
Very Deep Neural Network for Handwritten
Digit Recognition

Yang Li(B), Hang Li, Yulong Xu, Jiabao Wang, and Yafei Zhang

College of Command Information Systems, PLA University of Science and
Technology, Nanjing 210007, China

solarleeon@outlook.com

Abstract. Handwritten digit recognition is an important but challeng-
ing task. However, how to build an efficient artificial neural network
architecture that can match human performance on the task of recog-
nition of handwritten digit is still a difficult problem. In this paper, we
proposed a new very deep neural network architecture for handwritten
digit recognition. What is remarkable is that we did not depart from the
classical convolutional neural networks architecture, but pushed it to the
limit by substantially increasing the depth. By a carefully crafted design,
we proposed two different basic building block and increase the depth of
the network while keeping the computational budget constant. On the
very competitive MNIST handwriting benchmark, our method achieve
the best error rate ever reported on the original dataset (0.47 %±0.05 %),
without data distortion or model combination, demonstrating the
superiority of our work.

Keywords: Neural network · Convolutional neural networks · Deep
learning · Handwritten digit recognition

1 Introduction

Handwritten digit recognition is a promising subfield of object recognition with
various applications. In the last ten years, automatic handwritten digit recogni-
tion capabilities have dramatically improved due to advances in deep learning
and convolutional neural networks (CNNs). The performance of the new meth-
ods on the well-known MNIST dataset have reduce the recognition error rate
from several percentage points to 1% [1], then down to 0.5% [2], then down to
0.23% [3].

However, almost all of the successful methods were trying to improve recog-
nition accuracy in three different ways. The first method attempts to design a
better architecture, which is better for handwritten digit recognition [4,5]. The
second method improves the accuracy by enlarging the MNIST dataset. So far,
the best results on MNIST were obtained by deforming training images, thus
greatly increasing their number [3]. The third method combines several training
models and makes decision by swarm intelligence [6].

c© Springer International Publishing AG 2016
H. Yin et al. (Eds.): IDEAL 2016, LNCS 9937, pp. 174–182, 2016.
DOI: 10.1007/978-3-319-46257-8 19



Very Deep Neural Network for Handwritten Digit Recognition 175

To the best of our knowledge, data augmentation and model combination
can improve almost all of the recognition methods, but they also lead to more
training time. Even if one was able to train many different large networks, using
them all at test time would be infeasible in applications where it is important
to respond quickly. One discouraging news is that a lot of this progress is not a
consequence of new ideas, algorithms and improved network architectures, but
mainly just the result of a larger dataset and combination of several models.

In this paper, we will focus on a new efficient deep neural network archi-
tecture for handwritten digit recognition. The basic idea of this paper is taking
inspiration and guidance from the theoretical work by Andrew Zisserman et al.
[7] and Christian Szegedy et al. [8], who use smaller receptive window size and
smaller stride of convolutional layer to build very deep CNNs for ILSVRC-2014.
By a carefully crafted design, we increased the depth of the network while keeping
the computational budget constant. It was demonstrated that the representation
depth is beneficial for the classification accuracy, and that the state-of-the-art
performance on the MNIST dataset can be achieved using a CNNs architecture
with substantially increased depth. The benefits of the architecture are experi-
mentally verified on the MNIST dataset without data augmentation and model
combination, where it could reach comparable performance of the state-of-the-
art approaches with less computation burden and shorter training time.

The rest of this paper is organized as follows. Section 2 describes the proposed
architecture using CNNs module in details. Then experimental results and com-
parisons are shown in Sect. 3. Finally, the conclusion and future work are given
in Sect. 4.

2 The Proposed Architecture

In this section, we elaborate how to build a hierarchical feature extraction and
classification system with CNNs module. As illustrated in Fig. 1, the model archi-
tecture is mainly based on CNNs. We first briefly review CNNs, and then we
depict the proposed mode in details.

Fig. 1. CNNs feature extractor architecture.



176 Y. Li et al.

2.1 A Brief Review of CNNs

Starting from LeCun [1], CNNs can be considered to be made up of two main
parts. The first part typically had a standard structure stacked convolutional
layers, which followed by contrast rectification layers (denoted as R) and average-
pooling layers (denoted as Ap). The input of each layer is just the output of
its previous layer. As a result, this forms a hierarchical feature extractor that
maps the original input images into feature vectors. The second part are one
or more fully-connected layers, which is a typical feed forward neural network
trying to classify the extracted features vectors. In this paper, the proposed
architecture is composed by 6 different component: convolutional layer (denoted
as C), normalization layer (denoted as N), max-pooling layer (denoted as Mp),
fully-connected layers (denoted as Fc), and we also adopt dropout (denoted as
Dp) and Rectied Linear Units (ReLU ) method in our network.

Convolutional Layer: In convolutional layer, each neuron is connected locally
to its inputs of the previous layer, which functions like a 2D convolution with
certain filter, then its activation could be computed as the result of a nonlinear
transformation. In this paper, convolutional layer computes the convolution of
the input image x ∈ RH×W×D with a filter bank f ∈ RH′×W ′×D×D′′

with D′′

multi-dimensional. Formally, the output is y ∈ RH′′×W ′′×D′′
given by:

yi′′j′′d′′ = bd′′ +
H′∑

i′=1

W ′∑

j′=1

D∑

d=1

fi′j′d × xi′+i′′−1,j′+j′′−1,d′,d′′ (1)

where H represents the input image height, W represents the input image width,
D represents the number of channel, H ′represents filter height, W ′ represents
filter width, D′′ represents the number of filter bank, H ′′ represents the output
image height, W ′′ represents the output image width.

Normalization Layer: The local contrast normalization layer is inspired by
computational neuroscience models. Normalization layer applied independently
at each spatial location and groups of channels to get:

yijk = xijk(κ + α
∑

t∈G(k)

x2
ijt)

−β (2)

For each output channel k, G(k) ⊂ {1, 2, ...,D} is a corresponding subset of input
channels. And the input image x and output image y have the same dimensions.

Pooling Layer: Pooling layer always produces down sampled versions of the
input maps. This pooling involves executing some operation, typically average or
max, over the activations within a small spatial region of each map of activations.
Typically max pooling is preferred as it avoids cancellation of negative elements
and prevents blurring of the activations and gradients throughout the network
since the gradient is placed in a single location during back propagation. The
max pooling operator computes the maximum response of each feature channel
in a H ′ × W ′ patch, resulting in an output of size y ∈ RH′′×W ′′×D:



Very Deep Neural Network for Handwritten Digit Recognition 177

yi′′j′′d = max
1≤i′≤H′,1≤j′≤W ′

xi′+i′′−1,j′+j′′−1,d (3)

ReLU: Typically the convolutional responses are passed through a non-linear
activation function such as sigmoids, tanh, or ReLU [14] to produce activation
maps. The ReLU can be compute as follows:

yijd = max(0, xijd) (4)

Dropout: The key idea of dropout is to randomly drop units (along with
their connections) from the neural network during training. This method sig-
nificantly reduces overfitting and gives major improvements over other regular-
ization methods. The choice of which units to drop is random. In the simplest
case, each unit is retained with a fixed probability p independent of other units,
where p can be chosen using a validation set or can simply be set at 0.5, which
seems to be close to optimal for a wide range of networks and tasks. For any
layer l, r(l) is a vector of independent Bernoulli random variables each of which
has probability p of being 1. This vector is sampled and multiplied element wise
with the outputs of that layer y(l), to create the thinned outputs ỹ(l) [4].

r(l) = Bernoulli(p) (5)

ỹ(l) = r(l) ∗ y(l) (6)

Fully-Connected Layer: After multiple convolutional and pooling layers, a
convolutional network typically has one or more fully connected neural net layers
with weights W and biases b before the final classier. The entire network is
trained with back-propagation of a supervised loss such as the cross entropy of
a softmax classier output and the target labels y represented as a 1 of c vector,
where c is the number of classes to discriminate.

y = −
∑

ij

(xijc − log
D∑

d=1

exijd) (7)

2.2 Combining Modules into a Hierarchy Architecture

In order to design a new deep convolutional neural network architecture which
is discriminative enough for handwritten digit recognition. Here we use the basic
module to build up our model. However, different architectures can be produced
by cascading the above-mentioned modules in various ways. According to [18],
they point out the basic building block of convolutional networks are C + Ap

layer, C + R + Ap layer, C + R + N + Ap layer, C + Mp layer. In this paper, we
propose two different basic building block for our architecture.

C+N+Mp Layer: This is the first basic building block of our convolutional
networks. This block is composed of convolutional layer, normalization layer and
max pooling down sampling layer. This block is just like human visual cortex



178 Y. Li et al.

which is used for feature extraction and nonlinear dimensionality reduction in
our model.

C+N+ReLU Layer: This is second the basic building block of our convo-
lutional networks, which compose of a convolutional layer followed by a nor-
malization layer and a ReLU layer. This block is used for higher level feature
extraction.

Table 1 shows the whole setting of our CNNs architecture. The input to
our network is a fixed-size 28 × 28 gray image. The image is passed through
a stack of different layers. Except for the first convolution filter, we use very
small 3×3 receptive fields throughout the whole net. The max pooling layer here
is non-overlapping and no rectification. Max-pooling is carried out over a 2×2
pixel window, with stride 2. It should be noticed that all weight convolutional
layers are equipped with normalization. To the best of our knowledge, our CNNs
architecture is the deepest model for handwritten digit recognition.

Table 1. CNNs architecture and parameters.

Layer Type Output size Kernel size/Stride

1 Convolutional 20 × 24 × 24 5 × 5/1

2 Normalization 20 × 24 × 24 —

3 Max pooling 20 × 12 × 12 2 × 2/2

4 Convolutional 40 × 10 × 10 3 × 3/1

5 Normalization 40 × 10 × 10 —

6 Max pooling 40 × 5 × 5 2 × 2/2

7 Convolutional 150 × 3 × 3 3 × 3/1

8 Normalization 150 × 3 × 3 —

9 ReLU 150 × 3 × 3 —

10 Convolutional 150 × 1 × 1 3 × 3/1

11 Normalization 150 × 1 × 1 —

12 ReLU 150 × 1 × 1 —

13 Dropout(rate 0.4) 150 × 1 × 1 —

14 Convolutional 150 × 1 × 1 1 × 1/1

15 Normalization 150 × 1 × 1 —

16 ReLU 150 × 1 × 1 —

17 Dropout (rate 0.1) 150 × 1 × 1 —

18 Fully connected 10 —



Very Deep Neural Network for Handwritten Digit Recognition 179

3 Experiments and Analysis

The experiments were run on the MNIST dataset. The MNIST dataset consists
of handwritten digits 0–9 which are gray scale 28 × 28 pixel digit images. There
are 60,000 training images and 10,000 testing images in total.

So far, the best results on MNIST were obtained by deforming training
images, thus greatly increasing their number. This allows for training networks
with many weights, making them insensitive to in-class variability. However, in
this paper our network is not trained on numerous slightly deformed images,
because we want to build a better learning model but not a simple model with
seeing more data.

Our implementation is derived from the publicly available MatConvNet tool-
box [9]. Matlab 2015a is used to conduct all the operations, running on a system
with Intel Core i5-4690 CPU (3.50 GHz), 16 GB DDR3. Initial weights of the
CNNs are drawn from a uniform random distribution in the range [−0.01, 0.01].
The training is carried out using mini-batch gradient descent (based on back-
propagation) with momentum. The batch size was set to 100, momentum to 0.9.
The training was regularized by weight decay (the L2 penalty multiplier set to
5×10−4) and dropout regularization for the two fully-connected layers (dropout
ratio set to 0.4 and 0.1). The learning rate was initially set to 0.3, and then
decreased by a factor of 3 when the validation set accuracy stopped improving.

The classification performance is evaluated using two measures: the top-1
and top-5 error. The former is a multi-class classification error, i.e. the ratio
of incorrectly classified images; the latter is the main evaluation criterion used
in the ILSVRC, and is computed as the ratio of images such that the ground-
truth category is not within the top-5 categories. Figure 2 show one result of
the training and testing accuracy on each epoch. From the left picture, we can
see that the energy (training and testing loss) was decay dramatically with the
training epoch. From the right picture, we can see that our method was learning
fast which can get optimal performance 0.47% error rate after 29 epoch iteration.

Finally, we compare our best-performing single network result with ten state-
of-the-art methods. Table 2 shows the comparison of the recognition rate between
the proposed architecture method and other recently reported results. All the
methods in the experiment do not using data augmentation and model combina-
tion, our model secure the first place with 0.47%±0.05% test error rate. To the
best of our knowledge, this is the best error rate ever reported on the original
MNIST dataset, without distortions or model combination. The best previously
reported error rate was 0.53 % [18]. In addition, without data augmentation,
our method dramatically relieve the training procedure. In terms of training
time, the proposed architecture method takes 34.84 min. It is much faster than
[3], which needs to train up to 35 CNNs and costs 14 h even when the GPU
parallelization is carried out.

To further understand the learnt model, we also draw the first convolutional
layer of the learnt filters in Fig. 3. An intriguing pattern is observed in the filters
of MNIST dataset. We can see both horizontal and vertical stripes, for these
patterns attempt to capture the edges of the images.



180 Y. Li et al.

Fig. 2. Experimental results on MNIST dataset

Table 2. Test set misclassification rates for the best single model methods on the
permutation invariant MNIST dataset.

Method Test error

Srivastava et al. [4] 1.05 %

Salakhutdinov et al. [10] 0.95 %

Ranzato et al. [11] 0.60 %

Maxout NET [12] 0.94 %

Goodfellow et al. [13] 0.91 %

Deng et al. [14] 0.83 %

Rifai et al. [15] 0.81 %

Hinton et al. [16] 0.79 %

Zeiler et al. [17] 0.59 %

Jarrett et al. [18] 0.53 %

Our method 0.42% (0.47 % ± 0.05 %)



Very Deep Neural Network for Handwritten Digit Recognition 181

Fig. 3. The filters learned on MNIST dataset. There are 20 filter in the first stage and
their size are 5×5

4 Conclusion and Future Work

In this paper, we propose a novel very deep network for handwritten digit recog-
nition tasks. Unlike the shallow neural network used in many 1990s applications,
ours are very deep. By a carefully crafted design, we propose two different basic
building blocks and increase the depth of the network. The experiment result
demonstrated that the representation depth is beneficial for the classification
accuracy. Last and most importantly, the proposed model is a simple and com-
putationally efficient approach for handwritten digit recognition tasks. On the
very competitive MNIST handwriting benchmark, the proposed method achieve
the best error rate ever reported on the original dataset, without distortions or
model combination (0.47% ± 0.05%). In the future, we will further explore the
potential representation ability of CNNs for various visual recognition tasks.

References

1. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86, 2278–2323 (1998)

2. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural
networks applied to visual document analysis. In: 7th IEEE International Confer-
ence on Document Analysis and Recognition, pp. 958–963 (2003)

3. Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 3642–3649 (2012)

4. Srivastava, N.: Improving neural networks with dropout. University of Toronto
(2013)



182 Y. Li et al.

5. Lin, M., Chen, Q., Yan, S.: Network in network. ArXiv preprint (2014).
arXiv:1312.4400

6. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J., Cire, D.C., Meier,
U., Gambardella, L.M.: Handwritten digit recognition with a committee of deep
neural nets on gpus. ArXiv preprint (2011). arXiv:1103.4487

7. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: International Conference on Learning Representations
(ICLR), pp. 1–14 (2015)

8. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

9. Vedaldi, A., Lenc, K.: MatConvNet. In: 23th ACM International Conference on
Multimedia, pp. 689–692 (2015)

10. Salakhutdinov, R., Hinton, G.E.: Deep Boltzmann machines. In: 12th International
Conference on Artificial Intelligence and Statistics, pp. 448–455 (2009)

11. Ranzato, M.A., Poultney, C., Chopra, S., Lecun, Y.: Efficient learning of sparse
representations with an energy-based model. In: Advances in Neural Information
Processing Systems (NIPS), pp. 1137–1134 (2006)

12. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout
networks. ArXiv preprint (2013). arXiv:1302.4389

13. Goodfellow, I., Courville, A., Bengio, Y.: Joint training of deep Boltzmann
machines for classification. In: International Conference on Learning Represen-
tations Workshops (ICLRW) (2013)

14. Deng, L., Yu, D.: Deep convex net: a scalable architecture for speech pattern
classification. In: Proceedings of the Annual Conference of the International Speech
Communication Association (INTERSPEECH), pp. 2285–2288 (2011)

15. Rifai, S., Dauphin, Y.: The manifold tangent classifier. In: Advances in Neural
Information Processing Systems (NIPS), pp. 2294–2302 (2011)

16. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors. ArXiv
preprint (2012). arXiv:1207.0580

17. Wan, L., Zeiler, M., Zhang, S., LeCun, Y., Fergus, R.: Regularization of neural
networks using dropconnect. In: Proceedings of the International Conference on
Machine Learning (ICML), pp. 1058–1066 (2013)

18. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-
stage architecture for object recognition? In: Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pp. 2146–2153 (2009)

http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1103.4487
http://arxiv.org/abs/1302.4389
http://arxiv.org/abs/1207.0580

	Very Deep Neural Network for Handwritten Digit Recognition
	1 Introduction
	2 The Proposed Architecture
	2.1 A Brief Review of CNNs
	2.2 Combining Modules into a Hierarchy Architecture

	3 Experiments and Analysis
	4 Conclusion and Future Work
	References


