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Abstract. We present experimental results on a comparison of incom-
pleteness and inconsistency. Our experiments were conducted on 141
data sets, including 71 incomplete data and 62 inconsistent, created from
eight original numerical data sets. We used the Modified Learning from
Examples Module version 2 (MLEM2) rule induction algorithm for data
mining. Among eight types of data sets combined with three kinds of
probabilistic approximations used in experiments, in 12 out of 24 combi-
nations the error rate, computed as a result of ten-fold cross validation,
was smaller for inconsistent data (two-tailed test, 5 % significance level).
For one data set, combined with all three probabilistic approximations,
the error rate was smaller for incomplete data. For remaining nine combi-
nations the difference in performance was statistically insignificant. Thus,
we may claim that there is some experimental evidence that incomplete-
ness is generally worse than inconsistency for data mining.
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1 Introduction

A complete data set, i.e., a data set having all attribute values specified, is
consistent if for any two cases with the same attribute values, both cases belong
to the same concept (class). Another definition of consistency is based on rough
set theory: a complete data set is consistent if for any concept its lower and
upper approximations are equal [9,10]. However, in some situations the data
set being mined is either incomplete, some of the attribute values are missing;
or inconsistent, there are cases that are indiscernable but belong to different
concepts.

The main objective of our paper is to compare mining incomplete and incon-
sistent data in terms of an error rate computed as a result of ten-fold cross
validation. Using eight numerical data sets, we discretized each of them and
then converted to a symbolic and consistent data set with intervals as attribute

c© Springer International Publishing Switzerland 2016
G. Dregvaite and R. Damasevicius (Eds.): ICIST 2016, CCIS 639, pp. 414–425, 2016.
DOI: 10.1007/978-3-319-46254-7 33



A Comparison of Mining Incomplete and Inconsistent Data 415

values. We then randomly replaced some of the intervals with symbols represent-
ing missing attribute values. This process was conducted incrementally, starting
by randomly replacing 5 % of the intervals with missing attribute values, and
then an additional 5 %, until a case occurred with all attribute values missing.
The process was then attempted twice more with the maximum percentage and
if again a case occurred with all attribute values missing, the process was termi-
nated for that data set. The new data sets, with missing attribute values, were as
close as possible to the original data sets, having the same number of attributes,
cases, and concepts.

Additionally, any original data set was discretized with a controlled level
of inconsistency, starting from about 5 %, with the same increment of about
5 %. Due to the nature of discretization, the levels of inconsistency were only
approximately equal to 5 %, 10 %, etc. Our way of generation of inconsistent
data preserved as much as possible the original data set. Again, the number of
attributes, cases and concepts were not changed.

All such incomplete and inconsistent data sets were validated using the same
setup, based on rule induction by the MLEM2 rule induction algorithm and the
same system for ten-fold cross validation.

To the best of our knowledge, no research comparing incompleteness with
inconsistency was ever undertaken. However, our results should be taken with a
grain of salt since the measures of incompleteness and inconsistency are different.
We measure both of them in the most natural way: for a data set, incomplete-
ness is measured by the percentage of missing attribute values, or percentage
of missing attribute values to the total number of cases in the data set. Incon-
sistency is measured by the level of inconsistency, i.e., percentage of conflicting
cases to the number of cases. Yet the first measure is local, it is associated with
the attribute-value pairs, while the second is global, it is computed by compar-
ing entire cases. On the other hand, if we want to compare incompleteness with
inconsistency, there is no better way than using these two measures.

In our experiments we used the idea of a probabilistic approximation, with
a probability α, as an extension of the standard approximation, well known
in rough set theory. For α = 1, the probabilistic approximation is identical
with the lower approximation; for very small α, it is identical with the upper
approximation. Research on properties of probabilistic approximations was first
reported in [12] and then was continued in many other papers, for example,
[11,14–16].

Incomplete data sets are usually analyzed using special approximations such
as singleton, subset and concept [4,5]. For incomplete data sets probabilistic
approximations were used for the first time in [6]. The first experimental results
using probabilistic approximations were published in [2]. In experiments reported
in this paper, we used concept probabilistic approximations.

2 Incomplete Data

Data sets may be presented in the form of a decision table. An example of such
a decision table is shown in Table 1. Rows of the decision table represent cases
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and columns represent variables. The set of all cases will be denoted by U . In
Table 1, U = {1, 2, 3, 4, 5, 6, 7}. Independent variables are called attributes
and a dependent variable is called a decision and is denoted by d. The set of
all attributes will be denoted by A. In Table 1, A = {Age, Cholesterol, Weight}.
The value for a case x and an attribute a will be denoted by a(x).

Table 1. A data set with numerical attributes

Case Attributes Decision

Age Cholesterol Weight Risk

1 20 180 140 Low

2 60 200 180 Low

3 40 220 160 Low

4 50 200 180 Low

5 60 220 180 High

6 40 220 180 High

7 50 180 220 High

Table 2 presents an example of the discretized and consistent data set. All
attribute values are intervals and as such are considered symbolic.

Table 2. A discretized, consistent data set

Case Attributes Decision

Age Cholesterol Weight Risk

1 20–45 180–210 140–170 Low

2 45–60 180–210 170–210 Low

3 20–45 210–220 140–170 Low

4 45–60 180–210 170–210 Low

5 45–60 210–220 170–210 High

6 20–45 210–220 170–210 High

7 45–60 180–210 210–220 High

Table 3 presents an example of an incomplete data set. In this paper, we use
only one interpretation of missing attribute values, a lost value, denoted by “?”
[8,13]. The percentage of missing attribute values is the total number of missing
attribute values, equal to eight, divided by the total number of attribute values,
equal to 21, i.e., the percentage of missing attribute values is 38.1 %.

Table 4 represent an inconsistent data set. This data set was created from
the data set from Table 1. The numerical data set from Table 1 was discretized
with 30 % level of inconsistency. Cases 3 and 6 are conflicting, so the level of
inconsistency is 2/7 ≈ 30 %.
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Table 3. An incomplete data set

Case Attributes Decision

Age Cholesterol Weight Risk

1 ? 180–210 140–170 Low

2 45–60 ? 170–210 Low

3 20–45 ? ? Low

4 45–60 180–210 170–210 Low

5 45–60 ? 170–210 High

6 ? 210–220 ? High

7 45–60 180–210 ? High

Table 4. An inconsistent data set

Case Attributes Decision

Age Cholesterol Weight Risk

1 20–45 180–210 140–210 Low

2 45–60 180–210 140–210 Low

3 20–45 210–220 140–210 Low

4 45–60 180–210 140–210 Low

5 45–60 210–220 140–210 High

6 20–45 210–220 140–210 High

7 45–60 180–210 210–220 High

A fundamental idea of rough set theory [9] is an indiscernibility relation,
defined for complete data sets. Let B be a nonempty subset of the set A of
all attributes. The indiscernibility relation R(B) is a relation on U defined for
x, y ∈ U as defined by

(x, y) ∈ R(B) if and only if ∀a ∈ B (a(x) = a(y))

The indiscernibility relation R(B) is an equivalence relation. Equivalence
classes of R(B) are called elementary sets of B and are denoted by [x]B . A
subset of U is called B-definable if it is a union of elementary sets of B.

The set X of all cases defined by the same value of the decision d is called
a concept. The set of all concepts is denoted by {d}∗. For example, a concept
associated with the value low of the decision Risk is the set {1, 2, 3, 4}. The
largest B-definable set contained in X is called the B-lower approximation of X,
denoted by appr

B
(X), and defined as follows

∪{[x]B | [x]B ⊆ X}.

The smallest B-definable set containing X, denoted by apprB(X) is called
the B-upper approximation of X, and is defined by
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∪{[x]B | [x]B ∩ X �= ∅}.

For Table 4,

appr
A
({1, 2, 3, 4}) = {1, 2, 4}

and

apprA({1, 2, 3, 4}) = {1, 2, 3, 4, 6}.

The level of inconsistency may be defined as follows

1 −
∑

X∈{d}∗ |appr
A
(X)|

|U | ,

where |S| denotes the cardinality of the set S.
For a variable a and its value v, (a, v) is called a variable-value pair. A block

of (a, v), denoted by [(a, v)], is the set {x ∈ U | a(x) = v} [3]. For incomplete
decision tables the definition of a block of an attribute-value pair is modified in
the following way.

If for an attribute a there exists a case x such that a(x) = ?, i.e., the cor-
responding value is lost, then the case x should not be included in any blocks
[(a, v)] for all values v of attribute a.

For the data set from Table 3 the blocks of attribute-value pairs are:

[(Age, 20–45)] = {3},
[(Age, 45–60)] = {2, 4, 5, 7},
[(Cholesterol, 180–210)] = {1, 4, 7},
[(Cholesterol, 210–220)] = {6},
[(Weight, 180–210)] = {1}, and
[(Weight, 170–220)] = {2, 4, 5}.

For a case x ∈ U and B ⊆ A, the characteristic set KB(x) is defined as the
intersection of the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in
the following way:

– If a(x) is specified, then K(x, a) is the block [(a, a(x))] of attribute a and its
value a(x),

– If a(x) =? then the set K(x, a) = U , where U is the set of all cases,

For Table 3 and B = A,
KA(1) = {1},
KA(2) = {2, 4, 5},
KA(3) = {3},
KA(4) = {4},
KA(5) = {2, 4, 5},
KA(6) = {6}, and
KA(7) = {4, 7}.
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First we will quote some definitions from [7]. Let X be a subset of U . The
B-singleton lower approximation of X, denoted by apprsingleton

B
(X), is defined

by
{x | x ∈ U,KB(x) ⊆ X}.

The B-singleton upper approximation of X, denoted by apprsingleton
B (X), is

defined by
{x | x ∈ U,KB(x) ∩ X �= ∅}.

The B-subset lower approximation of X, denoted by apprsubset
B

(X), is defined by

∪ {KB(x) | x ∈ U,KB(x) ⊆ X}.

The B-subset upper approximation of X, denoted by apprsubset
B (X), is defined

by
∪ {KB(x) | x ∈ U,KB(x) ∩ X �= ∅}.

The B-concept lower approximation of X, denoted by apprconcept
B

(X), is
defined by

∪ {KB(x) | x ∈ X,KB(x) ⊆ X}.

The B-concept upper approximation of X, denoted by apprconcept
B (X), is defined

by

∪ {KB(x) | x ∈ X,KB(x) ∩ X �= ∅} = ∪ {KB(x) | x ∈ X}.

For Table 3 and X = {5, 6, 7}, all A-singleton, A-subset and A-concept lower
and upper approximations are:

apprsingleton
A

(X) = {6},
apprsingleton

A (X) = {2, 5, 6, 7},
apprsubset

A
(X) = {6},

apprsubset
A (X) = {2, 4, 5, 6, 7},

apprconcept
A

(X) = {6},
apprconcept

A (X) = {2, 4, 5, 6, 7}.

3 Probabilistic Approximations

Definitions of lower and upper approximations may be extended to the proba-
bilistic approximations [6]. In our experiments we used only concept approxima-
tions, so we will cite the corresponding definition only for the concept approxi-
mation. A B-concept probabilistic approximation of the set X with the threshold
α, 0 < α ≤ 1, denoted by apprconcept

α,B (X), is defined by

∪{KB(x) | x ∈ X, Pr(X | KB(x)) ≥ α},

where Pr(X | KB(x)) = |X ∩ KB(x)|
|KB(x)| is the conditional probability of X given

KB(x).
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Since we are using only B-concept probabilistic approximations, for the sake
of simplicity we will call them B-probabilistic approximations. Additionally,
if B = A, B-probabilistic approximations will be called simply probabilistic
approximations and will be denoted by apprα(X).

Note that if α = 1, the probabilistic approximation is equal to the concept
lower approximation and if α is small, close to 0, in our experiments it is 0.001,
the probabilistic approximation is equal to the concept upper approximation.

For Table 3 and the concept X = {5, 6, 7}, there exist the following distinct
probabilistic approximations:

appr1.0(X) = {6},
appr0.5(X) = {4, 6, 7},
appr0.333(X) = {2, 4, 5, 6, 7}.

A special probabilistic approximations with α = 0.5 will be called middle
approximations.

4 Experiments

Our experiments are based on eight data sets, all taken from the University of
California at Irvine Machine Learning Repository. Essential information about
these data sets is presented in Table 5. All eight data sets are numerical.

Fig. 1. Error rates for two series of data sets originated from the Australian data set.
Incomplete data are denoted by “?”, inconsistent data are denoted by “inc”

For any data set we created a series of incomplete data sets in the following
way: first, the numerical data set was discretized using the agglomerative cluster
analysis method [1]. Then we randomly replaced 5 % of specified attribute values
by symbols of “?”, denoting missing attribute values. After that, we replaced ran-
domly and incrementally, with an increment equal to 5 %, new specified attribute
values by symbols “?”, preserving old ones. The process continued until we
reached the point of having a case with all attribute values being “?”s. Then
we returned to the one but last step and tried to add, randomly, 5 % of “?”s
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Fig. 2. Error rates for two series of data sets originated from the Ecoli data set. Incom-
plete data are denoted by “?”, inconsistent data are denoted by “inc”

Fig. 3. Error rates for two series of data sets originated from the Hepatitis data set.
Incomplete data are denoted by “?”, inconsistent data are denoted by “inc”

Fig. 4. Error rates for two series of data sets originated from the Image Segmentation
data set. Incomplete data are denoted by “?”, inconsistent data are denoted by “inc”



422 P.G. Clark et al.

Fig. 5. Error rates for two series of data sets originated from the Ionosphere data set.
Incomplete data are denoted by “?”, inconsistent data are denoted by “inc”

Fig. 6. Error rates for two series of data sets originated from the Iris data set. Incom-
plete data are denoted by “?”, inconsistent data are denoted by “inc”

Fig. 7. Error rates for two series of data sets originated from the Pima data set.
Incomplete data are denoted by “?”, inconsistent data are denoted by “inc”
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Fig. 8. Error rates for two series of data sets originated from the Yeast data set.
Incomplete data are denoted by “?”, inconsistent data are denoted by “inc”

again. If after three such attempts the result was still a case with “?”s as values
for all attributes, the process was terminated. For example, for the australian
data set such maximum for missing attribute values is 60 %.

For each original numerical data set, a series of inconsistent data sets was
created by discretization, using the same agglomerative cluster analysis method
as for the missing data sets. However, different levels of inconsistency were used
as a stopping condition for discretization. Note that due to the nature of dis-
cretization, only some levels of inconsistency were possible to accomplish, so the
levels of inconsistency are not as regular as percentage of missing attribute val-
ues. For example, for the australian data set these levels are 3.48, 9.71, 15.22
etc. instead of 5, 10, 15, as for the percentage of missing attribute values, though
we tried to keep both series as close as possible.

Our experiments were conducted on 141 data sets, 71 among them were
incomplete and 62 were inconsistent, 8 discretized and consistent data sets were
used as special cases for both incomplete and inconsistent data sets.

For every data set we used three different probabilistic approximations for
rule induction (lower, middle and upper). Thus we had 24 different approaches to
rule induction. For rule induction we used the MLEM2 rule induction algorithm,
a part of the Learning from Examples based on Rough Sets (LERS) data mining
system [3].

For these 24 approaches we compared incomplete data with inconsistent ones
for the same type of probabilistic approximations, using the Wilcoxon matched-
pairs signed rank test, with 5 % level of significance, two-tailed test. Since we
had 71 incomplete data sets and 62 inconsistent data sets, missing pairs were
constructed by interpolation. Results of experiments rates for which there were
no matching results, either incomplete or inconsistent, are not depicted in Figs. 1,
2, 3, 4, 5, 6, 7 and 8.

Results of our experiments, presented in Figs. 1, 2, 3, 4, 5, 6, 7 and 8, are:
among 24 approaches, in 12 inconsistency was better (the error rate was smaller
for inconsistent data). The australian data set was an exception, for all three
probabilistic approximations the error rate was significantly smaller for incom-
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Table 5. Data sets

Data set Cases Number of attributes Concepts

Australian 690 14 2

Ecoli 336 8 8

Hepatitis 155 19 2

Image Segmentation 210 19 7

Ionosphere 351 34 2

Iris 150 4 3

Pima 768 8 2

Yeast 1484 8 9

plete data sets. For remaining nine approaches the difference between incom-
pleteness and inconsistency was statistically insignificant.

In summary, there is evidence that inconsistency in data sets is less harmful
for mining data than incompleteness, though more research is required.

5 Conclusions

As a results of our experiments, conducted on 141 data sets, including 71 incom-
plete data and 62 inconsistent, in 12 out of 24 combinations of the type of
the original data set and a type of approximation, the error rate was smaller
for inconsistent data. For one data set, combined with all three probabilistic
approximations, the error rate was smaller for incomplete data. For remaining
nine combinations the difference in performance was statistically insignificant.
Thus, we may claim that there is some experimental evidence that incomplete-
ness is generally worse than inconsistency for data mining.
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