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Abstract. A finite-buffer queueing model with Poisson arrivals and exponential
processing times is investigated. Every time when the system empties, the server
begins a generally distributed single working vacation period, during which the
service is provided with another (slower) rate. After the completion of the
vacation period the processing is being continued normally, with original speed.
The next working vacation period is being initialized at the next time at which
the system becomes empty, and so on. The system of Volterra-type integral
equations for transient queue-size distribution, conditioned by the initial level of
buffer saturation, is built. The solution of the corresponding system written for
Laplace transforms is given in a compact-form using the linear algebraic
approach and the corresponding result obtained for the ordinary model (without
working vacation regime). Numerical examples are attached as well.
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1 Introduction

Queueing models with finite buffer capacities are widely used in the analysis of real-life
systems occurring in technical and economic sciences, and in transport and logistic
problems, in which the phenomena of “queueing” of items [27, 28] (packets, calls,
customers, jobs, etc.) and their losses due to buffer saturation can be observed. As it
seems, particularly important are models in which different-type restrictions in access
to the service station are implemented additionally. In practice, these restrictions are
often a kind of energy saving mechanism (e.g., cyclic succession of listening and
dormant modes in wireless networks, or switching off a machine in manufacturing
process in the case of the traffic with low intensity), and are associated with temporary
blocking the service of items despite their presence in the accumulation buffer. The
scientific literature concerning such systems is already huge and still increasing. Servi
and Finn proposed in [15] for the first time the model with the so called working
vacation, in which the server, instead of total service stopping, offers the processing
with another speed (usually lower). This model was originally motivated by a recon-
figurable WDM (Wavelength-division multiplexing) optical access network in which a
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single token cyclically visits each queue, operating at two different rates (faster and
slower ones), but it can be successfully used in modelling many phenomena typical for,
e.g. computer and telecommunication networks or manufacturing engineering. In
particular, we can use it

• when the service station processes two types of packets with significantly different
service speeds (e.g., different times of putting them in the link);

• in the case of temporary throughput reductions, due to parallel launching another
application;

• in the situation of periodic reduction of the throughput of the production line
(slower processing with lower power consumption).

As it is shown in [12, 29], a working vacation queueing system with two different
processing rates can be successfully applied in modelling, e.g. the Ethernet Passive
Optical Network (EPON), consisting of one optical line terminal (OLT), situated at the
central office, and multiple optical network units (ONUs) situated at customer premises
equipment (CPE), and a passive splitter/combiner. In EPON bi-directional transmis-
sions are provided: in the downstream direction the OLT broadcasts to all ONUs and in
the upstream direction (from ONUs to the OLT) the fiber channel is shared by all
ONUs.

After the article [15] many papers were published on the analysis of stochastic
characteristics of queueing models with working vacation mechanism. Working
vacation models of GI/M/1 type are considered, e.g. in [2, 26] in the case of finite buffer
capacity, and in [1, 13] for the infinite waiting room. Unfortunately, as one can see,
most of the results relates only to the steady state of the system. Meanwhile, as it
seems, in practice it is increasingly essential to investigate the system in the transient
case. Such a study is of particular importance in the case of the observation the system
shortly after its opening or applying new control mechanism. The high variability of the
packet traffic (e.g., in the Internet) also can “force” the time-dependent analysis. In [18]
the transient queue-size distribution for the infinite-sized M/M/1-type model with
server working vacations is found. In [22] the study is extended for the multi-server
case and multiple working vacation regime by using the matrix geometric method.
Compact-form transient results for main stochastic characteristics of finite-buffer
queues with different-type service restrictions can be found, e.g. in [7–10]. The case of
infinite buffer is studied in [5, 6]. In [21] a processor-sharing model with limited total
volume and probabilistic packet dropping is considered. In various data management
systems (see [23]) we can find applications of queueing systems to enable faster
requests management and therefore improved data mining (see e.g. [24, 25, 30, 31]).

The remaining part of the article is organized as follows. In the next Sect. 2 we give
the precise description of the considered queueing model and state an auxiliary alge-
braic result which can be used in further analysis. Section 3 is devoted to the ordinary
system (without server working vacation). The compact-form representation for the LT
(=Laplace transform) of conditional transient queue-size distribution is derived there,
and written by using the functional sequence recursively defined. In Sect. 4 we obtain
the corresponding result for the original model with generally distributed working
vacations, utilizing results from Sects. 2 and 3. In Sect. 5 numerical examples are
attached and the last Sect. 6 contains a short summary and conclusions.
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2 Model Description and Auxiliary Results

In the article we deal with the M/M/1/N-type queueing model with Poisson job arrivals
with rate k; exponential processing times with mean l�1; and finite capacity N� 2
(N � 1 places in the buffer queue and one place “in service”). Every time when the
system empties the server begins a generally distributed single working vacation
period, during which the processing of jobs is carried out with another (slower) rate
l�\l (see Fig. 1 for the scheme of the system operation). We denote by G �ð Þ the CDF
(=cumulative distribution function) of the working vacation period duration. After
finishing the vacation period the service process is being continued normally, with
original speed. The next working vacation period is being initialized at the next time at
which the queue becomes empty, and so on.

The following theorem can be found in [11]:

Theorem 1. Introduce two number sequences akð Þ; k� 0; and wkð Þ; k� 1; with the
assumption a0 6¼ 0: Each solution of the following system of linear equations with
respect to xn; n� 1 :

Xn�1

k¼�1
akþ 1xn�k � xn ¼ wn; n� 1; ð1Þ

can be written in the form

xn ¼ CRn þ
Xn

k¼1
Rn�kwk; n� 1; ð2Þ

where C is a constant independent on n; and Rkð Þ is connected with the sequence akð Þ
by the following formula:

X1
k¼0

hkRk ¼ 1
Pa hð Þ � 1

; wherePa hð Þ ¼
X1

k¼�1
hkakþ 1; hj j\1: ð3Þ

Moreover, in [11] it is proved that successive terms of the sequence Rnð Þ (called a
potential) can be found recursively as follows:

Fig. 1. Scheme of a single-server finite-buffer working vacation model with Poisson arrivals
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R0 ¼ 0;R1 ¼ a�1
0 ;Rkþ 1 ¼ R1 Rk �

Xk

i¼0
aiþ 1Rk�i

� �
; k� 1: ð4Þ

As it turns out, LTs of conditional queue-size distributions in the original system
and in the ordinary one, satisfy systems of equations similar to (1). Hence, in solving
these systems, we will use the formula (2), where the representation for C will be found
from a boundary condition.

3 Conditional Transient Queue-Size Distribution
in an Ordinary System

In this section we deal with the conditional queue-size distribution in the ordinary
finite-buffer M/M/1/N-type model without working vacation discipline, corresponding
to the original one, with k and l� being the arrival intensity and service speed,
respectively, and find the representation for its LT in terms of “input” system
parameters, writing it in a specific way, by using a recursively defined sequence, called
a potential. Similar result was obtained in [3] for the generally-distributed service time,
however it is written in another form. It should be mentioned here that transient
solutions for the M/M/1/N-type queue were also obtained in [19] (see also [14]) by
using the technique of eigenvalues and eigenvectors, in [16] by applying Chebyshev
polynomials, in [17] by utilizing matrix technique and in [20] via LTs. Introduce the
following notation:

PO
n t;mð Þ ¼def P XO tð Þ ¼ mjXO 0ð Þ ¼ n

� �
; 0�m; n�N; ð5Þ

where XO tð Þ denotes the number of packets present in the ordinary system at time t:
Since, due to exponential distributions of inter-arrival and service times, both arrival
and service completion epochs are Markov moments, from the continuous version of
the total probability formula written with respect to the first Markov moment after
t ¼ 0; we obtain the following system of integral equations:

PO
0 t;mð Þ ¼ k

Zt

0

e�kxPO
1 t � x;mð Þdxþ e�ktdm;0; ð6Þ

PO
n t;mð Þ ¼ k

Zt

0

e� kþl�ð ÞxPO
nþ 1 t � x;mð Þdx

þ l�
Zt

0

e� kþl�ð ÞxPO
n�1 t � x;mð Þdx

þ e� kþl�ð Þtdm;n;

ð7Þ

where 1� n�N � 1; and
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PO
N t;mð Þ ¼ k

Zt

0

e� kþl�ð ÞxPO
N t � x;mð Þdx

þ l�
Zt

0

e� kþ l�ð ÞxPO
N�1 t � x;mð Þdx

þ e� kþl�ð Þtdm;N ;

ð8Þ

where the notation di;j stands for the Kronecker delta function. Let us comment (6)–(8)
briefly. Indeed, the first summands on the right side of (7) and (8) relate to the case in
which, as the first one, a jump of the arrival Poisson process occurs, while the second
ones - to the situation in which the jump of the service process is observed as the first
one. The last summands on the right side of (7) and (8) present the case in that there is
no jump of the arrival and service processes before t: The formula (6), written for the
case of the system being empty at the opening, is obvious. Defining

~pOn ðs;mÞ ¼def
Z1

0

e�stP XO tð Þ ¼ mjXO 0ð Þ ¼ n
� �

dt; < sð Þ[ 0; ð9Þ

we obtain from (6)–(8) the following equations:

~pO0 s;mð Þ ¼ k
kþ s

~pO1 s;mð Þþ dm;0
kþ s

; ð10Þ

~pOn s;mð Þ ¼ k
kþ l� þ s

~pOnþ 1 s;mð Þþ l�

kþ l� þ s
~pOn�1 s;mð Þþ dm;n

kþ l� þ s
; 1� n�N � 1

ð11Þ

and

~pON s;mð Þ ¼ k
kþ l� þ s

~pON s;mð Þþ l�

kþ l� þ s
~pON�1 s;mð Þþ dm;N

kþ l� þ s
: ð12Þ

We will obtain the solution of the system (10)–(12) by applying the algebraic-type
approach based on Theorem 1 that allows for writing the representation for ~pOk s;mð Þ (at
arbitrary k) via certain recursively-defined sequence (see (4)).

Let us note that, if we define

a�0 sð Þ ¼ k
kþ l� þ s

; a�1 sð Þ ¼ 0; a�2 sð Þ ¼ l�

kþ l� þ s
; a�k sð Þ ¼ 0; k� 3; ð13Þ

and, moreover,

w�
n s;mð Þ ¼ /�

n s;mð Þ � D�
n sð Þ~pO0 s;mð Þ; ð14Þ
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where

/�
n s;mð Þ ¼def� dm;n

kþ l� þ s
; D�

n sð Þ ¼def d1;na�2 sð Þ; ð15Þ

then the Eqs. (11) and (12) can be rewritten as

Xn�1

k¼�1
a�kþ 1 sð Þ~pOn�k s;mð Þ � ~pOn s;mð Þ ¼ w�

n s;mð Þ; 1� n�N � 1; ð16Þ

and

~pON s;mð Þ ¼ 1� a�0 sð Þ� ��1
a�2 sð Þ~pON�1 s;mð Þ � /�

N s;mð Þ� �
: ð17Þ

Because (16) has the same form as (1) (now with a�k and w
�
n being functions of s and

s;mð Þ; respectively), then the following representation holds true (compare (2)):

~pOn s;mð Þ ¼ C� s;mð ÞR�
n sð Þþ

Xn

k¼1
R�
n�k sð Þw�

k s;mð Þ; n� 1; ð18Þ

where now (see (4) and refer to (13)) for k� 1

R�
0 sð Þ ¼ 0;R�

1 sð Þ ¼ a�0 sð Þ� ��1
;R�

kþ 1 sð Þ ¼ R�
1 sð Þ R�

k sð Þ � a�2 sð ÞR�
k�1 sð Þ� 	

: ð19Þ

In order to find the explicit representation for C� s;mð Þ, we will use the Eq. (17),
treating it as a kind of boundary condition. Indeed, implementing (18) in (17), we
obtain

1� a�0 sð Þ� �
C� s;mð ÞR�

N sð Þþ
XN

k¼1
R�
N�k sð Þ /�

k s;mð Þ � D�
k sð Þ~pO0 s;mð Þ� 	h i

¼ a�2 sð Þ C� s;mð ÞR�
N�1 sð Þþ

XN�1

k¼1
R�
N�1�k sð Þ /�

k s;mð Þ � D�
k sð Þ~pO0 s;mð Þ� 	h i

� /�
N s;mð Þ:

ð20Þ

Observe that, taking in (18) n ¼ 1; we have

~pO1 s;mð Þ ¼ C� s;mð ÞR�
1 sð Þ ¼ C� s;mð Þ a�0 sð Þ� ��1

: ð21Þ

Substituting now (21) into (10), we get

~pO0 s;mð Þ ¼ A� sð ÞC� s;mð ÞþB� s;mð Þ; ð22Þ

where

A� sð Þ ¼def k
kþ s

a�0 sð Þ� ��1
; B� s;mð Þ ¼def dm;0

kþ s
: ð23Þ
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Inserting (22) into (20), we eliminate C� s;mð Þ in the following form:

C� s;mð Þ ¼ T�ðs;mÞ
D�ðsÞ ; ð24Þ

where we denote

T� s;mð Þ ¼def a�2 sð Þ
XN�1

k¼1
R�
N�k�1 sð Þ /�

k s;mð Þ � D�
k sð ÞB� s;mð Þ� �

� 1� a�0 sð Þ� �XN

k¼1
R�
N�k sð Þ /�

k s;mð Þ � D�
k sð ÞB� s;mð Þ� �

� /�
N s;mð Þ

ð25Þ

and

D� sð Þ ¼def 1� a�0 sð Þ� 	
R�
N sð Þ � A� sð Þ

XN

k¼1
R�
N�k sð ÞD�

k sð Þ
h i

þ a�2 sð Þ A� sð Þ
XN�1

k¼1
R�
N�1�k sð ÞD�

k sð Þ � R�
N�1 sð Þ

h i
:

ð26Þ

Collecting the formulae (14), (18), (22) and (24), we can formulate the following:

Theorem 2. The LT ~pOn s;mð Þ of transient queue-size distribution in the ordinary
M/M/1/N-type queue, conditioned by the number 0� n�N of jobs present in the
system initially, can be expressed in the following way:

~pO0 s;mð Þ ¼ A� sð Þ T
�ðs;mÞ
D�ðsÞ þB� s;mð Þ; ð27Þ

~pOn s;mð Þ ¼ T�ðs;mÞ
D�ðsÞ R�

n sð Þ

þ
XN

k¼1
R�
N�k sð Þ /�

k s;mð Þ � D�
k sð Þ A� sð Þ T

�ðs;mÞ
D�ðsÞ þB� s;mð Þ


 �� 
; 1� n�N;

ð28Þ

where < sð Þ[ 0 and 0�m�N; and the formulae for /�
k s;mð Þ; D�

k sð Þ; R�
k sð Þ; A� sð Þ;

B� s;mð Þ; T�ðs;mÞ and D� sð Þ are given in (15), (19), (23) (25) and (26), respectively.

4 Queue-Size Distribution in a Model with Working
Vacations

Let us take into consideration the original model with generally-distributed server
working vacation periods (each with a CDF Gð�Þ) during which the processing of jobs
is offered with a slower rate l�\l; where l denotes the normal-mode service rate.
Introduce the following notation:
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Pn t;mð Þ ¼def P X tð Þ ¼ mjX 0ð Þ ¼ nf g; 0�m; n�N; ð29Þ

where X tð Þ denotes the number of packets present in the system with working vacations
(original one) at time t: Assume, firstly, that the system starts its evolution being empty.
So, at t ¼ 0 the working vacation period begins. Observe, that the following equation is
then satisfied:

P0 t;mð Þ ¼
XN

k¼0

Zt

0

PO
0 x; kð ÞPO

k t � x;mð ÞdG xð Þþ 1� GðtÞ½ �PO
0 t;mð Þ: ð30Þ

Indeed, the first summand on the right side of (30) presents the situation in which
the working vacation period completes at time x\t: Hence, at time x the system starts
the operation in normal mode with 0� k�N packets with probability PO

0 x; kð Þ. The
second summand in (30) relates to the case in that the time epoch t is “inside” the
working vacation period. If the number of packets equals 1� n�N � 1 initially, we
similarly obtain

Pn t;mð Þ ¼ k
Zt

0

e� kþ lð ÞxPnþ 1 t � x;mð Þdxþ l
Zt

0

e� kþ lð ÞxPn�1 t � x;mð Þdxþ e� kþlð Þtdm;n:

ð31Þ

Finally, n ¼ N we have

PN t;mð Þ ¼ k
Zt

0

e� kþ lð ÞxPN t � x;mð Þdxþ l
Zt

0

e� kþlð ÞxPN�1 t � x;mð Þdxþ e� kþ lð Þtdm;N :

ð32Þ

The interpretation of (31) and (32) is the same as of (7) and (8). Defining

~pnðs;mÞ ¼def Z1

0

e�stP X tð Þ ¼ mjX 0ð Þ ¼ nf gdt; < sð Þ[ 0; ð33Þ

and, moreover (compare (13)–(15)),

a0 sð Þ ¼ k
kþ lþ s

; a1 sð Þ ¼ 0; a2 sð Þ ¼ l
kþ lþ s

; ak sð Þ ¼ 0; k� 3; ð34Þ

and

wn s;mð Þ ¼ /n s;mð Þ � Dn sð Þ~p0 s;mð Þ; ð35Þ
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where

/n s;mð Þ ¼def� dm;n
kþ lþ s

;Dn sð Þ ¼def d1;na2 sð Þ; ð36Þ

we obtain from (30)–(32) the following system (see (10) ,(16) and (17)):

~p0 s;mð Þ ¼
XN

k¼0
~pk s;mð Þ Z1

0

e�sxPO
0 x; kð ÞdG xð Þþ Z1

0

e�stPO
0 t;mð Þ 1� GðtÞ½ �dt; ð37Þ

Xn�1

k¼�1
akþ 1 sð Þ~pn�k s;mð Þ � ~pn s;mð Þ ¼ wn s;mð Þ; 1� n�N � 1; ð38Þ

and

~pN s;mð Þ ¼ 1� a0 sð Þ½ ��1 a2 sð Þ~pN�1 s;mð Þ � /N s;mð Þ½ �: ð39Þ

Since (38) has the same form as (1), then we can write (compare (18))

~pn s;mð Þ ¼ C s;mð ÞRn sð Þþ
Xn

k¼1
Rn�k sð Þwk s;mð Þ; n� 1; ð40Þ

where here (see (19)) for k� 1

R0 sð Þ ¼ 0;R1 sð Þ ¼ a�0 sð Þ� ��1
;Rkþ 1 sð Þ ¼ R1 sð Þ Rk sð Þ � a2 sð ÞRk�1 sð Þð Þ ð41Þ

and the sequence ak sð Þð Þ is defined in (34).
Let us note that, if we define

LkðsÞ ¼def Z1

0

e�stPO
0 t; kð ÞdGðtÞ ð42Þ

and

M s;mð Þ ¼def Z1

0

e�stPO
0 t; kð Þ 1� G tð Þ½ �dt; ð43Þ

where < sð Þ[ 0; then (37) can be rewritten in the following way:

~p0 s;mð Þ ¼
XN

k¼0
~pk s;mð ÞLk sð ÞþM s;mð Þ: ð44Þ

Inserting now in (44), instead of ~pk s;mð Þ, the right side of the representation (40),
we obtain
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~p0 s;mð Þ ¼ ~p0 s;mð ÞL0 sð Þ
þ

XN

k¼1
Lk sð Þ C s;mð ÞRk sð Þþ

Xk

i¼1
Rk�i sð Þ /i s;mð Þ � Di sð Þ~p0 s;mð Þð Þ

h i

þ M s;mð Þ;
ð45Þ

and hence we get the following formula:

~p0 s;mð Þ ¼ A sð ÞC s;mð ÞþB s;mð Þ; ð46Þ

where

AðsÞ ¼def 1� L0 sð Þþ
XN

k¼1
Lk sð Þ

Xk

i¼1
Rk�i sð ÞDi sð Þ

h i�1XN

k¼1
Lk sð ÞRk sð Þ ð47Þ

and

Bðs;mÞ ¼def 1� L0 sð Þþ
XN

k¼1
Lk sð Þ

Xk

i¼1
Rk�i sð ÞDi sð Þ

h i�1

XN

k¼1
Lk sð Þ

Xk

i¼1
Rk�i sð Þ/i s;mð ÞþMðs;mÞ

h i ð48Þ

Having defined AðsÞ and B s;mð Þ, we can execute successive steps of the procedure
described for the ordinary system in (20)–(26) and formulate the following main
theorem:

Theorem 3. The LT ~pn s;mð Þ of time-dependent queue-size distribution in the
M/M/1/N-type queue with working vacation mechanism, conditioned by the number
0� n�N of jobs present in the system initially, can be written in the following way:

~p0 s;mð Þ ¼ A sð Þ Tðs;mÞ
DðsÞ þB s;mð Þ; ð49Þ

~pn s;mð Þ ¼ Tðs;mÞ
DðsÞ Rn sð Þ

þ
XN

k¼1
RN�k sð Þ /k s;mð Þ � Dk sð Þ A sð Þ Tðs;mÞ

DðsÞ þB s;mð Þ

 �� 

; 1� n�N;

ð50Þ

where < sð Þ[ 0 and 0�m�N; and (compare (25) and (26))

T s;mð Þ ¼def a2 sð Þ
XN�1

k¼1
RN�1�k sð Þ /k s;mð Þ � Dk sð ÞB s;mð Þ½ �

� 1� a0 sð Þ½ �
XN

k¼1
RN�k sð Þ /k s;mð Þ � Dk sð ÞB s;mð Þ½ � � /N s;mð Þ;

ð51Þ
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D sð Þ ¼def 1� a0 sð Þð Þ RN sð Þ � A sð Þ
XN

k¼1
RN�k sð ÞDk sð Þ

h i

þ a2 sð Þ A sð Þ
XN�1

k¼1
RN�1�k sð ÞDk sð Þ � RN�1 sð Þ

h i
:

ð52Þ

Moreover, the formulae for /k s;mð Þ;Dk sð Þ;Rk sð Þ;AðsÞ and Bðs;mÞ are given in
(36), (41), (47) and (48), respectively.

Remark 1. The formulae (49) and (50) allow for finding the LT of the queue-size
distribution in the original system as functions of the appropriate distribution for the
ordinary model (given in terms of LTs in (27) and (28)), by Lk sð Þ and Mðs;mÞ defined
in (42) and (43), respectively.

Remark 2. Having LTs of the probabilities ~pn s;mð Þ; we can easily find the stationary
queue-size distribution p0; . . .; pN ; by using the well-known Tauberian theorem, namely

pm ¼ lim
t!1P X tð Þ ¼ mf g ¼ lims#0 s � ~pn s;mð Þ; 0�m�N; ð53Þ

where n can be chosen arbitrarily between 0 and N:

Remark 3. In the case of exponentially distributed working vacation period with mean
h�1; i.e. if GðtÞ ¼ 1� e�ht; t[ 0; we can evaluate Lk sð Þ and Mðs;mÞ explicitly.
Indeed, we obtain

Lk sð Þ ¼ h~pO0 sþ h; kð Þ;M s;mð Þ ¼ ~pO0 sþ h;mð Þ: ð54Þ

5 Numerical Examples

Let us consider a node of the wireless network in which packets of sizes 200 [B] arrive
according to a Poisson process with intensity 600 [kb/s]. The normal throughput equals
800 [kb/s], but every time when the buffer empties the throughput is lower (500 [kb/s])
for a random exponential time with mean 0.1 [s]. Let us note that for such parameters
the traffic load equals normally 0.75 and during the working vacation period 1.20 (so,
in this case the link is overloaded). In Fig. 1 transient behaviour of probabilities
PfXðtÞ ¼ m jXð0Þ ¼ 0g is presented for m ¼ 0; 2 and 4, where N ¼ 4: In Fig. 2
transient behaviour of PfXðtÞ ¼ 1 jXð0Þ ¼ 0g is visualized for different arrival rates:
200, 400 and 600 [kb/s], where the remaining system parameters are kept the same as
in Fig. 1. As one can observe, for the lowest arrival rate, the time for the system
stabilization is the shortest one. Figure 3 shows the behaviour of PfXðtÞ ¼ 4 jXð0Þ ¼
0g at arrival rate 400 [kb/s] and normal service speed 800 [kb/s], for three different
processing speeds during the WV (= working vacation) period (the case 800 [kb/s]
denotes, in fact, no working vacation) (Fig. 4).
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Fig. 2. Transient behaviour of PfXðtÞ ¼ m jXð0Þ ¼ 0g for different values of m

Fig. 3. Sensitivity of transient queue-size distribution on different arrival intensities

Fig. 4. Sensitivity of transient queue-size distribution on processing rates during WV
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6 Conclusions and Closing Remarks

In the paper a single-server queueing model with finite buffer capacity, Poisson arrival
stream and exponential processing times is investigated. The service process is gov-
erned by a FIFO discipline with working vacation algorithm, in which the service
station, every time when the system empties, provide the processing with a slower rate
during a generally distributed random time. The explicit formulae for the LT of tran-
sient conditional queue-size distribution are obtained. Numerical utility of the formulae
is presented in examples motivated by real traffic in a node of the wireless network.
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