
Rule-Based Canonicalization of Arbitrary
Tables in Spreadsheets

Alexey O. Shigarov(B), Viacheslav V. Paramonov, Polina V. Belykh,
and Alexander I. Bondarev

Matrosov Institute for System Dynamics and Control Theory of SB RAS,
Irkutsk, Russia

shigarov@icc.ru
http://cells.icc.ru

Abstract. Arbitrary tables presented in spreadsheets can be an impor-
tant data source in business intelligence. However, many of them have
complex layouts that hinder the process of extracting, transforming, and
loading their data in a database. The paper is devoted to the issues of
rule-based data transformation from arbitrary tables presented in spread-
sheets to a structured canonical form that can be loaded into a data-
base by regular ETL-tools. We propose a system for canonicalization of
arbitrary tables presented in spreadsheets as an implementation of our
methodology for rule-based table analysis and interpretation. It enables
the execution of rules expressed in our specialized rule language called
CRL to recover implicit relationships in a table. Our experimental results
show that particular CRL-programs can be developed for different sets
of tables with similar features to automate table canonicalization with
high accuracy.

Keywords: Unstructured data integration · Table understanding ·
Table analysis and interpretation · Spreadsheet data transformation

1 Introduction

A large number of data is presented as arbitrary tables in spreadsheets. Many
of them are unstructured data [1]. They lack explicit semantics required to be
interpreted by computer programs. At the same time, arbitrary tables can be a
valuable data source for business intelligence. To be accessible for data analysis
and visualization their data need to be extracted, transformed, and loaded into
databases. However, if they have complex layouts of cells then the use of familiar
ETL-tools is often not enough to automatically populate a database with their
data.

The paper presents the rule-based data transformation from arbitrary tables
presented in spreadsheets (Fig. 1) to the canonical form (Fig. 2) that can be
loaded into a database by standard ETL-tools (Fig. 3). It consists in table analy-
sis and interpretation for recovering cell-role pairs where a role is defined as an

c© Springer International Publishing Switzerland 2016
G. Dregvaite and R. Damasevicius (Eds.): ICIST 2016, CCIS 639, pp. 78–91, 2016.
DOI: 10.1007/978-3-319-46254-7 7

Rule-Based Canonicalization of Arbitrary Tables in Spreadsheets 79

 Sent Received
 FY2010 FY2011 2011/2010 FY2010
 (%)

 Letters
EU
 Spain 462.9 469.4 101.4 556.3
 Cyprus 82.9 89.7 108.2 97.1
 Belgium 352.3 341.1 96.82 387.2
Middle East
 Lebanon 21.1 21.5 101.9 19.8
 Israel 353.8 483.0 136.5 365.8

 Parcels
EU
 Spain 102.2 109.3 106.9 134.2Cell

 Sent
FY2011

p
 Belgium

 341.1

Country

Mail type
Operation

Year
Label

Category

Parent
Label

Child
Label

Entry

1 2 3 4 5

1

2

3
4

7

c1 c2

c5
c8

c9

c24
c26

c54

Fig. 1. An arbitrary table and its relationships

entry, label, or category, as well as entry-label, label-label, and label-category
pairs.

Many methods for table analysis and interpretation were suggested in recent
years. Some of them use extraction ontologies [11] or data frames [26] to bind
natural language content of a table with their concepts. In a like manner Wang
et al. [27] consider table understanding as associating a table with concepts
in the general purpose knowledge taxonomy. Govindaraju et al. [14] combine
table understanding and NLP techniques to extract relations from both text and
tables. Astrakhantsev et al. [3] propose a method for data extraction from tables
based on modeling user behavior. There are several methods [4,12] dealing with
web-tables that fit in well with the relational form. The domain-independent
methods [6,7,10,13,17–22] are based on the analysis and interpretation of spa-
tial, style and textual information from tables instead of using external knowl-
edge. These methods are generally designed for a few of widespread types of
arbitrary tables.

The existing methods mostly deal with web-tables presented in HTML for-
mat. There are a few papers that are centered on tables presented in spread-
sheets [2,5–8,10,16,19]. Erwig et al. [2,5] consider the issues of detecting errors
in spreadsheets. Cunha et al. [8] focus on data normalization in spreadsheets.
Hung et al. [15,16] propose the rule-based transformation of spreadsheet data
into structured form using their original spreadsheet-like formula language called
TranSheet. Chen and Cafarella [6,7] present a domain-independent method for
extracting relational data from spreadsheets. Their method is designed for a
widespread type of tables with a region of numeric values and two accompanied
hierarchical regions of headings on the top and the left. The recent papers of

80 A.O. Shigarov et al.

DATA
OPERA-
TION

MAIL
TYPE

462.9 Sent 2010 Letters EU | Spain

82.9 Sent 2010 Letters EU | Cyprus

12.3 Sent 2010 Parcels Middle East | Lebanon

469.4 Sent 2011 Letters EU | Spain

89.7 Sent 2011 Letters EU | Cyprus

341.1 Sent 2011 Letters EU | Belgium

21.5 Sent 2011 Letters Middle East | Lebanon

556.3 Received 2010 Letters EU | Spain

11.3 Received 2011 Parcels Middle East | Lebanon

.

YEAR COUNTRY

.

.

Fig. 2. A fragment of the table in the canonical form

Nagy, Embley, Seth and Krishnamoorthy [9,10,19,23] are devoted to the data
transformation from web-tables converted into CSV files to a relational database.

We propose a system for canonicalization of arbitrary tables presented in
spreadsheets as an implementation of our methodology for rule-based table
analysis and interpretation [25]. It enables the execution of rules expressed in
our specialized rule language called CRL [24] to recover missing relationships
describing table semantics. CRL-rules map explicit features (layout, style, and
text of cells) of an arbitrary table to its implicit semantic relationships. In con-
trast with the existing methods, our system is a tool for unstructured data
integration. Instead of fixing one or more types of tables with typical structures,
we propose to develop different declarative CRL-programs for particular sets of
tables with similar features that can be both typical and specific. Our system
supports relative cell addressing compared to the TranSheet [15,16]. In addition,
we use the fixed canonical form instead of specifying a target schema.

2 Recovering Relationships in a Table

We use the terminology of the Wang’s table model [28]: entries (data values),
labels (headers), and categories (domains), Fig. 1. Our table model supports the
following basic principles: (1) each cell can contain one or more entry, label and
category values simultaneously, (2) an entry can be associated with only one
label in each category, (3) each label must be associated with only one category,
and (4) a category can be hierarchical. It is discussed more detail in [24,25].

Cells, entries, labels, and categories of a table are facts in the rule matching
process. CRL-rules map explicit features of a table to its implicit relationships.
The left hand side of a rule defines conditions using to query facts inserted into
the working memory of a rule engine. Its right hand side contains actions that
typically serve to generate new facts or to modify the existing facts.

Rule-Based Canonicalization of Arbitrary Tables in Spreadsheets 81

Arbitrary tables
in spreadsheets

Tables in the
canonical form
(spreadsheets
or CSV files)

Databases

Extracting tabular data
from spreadsheets and

creating table facts

Recovered
table facts :
semantic

relationships

Table analysis
and interpretation
using matching
available facts
against CRL-rules

Transforming recovered
facts into the canonical form

ETL process
via standard tools

Available table
facts: spatial, style,

and textual data

Fig. 3. Unstructured ETL for arbitrary tables in spreadsheets using CRL-rules

Input facts are formed from Excel cells of an arbitrary table. Each cell
fact corresponds to an Excel cell of a table with slight modifications. It
specifies four positions (cl — left column, rt — top row, cr — right
column, and rb — bottom row), style characteristics (style), includ-
ing a font (style.font), horizontal (style.horzAlignment) and verti-
cal (style.vertAlignment) alignment, text rotation (style.rotation),
background (style.bgColor) and foreground (style.fgColor) col-
ors, border types and colors (style.leftBorder, style.topBorder,
style.rightBorder, and style.bottomBorder), a primitive data type
(type), an indent (indent), and its textual content (text).

For example, the table shown in Fig. 1 consists of 54 cells. Thus, the 54 cell
facts <cells>={c1,c2,...,c54} are inserted into the working memory of a
rule engine, including:

c1=(cl=1,rt=1,cr=1,rb=2,text=null)
c2=(cl=2,rt=1,cr=4,rb=1,text="Sent")
c5=(cl=3,rt=2,cr=3,rb=2,text="FY2010")
c8=(cl=1,rt=3,cr=5,rb=3,style.font.bold=true, text="Letters")
c9=(cl=1,rt=4,cr=1,rb=4,text="EU")
c24=(cl=1,rt=7,cl=1,rb=7,indent=4,text="Belgium")
c26=(cl=3,rt=7,cl=3,rb=7,type=Type.NUMERIC,text="341.1")

Moreover, an input can include category facts. A category can be specified
as a set of its labels and constraints (regular expressions defining ranges of
permissible labels) in YAML1 format. Our YAML schema defines the following
fields: a category name, list of label values, and list of constraints. Note that the
current version of our system supports specifying only plain categories. In the

1 http://yaml.org.

http://yaml.org

82 A.O. Shigarov et al.

example below, we specify the category YEAR with two labels 2010 and 2011
and two constraints on admissible label values FY2000,...,FY2016:

category YEAR
name: Year
labels:
- 2010
- 2011
constraints:
- "FY200[0-9]"
- "FY201[0-6]"

For the table shown in Fig. 1 we can define and insert into the working memory
four category facts:

d1=(name="OPERATION", labels={"Sent","Received"})
d2=(name="YEAR", constraints={"FY200[0-9]", "FY201[0-6]"})
d3=(name="MAIL_TYPE", labels={"Letters","Parcels"})
d4=(name="COUNTRY", labels={"Afghanistan",...,"Zimbabwe"})

All inserted facts are accessible through condition elements of a rule. A
condition element enables to query facts of one of four types (cell, entry,
label, or category) that satisfy constraints represented as Java-expressions.
For example, the condition element <cell $c : cl == 1> queries all cells
located in the leftmost column (e.g. c1, c8, c9, c24), the other <cell $c :
type==Type.NUMERIC> returns all cells with the NUMERIC type (e.g. c26).

Typically, CRL-rules can be separated into two groups designed for two func-
tionally different stages: the first for recovering cell-role pairs where a role is
defined as an entry, label, or category, and second for recovering entry-label,
label-label, and label-category pairs.

The first group includes actions for generating entry and label facts from cell
facts. Usually, a value of a created fact is a text of a cell, but it can also be a part
or modification of the text. The cell becomes the provenance for the generated
entry or label. For example, we can create the following label facts from the cells
c2, c5, c8, c9, and c24 of the table shown in Fig. 1 respectively:

l1=(value="Sent", cell=c2), l2=(value="2011", cell=c5)
l3=(value="Letters", cell=c8), l4=(value="EU", cell=c9)
l5=(value="Belgium", cell=c24)

as well as the entry fact e1=(value="341.1", cell=c26) from the cell
c26. Moreover, to simplify and generalize recovering relationships, rules of this
stage often contain actions for splitting or merging cells, removing rows and
columns, and modifying style and text content of cells.

The second group uses actions for associating entries, labels, and categories.
A label can be associated with a category using either the corresponding category
fact or specified name of the category. In the latter case, we look for the category
by its name. If it exists, then the label is associated with it. Otherwise, we try

Rule-Based Canonicalization of Arbitrary Tables in Spreadsheets 83

to create it before categorizing. In our example (Fig. 1) we need to associate the
labels with the categories as follows:

l1=(value="Sent", cell=c2, category=d1)
l2=(value="2011", cell=c5, category=d2)
l3=(value="Letters", cell=c8, category=d3)
l4=(value="EU", cell=c9, category=d4)
l5=(value="Belgium", cell=c24, category=d4)

Furthermore, two labels can be associated as parent and child. As the result,
labels form trees to support hierarchical categories and compound values. All
labels connected in a tree must be associated with the same category. In the
case (Fig. 1) we relate the labels l4 and l5 as parent-child:

l4=(value="EU", cell=c9, category=d4, children={l5,...})
l5=(value="Belgium", cell=c24, category=d4, parent=l4)

It means that the compound value of the label l5 is "EU|Belgium".
In some cases, we can define that several labels relate to the same category,

without knowing what the category is. For example, we may know that labels,
which are located in the same row, relate to the same category. Instead of cate-
gorizing labels can be grouped in pairs. Each group of labels can be considered
as an anonymous category. If one or more labels of a group are associated with a
category then the remaining labels from the group also must be associated with
the category. If no labels in a group are categorized then we create a category
with the automatically generated name and associate all labels of this group
with it.

An entry can be associated with a label using either the corresponding label
fact or a specified value of the label from a designated category. In the latter case,
we try to find this category among all accessible categories. If this category does
not exist then we create it. After that, we look for the label with the specified
value in the founded or created category. When there is no label, we create it,
using this value. At last, the entry is associated with the founded or created
label. Note that, this allows to generate labels independently of cells. In the
example (Fig. 1) the entry e1 is associated with the labels l1, l2, l3, l4, and
l5 i. e.

e1=(value="341.1", cell=c26, labels={l1,l2,l3,l4,l5})

As is mentioned above, any entry can be associated with only one label from
each category. Moreover, this means that the label must belong to a category. If
the added label is uncategorized then it is not associated with the entry at that
moment. At first, it becomes a candidate that may be associated automatically
with the entry only after it is categorized. Finally, all labels, which are not
categorized or grouped in rule firing, are associated with a default category after
that.

84 A.O. Shigarov et al.

3 Generating a Canonical Table

Recovered relationships of a table enable generating its canonical form. We can
consider the canonical form as a relational table. Its topmost row contains field
(attribute) names. Each of the remaining rows is a record (tuple). It obligatorily
includes the field named DATA that contains entries. Each recovered category
becomes a separate field that contains its labels. Any record presents recovered
relationships between an entry and one label in each category. Usually each
record is unique within a canonical table.

DATA A B

1 a1 | a11 b1

2 a1 | a12 b1

3 a2 | a21 b1

4 a2 | a22 b1

5 a1 | a11 b2

6 a1 | a12 b2

7 a2 | a21 b2

8 a2 | a22 b2

a11 a12 a21 a22

b1 1 2 3 4

b2 5 6 7 8

 A
 B

a1 a2

b

c

d

c d c d

e 1 2 3 4

f 5 6 7 8

a b

DATA C1 C2 C3

1 a c e

2 a d e

3 b c e

4 b d e

5 a c f

6 a d f

7 b c f

8 b d f

a

Fig. 4. Two arbitrary tables (a, c) and their canonical forms (b, d)

For example, as a result of analysis and interpretation of the table shown in
Fig. 4, a the following relationships can be recovered:

<entries>={1,2,3,4,5,6,7,8}
<labels>={a,b,c,d,e,f}
<groups>={{a,b},{c,d},{e,f}}
<entry_label_pairs>={(1,a),(1,c),(1,e),(2,a),(2,d),(2,e),(3,b),
(3,c),(3,e),(4,b),(4,d),(4,e),(5,a),(5,c),(5,f),(6,a),(6,d),(6,f),
(7,b),(7,c),(7,f),(8,b),(8,d),(8,f)}

This example supposes that each group is an anonymous category. Thus, we
generate three categories and associate them with the grouped labels as follows:

<categories>={C1,C2,C3}
<label_category_pairs>={(a,C1),(b,C1),(c,C2),(d,C2),(e,C3),(f,C3)}

Another example is the source table demonstrated in Fig. 4, c where we assume
that ‘A’ and ‘B’ are category names, and the boxhead headings constitute hier-
archy.

Rule-Based Canonicalization of Arbitrary Tables in Spreadsheets 85

<entries>={1,2,3,4,5,6,7,8}
<labels>={a1,a11,a12,a2,a21,a22,b1,b2}
<categories>={A,B}
<entry_label_pairs>={(1,a11),(1,b1),(2,a12),(2,b1),(3,a21),
(3,b1),(4,a22),(4,b1),(5,a11),(5,b2),(6,a12),(6,b2),(7,a21),
(7,b2),(8,a22),(8,b2)}
<label_label_pairs>={(a11,a1),(a12,a1),(a21,a2),(a22,a2)}
<label_category_pairs>={(a1,A),(a11,A),(a12,A),(a2,A),(a21,A),
(a22,A),(b1,B),(b2,B)}

4 Implementation

We implement the proposed system for table canonicalization as shown in Fig. 5.
First, we parse tabular data of a source spreadsheet in Excel format via “Apache
POI”2 library and generate cell facts from them. Optionally, categories specified
in YAML format can also be loaded and presented as facts, using SnakeYAML3

library for parsing YAML.

File system Java virtual machine

Loading data from a spreadsheet

Apache POI, Java library
for reading Excel spreadsheets

Category descriptions
in YAML format

Available facts
(Java objects):
table, cells, rows,
columns, categories

A canonical form of
the table in Excel
spreadsheet format

Recovered facts
(Java objects): entries,
labels, categories, and
entry-label, label-label,
label-category pairs

Drools Expert, rule engine

Inserting facts
Loading CRL rules
Translating rules from CRL to DRL
Executing DRL rules

SnakeYAML, YAML parser
Loading categories

Imported Java
methods for
text processing,
data cleansing,
etc.

An arbitrary
table in Excel
spreadsheet format

CRL rules

DSL specification
of CRL language

Generating a canonical table from
recovered facts in spreadsheet format

Apache POI, Java library
for writing Excel spreadsheets

Fig. 5. Architecture of the system for rule-based canonicalization of arbitrary tables
in spreadsheets

Our data structures for presenting table facts (cells, entries, labels, and cate-
gories) are Java classes developed in accordance with the naming conventions of
2 http://poi.apache.org.
3 http://snakeyaml.org.

http://poi.apache.org
http://snakeyaml.org

86 A.O. Shigarov et al.

JavaBeans4 specification. This allows to use any rule engine implemented “JSR
94: Java Rule Engine API”5 specification. Generated facts are instances of these
classes. They are asserted in the working memory of the rule engine.

In the prototype we use Drools6 rule engine. Rules for table analysis and
interpretation can be expressed in either the Drools’ native general-purpose DRL
format or our domain-specific language, CRL. In case when loaded rules are
presented in CRL they are translated to DRL format via Drools, using the DSL
specification defining transformations from CRL to DRL constructs. Note that
rules can use imported Java programs for text processing, data cleansing, or
mathematical computations.

New facts (entries, labels, categories, and their relationships) are recovered in
matching available facts against DRL-rules. Recovered facts provide generating
canonical tables. The process ends with each canonical table being exported into
Excel spreadsheet format, using “Apache POI” library.

The prototype of our system has been implemented as a command-line appli-
cation7 and web-service8. We have also developed a web-client for our web-
service. It serves to transfer arbitrary tables in spreadsheets, rule sets, and cate-
gory specifications to the web-service that returns corresponding canonical tables
and their data provenance as a response. The client shows the canonical tables
and links them with their original arbitrary forms via interactively highlighting
connected source and target cells.

5 Experimental Evaluation

For experimental evaluation we use the existing dataset collected within
TANGO9 project [26]. The dataset intends to test table interpretation meth-
ods. It contains 200 arbitrary tables in Excel format imported from 10 websites
with statistical data.

In the experiment, we evaluate table canonicalization where our purpose is to
recover entries, labels, and entry-label, label-label relationships. Note that some
cells of TANGO tables can be considered as multi-labeled, i. e. a cell includes
more than one label. However, to simplify the evaluation process we admit that a
cell can contain only one label. In our interpretation, we also recover hierarchical
label-label relationships instead of dividing labels into groups and categorizing
them. We do not process footnotes as part of a table, but a footnote reference
remains a part of a recovered entry or label.

The most of TANGO tables satisfy the assumptions listed below:

– A table consists of four cell regions having different functions and separated
by two invisible perpendicular lines as shown in Fig. 6, a: (1) each non-empty

4 http://www.oracle.com/technetwork/java/javase/tech/spec-136004.html.
5 http://jcp.org/en/jsr/detail?id=94.
6 http://drools.org.
7 Downloadable from https://github.com/shigarov/cells-ssdc.
8 Accessible at http://cells.icc.ru:8080/ssdc.
9 http://tango.byu.edu/data.

http://www.oracle.com/technetwork/java/javase/tech/spec-136004.html
http://jcp.org/en/jsr/detail?id=94
http://drools.org
https://github.com/shigarov/cells-ssdc
http://cells.icc.ru:8080/ssdc
http://tango.byu.edu/data

Rule-Based Canonicalization of Arbitrary Tables in Spreadsheets 87

Multi-row
hierarchical layout

Multi-column
plain layout

One-column
hierarchical
layout

One-column
plain layout

Category name cells (1)

Row label cells (3)

Column label cells (2)

Entry cells (4)

a

One-column &
one-row layout

b

Multi-column &
one-row layout

c

One-row plain layout
d Multi-row

plain layout

e

Multi-column &
multi-row layout

j

f

i

h

g

Fig. 6. Cell regions (a) and their layouts (b–j) in tables of TANGO dataset

cell of the top-left region contains a category name; (2) each non-empty cell
of the top-right region contains a column label; (3) each non-empty cell of
the bottom-left region contains a row label; (4) each non-empty cell of the
bottom-right region contains an entry.

– Each cell region has one of the appropriate layouts as shown in Fig. 6 and
enumerated in Table 1.

– If a cell located in a column contains a category name then all row labels
produced from the rest of cells in this column belong to this category.

– Column labels can form a hierarchy (Fig. 6, e and f). If in the top-right region
a not empty cell c located on i-row spans several columns and not empty cells
c1,. . . ,cn are located in these columns on i+ 1-row, then the cell c contains a
parent label for labels produced from the cells c1,. . . ,cn.

– Row labels located in the leftmost column can form a hierarchy (Fig. 6, g).
Three typographical ways can denote the presence of a label hierarchy: (1)
each level of label nesting appends one additional indent equaled two spaces;
(2) hyphen char (‘-’) at the beginning of a label indicates that the label is
nested; (3) text highlighted by the bold font can signalize spanning label.

– An entry is either a number or special word (e.g. ‘#’, ‘F’, ‘...’, ‘x’, ‘NA’).

These assumptions are formally presented as a set of 16 CRL-rules combined
into the CRL-program called TANGO-200.

To evaluate table canonicalization we use the following measures:

Completeness =
number of completely recovered tables

number of all tables

where a table is completely recovered, when all entries, labels, entry-label pairs,
and label-label pairs which are contained in its source form are included in its

88 A.O. Shigarov et al.

Table 1. Using cell region layouts in TANGO tables

Region Layout Fig. 6 Cases

(1) Category name cells One-column one-row b 94.5 %

Multi-column one-row c 5.5 %

(2) Column label cells One-row plain d 65.5 %

Multi-row plain e 26 %

Multi-row hierarchical f 8.5 %

(3) Row label cells One-column hierarchical g 47.5 %

One-column plain h 47 %

Multi-column plain i 5.5 %

(4) Entry cells Multi-column multi-row j 100 %

canonical form.

Preciseness =
number of precisely recovered tables

number of all tables

where a table is precisely recovered, when all entries, labels, entry-label pairs,
and label-label pairs which are included in its canonical form are contained in
its source form.

The evaluation is carried out as follows. Two experts independently compare
the source arbitrary tables with their canonical forms generated automatically.
They referee that each table is processed successfully or not in terms of the
completeness and preciseness. In case when two experts make opposite decisions
on a table then the third expert makes a final decision. The experimental results
are presented in Table 2.

The completeness is 87 % and preciseness is 88.5 % for TANGO-200 program.
Among 200 tables of the dataset, total 33 are processed with errors, which reduce
the completeness and preciseness. There are various causes of these errors, includ-
ing the following: (1) ambiguity of text highlighting, e.g. the use of the bold font
to emphasize a hierarchy of row labels or data aggregation, (2) absence of spa-
tial or style features, when relationships are expressed by natural language only,
and (3) messy layout and data of cells, e.g. two parts of a label can improperly
be placed in two different cells. For the most part, errors appear in recovering
label-label relationships between row labels located in the leftmost column with
one-column hierarchical layout (Fig. 6, g), 28 of 33 cases, 85 %.

Additionally, we evaluate our system for a subset of the dataset where we
exclude all tables having one-column hierarchical layout of the bottom-left region
(Fig. 6, g). Only 105 tables of the dataset belong to the subset. To process them,
we use a subset of TANGO-200 rules where we remove 3 rules intended for
recovering label-label relationships between row labels located in the leftmost
column. The subset of 13 CRL-rules is combined into TANGO-SUB program.
The experimental results for this case is also presented in Table 2.

Rule-Based Canonicalization of Arbitrary Tables in Spreadsheets 89

Table 2. Experimental results

CRL-program TANGO-200 TANGO-SUB

Total tables 200 105

Completely recovered tables 174 100

Precisely recovered tables 177 100

Completeness 87 % 95.2 %

Preciseness 88.5 % 95.2 %

The evaluation shows that particular CRL-programs can be developed for
different sets of tables with similar features to automate table canonicalization
with high accuracy. One set of rules can be suitable for processing a wide range
of arbitrary tables. Furthermore, our experiment demonstrates that narrowing a
table type, like from TANGO-200 to TANGO-SUB, can cause simplifying rules
and increasing the completeness and preciseness in table canonicalization. The
experimental results, including the generated canonical forms and the rule sets,
are presented in more detail at address http://cells.icc.ru/pub/crl.

6 Conclusions and Further Work

The presented tools, system and rule language, are mainly designed for data
integration. They can be applied to develop specialized ETL software where
tagged arbitrary tables in spreadsheets, word documents, or web pages can be
used as data sources. We expect that they are useful in business intelligence
applications when data from a large number of arbitrary tables with similar
features of their layout, style and text are required for populating a database.

We observe that arbitrary tables presented in spreadsheets can contain messy
(not standardized) data. It seems to be interesting for the further work to inte-
grate our tools with data cleansing techniques. The use of domain ontologies
and global taxonomies (e.g. FreeBase, DBpedia, YAGO) is of special interest for
recovering categories. In addition, the further work can be focused on developing
table analysis and interpretation methods for widely used features, e.g. for auto-
matically recovering a row label hierarchy in the leftmost column. We believe
this can improve expressiveness and usefulness of our tools.

Acknowledgements. We thank Prof. George Nagy and all members of TANGO
research group(http://tango.byu.edu) for providing and discussing the TANGO dataset
for our experiments.

This work was financially supported by the Russian Foundation for Basic Research
(Grant No. 15-37-20042 and 14-07-00166) and Council for Grants of the President
of Russian Federation (Grant No. NSh-8081.2016.9). The presented web-service for
table canonicalization is performed on resources of the Shared Equipment Center of
Integrated information and computing network of Irkutsk Research and Educational
Complex(http://net.icc.ru).

http://cells.icc.ru/pub/crl
http://tango.byu.edu
http://net.icc.ru

90 A.O. Shigarov et al.

References

1. Unstructured information management architecture (UIMA) version 1.0 (2009).
http://docs.oasis-open.org/uima/v1.0/uima-v1.0.html

2. Abraham, R., Erwig, M.: UCheck: A spreadsheet type checker for end users. J.
Vis. Lang. Comput. 18(1), 71–95 (2007)

3. Astrakhantsev, N., Turdakov, D., Vassilieva, N.: Semi-automatic data extraction
from tables. In: Selected Papers of the 15th All-Russian Scientific Conference on
Digital Libraries: Advanced Methods and Technologies, Digital Collections, pp.
14–20 (2013)

4. Cafarella, M.J., Halevy, A., Wang, D.Z., Wu, E., Zhang, Y.: WebTables: Exploring
the power of tables on the web. Proc. VLDB Endow. 1(1), 538–549 (2008)

5. Chambers, C., Erwig, M.: Automatic detection of dimension errors in spreadsheets.
J. Vis. Lang. Comput. 20(4), 269–283 (2009)

6. Chen, Z., Cafarella, M.: Automatic web spreadsheet data extraction. In: Proceed-
ings 3rd International Workshop on Semantic Search Over the Web, pp. 1: 1–1: 8.
ACM, New York, NY, USA (2013)

7. Chen, Z., Cafarella, M.: Lntegrating spreadsheet data via accurate and low-effort
extraction. In: Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 1126–1135. ACM, New York, NY,
USA (2014)

8. Cunha, J., Saraiva, J.A., Visser, J.: From spreadsheets to relational databases
and back. In: Proceedings ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, pp. 179–188. ACM, New York, PEPM 2009, NY, USA
(2009)

9. Embley, D.W., Krishnamoorthy, M.S., Nagy, G., Seth, S.: Converting heteroge-
neous statistical tables on the web to searchable databases. Int. J. Doc. Anal.
Recogn. 19, 1–20 (2016)

10. Embley, D.W., Seth, S., Nagy, G.: Transforming web tables to a relational database.
In: Proceedings 22nd International Conference on Pattern Recognition, pp. 2781–
2786. ICPR 2014, IEEE Comp. Soc., Washington, DC, USA (2014)

11. Embley, D., Tao, C., Liddle, S.: Automating the extraction of data from HTML
tables with unknown structure. Data Knowl. Eng. 54(1), 3–28 (2005)

12. Galkin, M., Mouromtsev, D., Auer, S.: Identifying web tables: Supporting a
neglected type of content on the web. In: Proceedings of the 6th International
Conference Knowledge Engineering and Semantic Web, Moscow, Russia. Commu-
nications in Computer and Information Science, vol. 518, pp. 48–62 (2015)

13. Gatterbauer, W., Bohunsky, P., Herzog, M., Krpl, B., Pollak, B.: Towards domain-
independent information extraction from web tables. In: Proceedings 16th Inter-
national Conference on World Wide Web, pp. 71–80. New York, US (2007)

14. Govindaraju, V., Zhang, C., Ré, C.: Understanding tables in context using standard
NLP toolkits. In: Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics, ACL. vol. 2: Short Papers, pp. 658–664 (2013)

15. Hung, V.: Spreadsheet-Based Complex Data Transformation. Ph.D. thesis, School
of Computer Science and Engineering, University of New South Wales, Sydney,
Australia (2011)

16. Hung, V., Benatallah, B., Saint-Paul, R.: Spreadsheet-based complex data trans-
formation. In: Proceedings 20th ACM International Conference on Information
and Knowledge Management, pp. 1749–1754. ACM, New York, CIKM 2011, NY,
USA (2011)

http://docs.oasis-open.org/uima/v1.0/uima-v1.0.html

Rule-Based Canonicalization of Arbitrary Tables in Spreadsheets 91

17. Kim, Y.S., Lee, K.H.: Extracting logical structures from html tables. Comput.
Stand. Interfaces 30(5), 296–308 (2008)

18. Kudinov, P.Y.: Extracting statistics indicators from tables of basic structure. Pat-
tern Recogn. Image Anal. 21(4), 630–636 (2011)

19. Nagy, G., Embley, D., Seth, S.: End-to-end conversion of html tables for populat-
ing a relational database. In: Proceedings 11th IAPR International Workshop on
Document Analysis Systems, pp. 222–226. IEEE Computer Society, Tours Loire
Valley, France, April 2014

20. Pivk, A., Cimiano, P., Sure, Y.: From tables to frames. Web Semant. 3(2–3), 132–
146 (2005)

21. Pivk, A.: Thesis: Automatic ontology generation from web tabular structures. AI
Commun. 19(1), 83–85 (2006)

22. Pivk, A., Cimiano, P., Sure, Y., Gams, M., Rajkovič, V., Studer, R.: Transforming
arbitrary tables into logical form with TARTAR. Data Knowl. Eng. 60(3), 567–595
(2007)

23. Seth, S., Nagy, G.: Segmenting tables via indexing of value cells by table headers.
In: 2013 12th International Conference on Document Analysis and Recognition
(ICDAR), pp. 887–891, August 2013

24. Shigarov, A.: Rule-based table analysis and interpretation. In: Proceedings of the
21st International Conference on Information and Software Technologies. Commu-
nications in Computer and Information Science, vol. 538, pp. 175–186 (2015)

25. Shigarov, A.: Table understanding using a rule engine. Expert Syst. Appl. 42(2),
929–937 (2015)

26. Tijerino, Y., Embley, D., Lonsdale, D., Ding, Y., Nagy, G.: Towards ontology gen-
eration from tables. World Wide Web: Int. Web Inf. Syst. 8(3), 261–285 (2005)

27. Wang, J., Wang, H., Wang, Z., Zhu, K.Q.: Understanding tables on the web. In:
Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER
2015. LNCS, vol. 9381, pp. 141–155. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34002-4 11

28. Wang, X.: Tabular Abstraction, Editing, and Formatting. Ph.D. thesis, University
of Waterloo, Waterloo, Ontario, Canada (1996)

http://dx.doi.org/10.1007/978-3-642-34002-4_11
http://dx.doi.org/10.1007/978-3-642-34002-4_11

	Rule-Based Canonicalization of Arbitrary Tables in Spreadsheets
	1 Introduction
	2 Recovering Relationships in a Table
	3 Generating a Canonical Table
	4 Implementation
	5 Experimental Evaluation
	6 Conclusions and Further Work
	References

