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Abstract. Smart cities will provide enhanced monitoring of crucial infras-
tructure resources, connectivity to users and advanced information services.
Thanks to gathered data the quality of traditional services and infrastructures
will be improved, and further services can emerge, such as novel urban trans-
portation services. This paper devises a solution that enforces the cooperation
between mobile devices and cloud infrastructures with the aim to bring public
transportation where the people need it. Thanks to smart phones, sensing user
locations, a request for transportation vehicles can be sent to a cloud-based
intelligence, which filters and serves requests according to available transport
routes, and their adaptation to user needs. Then, the available transportation
vehicles will be timely alerted to operate accordingly.
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1 Introduction

We are observing a growing interest in the area of Smart Cities and services providing
citizens with means to better organise daily life, and Smart Mobility is one of the most
promising topics concerning future city environments (Benevolo et al. 2016). The
ultimate goal is providing enhanced urban services, by means of information tech-
nology, to obtain a positive impact on the quality of life in urban areas. Major efforts
will be devoted to the monitoring of critical infrastructures, the interconnection of
physical and social infrastructures, as well as supports to assist physical infrastructures
and, of course, citizens (Batty et al. 2012; Chourabi et al. 2012). This paper analyses
the scenario of public transportation in urban areas and provides a solution to organise
the flow of publicly accessed vehicles according to user requests, i.e. on-demand.
Moreover, connectivity to users is enhanced according to the monitored transportation
needs. Surely, the communication infrastructure is crucial to ensure the right timing in
the planning of routes for the vehicles. The devised solution paves the way for future
autonomous unmanned vehicles.

In such a scenario, a user request for a service aiming to find or bring a vehicle
closer to her/him has to be taken into account by a defined workflow, i.e. a standard
flow of execution for the activities related to the offered service (Fornaia et al. 2015).
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This means executing on the server-side the needed checks for the request at hand,
finding the available vehicles, planning the appropriate route for the vehicle, and
alerting the requesting users, vehicles and passengers for the adaptation. Of course,
route changes will take place only when disruption is minimal, i.e. the other planned
stops are satisfied as well as the timing constraints. In a smart environment, such a
workflow takes advantage of cloud computing resources and an appropriate processing
engine (Erl 2008; Wozniak et al. 2015).

By resorting to cloud-computing, transparent access e.g. to shared services, hard-
ware and data is made possible, thus enabling a high level of availability and possibly
performances. However, a cloud-based infrastructure can bring about delays for the
virtual machine (VM) to be started, services to be allocated, etc. Primary goals for
enterprises handling the said urban scenario of on-demand vehicles include: (i) having
the minimum amount of disruption to paths of running vehicles, (ii) providing scala-
bility to handle a variable number of requests with high availability, and (iii) minimise
the potential delays.

The rest of this paper is structured as follows. Section 2 describes the smart city
scenario that we have tackled. Section 3 describes the proposed software components
that automatically provide workflow management, and enhance services with moni-
toring and dependability. Section 4 introduces our strategy for the prediction of trans-
port needs. Section 5 discusses the related work, and Sect. 6 draws our conclusions.

2 Analysed Smart City Transportation Scenario

The proposed novel transport service would be an enhanced bus service, for which
seats can be reserved, and the a priori established course can be slightly changed
according to user requests and to other configurable settings. Such a bus service would
allow citizens to cooperate with the institutions to make the urban transportation
properly function, hence users would need to communicate their position and the
desired destination for the bus service, as well as the useful timeframe for pick up. The
services on a cloud computing system will then reply with a travel solution that satisfies
user requests, indicating the best rendezvous point for the user to catch the bus.

In our model, a rendezvous point is a possible bus stop, one among many known by
the transport operator, that is activated on-demand according to actual user requests,
hence avoiding the need to serve bus stops when not strictly required, optimising
vehicles travel cycles, and reducing energy consumption and CO2 emissions.

Figure 1 shows three possible routes connecting the Itako and Bando cities of the
Ibaraki Prefecture, in the Japanese region of Kanto. By sensing actual user requests, the
transport operator can determine in advance which of the six potential rendezvous
points depicted (two for Bando and one for each of the other cities) will be served,
hence planning the course to follow. User requests are gathered before the bus starts
going and during its journey, then a server-side component would notify the bus drivers
when it would be possible for the bus to change the route in order to serve requested
rendezvous points.
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Choosing the right rendezvous points to satisfy user requests is an important
concern: the server-side planning component has to properly manage the trade off
between selecting the one nearest to the requesting user and modifying the established
bus schedule (even on-the-fly). In Sect. 4 we will see how this schedule management
can be assisted by an intelligent system able to predict future transport service requests
in a given location.

The proposed solution goes beyond the urban transport scenario, i.e. other smart
facilities can take advantage of the said data. The number of citizens wishing to use a
transport service would be known for many locations while time goes on during the
day. Then, a possible strategy, which can benefit mobile service providers, such as
telco operators, is to take advantage of data representing user locations to estimate the
mobile cell occupancy and operate needed counteractions.

Figure 2 shows an example of a simplified workflow, dubbed urban on-demand
transportation, whereby citizens are able to actively request means of transportation to
pass by a suggested place, in a given time-frame, as needed. On the server-side, once a
user request has been received, a workflow is available to execute several services
(activities), each corresponding to a step that has to be performed. In our reference
model for the software system assisting such steps we will have one or more client
applications enabling the user to submit a request, and wait for a reply. Hence, e.g. the
ask transport vehicle step could be performed using a dedicated smartphone app that
lets the user send detailed data such as: GPS position, desired time-frame for pick up,
number of passengers.

Services on the server side are processes running, or started, according to the
indication given by the workflow description, hence e.g. receive requests is the first
step of an ad-hoc workflow, and is a process listening for incoming requests, residing
inside a persistent web service, and compute travel solutions is a process started as a
second step of the workflow once the previous step has been performed, etc. Since each
service needed for a workflow completion in general can have its own preconditions,
data and processing requirements, then each service should be handled ad-hoc to
provide a proper quality of service. Let us suppose that compute travel solutions is a

Fig. 1. Adapting routes in a transportation scenario
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CPU-bound process whose execution time has to be guaranteed, because, e.g. it could
involve several scheduling decisions and transport combinations, starting from the
temporal and location request given by users, aiming to provide the best solution for
the users while reducing schedule changes. Instead, another service could simply
provide immutable stored documents. Then, handling requests that trigger service
execution requires the provisioning of ad-hoc computing resources to ensure the quality
of service.

In a wider smart city scenario, we can consider the transport concern as one of the
possible services that a smart city environment can offer, ranging from a
consumption-aware city lighting management to the coordination of rescue interven-
tions in case of urban issues. Therefore, to properly support the execution and inte-
gration of different smart city processes a proper infrastructure is needed.

3 Workflow Management System

A smart city process can be formalised by means of a workflow description and given
to a workflow engine that timely starts the composing services in the desired order (Erl
2008; Polap et al. 2015) over a cloud infrastructure. Deploying and executing work-
flows on a cloud calls for a software architecture providing support for deploying,
executing, and monitoring services, while minimising resource waste and standard
delays affecting operations typical of this infrastructure (i.e. VM instantiations).

In the scenario depicted above (see Fig. 2), each workflow activity needs a dedi-
cated description to allow proper resource allocations inside the cloud. Table 1 pro-
vides each activity with such additional data.

In our solution, new workflow instances are started by a request coming from a
(see the following section) and then a finds

the related workflow description and prepares resources for the execution of the first
workflow activity, e.g. compute travel solutions, starting a dedicated VM with large
hardware flavor configuration, where a flavour is a set of hardware characteristics for a

Fig. 2. An example of workflow urban on-demand transportation on a distributed system
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VM (Jackson 2012). Table 1 shows that each activity is characterised by a start and an
end status, together with a description of the cloud resource type: the start status of a
service environment (VM), such as already active, waiting for new process submissions
(on); to be created and then turned on (off); in a standby state, reducing resource
consumption and response time by avoiding the creation of a VM. If we specify that
dedicated resources are needed, we will assign a separate VM for task execution, while
for shared resources (useful e.g. to handle simple tasks like querying or updating a
database or retrieving a document from the object storage) we run a process inside a
shared VM. Web applications waiting for user requests (receive requests), and then
triggering an actual workflow instantiation are not executed on a cloud.

3.1 Software Infrastructure

In order to support the features outlined above, we propose appropriate software
components that enhance services and provide: (i) monitoring of workflow services,
(ii) resource management, (iii) high availability.

Figure 3 shows how some of our components cooperate.
collects the user requests, determining whether to promptly accept them or not,
according to the infrastructure load state. As any other scheduler, it manages a list
of pending requests, using priority policies to determine their order, and interacts
with other three components: and

is responsible for the AAA service (Authentication, Authori-
sation, Accounting) related to user requests and will be asked to check user privileges
and roles. Together with the number of requests previously accepted and completed for
this user, it determines whether to lower the request priority.
provides a high level representation of cloud resource states, holds the scheduling
outcomes, and let us know whether a given resource is available in a certain time frame.

handles the descriptions of the workflow recorded inside the
and is responsible for workflow instantiation and the

monitoring of the completion of each inner activity for the requested workflow. It
interacts with the to ask for the execution on the cloud of the
services implementing each activity.

Table 1. Characterisation of server side activities for the urban on-demand transportation
workflow for cloud resource management

Activity name Start, end status Resource type

Receive requests On, on No cloud
Compute travel solutions Off, off Dedicated, large VM
Process travel selection Off, off Dedicated, medium VM
Find driver Standby, standby Shared, small VM
Receive driver confirm Standby, standby Shared, small VM
Update travel schedules Standby, standby Shared, medium VM
Process travel payment Off, off Dedicated, medium VM
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Cloud Manager is a Facade for cloud resources, hence providing the means for
executing services inside the cloud infrastructure, which is actually managed by a cloud
middleware, such as e.g. OpenStack1. A gathers data on the
completion time of each activity, then accounting information associated with the
requesting user will be updated.

3.2 Flow of Operations and Use Case

Figure 3 shows the interactions between the components of the workflow management
system for the completion of a workflow execution request. Using, for example, a web
interface, the user can submit (either explicitly or not) an instantiation request of a
specified workflow registered inside the management system.

This request arrives to that using the information
coming from determines whether to
accept or reject the workflow execution request. It will then ask the

for the description of the requested workflow, providing the required
services, resources and the estimated completion time for each of the inner activity.

will actually receive the instantiation request of a specified
workflow, and starting from the first activity it will be responsible for monitoring the
execution state of each activity within the workflow. interacts
with the to request the instantiation of the cloud services needed by
the current activity, according to the workflow description. We contextualize the new
VM by loading a text file containing the activity information to which the VM is related
to. The most important information required is the activityID, that the VM uses to
notify the activity completion to as depicted in Fig. 3. In this
way, is informed on the termination of a specific activity of the

Fig. 3. Client requests served by a web server and a cloud-server

1 www.openstack.org.
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workflow, and can proceed with the destruction of the dedicated VM (because end
state = off), asking also to delete it. The
can then pass to the next activity described inside the workflow, and so on, until the
workflow ends.

4 The WRNN Transport Request Predictor

The proposed management system takes care of the smart urban transport services in
terms of number of passengers requesting the service in a certain location or ren-
dezvous point in order to perfect seats allocation strategies and bus routes. In this
section we present a module, called aiming at predicting
the future load of the proposed services in terms of number of passenger requests in a
certain location. Therefore, the number of requests to be serviced in the future can be
easily computed. Prediction is based on the time series of requests, that can be observed
and collected by the said management system during workflow execution. By con-
sidering the future expected load a fine-tuned management of human and transport
resources can be achieved, hence avoiding both over provisioning and overloading.
Without a prediction system, resources are usually managed by considering average
values which can be computed over wide-ranging sets, hence are not appropriate for
ensuring high quality of the service (Wozniak et al. 2016; Nowicki et al. 2016).

Generally, the benefits of such strategies decrease with the load increase. Moreover,
when the amount of passengers overcomes available vehicles, passengers remain
unserviced or suffer delays. However, since the amount of required resources (e.g.
drivers, vehicles, rendezvous points, etc.) is unknown in advance, this often causes
over-provisioning, with negative effects on management and the related cost.

Our experience in the field of neural networks points us towards a novel neural
architecture called Wavelet Recurrent Neural Network (WRNN) (Napoli et al. 2014;
Napoli et al. 2015). This architecture makes use of the wavelet analysis of a recurrent
neural network topology. It has been shown that WRNNs are able to both predict the
future evolution of a time series and perform the inverse wavelet transform in a similar
way with respect to the Second Generation Wavelet Transform. A WRNN is the basis
of our proposed Request Predictor (Napoli et al. 2016). This component predicts over
time the amount of incoming passengers and therefore the service workload. The
predictions are then used by the management system to allocate vehicles, drivers or
other resources.

The predictor is used to model the number of incoming service requests in terms of
number of passengers in a certain rendezvous point, and on the other hand it can be
used to estimate when the transport will be available to service new passengers.
Moreover, the module here presented is able to specialise a neural network to make
predictions related to each rendezvous point (see Fig. 4). By specialising a neural
network for each point it is possible to obtain a set of predictions that precisely map the
status of the smart city-oriented transport services. Doing so it is then possible to
provide the system manager with an early alert regarding the occupancy and urgency of
several transport lines in order to better schedule and plan the service, allocate new
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vehicles, recall available drivers in service, as well as free resources when unneeded.
The WRNN predictor operates with the time series indicating the passenger number at
each rendezvous point over time. Firstly, the WRNN predictor transforms the time
series in the wavelet domain.

The wavelet transform permits us to reduce data redundancies and obtain a rep-
resentation that can express the intrinsic structure far more precisely than traditional
analysis methods (e.g. Fourier transform). While the wavelet analysis exposes the
time-frequency signature of the time series on different scales, the WRNN topology is
the perfect complement to model the complexity of non-linear data correlation and
perform data prediction on different scales. Thereby, a relatively accurate forecast of
the passenger number can be achieved even when load peaks arise. The estimated result
is fundamental for a management service that performs human and mechanical
resources pre-allocation. The precision of our estimates allows just the right amount of
resources to be used avoiding over provisioning. More details on WRNN architecture
can be found in (Bonanno et al. 2012; Capizzi et al. 2012; Napoli et al. 2016).

In this paper, we have adopted the Biorthogonal wavelet decomposition (this kind
of wavelet family is fully described in (Mallat 2009)), for which symmetrical
decomposition and exact reconstruction are possible with finite impulse response
(FIR) filters (Rabiner and Gold 1975). The transformed data are fed to the WRNN (see
(Williams 1989; Mandic and Chambers 2001)).

The proposed WRNN consists of a Recurrent Neural Network architecture an input
layer of 7 neurons, two hidden layers of 8 neurons with a radial basis activation function,
a linear output layer with one linear neuron, and two delayed input units as well as two
delayed feedback units from the output (see Fig. 5). The neural network is fed with the
data constituted by time steps of a time series in the wavelet domain (Napoli et al. 2010;
Bonanno et al. 2014a, b) representing the number of passengers requesting a transport
services in a given location. Using a discrete time index τwe can call qμ(τ) the number of
passengers at a time τ for a certain rendezvous point μ. By applying the wavelet
transform to the time series qμ(τ) we obtain the related representation in the wavelet
space.

Fig. 4. The adopted WRNN predictor models and predicts the future trends regarding the
number of passenger waiting on a rendezvous point. A predictor is specialised for one
rendezvous point, hence a set of predictors is used.
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ql sð Þ!Ŵ qla6 sð Þ; qld6 sð Þ; qld5 sð Þ; qld4 sð Þ; qld3 sð Þ; qld2 sð Þ; qld1 sð Þ
h i

ð1Þ

Since we have used a 5 level transform, we have defined ql(τ) as shown in Eq. 1,
where the arrow represent the transform operation, Ŵ represents the biorthogonal
wavelet decomposition and the resulting vectors have the component values on the
different decomposition scales (from scale 1 to scale 6, where the letter d indicates the
wavelet coefficients and a6 the residuals on the most gross scale).

For reasons related to the noise signature we were not interested in the last com-
ponent of the transformed series, therefore we had an input vector xμ(τ) in the form
shown in Eq. 2.

xl sð Þ ¼ qla6 sð Þ; qld6 sð Þ; qld5 sð Þ; qld4 sð Þ; qld3 sð Þ; qld2 sð Þ; qld1 sð Þ
h i

ð2Þ

The overall input set, considering N time steps, can be then represented as a N × 7
matrix where the i-th row represents the i-th time step. Each row of this dataset is given
as input value to the 7 input neurons of the proposed WRNN. The properties of this
network make it possible, starting from an input at a time step sn, to predict the number
of requests and throughput at a time step τn + r.

~xl snþ rð Þ ¼ N̂l x
l snð Þ½ � ð3Þ

In this way, the WRNN acts like a function N̂l as defined by Eq. 3, where r is the
number of time steps of forecast in the future, and the tilde on the symbol x̂ indicates
that it is a prediction instead of a measurement. The number r is not specified in the
equation since it depends on the sampling frequency of the input and output time series.
In our work, the data had a sampling period of 10 min, while we predicted the number
of passengers 4 h ahead, therefore with r = 24. To model the time series and then to
predict their future evolution the neural network is firstly trained with the historical
time series, several training epochs are interleaved with the related supervised pruning

Fig. 5. Devised neural network. Delays and feedback are obtained by using the relative delay
lines and operators (D).

Enhancing City Transportation Services Using Cloud Support 703



procedure. When the process in concluded, a network starts to provide forecasts related
to a specific service for which it was trained. By collecting each service forecast we
obtain a complete map ~S snþ 24ð Þ, predicted beforehand, as defined by Eq. 4.

~S snþ 24ð Þ ¼ ~xl snþ 24ð Þ8lf g: ð4Þ

The results of the WRNN predictor are shown in Fig. 6. The predictor was able to
propose an early estimate of the future number of passengers requesting a transport
services in a certain rendezvous point. The maximum error occurring in the prediction
is two passengers with respect to the effectively measured number. In our experiments
the WRNN predictor has been used in order to schedule transportation means and
manage an optimized planning of the related human and mechanical resources, and
such operations are made possible thanks to predicted number of passengers, due to
their availability in advance. Moreover, since each rendezvous point has been asso-
ciated to a WRNN predictor, the proposed solution is general for any number and kind
of transport services as well as for integrated transportation services. Finally due to the
cloud technology, the system could be expanded and scaled on demand.

Fig. 6. From left to right and top to bottom: the most gross scales of the wavelet decomposition
of the historical time series of passengers for a selected rendezvous point; the predicted and
measured throughput, the errors on the throughput predictions, the predicted and measured
number of requests, the errors on the requests predictions. The gray dashed lines represent the
effective measurements, the overlapping black lines represent the predictions made by the
WRNN predictors.
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5 Related Works

Future urban environments will gather data from several cheap sensors, using
cross-correlation and analytical models to mine valuable and reliable information from
a lot of noisy and unreliable heterogeneous sensors. In (Puliafito et al. 2015) authors
propose a hierarchical architecture to cope with the heterogeneous nature of sensed data
in a World Wide Sensor Network scenario, using a two level data abstraction to
uniform exposed information. While this work is focused on how data will have to be
collected and organised, our work describes how to drive Smart City processes, that use
sensed data, on a Cloud infrastructure, specifically to enhance the transportation
service.

Other contributions have covered the interaction between sensors and Cloud ser-
vices. In (Fazio et al. 2012) authors propose an architecture to assist the integration
between IoT devices and federated Cloud providers, focussing on the security concerns
that this integration involves, providing an IoT Cloud-based architecture that is able to
support self-identification and secure data transfer from self-configuring devices to
Cloud providers.

In (Liebig et al. 2016) the authors present a system for individual trip planning that
incorporates the current traffic state, gathered by a sensor network positioned in the city
environment, and future traffic condition, that is provided by a spatio-temporal random
field model leveraging sensed data. They also use a Gaussian process regression to
estimate traffic flow in areas with low sensor coverage. This approach not only differs
from ours in the model they used to achieve predictions, but also in the motivations and
the service point of view. In their approach it is the final user that will adapt his/her trip
plan to the one suggested by the proposed system. In our approach it is instead the city
environment, i.e. the devised city transportation service, that adapts itself to user
requests. Therefore, where they have streets and city points that users have to avoid,
according to current and future traffic conditions, we have rendezvous-points, i.e. city
locations, that the transportation service vehicles have to reach to serve user requests.
On the other hand, our approach can be supported by the service they proposed to make
the bus drivers able to choose, among different possibilities, the fastest trip to reach the
next rendezvous point to be served.

In (Zhu et al. 2016) the authors propose a public vehicle (PV) system that uses a
cloud infrastructure to devise scheduling strategies and paths for PVs based on the
demands of passengers. PVs are electric vehicles that can transport more passengers
than a taxi and do not have stops or routes like a bus service. The service they propose
is different from ours, since we have predefined bus stops (rendezvous-points) which
are activated on demand according to user requests, hence adapting the overall trip
schedule for the transportation vehicles. Furthermore, in contrast to our approach, they
do not make use of a prediction component to assist their scheduling decisions, relying
instead on a set of constraint based algorithms to compute the best solution to satisfy
user requests.

In (Guitart et al. 2009) an extensive survey of the literature on quality of service,
availability and performance for distributed applications has been given. All the
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approaches in (Guitart et al. 2009) are not intended to be used in combination with
cloud resources. Hence, further support is needed as shown in the sections above.

In (Zhang and Qi 2005) the authors use pre-processing stages in order to feed
filtered data to neural networks to model time series with both seasonal and trend
patterns. Hybrid models are widely used in the literature in order to model phenomena
and obtain forecasting software systems for a wide range of purposes, such as e.g.
hydro-geological time series and the related risk assessment (Jain and Kumar 2007;
Lohani et al. 2012). Other kinds of neural network related approaches have been
developed for traffic prediction, e.g. basing on a flexible neural tree and particle swarm
optimisation algorithm (Chen et al. 2012).

The novelty of the presented work lies on the pre-processing of the data that, in this
system, are transformed to the wavelet domain before they are given to the neural
network. Moreover, the neural network itself is able to perform the inverse transform:
that is a non trivial feature since it permits us to encapsulate it in a module that can be
embedded in more complex systems. In this way the neural architecture is not anymore
a stand-alone and separated component, but can be integrated in a software system to
internally cooperate with the other components.

6 Conclusions

This paper has proposed a software architecture that gives support when having to
deploy, execute, and monitor services that execute on a cloud and according to
workflows. A smart city scenario has been put forward for enhanced intelligent services
that are related to public transport and can gather useful data to improve the com-
munication infrastructure. The server-side computing architecture, while being inde-
pendent of specific workflows, has shown to be flexible enough to handle mobile user
requests and properly govern the life-time of services executing on a cloud. Moreover,
our suggested components realise all the interconnection work needed to let a workflow
execute on a cloud infrastructure.

In our solution, a component has been specifically devised to plan the needed
transport service ahead of time by modelling incoming requests and analysing them in
order to remove noise, while characterising repetitive trends. Then, we can start oper-
ations, such as planning vehicles routes and driver shifts, avoiding over-provisioning.
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