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Abstract. The unconstrained binary quadratic programming problem
is one of the most studied NP-hard problem with its various practi-
cal applications. In this paper, we propose an effective multi-objective
genetic algorithm with uniform crossover for solving bi-objective uncon-
strained binary quadratic programming problem. In this algorithm, we
integrate the uniform crossover within the hypervolume-based multi-
objective optimization framework for further improvements. The com-
putational studies on 10 benchmark instances reveal that the proposed
algorithm is very effective in comparison with the original multi-objective
optimization algorithms.

Keywords: Multi-objective optimization · Hypervolume contribu-
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1 Introduction

The Unconstrained Binary Quadratic Programming (UBQP) problem is a clas-
sic NP-hard combinatorial problem with a number of applications [15]. The
UBQP problem is extended into multi-objective case in [13], where the multiple
objectives are to be maximized simultaneously, then the multi-objective UBQP
problem can mathematically be formulated as follows [14]:

fk(x) = x′Qkx =
n∑

i=1

n∑

j=1

qkijxixj (1)
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where Qk = (qkij) is an n × n matrix of constants and x is an n-vector of binary
(zero-one) variables, i.e., xi ∈ {0, 1} (i = 1, . . . , n), k ∈ {1, . . . ,m}.

UBQP is notable for its ability to formulate a wide range of other practical
problems in different fields, such as machine scheduling [1], traffic management
[8], computer aided design [12], financial analysis [16], etc. Many heuristic and
metaheuristic algorithms have been proposed to tackle UBQP in the literature
[11], such as simulated annealing [2], scatter search [3], tabu search [9], memetic
algorithms [17], etc.

Moreover, A. Liefooghe et al. [13] proposed a hybrid metaheuristic algorithm
to solve the multi-objective UBQP problem, which combines an elitist evolu-
tionary multi-objective optimization algorithm with an effective single-objective
tabu search procedure based on the scalarizing function. In [14], they proposed
the multi-objective local search algorithms with three different strategies to solve
the bi-objective UBQP problem more efficiently.

In this paper, we propose a multi-objective genetic algorithm to solve the
bi-objective UBQP problem. This algorithm integrates the uniform crossover
within the hypervolume-based multi-objective optimization framework for further
improvements. Actually, there are two main components: hypervolume contribu-
tion selection and genetic algorithm with uniform crossover. The hypervolume
contribution selection procedure iteratively improve the Pareto approximation set
until it can not be improved any more. Then, the uniform crossover is used to
further improve the whole quality of the Pareto approximation set.

This paper is organized as follows. In the next section, we introduce the
basic notations and definitions of multi-objective optimization. In Sect. 3, we
briefly review the previous work related to the uniform crossover and the multi-
parent crossover. Afterwards, we present our proposed multi-objective genetic
algorithm in Sect. 4. Section 5 provides the computational results and analyze
the behavior of the proposed algorithm. Finally, the conclusions are provided in
the last section.

2 Multi-objective Optimization

In this section, we present the basic notations and definitions of multi-objective
optimization. Let X denote the search space of the optimization problem under
consideration and Z the corresponding objective space. Without loss of general-
ity, we assume that Z = �n and that all n objectives are to be maximized. Each
x ∈ X is assigned exactly one objective vector z ∈ Z on the basis of a vector
function f : X → Z with z = f(x), and the mapping f defines the evaluation of
a solution x ∈ X [7]. Actually, we are often interested in those solutions that are
Pareto optimal with respect to f . The relation x1 � x2 means that the solution
x1 is preferable to x2. The dominance relation between two solutions x1 and x2

is often defined as follows [7]:

Definition 1 (Pareto Dominance). A decision vector x1 is said to dominate
another decision vector x2 (written as x1 � x2), if fi(x1) ≥ fi(x2) for all i ∈
{1, . . . , n} and fj(x1) > fj(x2) for at least one j ∈ {1, . . . , n}.
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Definition 2 (Pareto Optimal Solution). x ∈ X is said to be Pareto optimal
if and only if there does not exist another solution x′ ∈ X such that x′ � x.

Definition 3 (Pareto Optimal Set). S is said to be a Pareto optimal set if
and only if S is composed of all the Pareto optimal solutions.

Definition 4 (Non-Dominated Solution). x ∈ S (S ⊂ X) is said to be non-
dominated if and only if there does not exist another solution x′ ∈ S such that
x′ � x.

Definition 5 (Non-Dominated Set). S is said to be a non-dominated set if
and only if any two solutions x1 ∈ S and x2 ∈ S such that x1 � x2 and x2 � x1.

Since there does not exist the total order relation among all the solutions
in multi-objective optimization, the aim is to generate the Pareto optimal set,
which keeps the best compromise among all the objectives. Nevertheless, in most
cases, it is impossible to generate the Pareto optimal set in a reasonable time.
Therefore, we are interested in finding a non-dominated set which is as close to
the Pareto optimal set as possible, and the whole goal is often to identify a good
Pareto approximation set.

3 Previous Work

The Genetic Algorithms (GA) have a good potential of solving many different
combinatorial optimization problems, which are often integrated into the hybrid
metaheuristics as an important part for further improvements [7]. In this section,
we provide a literature review of the studies related to the uniform crossover and
the multi-parent crossover.

U. Benlic et al. [6] proposed a powerful population-based memetic algorithm
for solving quadratic assignment problem, which integrates an effective local
optimization algorithm within the evolutionary computing framework based on
a uniform crossover. In this algorithm, the uniform crossover is used to further
enforce the search capacity of the proposed algorithm. The extensive computa-
tional studies reveal that their proposed algorithm is very competitive.

E. D. Paolo et al. [10] proposed an efficient genetic algorithm with uniform
crossover for solving the multi-objective airport gate assignment problem. In
this algorithm, a new defined uniform crossover operator is used to generate
high-quality offsprings, which is crucial to the successful implementations. The
extensive simulation studies illustrate the advantages of the proposed GA scheme
with the uniform crossover operator.

Zhipeng Lü et al. [15] presented a multi-parent hybrid genetic-tabu algorithm
for dealing with unconstrained binary quadratic programming problem, which
incorporates the tabu search procedure into the genetic algorithm framework. In
this algorithm, a multi-parent crossover operator called MSX is jointly employed
with the conventional uniform crossover to generate diversified new solutions.
The computational results on 10 large benchmark instances indicate that the
proposed algorithm is very effective.
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Yang Wang et al. [18] integrated four multi-parent crossover operators (called
MSX, Diagonal, U-Scan and OB-Scan) within the memetic algorithm frame-
work for dealing with unconstrained binary quadratic programming problem.
Their proposed algorithms apply these crossover operators to further improve
the results generated by the tabu search procedure. The experimental results
and the analysis on the behavior of the algorithm provide the evidences and the
insights as to key role of the crossover operators.

4 Multi-Objective Genetic Algorithm

The Multi-Objective Genetic Algorithm (MOGA) is proposed to solve the bi-
objective UBQP problem, which is composed of two main components: hyper-
volume contribution selection and genetic algorithm with the uniform crossover.
The general scheme of this algorithm is described in Algorithm 1.

Algorithm 1. Multi-Objective Genetic Algorithm
Input: N (Population size)
Output: A: (Pareto approximation set)
Step 1 - Initialization: P ← N randomly generated solutions
Step 2: A ← Φ
Step 3 - Fitness Assignment: Compute a fitness value for each solution x ∈ P
Step 4:
while Running time is not reached do

repeat
1) Hypervolume Contribution Selection: x ∈ P

until all neighbors of x ∈ P are explored
2) A ← Non-dominated solutions of A

⋃
P

3) Genetic Algorithm: y ∈ A
end while
Step 5: Return A

In MOGA, all the solutions in an initial population are randomly generated,
i.e., each variable of one solution is randomly assigned a value 0 and 1 (Step 1).
Then, each solution is computed a fitness value by the Hypervolume Contribution
(HC) indicator defined in [5] (Step 3).

After realizing the fitness assignment, we optimize the initial population with
the hypervolume contribution selection procedure in order to obtain a Pareto
approximation set. Afterwards, we apply the uniform crossover operator to gen-
erate the offsprings, in order to update the Pareto approximation set A for
further improvements.

4.1 Hypervolume Contribution Selection

In order to generate a set of efficient individuals used for generating high-quality
offsprings with the uniform crossover operator, we apply the Hypervolume
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Algorithm 2. Hypervolume Contribution Selection (HCS)
Steps:

1) x∗ ← one randomly chosen unexplored neighbors of x
2) P ← P

⋃
x∗

3) compute x∗ fitness: HC(x∗, P )
4) update all z ∈ P fitness values
5) ω ← worst solution in P
6) P ← P\{ω}
7) update all z ∈ P fitness values
8) if ω �= x∗, Progress ← True

Contribution Selection (HCS) procedure presented in Algorithm2 to the initial
population.

For the UBQP problem, we flip the value 0 (or 1) of the kth variable of each
solution x ∈ P to 1 (or 0) to obtain a new solution x∗ as the neighbor of x.
Then, we compute the objective function values of this new solution with the
fast incremental neighborhood evaluation formula [15] below:

Δi = (1 − 2xi)(qii +
∑

j∈N,j �=i,xj=1

qij) (2)

Actually, the move value Δi can be computed in linear time, which makes the
local search procedure more efficiently.

In the HCS procedure, one solution x∗, which is one of the unexplored neigh-
bors of x in the population P , is assigned to a fitness value by the HC indicator.
If x∗ is dominated, the fitness values of all the solutions in P keep unchanged.
If x∗ is non-dominated, we need to update the fitness values of non-dominated
neighbors of x∗ in the objective space.

Afterwards, the solution ω with the worst fitness value is removed from the
population P . If ω is dominated, the fitness values of the other solutions keep
unchanged. If ω is non-dominated, the fitness values of the non-dominated neigh-
bors of ω need to be updated. The whole procedure will repeat until the termi-
nation criterion is satisfied.

4.2 Genetic Algorithm

The uniform crossover operator is widely used to solve many combinatorial opti-
mization problems, such as quadratic assignment problem [6], gate assignment
problem [10], single-objective UBQP problem [15], and so on. In this work, we
employ the uniform crossover operator to improve the Pareto approximation set
A generated by the HCS procedure. The exact steps are given in Algorithm3.

In the genetic algorithm, we randomly select two non-dominated solutions
as two parents from the Pareto approximation set A. For the crossover process,
we employ the standard uniform crossover operator to recombine the selected
parents.
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Algorithm 3. Genetic Algorithm (GA)
Steps:

1) randomly select two parents: yi ∈ A and yj ∈ A
2) generate an offspring z ← Crossover(yi, yj)
3) z′ ← Mutation(z)
4) A ← HCS(z′)

Fig. 1. An example of the uniform crossover for UBQP.

Furthermore, the elements of the parents are scanned from left to right, and
each element in the offspring keeps the value xi (0 or 1) in either of these two
parents with the equal probability. The unassigned variables in the offspring is
given 0 or 1 randomly. An example of this crossover process is illustrated in
Fig. 1.

Fig. 2. An example of the mutation for UBQP.

Afterwards, we apply the mutation procedure to the generated offspring by
randomly flipping the value of one variable to the opposite value (0 or 1), in order
to generate a new offspring. An example of the mutation procedure is illustrated
in Fig. 2. Then, we insert this new offspring into the Pareto approximation set
A with the HC indicator for further improvements.

5 Experiments

In this section, we first present the parameter settings for the MOGA algorithm.
Then, we introduce a performance assessment protocol used to evaluate the
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effectiveness of multi-objective optimization algorithm. Finally, we provide the
computational results and the performance analysis.

5.1 Parameters Settings

The MOGA algorithm is programmed in C++ and compiled using Dev-C++
5.0 compiler on a PC running Windows 7 with Core 2.50 GHz CPU and 4 GB
RAM. In order to evaluate the efficiency of our proposed algorithm, we carry
out the experiments on 10 benchmark instances of bi-objective UBQP problem,
which are generated by the tools provided in [13].

Besides, this algorithm requires to set a few parameters, we mainly discuss
two important ones: the running time and the population size. The precise infor-
mation about the instances and the parameter settings is presented in Table 1.

Table 1. Parameter settings used for bi-objective UBQP instances: instance dimension
(D), population size (P ) and running time (T ).

Dimension (D) Population (P ) Time (T )

bubqp 1000 01 1000 10 100′′

bubqp 1000 02 1000 10 100′′

bubqp 2000 01 2000 20 200′′

bubqp 2000 02 2000 20 200′′

bubqp 3000 01 3000 30 300′′

bubqp 3000 02 3000 30 300′′

bubqp 4000 01 4000 40 400′′

bubqp 4000 02 4000 40 400′′

bubqp 5000 01 5000 50 500′′

bubqp 5000 02 5000 50 500′′

5.2 Performance Assessment Protocol

In this paper, we evaluate the effectiveness of multi-objective optimization algo-
rithms using a test procedure that has been undertaken with the performance
assessment package provided by Zitzler et al.1.

The quality assessment protocol works as follows: we first create a set of 20
runs with different initial populations for each algorithm and each benchmark
instance. Afterwards, we calculate the reference set PO∗ in order to determine
the quality of k different sets A0 . . . Ak−1 of non-dominated solutions. Further-
more, we define a reference point z = [w1, w2], where w1 and w2 represent the
worst values for each objective function in A0 ∪ · · · ∪Ak−1. Then, the evaluation
of a set Ai of solutions can be determined by finding the hypervolume difference
between Ai and PO∗ [19], and this hypervolume difference has to be as close as
possible to zero.
1 http://www.tik.ee.ethz.ch/pisa/assessment.html.

http://www.tik.ee.ethz.ch/pisa/assessment.html
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5.3 Computational Results

In this subsection, we provide the computational results obtained by our pro-
posed MOGA algorithm, the indicator-based multi-objective local search algo-
rithm (IBMOLS) proposed in [4] and the hypervolume-based multi-objective
local search algorithm (HBMOLS) proposed in [5].

The computational results are summarized in Table 2. Each line in this table
contains a value both in bold and in grey box, which is the best result obtained
on the considered instance. The another two values refer to that the correspond-
ing algorithms are statistically outperformed by the algorithm which obtains the
best result (with a confidence level greater than 95 %).

Table 2. The computational results on bi-objective UBQP problem obtained by the
algorithms: IBMOLS, HBMOLS and MOGA

Algorithm
Instance IBMOLS HBMOLS MOGA

bubqp 1000 01 0.527656 0.510992 0.179459

bubqp 1000 02 0.184199 0.116860 0.116035

bubqp 2000 01 0.560875 0.516558 0.220095

bubqp 2000 02 0.618150 0.634531 0.112132

bubqp 3000 01 0.570740 0.557831 0.213661

bubqp 3000 02 0.639882 0.653772 0.134274

bubqp 4000 01 0.533230 0.568231 0.103679

bubqp 4000 02 0.629849 0.627149 0.069898

bubqp 5000 01 0.506434 0.541808 0.136980

bubqp 5000 02 0.630504 0.636295 0.044327

According to Table 2, we can see that all the best results are obtained by
MOGA, which statistically outperforms the algorithms IBMOLS and HBMOLS
on all the instances. Moreover, the most significant result is achieved on
the instance bubqp 5000 02, where the average hypervolume difference value
obtained by MOGA is much smaller (about 15 times) than the values obtained
by IBMOLS and HBMOLS.

Compared with IBMOLS and HBMOLS, we can see the evident contribution
of the uniform crossover in MOGA. We assume that IBMOLS and HBMOLS
could be often trapped in the local optima after a certain amount of running
time, since they only focus on the local search procedure without any strategy
used for jumping out of the local optima.



66 C. Huo et al.

For MOGA, the uniform crossover is used to generate two new solutions,
which are inserted into the Pareto approximation set for further improvements.
In fact, these new generated solutions make MOGA have a chance to jump out
of the local optima. The computational results indicate the uniform crossover
evidently improve the quality of the Pareto approximation set. Therefore, MOGA
has a better performance on all the instances.

6 Conclusion

In this paper, we have presented a simple and effective multi-objective genetic
algorithm for the well-known bi-objective unconstrained binary quadratic pro-
gramming problem. The proposed algorithm has combined the hypervolume-
based optimization with the standard uniform crossover for the further improve-
ments on the Pareto approximation set. We have evaluated this algorithm on
the set of 10 benchmark instances, and the computational results indicate that
the MOGA algorithm performs very well on these instances.
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15. Lü, Z., Hao, J.-K., Glover, F.: A study of memetic search with multi-parent com-
bination for UBQP. In: Prodeedings of the 10th International Conference on Evo-
lutionary Computation in Combinatorial Optimization (EvoCOP 2010), Istanbul,
Turkey, pp. 154–165 (2010)

16. McBride, R.D., Yormark, J.S.: An implicit enumeration algorithm for quadratic
integer programming. Manag. Sci. 26, 282–296 (1980)

17. Merz, P., Katayama, K.: Memetic algorithms for the unconstrained binary
quadratic programming problem. BioSystems 78, 99–118 (2004)
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