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Abstract. Subgroup Discovery is the process of finding and describing
sufficiently large subsets of a given population that have unusual distri-
butional characteristics with regard to some target attribute. Such sub-
groups can be used as a statistical summary which improves on the default
summary of stating the overall distribution in the population. A natural
way to evaluate such summaries is to quantify the difference between pre-
dicted and empirical distribution of the target. In this paper we propose to
use proper scoring rules, a well-known family of evaluation measures for
assessing the goodness of probability estimators, to obtain theoretically
well-founded evaluation measures for subgroup discovery. From this per-
spective, one subgroup is better than another if it has lower divergence of
target probability estimates from the actual labels on average. We demon-
strate empirically on both synthetic and real-world data that this leads to
higher quality statistical summaries than the existing methods based on
measures such as Weighted Relative Accuracy.

1 Introduction

Statistical models intend to capture the distributional information in a domain
of interest. While a global statistical model is useful, it is often also of interest
to capture local variations exhibited in a subset of the data. Recognising such
subsets can provide valuable knowledge and opportunities to improve perfor-
mance at tasks relying on the statistical model. In the area of machine learning
and data mining, the problem of obtaining such statistically different subsets is
known as Subgroup Discovery (SD) [6,7,10,17], loosely defined as the process of
finding and describing sufficiently large subsets of a given population that have
unusual distributional characteristics with regard to some target attribute.
Consider a synthetic toy data set relating to someone’s dietary habits. It
contains two (discretised) features: the time of the day, denoted as X; €
{Morning, Afternoon, Evening} and the calorie consumption in the diet, denoted
as Xy € {Low, Medium, High}. The target variable is Y € { Weekday, Weekend}.
Figure 1 visualises the data, with two potentially interesting subgroups (shaded
areas). The subgroup on the right concentrates on the area of maximum sta-
tistical deviation (high calorie intake in the evening is more common during
weekend), while the one on the left covers both medium and high calorie intake
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Fig. 1. An example bivariate data set with two subgroups (shaded areas) defined on
the discretised features, both capturing an area of statistical deviation in comparison
to the overall population. The subgroup on the left is preferred by a commonly used
evaluation measure (WRAcc) while the right subgroup is preferred by the one of the
measures we propose in this paper.

in the evening. In this paper we study reasons why one of these subgroups might
be preferred over the other.

Clearly, if a subgroup is small, distributional differences may arise purely
because of random chance in sampling, so a trade-off between subgroup size and
distributional deviation needs to be made. Statistical tests such as x? can be
used, but are usually over-emphasising size: a very large subgroup with small
deviation is more likely to be picked up than a medium-sized subgroup with
considerable deviation. p-values as reported in rule-based approaches [10] tend
to suffer from the same issue.

Historically, SD developed as a variation on rule-learning and other logic-
based approaches, and hence it is not surprising that many existing quality
measures have been adapted from decision trees and rule-based classifiers. For
instance, [1] explored the use of Gini-split (among several others) as quality
measure for subgroups, which hypothesises that a good binary split in a decision
tree also establishes a good subgroup. One of the most commonly used measures
is Weighted Relative Accuracy (WRAcc), which can be seen as an adaptation
of precision, a measure that is used as a search heuristic in rule learners such
as CN2 [3]. Many other subgroup quality measures have been introduced in the
literature, see [6] for an overview.

Evaluation methods for SD depend on the task for which subgroups need to
be found. In [10], the subgroups are used to construct a ranking model, and the
area under the corresponding ROC curve is used as an evaluation measure. In
[1] the obtained subgroups are used as features for a decision tree and hence
they can be evaluated according to the classification performance of the trees.
However, the predictive task used in evaluation (ranking or classification) is then
different from the descriptive Subgroup Discovery (SD) task, and it is unclear
how the predictive task affects the choice of subgroup quality measure.

In this paper we propose a novel approach to evaluate subgroups as sum-
maries which improve on the default summary of stating the overall distribution
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in the population. A natural way to evaluate such summaries is to quantify the
difference between predicted and empirical distribution of the target. This obvi-
ates the use of proper scoring rules, a well-known family of evaluation measures
for assessing the goodness of probability estimators, to obtain theoretically well-
founded evaluation measures for subgroup discovery. From this perspective, one
subgroup is better than another if it on average has lower divergence of target
probability estimates from the actual labels.

We derive a novel SD method to directly optimise for the proposed evaluation
measure, from first principles. The method is based on a generative probabilistic
model, which allows us to formally prove the validity of the method. We perform
experiments on a synthetic data set where the theoretically optimal subgroup is
known, and demonstrate that our method outperforms alternative methods in
the sense that it finds subgroups that are closer to the theoretically optimal one.
Additionally, we perform experiments on 20 UCI data sets which demonstrate
that the proposed method is superior in summarising the statistical properties
of the data.

The structure of this paper is as follows. Section 2 introduces the notations
and concepts for SD. Section 3 provides an overview of Proper Scoring Rules
(PSRs) and describes related quality measures. In Sect.4 we propose a novel
generative modelling approach to address the summarisation problem, and derive
the corresponding measures. Section 5 evaluates the proposed quality measures
against existing measures and Sect. 6 presents related work. Section 7 concludes
this paper and discusses possible future research directions.

2 Subgroup Discovery

We start by introducing some notation. Consider a dataset (X;,Y;), i =1,...,n
in the instance space (X,Y). We assume a multi-class target variable, represent-
ing the k classes in Y by unit vectors, i.e. class j is represented by the vector
with 1 at position j and 0 everywhere else. The set of all considered subgroups
is indicated by G C 2%. This set is typically generated by a subgroup language
(e.g., the set of all conjunctions over some fixed set of literals) but here it suffices
to deal with subgroups extensionally. A subgroup g € G can then be identified
with its characteristic function g : X — {0,1} determining whether an instance
X; is in the subgroup (g(X;) = 1) or not (g(X;) = 0). A subgroup quality mea-
sure is a function ¢ : G — R such that better subgroups g get a higher ¢(g).
The task of SD is then to find the subgroup g* with the highest value of ¢, i.e.
g* = argmax cgA(9).

A wide range of proposed quality measures can be found in the literature. The
common way of defining a quality measure is to separate them into two factors:
the deviation factor and the size factor. The deviation factor is in charge of
comparing the local statistic to the global statistic. In the case of a discrete
target variable, the deviation factor can be seen as a function that takes two
estimates of class probabilities as input and outputs a single number to indicate
how different these two estimates are. The size factor is normally treated as
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a correction term to encourage the method to find larger subgroups, as small
subgroups tend to be less valuable.

One of the most widely adopted quality measures is the Weighted Relative
Accuracy (WRAcc) family [1,2,9,10]. For a binary target this essentially is the
covariance between the target variable and subgroup membership: since these
are both Bernoulli variables this takes values in the interval [—0.25,0.25]. For
a multi-class target we take the average of all one-against-rest binary WRAcc
values, taking the absolute value of the latter to avoid positive and negative
covariances cancelling out [1]. For our purposes we derive a related but unnor-
malised quantity, as follows.

Denote the overall class distribution in the data set by 7 = (3_-_; ¥;)/n (note
that ¥; and 7 are vectors of length k). Let m denote the number of training set
instances belonging to the subgroup g, i.e. m = Y1 | g(X;). Denote the class
distribution in the subgroup by p(9, i.e., p@ = (31" | g(X;) - Yi)/m. Then an
unnormalised version of Multi-class Weighted Relative Accuracy (MWRAcc) can
be calculated as:

k
Srrwrace(g) =m- Y |\ — )] (1)
j=1

The definition of [1] is obtained from this by normalising with n - k, where n is
the number of training instances and k is the number of classes (both constant).
Our version can be interpreted as absolute differences between observed and
expected counts.

3 Proper Scoring Rules

The class distribution 7 is a very simple way to summarise the target vari-
able across the whole training dataset. That is, we summarise the labels vectors
Y, ..., Y, with the summary S™ where we define ST = wfor7 = 1,...,n. Another
possibility is to separately summarise a particular subgroup g with its class dis-

tribution p(9) while its complement is summarised with 7. We denote this sum-
(9)

mary by S99
if g(X;) = 1 and Sf’p(g)’” = 7 if g(X;) = 0, which can be jointly written as
LS'ig"’(g)’7T = p9g(X;) + (1 — g(X;)). One could then ask which of the subgroups
gives the best summary, and whether the summary is better than the default sum-
mary S™. In order to assess this, we need a way to calculate the extent to which
the probability estimates within the summary deviate from the actual labels.
Proper Scoring Rules (PSRs) have been widely adopted in the area of machine
learning and statistics to assess the goodness of probability estimates [16]. A
scoring rule is a function ¥ : S X Y — R that assigns a real-valued loss to the
estimate S; within the summary S with respect to the actual label Y; of instance

i. Two of the most commonly adopted scoring rules are the Brier Score (BS) and
Log-loss (LL), which are defined as:

. . . . (9)
, and for an instance i this summary predicts SY* " = p(9)
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k
Yps(Si,Yi) Z (2)

YrL(S:, i) = —log(Si,+) (3)

where Y; ; = 1 if the i-th instance is of the j-th class and 0 otherwise, S; ; is
the probability estimate of class j for the i-th instance, and S; , denotes the
probability estimate of the i-th instance for the true class as determined by Y;.

The distance from a whole summary S to the actual labels can then be
calculated as follows:

Y)= ZQ/}(SuYi) (4)

The scoring rule 1 is proper if arg min,)'(S?,Y’) =  for any Y, i.e., if the actual
class distribution is the minimiser of the scoring rule. In particular, both BS and
LL are proper.

For every proper scoring rule v there is a corresponding divergence measure d
which quantifies how much a class probability distribution diverges from another
class distribution. Formally, the divergence d(p, q) is the expected value of the
difference ¥(p,Y) — 1(q,Y) where Y is drawn from the distribution g. The
divergences corresponding to BS and LL are the squared error and Kullback-
Leibler (KL) divergence, respectively.

k

dBS pa Z (5)
j=1

drr(p,q Zq] 509 (6)

For more details see [8].

3.1 Information Gain

Suppose we now want to decide whether to summarise the whole dataset by
S™ or by §9+'”7 for some g. For this let us take a proper scoring rule ¢’ to
quantify the loss of a summary with respect to actual labels. We can now define
the quality of a subgroup g as the gain in ¢’ of the summary 592”7 over the
default summary S™, that is:

drc(g) = (7, Y) — /(5977 Y) (7)

In principle, we could consider summaries S9#™ for any other class distribution
p. However, the summary with p(9) is special among these, as it is maximising
the gain over the summary S™ due to properness of the scoring rule. This is
stated in the following theorem:
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Theorem 1. Let),v’, d be a proper scoring rule, its sum across the dataset, and
its corresponding divergence measure, respectively. Then for any given subgroup
g the following holds:

argmax/(S7,Y) — ¢/($707,Y) = pl¥) (8)
P

where p'9) denotes the class distribution within the subgroup g. The mazimum
value achieved is m - d(m, p'9)) where m is the size of the subgroup g.

Proofs of all theorems are provided in Appendix A.
The theorem implies that Eq. (7) can be rewritten as follows:

d1c(g) = m - d(m, p'9) (9)

In words, this quality measure multiplies the size of the subgroup by the diver-
gence of the overall class distribution from the distribution within the subgroup'.

If we consider Log-loss as the proper scoring rule, then the corresponding
information gain measure is:

¢16-r1(9) =m- KL(m,p'¥) (10)

where KL is the KL-divergence. For Brier Score the corresponding measure is
quadratic error:

k
b1c-ps(g) =m- Y (7 — pi)? (11)

Jj=1

where pg-g) is the proportion of the j-th class in the subgroup g.

These information gain measures have a long history in machine learning, for
example in decision tree learning where they measure the decrease in impurity
when splitting a parent node into two children nodes. If we measure impurity by
Shannon entropy this leads to Quinlan’s information gain splitting criterion; and
if we measure impurity by the Gini index we obtain Gini-split. We have shown
how they can be unified from the perspective of Proper Scoring Rules; we now
proceed to improve them.

4 Generative Modelling

The general context in which SD is applied is where one observes a set of data
points that belongs to a particular domain and the task is to extract information
from the data. As mentioned in the introduction, such information can then be
adopted to improve the performance of corresponding applications. Therefore,
it is desirable that the subgroups as the representation of obtained knowledge
would generalise to future data observed in the same domain.

! In general, divergence measures are not symmetric, so d(7r7p(g)) is different from
d(p9, ).
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Two problems need addressing when generalising to future data. First, the
class distribution p9) is calculated on a (small) sample and can therefore be a
poor estimate of the actual distribution in the future. Second, it is not certain
whether the actual distribution of the subgroup is different from the overall
distribution 7. In order to capture these aspects we employ a generative model
to generate a new test instance Y of the subgroup g. We assume that the observed
(training) instances of subgroup g were generated according to the same model,
which is defined as follows.

4.1 The Generative Model

First, we fix the default k-class distribution m. We then decide whether the
distribution of the subgroup g is different from the default (Z = 1) or the same
as default (Z = 0):

Z ~ Bernoulli[y] (12)

where 7 is our prior belief that Z = 1. If Z = 1 then we generate the class
distribution @ for the subgroup ¢:

Q ~ Dir[f] (13)

where Dir[f] is the k-dimensional Dirichlet distribution with parameter vector
(. Finally, we assume that the test instance Y and the training instances of the
subgroup g are all independent and identically distributed (iid). For simplicity
of notation, let us assume that the training instances within g are the first m
instances Y7,...,Y,,. The distribution of Y7,...,Y,, and the test label Y is as
follows:

Y. Y1,..., Y ~ Cat]ZQ + (1 — Z)7) (14)

where Cat is the categorical distribution with the given class probabilities. In the
experiments reported later we used non-informative priors for Z and @ (y = 0.5
and 8= (1,...,1), respectively).

4.2 Proposed Quality Measures

The above model can be used to generate instances for a subgroup g. We will
now exploit this model to derive two subgroup quality measures, the first one of
which takes into account the uncertainty about the true class distribution in the
subgroup, while the second one also models our uncertainty whether it is different
from the background distribution. Therefore, we consider the task of choosing
p which would maximise the expected gain in v’ on the test instances. The
following theorem solves this task, conditioning on the observed class distribution
within the subgroup and on the assumption that this subgroup is different from
background (Z = 1).
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Theorem 2. Consider a subgroup as generated with the model above. Denote
the counts of each class in the training set of this subgroup by C' = >1" | Y.
Then

E (m,Y) =o' (p,Y)|C =¢,Z =1 __ctB
arg;nax [ (p )| c ] ?21% j

Denoting this quantity by p, the achieved mazimum is d(m,p), where d is the
divergence measure corresponding to .

(15)

In the experiments we use 5 = (1,...,1) and hence the gain is maximised when
predicting the Laplace-corrected probabilities, i.e., adding 1 to all counts and
then normalising. According to this theorem we propose a novel quality measure
which takes into account the uncertainty about the class distribution:

¢alg) = m - d(m, p) (16)

where m is the size of the subgroup.

The following theorem differs from the previous theorem by not condition-
ing on Z = 1. Hence, it additionally takes into account the uncertainty about
whether the distribution of the subgroup is different from the background.

Theorem 3. Consider a subgroup as generated with the model above and denote
C as above. Then

/ ’ c+p
EW' (m,Y) =4 (p,Y)|C =c =a—F———
e EY (. Y) 0 = =0 L

where a = P[Z = 1|C = ¢]. Denote this quantity by p. Then the achieved mai-
mum value is d(m, p), where d is the divergence measure corresponding to 1.

+(1-a)r (17)

Following this theorem we propose another novel quality measure, which takes
into account both the uncertainty about the class distribution and about whether
it is different from the background distribution:

dpsr(g) =m-d(m, p) (18)
Z

where m is the size of the subgroup. In order to calculate the value of a = P|
1|C = ¢] we have the following theorem:

Theorem 4. Consider a subgroup as generated with the model above and denote
C as above. Then the following equalities hold:

v-P[C=c|Z=1]
v PC=c|Z=14(1-7) -P[C=c|Z=0]
m) . roh . 8) _ [y I(c; + B5)
c) T, T(3) I'(m+ Bo) (19)

Jj=1

PZ=1|C=d =

Mczqzzu:(

3

Mcqzm<c)11ﬁj

)

<

where By = 25:1 Bj.
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Referring back to Fig.1 in the introduction, the subgroup on the left was
discovered with ¢w racc as quality measure and the right one by ¢ psr with Brier
Score. While WRAcc provides a larger coverage, it can be seen that the PSR
measure captures a more distinct statistical deviation of the class distribution
in the subgroup.

5 Experiments

In this section we experimentally investigate the performance of our proposed
measures. The experiments are separated into two parts. For the first part we
generated synthetic data, such that we know the true subgroup. In the second
part we applied our methods to UCI data to investigate summarisation perfor-
mance.

For our proposed measures, we adopt the generalised divergences of BS and
LL as given in Sect. 3, Egs. (5 and 6). Plugging these into Egs. (16) and (18) we
obtain four novel measures d-BS, d-LL, PSR-BS and PSR-LL. We compare these
proposals against a range of subgroup evaluation measures used in the literature:
Weighted Relative Accuracy (WRAcc), IG-LL (Eq. (10)), IG-BS (Eq. (11)), as
well as the x? statistic, which is defined as follows:

o (s — )’
¢Chi2 =C- Z p]ﬂ_i] (20)
j=1 /

5.1 Synthetic Data

In the experiments on the synthetic data we evaluate how good the methods
are in revealing the true subgroup used in generating the data, as well as in
producing good summaries of the data.

To provide a more intuitive illustration, we construct our data set according
to a real-life scenario. Suppose one has been using a wearable device to record
whether daily exercises were performed or not, for a whole year. As it turned
out, there were 146 out of 365 days when the exercises were performed, which
gives a probability about 2/5 that the exercises were performed on a random
day. According to the website of the wearable device, the same statistics are
about 1/3 for the general population. It is possible that the overall exercise
frequency was different, but perhaps a more plausible explanation might be that
more exercises were performed during a particular period only. SD can hence
be applied to recognise the period of more intensive exercise and summarise the
corresponding exercise frequency.

Following this scenario, the feature space consists of the 52 weeks of the year,
hence X = {1, ..., 52}. We define the subgroup language as the set of all intervals
of weeks of length from 2 to 8 weeks. The data set is assumed to contain a single
year from January to December. This setting allows us to perform exhaustive
search on the subgroup language. As here our aim is to compare the performance
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among different quality measures, applying exhaustive search can avoid the bias
introduced by other greedy search algorithms.

The way to generate the data is then as described in the previous section.
Given the default class distribution 7, the subgroup class distribution @ is sam-
pled from a Dirichlet prior and a true subgroup is selected uniformly within the
language. Therefore, all the 7 days within each week can be distributed either
according to 7 or according to Q.

We evaluate each subgroup quality measure by comparing the obtained sub-
group against the true subgroup. This is done by measuring similarity of the
respective indicator functions Z and Z. For similarity we use the F-score as we
are not really interested in the ‘true negatives’ (instances in the complements of
both true and discovered subgroups). The F-score for this case can be computed
as (Z; and Z are used to represent whether an instance belongs to the true
subgroup and the obtained subgroup respectively):

2. N 1(Zi=1,Zi=1)

F = _ ‘ _
SN @ NZi=1,2,=1)+1(Zi = 1,2; = 0) + 1(Z; = 0, Z; = 1))

(21)

The results are given in Table1 as the micro-averaged F-scores from 5000
synthetic sequences, for different values of 7 (the first component of the class
distribution vector). We can see that the PSR-based approaches generally out-
perform existing measures, with a slight advantage for Log-loss over Brier score.
The information gain-based methods perform particularly poorly, as they have
a preference for pure subgroups, whereas for skewed 7 it would be advantageous
to look for subgroups with a more uniform class distribution. As 7 becomes more
uniform, the ‘true’ subgroup becomes more random and harder to identify, which
is why all methods are expected to perform poorly for m; ~ 0.5. The variance
is quite high across all methods, probably because the data set is quite small
(52 - 7 = 364 instances).

Since a better statistical summary is essentially our aim, the results are also
evaluated according to their overall loss on a test set (also of length 1 year) drawn
from the same distribution. For each quality measure, a subgroup is obtained from
the training fold together with the local statistical summary (5 for ¢psr, p for
other quality measures). The loss for the obtained summarisation can then be

Table 1. Micro-averaged F-scores on the artificial data, for different class distributions
(m1). The best results for each row are shown in bold.

m1 | PSR-BS | PSR-LL | WRAcc | Chi2 | IG-BS | IG-LL | d-BS | d-LL
1 1.744 736 597 526 |.030 |.029 |.742 |.716
.2 1.636 .638 510 436 |.089 | .091 .628 | .631
.3 | .587 .589 .480 403 |.218 |.223 |.581 |.585
4 |.558 .564 454 390 | .372 | .379 | .550 | .559
.5 | .567 .569 .458 410 | .561 565 | .561 |.565
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Table 2. Average Brier scores on the artificial data. The best results are shown in bold

71 | PSR-BS PSR-LL WRAcc Chi2 1G-BS 1G-LL d-BS d-LL

.1 |.195 4+ .03 |.195 £+ .03 | .207 + .03 | .212 + .03 | .231 £+ .04 | .231 + .04 | .195 £+ .03 | .195 + .03
.2 | .8326 + .03 | .326 + .03 | .334 + .03 | .337 + .03 | .350 £+ .04 | .350 + .04 | .326 + .03 | .326 + .03
.3 | .419 4+ .02 | .419 £ .02 | .424 + .02 | .426 + .02 | .430 £ .03 | .430 = .03 | .420 = .02 | .420 £ .02
4 | .475 4+ .02 | .475 £ .02 | .479 + .02 | .480 + .01 | .478 £ .02 | .478 + .02 | .476 + .02 | .476 £+ .02
.5 | .494 4+ .02 | .494 £+ .02 | .497 + .01 | .498 + .01 | .494 £ .02 | .495 + .02 | .494 £ .02 | .494 + .02

Table 3. Average Log-loss on the artificial data. The best results are shown in bold.

w1 | PSR-BS PSR-LL WRAcc Chi2 1G-BS IG-LL d-BS d-LL

.1 |.344 £+ .04 | .344 + .04 | .359 &+ .04 | .368 £ .04 | .406 £ .06 | .407 £ .06 | .344 £+ .04 | .347 £ .04
.2 |.507 £ .03 | .507 £ .03 | .517 £ .03 | .520 £ .03 | .539 + .05 | .540 £ .05 | .508 £ .03 | .509 £ .03
.3 |.610+ .03 |.610 £ .03 | .616 = .02 | .618 £ .02 | .624 + .03 | .624 = .03 | .611 £ .03 | .611 £+ .03
4 |.668 + .02 | .668 £ .02 | .673 £ .02 | .674+£.02|.671+.02|.671 £ .02 .670+£ .02 |.669 £ .02
.5 | .687+.02 | .686 £ .02 |.690 + .01 |.691 £ .01 | .688 £ .02 | .687 £ .02 |.688 £+ .02 | .687 £ .02

calculated as in Eq. (4). The corresponding results are given in Tables 2 and 3 for
both Brier score and Log-loss. We see a similar pattern as with the F-score results.

5.2 UCI Data

We proceed to compare our method with existing approaches on UCI data sets
[13]. We selected the same 20 UCI datasets as described in [1]. The information
regarding the number of attributes and instances are provided in the appendix.

The subgroup language we used here is conjunctive normal form, with dis-
junctions (only) between values of the same feature, and conjunctions among
disjunctions involving different features. All features are treated as nominal. If
the original feature is numeric and contains more than 100 values, it is discretised
into 16 bins.

Since for most data sets in this experiment exhaustive search is intractable we
perform beam search instead. The beam width is set to be 32 (i.e., 32 candidate
subgroups are kept to be refined in the next round). The number of refinement
rounds is set to 8.

The resulting average Brier scores and Log-loss are given in Tables4 and
5. All the results are obtained by 10-fold cross-validation. As in the previous
experiment, a subgroup is learned on the training folds and the class distribution
estimated on the test fold is then used to compute the corresponding loss.

Given these results, it can be seen that our proposed measures generally out-
perform WRAcc, Chi2 and both versions of information gain. The PSR measures
(first two columns) are never outperformed by the generalised divergence (last
two columns) so we recommend using the former unless simplicity of implemen-
tation is an issue (as the latter don’t need estimation of a). Regarding the choice
between (BS, LL), this is still an ongoing debate in the community. Here we
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used both to demonstrate that our novel measure can apply either as the two
most well-known Proper Scoring Rules.

6 Related Work

As is the case for supervised rule learning in general, SD comprises three major
components: description language, quality measure and search algorithm. A
detailed comparison with rule learning can be found in [15]. While early work
in SD has been surveyed in [6], we briefly describe some recent progress in the
area.

Regarding the subgroup description language, most existing work defines it
through logical operations on attribute values. In [14] the authors present an
approach to construct more informative descriptions on numeric and nominal
attributes in linear time. The proposed algorithm is able to find the optimal
interval for numeric attributes and optimal set of values for nominal attributes.
The results show improvements on the quality of obtained subgroups comparing
to traditional descriptions.

In terms of quality measures, recent work has focused on the extension of
traditional measures with improved statistical modelling. In [4,11] Exceptional
Model Mining (EMM) was introduced as a framework to support improved tar-
get concepts with different model classes. For example, if linear regression models
are trained on the whole data set and different candidate subgroups, the quality
of subgroups can be evaluated by comparing the regression coefficient between
the global model and the local subgroup model. In [5] the authors extend the
framework to support predictive statistical information. This further allows sub-
groups to be found where a scoring classifier’s performance deviates from its
overall performance.

With respect to the search algorithm, while greedy search algorithms have
been widely adopted in existing implementations, recent work in [12] presents
a fast exhaustive search strategy for numerical target concepts. The authors
propose and illustrate novel bounds on different types of quality measures. The
exhaustive search can then be performed efficiently via additional pruning tech-
niques.

7 Conclusion

In this paper we investigated how to discover subgroups that are optimal in the
sense of maximally improving the global statistical summary of a given data
set. By assuming that the (discrete) statistical summary is to be evaluated by
the Proper Scoring Rule, we derived the corresponding quality measures from
first principles. We also proposed a generative model to consider the optimal
statistical summary for any candidate subgroup. By performing experiments on
both synthetic data and UCI data, we showed that our measures provide better
summaries in comparison with existing methods.
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The major advantage of adopting our generative model is that it prevents
finding small subgroups with extreme distributions. This can be seen as applying
a regularisation on the class distribution, similar to performing Laplace smooth-
ing in decision tree learning. Given the experiments, we can observe that the
novel measures tend to perform better on small data sets (e.g. Contact-lenses,
Labor).

Since in this paper we assume that only the subgroup with the highest gain
will be discovered, one major direction for further work is to investigate multi-
ple subgroups that can together improve the overall statistical summary. Pre-
vious Subgroup Discovery algorithms have extended the covering algorithm to
weighted covering in order to promote the discovery of overlapping subgroups
[10]. We expect that the PSR approach will be able to derive appropriate weight
updates in a principled fashion.

Another direction would be to generalise our approach to numeric target
variables. Although in general PSRs are designed to work with discrete random
variables, Log-loss has been widely adopted in Bayesian analysis, which provides
an interface to extend our approach to a general form of statistical modelling.
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Appendix A: Proofs

Lemma 1. Let ¢ be a proper scoring rule and d its respective divergence mea-
sure. If S, S’ are random vectors representing two sets of class probability esti-
mates for a random variable T representing the actual class, then

]EW)(S» T) - w(S/, T)} = E[d(sv T) - d(S/v T)} = E[d(sa E[T]) - d(Slv E[T])] (22)

Proof. By using Lemma 1 from the supplementary of [8] we get the decomposi-
tion E[y(S,T)] = E[d(S,T)] = E[d(S,E[T])] + E[d(E[T],T)] and the analogous
decomposition for S’. The second term is shared and hence when subtracting it
cancels, yielding the required result.

Theorem 1. Let),1)’,d be a proper scoring rule, its sum across the dataset, and
its corresponding divergence measure, respectively. Then for any given subgroup
g the following holds:

argmax )’ (S™,Y) — ¢/ (S9PTY) = P9 (23)
p

where p9) denotes the class distribution within the subgroup g. The value of
achieved mazimum is m - d(m, p(9) where m is the size of the subgroup g.
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Proof. For simplicity of notation, let us assume that the training instances within
g are Y7,...,Y,, (the first m instances). Consider a random variable T" obtaining
its value by uniformly choosing one Y; that belongs to g among Yi,...,Y,,.
The summaries S™ and S99 are equal for instances m + 1,...,n, hence
Y(S™Y) =1/ (89”7 V) = m-Elp(r, T) — 1b(p'?, T)]. Using Lemma 1 this is
in turn equal to m-E[d(7, E[T]) —m-E[d(p9), E[T])]. However, since E[T] = p(¥)
then the second term is zero and the first is m - d(m, p(g)), which is exactly the
required result.

Theorem 2. Consider a subgroup as generated with the model above. Denote
the counts of each class in the training set of this subgroup by C' = >" | Y;.
Then

argmax E[¢/ (1,Y) — ¢/ (p,Y)|C = ¢, Z =1] = kci (24)
P Zj:l ¢j + Bj

Denoting this quantity by p, the achieved mazimum is d(m,p), where d is the

divergence measure corresponding to .

Proof. Consider a random variable T' obtaining its value by uniformly choosing
one Y; that belongs to g among Yi,...,Y,,. Then E[¢/(m,Y) — ¢'(p,Y)|C =
¢, Z =1 = E(m,T) — (p, T)|C = ¢,Z = 1]. Using Lemma 1 this is in turn
equal to d(m,E[T|C = ¢,Z = 1)) — d(p,E[T|C = ¢,Z = 1]). Since the first
term does not depend on p this quantity is maximised by minimising the second
divergence. As with any divergence, the minimal value is zero and it is obtained
if the two terms are equal, i.e., p = E[T|C = ¢, Z = 1]. It remains to prove that

E[T|IC=¢,Z=1]= %ﬁﬂg This holds because it is a posterior distribution
j=1CiTH;

under the Dirichlet prior Dir(3) after observing ¢y, ..., ¢ of the classes 1,...  k,
respectively.

Theorem 3. Consider a subgroup as generated with the model above and denote
C' as above. Then

argmaxE[Y'(m,Y) — ¢/ (p,Y)|C =] = akci +(1—-a)r (25)
P Zj:l ¢j + 55

where a = P[Z = 1|C = ¢]. Denote this quantity by p. Then the achieved mai-

mum value is d(m, p), where d is the divergence measure corresponding to ).

Proof. Consider a random variable T' obtaining its value by uniformly choosing
one Y; that belongs to g among Y7,...,Y,,. Then E[¢'(m,Y) =4/ (p,Y)|C = ] =
E[p(m, T)—(p, T)|C = c|. Using Lemma 1 this is in turn equal to d(7, E[T|C =
c]) — d(p,E[T|C = ¢]). Since the first term does not depend on p this quantity
is maximised by minimising the second divergence. As with any divergence,
the minimal value is zero and it is obtained if the two terms are equal, i.e.,
p = E[T|C = ¢]. It remains to prove that E[T|C = ¢] = ap + (1 — a)p where
p is defined in the previous Theorem 2. Indeed, E[T|C = ¢] = P(Z = 1|C =
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OET|IC=¢,Z=1]+P(Z=0|C =¢)E[T|C =¢,Z=0] =ap+ (1 —a)r, where
E[T|C = ¢,Z = 0] = 7w due to Y (and therefore T') drawn from Bernoulli with
the mean Z@Q + (1 — Z)w. The achieved maximum is d(m, p).

Theorem 4. Consider a subgroup as generated with the model above and denote
C' as above. Then the following equalities hold:

YPIC =c|Z=1]

HZ=NC=d= o= z=1+ (- PlC=c| Z=0
_ DS B) Tl +8) (m
e I (VN N TR (%) (20)

]P’[C’_c|Z_O}_(T).f[17T§j

where By = Zle Bj.

Proof. Due to P[Z = 1] = v, we can obtain the first result from the Bayes
formula with P[Z = 1|C = ¢| = %. To obtain the second result we
note that in the subgroup Z = 1 the class distribution is drawn from Dir(3),
therefore the distribution of C' follows the Dirichlet-Multinomial distribution.
The stated result represents simply the probability distribution function of the
Dirichlet-Multinomial with Dir(3) and multinomial of size m. The third result
is simply the probability distribution function of the Multinomial Distribution.

Appendix B: Information for the UCI Data

See Table. 6

Table 6. The 20 UCI data sets used in the experiments.

Name # instances | # features | # classes
Abalone 4176 9 3
Balance-scale | 624 5 3
Car 1727 7 4
Contraceptive | 1472 10 3
Contact-lenses | 24 5 3
Credit 589 16 2
Dermatology | 365 35 6
Glass 213 11 6

(Continued)
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Table 6. (Continued)

Name # instances | # features | # classes
Haberman 305 4 2
Hayes-roth 131 5 3
House-votes 434 17 2
Tonosphere 350 34 2
Iris 150 5 3
Labor 57 17 2
Mushroom 8123 23 2
Pima-indians | 767 9 2
Soybean 683 36 19
Tic-Tac-Toe | 957 10 2
Breast Cancer | 197 34

Zoo 100 18
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