
One-Class Models for Continuous
Authentication Based on Keystroke Dynamics

Maria Kazachuk, Alexander Kovalchuk, Igor Mashechkin, Igor Orpanen,
Mikhail Petrovskiy(B), Ivan Popov, and Roman Zakliakov

Computer Science Department, Lomonosov Moscow State University, MSU,
Vorobjovy Gory, Moscow 119899, Russia

{kazachuk,kovalchuk,orpanen,ivan,zakliakov}@mlab.cs.msu.su,
{mash,michael}@cs.msu.su

Abstract. In this paper we discuss an applied problem of continuous
user authentication based on keystroke dynamics. It is important for a
user model to discover new intruders. That means we don’t have the key-
stroke samples of such intruders on the training phase. It leads us to the
necessity of using one-class models. In the paper we review some popular
feature extraction, preprocessing and one-class classification methods for
this problem. We propose a new approach to reduce dimensionality of a
feature space based on two-sample Kolmogorov-Smirnov test and inves-
tigate how the quantile-based discretization technique can improve the
one-class models’ performance. We present two algorithms, which have
not been used for keystroke dynamics before: Fuzzy kernel-based classi-
fier and Random Forest Regression classifier. We conduct experimental
evaluation of the proposed approach.

Keywords: Keystroke dynamics · User authentication · Kolmogorov-
Smirnov test · Quantile discretization · Fuzzy classification · Random
forest regression classification

1 Introduction

Nowadays computer systems play a very important role in people’s life. These
systems are used to store, search and process information. Therefore, it is essen-
tial to employ a high level of protection against unauthorized access on these
systems.

One of the best known security mechanisms is authentication. It allows a
system to confirm that the user is who he claims to be. The reliability of this
process depends on the information used for user authentication. Authentica-
tion employs several factors, which are usually one of the following: knowledge,
ownership, physiological biometrics and behavioral biometrics. Using the knowl-
edge and the ownership factors for authentication has a major drawback, that
information can be lost, stolen or divulged.

Physiological biometric images, such as fingerprints, retina, the geometry of
the face and hands, are given to people by birth and can not be changed by
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the will of its owner. Their use for authentication features are highly reliable,
but they need additional equipment, and the theft of data samples can cause
irreparable damage to the security.

Behavioral biometric samples include those human characteristics and traits
that appear when the user performs a certain set of actions. Such data systems
include voice, handwriting and gait authentication. Behavioral characteristics
can be easily changed by the will of the owner, and it is almost impossible to
betray your secret behavioral pattern. Today these systems are widely developed,
but their quality is inferior to other authentication systems.

Use of continuous authentication systems allows us to detect intruders when
they try to interact with a machine. It’s possible that an intruder isn’t known,
so the construction of a multi-class model, that recognizes a specific user from a
closed set, can cause an impostor to remain undetected. Therefore, it is necessary
to research the methods that build one-class models for each legitimate user.
When performing continuous authentication, model of the legitimate user is
compared to the behavior of the current user. Legitimacy of the current user is
determined based on this comparison.

This paper features an applied problem of continuous user authentication
based on keystroke dynamics, given an assumption of inavailability of illegiti-
mate users’ data. This paper is structured into the following sections. Section 2
describes existing keystroke dynamics research. Section 3 describes our approach
to enhance keystroke dynamics with better accuracy. Section 4 includes experi-
ments. Section 5 ends this paper with final conclusions on keystroke dynamics.

2 Survey

User’s keyboard interaction can be described as key press and release timing
information. To collect this data OS tools [6,11–13,15] and web browser tools
[1,4] can be used.

Collected data is split into windows, which contain events to be processed
into a single feature vector. We have determined several events, which force a
new window to be created: exceeding the maximum size of a window or the
maximum pause between windows, active process change. In [15] the authors
suggest to ignore windows with the number of events below the threshold.

Existing feature extraction approaches include analysis of single key presses
and consecutive key presses, called n-graphs. The most frequently used n-graphs
are digraphs (n = 2) and trigraphs (n = 3).

Hold time (tup
i − tdown

i ) and latency (tdown
i+1 − tup

i ) are calculated for every key
(Fig. 1). For n-graphs a subset of the following features is used: {(tup

k+n−1−tdown
k ),

(tdown
k+n−1 − tup

k ), (tdown
k+n−1 − tdown

k ), (tup
k+n−1 − tup

k )}, here k is an index of n-graph
in the current window [2–5,11–13,15,16].

Each key and each n-graph produces one or more features in the feature
vector, which are equal to the mean or variance of the corresponding statistic
(hold time, latency time). Features of keys and key sequences, which are not
present in a window, are filled with zeros.
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Fig. 1. Key presses and releases

The constructed feature space is high-dimensional, but not all of the extracted
features have a significant impact on the classification results. The most common
techniques for dimensionality reduction used in related problems are principal
component analysis (PCA) [3] and random search approaches such as genetic algo-
rithm (GA) [6,13], particle swarm optimization (PSO) [6,13] and gravitational
search algorithm (GSA) [5]. However, our experiments showed that the use of
PCA in most cases causes even worse accuracy of the classification, which can be
explained by the presence of non-linear correlation between variables. Random
search feature selection algorithms are rather computationally difficult.

Some classification algorithms might work considerably better, if features
are standardized. This is done by subtracting feature’s expected value Ex and
dividing the difference by its standard deviation

√
Dx. Both expected value and

standard deviation are determined on the training set.
The most commonly used classification algorithms in the field of arbitrary

text keystroke dynamics are: metric (one-class KNN [16]) and probabilistic (one-
class SVM [1,16], Gaussian mixture models [4], Bayes networks [2]) methods. The
best results are achieved in the reviewed papers by using the one-class KNN and
one-class SVM classifiers.

3 Proposed Approach

Our approach uses the most popular methods to define a feature space, suggests
some new ways of feature selection and preprocessing, and introduces several
new classifiers, which have not been used in this task before.

3.1 Feature Space

To construct a feature space, which will describe user’s interaction with the
keyboard, we propose to combine the analysis of single keys and digraphs. The
sequence of collected events is split into windows. Window size is required to be
between the fixed minimum and maximum size. If a user is inactive for a specified
maximum pause between sequential events, then a window split is forced. These
parameters are chosen experimentally.

In order to reduce the dimension of the feature space, we propose to keep
only the most frequent digraphs and keys, where frequencies are determined on
the training set.

For each of the remaining keys we propose to calculate hold time; for each
of the remaining digraphs — the up-up and down-up latency. Also, we divide
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Fig. 2. The proposed 12 key groups

keys into 12 groups (Fig. 2), for each of them hold times are calculated. Some
special features, used in this work, are frequency of key presses, and the ratio
of the number of left Shift key presses to the number of combined left and right
Shift key presses.

3.2 Feature Preprocessing

After feature extraction we examine several feature preprocessing methods:
dimensionality reduction of the feature space through selection of the most stable
features, and quantile-based feature discretization. To reduce dimensionality of
the extracted feature space we select only those features, which have insignificant
variance over time. To achieve this we propose two-sample Kolmogorov-Smirnov
test. It is used to evaluate a hypothesis, that two samples have the same dis-
tribution. The first sample contains unaveraged feature values for each window
and the second sample contains congregated unaveraged values for all windows
in the training set.

Let F1,n be the distribution function of a feature in the current window,
where n is the number of occurrences of the feature in the current window. Let
F2,m be the distribution function of the feature for all windows in the training
set, where m is the number of occurrences of the feature in the training set. The
main goal is to find such λ, that the following inequality is true:√

nm

n + m
Dn,m ≥ λ, (1)

where Dn,m = supx |F1,n(x) − F2,m(x)|.
Next we use the quantile table of the Kolmogorov distribution to find a p-

value, that corresponds to λ. This p-value represents the probability of rejecting
the hypothesis, that these two samples have the same distribution.

To accumulate p-values across all windows we suggest Fisher’s method, which
combines all p-values into single test statistic:

χ2k
2 ≈ −2

k∑
i=1

ln(pi), (2)

where k — number of p-values, pi — i-th p-value.
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Fig. 3. Quantile-based discretization on 4 intervals

Subsequently the chi-squared distribution table is used to find a correspond-
ing p-value with 2k degrees of freedom. The resulting p-value may be used to
perform feature selection. We have studied selection of N features with the high-
est p-values and selection of all features, which exceed threshold p-value. After
performing feature selection all unaveraged features are substituted with their
mean value.

One of the most popular feature preprocessing techniques used for multi-
modal distributions is the quantile discretization. This approach has not been
applied to the keystroke data before. For each feature in the training set we
calculate k quantiles of order 1

k , 2
k , ..., k−1

k , which form several intervals (bins):
(−∞, 1

k ), ( 1
k , 2

k ), . . . , (k−1
k ,+∞). Then each feature value is replaced with the

corresponding bin index, which it falls into.
Unlike the approach in [11], where it is stated, that digraph hold time has

normal distribution, we assume most of the features, associated with key presses
have multimodal distribution (Fig. 3). Quantile discretization method takes this
into account, and subsequent experiments confirm our hypothesis.

3.3 Building User Model

As mentioned before, we consider only one-class classification methods. Fuzzy
Kernel-based Method for Outliers Detection and feature values estimator based
on Random Forest Regression were introduced for our problem.

We have developed Fuzzy kernel-based method [14] earlier for the task of
outliers mining for intrusion detection. It inherits the ideas of SVM, but instead
of looking for a crisp sphere in the RKHS feature space, we suggest to search
for a fuzzy sphere including all RKHS data images. This problem can be viewed
as calculating single fuzzy cluster in the RKHS feature space using possibilistic
fuzzy clustering approach. In this case the fuzzy membership can be described as
a measure of “typicalness” of data instances. Keystrokes with low “typicalness”
are considered outliers. Changing the threshold does not lead to the recalculation
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of the models, as it was done for SVM and kernelized distance-based algorithms.
Mathematically, the problem is to find min

U,a,η
J(U, a, η):

J(U, a, η) =
N∑

i=1

um
i (φ(xi) − a)2 − η

N∑
i=1

(1 − ui)m, (3)

where a is a center of the fuzzy cluster in the RKHS feature space; N is a
number of instances in the initial feature space X; U is a membership vector,
where ui ∈ [0, 1] is membership of the image φ(xi) and besides the “typicalness”
of datum xi; m is fuzzyfier and η – parameter, that controls the size of cluster.

After the minimization of the functional, for each training sample xi ∈ X
the measure of its “typicalness” ui is calculated. The calculation of this value
for a new item x is done as follows:

u(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 +

⎛
⎜⎜⎜⎜⎜⎝

N∑
j=1

um
j

N∑
i=1

um
i K(xi, xj)

η

⎛
⎜⎜⎝

N∑
i=1

um
i

⎞
⎟⎟⎠

2 − 2

N∑
i=1

um
i K(x, xi)

η

N∑
i=1

um
i

+ K(x,x)
η

⎞
⎟⎟⎟⎟⎟⎠

1
m−1

⎤
⎥⎥⎥⎥⎥⎥⎦

−1

, (4)

where N is a number of records in training set, K(x, y) is a kernel for x and y.
Another algorithm that we have developed is a one-class classifier, based

on the Random Forest Regression [8] used for the approximation of values of
all features. The degree of normality of the data is calculated in accordance to
how well it was approximated by the model. The idea is similar to Replicator
Neural Networks [9], but instead of neural nets the Random Forest is used as
an approximator. Regression trees are built as follows. Suppose, that we have p
inputs and N observations with response (xi, yi);xi = (xi1, . . . , xip); i = 1, N .
The algorithm chooses splitting variables, split points and trees topology and
we get M regions R1, . . . , RM . We model a response (where cm is a constant in
each region, its best approximation is ĉm = average(yi | xi ∈ Rm)):

f(x) =
M∑

m=1

cmI(x ∈ Rm). (5)

When we use Random Forest for regression, we build an ensemble of trees
{T (x; θb)}B

1 , using the subset of the training data by recursively splitting the
nodes on the best split-point among a subset of m random features until the
minimum node size is reached. θB characterizes the b-th tree in terms of split
variables, cutpoints at each node and terminal-node values. After this step, the
random forest predictor is:

f̂B
rf (x) =

1
B

B∑
b=1

T (x; θb). (6)
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A one-class classifier can be built by creating a set of p regressors, each for a
separate variable, where other variables are used as predictor values:

f̂B
xi

(x) =
1
B

B∑
b=1

T (x1, . . . , xi−1, xi+1, . . . , xp; θb). (7)

When we get a new observation, it can be estimated using the built predictors:

(x1, . . . , xp) → (f̂B
x1

, . . . , f̂B
xp

). (8)

The resulting decision function is defined as a reconstruction error:

DF (x) =
1
n

n∑
i=1

(xi − f̂B
xi

)2. (9)

Note that all features must be standardized. The main advantage of this
algorithm is the ability to detect non-linear correlation between features and to
ignore irrelevant features.

4 Experiments

The most suitable dataset we have found is the Villani keystroke public dataset
[12,15], which consists of 144 users, who were instructed to respond to open-
ended essay questions and produced 1345 samples overall. The following data
was collected for each user: platform (desktop or laptop), gender, age group,
handedness and awareness of data collection. In our work only the following
data was used: keycode, keystroke press and release times. We only use 53 of 144
users because they provide 20 or more feature vectors when using parameters
discussed below. For each of the 53 users half of their data was used as the
training set and other half of the data was combined with the data of all the
remaining users to be the test set.

Area under the ROC-curve (AUC) was used to evaluate classification results.
The AUC is equal to the probability that a classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative one [7]. The distin-
guishing feature of the AUC is the invariance with respect to the proportion of
positive and negative samples in the test set. We have used average AUC among
all users to evaluate final results.

The essential part of conducting experiments is to select optimized para-
meters for the feature extraction, feature preprocessing and classification algo-
rithms. We have conducted preliminary experiments on a dataset collected by
ourselves to choose some hyperparameters. 20 users had been working for 10 days,
1 h per day, on 3 different configurations of computers doing their usual work:
programming, text and presentation preparation, Internet browsing. For feature
extraction algorithms optimal parameters were: minimum window size — 300
events; maximum window size — 500 events; maximum pause between events
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— 40 s; amount of the most popular keys — 50; amount of the most popular
digraphs — 100. Next we have chosen optimal parameters for the feature pre-
processing algorithms. Feature selection based on stability depends either on the
amount of the most stable features or on the threshold level of significance. Best
results in our experiments were achieved by using the level of significance more
than 0.1. Quantiles discretization has only one parameter: number of quantiles,
which has the default value of 10.

Subsequent task is to choose optimal parameters for classification algorithms,
which we have done for each of the following classifiers:

1. One-class KNN [16] is based on evaluating distances between samples in the
training set. Threshold distance, which determines the maximum distance of
an original class element, is chosen as the distance to the neighbor with index
�p ∗ N
 in the sorted array of k neighbors, where p ∈ [0, 1].

2. One-class SVM classifier [1,16] is based on the construction of a hypersphere,
which encompasses most of the user’s data. In the course of classification
elements, which fall inside this hypersphere are considered to belong to the
original class. The parameters of the algorithm are: kernel type, kernel coeffi-
cient γ, an upper bound on the fraction of training errors and a lower bound
of the fraction of support vectors ν.

3. Kernel principal component analysis (KPCA) [10] extends standard PCA to
non-linear data distributions, which can also be used for one-class classifica-
tion. The parameters of the algorithm are: kernel type, kernel coefficient γ,
number of principal components n.

4. Replicator Neural Network (RNN) [9] is a forward propagation neural net-
work with the same number of input and output neurons, which reconstructs

Table 1. Optimal values for the classification algorithms

Parameter Standardization Selection using stability Quantile discretization

KNN k 4

SVM kernel radial basis function (RBF)

γ 1/Nfeatures

ν 0.1

KPCA kernel radial basis function (RBF)

γ 1/max‖xi − xj‖, where xi, xj are in training set, i �= j

n 10 10 5

RNN hidden three hidden layers (16 – 4 – 16)

iterations 500

Fuzzy kernel radial basis function (RBF)

γ 1/max‖xi − xj‖, where xi, xj are in training set, i �= j

m 1.5

RFR nTrees 3 3 20

minSize 3 10 10
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Table 2. Results on the Villani dataset

Standardization Selection using stability Quantile discretization

KNN 0,5392 0,5596 0,6656

SVM 0,7665 0,7933 0,8861

KPCA 0,7770 0,7898 0,9081

RNN 0,7641 0,7918 0,8833

Fuzzy 0,7737 0,7888 0,9122

RFR 0,7805 0,7898 0,8991

original class elements better than outliers. The parameters of the algorithm
are: a number of hidden layers of the neural network, a number of neurons
on hidden layers, a number of iterations.

5. Fuzzy classification method is described in the previous section. The parame-
ters of the algorithm are: kernel type, kernel coefficient γ, affiliation level’s
decrease rate m based on the distance to the center of the cluster.

6. Random Forest Regressor (RFR) classification method is described in the pre-
vious section. The parameters of the algorithm are: number of trees (nTrees)
and minimum tree’s leaf size (minSize).

Optimal parameters were selected on our dataset (Table 1), and then each
of the classification algorithms with obtained hyperparameters was applied to
Villani dataset (Table 2).

5 Conclusion

In this paper, the task of continuous user authentication using keystroke dynam-
ics was considered. We have proposed a method to reduce dimensionality of a
feature space based on two-sample Kolmogorov-Smirnov test and a quantile-
based discretization technique to preprocess features with multimodal distribu-
tion. We have introduced two one-class classifiers, which haven’t been applied to
this problem before. We have conducted experiments on a benchmark dataset,
which have confirmed that stability-based feature selection improves quality of
authentication when using SVM, KNN, Fuzzy, KPCA and RNN classifiers, but
almost no effect on RFR classifier. Furthermore, quantile-based discretization
improves the results of all classifiers.
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