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Abstract. A single-channel queueing model with finite buffer capacity, Poisson
arrival stream and generally distributed processing times is considered. After
each busy period the service station is being switched off but this operation
requires a randomly distributed closedown time. Similarly, after the idle time,
the first service in a new busy period is preceded by a random setup time, during
which the processing is still suspended and the server achieves full readiness for
the service process. A system of integral equations for transient conditional
queueing delay distribution is derived, by using the idea of embedded Markov
chain and the formula of total probability. The solution of the corresponding
system written for Laplace transforms is obtained via the linear algebraic
technique. Numerical examples are attached as well.

Keywords: Closedown time � Finite buffer � Queueing delay � Setup time �
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1 Introduction and Preliminaries

As it is commonly known, different-type real problems occurring in telecommunication
and computer networks, in manufacturing processes, in transport and logistics, tracking
systems and similar can be efficiently modelled by using appropriate queueing models
(e.g. see [18, 19]). Systems with one or more mechanisms limiting the access to the
service station seem to be of special importance. One of such mechanisms are server
setup and closedown times, occurring at the beginning and at the end of each busy
period of the system, respectively. Indeed, due to the energy saving strategy, the server
is being switched off when there are no customers present, and is being switched on
when a job arrives into the empty system. Switching off requires a time, usually
random, as, similarly, switching on during which the service station achieves full
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readiness for processing. In the paper we deal with a single-channel queueing model
with finite buffer capacity and the service process organized according to the FIFO
service discipline, in which generally distributed closedown and setup times are
implemented. The considered model has potential practical applications, e.g. in SVC
(switched virtual connection) modelling, where the setup time corresponds to the time
for building a new SVC by using the signalling procedure, and the closedown time
stands for the deactivation timer during which the SVC resource (as, e.g. routing
information or the bandwidth frequency) is reserved anticipating more packets from the
same flow (see [12]).

One of the crucial operating characteristics in each queueing model is queueing
delay, i.e. the time the potentially entering customer needs to wait until the start its
processing. In the paper, using the technique based on the idea of embedded Markov
chain, the total probability law and linear algebra, we obtain a compact-form repre-
sentation for the LT (=Laplace transform) of the queueing delay conditional CDF
(=cumulative distribution function).

As it is easy to note, in the literature most results for stochastic features of
different-kind queueing systems are obtained for the stationary case, when the system is
stable. However, transient (time-dependent) analysis is often desired or even necessary,
e.g. due to high volatility of the arrival process (as it can be observed in the TCP/IP
traffic) or in the case of large traffic in distributed systems [21, 22] or server break-
downs, when the stochastic stabilization of the system is longer or more difficult.

In [3] the M/G/1-type vacation queueing system with server breakdowns, setup and
closedown times, in which the length of the vacation period is controlled either by the
number of arrivals during the vacation period, or by a timer is investigated. The study
on a batch-arrival queue with multiple vacation policy and server setup and closedown
times in the stationary case can be found in [1]. Results for models with group arrivals
are also presented in [4, 10, 20]. In [11] a discrete-time model is analyzed, where the
mixed-type mechanism of a multiple vacation policy combined with setup/closedown
periods is implemented. The case of a multi-server queue is investigated in [2].
Transient results for infinite-buffer systems with server setup times can be found in
[5, 6]. Analytical solution for time-dependent queue-size distribution in the queueing
model with finite buffer capacity and machine setup and closedown times is derived in
[7] (similar technique is also applied in [8]). Evolutionary algorithms are used in [13,
14] for the analysis of a finite-buffer queue with temporary unavailable server. In
various data management systems (see [15]) we can find applications of queueing
systems to enable faster requests management and therefore improved data mining (see
e.g. [16, 17]).

The remaining part of the article is organized as follows. In the next Sect. 2 we give
a precise mathematical description of the considered queueing model. In Sect. 3 we
derive a system of integral equations for conditional CDF of transient queueing delay.
In Sect. 4 we obtain the corresponding system for LTs and write it in a specific form.
Section 5 contains main result: the closed-form representation for the LT of conditional
CDF of queueing delay and the last Sect. 7 gives a short conclusion.
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2 System Description

In the paper we deal with a single-server queueing model with a reliable service station
and finite capacity of the buffer for jobs waiting for service. Assume that the arrival
process of jobs (packets, customers, calls, etc.) is described by a Poisson process with
intensity k; while the processing time of each one is generally distributed random
variable with a CDF F �ð Þ: A number of jobs simultaneously present in the system is
bounded by a non-random value N; i.e. we have a buffer with N � 1 places and one
place in service station. Initially, at time t ¼ 0; a buffer may contain a number of jobs
waiting for service. Every time when the system becomes empty (a service of a job
finishes and there are no waiting jobs in the buffer), the service station initializes a
randomly distributed closedown time with a CDF C �ð Þ: If at the completion epoch of a
closedown time a buffer contains at least one job waiting for service, the processing
begins immediately, otherwise the server waits in the standby mode for the first arrival.
The first processing after the idle period is always preceded by a setup time, duration of
which is a random variable with a CDF S �ð Þ: Moreover, if a job enters the system
during the closedown time, after its completion epoch the server immediately begins
the setup time and next the processing. As it was mentioned in the previous section, the
closedown time is needed for a server to switch off according to energy saving strategy.
Similarly, the setup time is needed for a server to achieve full operational readiness
after the idle period. Successive jobs are being processed according to the FIFO service
discipline. Moreover, if the arriving job find the buffer being saturated, it is lost. We
assume that the delay of the customer being lost equals 0.

3 Integral Equations for Conditional CDF of Queueing Delay

Let v tð Þ be the (virtual) queueing delay at time t; i.e. the waiting time of a job entering
the system exactly at time t: Introduce the conditional CDF of v tð Þ in the following
way:

Vn t; xð Þ ¼def Pfv tð Þ\x jX 0ð Þ ¼ ng; 0� n�N; t[ 0; x[ 0; ð1Þ

where X 0ð Þ denotes the number of jobs present in the system at the opening.
Assume, firstly, that the system is empty at the start epoch t ¼ 0. In such a case we

treat this epoch as a time at which the last processing completes in a busy period, so, in
consequence, a closedown time begins. In fact, one can distinguish eight different
mutually excluding possibilities:

1. the first jobs arrives during the closedown time, and both the closedown and setup
times finishes before time t (denote this random event by E1);

2. the first job enters during the closedown time but that period completes after t (E2Þ;
3. the first job occurs during the closedown time and the time t is “inside” the fol-

lowing setup time (E3Þ;
4. the first job arrives after the closedown time but before t, and the setup time finishes

before t (E4Þ;
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5. the first job enters after the closedown time but before t, and the setup time ends
after t (E5Þ;

6. the first jobs arrives after t, but the closedown time “closes” before t; so at the first
arrival epoch the setup time begins (E6Þ;

7. the first job arrives after t but still “inside” the closedown time ðE7Þ;
8. the first jobs joins the system after t and after the closedown time that “contains” the

time t ðE8Þ.
Introducing the following notation:

V0;i t; xð Þ ¼def P vðtÞ\xð Þf g \Ei j X 0ð Þ ¼ 0g; 1� i� 8; ð2Þ

we can write the following representations:

V0;1 t; xð Þ ¼ Zt

u¼0

dC uð Þ Zt�u

v¼0

dS vð Þ Zu

y¼0

XN�2

k¼0

k uþ v� yð Þ½ �k
k!

e�k uþ v�yð ÞVkþ 1 t � u� v; xð Þ
"

þVN t � u� v; xð Þ
X1

k¼N�1

k uþ v� yð Þ½ �k
k!

e�k uþ v�yð Þ
#
ke�kydy;

ð3Þ

V0;2 t; xð Þ ¼ Z1

u¼t

dC uð Þ Zt

y¼0

ke�ky
XN�2

k¼0

k t � yð Þ½ �k
k!

e�k t�yð Þdy
Z1

v¼0

F kþ 1ð Þ� x� v� uþ tð ÞdSðvÞ; ð4Þ

V0;3 t; xð Þ ¼ Zt

u¼0

dC uð Þ Zu

y¼0

ke�ky
XN�2

k¼0

k t � yð Þ½ �k
k!

e�k t�yð Þdy
Z1

v¼t�u

F kþ 1ð Þ� x� v� uþ tð ÞdSðvÞ;

ð5Þ

V0;4 t; xð Þ ¼ Zt

u¼0

dC uð Þ Zt

y¼u

ke�kydy
Zt�y

v¼0

XN�2

k¼0

kvð Þk
k!

e�kvVkþ 1 t � y� v; xð Þ
"

þVN t � y� v; xð Þ
X1

k¼N�1

kvð Þk
k!

e�kv

#
dS vð Þ;

ð6Þ

V0;5 t; xð Þ ¼ Zt

u¼0

dC uð Þ Zt

y¼u

ke�ky
XN�2

k¼0

k t � yð Þ½ �k
k!

e�k t�yð Þdy
Z1

v¼t�y

F kþ 1ð Þ� x� y� vþ tð ÞdS vð Þ;

ð7Þ

V0;6 t; xð Þ ¼ C tð Þ Z1

t

ke�kyS x� yþ tð Þdy; ð8Þ
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V0;7 t; xð Þ ¼ Z1

t

S x� uþ tð Þ e�kt � e�ku
� �

dCðuÞ; ð9Þ

and

V0;8 t; xð Þ ¼ Z1

u¼t

dC uð Þ Z1

y¼u

ke�kyS x� yþ tð Þdy: ð10Þ

In the formulae above Fj� �ð Þ stands for the j-fold Stieltjes convolution of the CDF
F �ð Þ with itself.

Let us comment briefly some of the formulae (3)–(10). The first summands on the
right sides of (3) and (6) refer to the situation in which there is at least one free place in
the buffer at the completion epoch of the setup time, while the second one to the case in
which the buffer becomes saturated during the setup time. In (4) and (7) the sum is
taken only for k = N−2. Indeed, in the case t is “inside” the period during which the
service is suspended (the closedown or the setup time) and the buffer becomes saturated
before t, the “virtual” jobs occurring exactly at time t is lost.

Now, let us analyze the case where at t ¼ 0 the buffer contains at least one job, i.e.
the level of buffer saturation equals n, where 1� n�N: Since successive service
completion epochs are Markov moments in the evolution of the system, then, applying
the continuous version of the total probability law with respect to the first service
completion epoch after the start of the system, the following system of integral
equations can be written:

Vn t; xð Þ ¼
XN�n�1

k¼0

Zt

0

Vnþ k�1 t � y; xð Þ kyð Þk
k!

e�kydF yð Þ

þ
X1

k¼N�n

Zt

0

VN�1 t � y; xð Þ kyð Þk
k!

e�kydF yð Þ

þ
XN�n�1

k¼0

ktð Þk
k!

e�kt Z1

t

F nþ k�1ð Þ� x� yþ tð ÞdFðyÞ;

ð11Þ

where 1� n�N: Indeed, the first term on the right side of (11) relates to the situation
in which the buffer is not full before the first processing completion epoch, while the
second one describes the case in which the buffer becomes saturated before the first
departure moment. The last summand refers to the situation in which the first service
completes after time t.

4 System of Equations for LTs of Delay Conditional CDFs

In this section we derive the system of equations for LTs of conditional CDFs of the
queueing delay in the considered model and write it in a specific form. Thus, let us
introduce the following notation:
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~vn s; xð Þ ¼def Z
1

0

e�stVn t; xð Þdt ¼ Z1

0

e�stP vðtÞ\xjXð0Þ ¼ nf gdt; < sð Þ[ 0;

x[ 0; 0� n�N:

ð12Þ

Moreover, due to the fact that ~v0 s; xð Þ ¼P8
i¼1

R1
0
e�stV0;iðt; xÞdt, then just by virtue of

the Eqs. (3)–(10), we obtain

~v0 s; xð Þ ¼
XN�2

k¼0

~vkþ 1 s; xð Þak sð Þþ~vN s; xð Þ
X1

k¼N�1

ak sð Þþ b s; xð Þ; ð13Þ

where

ak sð Þ ¼def kkþ 1

kþ 1ð Þ!
Z1

u¼0

e� kþ sð ÞudCðuÞ Z1

v¼0

e� kþ sð Þv vþ uð Þkþ 1�vkþ 1
h i

dS vð Þ

þ k
kþ s

~cðkþ sÞ Z1

0

e� kþ sð Þv ðkvÞk
k!

dS vð Þ;
ð14Þ

~c sð Þ ¼def Z
1

0

e�stdC tð Þ; ð15Þ

b s; xð Þ ¼def Z1

t¼0

e� kþ sð ÞtXN�2

k¼0

kkþ 1

kþ 1ð Þ! tkþ 1 � t � uð Þkþ 1
h i Zt

u¼0

dC uð Þ Z1

v¼t�u

F kþ 1ð Þ� x� v� uþ tð ÞdS vð Þ
(

þ tkþ 1 Z1

u¼t

dC uð Þ Z1

v¼0

F kþ 1ð Þ� x� v� uþ tð ÞdS vð Þ
)
dt

þ Z1

t¼0

e�stdt
Zt

u¼0

dC uð Þ Zt

y¼u

ke�ky
XN�2

k¼0

k t � yð Þ½ �k
k!

e�k t�yð Þdy
Z1

v¼t�y

F kþ 1ð Þ� x� y� vþ tð ÞdS vð Þ

þ Z1

t¼0

e�stC tð Þdt Z1

y¼t

ke�kyS x� yþ tð Þdy

þ Z1

t¼0

e�stdt
Z1

u¼t

S x� uþ tð Þ e�kt � e�ku
� �

dC uð Þ

þ Z1

t¼0

e�stdt
Z1

y¼t

ke�kyS x� yþ tð Þ C yð Þ � C tð Þ½ �dy:

ð16Þ

In the similar manner, by defining the following functional sequences:

ak sð Þ ¼def Z
1

0

e� kþ sð Þt ktð Þk
k!

dF tð Þ; ð17Þ
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/n s; xð Þ ¼def Z 1
t¼0

e� kþ sð Þt XN�n�1

k¼0

ktð Þk
k!

dt
Z1

y¼t

F nþ k�1ð Þ� x� yþ tð ÞdF yð Þ; ð18Þ

we obtain from (11) the following system of equations:

~vn s; xð Þ ¼
XN�n�1

k¼0

akðsÞ~vnþ k�1 s; xð Þþ~vN�1 s; xð Þ
X1

k¼N�n

ak sð Þþ/n s; xð Þ; ð19Þ

where 1� n�N: Let us apply to (13) and (19) the following substitution:

~xn s; xð Þ ¼def ~vN�n s; xð Þ ð20Þ

Now, the representations (13) and (19) can be rewritten as follows:

~xN s; xð Þ ¼
XN�1

k¼1

~xk s; xð ÞaN�k�1 sð Þþ ~x0 s; xð Þ
X1

k¼N�1

ak sð Þþ b s; xð Þ; ð21Þ

and

Xn
k¼�1

akþ 1 sð Þ~xn�k s; xð Þ � ~xn s; xð Þ ¼ Dn s; xð Þ; 0� n�N � 1; ð22Þ

where

Dn s; xð Þ ¼def anþ 1 sð Þ~x0 s; xð Þ � ~x1 s; xð Þ
X1

k¼nþ 1
ak sð Þ � /N�n s; xð Þ: ð23Þ

5 Transient Solution for LT of CDF of Queueing Delay

The system of equations of type (22) but with infinite number of equations, namely
written for n� 0; was investigated in [9]. It was proved there that each its solution can
be written in the form (we give here the representation for functional sequences,
however, in [9], the equations with coefficients given by ordinary number sequences
are considered):

~xn s; xð Þ ¼ Rnþ 1 sð ÞK s; xð Þþ
Xn
k¼0

Rn�k sð ÞDk s; xð Þ; n� 0; ð24Þ

where K s; xð Þ is independent on n; and successive terms of the functional sequence
Rk sð Þ; k� 0, can be found recursively from coefficients ak sð Þ; k� 0; of the system as
follows:
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R0 sð Þ ¼ 0;R1 sð Þ ¼ a�1
0 sð Þ;Rkþ 1 sð Þ ¼ R1 sð Þ Rk sð Þ �

Xk
i¼0

aiþ 1 sð ÞRk�i sð Þ
 !

; k� 1:

ð25Þ

Obviously, if we find closed-form representations for ~x0 s; xð Þ and ~x1 s; xð Þ; which
are present in the formula (23) for Dn s; xð Þ; and the formula for K s; xð Þ; it will be
possible to state a representation for ~xn s;mð Þ for arbitrary n, basing on (24).

Taking n ¼ 0 in (24), we obtain

K s; xð Þ ¼ a0 sð Þ~x0 s; xð Þ: ð26Þ

Similarly, substituting n ¼ 0 into (22) and referring to (23), we have

~x1 s; xð Þ ¼ 1P1
k¼0 akðsÞ

~x0 s; xð Þ � /N s; xð Þ½ � ¼ ~x0 s; xð Þ � /N s; xð Þ
f ðsÞ ; ð27Þ

where

f sð Þ ¼def Z
1

0

e�stdF tð Þ;< sð Þ[ 0: ð28Þ

In order to find the formula for ~x0 s; xð Þ we must compare the right sides of (21),
being in fact a kind of a boundary condition, and (24) taken for n ¼ N: Executing
necessary calculations, we obtain

~x0 s; xð Þ ¼ ~vN s; xð Þ ¼ b s;mð Þþ c s; xð Þ
HN sð Þ �PN�1

k¼1 aN�k�1 sð ÞHkðsÞ �
P1

k¼N�1 ak sð Þ ; ð29Þ

where

c s; xð Þ ¼def
XN
k¼0

RN�k sð Þ f sð Þð Þ�1/N s; xð Þ
X1

i¼kþ 1

ai sð Þ � /N�k s; xð Þ
" #

þ
XN�1

k¼1

aN�k�1 sð Þ
Xk
i¼0

Rk�i sð Þ f sð Þð Þ�1/N s; xð Þ
X1
j¼iþ 1

aj sð Þ � /N�i s; xð Þ
" # ð30Þ

and

Hk sð Þ �def Rkþ 1 sð Þa0 sð Þþ
Xk
i¼0

Rk�i sð Þ aiþ 1 sð Þ � f sð Þð Þ�1
X1
j¼iþ 1

aj sð Þ
" #

: ð31Þ

After collecting the formulae (23)–(31), we can state the following main theorem:
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Theorem 1. The representations for the LT ~vnðs; xÞ of conditional CDF of the
queueing delay in the M/G/1/N-type finite-buffer model with generally distributed setup
and closedown times are following:

~vn s; xð Þ ¼ RN�nþ 1 sð Þa0 sð ÞqN sð Þþ
XN�n

k¼0
RN�n�kðsÞ

akþ 1 sð Þ~vN s; xð Þ � f sð Þð Þ�1 ~vN s; xð Þ � /N s; xð Þð Þ
X1

i¼kþ 1

ai sð Þ � /N�n s; xð Þ
" #

;

ð32Þ

where 0� n�N � 1; and

~vN s; xð Þ ¼ b s;mð Þþ c s; xð Þ
HN sð Þ �PN�1

k¼1 aN�k�1 sð ÞHkðsÞ �
P1

k¼N�1 ak sð Þ ; ð33Þ

where the formulae for b s; xð Þ; ak sð Þ;/k s; xð Þ;Rk sð Þ; f ðsÞ and c s; xð Þ are given in
(16), (17), (18), (25), (28) and (30), respectively.

6 Computational Examples

Let us consider the stream of packets of sizes 400 [B] arriving to the node of a network
with buffer capacity 50 packets. The arrival stream is governed by a Poisson process
with intensity 600 [kb/s], while the throughput of the output link is 800 [kb/s], so the
traffic load equals 0.75. The mechanism of the node setup/closedown times is imple-
mented. Three different situations of exponentially distributed setup and closedown
times are investigated (see Table 1).

In Fig. 1 the behavior of the waiting time distribution in the stable system is shown
for all considered cases. It is easy to note that for SET < CLO the probability of long
waiting times for the arriving packets is relatively smallest one. In Fig. 2 the case of the
arrival intensity 768 kb/s is considered (now the traffic load equals 0.96, so the system
is close to the critical loading). Let us observe that in such a case the probability of
waiting time less than e.g. 0.1 [s] is relatively large (equals approximately 0.4–0.5),
while for the system less loaded equals even about 0.8.

Table 1. Three different variants for the relationship between setup and closedown times

Variant Mean setup time Mean closedown time

SET < CLO 0.050 [s] 0.100 [s]
SET > CLO 0.100 [s] 0.050 [s]
SET = CLO 0.067 [s] 0.067 [s]
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7 Conclusion

In the paper a single-channel queueing model with finite buffer capacity and server
setup-closedown times is considered. The arrival process is governed by a single
Poisson stream while the processing times are generally distributed random variables.
By using the analytical approach based on the concept of embedded Markov chain,
total probability law and linear algebra a closed-form representation for the LT of
conditional CDF of the queueing delay is obtained. The final formulae are written in
terms of “input” system characteristics and certain functional sequence, defined
recursively, connected with them. Numerical examples, illustrating theoretical results,
are attached.

Fig. 1. Waiting time distribution for the stable system with traffic load 0.75

Fig. 2. Waiting time distribution for the stable system with traffic load 0.96
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