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Abstract. In this paper we present a Bag-of-Words (also known as a
Bag-of-Features) method developed for the use of its implementation in NoSQL
databases. When working with this algorithm special attention was brought to
facilitating its implementation and reducing the number of computations to a
minimum so as to use what the database engine has to offer to its maximum. The
algorithm is presented using an example of image storing and retrieving. In this
case it proves necessary to use an additional step of preprocessing, during which
image characteristic features are retrieved and to use a clustering algorithm in
order to create a dictionary. We present our own k-means algorithm which
automatically selects the number of clusters. This algorithm does not comprise
any computationally complicated classification algorithms, but it uses the
majority vote method. This makes it possible to significantly simplify compu-
tations and use the Javascript language used in a common NoSQL database.

Keywords: NoSQL database � Image classification � Bag-of-Features �
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1 Introduction

Relational databases enjoy a considerable popularity and have been used for a number
of decades now. Their main advantages include durability of data storage, transaction
processing, relational model, error handling and the SQL language. However, in dis-
tributed systems and in the case of data with different structure so-called NoSQL
databases are used much more frequently. For Big Data processing special databases
are developed, which work on special file systems supported for instance in Hadoop
and dedicated frameworks for fast and parallel processing (e.g. MapReduce). NoSQL
databases are different from commonly-used relational databases (RDBMS) in terms of
the following aspects: not using the SQL language, not having to follow the ACID
model (Atomicity, Consistency, Isolation, Durability), and also having no relationships
and tables of a defined structure.

One of the tasks in which a NoSQL database can be used is effective browsing and
searching a large number of images. NoSQL databases can successfully store enormous
amounts of data including image data. In solving image processing and retrieval
problems algorithms from different fields of computational intelligence are used [18, 22,
23, 25], in particular fuzzy systems [14, 15], rough neuro-fuzzy systems [16, 17, 26],
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evolutionary algorithms [20, 24], swarm intelligence [27–29], mathematics [21, 30, 31],
decision tree [19] and data mining [32, 33]. One of the most popular and widely spread
algorithms used for indexation and image retrieval is the bag-of-words model (BoW)
[4, 5], known also as a Bag-of-Features (BoF) or Bag-of-Visual-Words. This algorithm
is based on a concept of text search methods within collections of documents. Single
words are stored in dictionaries with emphasis on appearing in various documents. The
BoW in a similar way creates dictionaries of characteristic features appearing in images.
Additionally, the classification process enables during the search to determine what type
of image class we are dealing with.

Practical aspects of the BoF algorithm implementation in image classification are
rather rare in the literature. There are many modifications of this algorithm which, for
example, use various image features [6–8] or various clustering and classification
algorithms [9, 10], but there are no examples of practical applications of this algorithm.
Most simulations and experiments are carried out with the use of OpenCV library,
Matlab environment or multi-core processors. In practice direct usage of this particular
kind of algorithms is connected with considerable computing capacities required when
using classification algorithms and having no information concerning using data bases.
The possibility of using a NoSQL database allows us to make a quite simple use of a
number of computers to store large amount of data and do parallel computing. In most
cases parallelism can be successfully carried out on a database which has been properly
managed.

The article is divided into a few sections. Section 2 outlines the algorithms of
which the whole image storing system. Section 3 presents the results of the experi-
mental research testing the efficiency of the presented algorithms as well as the details
connected with the NoSQL database being used for the implementation of this method.
The conclusions in the last section present ideas concerning further improvement of the
system efficiency.

2 Description of Algorithms

We are considering herein a set of given images Ii, where i ¼ 1; . . .; IM and M is the
number of all images. Each image Ii has a class cðIiÞ assigned to it, where cðIiÞ 2 X,
X ¼ fx1; . . .;xCg is a set of all classes and C is the number of all classes. The images
Ii make the initial data which will be stored in the NoSQL database and will be used to
create a dictionary for the BoF method (see Sect. 2.3). K-means algorithm (see
Sect. 2.2) groups characteristic features retrieved from an image concurrently reducing
their number and creates words included in the dictionary. The modification of the
k-means algorithm which we introduce allows for an automatic selection of the number
of groups. Image characteristic features are obtained as a result of the operation of the
SURF algorithm. (see Sect. 2.1).
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2.1 SURF

SURF (Speeded Up Robust Features) is a robust local feature detector, first presented
in [1]. It is partly inspired by the SIFT descriptor [2]. SURF gives description of an
image by selecting its characteristic features. First, an integral image and filter
approximation of block Hessian determinant is applied. Next, to detect interesting
points, a special Hessian-matrix approximation is used. For features, orientation is
based on information from circular region around the pixel. Then, a square region
aligned to selected orientation is constructed and the SURF descriptor is extracted from
it. It uses the sum of the Haar wavelet responses around an interest point. The local
feature around the point is described by a 64-number vector x ¼ x1; . . .; x64½ �.

2.2 Modified k-Means Algorithm

The k-means algorithm is the most frequently used clustering algorithm used in the
BoF. Its only drawback involves having to define the initial number of classes c. In this
section we present an automatic selection mechanism of the number of classes during
the operation of this algorithm. We have used the growing method used in the Growing
Self-Organizing Map (GSOM) algorithm [3]. In that method a cluster is divided when
the number of its data exceeds a certain threshold value ϴ. Operation of the said
algorithm starts with setting the threshold value ϴ and defining two clusters (c ¼ 2). In
the subsequent steps the algorithm works as a classic k-means with the only difference
being that at the end of each iteration the number of points belonging to each cluster
sj; j ¼ 1; . . .; c is checked. If the number sj exceeds the threshold already set at ϴ, then
another cluster cþ 1 is created. The algorithm is presented below in detail.

Let X ¼ x1; . . .; xn be a set of points in d-dimensional space, and V ¼ v1; . . .; vc be
cluster centers, where n is the number of samples, xi ¼ xi1; . . .; xid½ �, c is the number of
clusters, and vj ¼ vj1; . . .; vjd

� �
:

1. Let the number of cluster c ¼ 2. Determine ϴ.
2. Randomly select c cluster centers vj, j ¼ 1; . . .; c, for example:

vji ¼ rand min xij
� �

;max xij
� �� �

; ð1Þ

where randða; bÞ is a random number generated from the interval ½a; b�.
3. Calculate the distance dij between each data point xi and cluster centers vj:

dij ¼k xi � vj k; ð2Þ

where k � k is a distance measure between two vectors (e.g. Euclidian or Manhattan
distance).
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4. Assign the data point xi to the cluster center vs whose distance from the cluster
center is a minimum of all the cluster centers

xi 2 vs ! dis � dim; m ¼ 1; . . .; c ð3Þ

and increase counter of winnings ss ¼ ss þ 1.

5. Recalculate the new cluster center using:

vi ¼ 1
ci
Rci
j¼1xj; ð4Þ

where ci represents the number of data points in i-th cluster.

6. If in the center s the number ss is greater than the threshold value ϴ, create a new
cluster, c :¼ cþ 1 and

vc ¼ xrandðjÞ; ð5Þ

where randðjÞ generates a random index of point x belonging to center vs.

7. Remove clusters for which ss ¼ 0. Refresh the number of clusters c.
8. If no data point was reassigned, then stop; otherwise, repeat starting from step 3.

As a result of the algorithm operation we obtain c clusters with the centers in points
vj, j ¼ 1; . . .; c.

2.3 The Bag-of-Features Algorithm

The classic Bag-of-Features algorithm used in image classification most frequently uses
classifiers (e.g. Support Vector Machine – SVM is used) during the stage when the
decision is being made on the image class. The BoF comprises several stages:

1. Generate of characteristic features from images, which are most frequently saved in
the form of number vectors.

2. Characteristic features are clustered and obtained clusters are treated as words,
which create a dictionary.

3. Words (cluster centers) to which characteristic features of a given image belong
make a histogram. Each element in the histogram specifies how many times a given
word is present in the histogram.

4. The classifier is learnt to recognise histograms and to assign particular classes to
them.
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The points listed above show that it is possible to store three groups of data in a
database, i.e. image characteristic features, centers of the clusters found, and histograms
presenting membership of features in clusters. After a classifier has been learnt, it no
longer needs to have access to the database.

A problem occurs when a query is made. The query image needs to have its
features assigned to specific clusters in such way so as to create a histogram and to have
it classified. This process requires a large number of computations given in formula (2).
Thus the data-storing cluster centers need to be taken from the database. We can use
this situation to our advantage and instead of using an ordinary query taking required
data we can use the database engine in order to do computations and classification
concurrently. A complex classifier (e.g. the abovementioned SVM) can be successfully
replaced by the majority vote. We present below a BoF algorithm version which
consists of two modules (one module – preparing data and the other – the classification
process), which has been created in order to be able to use a NoSQL database.

The first of the BoF algorithm modules is supposed to prepare the database by
creating a dictionary of characteristic features of sample images (to be used in the
system learning process). This is carried out in a few steps presented below.

1. Starting operation of the algorithm generating image characteristic features. In our
case we have used a well-known and fast SURF algorithm [1] which provides
64-number vectors xi ¼ xi1; . . .; xid½ � describing the surrounding of a characteristic
point, where i ¼ 1; . . .; L, L – the total number of all characteristic points, d – the
dimension of the vector describing a characteristic point (d ¼ 64).

2. Starting operation of the k-means clustering algorithm. We have used the algorithm
version presented in Sect. 2.2. As a result we obtain c clusters with the centers in
points vj, j ¼ 1; . . .; c, which are treated as words in the BoF dictionary.

3. The value of the number of classes i of cluster j is calculated and defined as kji. This
value is computed by counting the points xn which belong to the center j provided
that xn 2 I and c Ið Þ ¼ xi:

kji ¼ RL
n¼1dnj ið Þ; j ¼ 1; . . .; c; i ¼ 1; . . .;C; ð6Þ

Where

dnj ið Þ ¼ 1 if dnj\dnm for xn 2 I and c Ið Þ ¼ xi; m ¼ 1; . . .; c; j 6¼ m
0 otherwise

�
ð7Þ

The variable dnj ið Þ is an indicator if a cluster vj is the closest vector (a winner) for
any sample xn from an image I and c Ið Þ ¼ xi. Next, the values kji are normalised:

kji ¼ kjiP
j¼1;...;c kji

ð8Þ
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4. Saving the values of centers vj together with the information about the number of
classes kji in the database.

The classification process, i.e. the process testing whether a given query image
belongs to a particular class, requires that an additional pre-processing module be
applied. This module is supposed to:

1. Use a feature extraction algorithm (the SURF algorithm – see Sect. 2.1) on query
image Iq in order to obtain values of characteristic features xqi , i ¼ 1; . . .; Lq, Lq –

the number of obtained features.
2. Save points xq in the database.
3. Assign points xq to clusters in such way so as to compute values kqi . Computations

are carried out as follows:

kqi ¼ RLq
n¼1anðiÞ; i ¼ 1; . . .;C ð9Þ

anðiÞ ¼ kji if dqjn � dqmn; j 6¼ m
0 otherwise

�
ð10Þ

Where

dqjn ¼ k vj � xqn k; j ¼ 1; . . .; c ð11Þ

and

dqmn ¼ k vm � xqn k; m ¼ 1; . . .; c: ð12Þ

4. Assigning to class cðIqÞ is done by the majority vote checking the maximum value kqi :

c Iq
� � ¼ argmaxi¼1;...;c k

q
i ð13Þ

The algorithm facilitates an easy implementation by using only one SQL query. The
algorithm’s details and experimental research are presented in Sect. 3.

3 Experimental Research

In this section we present the results of the BoF algorithm discussed in Sect. 2.3
together with the modified k-means algorithm (outlined in Sect. 2.2). Practical appli-
cation of the presented method in image classification with the use of the database
needs two modules to be used:
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– the module which is supposed to fill with the use of the Bag-of-Features algorithm
the database with the cluster center values and also with the information on which
class they belong to, i.e. creating the dictionary. The module creating the dictionary
for the database should comprise the following steps:
• preprocesing, i.e. extracting characteristic features from training images,
• starting the operation of the k-means algorithm in order to perform clustering of

the data and obtaining clusters with image characteristic features,
• save the above data in the database;

– the module preparing for query image classification and saving its features in the
database. It also comprises a few steps:
• preprocesing, i.e. extracting characteristic features from a query image,
• saving data in the database,
• performing a query which will produce information on the class to which a

particular image belongs.

Preprocessing algorithms were implemented in the Java language with the use
JavaCV [11] library function. JavaCV is a library which adopts functions available in
OpenCV [12] for the Java language needs. The research was performed on the Caltech
101 image database [13]. Six sample categories comprising motorbikes, car sides,
revolvers, airplanes, leopards and wrenches were selected. Out of the remaining group
of images, 20 % are randomly selected and marked as a set of testing images. During
the operation of the SURF algorithm over 100,000 characteristic points are identified in
the database for 180 images. The main value which is used to compute classification
efficiency is a percentage of correctly classified images.

Three structures are used in data storing: learning image features, testing image
features, and for values of the cluster centres. Structures are stored in collections:

– train_images and eval_images – collections storing the features values of
learning and testing images have the following values:

imageId – image identifier, file name,
classId – image class,
pk1, pk2, …, pk64 – values of the feature vector obtained as a result of the
SURF algorithm operation.

– centers_500 – the collection stores cluster centers and kji values (see formula
(8)):

center_id – cluster identification,
c1, c2, …, c64 – cluster center values,
k1,…,k6 – kji values for each of the class.

The script performing the query image classification comprises two stages. The
centers_temporary collection is created during the first stage and it stores tem-
porary results of computations checking membership of query image features in
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particular clusters. Particularly, values an ið Þ are computed here (according to formula
(10)) and values kji from cluster j that are closest to the sample n are returned for all
classes i. The script made for a commonly-used MongoDB database presents as
follows:

db.centers_temporary.drop(); 
db.eval_images.find( { imageId : IMAGE_ID }, {_id:0} 
).forEach( 
 function( feature ) { 
  var minDistance = { mm : -1 }; 
  db.centers_500.find().forEach( 
   function( center ) { 
    var oneDistance = { mm : 0,  
     imageId : feature.imageId,  
     class: [ center.k0, center.k1,  
          center.k2, center.k3,  
          center.k4, center.k5],  
     cluster_id : center.cluster_id }; 
    oneDistance.mm =  
     Math.abs(feature.pk0 - center.c0) +  
     Math.abs(feature.pk1 - center.c1) + 
     Math.abs(feature.pk2 - center.c2) +  
     ... 
     Math.abs(feature.pk63 - center.c63); 
    if ( minDistance.mm > oneDistance.mm ||  
       minDistance.mm == -1  ) {  
     minDistance = oneDistance;   
    } 
   } 
  ); 
  db.centers_temporary.insert( minDistance ); 
 } 
); 

The next step is to call the mapReduce function, which is supposed to compute
for each class the kqi value (according to formula (9)) and to classify an image by
applying the majority vote method according to (13):
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db.centers_temporary.mapReduce( 
 function() { 
  classId = 0; 
  for (var i=1; i<this.class.length; i++) { 
   if (this.class[classId] < this.class[i]) { 
    classId = i; 
   } 
  } 
  emit( classId, this.class[classId] ); 
 }, 
 
 function (key, values) { 
  return Array.sum( values ); 
 }, 
 { 
  query: { imageId: IMAGE_ID }, 
  out: "outputResults" 
 } 
); 

Table 1 presents the results of the operation of the algorithm for different ϴ values
(the parameter for the k-means method). The other columns present: ϴ threshold value,
the number of obtained clusters as a result of the operation of the k-means algorithm,
and also the efficiency (given in percentages) of image recognition accuracy for the
training and testing groups. As it can be noticed, the results proved best for h ¼ 50 and
h ¼ 100. However, as far as the number of obtained clusters is concerned, value
h ¼ 100 proves to be the best choice under this research.

Table 1. Percentage efficiency of image classification for the presented algorithm in relation to
h threshold value.

Threshold ϴ Number of clusters Train
[%]

Test
[%]

10000 38 45.50 46.85
5000 106 49.38 48.95
2000 852 60.49 53.84
1000 1958 68.61 63.63
500 3120 76.89 74.12
250 4077 80.77 73.42
100 7532 90.47 74.82
50 14591 94.70 74.82
25 28752 97.88 72.02
10 51915 99.83 71.32
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4 Conclusions

In this paper we present a Bag-of-Features algorithm which we have developed. This
algorithm works on the basis of a NoSQL database. We have presented the algorithm
implementation on the example of image storage and classification. We have modified
the classic Bag-of-Words algorithm so as to facilitate its implementation in a NoSQL
database without compromising its efficiency. The tests which we have carried out
show that the algorithm operates correctly, thus proving its efficiency. Although
operation of the BoF algorithm cannot be compared to other image-recognition algo-
rithms (e.g. a deep-learning network), it still proves efficient enough and simple in its
implementation so that it can be successfully used in applications working on less
sophisticated hardware. Better query efficiency can be achieved by means of reducing
lengths of the vectors describing particular image features. The methods which reduce
the number of dimensions can be used for this purpose and these methods, for instance,
include the PCA algorithm, or some other completely different feature generating
algorithms. Another possible procedure reducing the number of calculations is the
exclusions of those clusters which are the least likely to affect unequivocally image
class determination.
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