Towards a Comprehensive Formal Model
for Business Processes

Khalil Mecheraoui, Nabil Belala®) | and Djamel Eddine Saidouni

MISC Laboratory, University of Constantine 2 — Abdelhamid Mehri,
Constantine, Algeria
{mecheraoui,belala,saidouni}@misc-umc.org

Abstract. In order to enable enterprises to operate more effectively
and efficiently, providing a high reliability of the specification of busi-
ness processes is an active research subject. However, the proposed
approaches use limited models. WS-BPEL (or BPEL for short) is the
most well known and used orchestration language describing the Web
services composition in form of business process. However, BPEL lacks
a formal semantics. This paper introduces High-Level Time Open Work-
flow Nets with Action Duration model (HL-DToN) which is an extension
of Time Petri Nets with Action Duration (DTPN) for tackling different
aspects of business processes as far as possible. We use this model either
to specify WS-BPEL processes or to directly specify business processes.

Keywords: Business processes + Open workflow model - Data model-
ing - Time constraints - Action durations - True-concurrency semantics *
Formal specification

1 Introduction

To achieve its goals, an enterprise executes a collection of activities, sequentially or
in a concurrently, in a specific chronological and logical order, and possibly in dif-
ferent locations. This procedure, called business process, is designed to show how
and when the work is done with a beginning, an end, and identified inputs and
outputs. To improve business processes, Business Process Management (BPM) is
the key to align enterprises activities with the needs of their clients [1]. There-
fore, there are some aspects to be considered in BPM such as time constraints,
data manipulation, and structural properties of business processes. Furthermore,
with the emergence of new information technologies, the enterprises want their
customers and partners to be able to access quickly and directly to their func-
tionality. To achieve this, Web services are software systems designed to support
interoperability and carry out the business tasks over the web. However, as the
capability of completely separate Web services is limited, one have to create new
functionality by composing existing Web services in such way to interact together.
To achieve that, many languages that support the descriptions of orchestration
and choreography are proposed (e.g. [2-4] and [5]).

© Springer International Publishing Switzerland 2016

G. Dregvaite and R. Damasevicius (Eds.): ICIST 2016, CCIS 639, pp. 174-186, 2016.
DOI: 10.1007/978-3-319-46254-7_14

Towards a Comprehensive Formal Model for Business Processes 175

Web Services Business Process Execution Language (WS-BPEL) [5] is the
most well known and used composition language which defines business processes
by the orchestration of various partner interactions. However, WS-BPEL is
defined informally in natural language. Thus, it lacks a formal semantics which
allows a direct formal verification of well-functioning of web services. To solve
this problem, one can specify business processes written in a WS-BPEL process
through a formal model. Therefore, providing a formal semantics for BPEL
(BPEL4WS 1.1 [6] or its revision WS-BPEL 2.0 [5]) is a research subject in
several work using many approaches (e.g. [7-11]) based on various formal mod-
els. Nevertheless, many proposed approaches in the literature use limited mod-
els, either in terms of time characteristics, data modeling and manipulation, the
composition and the interactions among processes; or in terms of the use of the
interleaving semantics in low-level specification.

In this paper, we introduce and formalize High-Level Time Open Workflow
Nets with Action Duration (HL-DToN). It is an extension of Time Petri Nets
with Action Duration (DTPN) [12] which is proposed to deal with different
aspects of business processes by adding an interface for inbound and outbound
message exchange, and enabling representing and manipulating data. Further-
more, we consider both time constraints and action durations under a true-
concurrency semantics to naturally express concurrent and parallel behaviors
of processes. In fact, HL-DToN model can be considered as a convergence of
the three models: DTPN, HLPN [13] and oWFN [14] in which we can specify
WS-BPEL or directly specify business processes considering different aspects.

The remainder of this paper is organized as follows. First, we introduce in
Sect.2 some extensions of Petri nets. In Sect.3, HL-DToN are introducted.
Section4 is devoted to show strengths of HL-DToN by providing two pat-
terns for two activities of WS-BPEL 2.0. Finally, we give some conclusions and
perspectives of our work.

2 Preliminaries

2.1 Petri Nets

Petri nets [15] are both formal and graphical modeling formalism, allowing the
specification of distributed and concurrent systems by modeling states, events,
conditions, synchronization, etc. Formally, Q = (P, T, F, B) is a Petri net where
P is a set of places, T'r is a set of transitions such that PNTr = 0. B : PxTr — N
is a backward incidence function such that B(p;,t;) represents the arc weight
from t; to p; and F : P x Tr — N is a forward incidence function such that
F(p;,t;) represents arc weight from p; to t;.

2.2 High Level Petri Nets

High-Level Petri Nets (HLPN) are defined in the international standard IS0/IEC
15909-1 [13] developed in 2004. This standard is mainly providing a glossary of

176 K. Mecheraoui et al.

2] y X
A={134,5}
to B = {2,4,5)
X

> :Z X Z - Boolean arithmetic
- ’ ~ !
s 4 Greater then or equal
x:A,y:B

Fig. 1. An example of HLPNG

terms and abbreviations, the mathematical conventions needed for the definition
of HLPN, the semantic model for HLPN, the formal definition for High-Level
Petri Net Graph (HLPNG) which is the graphical form of HLPN, and the formal
concepts of marking, enabling and transition rules.

A High-Level Petri Net Graph (HLPNG) includes a graph and a declaration
part in which all the types, functions, constants and variables used for the graph
are defined. Note that using HLPNG, we can find transition conditions (boolean
expressions) associated with transitions, each place may contain a multiset of
tokens, and over arcs we can find annotations (constants, variables and function
images). An example of HLPNG is depicted in Fig. 1.

2.3 Workflow Nets

The workflow (workflow process) is the automation of a business process, in
whole or part [16]. To model workflow processes, van der Aalst [17] defines the
classical workflow net (WF-net) which is a special class of Petri nets satisfying
two requirements. First, it has two special places: ¢ and o. ¢ is a source place,
i.e., °i = 0; and o is a final place, i.e., 0° = (. A token in 4 corresponds to an
instance that must be treated while a token in o corresponds to an instance that
has been treated. Furthermore, for every node there exists a path from i to o
which covers the node.

It is important to note that WF-nets ignore important aspects such as tem-
poral characteristics of processes. Also, this model is unable to handle the inter-
action between workflow processes. Therefore, there are many extensions of WF-
nets in the literature (see e.g. [14,18] and [19]).

Based on van der Aalst WF-nets and Timed Petri Nets of Jenner [20], Shai
proposes a workflow net model handling the durations of tasks by associating
with each transition an amount of time. This temporal extension is called Time
WF-nets (TWF-nets) [18]. In this model, the tokens in an input place of a
transition which can be fired ¢ are removed by its firing, and the output places
cannot be marked before the expiry of the duration associated to ¢t. Thus, the

Towards a Comprehensive Formal Model for Business Processes 177

Ds

Fig. 2. Open workflow net

semantics of TWF-nets model is similar to the semantics of DTPN. We note that
this model has weaknesses. For instance, it is not suitable for the composition
of several processes.

In general, workflow processes are supposed to communicate with other
processes. Therefore, in [14] the authors propose an open version of classical
workflow nets named open workflow nets (0oWFN). This open version is used to
model workflow processes which communicate with other processes via commu-
nication channels (communication places). Graphically, a oWFN is surrounded
by a dashed box, with the interface places. Also, a transition ¢ connected to an
input (resp. output) interface place p is labeled with ?p (resp. !p). Note that this
open model ignores temporal characteristics of processes too. As an example,
Fig. 2 shows an oWFN with three interface places (the input places ps and ps
and the output place p3), an initial place pg, and two final places pg and pr.

We know that in some real scenarios we cannot precisely determine the exe-
cution duration of an activity but it can be done in a time interval. In [19],
the authors propose to adopt the Time Petri Nets of Merlin [21] to provide an
extension of workflow nets called Time open Workflow Nets (ToWF-nets). In
fact, this model associates two dates min and max with each transition of an
open workflow net to define its interval. However, note that this model does not
support data modeling and manipulation.

As we have seen, the different workflow nets presented above have weaknesses.
Also, it is important to note that all these extensions are not based on a true-
concurrency semantics.

2.4 Time Petri Nets with Action Duration

In [12], Time Petri Nets with Action Duration (DTPN), which can be considered
as a generalization of Merlin’s TPNs [21], T-TdPNs [22] and P-TdPN [23], are
proposed. This model supports both time constraints and action durations under
a true-concurrency semantics. A time constraint (temporal interval) associated
to a transition ¢ defines the firing interval in which ¢ can be fired while an action
duration indicates the duration of its corresponding action. A true-concurrency

semantics was given for DTPN in terms of Durational Action Timed Automata
(DATA) [24].

178 K. Mecheraoui et al.

2 Pl@ Ps

10

t,a . bLa > t,a
[2,4],5 “[2,4],5 [2,4],5
2] P2 P2
(a) (b) (c)

Fig. 3. Marking in DTPN

In DTPN, there are two sets of tokens, namely unavailable tokens (or bound
tokens) and available tokens (or free tokens). Tokens are put on the right side
of an output place of a transition ¢ as long as the actions associated to this
transition are running. We call these tokens unavailable tokens. An unavailable
token becomes available at the end of the execution of the associated action.
Hence, it is put at the left side. As an example, Fig. 3 describes a marked DTPN
in which the token in the input place p; became available at the time 7.

Definition 1 (DTPN). Let T be a non-negative temporal domain (like QT
or RT) and Act be a finite set of actions, i.e. an alphabet'. A Time Petri
Net with Action Duration (DTPN) on T and of support Act is a tuple N =
(P,Tr,B,F,\,SI,I") such that

- Q= (P,Tr,F, B) is a finite Petri net, i.e. |PUTr| € N.;

-~ A:Tr — Act U {7} is a labeling function of a DTPN. If A(t) € Act then t is
called observable or external;

- SI:Tr —T x TUoo is a function that associates to each transition a static
firing interval;

— I': Act — T is a function that associates to each action its static duration.

In [12], a true-concurrency semantics is given to DTPN in terms of Durational
Action Timed Automata.

3 High-Level Time Open Workflow Nets with Action
Duration

3.1 Time Open Workflow Nets with Action Duration (DToIN)

Given that workflow services are supposed to communicate with other work-
flow services, and that time in workflow processes is very important and crucial
to determine and control activities life cycle, we employ Time Petri Nets with
Action Duration model in the context of workflow processes. We provide the

! Assuming that 7 ¢ Act (7 indicates inwisible action, also known as silent or internal
action).

Towards a Comprehensive Formal Model for Business Processes 179

formal model Time Open Workflow Nets with Action Duration (DToN) which
is extended from DTPN as an open variant adapted to workflow. In fact, it
is enriched with an interface for joining each DToN pattern with other DToN
patterns to allow inbound and outbound message exchange. Specifically, it is
enriched with communication places for asynchronous communication in which
each communication place of a DToN pattern represents a channel to send
(receive) messages to (from) other DToN patterns.

Definition 2 (DToN). A Time Open Workflow Net with Action Duration is
a Time Petri Net with Action Duration PN = (P,Tr,F,B,\,S1,I") with

— Two sets: Pi,, Poyt € P such that ¥Vt € Tr : B(p,t) = 0,Yp € Pi, and
Vt e Tr: F(p,t) = 0,Vp € Poy;

~ An initial marking My and a set of final markings 2 such that VM € 2 : ft €
Tr,M[t) and VM € 2U{Mp}: M(p) = 0,Vp € P;, U Pyys.

According to Definition 2, the set of places P contains inner places and also
two sets of special places that are P;,, and P,,;. These two sets represent respec-
tively interface input places which are input places, not output, and interface
output places which are output places, not input. Also, in DToN, two conditions
must be met: no transition can be fired at any final marking, and in the initial
and the final markings, the interface places should not be marked. Finally, note
that DToN model considers both time constraints and action durations under a
true-concurrency semantics.

Graphically, a DToN is surrounded by a dashed frame, with the interface
places in which all interface places have a second label depicted outside the place.
This latter is used for the composition or to show the purpose of the place. We
note that initial and final places are always labeled respectively by Initial and
Final. An example is shown in Fig.4 which represents a DToN pattern named
X and contains: two inner places p; and ps, and four interface places on the
dashed frame. Interface places are the initial place Initial, the final place Final,
the interface output place o, and the interface input place (.

In order to compose open workflow nets, some approaches are provided. In
[14] Massuthe, Reisig, and Schmidt propose the composition of two oWFN by

|
: t, ac, ty,ac to, acy |
| lay b0, [ay, by, Dy (a0 bol, Dy |
|

} Initial
} Po

e |) — ————

Fig. 4. DToN pattern X

180 K. Mecheraoui et al.

sharing input and output elements in common, in which the composition of two
oWFN A and B is an oWFN. Each input interface place of A must be joined with
an output interface place of B and turns into an inner place if these two places
have the same identifier, and vice-versa. However, it is important to note that
this approach only supports the composition of two oWFN, no more. In [25], the
authors propose the composition of Timed Open Workflow Nets (ToN) by adding
a mediation net to deal with message mismatches in which the composition of two
ToN A and B via a mediation net MN is called Mediation-Aided Composition
of ToN (MToN).

In this paper, we propose a simple approach to compose DToN patterns. We
model each process in a composition by a DToN pattern. All interface places
have a second label (label 2) depicted outside the place in which the interface
places of these several patterns, only which they have the same label —label 2—,
are joined without turning them into inner places. Except initial and final places
because an initial place can generally be joined either with another initial place
or with a final place (e.g. to sequentially compose patterns).

3.2 High-Level Time Open Workflow Nets with Action Duration

To model data flow and data manipulation based on the international standard
ISO/IEC 15909-1 [13], we extend Time Open Workflow Nets with Action Dura-
tion to High-Level Time Open Workflow Nets with Action Duration (HL-DToN).
This high-level model allows us to completely integrate data while such data can
also be ignored by moving to DToN.

Definition 3. A High-Level Time Open Workflow Nets with Action Duration
is a tuple HN = (P, Tr,F, B,\,SI,I", D, Type, My) where

-~ N = (P, Tr,F,B,\,SI,I") is a DToN with F,B : TR — ®PL? are the Pre
and Post mappings with TR = {(t,m)|t € Tr,m € Type(t)} and PL =
{(p,9)lp € P,g € Type(p)};

— D is a non-empty finite set of domains. Fach element of D is called type;

— Type : PUTr — D is a function used to assign types to places and to determine
transition mode;

- My € ®PL is a multiset called the initial marking of the net.

Transition mode is defined such as in [13]. It is an assignment of values to
the transition variables (variables that occur in the transition condition and the
annotations of the arc involving the transition) that satisfies the transition con-
dition. F' function determines token demands (multisets of free tokens) on places
for each transition mode, and B function determines output tokens (multisets
of bound tokens) for places for each transition mode.

Note that Definition 3 covers important aspects of data modeling and manip-
ulation. Graphically, places may contain a multiset with two kinds of tokens
(available or unavailable tokens). Over arcs we can find constants, variables and

2 ®PL is the set of multisets over PL.

Towards a Comprehensive Formal Model for Business Processes 181

function images. Transitions can be associated with boolean expressions (tran-
sition conditions). Thus, a transition is annotated in this model by its name,
a name of its associated action, a time interval (firing interval), a duration of
execution, and a boolean expression (the transition condition).

Marking of HL-DToNN. A marking M is a multiset of available and unavailable
tokens of correct type for all places. Formally, M € ®PL.

Enabling a Transition. A transition ¢ € T'r is enabled in a transition mode ¢
and a marking M iff

Vp € P, Fy(p,t) < M(p)

Enabling free tokens are the free tokens resulting from evaluating input arc’s
expression in and with respect to a specific transition mode.

Firing Rule. Assuming that the firing interval of a transition ¢ is [min, max]
and t is enabled in a transition mode at the time 9, ¢ will be fired in the time
interval [+ min, ¥ + mazx]. When t is fired, its input arc enabling free tokens
with respect to that mode are dropped from the left side of the input place
(the available input place’s marking) and the multiset of tokens of the evaluated
output arc expression is added to the left side of the output place (the unavailable
input place’s marking).

Formally, The firing of ¢ € T'r in transition mode t and marking M, results
a new marking M’ defined by:

Vp € P,M'(p) = M(p) — F(p,t) + By(p.t)

Now, we can make a comparison among Sect. 2 models and HL-DToN. Table 1
shows that HL-DToN overcomes the others. In each column, we use ‘+’ for yes
and ‘-’ for no. The meaning of the column headers are as follows: A: supports
the control of data flow using arc annotations and transition conditions. B: able
to use complex structured data as tokens. C: adapted to workflow. D: suitable
for the composition of several processes to handle the interaction between them.
E: able to handle the duration of tasks. F: supports both time constraints and
action durations under a true-concurrency semantics.

Table 1. Comparison of different formal models

A/B/C|/D|E|F A/B C|D E|F
PN === =[=] owFN — =4+ =]-
HLPN +/+ - —|—|—| ToWFN-net| — — |+ |+ |+ |—
WF-net |—|—- +|—|— —| DTPN — === |+]+
TWF-net — | — |+ — |+ —| HL-DToN |+ + + |+ |+ +

182 K. Mecheraoui et al.

g
3

‘D2 e :
P1 g b2

res

t,, garde;
[1,2],1

t3, garde,
[1,2],1

=<
3
(%)
ik
(=]

e _——

Finall Final2
P3 Ps

Fig. 5. Pattern for checking the result of z + f(y)

As example, we provide the HL-DToN pattern depicted in Fig. 5. This pattern
is used to check if the result of x+ f(y) is negative or not. The control flow starts
with an available token in the initial place pg and it ends either with an available
token in the final place ps or in the final place py.

First, transition ¢; allows us to calculate the sum of x plus f(y). The result
of this sum is saved in the variable res. In the second step, this information is
analyzed using both t5 and 3. Either the result is greater than or equal zero
(res > 0) and therefore t3 will be fired after a period between 1 and 2 units of
time, or the result is negative and therefore to will be fired after a period between
1 and 2 units of time. In the first case, p4 will be marked by an available token
after 1 unit of time. In the second case, p3 will be marked by an available token
after 1 unit of time.

4 An HL-DToN Semantics for WS-BPEL

WS-BPEL is the most used language to specify the behavior of business processes
based on Web services. In our approach, which is similar to the one in [9], given
that the construction of the WS-BPEL process is performed by the composition
of its constructs, it is clear that each construct should be modeled, at least, by
an HL-DToN pattern. This latter has an interface used to join this pattern with
other patterns. The composition of all patterns forms an HL-DToN representing
a formal semantics for the WS-BPEL process.

Thus, we must provide at least one pattern of each basic and structured
activity, links, and the four handlers. In this paper, we provide two HL-DToN
patterns. One for (wait) activity to specify a delay for a certain period of time,

Towards a Comprehensive Formal Model for Business Processes 183

|
t, waiting !
[a, b], for |

Final () Initial
D2 D1

Fig. 6. A pattern for a (wait) activity

and the other for the activity (forEach) in the case of parallel = yes. Other
patterns of the other activities can be found in [26].

(wait) Activity. A (wait) activity is used to specify a delay for a certain period
of time or until a certain deadline is reached [5].

The pattern of a (wait) activity to specify a delay of a certain period of time

is given in Fig.6. In this pattern, we represent the delay for a certain period
by the duration of the action associated to transition ¢. It is clear that this
transformation is very easy due to the existence of action durations associated
to transitions in HL-DToN.
(forEach) Activity. The (forEach) activity iterates its child scope activ-
ity exactly N + 1 times where N equals finalCounterValue minus
startCounterValue. If parallel=yes then this is a parallel (forEach) where the
N + 1 instances of the enclosed (scope) activity should occur in parallel [5].

The pattern of the activity (forEach) in the case of parallel=yes is depicted
in Fig. 7. To simplify the pattern and such as they are defined in [9], we add the
object variable and we use the variable X (in capital letter) representing a set
of variables. Also, we use read arcs witch are unfolded to loops. Furthermore, it
is important to note that this pattern represents the case in which the optional
element (completionCondition)® does not exist.

As depicted in Fig. 7, if the initial place is marked by an available token, the
stored data in the object Obj will be read using two read arcs. Its values are
saved in X and analyzed using ¢; and t4. If an error* occurs (EB = true), the
error information will be saved in error and the interface place failed will be
marked. This latter must be joined with the associated interface place on a pat-
tern of a fault handler (labeled by failed). If there is not an error (FB = false)
and then the two places psy et ps become marked by available tokens, the two
transitions to and t3 will be used respectively to evaluate the expressions in
finalCounterValue and startCounterValue. Their two results will be respec-
tively saved in fcv and scv. Thereafter, the transition conditions fcv > scv (t5)
and fcv # scv (tg) must be evaluated®. If fcv > scv (t5), the two variables fcv
and scv are used to calculate the arc weight from t¢5 to the initial place (pg) of

3 Tt is used to force early termination of some of the children (in the parallel case) [5].

4 For instance, because of a selection failure.

5 In WS-BPEL, “if startCounterValue is greater than finalCounterValue, then the
child (scope) activity must not be performed and the (forEach) activity is com-
plete.” [5].

184 K. Mecheraoui et al.

< Data >
[Variable]
Initial

_______________ g S I
|
b's X :
|
|
|
ty acy ty.acy I
[as:bs]. D, | [a1.b:].D; ¢ o :
EB = true I :
l
error |

failed

t,.expFecv
[a;.b;].D;

ta,expScv
[a3,b5].D;

S
Pa
|
|
|
secv :
4 t.acs :
Pe Q fev [26:06l.Ds sep (57’7 :
fev & scv |
T
|
va ts.acs scv :
[as.bs). Ds . |

;> 5 :
D

(fev-scv)+1

Fig. 7. Pattern for (forEach) activity in case of parallel=yes

the enclosed (scope). This allows us to iterate the child scope N + 1 times in
parallel where N equals (fcv — scv) + 1 (this is thanks to DTPN semantics).

Finally, it is important to note that this approach differentiates from the
already existing approaches by covering different characteristics of business
processes. For instance, it covers the aspect of action duration and time con-
straints, unlike the other approaches.

5 Conclusion

In this paper, we introduced the formal model of High-Level Time Open Work-
flow Nets with Action Duration (HL-DToN) by which we do not only specify
WS-BPEL processes but directly specify business processes as well. This model
is able to enable inbound and outbound message exchange, to consider time con-
straints and action durations under a true-concurrency semantics, and also to
cover important aspects of data modeling and manipulation.

Towards a Comprehensive Formal Model for Business Processes 185

Furthermore, a transformation of two WS-BPEL activities, featuring the

advantages of the model, is presented. Actually, we provided a pattern of a
(wait) activity that specifies a delay for a certain period of time, and a pattern
for the activity (forEach) in the case of parallel=yes.

In the near future, we plan to express action durations using random vari-

ables as those present in some stochastic extensions of Petri nets. Also, we project
to continue the transformation of WS-BPEL constructs using HL-DToN. There-
after, we aim to extend the use of HL-DToN to verify qualitative and quantitative
business processes properties.

References

11.

12.

13.

14.

15.

16.

17.

. Rogge-Solti, A., Kasneci, G.: Temporal anomaly detection in business processes.

In: Sadiq, S., Soffer, P., Vélzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 234-249.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-10172-9_15

Thatte, S.: XLANG: Web services for business process design. Microsoft Corpora-
tion (2001)

Leymann, F., et al.: Web services flow language (WSFL 1.0) (2001)

Kavantzas, N., et al.: Web services choreography description language version 1.0.
W3C Candidate Recommendation 9, 290-313 (2005)

OASIS Standard. WSBPEL Ver. 2.0 (2007). http://docs.oasis-open.org/wsbpel /2.
0/0S/wsbpel-v2.0-OS.html

Andrews, T., et al.: Business Process Execution Language for Web services (2003)
Thivolle, D.: Langages modernes pour la modélisation et la vérification des
systemes asynchrones. Ph.D. thesis, Université de Grenoble and Université Poly-
technique de Bucarest (2011)

Cavalli, A., et al.: Definition of the mapping from BPEL to WS-TEFSM. In:
Livrable WEBMOV-FC-D2.3/T2.4 (2008)

Stahl, C.: A Petri net semantics for BPEL (2005)

. Lohmann, N.: A feature-complete petri net semantics for WS-BPEL 2.0. In:

Dumas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77-91. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-79230-7_6

Abouzaid, F., Mullins, J.: A calculus for generation, verification and refinement of
BPEL specifications. Electron. Notes Theor. Comput. Sci. 200(3), 43-65 (2007)
Belala, N., et al.: Time petri nets with action duration: a true concurrency real-
time model. Int. J. Embed. Real-Time Commun. Syst. (IJERTCS) 4(2), 62-83
(2013)

ISO/JTC1/SC7/ WG19: International Standard ISO/IEC 15909: Software and
Systems Engineering - High-level Petri Nets, Part 1: Concepts, Definitions and
Graphical Notation (2004)

Reisig, W., Massuthe, P., Schmidt, K.: An Operating Guideline Approach to the
SOA (2005)

Petri, C.: Kommunikation mit Automaten. Ph.D. thesis. Schriften des Instituts fiir
instrumentelle Mathematik, University of Bonn, Germany (1962)

WFMC: Workflow management coalition terminology and glossary. Technical
Report WFMC-TC-1011, Workflow Management Coalition, Brussels (1999)

van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G.
(eds.) Application and Theory of Petri Nets 1997. LNCS, vol. 1248, pp. 407-426.
Springer, Heidelberg (1997). doi:10.1007/3-540-63139-9_48

http://dx.doi.org/10.1007/978-3-319-10172-9_15
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://dx.doi.org/10.1007/978-3-540-79230-7_6
http://dx.doi.org/10.1007/3-540-63139-9_48

186

18.

19.

20.

21.

22.

23.

24.

25.

26.

K. Mecheraoui et al.

Sbai, Z.: Contribution & la Modélisation et & la Vérification de Processus Workflow.
Ph.D. thesis, Ecole Doctorale Informatique, Télécommunications et Electronique
de paris. France (2010)

Sbai, Z., Barkaoui, K., Boucheneb, H.: Compatibility analysis of time open work-
flow nets. In: PNSE 2014 - Petri Nets and Software Engineering (2014)

Jenner, L.: Further studies on timed testing of concurrent systems. Technical
Report 4, Institute fiir Mathematik, Universitat Augsburg (1998)

Merlin, P.M.: A study of the recoverability of computing systems. Ph.D. thesis.
University of California, Irvine, USA (1974)

Ramchandani, C.: Analysis of asynchronous concurrent systems by timed Petri
nets. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA (1974)
Sifakis, J.: Use of petri nets for performance evaluation. Model. Perform. Eval.
Comput. Syst. 4, 75-93 (1977)

Saidouni, D.E., Belala, N.: Actions duration in timed models. In: The International
Arab Conference on Information Technology (2006)

Du, Y., et al.: Timed compatibility analysis of Web service composition: A modular
approach based on Petri nets. Autom. Sci. Eng. 11(2), 594-606 (2014)
Mecheraoui, K.: Spécification formelle des processus métiers par ['utilisation
des réseaux de Petri temporellement temporisés. MSc Thesis, Ecole Nationale
Supérieure d’Informatique (2015)

	Towards a Comprehensive Formal Model for Business Processes
	1 Introduction
	2 Preliminaries
	2.1 Petri Nets
	2.2 High Level Petri Nets
	2.3 Workflow Nets
	2.4 Time Petri Nets with Action Duration

	3 High-Level Time Open Workflow Nets with Action Duration
	3.1 Time Open Workflow Nets with Action Duration (DToN)
	3.2 High-Level Time Open Workflow Nets with Action Duration

	4 An HL-DToN Semantics for WS-BPEL
	5 Conclusion
	References

