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Abstract. Numerical dispersion errors are inherent for simulations based on
wave propagation models with discrete meshes. The paper presents approach
applied to reduce errors of this type in finite element models. High order 2D
synthesized finite elements with enhanced convergence properties are obtained
by modal synthesis technique. Obtained elements have diagonal mass matrix
which enables to employ explicit integration schemes for wave simulation.
Waves of more than two times wider frequency can be simulated using model of
synthesized elements compared to models assembled of conventional elements.
Furthermore, such elements could be used as a template of higher-order element
to construct finite element models for all simulation problems of this kind.
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1 Introduction

The work refers to short-wave simulation finite element (FE) models where the range
of investigated wavelengths many times shorter than the characteristic length of the
propagation environment. As an example, acoustic waves in solids, hydraulic pressure
pulses propagation in large pipeline networks, etc. can be presented as short-wave
propagation models. They require huge amount of elements (even “small” models for
2D problems contain 106 � 107 elements) and therefore computational resources
required for simulation are very large. Generally, the dimensionality of the FE model is
reduced as rougher meshes are applied, where measure for roughness of the mesh is the
number of elements per characteristic wavelength. Unfortunately, rough meshes tend to
increase the simulation errors, which exhibit themselves as severe deterioration of the
shapes of propagating wave pulses as the time of simulation increases. In other words,
they can be referred to as numerical dispersion and phase velocity errors.

Already in 1980s researchers have noticed different modal convergence features of
dynamic models obtained by using lumped and consistent forms of mass matrices [1].
The simplest way to reduce the numerical dispersion of dynamic models is to use the
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‘combined’ form of the mass matrix obtained as a weighted superposition of the two
traditional forms [2]. However, the models with non-diagonal mass matrix were unable
to fully exploit the advantages of explicit time integration schemes. In recent years this
problem has been examined more thoroughly. Generally, the results are obtained by
using models based on the higher order FE, which could ensure the sufficient accuracy
of simulation results within acceptable limits. In [3] equidistant, Lobatto and Cheby-
shev nodal positions within a FE were investigated. The positioning of nodes has been
demonstrated to be important in case of higher-order FE. In [4] the general template for
retrieving characteristic matrices of n-node bar elements based on their reduced
diagonal representations has been proposed. In [5] two different formulations based on
the modified integration rule for the mass and stiffness matrices and on the averaged
mass matrix has been introduced. These techniques with reduced dispersion for linear
elastodynamics problems which enable reduce the numerical dispersion for linear FE
models has been investigated.

The approach presented in this work is based on synthesized finite elements (SFE).
Synthesis of elements is performed by minimizing the penalty-type target function,
where the design variables are modal shapes and mode frequencies of elements. The
target function evaluates the magnitude of the phase velocity error in terms of the
modal frequencies of the sample model consisting of SFE. Originally the method was
proposed in [6] for 1D case. In [7] it has been expanded to 2D case. There models
consisting of SFE preserve small phase velocity errors in meshes that are 3–5 times
rougher than the ones required for conventional lumped mass matrix models. The
novelty of this work is that only stiffness matrix of the model is computed by modal
synthesis, while the diagonal mass matrix remains unchanged. This enables to use
explicit integration schemes for wave simulation. The numerical results obtained
during 2D acoustic wave pulse simulation are analyzed.

2 Synthesis of the Finite Element

The finite element model of elastic media in which the propagating acoustic wave is
considered is derived from general structural dynamic equation system

M½ � €U
� �þ K½ � Uf g ¼ FðtÞf g ð1Þ

where M½ � and K½ � are mass and stiffness matrices, Uf g is the nodal displacement
vector and FðtÞf g is the excitation force vector. Modal frequencies (MF) and modal
shapes (MS) of the structure are obtained by solving the eigenvalue problem as

K½ � � x2 M½ �� �
yf g ¼ 0f g ð2Þ

where x is modal angular frequency and yf g is the modal shape.
For real and symmetric structural matrices M½ � and K½ � the solutions of (2) equation

are obtained as structural modes xi; yif g; i ¼ 1; . . .; n, where n - is degree of freedom of
the structure. The fundamental properties of structural modes provide derivation of K½ �
matrix in terms of normalized MS and MF as
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K½ � ¼ Y½ �T� ��1
diag x2

1;x
2
2; . . .;x

2
n

� �� �
Y½ ��1 ð3Þ

where Y½ � ¼ y1f g; y2f g; . . .; ynf g½ � is the matrix of MS.
Relationship (3) means that the stiffness matrix of an element, of a substructure or

of a structure can be generated by directly referring to their known or desired values of
MF and MS. The idea of our approach is to find such modes used for synthesizing an
element that the cumulative modal frequency error of the sample domain
(SD) assembled of synthesized elements would be as small as possible. The outline of
the synthesis procedure is presented in Fig. 1.

In this work structure assembled from conventional square-form elements with
lumped mass matrix is used as initial approximation element (IAE). During the opti-
mization loop, MS and MF of synthesized element (SE) were slightly modified in order
to ensure that the sample domain assembled of a certain number of synthesized ele-
ments provides as many as possible close-to-exact modes. The optimization loop in
Fig. 1 is used for the minimization of the target function W, which presents the
cumulative error of modal frequencies of the SD as

min ay½ �; ax½ �W�
X~N

i¼1

~xi � xi0

xi0

� 	2

ð4Þ

where ~x0; . . .; ~x~N

� �
are the MFs of the SD assembled of SE, x̂00; . . .; x̂0~N

� �
are

close-to-exact MFs of the SD, and faxg, ay½ � are the vector and matrix of MF and MS
correction coefficients correspondingly, used as optimization variables. The summation

Fig. 1. Outline of the synthesis procedure
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of errors is performed over ~N �N modal frequencies of the SD, where N is the number
of modes of the SD. The close-to exact modal frequencies have to be computed only
once, by using densely meshed FE model or in certain cases they are known
analytically.

The correction of modal shapes and modal frequencies is performed as

~Y
� � ¼ y11 � ay11; . . .; y1n � ay1n

� �
; . . .; yn1 � ayn1; . . .; ynn � aynn

� �� � ð5Þ

diag ~x2
1; . . .; ~x

2
n

� �� � ¼ diag x1 � ax1 ; . . .; xn � axn
� �� � ð6Þ

Each j-th term of i-th MS and i-th MF is multiplied by the corresponding value
taken from matrix ay½ � and vector axf g. Corrections are performed for all MSs with
exception of the rigid-body modal shapes, which correspond to zero modal frequencies.
However, for pairs of MS having the same MF only one MS is corrected, while the
other is derived from the first corrected MS. One may think that the result is dependent
on the selected size and shape of the SD, which is selected freely. However our
numerical experiments demonstrated that even the usage of SD of modest size enables
to obtain good results, as described in the next subsection. Generally, higher order of
the SE and large dimensionality of SD enables to construct a better synthesized ele-
ment. However, this leads to drastic increase of optimization variables. Practically, a
compromise has been sought between the necessary computational resource and the
quality of the synthesized element.

3 Minimization of Modal Frequency Errors

As a numerical example, the analysis of wave propagation in a 2D acoustic environ-
ment has been performed. A quadratic SE of 5 × 5 nodes has been constructed.
Matrices of the first order conventional FE with lumped mass matrix read as

Me½ � ¼ q � Se
4

I½ � ð7Þ

Ke½ � ¼ E � Se B½ �T B½ � ð8Þ

where E – Young’s modulus, q – mass density, Se – area of the element, I½ � and ½B� are
identity and strain matrices. Stiffness matrix KIA½ � of the initial approximation element
(IAE), computed by using (3) with modes obtained by solving eigenvalue problem (2)
for structure assembled of 16 × 16 conventional 2 × 2 nodes finite elements. Mass
matrix MIA½ � of IAE remains diagonal and is the same as the structural mass matrix
assembled of conventional elements. Synthesized element stiffness matrix reads as

KSE0� � ¼ ~Y
� �T
 ��1

diag ~x2
1; ~x

2
2; . . .; ~x

2
n

� �� �
~Y
� ��1 ð9Þ
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where ~Y
� �

and diag ~x2
1; ~x

2
2; . . .; ~x

2
n

� �� �
are the MS and MF obtained after element

synthesis, while constants q; E; Se have been assigned the value 1 for the synthesis.
The target function included the first 25 % of MF of the sample domain
(~N ¼ 0:25 � N). Close-to-exact MFs of SD used as reference values in the target
function have been obtained by solving eigenvalue problem (2) for the structure
meshed with 5 times smaller linear dimension of FE. Results of the synthesis in terms
of relative modal frequency errors as x̂i�xi0

xi0
are shown in Fig. 2.

From the results of Fig. 2 it can be seen that the synthesis process worked well.
First 25 % of MF of the model assembled of synthesized elements was very
close-to-exact as was required. The final value of the target function value wasP~N

i¼1
x̂i�xi0
xi0


 �2
� 1:2�5. Elements obtained by the synthesis procedure could be used

as a template

KSE
� � ¼ E � KSE0

� � ð10Þ

for constructing finite element stiffness matrices for all simulation problems of this kind
as a higher-order element stiffness matrix. Mass matrix of the model remains diagonal
and is the same as of the structure assembled of conventional elements.

4 Numerical Investigation with Application to 2D Acoustic
Wave Propagation

The numerical experiments have been carried out by investigating the wave propa-
gation in water, where 2D rectangular structure model of 0.32 m × 0.24 m was
assembled of conventional and synthesized elements using 0.5 mm finite element mesh

Fig. 2. Modal frequency errors of the sample domain assembled of 25 synthesized elements
with minimized cumulative error of 25 % of modal frequencies
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size (Fig. 3a). Physical constants were q ¼ 995 kg/m3 and E ¼ 2:2GPa, the phase
velocity of the wave is v ¼ ffiffiffiffiffiffiffiffiffi

E=q
p ¼ 1487m/s. The excitation pulse was a sine wave

multiplied by a Gaussian window:

u tð Þ ¼ e�aðt�bÞ2sinð2pftÞ ð11Þ

where a ¼ kaf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2 ln 0:1

ps

q
; b ¼ 2ps=3f ; ps is the number of periods, ka is the asymmetry

factor and f is the frequency [8]. Simulation was carried by simulating short period
pulse as ps ¼ 1:5 at excitation zone (Fig. 3b).

Pulse has been actuated for 4 ls at excitation zone and its propagation for 240 ls
has been simulated. Figure 4 shows the simulated B-Scan image, where black pattern
refers to the amplitude of the pulse along the data collection line at different time
moments.

a) 
b) 

Fig. 3. (a) Geometry of the finite element model (b) excitation pulse shape

)b)a

Fig. 4. B-scans of pulse propagation in model assembled of (a) conventional element;
(b) synthesized elements
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Analysis of the simulation results in Fig. 4 shows that when the pulse is simulated
using the model of conventional elements, the numerical distortions grow with time
and at the end of simulation the pulse is highly distorted, while in model of SE
distortion remains small. Dispersion analysis practically cannot be performed by
solving eigenvalue problem (2), because mass and stiffness matrices of the model have
size of 616161 × 616161. In order to estimate the character of the observed dispersion
the B-scan data have been converted from space-time domain into phase velocity -
frequency domain by using 2D Fourier transform. Obtained images of dispersion
curves are presented in Fig. 5 where phase velocity in the images at different fre-
quencies corresponds to the yellow pattern.

The comparison of dispersion curves of the models assembled of SE and CE leads
to the conclusion that in model of CE phase velocity is close to theoretical till–250 kHz
and at higher frequencies phase velocity inaccuracies grow rather quickly (Fig. 5a). On
the contrary, the model assembled of SE retains a good accuracy of phase velocity till–
700 kHz (Fig. 5b). This means that models assembled of synthesized elements can be
used to simulate the propagation of wave pulses of more than two times wider fre-
quency than the models assembled of conventional elements at the same mesh density.

5 Conclusions

The approach for the reduction of the numerical dispersion in two-dimensional model
has been proposed. Fifth order synthesized finite element obtained using modal syn-
thesis technique, where first quarter of mode frequencies of models assembled of
synthesized element are close to exact. 2D finite element model of water material has
been assembled of conventional and synthesized elements. By investigating driving
ultrasonic pulse, numerical dispersion has been compared for models assembled of
synthesized and conventional elements. Results show that in models of synthesized

a) b) 

Fig. 5. Dispersion curve of the FE model assembled of (a) conventional elements; (b) synthe-
sized elements (Color figure online)
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elements numerical dispersion is close to zero over more than two times wider fre-
quency range compared against the models assembled of conventional elements at the
same mesh density.
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