, imme-
diate transitions with the same input places may have defined a probability to
calculate the one that fires when they compete for firing. GSPN also includes
inhibitor arcs.

A Stochastic Reward Net (SRN) [32] is a GSPN augmented with reward
functions. In SRN, an enabling function (also called a guard) defines the enabling
function of a transition as a marking-dependent function. In addition, both arc
multiplicities and firing rates are allowed to be marking-dependent. SRN allows
us to compute measures of interests by defining reward rates at the net level.



138 R.J. Rodŕıguez et al.

3 System Description and Model

To analyze and quantify security attributes of a system, we consider not only the
system defender’s response to a security attack, but also the actions taken by an
attacker to cause the attack. This requires that the security model incorporates
the behavior of both elements. In the following, we first describe the system
considered in this paper, and then we present a Stochastic Reward Net model
for survivability analysis of this system.

3.1 System Description

Figure 1 depicts a flowchart detailing the actions of both the attacker and the
defender, and the system changes due to these actions during the recovery from
a vulnerability.

Let us consider a system in which an attacker has some interest in accessing
into it. The attacker has acquired a previous knowledge of the system, but at the
beginning there are no known vulnerabilities the attacker can take advantage of.
We consider the attacker is not skillful enough to find unknown vulnerabilities.
When a vulnerability is fully disclosed, the system is in the vulnerable state.
Meanwhile, the defender starts the patch implementation and the attacker starts
the exploit implementation. In the following, we use patch and vulnerability
mitigation strategy interchangeably. The shaded part with dotted line in Fig. 1
describes the system state transitions and the shaded rectangles in it represents
the system states.

There are eight system states: System is vulnerable, Patching, Fixing, Failing,
Infected, Lmoved, Exfiltrated, Crashing. The transitions to any of the left four
states are triggered by attacker actions. Upon finishing the exploitation soft-
ware, the attacker starts a sequence of actions to destroy the system security at
least in terms of confidentiality, integrity, and availability. These actions include
infecting the system, keeping itself persistent in the system, searching sensitive
data and making these data benefit them. The last two actions are repeated,
forming a loop. Each attacker action may crash the system, denoted by Crash-
ing state. In addition, the software bugs, such as Mandelbugs [33], may lead to
system failure, denoted by Failing state. If the system crashes or fails, it must
be fixed immediately. During the fixing, both the defender and the attacker can
do nothing to the system. We assume that as long as patch is ready, it must be
deployed into the system immediately. Thus, for each attack action, System fails
and Patch ready must be checked in the first place. Since each attacker action
may crash the system, for each attack action, we will check whether the attacker
action succeeds before a system state transition occurs.

We assume that when the system completes this fixing, there is no APT code
in the system but the vulnerability still exists. Such constrain may be relaxed.
We leave the modeling of the relaxed system for future work. The system is
unavailable before system failure or crash is fixed. Upon completing recovery,
the system enters into good state, denoting that the vulnerability does not exist
in the system. But when the system fails or crashes, the strategy can only be
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Fig. 1. Flowchart depicting events in a system under an APT attack, after a vulnera-
bility is announced and during the mitigation strategy implementation.
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Fig. 2. Stochastic Reward Net model.

deployed after the system failure or crash is fixed. Without loss of generality,
the deployment process is assumed to never fail and is not affected by APT. In
addition, the system is unavailable during the mitigation strategy deployment.

Survivability has been defined by ANSI T1A1.2 committee as the transient
performance of a system after an undesirable event [34]. The metrics used to
quantify survivability vary according to applications, and depend on a number
of factors such as the minimum level of performance necessary for the system to
be considered functional and the maximum acceptable security loss of a system.
Performance levels are assigned as reward rates. In this paper, we classify the
metrics into two broad categories:

– Instantaneous metrics are transient metrics that capture the state of the sys-
tem at time t after the occurrence of an undesired event. An example of an
instantaneous metric is the probability that the vulnerable system has been
recovered at time t.

– Cumulative metrics are integrals of instantaneous metrics, that is, expected
accumulated rewards in the interval (0, t].

The metrics considered in this paper include

Metric m1. Probability that the vulnerable system has been patched at time t;
Metric m2. Probability that the system is unavailable at time t;
Metric m3. Mean accumulated time that the system is unavailable in the inter-

val (0, t]; and
Metric m4. Mean accumulated loss of system confidentiality and integrity loss

in the interval (0, t].

Note that survivability metrics are transient metrics computed after the
announcement of a vulnerability. In the remainder of this paper, time t refers to
the time since a vulnerability is found and is measured in days.



Survivability Analysis of a Computer System under an APT Attack 141

3.2 Stochastic Reward Net Model

Figure 2 shows an SRN model for the survivability analysis of a system under
an APT attack. Table 1 shows the definition of variables, while Table 2 shows
guard definitions. When a software vulnerability is identified, Tbugfound fires
with a quick rate δ. One token is removed from pbugfound and one token is put
in pvuls , pvul, and pprepare each, representing that system failure, exploitation
code implementation and mitigation strategy implementation start concurrently.

When the exploit code is ready, Tvul fires. Then, one token is taken from
pvul and one token is deposited in pexploit2 and one token is deposited in ptvul.
Guard function gvul determines whether or not a token is put in pexploit. Only
when the system does not fail (represented by a token in pvuls), tvul fires and a
token is put in pexploit. That is, the number of tokens in place pexploit2 is used
for determining whether the exploit code is ready after the system failure or
crash is fixed. Places pexploit, pinfect, plmov, and pefil represent the status of the
attacker in the system. When Texploit fires, one token is taken from pexploit and
one token is put in pinfect, representing that exploit code is injected into the
system successfully with mean time 1/(λexploit · ρ1). This injection process may
fail resulting in the system crash, represented by firing Tc1 . For this situation,
one token is taken from pexploit and one token is put in pcrash. The firing rate is
(1−ρ1)·λexploit. In addition, the system may fail due to other reasons, represented
by firing Tf1 with mean time 1/λfail. That is, one token is taken from pexploit
and one token is put in pfail. Similar explanations are applicable to transitions
from pinfect, plmov, and pefil.

A token in place pprepare denotes the condition that the mitigation strategy
is under implementation. When Tprepare fires, one token is taken from pprepare
and one token is put in pready, representing that the strategy is ready for deploy-
ment. When there is a token in pready and prepair (pvul, pexploit, pinfect, plmov, or
pefil), the immediate transition t1 (t2, t3, t4, t5, or t6, respectively) fires. Then, a
token is taken from pready and prepair (pvul, pexploit, pinfect, plmov, or pefil) and
deposited in place pdeploy. The place pdeploy represents that the system begins
the deployment of the mitigation strategy. When Tdeploy fires, one token is taken
from pdeploy and one token is put in pgood, representing that the system completes
the mitigation strategy deployment and enters into state GOOD.

The priority of t1 over t7 aims to achieve the following goal: when the mitiga-
tion strategy and exploit code are both available, the mitigation strategy must
be deployed immediately. Then, t1 is fired and one token is taken from pready
and prepair each, and one token is put in pdeploy. If the strategy is not ready but
the exploit code is available, then t7 is fired. At this time, one token is taken
from prepair and pexploit2 each, and one token is put in pexploit and pexploit2 .
If both are unavailable, then t7 does not fire and the token is kept in prepair.
Later, when mitigation strategy or exploit code is available, transition t1 or t7
fires, respectively.

Based on this model, we use the SPNP software package [35] to calculate the
four metrics mentioned at the end of Sect. 3.1 as follows:
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Table 1. Definition of variables used in monolithic SRN model.

Symbol Definition Mean value

1/δ Mean time that the discovered vulnerability is known to all 30 min

1/λprepare Mean time for implementing a mitigation strategy 20 days

1/λdeploy Mean time for installing the mitigation strategy 12 days

1/λvuln Mean time for generating the exploit code 4 days

1/λfail Mean time that the computer system fails 365 days

1/λfix Mean time that the computer system completes the failure
or crash fixing

2 days

1/λefil Mean time that the attacker obtains the desired
information

2 days

1/λexploit Mean time for injecting the exploit code into the system 7 days

1/λinf Mean time that the exploit code is persistent 1 days

1/λlmov Mean time that the attacker finds sensitive data of interest 7 days

ρ1 Probability that the exploit code works in the system 0.6

ρ2 Probability that the exploit code is persistent 0.6

ρ3 Probability that the attacker finds its target 0.6

ρ4 Probability that the attacker obtains the desired
information

0.6

Table 2. Guard functions for the SRN model.

Guard Values

gvul if (#(pvuls) == 1) then 1 else 0

gf5 if (#(pvul) == 1) then 1 else 0

– The value of m1 at time t is the expected number of tokens of pgood at time t.
– The value of m2 at time t is the expected number of tokens of (pcrash + pfail +

pdeploy) at time t.
– The value of m3 in the interval (0, t] is the expected accumulated reward of

(pcrash + pfail + pdeploy) by time t.
– The value of m4 in the interval (0, t] is the expected accumulated reward of

pexfil by time t.

4 Numerical Results and Discussions

In this section we present the numerical results obtained using SPNP software
package [35] to solve the SRN model. In particular, we report the metrics previ-
ously described.

1/λprepare is set to 20 days according to [36] and our analysis of vulnerability
data set of Google Project Zero security team [37]. Similarly, 1/λvuln is set to
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4 days according to [38]. Values of the other parameters now are unknown to us
and are set based on intuition for sensitivity analysis. Table 1 gives the default
values considered of each parameter.

We first investigate the effect of λprepare on both the transient probability
of GOOD state and the probability that the system is unavailable (that is, m1

and m2 metrics, respectively). Figures 3 and 4 plot these results, respectively.
Probabilities ρ1, ρ2, ρ3, and ρ4 are set to the value denoted by crash probability.
P04, P08, P12, P16, and P20 represent the results of 1/λprepare = 4 days, 8 days,
12 days, 16 days, 20 days respectively. We carry out numerical analysis under
crash probability of 10% and 40%.

From Fig. 3(a) and (b), we observe that crash probability has little effect on
the probability of GOOD state for each λprepare in our parameter configurations.
The reason is that as long as the mitigation strategy becomes ready, the sys-
tem can immediately enter into the deployment phase no matter which state
of pvuln, pexploit, pinfect, plmov, and pexfil is. However, the influence of λprepare

value is significant. The larger λprepare, the larger increase in the probability of
GOOD state at time t. That is, the smaller 1/λprepare is, the quicker the system
is recovered.
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Fig. 3. Probability of GOOD state at time t under different crash probabilities
(metric m1).

However, Fig. 4(a) and (b) indicate that both crash probability and λprepare

have obvious effects on the probability that the system is unavailable at time t.
This probability increases first and then decreases with t. The reason is as fol-
lows. At the beginning, only the system failure with very small rate contributes
the probability of unavailable system. When the exploitation code is ready, the
system crashes frequently. In addition, when the mitigation strategy is ready, the
strategy deployment also contributes to the probability of unavailable system.
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Fig. 4. Probability of unavailable system at time t under different crash probabilities
(metric m2).

Thus, this probability increases first and later decreases with the system enter-
ing into state GOOD. Figure 4(a) and (b) indicate that in most time, the larger
1/λprepare, the larger probability of unavailable system at time t. However, it
is not hold at the beginning: we can observe that the smaller 1/λprepare, the
larger probability of unavailable system at time t. This is due to the probability
of DEPLOY state. Figure 5(a) and (b) show the probabilities of CRASH+FAIL and
DEPLOY states, respectively, when crash probability is 10%. The same discus-
sions apply to the results in Fig. 6, which depicts the mean accumulated time
of unavailable system under different crash probabilities (metric m3). Table 3
defines the reward rate functions used.

Table 3. Reward rate definition.

Measure Definition

System unavailability 1: if (#(pfail) == 1 or#(pcrash) == 1 or#(pdeploy) == 1)

0: otherwise

Confidentiality loss 1: if (#(pefil) == 1)

0: otherwise

Metric m4 defined in Sect. 3.1 can be used for computing loss of confidential-
ity+integrity, integrity, or confidentiality. It depends on the attacker objective.
Without loss of generality, we consider the confidentiality in the experiments.
The system confidentiality loss per day is defined as 1. Figure 7(a) and (b) plot
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Fig. 5. Probability of (a) CRASH+FAIL and (b) DEPLOY state at time t under crash
probability of 10%.
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Fig. 6. Mean accumulated time that the system is unavailable under different crash
probabilities (metric m3).

the mean accumulated loss of system confidentiality by time t, under different
crash probabilities (metric m4). We can see that the larger 1/λprepare and/or
the smaller crash probability, the larger mean accumulated time and loss.
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Fig. 7. Mean accumulated of system confidentiality and integrity loss by time t under
different crash probabilities (metric m4).

5 Conclusions and Future Work

Cyberattacks are increasing rapidly according to numerous security vendor
reports. These attacks affect normal operations of computer systems leading
to large periods of unavailability, unauthorized data modification, or exfiltra-
tion of sensitive data. Furthermore, these attacks become specially critical when
infrastructures that provide essential services are targeted, since disruptions or
malfunctioning of services may lead to fatalities or injuries. Malicious software
specially crafted to target a specific system are known as Advanced Persistent
Threats (APTs). An APT aim at compromising the security of the targeted sys-
tem and gather sensitive data or steal intellectual property, among other goals.

This paper explored the CTMC model-based survivability analysis of a com-
puter system under an APT attack. A variant of stochastic Petri nets (in particu-
lar, Stochastic Reward Nets) was used to automate the generation and solution
of the Markov model. We defined four survivability metrics, in terms of sys-
tem recovery, system availability, data confidentiality loss, and data integrity
loss. In addition, numerical results have been presented to study the impact of
the underlying parameters on the system survivability. These results may also
provide insights on the cost/benefit trade-offs of investment efforts in system
recovery strategies including vulnerability mitigation schemes.

There are several future work directions. This paper does not consider the
security improvement schemes which could reduce the security loss during the
system recovery from a vulnerability. These security schemes include using black-
list/whitelist to enforce system access control, using backup software and so on.
Extending to our proposed model to capture these schemes and then quanti-
tatively evaluating the abilities of various security protection schemes is our
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next research. We also plan to extend our survivability-based model to the
scenario where multiple vulnerabilities are found and some event times are non-
exponentially distributed. Furthermore, the modeling in this paper is an approx-
imation of the real restoration process. We shall extend the current study to
approximate the model in a more accurate way to real system behaviors.
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Abstract. Systems designed with measurement and attestation in mind
are often layered, with the lower layers measuring the layers above them.
Attestations of such systems must report the results of a diverse set of
application-specific measurements of various parts of the system. There is
a pervasive intuition that measuring the system “bottom-up” (i.e. mea-
suring lower layers before the layers above them) is more robust than
other orders of measurement. This is the core idea behind trusted boot
processes. In this paper we justify this intuition by characterizing the
adversary actions required to escape detection by bottom-up measure-
ment. In support of that goal, we introduce a formal framework with a
natural and intuitive graphical representation for reasoning about lay-
ered measurement systems.

1 Introduction

Security decisions often rely on trust. Many computing architectures have been
designed to help establish the trustworthiness of a system through remote attes-
tation. They gather evidence of the integrity of a target system and report it to a
remote party who appraises the evidence as part of a security decision. A simple
example is a network gateway that requests evidence that a target system has
recently run antivirus software before granting it access to a network. If the virus
scan indicates a potential infection, or does not offer recent evidence, the gate-
way might decide to deny access, or perhaps divert the system to a remediation
network. Of course the antivirus software itself is part of the target system, and
the gateway may require integrity evidence for the antivirus software for its own
security decision. This leads to the design of layered systems in which deeper
layers are responsible for generating integrity evidence of the layers above them.

A simple example of a layered system is one that supports “trusted boot” in
which a chain of boot-time integrity evidence is generated for a trusted comput-
ing base that supports the upper layers of the system. A more complex example
might be a virtualized cloud architecture. The virtual machines (VMs) at the
top are supported at a lower layer by a hypervisor or virtual machine monitor.
Such an architecture may be augmented with additional VMs at an intermedi-
ate layer that are responsible for measuring the main VMs to generate integrity
evidence. These designs offer exciting possibilities for remote attestation. They
allow for specialization and diversity of the components involved, tailoring the
capabilities of measurers to their targets of measurement, and composing them
in novel ways.
c© Springer International Publishing AG 2016
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However, the resulting layered attestations are typically more complex and
challenging to analyze. Given a target system, what set of evidence should an
appraiser request? What extra guarantees are provided if it receives integrity
evidence of the measurers themselves? Does the order in which the measurements
are taken matter?

This paper begins to tame the complexity surrounding attestations of these
layered systems. We provide a formal model of layered measurement and attes-
tation systems that abstracts away the underlying details of the measurements
and focuses on the causal relationships among component corruption and mea-
surement.

Limitations of Measurement. Our starting point for this paper is the recog-
nition of the fact that measurement cannot prevent corruption; at best, mea-
surement only detects corruption. In particular, the runtime corruption of a
component can occur even if it is launched in a known good state. An appraiser
must therefore always be wary of the gap between the time a component is
measured and the time at which a trust decision is made. If the gap is large
then so is the risk of a time-of-check-to-time-of-use (TOCTOU) attack in which
an adversary corrupts a component during the critical time window to under-
mine the trust decision. A successful measurement strategy will limit the risk
of TOCTOU attacks by ensuring the time between a measurement and a secu-
rity decision is sufficiently small. The appraiser can then conclude that if the
measured component is currently corrupted, it must be because the adversary
performed a recent attack.

Shortening the time between measurement and security decision, however,
is effective only if the measurement component can be trusted. By corrupting
the measurer, an adversary can lie about the results of measurement making
a corrupted target component appear to be in a good state. This affords the
adversary a much larger window of opportunity to corrupt the target. The cor-
ruption no longer has to take place in the small window between measurement
and security decision because the target can already be corrupted at the time of
(purported) measurement. However, in a typical layered system design, deeper
components such as a measurer have greater protections making it harder for an
adversary to corrupt them. This suggests that to escape the burden of perform-
ing a recent corruption, an adversary should have to pay the price of corrupting
a deep component.

Formal Model of Measurement and Attestation. With this in mind, our
first main contribution is a formal model designed to aid in reasoning about
what an adversary must do in order to defeat a measurement and attestation
strategy. Rather than forbid the adversary from performing TOCTOU attacks
in small windows or from corrupting deep components, we provide results that
help to characterize and confine where such undesirable adversary actions must
occur if the adversary is to corrupt a component without detection. Thus our
model explicitly allows an adversary to corrupt (and repair) arbitrary system
components at any time.
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The model also features a true concurrency execution semantics which allows
us to reason more directly about the causal effects of corruptions on the outcomes
of measurement without having to reason about unnecessary interleavings of
events. An important side benefit of this semantics is that it admits a natural,
graphical representation that helps an analyst quickly understand the causal
relationships between events of an execution. This pairs nicely with our analysis
method based on characterizing executions consistent with some hypotheses,
because it allows an analyst to quickly evaluate these executions without having
to specify in advance a particular security goal.

Strategy for Measurement. We demonstrate the utility of this formal model
by validating the effectiveness of an important strategy for measurement. An
intuition manifest in much of the literature on measurement and attestation is
that trust in a system should be based on a bottom-up chain of measurements
starting with a hardware root of trust for measurement. This is the core idea
behind trusted boot processes, in which one component in the boot sequence
measures the next component before launching it. Theorem1, which we refer to
as the “recent or deep” theorem, validates this common intuition and character-
izes exactly what an adversary must do to defeat such bottom-up measurement
strategies. It roughly says the following:

If a system has measured deeper components before more shallow ones,
then the only way for the adversary to corrupt a component t without
detection is either by recently corrupting one of t’s dependencies, or else
by corrupting a component even deeper in the system.

Paper Structure. The paper is structured as follows. We motivate our intu-
itions and informally introduce our model in Sect. 2. In Sect. 3 we formally define
the systems of study and their executions. In Sect. 4 we prove some important
facts about executions. We also define bottom-up measurement strategies and
prove they confine adversary corruptions to be either recent or deep. Section 5
discusses some relevant related work. Finally, we conclude in Sect. 6.

2 Motivating Examples of Measurement

Consider an enterprise that would like to ensure that systems connecting to its
network provide a fresh system scan by the most up-to-date virus checker. The
network gateway should ask systems to perform a system scan on demand when
they attempt to connect. We may suppose the systems all have some compo-
nent A1 that is capable of accurately reporting the running version of the virus
checker. Because this enterprise values high assurance, the systems also come
equipped with another component A2 capable of measuring the runtime state
of the kernel. This is designed to detect any rootkits that might try to under-
mine the virus checker’s system scan. We may assume that A1 and A2 are both
measured by a hardware root of trust for measurement (rtm) as part of a secure
boot process. Thus, the architecture for systems in this enterprise might look
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Fig. 1. Example measurement system.

something like Fig. 1 in which the (virtual) trusted platform modules ((v)TPMs)
serve to store and report the measurement values to a remote appraiser.

We are thus interested in a system consisting of the following components:
{sys, vc, ker , A1, A2, rtm}, where sys represents the collective parts of the system
scanned by the virus checker vc, and ker represents the kernel. Based on the sce-
nario described above, we may be interested in the following set of measurement
events

{ms(rtm, A1),ms(rtm, A2),ms(A1, vc),ms(A2, ker),msker (vc, sys)}
where msC (o1, o2) represents the measurement of o2 by o1 while C provides the
runtime context. These measurement events generate the raw evidence that the
network gateway can use to make a determination as to whether or not to admit
the system to the network.

If any of the measurements indicate a problem, such as a failed system scan,
then the gateway has good reason to believe it should deny the system access to
the network. But what if all the evidence it receives looks good? How confident
can the gateway be that the version and signature files are indeed up to date?
The answer will depend on the order in which the evidence was gathered. The
problem of determining the order in which measurements were taken given a
set of signed quotes from (v)TPMs is addressed in [12]. In what follows, we
assume the appraiser has some way of accurately determining the order in which
measurements are taken. To get some intuition for why the order of measurement
matters, consider the three different specifications pictured in Fig. 2 (in which
time flows from top to bottom) for how to order the measurements. (The bullet
after the first three events does not represent a separate event. It is inserted only
for visible legibility, to avoid crossing arrows, so that each of the events on the
top row occurs before both events on the next row down.)

Specification S1 ensures that both vc and ker are measured before vc runs its
system scan. Specifications S2 and S3 each relax one of those ordering require-
ments. Let’s now consider some executions that respect the order of measure-
ments in each of these specifications in which the adversary manages to avoid
detection.
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Fig. 2. Three orders for measurement

Execution E1 of Fig. 3 is compatible with Specification S1. The adversary
manages to corrupt the system by installing some user-space malware sometime
in the past. If we assume the up-to-date virus checker is capable of detecting
this malware, then the adversary must corrupt either vc or ker before the virus
scan represented by msker (vc, sys). That is, either a corrupted vc will lie about
the results of measurement, or else a corrupted ker can undermine the integrity
of the system scan, for example, by hiding the directory containing the malware
from vc. In the case of E1, the adversary corrupts vc in order to lie about the
results of the system scan, but it does so after ms(A1, vc) in order to avoid
detection by this measurement event.

In Execution E2, which is consistent with Specification S2, the adversary is
capable of avoiding detection while corrupting vc much earlier. The system scan
msker (vc, sys) is again undermined by the corrupted vc. Since vc will also be
measured by A1, the adversary has to restore vc to an acceptable state before
ms(A1, vc). Execution E3 is analagous to E2, but the adversary corrupts ker
instead of vc, allowing it to convince the uncorrupted vc that the system has
no malware. Since Specification S3 allows ms(A2, ker) to occur after the system
scan, the adversary can leverage the corrupted ker to lie about the scan results,
but must restore ker to a good state before it is measured.

Execution E1 is ostensibly harder to achieve for the adversary than either
E2 or E3, because the adversary has to work quickly to corrupt vc during the
attestation. In E2 and E3, the adversary can corrupt vc and ker respectively at
any time in the past. He still must perform a quick restoration of the corrupted
component during the attestation, but there are reasons to believe this may be
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Fig. 3. Three system executions

easier than corrupting the component to begin with. The results of this paper
provide a way of characterizing where and when adversary actions must occur
in order to avoid detection by measurement. This leads to a result that any exe-
cution consistent with S1 in which the adversary corrupts sys without detection
forces the adversary to perform either a recent or a deep corruption.

3 Measurement Systems

In this section we formalize the intuitions we used for the examples in the pre-
vious section.

System Architecture. We start by describing the core types of dependencies
that make a system layered.

Definition 1 (Measurement Systems). We define a measurement system
to be a tuple MS = (O,M,C), where O is a set of objects (e.g. software com-
ponents) with a distinguished element rtm. M and C are binary relations on O.
We call

M the measures relation, and
C the context relation.
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We say M is rooted when for every o ∈ O\{rtm}, M+(rtm, o), where M+ is the
transitive closure of M .

M represents who can measure whom, so that M(o1, o2) iff o1 can measure
o2. rtm is the root of trust for measurement. For this reason we henceforth
always assume M is rooted and M+ is acyclic (i.e. ¬M+(o, o) for any o ∈ O).
This guarantees that every object can potentially trace its measurements back
to the root of trust, and there are no measurement cycles. As a consequence, rtm
cannot be the target of measurement, i.e. for rooted, acyclic M , ¬M(o, rtm) for
any o ∈ O. The relation C represents the kind of dependency between ker and
vc in the example above in which one object provides a clean runtime context for
another. Thus, C(o1, o2) iff o1 contributes to maintaining a clean runtime context
for o2. (C stands for context.) We henceforth always assume C is transitive (i.e.
if C(o1, o2) and C(o2, o3) then C(o1, o3)) and acyclic. This means that no object
(transitively) relies on itself for its own clean runtime context.

Given an object o ∈ O we define the measurers of o to be M−1(o) = {o′ |
M(o′, o)}. We similarly define the context for o to be C−1(o). We extend these
definitions to sets in the natural way.

We additionally assume M ∪ C is acyclic. This ensures that the combina-
tion of the two dependency types does not allow an object to depend on itself.
Such systems are stratified, in the sense that we can define an increasing set of
dependencies as follows.

D1(o) = M−1(o) ∪ C−1(M−1(o))
Di+1(o) = D1(Di(o))

So D1(o) consists of the measurers of o and their context. As we will see later,
D1(o) represents the set of components that must be uncompromised in order
to trust the measurement of o.

We can represent measurement systems pictorially as a graph whose vertices
are the objects of MS and whose edges encode the M and C relations. We use
the convention that M(o1, o2) is represented by a solid arrow from o1 to o2, while
C(o1, o2) is represented by a dotted arrow from o1 to o2. The representation of
the system described in Sect. 2 is shown in Fig. 4.

Fig. 4. Graphical representation of an example measurement system.
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Events, Executions, and Outputs. The components o ∈ O and the adversary
on this system perform actions. In particular, objects can measure each other
and the adversary can corrupt and repair components in an attempt to influence
the outcome of future measurement actions. Additionally, an appraiser has the
ability to inject a random nonce n ∈ N into an attestation in order to control
the recency of events.

Definition 2 (Events). Let MS be a target system. An event for MS is a
node e labeled by one of the following.

a. A measurement event is labeled by msC−1 (o2 )(o2, o1) such that M(o2, o1). We
say such an event measures o1, and we call o1 the target of e. When C−1(o2)
is empty we omit the subscript and write ms(o2, o1).

b. An adversary event is labeled by either cor(o) or rep(o) for o ∈ O\{rtm}.
c. The attestation start event is labeled by att-start.

When an event e is labeled by � we will write e = �. We will often refer to the
label � as an event when no confusion will arise.

An event e touches o iff o is an argument to the label of e.

The att-start event serves to bound events in time. It represents the choice
by the appraiser of a random nonce. Typically the measurements will be cryp-
tographically bound to this nonce before sending them back to the appraiser. In
this way, the appraiser will know that anything occurring after this event can
reasonably be said to occur “recently”. Regarding the measurement events, the
rtm is typically responsible for measuring components at boot-time. All other
measurements are load-time or runtime measurements of one component in O by
another. Adversary events represent the corruption (cor(·)) and repair (rep(·))
of components. Notice that we have excluded rtm from corruption and repair
events. This is not because we assume the rtm to be immune from corruption,
but rather because all the trust in the system relies on the rtm: Since it roots all
measurements, if it is corrupted, none of the measurements of other components
can be trusted.

As we saw in the motivational examples, an execution can be described as a
partially ordered set (poset) of these events. We choose a partially ordered set
rather than a totally ordered set because the latter unnecessarily obscures the
difference between causal orderings and coincidental orderings. However, due
to the causal relationships between components, we must slightly restrict our
partially ordered sets in order to make sense of the effect that corruption and
repair events have on measurement events. To that end, we next introduce a
sensible restriction to these partial orders.

A poset is a pair (E,≺), where E is any set and ≺ is a transitive, acyclic rela-
tion on E. When no confusion arises, we often refer to (E,≺) by its underlying set
E and use ≺E for its order relation. Given a poset (E,≺), let e↓= {e′ | e′ ≺ e},
and e↑= {e′ | e ≺ e′}. Given a set of events E, we denote the set of adversary
events of E by adv(E) and the set of measurement events by meas(E).

Let (E,≺) be a partially ordered set of events for MS = (O,M,C) and let
(Eo,≺o) be the substructure consisting of all and only events that touch o. We
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say (E,≺) is adversary-ordered iff for every o ∈ O, (Eo,≺o) has the property
that if e and e′ are incomparable events, then neither e nor e′ are adversary
events.

Lemma 1. Let (E,≺) be a finite, adversary-ordered poset for MS, and let
(Eo,≺o) be its restriction to some o ∈ O. Then for any non-adversarial event
e ∈ Eo, the set adv(e↓) ∩ Eo is either empty or has a unique maximal element.

Proof. Since (E,≺) is adversary-ordered, adv(Eo) is partitioned by adv(e↓) and
adv(e↑). Suppose e↓ is not empty. Then since Eo is finite, it has at least one
maximal element. Suppose e′ and e′′ are distinct maximal elements. Thus they
must be ≺o-incomparable. However, since (E,≺) is adversary-ordered, either
e′ ≺o e′′ or e′′ ≺o e′, yielding a contradiction. �	
Definition 3 (Corruption State). Let (E,≺) be a finite, adversary-ordered
poset for MS. For each event e ∈ E and each object o the corruption state
of o at e, written cs(e, o), is an element of {⊥, r, c} and is defined as follows.
cs(e, o) = ⊥ iff e �∈ Eo. Otherwise, we define cs(e, o) inductively:

cs(e, o) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c : e = cor(o)
r : e = rep(o)
r : e ∈ meas(E) ∧ adv(e↓) ∩ Eo = ∅
cs(e′, o) : e ∈ meas(E) ∧ e′ maximal in adv(e↓) ∩ Eo

When cs(e, o) takes the value c we say o is corrupt at e; when it takes the value
r we say o is uncorrupt or regular at e; and when it takes the value ⊥ we say
the corruption state is undefined.

We now define what it means to be an execution of a measurement system.

Definition 4 (Executions). An exectuion of a measurement system MS is
any finite, adversary-ordered poset E for MS.

Since executions are finite and adversary-ordered, for every o, we can always
determine the corruption state of o at every event e touching o. We can there-
fore use these corruption states to determine the outputs of measurements.
Abstractly, we assume that for each target of measurement ot, every measurer
of ot outputs values within some set MV(o).

The question of measurement accuracy is complicated because there are two
primary sources of inaccuracy. First, the measurer may not produce values that
strongly correlate to the corruption state of the target. For example, an asset
inventory tool may only output the version numbers of software installed, and
this cannot detect undiscovered (and thus unpatched) vulnerabilities. Second,
the appraiser is ultimately the one to interpret the output. That is, the appraiser
partitions MV(o) into G(o) and B(o). The first set G(o) represents measurement
values the appraiser believes represent an uncompromised component, while B(o)
are those values the appraiser believes represent a corrupted component. Thus
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the composition of measurement output with appraiser interpretation forms a
classifier for the corruption state of the target whose false positive and negative
rates depend on both the measurer and the appraiser.

In this work, to simplify the analysis, we assume there are no false positives or
negatives as long as the measurer and its context are uncorrupted. However, we
assume a corrupted measurer (or its context) can always convince the appraiser
that the target of measurement is uncorrupted.

Assumption 1 (Measurement Accuracy). Let G(o) and B(o) be a partition
for MV(o). Let e = ms(o2, o1). The output of e, written out(e), is defined as
follows.

out(e) =

{
v ∈ B(o1) cs(e, o1) = c and ∀o ∈ {o2} ∪ C−1(o2) . cs(e, o) = r

v ∈ G(o1) otherwise

If out(e) ∈ B(o1) we say e detects a corruption. If out(e) ∈ G(o1) but
cs(e, o1) = c, we say the adversary avoids detection at e.

Given an execution E, Assumption 1 says we can always determine the
appraiser’s classification. However, it can also be used to infer the corrup-
tion states of some components given the corruption states of others and
the classification. That is, suppose we know the adversary avoids detection
at e = msC−1 (o)(o, ot). Then we can conclude that at least one member of
{o} ∪ C−1(o) is corrupt at e. This is an important inference for our main result.

One can imagine weakening Assumption 1 to account for imperfect classifi-
cation. For example, it would be interesting to perform a probabilistic analysis
accounting for false positive and negative rates. However, we leave such investi-
gations for future work.

Although executions always allow us to infer the corruption state of com-
ponents at events and the outputs of measurements, this only holds if we have
accounted for all the adversary actions. The main goal of our framework is to
allow an appraiser to infer what adversary events must have occurred and when,
assuming some basic facts about an execution. To that end we introduce spec-
ifications, which formalize the partial knowledge an appraiser has about the
execution of the system.

Definition 5 (Specifications). A specification for measurement system MS,
is a finite adversary-ordered poset S with some (possibly empty) set of assump-
tions about measurement events regarding

1. the corruption states of some of their arguments, or
2. the output classification (G(o) or B(o)).

A specification S admits execution E iff there is an injective, label-preserving
map of partial orders α : S → E preserving assumptions on corruption states and
output classifications. The set of all executions admitted by S is denoted E(S).
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We can annotate our diagrams in order to convey the assumptions about
measurement events. In particular, we underline the corrupted components and
display them in red, and we use bold typeface for the uncorrupted components
and display them in green. We can also annotate measurements with a � (resp.
X) to indicate the output is in G(o) (resp. B(o)). This allows for a quite com-
pact graphical representation of the relevant information as seen, for example,
in Figs. 3 and 5. We omit these visual annotations from executions when the
diagram is too cluttered because they can be inferred.

4 Confining Adversary Behavior

In this section we explore what an appraiser can infer about E(S), given a speci-
fication S. In particular, we are interested in characterizing the ways in which an
adversary can corrupt a component without the execution giving any indication
of corruption. We thus start with some simple general results about executions,
before presenting our main theorem.

Lemma 2. Let E be an execution of MS, and let e be an event of E touching o.
If cs(e, o) = c, then there is a most recent corruption event e′ � e.

Proof. This follows immediately from Lemma 1 and Definition 3. �	
This lemma is useful for inferring the existence of a corruption event before

some given event e. However, since we are also interested in the recency of
corruption, we would like to infer the existence of a corruption event after a
given event. The following lemma allows us to do just that.

Lemma 3. Let E be an execution of MS, and let e1 ≺ e2 be measurement
events touching o such that cs(e1, o) = r (resp. c) and cs(e2, o) = c (resp. r).
Then there exists a corruption (resp. repair) event e′ such that e1 ≺ e′ ≺ e2.

Proof. Let A1 = adv(e1↓)∩Eo and A2 = adv(e2↓)∩Eo. Since e1 ≺ e2, A1 ⊆ A2.
By Lemma 1, A2 is either empty or has a unique maximum. However, it can’t
be empty because then A1 would also be empty and Definition 3 would imply
that cs(e1, o) = cs(e2, o) = r, contrary to the hypothesis. So let e′ be the unique
maximum of A2. Since (E,≺) is adversary ordered, either e′ ≺ e1 or e1 ≺ e′.
In the first case, e′ would also be a maximum of A1 since A1 ⊆ A2. But this
would imply cs(e1, o) = cs(e′, o) = cs(e2, o) violating our assumption. Thus
e1 ≺ e′ ≺ e2, and since the corruption state of o is different at e1 and e2, e′ must
change the corruption state. �	

We now turn to a formalization of the rule of thumb at the end of Sect. 2. In
particular, we characterize what a bottom-up measurement strategy guarantees.
That is, if whenever o1 depends on o2 we measure o2 before measuring o1, then
we seek to understand the constraints this puts on the adversary actions in order
to avoid detection. For this discussion we fix a target system MS. Recall that
D1(o) represents the measurers of o and their runtime context.
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Definition 6. A measurement event e = ms(o2, o1) in execution E is well-
supported iff either

i. o2 = rtm, or
ii. for every o ∈ D1(o1), there is a measurement event e′ ≺E e such that o is the

target of e′.

When e is well-supported, we call the set of e′ from Condition ii above the support
of e. An execution E measures bottom-up iff each measurement event e ∈ E is
well-supported.

Theorem 1 (Recent or Deep). Let E be an execution with well-supported
measurement event e = ms(o1, ot) where o1 �= rtm. Suppose that E detects no
corruptions. If the adversary avoids detection at e, then either

1. there exist o ∈ D1(ot) and o′ ∈ M−1(o) such that ms(o′, o) ≺E cor(o) ≺E e
2. there exists o ∈ D2(ot) such that cor(o) ≺E e.

Proof. Since the adversary avoids detection at e, ot is corrupt at e, and by
Assumption 1, there is some o ∈ {o1}∪C−1(o1) ⊆ D1(ot) that is also corrupt at e.
Also, since e is well-supported, and o1 �= rtm, we know there exists e′ = ms(o′, o)
with e′ ≺E e. We now take cases on cs(e′, o).

If cs(e′, o) = r then we apply Lemma 3 to conclude there must be a corruption
cor(o) between e′ and e satisfying Clause 1.

If cs(e′, o) = c, then since E detects no corruptions, then by Assumption 1,
there must be some o∗ ∈ {o′} ∪ C−1(o′) ⊆ D2(ot) such that cs(e′, o∗) = c. We
then apply Lemma 2 to infer there must be a previous corruption cor(o∗) ≺E

e′ ≺E e satisfying Clause 2. �	
This theorem says, roughly, that if measurements indicate things are good

when they are not, then there must either be a recent corruption or a deep cor-
ruption. This tag line of “recent or deep” is particularly apt if (1) the system
dependencies also reflect the relative difficulty for an adversary to corrupt them,
and (2) the higher level measurements occur after the att-start event. By order-
ing the measurements so that more robust ones are measured first, it means
that for an adversary to avoid detection for an easy compromise, he must have
compromised a measurer recently (i.e. since it itself was measured and typically
after the att-start event), or else, he must have previously (though not necessarily
recently) compromised a more robust component. In this way, the measurement
of a component can raise the bar for the adversary. If, for example, a measurer
sits in a privileged location outside of some VM containing a target, it means
that the adversary would also have to break out of the target VM and compro-
mise the measurer to avoid detection. The skills and time necessary to perform
such an attack are much greater than simply compromising the end target.

Let’s illustrate this result in the context of the example of Sect. 2. Consider
the specification S′ in Fig. 5, which is like specification S1 from Fig. 2, except
that it is annotated with more assumptions in order to satisfy all the hypotheses
of Theorem 1. Since these facts are (by definition) preserved by homomorphisms
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Fig. 5. Specification S′.

Fig. 6. Executions in E(S′) that do not detect corruption of sys.

α : S → E(S), all executions in E(S) must satisfy them too. Execution E1

illustrates an example of the first clause of the conclusion being satisfied. There is
a “recent” corruption of vc in the sense that vc is corrupted after it is measured.
Since the measurement of vc occurs after the start of the attestation, this is
truly recent, in that the adversary has very little time to work. The appraiser
can control this by ensuring that attestations time out after some fixed amount
of time.

Theorem 1 also indicates other possible executions in which the adversary can
undetectably corrupt sys. There could be a recent corruption of vc, or else there
could be some previous corruption of either A1 or A2. All the various options
are shown in Fig. 6 in which the corruption events guaranteed by the theorem
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are boxed. Our theorem allows us to know that these executions essentially
characterize all the cases in which a corrupted sys goes undetected.

Automation. The analysis above was performed by hand. It would be possible
to automate the reasoning steps codified by Assumption 1 and Lemmas 2 and 3.
An automated algorithm would have to implement the process of building an
execution consistent with (a) the reasoning principles laid out above, and (b)
the initial assumptions given by a specification. This is an instance of the more
general problem of model finding. That is, given a logical theory and a set of
assumptions about a structure, model finding techniques can produce a set of
models consistent with the theory and the assumptions.

General purpose tools have been developed that can automate the model
finding process [8,13]. We have not yet attempted to use these tools for the
analysis of measurement systems. As such, it is unclear if the general algorithms
they use will yield efficient analyses, or if they will suffer from combinatorial state
space explosions. We have also not investigated the computational complexity
of finding a minimal set of executions consistent with a given specification. This
would be an interesting question for future work. It is worth noting, however,
that Theorem 1 obviates the need to perform such case-by-case analyses when
the specification in question is already bottom-up. The value of automated algo-
rithms is greatest when an analyst is unable to apply Theorem1, for example if
the measurement system has cycles in M ∪ C. Such cyclic dependencies are sur-
prisingly common in production systems because the necessary isolation provided
by hardware virtualization is still relatively rare. Thus we believe an automated
tool implementing the reasoning principles presented in this paper would be a
valuable asset for the analysis of layered attestations.

5 Related Work

There has been much research into measurement and attestation. While a com-
plete survey is infeasible for this paper, we mention the most relevant highlights
in order to describe how the present work fits into the larger context of research
in this area.

Much of the early work on measurement and attestation was focused on tech-
niques for measuring low-level components that make up a trusted computing
base (TCB). These ideas have matured into implementations such as Trusted
Boot [11]. Recognizing that many security failures cannot be traced back to the
TCB, Sailer et al. [14] proposed an integrity measurement architecture (IMA) in
which each application is measured (by hashing its code) before it is launched.
More recently, there has been work trying to identify and measure dynamic prop-
erties of system components in order to create a more comprehensive picture of
the runtime state of a system [5,9,10,15]. All these efforts try to establish what
evidence is useful for inferring system state relevant to security decisions. The
present work takes for granted that such special purpose measurements can be
taken and that they will accurately reflect the system state. Rather, our focus
is on developing principles for how to combine a variety of these measurers in
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a layered attestation. We envision a system designer choosing the measurement
capabilities that best suit her needs and using our work to ensure an appraiser
can trust the integrity of the result.

In [4], Datta et al. introduce a formalism that accounts for actions local
to the target machine as well as network events such as sending and receiving
messages. Although they give a very careful treatment of the effect of a corrupted
component on an attestation, their work differs in two key ways. First, the
formalism represents many low-level details making their proof rather complex,
sometimes obscuring the underlying principles. Second, their framework only
accounts for static corruptions, while ours is specifically designed around the
possibility of dynamic corruption and repair of system components.

Cabuk et al. [1] have proposed an architecture designed to support layered
platforms with hierarchical dependencies. It introduces trusted software into the
TCB as a software-based root of trust for measurement (SRTM). Although they
explain how measurements by the SRTM integrate with the chain of measure-
ments stored in a TPM, they do not study the effect corruptions of various
components have on the outcome of attestations. In [2], Coker et al. identify
five guiding principles for designing an architecture to support remote attes-
tation. They also describe the design of a (layered) virtualized system based
on these principles, although there does not appear to be a publicly available
implementation at the time of writing. Of particular interest is a section that
describes a component responsible for managing attestations. The emphasis is
on the mechanics of selecting measurement agents by matching the evidence
they can generate to the evidence requested by an appraiser. There is no dis-
cussion or advice regarding the relative order of measurements or the creation
of an evidence bundle to reflect the order. More recently, modular attestation
frameworks instantiating [2]’s principles have been implemented [3,6,7]. These
are integrated frameworks that offer plug-and-play capabilities for measurement
and attestation for specific usage scenarios. It is precisely these types of systems
(in implementation or design) to which our analysis techniques would be most
useful. We have not been able to find a discussion of the potential pitfalls of
misconfiguring these complex systems. Our work should be able to help guide
the configuration of such systems and analyze particular attestation scenarios
for each architecture.

Finally, we mention a companion paper to the present work [12]. While the
present work helps us characterize how a given measurement order can confine
the actions of an adversary, it does not address the question of how a remote
appraiser learns the order and results of measurements. This is typically done
by storing the evidence in a trusted platform module (TPM) and quoting the
results. In [12] it is shown that some methods of using a TPM allow an adversary
to bypass Theorem 1 by convincing the appraiser that measurements were taken
bottom-up when in fact they were not. The main result is a proposed method
for storing and reporting evidence using TPMs ensuring that if an adversary
successfully avoids the hypothesis of Theorem 1, then he must nonetheless submit
himself to its conclusions.
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6 Conclusion

In this paper we have developed a formalism for reasoning about measurement
in layered systems. Within this framework we have demonstrated some reusable
principles for inferring properties of adversary actions in executions, and we have
applied those principles to justify the intuition (pervasive in the literature on
measurement and attestation) that it is important to measure a layered system
from the bottom up (Theorem 1). Our model admits natural graphical represen-
tations of measurement systems, specifications and executions. We believe this
graphical representation makes the formalism more intuitive to use, as it allows
an analyst to apply her intuitions more immediately to the diagrams.

We believe the model is also relatively extensible in that further types of
components and events could be added without disrupting the current results.
Indeed, in our companion paper [12], we add events for interacting with a Trusted
Platform Module (TPM) in order to perform a more complete analysis of how
not just the outcomes of measurements but also their order can be conveyed
to a remote appraiser. This is a crucial part of an end-to-end analysis as the
appraiser cannot directly observe the order of measurements.

In future work, we would like to consider relaxing Assumption 1 to allow for
some probabilistic errors in the classification of measurement targets. Disentan-
gling how much of those errors is due to inaccurate measurement and how much
to inaccurate interpretation of the measurement could yield more fine grained
results that allow a more nuanced risk decision on the part of the appraiser. We
also believe the model could benefit from tool support. The basic problem of
discovering adversary actions given assumptions on an execution can be viewed
as an instance of model finding. As such, tools such as [8,13] that have been
developed for that purpose could be applicable here.
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