
A Case Study on Self-configuring Systems
in IoT Based on a Model-Driven

Prototyping Approach

Fabian Kneer(B) and Erik Kamsties

Dortmund University of Applied Sciences and Arts,
Emil-Figge-Str. 42, 44227 Dortmund, Germany

{fabian.kneer,erik.kamsties}@fh-dortmund.de
http://www.fh-dortmund.de/

Abstract. [Context and motivation] In the last years, the develop-
ment of the Internet of Things (IoT) with self-configuring systems (SCS)
became more important. Consequently, many different solutions have
been developed. [Question/problem] We observed a lack of common
benchmarks, in particular for the IoT domain to evaluate and compare
solutions. There are very few accessible cases (examples) for SCSs pub-
lished at all. [Principal ideas/results] We propose a case from the
IoT domain, smart cities in particular, which comprises of hardware and
software components. Starting point is a smart street lighting system
with communication between the lamps and passing cars. [Contribu-
tion] First, in this paper we present our initial results of running a case
study with a model-based prototyping framework on the smart street
light. The framework includes a software simulation of the street lamp
and the events from the passing cars. Second, an engineer can use the
case as a benchmark to compare several approaches in order to make a
more informed decision which approach to choose.

Keywords: Self-configuring systems · Case studies · Experimentation

1 Introduction

The Internet of Things (IoT) is a global infrastructure for the information soci-
ety, enabling advanced services by interconnecting (physical and virtual) things
based on existing and evolving interoperable information and communication
technologies [5]. A thing is an object of the physical world (physical things) or
the information world (virtual things), which is capable of being identified and
integrated into communication networks. A device is a piece of equipment with
the mandatory capabilities of communication and the optional capabilities of
sensing, actuation, data capture, data storage, and data processing. One key
concern of systems operating in the IoT is to dynamically adapt to changing
environments, due uncertainties during requirements-, design-, and run-time.

A considerable number of concepts for self-configuring systems (SCS) has
been developed. From a practitioner’s perspective, open source implementations
c© Springer International Publishing Switzerland 2016
G. Dregvaite and R. Damasevicius (Eds.): ICIST 2016, CCIS 639, pp. 732–741, 2016.
DOI: 10.1007/978-3-319-46254-7 59



A Case Study on Self-configuring Systems in IoT 733

of the MAPE feedback loop (IBM [1]) for prototyping purposes are missing.
This is a show-stopper in practice, as a practitioner would need to work through
research papers in order to build such a prototype. A researcher who is interested
in the comparison, extension and/or application of existing solutions to a new
domain is in a similar situation.

We suggested a prototyping and evaluation framework for self-adaptive sys-
tems in [3]. The goal of the framework is to ease the prototyping (and possibly
development) of self-configuring systems. For this purpose, the framework offers
implementations of selected approaches to SCS based on the MAPE loop (e.g.,
based on feature models as suggested by Pascual et al. [6]). Another goal of
the framework is to ease the evaluation of self-configuring systems, to allow for
instance benchmarks between different approaches. For this purpose, we devel-
oped a case study drawn from the smart city domain. The framework is able to
collect data on a subset of the metrics at runtime about overall quality, effort,
and cost.

In this paper, a academic case study for Smart Street Lighting will be pre-
sented as an example of a self-configuring system developed using the above-
mentioned prototyping framework. The case is based on the real world and is
transfered to a model world. In the area of IoT a simple representation of the
real world is needed as a base for a simulation to verify and test the requirements
and decide between the different used approaches for the implementation of a
self-configuring system.

The following section presents an overview of the prototyping framework.
Section 3 reports on the construction of the case study and the simulation.
Section 4 presents the results and the future work.

2 Overview of the Prototyping Framework

The framework bases on experiences we made with the implementation of a goal-
oriented (i*-based) approach to self-adaptive systems [2]. We developed a gen-
eralized architecture for prototyping SAS in the spirit of a software product-line
(SPL), by an analysis of commonalities and differences of approaches suggested
for SAS. We implemented a feature-orientated approach (Pascual et al. [6]) to
validate the initial architecture of the prototyping framework. The details of
the implementation, and first experiences are described in the remainder of this
section.

Implementation. The framework contains components to implement the dif-
ferent activities of the MAPE loop as well as further functions that are needed
to build and run an adaptive system.

Figure 1 shows the concept of the prototyping framework. Fundamentally, we
separate development time and runtime artifacts. The development time artifacts
represent additional aspects to be captured in the requirements phase. Runtime
artifacts are components required to build the SAS. To easy prototyping, some
runtime artifacts are generated from the development time artifacts.



734 F. Kneer and E. Kamsties

Fig. 1. Prototyping and evaluation framework

The prototyping framework provides a set of components from which can be
chosen to develop a self-adaptive system. At the time of writing it contains a
feature-oriented approach with utility functions to compute a configuration with
a genetic algorithm (see Pascual et al. [6]).

Generator. In order to ease the development of a prototype, a self-adaptive
system is partially generated. That is, during development time (see upper part
of Fig. 1), only the essential information for building the SAS is specified by the
user. When using the feature-oriented approach this is: indicators (variables of
the systems with a type), a feature model (different features of the systems and
variation points), ECA rules (indicator change event, boolean condition, change
action on a element, e.g. feature), utility function (table with utility values of
the different variations of the feature model).

Probes for an application and the whole self-configuring framework (with
integrated MAPE loop), see bottom part Fig. 1 can now be generated out of
a specification. The indicators are used to generate probes for an application.
These probes are used by the self-configuring framework to monitor the indica-
tors and check the related ECA rules. The ECA description is used to generate
the rules of the ECA rule engine. An application that includes the generated
probes can use the self-configuring systems to adapt the behavior to the chang-
ing context.

If the specification changes because new elements like indicators, ECA rules,
features or utility elements are added or elements are refined for example an ECA
rule change, only the generation process is re-triggered and the new prototype
can be used for the system which contains the probes. Further details about the
generator concept are given in [4].



A Case Study on Self-configuring Systems in IoT 735

3 Case Study

Domain. The Smart City domain is selected as an instantiation of the Internet
of Things. The Smart Street Lighting is selected as a subdomain to start with. It
is accessible to many readers, it is complex, and comprises many different facets.

Street lights become an important part of smart cities. The lights are
extended with new functions beyond the usual function of providing light to
a place: the lights are equipped with increasing computing power and commu-
nication capabilities like wireless connection, digital street signs, and sensors to
measure their environment.

An example for a smart light is provided by the company Illuminating
concepts1. They have designed a flexible wireless solution that is called Intel-
listreets, which includes a energy efficient lighting, audio, digital signage, and
more. Figure 2 shows the design of the solution. The light can communicate
with other systems and also with humans to help finding a way or send an emer-
gency calls. Also the audio and digital signage can be used for entertainment or
announcements.

Fig. 2. Intellistreets solution developed by Illumination concepts (See Footnote 1).

Further, more companies like Siemens2 are producing parking management
systems. The lights have sensors like distance and movement to detect parking

1 www.illuminatingconcepts.com.
2 www.siemens.com.

http://www.illuminatingconcepts.com/intellistreets/
http://www.siemens.com/press/en/presspicture/?press=/en/presspicture/innovationnews/2015/ig2015020009coen.htm&content[]=Corp


736 F. Kneer and E. Kamsties

Fig. 3. Smart parking systems developed by Siemens (See Footnote 3).

vehicles under a light. This information is used to inform driver who are search-
ing for a parking slot. Figure 3 shows the concept of the management system.
The information about a free or used parking slot is sent to the traffic control
center and also to parking services and apps. The car driver can be informed by
navigation systems, smart phones, or over the previously shown digital signage
of a smart street light.

Specification of the Smart Street Light case. The development artifacts
of the prototype are developed in a tree structure. The context is Smart City,
the system is Public Lighting, and the subsystem Smart Street Light. For the
Smart Street Light a Prototype Configuration is needed. This configuration con-
tains the development artifacts that are chosen for the prototype (e.g. feature
model, utility table, and event-condition-action rules (ECAs)). The artifacts are
described in a Software Requirements document.

The development artifacts are used by a Generator to produce source code
of a prototype.

In the remainder of the section, the development artifacts that describe the
self-configuration of the street lamp are shown. The artifacts are used to generate
parts of the self-configuration framework and the probes for the application.

Feature Model. Figure 4 shows the feature model for the street light are shown.
The feature model is modeled using the prototyping framework. The different
realization strategies are developed as variation points in the model.

The lamp can adapt its luminous color and illumination. The possible values
for these parameter are represented as alternative group (Xor-Group) in the
feature model. The possible colors are white, blue, and red. The illumination is
shown in percent and can variate between 0 %, 20 % and 100 %.



A Case Study on Self-configuring Systems in IoT 737

F
ig
.
4
.
F
ea

tu
re

M
o
d
el

o
f
a

P
u
b
li
c

S
tr

ee
t

L
ig

h
t.

(C
o
lo

r
fi
g
u
re

o
n
li
n
e)



738 F. Kneer and E. Kamsties

The abstract Sensors of a street light are Twilight to measure light, Distance
to measure if an object is under the light, Movement to react to moves near the
light and Hydro for weather information.

The lamp can choose between the following three different options to light
the street:

– Always On: is a error state that results in a street light with maximal illumi-
nation. (See constraints: Always On requires 100 )

– Timed Lighting : the light is on during a given time interval. This feature
needs a timer to react and activate the light (see constraints). This feature
can variate between Static and Dynamic mode. Static leads to a 100 % illu-
mination during the interval and dynamic reacts to movements by switching
between 20 % and 100 % illumination.

– Light-controlled Lighting : this feature requires a Movement and a Twilight
sensor. If the twilight sensor indicates a need for light, the light is put on.
Like the dynamic mode of the Timed Lighting feature, the light-controlled
feature reacts to the movement sensor by switching between 20 % and 100 %
illumination.

The next feature is Parking Space Assistant. This feature sends information
about the free parking spaces under the street light to connected systems like
navigation system and also Highlight Free Spaces with a blue luminous color.

The last feature is Ambulance Warning. If the lamp has an established con-
nection, it gets information about ambulances that pass the street light. The
lamp reacts and try to warn its environment by switching to a red luminous
color.

Indicators. The case study has status indicator for sensors of the systems,
e.g. movement sensor. A boolean value shows if the sensor works as expected or
deliver wrong values. In addition to the status indicators, the following indicators
are defined:

– ambulance shows if an ambulance will pass the street light.
– detectTwilight shows a change of the daylight.
– cars shows the number of parking cars under the street light.
– searchingCar shows if a driver near the street light search for a free parking

space.
– detectMovement shows if a person or car moves near the street light.

The next three indicators represent the time values of the street light. These
are the current system time (time), a parameter when the street light should
be turned on (turnOnTime), and a parameter when the street light should be
turned off (turnOffTime).

Simulation. Both the application and the framework are generated as a console
application and they need a GUI. Figure 5 shows the GUI for the application.
On the left side of the screenshot, the software simulation of the previously pre-
sented street light is shown. On the right side, the configurable values are shown.



A Case Study on Self-configuring Systems in IoT 739

The first values represent the time indicators (currentTime, turnOffTime, and
turnOnTime). The next values represent the status of the sensors. A defect sen-
sor is colored red. In this example screen-shot, all sensors are working correctly,
which results in green colored sensors. The two buttons with the image of vehi-
cles, can be used to start a moving vehicle (ambulance in the example screen
shot). The last configurable values are parking cars. Next to the parking symbol
are the buttons + and −. Up to three cars can be added to the parking spaces
under the street light.

The progress bar and the Go button are used to represent and start a sce-
nario. A scenario represents a day of the street light with random events, which
are produced during this interval.

Fig. 5. GUI of the simulated Street Light. (Color figure online)

Figure 6 shows a screenshot of the prototypical GUI for the self-configuring
street light. The left table represents the feature model. The selected features in
the current configuration are colored green and the deselected are colored gray.
The right table is the utility table. The rows represent a utility element with the
utility values and the resource costs.

In the given example, the street light notices a passing ambulance and
switches to a configuration with a red light color and maximum illumination.

4 Results and Conclusion

This paper presented an academic case study in which a self-configuring system
- a smart street light - was developed using a prototyping framework (developed
by the authors in previous work). The case was used to give an impression of
the required effort, we provide programming effort data. The development has
taken about 3 man-week’s and 1500 LoC:



740 F. Kneer and E. Kamsties

Fig. 6. GUI of the Feature-based Prototype. (Color figure online)

– ECA’s are used for monitoring the system (400 LoC 3–4 Days)
– Feature model is used as requirements model and representation of alternative

realization strategies (600 LoC 3–5 days)
– Utility Table and - function are used to compute a configuration (200 LoC 3

Days)
– A genetic algorithm is used to choose the “best” configuration (100 LoC 2

Days)
– Configuration example (150 LoC 1/2 day)
– Simple Specification (1 textual requirement and feature model with 19 fea-

tures) (200 LoC 1/2 day)

The case itself can be used by a requirements engineer to validate approaches
from the area of self-configuration that are integrated in the framework. The
case is taken from a subdomain of the smart city domain as an instantiation of
the Internet of Things. The case is scalable and can be extended by additional
systems or features of the street light, for example, more lights or a public utility
system that is connected to the street lights. These extensions could lead to more
complex case studies.

The framework for prototyping and evaluation can be used in a number of
ways on the given case study:

– to understand a particular SCS approach,
– to optimize the application of an approach, or
– to compare approaches in a particular target environment.

At the time of writing we have developed a software simulation and a proto-
type of a hardware street light. To enlarge the case, a RC-car is under develop-
ment, which enriches for instance the parking scenario. Also part of our future



A Case Study on Self-configuring Systems in IoT 741

work is to build a small street model with up to five street lights, which can be
connected to a virtual simulation of a smart city.

It is planed to make the framework and the case study open source and
publicly available using GitHub, when it has passed a first validation.

References

1. An architectural blueprint for autonomic computing. Technical report, IBM (2005)
2. Kamsties, E., Kneer, F., Voelter, M., Igel, B., Kolb, B.: Feedback-aware require-

ments documents for smart devices. In: Salinesi, C., Weerd, I. (eds.) REFSQ
2014. LNCS, vol. 8396, pp. 119–134. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-05843-6 10

3. Kneer, F., Kamsties, E.: A framework for prototyping, evaluating self-adaptive
systems-a research preview. In: Bjarnason, E. et al. (ed.) REFSQ Workshops, CEUR
Workshop Proceedings,vol.1564. CEUR-WS.org (2016)

4. Kneer, F., Kamsties, E.: Model-based generation of a requirements monitor. In:
Joint Proceedings of REFSQ- Workshops, Research Method Track, and Poster Track
co-located with the 21st International Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ 2015), Essen, Germany, pp. 156–170, 23
March 2015

5. Overview of the Internet of things. In: IUT-T Y.2060 (2012)
6. Pascual, G.G., Pinto, M., Fuentes, L.: Run-time adaptation of mobile applica-

tions using genetic algorithms. In: Proceedings of the 8th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS, San
Francisco, CA, USA, pp. 73–82, 20–21 May 2013

http://dx.doi.org/10.1007/978-3-319-05843-6_10
http://dx.doi.org/10.1007/978-3-319-05843-6_10

	A Case Study on Self-configuring Systems in IoT Based on a Model-Driven Prototyping Approach
	1 Introduction
	2 Overview of the Prototyping Framework
	3 Case Study
	4 Results and Conclusion
	References


