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Preface

These are the proceedings of the 15th European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2016),
held in Riva del Garda, Italy, during September 19–23, 2016. This event is the premier
European Machine Learning and Data Mining conference and builds upon a very
successful series of 26 ECML and 19 PKDD conferences, which have been jointly
organized for the past 15 years.

The response to our call for paper was very good. We received 353 papers for the
main conference track, of which 100 were accepted, yielding an acceptance rate of
about 28 %.

Traditionally, ECML PKDD provides an extensive technical program that consists
of several focused tracks:

– the conference track, featuring regular conference papers, published in these
proceedings;

– the journal track, featuring papers that satisfy the quality criteria of journal papers
and at the same time lend themselves to conference talks (these papers are published
separately in the journals Machine Learning and Knowledge Discovery and Data
Mining);

– the industrial track, aiming to bring together participants from academia, industry,
government, and NGOs (non-governmental organizations) in a venue that high-
lights practical and real-world studies of machine learning, knowledge discovery,
and data mining.

– the demo track, presenting innovative prototype implementations or mature systems
that use machine learning techniques and knowledge discovery processes in a real
setting;

– the nectar track, offering conference attendees a compact overview of recent sci-
entific advances at the frontier of machine learning and data mining with other
disciplines, as published in related conferences and journals.

Moreover, the conference program included 3 discovery challenges, 13 workshops,
and 10 tutorial presentations. The discovery challenges were organized by Elio Masciari
and Alessandro Moschitti. Fabrizio Costa, Matthijs van Leeuwen, and Albrecht
Zimmermann had the responsibility of selecting workshop and tutorial proposals. The
PhD Forum, where junior PhD students exchange ideas, experiences, and get advise
from senior researchers, was organized by Leman Akoglu and Tijl De Bie.

The program included six plenary keynotes by invited speakers Susan Athey
(Stanford Graduate School of Business), Zoubin Ghahramani (University of Cambridge
and Alan Turing Institute), Thore Graepel (Google DeepMind and University College
London), Ravi Kumar (Google), Rasmus Pagh (IT University of Copenhagen), and
Alex “Sandy” Pentland (MIT).



Putting together the program of this conference would have been impossible without
the help of a large and supportive team. Our thirty Area Chairs nominated reviewers,
moderated the discussion among them to find a consensus over each paper, and made a
final accept/reject decision. A total of 315 reviewers (listed in this book) helped to
select papers. Two best student papers were selected by Toon Calders and Hendrik
Blockeel. The associated awards were sponsored by Springer and the journals Machine
Learning and Data Mining and Knowledge Discovery.

For the fourth time, the conference used a double submission model: next to the
regular conference tracks, papers submitted to the Springer journals Machine Learning
(MACH) and Data Mining and Knowledge Discovery (DAMI) were considered for
presentation at the conference. These papers were submitted to the ECML PKDD 2016
special issue of the respective journals, and underwent the normal editorial process
of these journals. Those papers accepted for one of these journals were assigned a
presentation slot at the ECML PKDD 2016 conference. A total of 120 original
manuscripts were submitted to the journal track during this year. Some of these papers
are still being refereed. Of the fully refereed papers, 8 were accepted in DAMI and 10
in MACH, together with 10 papers from last year’s call, which were also scheduled for
presentation at this conference.

There were two major innovations at this year’s conference. First, we decided to
have a full day of plenary presentation on September 21st, while the usual four parallel
session tracks were run on September 20th and 22nd. These plenary oral presentations
were selected by the Program and Journal Track Co-chairs from the pool of all accepted
papers according to criteria such as: (1) novelty and significance of the results and their
expected impact; (2) breadth of interest for both machine learners and data miners. It is
our belief that this will strengthen the synergy between the ML and the DM
sub-communities, allowing papers of general interest for both to be presented to the
whole audience.

The second major difference is the adoption of the practices of Reproducible
Research (RR). Authors were encouraged to adhere to such practices by making
available data and software tools for reproducing the results reported in their papers. In
total, 29 papers with accompanying software and/or data are flagged as RR-papers on
the conference website http://ecmlpkdd2016.org/, which provides links to such addi-
tional material (links are also available within the paper bodies in these proceedings).

Part I and Part II of the proceedings of the ECML PKDD 2016 conference contain
the full papers of the contributions presented in the scientific track and the abstracts
of the scientific plenary talks. Part III of the proceedings of the ECML PKDD 2016
conference contains the full papers of the contributions presented in the industrial track,
short papers describing the demonstrations, the nectar papers, and the abstracts of the
industrial plenary talks. First of all, we would like to express our gratitude to the
general chairs of the conference, Fosca Giannotti and Andrea Passerini, as well as to all
members of the Organizing Committee, for managing this event in a very competent
and professional way. In particular, we thank the demo, workshop and tutorial,
industrial, and nectar track chairs. Special thanks go to the proceedings chairs, Marco
Lippi and Stefano Ferilli, for the hard work of putting these proceedings together. We
thank the PhD Forum organizers, the Discovery Challenge organizers, and all the
people involved in the conference, who worked hard for its success. We would like to

VI Preface

http://ecmlpkdd2016.org/


thank Microsoft for allowing us to use their CMT software for conference management.
Last but not least, we would like to sincerely thank the authors for submitting their
work to the conference and the reviewers and area chairs for their tremendous effort in
guaranteeing the quality of the reviewing process, thereby improving the quality
of these proceedings.

September 2016 Paolo Frasconi
Niels Landwehr
Giuseppe Manco

Jilles Vreeken
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Causal Inference and Machine Learning:
Estimating and Evaluating Policies

Susan Athey

Stanford Graduate School of Business

Abstract. In many contexts, a decision-making can choose to assign one of a
number of “treatments” to individuals. The treatments may be drugs, offers,
advertisements, algorithms, or government programs. One setting for evaluating
such treatments involves randomized controlled trials, for example A/B testing
platforms or clinical trials. In such settings, we show how to optimize supervised
machine learning methods for the problem of estimating heterogeneous treat-
ment effects, while preserving a key desiderata of randomized trials, which is
providing valid confidence intervals for estimates. We also discuss approaches
for estimating optimal policies and online learning. In environments with
observational (non-experimental) data, different methods are required to separate
correlation from causality. We show how supervised machine learning methods
can be adapted to this problem.

Bio. Susan Athey is The Economics of Technology Professor at Stanford Graduate
School of Business. She received her bachelor’s degree from Duke University and her
Ph.D. from Stanford, and she holds an honorary doctorate from Duke University. She
previously taught at the economics departments at MIT, Stanford and Harvard. In 2007,
Professor Athey received the John Bates Clark Medal, awarded by the American
Economic Association to “that American economist under the age of forty who is
adjudged to have made the most significant contribution to economic thought and
knowledge.” She was elected to the National Academy of Science in 2012 and to the
American Academy of Arts and Sciences in 2008. Professor Athey’s research focuses
on the economics of the internet, online advertising, the news media, marketplace
design, virtual currencies and the intersection of computer science, machine learning
and economics. She advises governments and businesses on marketplace design and
platform economics, notably serving since 2007 as a long-term consultant to Microsoft
Corporation in a variety of roles, including consulting chief economist.



Automating Machine Learning

Zoubin Ghahramani

University of Cambridge and Alan Turing Institute

Abstract. I will describe the “Automatic Statistician”1, a project which aims to
automate the exploratory analysis and modelling of data. Our approach starts by
defining a large space of related probabilistic models via a grammar over
models, and then uses Bayesian marginal likelihood computations to search over
this space for one or a few good models of the data. The aim is to find models
which have both good predictive performance, and are somewhat interpretable.
The Automatic Statistician generates a natural language summary of the anal-
ysis, producing a 10–15 page report with plots and tables describing the anal-
ysis. I will also link this to recent work we have been doing in the area of
Probabilistic Programming (including an new system in Julia) to automate
inference, and on the rational allocation of computational resources (and our
entry in the AutoML conference).

Bio. Zoubin Ghahramani FRS is Professor of Information Engineering at the University
of Cambridge, where he leads the Machine Learning Group, and the Cambridge
Liaison Director of the Alan Turing Institute, the UK’s national institute for Data
Science. He studied computer science and cognitive science at the University of
Pennsylvania, obtained his PhD from MIT in 1995, and was a postdoctoral fellow at
the University of Toronto. His academic career includes concurrent appointments as
one of the founding members of the Gatsby Computational Neuroscience Unit in
London, and as a faculty member of CMU’s Machine Learning Department for over 10
years. His current research interests include statistical machine learning, Bayesian
nonparametrics, scalable inference, probabilistic programming, and building an auto-
matic statistician. He has published over 250 research papers, and has held a number of
leadership roles as programme and general chair of the leading international confer-
ences in machine learning including: AISTATS (2005), ICML (2007, 2011), and NIPS
(2013, 2014). In 2015 he was elected a Fellow of the Royal Society.

1 http://www.automaticstatistician.com/.

http://www.automaticstatistician.com/


AlphaGo - Mastering the Game of Go
with Deep Neural Networks and Tree Search

Thore Graepel

Google DeepMind and University College London

Abstract. The game of Go has long been viewed as the most challenging of
classic games for artificial intelligence owing to its enormous search space and
the difficulty of evaluating board positions and moves. Here we introduce a new
approach to computer Go that uses ‘value networks’ to evaluate board positions
and ‘policy networks’ to select moves. These deep neural networks are trained
by a novel combination of supervised learning from human expert games, and
reinforcement learning from games of self-play. Using this search algorithm, our
program AlphaGo achieved a 99.8 % winning rate against other Go programs
and beat the human European Go champion Fan Hui by 5 games to 0, a feat
thought to be at least a decade away by Go and AI experts alike. Finally, in a
dramatic and widely publicised match, AlphaGo defeated Lee Sedol, the top
player of the past decade, 4 games to 1. In this talk, I will explain how AlphaGo
works, describe our process of evaluation and improvement, and discuss what
we can learn about computational intuition and creativity from the way AlphaGo
plays.

Bio. Thore Graepel is a research group lead at Google DeepMind and holds a part-time
position as Chair of Machine Learning at University College London. He studied
physics at the University of Hamburg, Imperial College London, and Technical
University of Berlin, where he also obtained his PhD in machine learning in 2001. He
spent time as a postdoctoral researcher at ETH Zurich and Royal Holloway College,
University of London, before joining Microsoft Research in Cambridge in 2003, where
he co-founded the Online Services and Advertising group. Major applications of
Thore’s work include Xbox Live’s TrueSkill system for ranking and matchmaking, the
AdPredictor framework for click-through rate prediction in Bing, and the Matchbox
recommender system which inspired the recommendation engine of Xbox Live Mar-
ketplace. More recently, Thore’s work on the predictability of private attributes from
digital records of human behaviour has been the subject of intense discussion among
privacy experts and the general public. Thore’s current research interests include
probabilistic graphical models and inference, reinforcement learning, games, and
multi-agent systems. He has published over one hundred peer-reviewed papers, is a
named co-inventor on dozens of patents, serves on the editorial boards of JMLR and
MLJ, and is a founding editor of the book series Machine Learning & Pattern
Recognition at Chapman & Hall/CRC. At DeepMind, Thore has returned to his original
passion of understanding and creating intelligence, and recently contributed to creating
AlphaGo, the first computer program to defeat a human professional player in the
full-sized game of Go, a feat previously thought to be at least a decade away.



Sequences, Choices, and Their Dynamics

Ravi Kumar

Google

Abstract. Sequences arise in many online and offline settings: urls to visit,
songs to listen to, videos to watch, restaurants to dine at, and so on.
User-generated sequences are tightly related to mechanisms of choice, where a
user must select one from a finite set of alternatives. In this talk, we will discuss
a class of problems arising from studying such sequences and the role discrete
choice theory plays in these problems. We will present modeling and algo-
rithmic approaches to some of these problems and illustrate them in the context
of large-scale data analysis.

Bio. Ravi Kumar has been a senior staff research scientist at Google since 2012. Prior to
this, he was a research staff member at the IBM Almaden Research Center and a
principal research scientist at Yahoo! Research. His research interests include Web
search and data mining, algorithms for massive data, and the theory of computation.



Dimensionality Reduction with Certainty

Rasmus Pagh

IT University of Copenhagen

Abstract. Tool such as Johnson-Lindenstrauss dimensionality reduction and
1-bit minwise hashing have been successfully used to transform problems
involving very high-dimensional real vectors into lower-dimensional equiva-
lents, at the cost of introducing a random distortion of distances/similarities
among vectors. While this can alleviate the computational cost associated with
high dimensionality, the effect on the outcome of the computation (compared to
working on the original vectors) can be hard to analyze and interpret. For
example, the behavior of a basic kNN classifier is easy to describe and interpret,
but if the algorithm is run on dimension-reduced vectors with distorted distances
it is much less transparent what is happening. The talk starts with an introduction
to randomized (data-independent) dimensionality reduction methods and gives
some example applications in machine learning. Based on recent work in the
theoretical computer science community we describe tools for dimension
reduction that give stronger guarantees on approximation, replacing probabilistic
bounds on distance/similarity with bounds that hold with certainty. For example,
we describe a “distance sensitive Bloom filter”: a succinct representation of
high-dimensional boolean vectors that can identify vectors within distance r with
certainty, while far vectors are only thought to be close with a small “false
positive” probability. We also discuss work towards a deterministic alternative to
random feature maps (i.e., dimension-reduced vectors from a high-dimensional
feature space), and settings in which a pair of dimension-reducing mappings
outperform single-mapping methods. While there are limits to what performance
can be achieved with certainty, such techniques may be part of the toolbox for
designing transparent and scalable machine learning and knowledge discovery
methods.

Bio. Rasmus Pagh graduated from Aarhus University in 2002, and is now a full
professor at the IT University of Copenhagen. His work is centered around efficient
algorithms for big data, with an emphasis on randomized techniques. His publications
span theoretical computer science, databases, information retrieval, knowledge dis-
covery, and parallel computing. His most well-known work is the cuckoo hashing
algorithm (2001), which has led to new developments in several fields. In 2014 he
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Abstract. Deep Convolutional Neural Networks (DCNN) has shown
excellent performance in a variety of machine learning tasks. This paper
presents Deep Convolutional Neural Fields (DeepCNF), an integration of
DCNN with Conditional Random Field (CRF), for sequence labeling with
an imbalanced label distribution. The widely-used training methods, such
as maximum-likelihood and maximum labelwise accuracy, do not work
well on imbalanced data. To handle this, we present a new training algo-
rithm called maximum-AUC for DeepCNF. That is, we train DeepCNF
by directly maximizing the empirical Area Under the ROC Curve (AUC),
which is an unbiased measurement for imbalanced data. To fulfill this,
we formulate AUC in a pairwise ranking framework, approximate it by
a polynomial function and then apply a gradient-based procedure to opti-
mize it. Our experimental results confirm that maximum-AUC greatly
outperforms the other two training methods on 8-state secondary struc-
ture prediction and disorder prediction since their label distributions are
highly imbalanced and also has similar performance as the other two train-
ing methods on solvent accessibility prediction, which has three equally-
distributed labels. Furthermore, our experimental results show that our
AUC-trained DeepCNF models greatly outperform existing popular pre-
dictors of these three tasks. The data and software related to this paper
are available at https://github.com/realbigws/DeepCNF AUC.

1 Introduction

Deep Convolutional Neural Networks (DCNN), originated by Yann LeCun at
1998 [30] for document recognition, is being widely used in a plethora of machine
learning (ML) tasks ranging from speech recognition [22], to computer vision [27],
and to computational biology [9]. DCNN is good at capturing medium- and/or
long-range structured information in a hierarchical manner. To handle structured
data, [5] has integrated DCNN with fully connected Conditional Random Fields
(CRF) for semantic image segmentation. Here we present Deep Convolutional
Neural Fields (DeepCNF), which is an integration of DCNN and linear-chain

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-46227-1 1) contains supplementary material, which is available to
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CRF, to address the task of sequence labeling and apply it to three impor-
tant biology problems: solvent accessibility prediction (ACC), disorder predic-
tion (DISO), and 8-state secondary structure prediction (SS8) [24,34].

A protein sequence can be viewed as a string of amino acids (also called
residues in the protein context) and we want to predict a label for each residue.
In this paper we consider three types of labels: solvent accessibility, disorder
state and 8-state secondary structure. These three structure properties are very
important to the understanding of protein structure and function. The solvent
accessibility is important for protein folding [10], the order/disorder state plays
an important role in many biological processes [37], and protein secondary struc-
ture(SS) relates to local backbone conformation of a protein sequence [38]. The
label distribution in these problems varies from almost uniform to highly imbal-
anced. For example, only ∼6 % of residues are shown to be disordered [19]. Some
SS labels, such as 3–10 helix, beta-bridge, and pi-helix are extremely rare [46].
The widely-used training methods, such as maximum-likelihood [29] and maxi-
mum labelwise accuracy [16], perform well on data with balanced labels but not
on highly-imbalanced data [8].

This paper presents a new maximum-AUC method to train DeepCNF for
imbalanced sequence data. Specifically, we train DeepCNF by maximizing Area
Under the ROC Curve (AUC), which is a good measure for class-imbalanced
data [7]. Taking disorder prediction as an example, random guess can obtain
∼94 % per-residue accuracy, but its AUC is only ∼0.5. AUC is insensitive to
changes in class distribution because the ROC curve specifies the relationship
between false positive (FP) rate and true positive (TP) rate, which are indepen-
dent of class distribution [7]. However, it is very challenging to directly optimize
AUC. A few algorithms have been developed to maximize AUC on unstructured
data [21,23,36], but to the best of our knowledge, there is no such an algo-
rithm for imbalanced structured data (e.g., sequence data addressed here). To
train DeepCNF by maximum-AUC, we formulate the AUC function in a ranking
framework, approximate it by a polynomial Chebyshev function [3] and then use
L-BFGS [31] to optimize it.

Our experimental results show that when the label distribution is almost uni-
form, there is no big difference between the three training methods. Otherwise,
maximum-AUC results in better AUC and Mcc than the other two methods.
Tested on several publicly available benchmark data, our AUC-trained DeepCNF
model obtains the best performance on all the three protein sequence labeling
tasks. In particular, at a similar specificity level, our method obtains better pre-
cision and sensitivity for those labels with a much smaller occurring frequency.

Contributions. 1. A novel training algorithm that directly maximizes the
empirical AUC to learn DeepCNF model from imbalanced structured data.
2. Studying three training methods, i.e. maximum-likelihood, maximum label-
wise accuracy, and maximum-AUC, for DeepCNF and testing them on three
real-world protein sequence labeling problems, in which the label distribution
varies from almost uniform to highly imbalanced. 3. Achieving the state-of-the-
art performance on three important protein sequence labeling problems. 4. All
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benchmarks are public available, and the code is available online at https://
github.com/realbigws/DeepCNF AUC. A web server is also implemented and
available at http://raptorx.uchicago.edu/StructurePropertyPred/predict/ [43].

1.1 Notations

Let L denote the sequence length, [L] denote the set {1, 2,. . . , L}. For a finite set
S, let |S| denote its cardinality. Let X = (X1,X2, . . . , XL), y = (y1, y2, . . . , yL)
denote the input features and labels respectively for position i, i ∈ [L]. Denote
Σ as the set of all possible labels, i.e., yi ∈ Σ,∀i ∈ [L].

2 Related Work

Class imbalance issue is a long-standing notorious problem. Early works have
addressed this issue through data-level methods, which change the empirical dis-
tribution of the training data to create a new balanced dataset [20]. These meth-
ods include (a) under-sampling the majority class; (b) over-sampling the minority
class; or (c) combining both under-sampling and over-sampling [4,13,32].

As AUC is an unbiased measurement for class-imbalanced data, a variety of
approaches have been proposed to directly optimize the AUC value. In particular,
(a) Cortes et al. [7] optimized AUC by RankBoost algorithm; (b) Ferri et al. [15]
trained a decision tree by using AUC as splitting criteria; (c) Herschtal and
Raskutti [21] trained a neural network by optimizing AUC; and (d) Joachims [23]
proposed a generalized Support Vector Machines (SVM) that optimizes AUC.

However, all these approaches could only be applied on unstructured models.
Recently, Rosenfeld et al. [40] have proposed a learning algorithm for struc-
tured models with AUC loss. However, there are three fundamental differences
of our method with theirs: (a) our method targets at a sequence labelling prob-
lem (of course a structured model) with an imbalance label assignment, while
their model is proposed for a ranking problem. Specifically, sequence labeling
requires the prediction of the label (might not necessarily be binary) at each
position, while the focus of structured ranking is on prediction of binary vectors
(y1; . . . ; yn) where it is hard (or unnecessary) to exactly predict which yi have
the value 1. Instead the goal of structured ranking is to rank the items 1, . . . , n
such that elements with yi = 1 are ranked high [40]; (b) our method is based on
CRF, while they used structured SVM; and (c) we also studied deep learning
extension of our method, while they did not. In summary, to the best of our
knowledge, our work is the first sequence labelling study that aims to optimize
the AUC value directly under a deep learning framework.

3 Method

3.1 DeepCNF Architecture

As shown in Fig. 1, DeepCNF has two modules: (i) the Conditional Random
Fields (CRF) module consisting of the top layer and the label layer, and (ii) the

https://github.com/realbigws/DeepCNF_AUC
https://github.com/realbigws/DeepCNF_AUC
http://raptorx.uchicago.edu/StructurePropertyPred/predict/
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Fig. 1. Illustration of a DeepCNF. Here i is the position index and Xi the associated
input features, Hk represents the k-th hidden layer, and y is the output label. All
the layers from the first to the K-th (i.e., top layer) form a DCNN with parameter
W k, k ∈ [K], where K is number of hidden layers. The K-th layer and the label layer
form a CRF, in which the parameter U specifies the relationship between the output of
the K-th layer and the label layer and T is the parameter for adjacent label correlation.
Windows size is set to 3 only for illustration.

deep convolutional neural network (DCNN) module covering the input to the
top layer. When only one hidden layer is used, DeepCNF becomes Conditional
Neural Fields (CNF), a probabilistic graphical model described in [39].

Given X = (X1, . . . , XL) and y = (y1, . . . , yL), DeepCNF calculates the
conditional probability of y on the input X with parameter θ as follows,

Pθ(y|X) =
1

Z(X)
exp

( ∑
i∈L

(fθ(y,X, i) + gθ(y,X, i))
)
, (1)

where fθ(y,X, i) is the binary potential function specifying correlation among
adjacent labels at position i, gθ(y,X, i) is the unary potential function model-
ing relationship between yi and input features for position i, and Z(X) is the
partition function. Formally, fθ(·) and gθ(·) are defined as follows:

fθ(y,X, i) = fθ(yi−1, yi,X, i) =
∑
a,b

Ta,bδ(yi−1 = a)δ(yi = b)

gθ(y,X, i) = gθ(yi,X, i) =
∑
a,h

Ua,hAa,h(X, i,W )δ(yi = a),

where a and b represent two specific labels for prediction, δ(·) is an indicator
function, Aa,h(X, i,W ) is a deep neural network function for the h-th neuron at
position i of the top layer for label a, and W,U and T are the model parameters
to be trained. Specifically, W is the parameter for the neural network, U is the
parameter connecting the top layer to the label layer, and T is for label corre-
lation. The two potential functions can be merged into a single binary potential
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function fθ(y,X, i) = fθ(yi−1, yi,X, i) =
∑

a,b,h Ta,b,hAa,b,h(X, i,W )δ(yi−1 =
a)δ(yi = b). Note that these deep neural network functions for different labels
could be shared to Ah(X, i,W ). To control model complexity and avoid over-
fitting, we add a L2-norm penalty term as the regularization factor.

Figure 1 shows two adjacent layers of DCNN. Let Mk be the number of
neurons for a single position at the k-th layer. Let Xi(h) be the h-th feature
at the input layer for residue i and Hk

i (h) denote the output value of the h-th
neuron of position i at layer k. When k = 1, Hk is actually the input feature
X. Otherwise, Hk is a matrix of dimension L × Mk. Let 2Nk + 1 be the window
size at the k-th layer. Mathematically, Hk

i (h) is defined as follows:

Hk
i (h) =Xi(h), if k = 1

Hk+1
i (h) =π

( Nk∑
n=−Nk

Mk∑
h′=1

(Hk
i+n(h) ∗ W k

n (h, h′))
)

if k < K

Ah(X, i,W ) =Hk
i (h) if k = K.

Meanwhile, π(·) is the activation function, either the sigmoid (i.e. 1/(1 +
exp(−x))) or the tanh (i.e. (1−exp(−2x))/(1+exp(−2x))) function. W k

n (−Nk ≤
n ≤ Nk) is a 2D weight matrix for the connections between the neurons of posi-
tion i + n at layer k and the neurons of position i at layer k + 1. W k

n (h, h′) is
shared by all the positions in the same layer, so it is position-independent. Here
h′ and h index two neurons at the k-th and (k + 1)-th layers, respectively. See
Appendix about how to calculate the gradient of DCNN by back propagation.

3.2 Objective Functions

Let T be the number of training sequences and Lt denote the length of sequence
t. We study three different training methods: maximum-likelihood, maximum
labelwise accuracy, and proposed maximum-AUC.

Maximum-Likelihood. The log-likelihood is a widely-used objective function
for training CRF [29]. Mathematically, the log-likelihood is defined as follows:

LL =
∑
t∈[T ]

log Pθ(yt|Xt),

where Pθ(y|X) is defined in Eq. (1).

Maximum Labelwise Accuracy. Gross et al. [16] proposed an objective func-
tion that could directly maximize the labelwise accuracy defined as

LabelwiseAccuracy =
∑
t∈[T ]

∑
i∈[Lt]

δ
(
Pθ(y

(τ)
i ) > max

yi �=yi

Pθ(yi)
)
,
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where y
(τ)
i denotes the real label at position i, Pθ(y

(τ)
i ) is the predicted prob-

ability of the real label at position i. It could be represented by the marginal
probability

Pθ(y
(τ)
i |Xt) =

1
Z(X)

∑
y1:Lt

δ(yi = (τ)) exp(F1:Lt(y,Xt, θ)),

where Fl1:l2(y,X, θ) =
∑l2

i=l1
fθ(y,X, i).

To obtain a smooth approximation to this objective function, [16] replaces
the indicator function with a sigmoid function Qλ(x) = 1/(1+exp(−λx)) where
the parameter λ is set to 15 by default. Then it becomes the following form:

LabelwiseAccuracy ≈
∑
t∈[T ]

∑
i∈[Lt]

Qλ

(
Pθ(y

(τ)
i |Xt) − Pθ(ỹ

(τ)
i |Xt)

)
,

where ỹ
(τ)
i denote the label other than y

(τ)
i that has the maximum posterior

probability at position i.

Maximum-AUC. The AUC of a predictor function Pθ on label τ is defined as:

AUC(Pθ, τ) = P
(
Pθ(yτ

i ) > Pθ(yτ
j )|i ∈ Dτ , j ∈ D!τ

)
, (2)

where P (·) is the probability over all pairs of positive and negative examples,
Dτ is a set of positive examples with true label τ , and D!τ is a set of negative
examples with true label not being τ . Note that the union of Dτ and D!τ contains
all the training sequence positions, i.e., Dτ = ∪T

t=1 ∪Lt
i=1 δτ

i,t where δτ
i,t is an

indicator function. If the true label of the i-th position from sequence t equals
to τ , then δτ

i,t is equal to 1; otherwise 0. Again, Pθ(yτ
i ) could be represented

by the marginal probability Pθ(yτ
i |Xt) from the training sequence t. Since it is

hard to calculate the derivatives of Eq. (2), we use the following Wilcoxon-Mann-
Whitney statistic [18], which is an unbiased estimator of AUC(Pθ, τ):

AUCWMW (Pθ, τ) =

∑
i∈Dτ

∑
j∈D!τ δ

(
Pθ(yτ

i |X) > Pθ(yτ
j |X)

)

|Dτ ||D!τ | . (3)

Finally, by summing over labels, the overall AUC objective function is∑
τ AUCWMW (Pθ, τ).
For a large dataset, the computational cost of AUC by Eq. (3) is high.

Recently, Calders and Jaroszewicz [3] proposed a polynomial approximation of
AUC which can be computed in linear time. The key idea is to approximate
the indicator function δ(x > 0), where x represents Pθ(yτ

i |X) − Pθ(yτ
j |X) by

a polynomial Chebyshev approximation. That is, we approximate δ(x > 0) by∑
μ∈[d] cμxμ where d is the degree and cμ the coefficient of the polynomial [3].

Let n1 = |Dτ | and n0 = |D!τ |. Using the polynomial Chebyshev approximation,
we can approximate Eq. (3) as follows:
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AUCWMW (Pθ, τ) ≈ 1
n0n1

∑
μ∈[d]

∑
l∈[μ]

Yμls(P l
θ,D

τ )v(Pμ−l
θ ,D!τ )

where Yμl = cμ

(
μ
l

)
(−1)μ−l, s(P l,Dτ ) =

∑
i∈Dτ P (yτ

i )l and v(P l,D!τ ) =∑
j∈D!τ P (yτ

j )l. Note that we have s(P l,Dτ ) =
∑

t∈[T ]

∑
i∈[Lt]

δτ
i,tP (yτ

i )l and
a similar structure for v(P l,D!τ ).

4 Results

In this section presents our experimental results of the AUC-trained DeepCNF
models on three protein sequencing problems, which are summarize as follows:

ACC. We used DSSP [26] to calculate the absolute accessible surface area for
each residue in a protein and then normalize it by the maximum solvent accessi-
bility to obtain the relative solvent accessibility (RSA) [6]. Solvent accessibility
of one residue is classified into 3 labels: buried (B) for RSA from 0 to 10), inter-
mediate (I) for RSA from 10 to 40 and exposed (E) for RSA from 40 to 100.
The ratio of these three labels is around 1:1:1 [33].

DISO. Following the definition in [35], we label a residue as disordered (label
1) if it is in a segment of more than three residues missing atomic coordinates in
the X-ray structure. Otherwise it is labeled as ordered (label 0). The distribution
of these two labels (ordered vs. disordered) is 94:6 [45].

SS8. The 8-state protein secondary structure is calculated by DSSP [26]. In
particular, DSSP assigns 3 types for helix (G for 310 helix, H for alpha-helix, and
I for pi-helix), 2 types for strand (E for beta-strand and B for beta-bridge), and 3
types for coil (T for beta-turn, S for high curvature loop, and L for irregular) [44].
The distribution of these 8 labels (H,E,L,T,S,G,B,I) is 34:21:20:11:9:4:1:0 [43].

4.1 Dataset

To use a set of non-redundant protein sequences for training and test, we pick
one representative sequence from each protein superfamily defined in CATH [42]
or SCOP [1]. The test proteins are in different superfamilies than the training
proteins, so we can reduce the bias incurred by the sequence profile similar-
ity between the training and test proteins. The publicly available JPRED [11]
dataset (http://www.compbio.dundee.ac.uk/jpred4/about.shtml) satisfies such
a condition, which has 1338 training and 149 test proteins, respectively, each
belonging to a different superfamily. We train the DeepCNF model using the
JPRED training set and conduct 7-fold cross validation to determine the model
hyper-parameters for each training method.

We also evaluate the predictive performance of our DeepCNF models on the
CASP10 [28] and CASP11 [25] test targets (merged to a single CASP dataset)

http://www.compbio.dundee.ac.uk/jpred4/about.shtml
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and the recent CAMEO [17] hard test targets. To remove redundancy, we fil-
ter the CASP and CAMEO datasets by removing those targets sharing >25 %
sequence identity with the JPRED training set. This result in 126 CASP and
147 CAMEO test targets, respectively. See Appendix for their test results.

4.2 Evaluation Criteria

We use Qx to measure the accuracy of sequence labeling where x is the number of
different labels for a prediction task. Qx is defined as the percentage of residues
for which the predicted labels are correct. In particular, we use Q3 accuracy for
ACC prediction, Q8 accuracy for SS8 prediction and Q2 accuracy for disorder
prediction.

From TP (true positives), TN (true negatives), FP (false positives)
and FN (false negatives), we may also calculate sensitivity (sens), speci-
ficity (spec), precision (prec) and Matthews correlation coefficient (Mcc)
as TP

TP+FN , TN
TN+FP , TP

TP+FP and TP×TN−FP×FN√
(TP+FP )(TN+FP )(TP+FN)(TN+FN)

, respec-

tively. We also use AUC as a measure. Mcc and AUC are generally regarded

Fig. 2. Q3 accuracy, mean Mcc and AUC of solvent accessibility (ACC) prediction
with respect to the DCNN architecture: (left) the number of neurons, (middle) window
size, and (right) the number of hidden layers. Training methods: maximum likelihood
(black), maximum labelwise accuracy (red) and maximum AUC (green). (Color figure
online)
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as balanced measures which can be used on class-imbalanced data. Mcc ranges
from −1 to +1, with +1 representing a perfect prediction, 0 random prediction
and −1 total disagreement between prediction and ground truth. AUC has a
minimum value 0 and the best value 1.0. When there are more 2 different labels
in a labeling problem, we may also use mean Mcc (denoted as M̄cc) and mean
AUC (denoted as ¯AUC), which are averaged over all the different labels.

4.3 Performance Comparison on Objective Functions

The architecture of the DCNN in DeepCNF model is mainly determined by the
following 3 factors (see Fig. 1): (i) the number of hidden layers; (ii) the number
of different neurons at each layer; and (iii) the window size at each layer. We
compared three different methods for training the DeepCNF model: maximum
likelihood, maximum labelwise accuracy, and maximum AUC for the prediction
of three-label solvent accessibility (ACC), two-label order/disorder (DISO), and
eight-label secondary structure element (SS8), respectively.

Fig. 3. Q2 accuracy, mean Mcc and AUC of disorder (DISO) prediction with respect
to the DCNN architecture: (left) the number of neurons, (middle) window size, and
(right) the number of hidden layers. Training methods: maximum likelihood (black),
maximum labelwise accuracy (red) and maximum AUC (green). (Color figure online)
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Fig. 4. Q8 accuracy, mean Mcc and AUC of 8-state secondary structure (SS8) predic-
tion with respect to the DCNN architecture: (left) the number of neurons, (middle)
window size, and (right) the number of hidden layers. Training methods: maximum
likelihood (black), maximum labelwise accuracy (red) and maximum AUC (green).
(Color figure online)

We conduct 7-fold cross-validation for each possible DCNN architecture, each
training method, and each labeling problem using the JPRED dataset. To sim-
plify the analysis, we use the same number of neurons and the same windows size
for all hidden layers. By default we use 5 hidden layers, each with 50 different
hidden neurons and windows size 11.

Overall, as shown in Figs. 2, 3 to 4, Our DeepCNF model reaches peak per-
formance when it has 4 to 5 hidden layers, 50 to 100 different hidden neurons
at each layer, and windows size 11. Further increasing the number of layers, the
number of different hidden neurons, and the windows size does not result in
significant improvement in Qx accuracy, mean Mcc and AUC, regardless of the
training method.

For ACC prediction, as shown in Fig. 2, since the three labels are equally
distributed, no matter what training methods are used, the best Q3 accuracy,
the best mean Mcc and the best mean AUC are 0.69, 0.45, 0.82, respectively;
For DISO prediction, since the two labels are highly imbalanced, as shown
in Fig. 3, although all three training methods have similar Q2 accuracy 0.94,
maximum-AUC obtains mean Mcc and AUC at 0.51 and 0.89, respectively,
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greatly outperforming the other two; For SS8 prediction, as shown in Fig. 4, since
there are three rare labels (i.e., G for 3–10 helix, B for beta-bridge, and I for pi-
helix), maximum-AUC has the overall mean Mcc at 0.44 and mean AUC at 0.86,
respectively, much better than maximum labelwise accuracy, which has mean
Mcc at 0.41 and mean AUC less than 0.8, respectively.

4.4 Performance Comparison with State-of-the-art

Programs to Compare. Since our method is ab initio, we do not compare
it with consensus-based or template-based methods. Instead, we compare our
method with the following ab initio predictors: (i) for ACC prediction, we com-
pare to SPINE-X [14] and ACCpro5-ab [34]. SPINE-X uses neural networks (NN)
while ACCpro5-ab uses bidirectional recurrent neural network (RNN); (ii) for
DISO prediction, we compare to DNdisorder [12] and DisoPred3-ab [24]. DNdis-
order uses deep belief network (DBN) while DisoPred3-ab uses support vector
machine (SVM) and NN for prediction; (iii) for SS8 prediction, we compare our
method with SSpro5-ab [34] and RaptorX-SS8 [46]. SSpro5-ab is based on RNN
while RaptorX-SS8 uses conditional neural field (CNF) [39]. We cannot evaluate
Zhous method [48] since it is not publicly available.

Overall Evaluation. Here we only compare our AUC-trained DeepCNF model
(trained by the JPRED data) to the other state-of-the-art methods on the CASP
and CAMEO datasets. As shown in Tables 1, 2 to 3, our AUC-trained DeepCNF
model outperforms thPlease refer to appendix for a more detailed review for
those problems and existing state-of-the art algorithms.e other predictors on all
the three sequence labeling problems, in terms of the Qx accuracy, Mcc and
AUC. When the label distribution is highly imbalanced, our method greatly
exceeds the others in terms of Mcc and AUC. Specifically, for DISO prediction
on the CASP data, our method achieves 0.55 Mcc and 0.89 AUC, respectively,
greatly outperforming DNdisorder (0.37 Mcc and 0.81 AUC) and DisoPred3 ab
(0.47 Mcc and 0.84 AUC). For SS8 prediction on the CAMEO data, our method
obtains 0.42 Mcc and 0.83 AUC, respectively, much better than SSpro5 ab (0.37
Mcc and 0.78 AUC) and RaptorX-SS8 (0.38 Mcc and 0.79 AUC).

Sensitivity, Specificity, and Precision. Tables 4 and 5 list the sensitivity,
specificity, and precision on each label obtained by our method and the other
competing methods evaluated on the merged CASP and CAMEO data. Overall,
at a high specificity level, our method obtains compatible or better precision and
sensitivity for each label, especially for those rare labels such as G, I, B, S, T
for SS8, and disorder state for DISO. Taking SS8 prediction as an example, for
pi-helix (I), our method has sensitivity and precision 0.18 and 0.33 respectively,
while the second best method obtains 0.03 and 0.12, respectively. For beta-bridge
(B), our method obtains sensitivity and precision 0.13 and 0.42, respectively,
while the second best method obtains 0.07 and 0.34, respectively (Table 6).
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Table 1. Performance of solvent accessibility (ACC) prediction on the CASP and
CAMEO data. Sens, spec, prec, Mcc and AUC are averaged on the 3 labels. The best
values are shown in bold.

Method CASP CAMEO

Q3 Sens Spec Prec Mcc AUC Q3 Sens Spec Prec Mcc AUC

OurMethod 0.66 0.65 0.82 0.64 0.47 0.82 0.67 0.62 0.81 0.62 0.43 0.80

SPINE-X 0.58 0.59 0.80 0.59 0.42 0.78 0.57 0.58 0.78 0.57 0.39 0.75

ACCpro5 ab 0.58 0.58 0.81 0.57 0.41 0.76 0.57 0.55 0.79 0.55 0.36 0.73

Table 2. Performance of order/disorder (DISO) prediction on the CASP and CAMEO
data.

Method CASP CAMEO

Q2 Sens Spec Prec Mcc AUC Q2 Sens Spec Prec Mcc AUC

OurMethod 0.94 0.74 0.74 0.75 0.55 0.89 0.94 0.73 0.73 0.74 0.49 0.88

DisoPred3 ab 0.94 0.67 0.67 0.72 0.47 0.84 0.94 0.71 0.71 0.71 0.42 0.83

DNdisorder 0.94 0.73 0.73 0.70 0.37 0.81 0.94 0.72 0.72 0.68 0.36 0.79

Table 3. Performance of 8-state secondary structure (SS8) prediction on the CASP
and CAMEO data.

Method CASP CAMEO

Q8 Sens Spec Prec Mcc AUC Q8 Sens Spec Prec Mcc AUC

OurMethod 0.72 0.48 0.96 0.56 0.44 0.85 0.72 0.45 0.95 0.54 0.42 0.83

RaptorX-SS8 0.65 0.42 0.95 0.50 0.41 0.81 0.66 0.40 0.94 0.48 0.38 0.79

SSpro5 ab 0.64 0.41 0.95 0.48 0.40 0.79 0.64 0.38 0.94 0.46 0.37 0.78

Table 4. Sensitivity, specificity, and precision of each solvent accessibility (ACC) label,
tested on the combined CASP and CAMEO data.

ACC Label Sensitivity Specificity Precision

Our SpX∗ Acc5∗∗ Our SpX Acc5 Our SpX Acc5

B 0.77 0.74 0.75 0.82 0.81 0.80 0.67 0.63 0.62

M 0.45 0.36 0.34 0.80 0.78 0.79 0.54 0.48 0.46

E 0.71 0.67 0.63 0.82 0.79 0.80 0.67 0.62 0.61

* SPINEX, ** ACCpro5 ab
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Table 5. Sensitivity, specificity, and precision of each disorder label on the combined
CASP and CAMEO data.

DISO Label Sensitivity Specificity Precision

Our Diso∗ DN∗∗ Our Diso DN Our DISO DN

0 0.96 0.96 0.89 0.51 0.41 0.55 0.95 0.94 0.93

1 0.51 0.41 0.55 0.96 0.96 0.89 0.54 0.51 0.47

* DisoPred3 ab; ** DNdisorder

Table 6. Sensitivity, specificity, and precision of each 8-state secondary structure label
on the combined CASP and CAMEO data.

SS8 Label Sensitivity Specificity Precision

Our Rapt∗ SSp5∗∗ Our Rapt SSp5 Our Rapt SSp5

H 0.91 0.89 0.90 0.92 0.93 0.93 0.85 0.84 0.84

G 0.28 0.21 0.19 0.99 0.98 0.97 0.47 0.43 0.41

I 0.18 0.03 0.02 0.99 0.98 0.98 0.33 0.12 0.06

E 0.84 0.78 0.77 0.94 0.91 0.89 0.73 0.72 0.69

B 0.13 0.05 0.07 0.99 0.99 0.99 0.42 0.33 0.34

T 0.56 0.49 0.51 0.95 0.93 0.93 0.56 0.50 0.49

S 0.29 0.21 0.18 0.97 0.96 0.97 0.51 0.43 0.45

L 0.61 0.62 0.63 0.86 0.86 0.87 0.58 0.58 0.54

* RaptorX-SS8; ** SSpro5 ab

5 Discussions

We have presented a novel training algorithm that directly maximizes the empir-
ical AUC to learn DeepCNF model (DCNN+CRF) from imbalanced struc-
tured data. We also studied the behavior of three training methods: maximum-
likelihood, maximum labelwise accuracy, and maximum-AUC, on three real-
world protein sequence labeling problems, in which the label distribution varies
from equally distributed to highly imbalanced. Evaluated by AUC and Mcc, our
maximum-AUC training method achieves the state-of-the-art performance in
predicting solvent accessibility, disordered regions, and 8-state secondary struc-
ture.

Instead of using a linear-chain CRF, we may model a protein by Markov
Random Fields (MRF) to capture long-range residue interactions [47]. As sug-
gested in [41], the predicted residue-residue contact information could further
contribute to disorder prediction under the MRF model. In addition to the
three protein sequence labeling problems tested in this work, our maximum-
AUC training algorithm could be applied to many sequence labeling problems
with imbalanced label distributions [20]. For example, in post-translation modi-
fication (PTM) site prediction, the phosphorylation and methylation sites occur
much less frequently than normal residues [2].
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Abstract. Covariance-guided One-Class Support Vector Machine
(COSVM) is a very competitive kernel classifier, as it emphasizes the
low variance projectional directions of the training data, which results in
high accuracy. However, COSVM training involves solving a constrained
convex optimization problem, which requires large memory and enor-
mous amount of training time, especially for large scale datasets. More-
over, it has difficulties in classifying sequentially obtained data. For these
reasons, this paper introduces an incremental COSVM method by con-
trolling the possible changes of support vectors after the addition of new
data points. The control procedure is based on the relationship between
the Karush-Kuhn-Tuker conditions of COSVM and the distribution of
the training set. Comparative experiments have been carried out to show
the effectiveness of our proposed method, both in terms of execution time
and classification accuracy. Incremental COSVM results in better classi-
fication performance when compared to canonical COSVM and contem-
porary incremental one-class classifiers.

Keywords: One-class classification · Incremental learning · Support
Vector Machine · Covariance

1 Introduction

One-Class Classification is considered as one of the most challenging areas of
machine learning. It has gained a lot of attention and it can be found in many
practical applications such as medical analysis [1], face recognition [2], authorship
verification [3].

To solve one-class classification problems, several methods have been pro-
posed and different concrete models have been constructed. However, the key
limitation of the existing categories of one-class classification methods is that
none of them consider the full scale of information available. In boundary-based
methods, like the One-Class Support Vector Machine (OSVM) [4] or Support
Vector Data Description (SVDD) [5], only boundary data points are considered
to build the model, and the overall class is not completely considered.
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 17–32, 2016.
DOI: 10.1007/978-3-319-46227-1 2
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Besides, unlike multi-class classification problems, the low variance directions
of the target class distribution are crucial for one-class classification. In [6], it has
been shown that projecting the data in the high variance directions (like PCA)
will result in higher error (bias), while retaining the low variance directions will
lower the total error. As a solution, Naimul Mefraz Khan et al. proposed in [7]
to put more emphasis on the low variance directions while keeping the basic
formulation of OSVM untouched, so that we still have a convex optimization
problem with a unique global solution, that can be reached easily using numerical
methods. Covariance Guided One-Class Support Vector Machine (COSVM) is
a powerful kernel method for one-class classification, inspired from the Support
Vector Machine (SVM), where the covariance matrix is incorporated into the
dual optimization problem of OSVM. The covariance matrix is estimated in the
kernel space. Concerning its classification performance, success of COSVM has
been shown when compared to SVDD and OSVM. However, there are still some
difficulties associated with COSVM application in real case problems, where
data are sequentially obtained and learning has to be done from the first data.
Besides, COSVM requires large memory and enormous amount of training time,
especially for large dataset.

Implementations for the existing One-Class Classification methods assume
that all the data are provided in advance, and learning process is carried out in
the same step. Hence, these techniques are referred to as batch learning. Because
of this limitation, batch techniques show a serious performance degradation in
real-word applications when data are not available from the very beginning. For
such situation, a new learning strategy is required. Opposed to batch learning,
incremental learning is more effective when dealing with non-stationary or very
large amount of data. Thus, it finds its application in a great variety of situa-
tions such as visual tracking [8], software project estimation [9], brain computer
interfacing [10].

It has been defined in [11] with 4 criteria:

1. it should be able to learn additional information from new data
2. it should not require access to the original data
3. it should preserve previously acquired knowledge and use it to update an

existing classifier.
4. it should be able accommodate new outliers and target samples.

Several learning algorithms have been studied and modified to incremental
procedures, able to learn through time. Cauwenberghs and Poggio [12] proposed
an online learning algorithm of Support Vector Machine (SVM). Their algorithm
changes the coefficient of original Support Vectors (SV), and retains the Karuch-
Kuhn-Tucker (KKT) conditions on all previously training data as a new sample
acquired. Their approach have been extended by Laskov et al. [13] to OSVM.
However, the performance evaluation was only based on multi-class SVM. From
their side, Manuel Davy et al. introduced in [14] an online SVM for abnormal
events detection. They proposed a strategy to perform abnormality detection
over various signals by extracting relevant features from the considered signal and
detecting novelty, using an incremental procedure. Incremental SVDD proposed
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in [15] is also based on the control of the variation of the KKT conditions as new
samples are added. An other approach to improve the classification performance
is introduced in [16]. Incremental Weighted One-Class Support Vector Machine
(WOCSVM) is an extension of incremental OSVM. The proposed algorithm aims
to assign weights to each object of the training set, then it controls its influence
on the shape of the decision boundary.

All the proposed Incremental One-Class SVM inherit the problem of classic
SVM method which uses only boundary points to build a model, regardless of
the spread of the remaining data. Also, none of them emphasizes the low variance
direction, which results in performance degradation. Therefore, in this paper we
try to solve mainly this problem by using an incremental COSVM (iCOSVM)
approach. In fact, iCOSVM has the advantage of incrementally emphasizing the
low variance direction to improve classification performance, which is not the
case for classical incremental one-class models. Our preposition aims to take
advantages from the accuracy of COSVM procedure and we prove that it is a
good candidate for learning in non-stationary environments.

The rest of the paper is organized as follows. Section 2 reviews the canonical
COSVM method since it is the basis of our proposed method. In Sect. 3, we
present in details the mathematical derivation of iCOSVM and we describe the
incremental algorithm. Section 4 presents our experimental studies and compar-
ison with canonical COSVM and other incremental one-class classifiers. Finally,
Sect. 5 contains some concluding remarks and perspectives.

2 The COSVM Method

Mathematically, OSVM tries to find the hyperplane that separates the training
data from the origin with maximum margin. It can be modeled by the following
dual problem, formulated using Lagrange multipliers.

min
α

1
2
αT Kα + b

(
1 −

N∑
i=1

αi

)
. (1)

s.t. 0 ≤ αi ≤ 1
νN

= C,

N∑
i=1

αi = 1.

Here, ν ∈ (0, 1] is a key parameter that controls the fraction of outliers
and that of support vectors, C is the penalty weight punishing the misclassi-
fied training examples, K (xi, xj) = 〈Φ (xi) , Φ (xj)〉 ,∀i, j ∈ {1, 2, . . . , N} is the
kernel matrix for the training data, and α are the Lagrange multipliers to be
determined.

The covariance matrix is then plugged in the dual problem and a parameter
η ∈ [0, 1] is introduced to control the contribution of the kernel matrix K and the
covariance matrix to the objective function. The COSVM optimization problem
can be written as follows:
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min
α

W (α, b) =
1
2
αT (ηK + (1 − η)Δ) α − b

(
1 −

N∑
i=1

αi

)
. (2)

s.t. 0 ≤ αi ≤ C,

N∑
i=1

αi = 1,

where Δ = K (I − 1N )KT . The control parameter η can take values from 0
to 1.

3 The Incremental COSVM Method

The key of our method is to construct a solution recursively, by adding one point
at a time [12], and retain the Karush-Kuhn-Tucker Conditions on all previously
acquired data.

3.1 Karush-Kuhn-Tucker Conditions

Both the kernel matrix K and the covariance matrix Δ are positive definite [17].
Therefore, the proposed method still results in a convex optimization problem.
Thus, the solution to this optimization problem will have one global optimum
solution and can be solved efficiently using a mathematical method. Karush-
Kuhn-Tucker (KKT) conditions [18] are among the most important theoretical
optimization methods.

First, let’s note
Γ = (ηK + (1 − η)Δ) .

The slopes gi of the cost function W in equation (2) are expressed using the
KKT conditions as:

gi =
∂W

∂α
=

∑
j

Γi,jαj − b

⎧
⎪⎨
⎪⎩

≥ 0; αi = 0
= 0; 0 < αi < C

≤ 0; αi = C

(3)

∂W

∂b
= 1 −

∑
α = 0. (4)

According to the KKT conditions above, the target training data can be
divided into three categories, shown in Figs. 1, 2 and 3:

Optimal 
hyperplan

Margin 

x

Margin SV

Fig. 1. Subset S. gi = 0
and 0 < αi < C

Optimal 
hyperplan

Margin 

x

Error SV

x

Fig. 2. Subset E . gi < 0
and αi = C

Optimal 
hyperplan

Margin 

x

Non SV
x

Fig. 3. Subset O. gi > 0
and αi = 0
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1. Margin or unboundedSupportVectors are training pointsS = {i/0 < αi < C},
2. Error or bounded Support Vectors E = {i/αi = C},
3. Non Support Vectors O = {i/αi = 0}.

The KKT conditions have to be maintained for all trained data before a new
data xc is added and preserved after the new data is trained. Hence, the change
of Lagrange multipliers Δα is determined to hold the KKT.

3.2 Adiabatic Increments

To maintain the equilibrium of the KKT conditions expressed in Eqs. (3) and
(4), we express them differentially:

Δgi = Γi,cαc +
∑

j

Γi,jαj − Δb, (5)

Δαc +
∑
j∈S

αj = 0. (6)

The two equations above can be written as:
⎡
⎢⎢⎣

Δgc

Δgs

Δgr

0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 Γc,s

1 Γs,s

1 Γr,s

0 1

⎤
⎥⎥⎦

[−Δb
Δαs

]
+ Δαc

⎡
⎢⎢⎣

Γc,c

Γs,c

Γr,c

1

⎤
⎥⎥⎦ . (7)

Since Δ gi = 0 when i ∈ S(it remains zero), lines 2 and 4 of the system (7)
can be re-written as:

[
0
0

]
=

[
0 1
1 Γs,s

] [−Δb
Δαs

]
+ Δαc

[
1

Γs,c

]
. (8)

Thus, we can express the dependence of Δαi, i ∈ S and Δgi = 0, i /∈ S on
Δαc as the following: [−Δb

Δαs

]
= −R

[
1

Γs,c

]
Δαc, (9)

with

R =
[
0 1
1 Γs,s

]−1

.

Here, Γs,s is the kernel matrix whose entries are support vectors, and Γs,c is
a vector of kernels between the margin support vectors and the new candidate
vector xc.

The Eq. (9) gives the following:
[−Δb

Δαs

]
= βΔαc,
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where

β = −R
[

1
Γs,c

]
. (10)

In equilibrium, {
Δb = −βbΔαc,

Δαj = βjΔαc, j ∈ S (11)

and βj = 0 for all j outside the subset S.
Substituting Eq. (11) into lines 1 and 3 of the system (7) leads to the desired

relation between Δgi and Δαc:

Δgi = γi Δαc, i ∈ {1...n} ∪ {c} (12)

where we define {
γi = Γi,c +

∑
j∈S Γi,jβj , i /∈ S

γi = 0, i ∈ S (13)

3.3 Vectors Entering and Leaving a Subset

During the incremental procedure, a new example xc can be added to the pre-
vious training set, and depending on the value of the calculated parameters gc

and αc, the xc is recognized as a support vector, an error vector or a data vec-
tor. If xc is classified as a support vector, the set S, as well as the classification
boundaries and margins should be updated. Since the Margin Support Vectors
are our first concern in a classification process, it is worth to focus on the changes
in the subset S. Besides, we can see from the Eqs. (10), (11), (12) and (13) of
the previous section, that only R matrix needs to be computed to obtain all
updated parameters. Let us consider a vector xk entering to the subset S. Using
the Woodbury formula [19], R expands as:

R̃ =
[
R 0
0 0

]
+

1
γc

[
β
1

] [
β
1

]T

. (14)

When xk leaves S, and using the same formula, R contracts as:

R̃ = Rk,k − Rk,kRk,kRk,k. (15)

3.4 The Impact of the Tradeoff Parameter η

The contribution of our kernel matrix K and the covariance matrix Δ is con-
trolled using the parameter η. Figures 4, 5 and 6 present three different cases
showing the impact of the covariance matrix on the direction of the separating
hyperplane in the kernel space optimality. In Fig. 4, the optimal decision hyper-
plane is on the same direction as the high variance direction. Hence, the low
variance direction will not improve the separating direction. That is why the
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Fig. 4. Case 1: schematic depiction of
the decision hyperplane for iCOSVM
when the optimal control parameter
value is η = 1. The optimal linear pro-
jection is along the direction of high
variance.
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Fig. 6. General Case: schematic depiction of the decision hyperplane for iCOSVM when
the optimal parameter value lies in between 0 and 1 (0 < η < 1). The linear projection
direction for iOSVM (depicted by dotted arrows) results in higher overlap between the
example target and hypothetical outlier data (circled by dotted boundary) than the
iCOSVM projection direction (depicted by solid arrows and the overlap circled by solid
boundary).

value of η should be set to 1 in order to eliminate the covariance matrix term.
On the other hand, in Fig. 5, the directions of the optimal decision hyperplane
and the low variance are parallel. Therefore the incremental OSVM (iOSVM)
term (kernel matrix) is ignored by setting η to 0. However, in real world cases, it
is very rare that the optimal decision hyperplane has the same direction as the
low or high variance. For this reason, the value of η needs to be tuned so that
we have less overlap between the linear projections of the target data and the
outlier data. As Fig. 6 shows, by using optimal η value, iCOSVM can reduce the
huge overlap caused by iOSVM projection.
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3.5 The Incremental Algorithm

Our implementation of incremental Covariance-guided One-Class SVM is pre-
sented as pseudo-code in Algorithm 1.

Algorithm 1. Incremental Covariance-guided One-Class SVM algorithm
1. Initialization
2. Compute R, and use it to compute β and γ according to Eqs. (10) and (13)
3. Set αc and Δαc to 0
4. Compute gc using Eq. (3)
5. While gc < 0 and αc < C do
6. if gc = 0 then xc is a margin support vector. Add c to S and equilibrium is

reached. Set αc = Δαc and update (αi)i=1...n. Update R, and b.
7. if gc < 0 then xc is an error support vector. Add c to E and equilibrium is

reached. Set αc = C, update (αi)i=1...n and b.
8. if a support vector reaches its upper bound, xk becomes a non-support vector.

Remove k from S and add it to O. Update R, (αi)i=1...n and b.
9. if a support vector reaches its lower bound, xk becomes an error support vector.

Remove k from S and add it to E . Update R, (αi)i=1...n and b.
10. if gi becomes 0, xk becomes a support vector. Add k to S Update R, (αi)i=1...n

and b.

If the equilibrium is not reached, parameters are sequentially moved until
the equilibrium is met. We aim to determine the largest possible increment 	αc

so that the decomposition of the set remains intact, while accounting for the
movement of some data from set to another during the update process. This is
the idea of adiabatic increments [12].

4 Experimental Results

In this section, we present detailed experimental analysis and results for our
proposed method, performed on artificially synthesized dataset and real world
datasets. We have evaluated the performance of our method with two different
experiment sets. In the first one, we compared the accuracy and time results
with non-incremental COSVM, to tease out the advantage of our incremental
model over batch learning model. In the second experiment set, we compare the
iCOSVM performance against the performance of contemporary incremental
one-class classifiers, to show the advantage of incrementally projecting data in
low variance directions. For the implementation, we used Tax’s data description
toolbox [20] in Matlab. First, we provided an analysis of the effect of tuning the
key control parameter η. This analysis will lead us to decide how to optimize
the value of η for a particular dataset.
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4.1 Optimising the Value of η

Cross validation can not be used to optimize the value of η. Therefore, a stopping
criterion is considered to find the optimum value. We use a pre-defined lowest
fraction of outliers allowed (fOL) as a stopping criterion. For new datasets, we
set η to 1, and we decrease its value, while observing the fraction of outliers.
When it hits (fOL), we stop and use the current value of η for the considered
dataset. We have to mention that there is no conflict between (fOL) and the
OSVM parameter ν, and they can be set independently to fit the purpose of the
dataset to be trained on. There is no strict conditions on how to choose the value
of ν, it can be set to any value from 0 to 1 [21]. For our additional parameter
(fOL), it is set to any value between 0 to ν.

Table 1. Description of datasets.

Dataset name Number of targets Number of outliers Number of features

Biomedical 67 127 5

Heart disease 160 137 13

Liver (diseased) 145 200 6

Liver (healthy) 200 145 6

Diabetes (absent) 268 500 8

Diabetes (present) 500 268 8

Arrythmia-1 237 183 278

Arrythmia-2 36 384 278

Chromosome-1 392 751 30

Chromosome-2 447 696 30

Chromosome-3 492 651 30

Chromosome-4 536 598 30

4.2 Datasets Used

We have used both artificially generated datasets and real world datasets in our
experiments to tease out the effectiveness of our proposed method in different
scenarios. For the experiments on artificially generated data, we have created
a number of 2D two class data drawn from two different set of distributions:
(1) Gaussian distribution with different covariance matrices. (2) Banana-shaped
distribution with different variances. For each distribution, two datasets were
generated, the first one with low overlap, and the second with high overlap.
Each class of each dataset was used as a target class and outliers in turns, such
that we evaluate the performance on 8 datasets (2 distributions × 2 classes × 2
overlaps). Figure 7 presents the plots of the generated datasets.
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Fig. 7. Artificial datasets used for comparison. The two shapes denote two different
classes generated from a pre-defined distribution. Each class was used as target and
outlier in turns.

For the real world case, we focused on medical datasets as this domain is one
of the key fields where one class classification is applied [1]. A detailed description
of the used datasets can be found in Table 1. These datasets are collected from
the UCI machine learning repository [22] and picked carefully, so that we have
a variety of sizes and dimensions, and we can, then, test the robustness of our
iCOSVM. As these datasets are originally two-class or multi-class, we used one
of them as a target class and the other ones are kept outliers.

4.3 Experimental Protocol

To make sure that our results are not coincidental or overoptimistic, we used a
cross-validation process [23]. The considered dataset was randomly split into 10
subsets of equal size. To build a model, one of the 10 subsets was removed, and
the rest was used as the training data. The previously removed subset was added
to the outliers and this whole set was used for testing. Finally the 10 accuracy
estimates are averaged to provide the accuracy over all the models of a dataset.
This guarantees that the achieved results were not a coincidence. Moreover, to
measure the performance of one class classifier, the Receiver Operating Charac-
teristic (ROC) curves [24] are usually used. The ROC curve presents a powerful
measurement of the performance of studied classifier. It does not depend on the
number of training or testing data points neither on the number of outliers, it
only depends on rates of correct and incorrect target detection. To evaluate the
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methods, we have also used the Area Under Curve (AUC) [25] produced by the
ROC curves, and we presented them in the results.

4.4 Classifiers

The iCOSVM was evaluated withe the comparison of its performance against
the following classifiers’ performance:

– COSVM: Since our incremental approach is built upon COSVM, this classifier
has been described in details in Sect. 2.

– iOSVM: This method tries to find, recursively, the maximum margin hyper-
plane that separates targets from outliers.

– iSVDD: This method gives the sphere boundary description of the target data
points with minimum volume.

The incremental classifiers, iOSVM, iSVDD and iCOSVM were implemented
with the help of DDtools [20]. For the implementation of COSVM, the SVM-KM
toolbox was used [26]. The radial basis kernel was used for kernelization. This
kernel is calculated as K(xi, xj) = e−‖xi−xj‖2/σ. It is proved to be robust and
flexible [27]. Here, σ represents the positive “width” parameter. For η value opti-
mization, the value of σ was set to 1. But, when comparing with other methods
σ is optimized first. The parameter ν for COSVM, iOSVM and iCOSVM, also
called fraction of rejection in the case of iSVDD was set to 0.2.

While optimizing η, the lowest threshold for the fraction of outliers (fOL)
was set to 0.1 (see Sect. 4.1). However, it is too difficult, and even not possible
to define optimal values for the parameters fOL and ν in real cases, where data
points are unknown in the beginning of the classification process. Therefore, we
have set both of the two parameters to 0.2.

4.5 Results and Discussion

To test the effectiveness of our proposed algorithm, we started by comparing
iCOSVM with canonical COSVM on artificially generated datasets.

As we can see in Table 2, iCOSVM provides better results in terms of AUC
values, on all datasets, by averaging over 10 different models. Figure 8 shows
the average training time per model for artificial datasets of different sizes. The
training speed of our algorithm is faster than the COSVM, mainly on large data
sets, and presents insignificant variation as the size of the dataset increases. It
has been shown in a number of recent studies [28] that incremental learning
algorithms outperform batch learning algorithms in both speed and accuracy,
because they provide cleaner solution.

In fact, the complexity for solving the convex optimization problem of
COSVM is O(N3), where N is the number of training data points. Whereas,
a key to efficiency of the iCOSVM algorithm lies in identifying performance
bottlenecks associated with inverting matrices to solve the convex optimiza-
tion problem. These operations were eliminated thanks to the introduction of
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Table 2. Average AUC of COSVM and iCOSVM for the 8 artificial datasets. Each
dataset has 1000 data points(best method in bold).

Dataset COSVM iCOSVM

Gauss. (low overlap)-1 98.33 98.45

Gauss. (low overlap)-2 98.28 98.52

Gauss. (high overlap)-1 81.47 84.19

Gauss. (high overlap)-2 87.14 87.74

Banana (low overlap)-1 98.46 98.88

Banana (low overlap)-2 98.33 99.26

Banana (high overlap)-1 85.73 86.43

Banana (high overlap)-2 84.88 84.97
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Fig. 8. Log of training times (per model) in seconds for COSVM and iCOSVM for the
experiments on the artificial datasets of different sizes.

the Woodbery formula for the re-computation of the gradient, β and γ. This
involves matrix-vector multiplications and recursive updates of the matrix R,
whose dimension is equal to the support vectors number Ns. The running time
needed for an update of the matrix R is quadratic in the number of support vec-
tors, which is much better than explicit inversion. Thus, in incremental learning,
the complexity is O(N2

s ), where Ns ≤ N .
Tables 3 and 4 contain the average AUC for the incremental classifiers on

the artificial and real datasets, respectively. As we can see, iCOSVM provides
better results on all datasets. Specially in case of the biomedical and chromo-
some datasets, iCOSVM performs significantly better when compared to other
methods. It is not surprising that iSVDD gives almost the worst accuracy values,
as SVM and its derivatives are constructed to give the better separation [29].

We notice that iCOSVM outperforms the other classifiers as η values are in
the neighborhood of 0.7, which puts more emphasize on the kernel matrix and
fine-tune the contribution of the covariance matrix.
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Table 3. Average AUC of each method for the 12 artificial datasets (best method in
bold, second best emphasized).

Experiment iSVDD iOSVM iCOSVM

Gauss. (low overlap)-1 90.7 95.0 95.2

Gauss. (low overlap)-2 92.2 95.2 96.0

Gauss. (high overlap)-1 71.7 73.8 75.2

Gauss. (high overlap)-2 69.8 73.3 76.3

Banana (low overlap)-1 95.2 97.5 97.8

Banana (low overlap)-2 92.2 97.3 97.5

Banana (high overlap)-1 74.8 83.2 83.7

Banana (high overlap)-2 74.0 81.0 82.8

Table 4. Average AUC of each method for the 12 real-world datasets (best method in
bold, second best emphasized).

Experiment iSVDD iOSVM iCOSVM

Biomedical 28.4 77.7 82.9

heart disease 49.4 60.9 61.9

Liver (diseased) 54.8 69.1 69.6

Liver (healthy) 52.5 67.3 68.7

Diabetes (present) 95.2 97.5 97.8

Diabetes (normal) 92.2 97.3 97.5

arrhythmia-1 74.8 83.2 83.7

arrhythmia-2 74.0 81.0 82.8

Chromosome-1 48.0 65.2 78.2

Chromosome-2 48.2 63.2 73.4

Chromosome-3 47.4 46.6 55.5

Chromosome-4 47.9 58.6 70.8

Since the process of computing the covariance matrix is done as a pre-
processing and re-used during all training phase, in terms of training complex-
ity, iCOSVM does not have additional overhead on top of the original iOSVM.
Table 5 shows the average training times per model for both the artificial and the
real-world datasets. As we expect, iCOSVM performs almost as fast as iOSVM,
while providing better classification accuracy.

Also, we present some individual graphical results for the dataset models by
plotting the actual ROC curves for a real world dataset. Figure 9 shows the ROC
curves of the three incremental classifiers for four models of the chromosome
dataset. The rule-of-thumb to judge the performance of a classifier from a ROC
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Table 5. Average training times (per model) in seconds for iOSVM and iCOSVM for
the experiments on the artificial and real-world datasets. Average training times (per
model) in seconds for iOSVM and iCOSVM for the experiments on the artificial and
real-world datasets.

Experiment iOSVM iCOSVM

Artificial datasets 0.0047 0.0046

Real-world datasets 0.0044 0.0043
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Fig. 9. ROC curves for the three incremental classifiers applied on Chromosome dataset

curve is “The best classification has the largest area under curve”. We can clearly
see from the Fig. 9 that iCOSVM indeed leads to better ROC curves.

5 Conclusion

In this paper, we have proposed an incremental Covariance-guided One-Class
Support Vector Machine (iCOSVM) classification approach. iCOSVM improves
upon the incremental One-Class Support Vector Machine method by the incor-
poration of the covariance matrix into the optimization problem. The new intro-
duced term emphasized the projection in the directions of low variances of
the training datasets. The contribution of both Kernel and covariance matri-
ces are controlled via a parameter that was tuned efficiently for optimum per-
formance. iCOSVM takes advantages from the high accuracy of the canonical
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Covariance-guided One-Class Support Vector Machine (COSVM). We have pre-
sented detailed experiments on several artificial and real-world datasets, where
we compared our method against contemporary batch and incremental learning
methods. Results have shown the superiority of the method. Future works will
consist in validating these results on strong applications such as face recognition,
anomaly detection, etc.
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Abstract. Semantic Based Regularization (SBR) is a general frame-
work to integrate semi-supervised learning with the application specific
background knowledge, which is assumed to be expressed as a collection
of first-order logic (FOL) clauses. While SBR has been proved to be a use-
ful tool in many applications, the underlying learning task often requires
to solve an optimization problem that has been empirically observed
to be challenging. Heuristics and experience to achieve good results are
therefore the key to success in the application of SBR. The main contri-
bution of this paper is to study why and when training in SBR is easy. In
particular, this paper shows that exists a large class of prior knowledge
that can be expressed as convex constraints, which can be exploited dur-
ing training in a very efficient and effective way. This class of constraints
provides a natural way to break the complexity of learning by building
a training plan that uses the convex constraints as an effective initial-
ization step for the final full optimization problem. Whereas previous
published results on SBR have employed Kernel Machines to approx-
imate the underlying unknown predicates, this paper employs Neural
Networks for the first time, showing the flexibility of the framework.
The experimental results show the effectiveness of the training plan on
categorization of real world images.

Keywords: Statistical Relational Learning · First Order Logic · Convex
optimization

1 Introduction

Semantic Based Regularization [5] is a Statistical Relational Learning (SRL)
framework, which integrates the ability to learn from examples and data distri-
butions, like in traditional semi-supervised learning, with the inference process
typical of high level background knowledge typically used in logic inference. Prior
knowledge in SBR is expressed via a set of FOL clauses expressing relationships
among the tasks, or relationships among the patterns, or providing a partial def-
inition of the mapping between the input and the output. The main advantage
of SBR over other Statistical Relational Learning approaches like Markov Logic
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 33–46, 2016.
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Networks (MLNs) [14] or Probabilistic Soft Logic (PSL) [3] is in the tighter inte-
gration of logic and the processing of feature-based continuous sensorial input
that is available in many real world applications. Indeed, while a MLN can cap-
ture a logistic regression model [7,8], it requires to deal with a large number of
weights and groundings. More complex correlations between features and classes
can not be captured as the resulting models would be too large to be tractable.

Deep Neural Networks [16] have been shown to be relatively successful in
performing feature selection and inference over pattern constituents in their hid-
den layers. However, this process is opaque and it is not generally clear which
is the amount of training data required to correctly instantiate the process dur-
ing training. SBR provides a way to integrate (deep or shallow) learning with
any explicit knowledge about the task at hand, making the learning process
more controlled, easier to understand and requiring less labeled data. In the
applications where this knowledge is available, it seems natural to exploit the
knowledge to force the learning machine to develop more targeted intermediate
pattern representations.

Unfortunately, learning is typically hard for all SRL approaches with high
generality: the integration of learning with logic inference transforms the
intractability of the latter (in a general setting) into the complexity of the numer-
ical optimization problem that needs to be solved during learning. This issues
also applies to SBR, for which getting good solutions often requires heuristics
and experience. Some attempts at breaking the complexity of learning by sub-
dividing the learning process into small and easier sequential tasks have been
hinted by Bengio et al. [2] and later studied in a more systematic way by Yang et
al. [19], and Friesen et al. [9]. This paper studies under which conditions train-
ing in SBR becomes easy. In particular, it will be shown that it exists a large
class of knowledge that can be expressed as a set of convex constraints in SBR.
These constraints can be exploited during training in a very efficient and effective
way. This class of constraints provides a natural way to break the complexity of
learning by building a training plan that uses the convex constraints as an effec-
tive initialization step for the final full optimization problem. The experimental
results show the effectiveness of this training plan. Another contribution of this
paper is to employ Neural Networks for the first time in the context of SBR,
showing the generality and flexibility of the framework. Experimental results on
image classification are presented to validate the approach.

The paper is organized as follows: Sect. 2 provides an introduction to the SBR
learning framework and Sect. 3 shows how to build real-valued constraints from
a FOL knowledge base. The experimental results are show in Sect. 4. Finally,
some conclusions are drawn in Sect. 5.

2 Semantic Based Regularization

Consider a multi-task learning problem, where a set of T functions must be
estimated (query or unknown functions) Let f = {f1, . . . , fT } indicate the vector
of functions.
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A set of H functional constraints in the form 1 − Φh(f) = 0, 0 ≤ Φh(f) ≤
1, h = 1, . . . , H are provided to describe how the query functions should behave.
These functionals can express a property of a single function or correlate multiple
functions, so that learning can be helped by exploiting these correlations.

The j-th function is associated to a set X ◦
j , which is a sample of the patterns

input to the function, Each pattern in this set is represented via a vector of
features. We assume that this set of patterns is partially labeled, so that the
desired function output is also provided for some patterns in the sample. Mul-
tiple functions can share the same sample of patterns (e.g. X ◦

j = X ◦
i i �= j).

Some functions may express relations across multiple patterns, and the pattern
representations associated to these functions can be generally expressed as the
combination of the patterns from a set of finite domains: X ◦

j = X j1 ×X j2 × . . ..
Let fk(X ◦

k) indicate the vector of values obtained by applying the function
fk to the set of patterns X ◦

k and f(X ) = f1(X ◦
1) ∪ f2(X ◦

2) ∪ . . . collects the
groundings for all functions.

Constraint satisfaction can be enforced by penalizing their violation on the
sample of data:

Ce[f(X )] =
T∑

k=1

||fk||2 +
H∑

h=1

λh

(
1 − Φh

(
f(X )

))
, (1)

where the first term is a regularization term penalizing non-smooth solutions
and λh is the weight for the h-th constraint.

The weights are optimized via gradient descent using a back-propagation
schema, where the derivative of the cost function with respect to the j-th weight
of the i-th function wij is:

∂Ce

∂wij
=

∑
k

∂Ce

∂Φk
· ∂Φk

∂wij
=

∑
k

∂Ce

∂Φk
·
⎛
⎝∑

tΦk

∂Φk

∂tΦk

· ∂tΦk

∂fi
· ∂fi

∂wij

⎞
⎠ . (2)

2.1 Collective Classification

Collective classification (CC) [17] is the task of performing inference over a set of
instances that are connected among each other via a set of relationships. Collec-
tive classification in SBR [6] enforces that the classification output is consistent
with the FOL knowledge used during training.

In particular, let fk(X ′
k) indicate the vector of values obtained by evaluating

the function fk over the data points of the test set X ′
k. The set of vectors will be

compactly referred to as: f(X ′) = f1(X ′
1) ∪ . . . ∪ fT (X ′

T ). If no neural network
has been trained for fk (no examples or no feature representations were available
during training), fk(X ′

k) is assumed to be just filled with default values equal
to 0.5.

Collective classification searches for the values f̄(X ′
k) = f̄1(X ′

1) ∪ . . . ∪
f̄T (X ′

T ) respecting the FOL formulas on the test data, while being close to
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the prior values established by the kernel machines over the test data:

Ccc[f̄(X ′),f(X ′)] =
1
2

T∑
k=1

|f̄k(X ′
k) − fk(X ′

k)|2 +
∑

h

(
1 − Φh

(
f̄(X ′)

))

Optimization can be performed via gradient descent by computing the derivative
with respect to the function values.

2.2 Logic and Constraints

This section will show how to convert any First Order Logic (FOL) knowledge
into a set of constraints Φh that can be integrated into learning using Eq. 2.

Our approach is a variation of fuzzy generalizations of First Order Logic
(FOL), which have been first proposed by Novak [13]. Fuzzy FOL can transform
any FOL knowledge base into a real valued constraint.

T-norm and Residuum. A t-norm fuzzy logic [11,20] is defined by its t-norm
t(a1, a2) that models the logical AND.

Given a variable ā with continuous generalization a in [0, 1], its negation
¬ā corresponds to 1 − a. Once the t-norm functions corresponding to the ∧
and ¬ are defined, they can be composed to generalize any logic proposition.
Different t-norm fuzzy logics have been proposed in the literature. For example,
given two Boolean values ā1, ā2 and their continuous generalizations a1, a2 in
[0, 1], the product t-norm is defined as: (ā1 ∧ ā2) → t(a1, a2) = a1 · a2. The
Lukasiewicz t-norm is instead defined as

(ā1 ∧ ā2) → t(a1, a2) = max(0, a1 + a2 − 1).

Any t-norm features a binary operator called residuum, which is used to
generalize implications when dealing with continuous variables [11]. For example,
the Lukasiewicz t-norm has a residuum defined as:

(ā1 ⇒ ā2) −→ t(a1, a2) =
{

1 a1 ≤ a2

1 − a1 + a2 a1 > a2

Quantifiers. With no loss of generality, we focus our attention on FOL formulas
in the Prenex Normal Form, having all the quantifiers at the beginning of the
expression. The quantifier-free part of the expression is an assertion in fuzzy
propositional logic once all the quantified variables are grounded. Hence, a t-
norm fuzzy logic can be used to convert it into a continuous function. Let’s
consider a FOL formula with variables x1, x2, . . . assuming values in the finite
sets X1,X2, . . .. P = {p1, p2, . . .} is the vector of predicates, where the j-th n-
ary predicate is grounded from X ◦

j = Xj1 × Xj2 × . . .. Let pj(X ◦
j ) indicate the

set of possible groundings for the j-th predicate, and P(X ) indicate all possible
grounded predicates, such that P(X ) = p1(X ◦

1 ) ∪ p2(X ◦
2 ) ∪ . . ..

If the atoms P(X ) are generalized to assume real values in [0, 1], the degree
of truth of a formula containing an expression E with a universally quantified
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variable xi is the average of the t-norm generalization tE(·), when grounding xi

over Xi (see Diligenti et al. [5] for more details):

∀xi E
(P(X )

) −→ Φ∀(P(X )
)

= 1
|Xi|

∑
xi∈Xi

tE
(P(X )

)

For the existential quantifier, the truth degree is instead defined as the maximum
of the t-norm expression over the domain of the quantified variable:

∃xi E
(P(X )

) −→ Φ∃
(P(X )

)
= max

xi∈Xi

tE
(P(X )

)

When multiple universally or existentially quantified variables are present,
the conversion is recursively performed from the outer to the inner variables.
Please note that the fuzzy formula expression is continuous and differentiable
with respect to the fuzzy value of a predicate, and it can therefore easily be
integrated into learning.

2.3 Building Constraints from Logic

Let us assume to have available a knowledge base KB, consisting of a set of FOL
formulas and a finite set of groundings of the variables. We assume that some
of the predicates are unknown: the SBR learning process aims at finding a good
approximation of each unknown predicate, so that the estimate predicates will
satisfy the FOL formulas for the sample of the inputs. In particular, the func-
tion fj(·) will be learned as approximation of the j-th unknown predicate. The
variables in the KB that are input to any fj are replaced with the feature-based
representation of the object grounded by the variables, and we will indicate as
xi the representation of the object grounded by xi. The groundings Xi of the
i-th variable are therefore replaced by the set X i, indicating the set of feature-
based representations of the groundings. One constraint 1 − Φi(·) = 0 for each
formula Fi in the knowledge base is built by taking the fuzzy FOL generalization
of the formula Φi(·), where the unknown predicates are replaced by the learned
functions, and the variables input to the learned functions are replaced by their
duals iterating over the feature-based representations of the groundings. Pre-
vious literature on Semantic Based Regularization [5,6] has focused on Kernel
Machines to implement the functions fj(·). However, the SBR framework does
not pose any restriction on the machine learning machinery used to approximate
the unknown functions. In particular, Neural Networks are used for the first time
in the experimental section of this paper.

3 Constraints and Local Minima

The constraint resulting from a FOL formula can be hard to optimize during
learning. Let’s consider universally quantified FOL formulas in DNF form:

∀x1 . . . ∀xn

minterm 1︷ ︸︸ ︷(
n11P1(x1) ∧ . . . ∧ n1nPn(xn)) ∨ . . .∨

minterm k︷ ︸︸ ︷
(nk1P1(x1) ∧ . . . ∧ nknPn(xn)

)
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where nij determines whether the j-th variable in the i-th minterm is negated
or not. The following expression for each grounding can be obtained by applying
a double negation and using the DeMorgan rule:

¬
(
¬(

n11P1(x1) ∧ . . . ∧ n1nPn(xn)
) ∧ . . . ∧ ¬(

nk1P1(x1) ∧ . . . ∧ nknPn(xn)
))

For any given grounding, the resulting propositional expression can be converted
using the product t-norm and replacing the atoms with the unknown function
approximations, yields the constraint:

1 − Φ(f(X )) =
1

n∏
i=1

|Xi|

∑
x1

. . .
∑
xn−1

k∏
r=1

(
1 −

∏
i∈Ap

r

fi(xi)
∏

j∈An
r

(1 − fj(xj))
)

= 0

where Ap
r and An

1 are the set of non-negated and negated atoms in the r-th
minterm. It is clear that a null contribution to the summation for a given ground-
ing is obtained as solution of a polynomial equation, where the r-th solution
of the polynomial equation corresponds to the assignment satisfying the r-th
minterm, that is: ∏

i∈Ap
r

fi(xi)
∏

j∈An
r

(1 − fj(xj)) = 1.

Since all minterms are by construction different and the polynomial equation is
continuous and assuming values greater or equal to zero as guaranteed by any
t-norm, the resulting expression has as many local minima as the number of true
configurations in the truth table for the grounded propositional formula, which
is in turn equal to the number of minterms of the initial DNF.

This shows that there is a duality between the number of possible assignments
of the atoms satisfying the FOL formula for a given grounding of the variables,
and the number of local minima in the expression generalizing the formula to a
continuous domain. The intractability of unrestricted FOL inference is therefore
translated into a SBR cost function that is plagued by many local minima.

3.1 Convexity of the Constraints

While optimization remains generally intractable, however using t-norm residua
to translate logic implications, significantly increases the portion of constraints
that can be efficiently exploited in learning.

T-norm residua are consistent with modus ponens at the extremes of the
variable range. However, they soften the conditions under which the formula
is verified. Indeed, any t-norm residuum returns a 1 value whenever the head
holds a value larger than the body. This specifies an interval for the admissible
solution. On the other hand, the t-norm translation of the implication via modus
ponens has only 3 singular points where it is fully satisfied. An interesting result
of the application of the t-norm residuum to SBR theory is that a much larger
set of formula correspond to a convex constraint with respect to what it would
happen using a modus ponens based translation.
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In particular, let’s consider the class of FOL formula that are universally
quantified, for which the propositional clause resulting from the evaluation of
the predicates for any grounding is a definite clauses (e.g. having conjunctive
body of positive atoms and a single literal head). One generic formula in this
class has the following structure:

∀x1 . . . ∀xv P1(xi(1)) ∧ . . . ∧ Pn(xi(n)) ⇒ Pn+1(xi(n+1))

where i(j) is the index of the variable used by the j-th predicate. Let x =
{x1, . . . , xv} and replacing the predicates with the predicates with the functions
f to be learned, the constraint can be written as:

1 − Φ(f(X )) =
1

v∏
j=1

|Xj |

∑
x1∈X1

. . .
∑

xv∈Xv

(
1 − t(f ,x)

)
= 0 (3)

where t(·) is the t-norm representation of the definite clause.

Theorem 1. The function 1−Φ(·) translating a generic FOL formula with any
number of nested universal quantifiers, conjunctive body and a single head is
convex with respect to the function values if using the Lukasiewicz t-norm.

Proof. Equation 3 shows the general form of the constraint. A positive summa-
tion of convex functions is convex, then we only need to prove that each single
contribution 1 − t(f ,x) to the summation is convex with respect to the fi(x)
values.

The translation of a conjunction of n variables A1 ∧ . . . ∧ An using the
Lukasiewicz t-norm is equal to: max(0,

∑n
j=1 Aj − n + 1). Therefore the head

and body of the clause are translated as:

P1(xi(1)) ∧ . . . ∧ Pn(xi(n))︸ ︷︷ ︸
max(0,

n∑

j=1
fj(xi(j))−n+1)

⇒ Pn+1(xi(n+1))︸ ︷︷ ︸
fn+1(xi(n+1))

The residuum definition for the Lukasiewicz tnorm is:

A1 ⇒ A2 −→
{

1 A1 − A2 < 0
1 − A1 + A2 else

Let us call h(f ,x) = max(0,
∑n

j=1 fj(xi(j))−n+1)−fn+1(xi(n+1)), Therefore,

1 − t(f ,x) = g(h(f ,x)) =

= 1 −
{

1 h(f ,x) < 0
1 − h(f ,x) else

=
{

0 h(f ,x) < 0
h(f ,x) else

g(·) is convex and non-decreasing in h(·), while h(·) is convex. Therefore, the
combination g(h(·)) is convex as well.

Let’s now see some special constraints that fall in this class.
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Constraint and supervised data. Let X+
k be the sets of positive for the k-th

unknown predicate pk. The following logic formula expresses the fact that pk is
constrained on the values assumed over the supervised data, as it should get a
1 value on a positive example:

∀x Pk(x) ⇒ pk(x)

where x ∈ Xk and the predicate Pk(x) is an evidence function holding true iff
x is a positive example for the query predicate pk, respectively (e.g. x ∈ X+

k ).
Using the Lukasiewicz t-norm and replacing pk with its approximation fk, this
corresponds to the following constraint:

1 − Φ
(
fk(X+

k )
)

= 1
|X+

k |
∑

x∈X+
k

max
(
0, 1 − fk(x)

)
= 0

This an example showing how training using the hinge loss (max(0, 1 − fk(x))
emerges when expressing the fitting of the supervised data via a definite clause.
As predicted by Theorem 1, this corresponds to a convex cost function to opti-
mize when using a linear model (like when using an SVM to implement fk [4]).

Manifold Regularization. Let’s consider the formula expressing a manifold based
on some relation R:

∀x∀y R(x, y) ⇒ (
Pk(x) ⇔ Pk(y)

)

which is equivalent to the conjunction of the following two FOL formulas:

∀x∀y R(x, y) ∧ Pk(x) ⇒ Pk(y)
∀x∀y R(x, y) ∧ Pk(y) ⇒ Pk(x)

According to Theorem 1, the resulting constraint for these formulas must
yield a convex constraint. Indeed, the constraint is:

1 − Φ(fk(X k)) = 1 − 1
|Xk|2

(
|Xk|2 − |R| +

∑
(x,y)∈R

max
(
0,−1

+
{

1 − fk(x) + fk(y) fk(x) > fk(y)
1 else

+
{

1 − fk(y) + fk(x) fk(y) > fk(x)
1 else

))

= |R|
|Xk|2 − 1

|Xk|2
∑

(x,y)∈R
max(0, 1 − |fk(x) − fk(y)|)

= 1
|Xk|2

∑
(x,y)∈R

|fk(x) − fk(y)| = 0

which is the L1 variation of the classical manifold regularization constraint [1].

3.2 Teaching Plans

The results shown in the previous section suggest a natural heuristic to deal with
harder SBR problems:
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– solve the optimization problem introducing only the convex constraints: this
means to optimize via gradient descent until the gradient vanishes (e.g. its
module falls below some threshold) and the learning process has found a good
approximation of the best solution for the convex problem.

– Introduce the other constraints into the previous problem and run the training
process until convergence.

The second step can be further subdivided into multiple stages by forcing first
the formulas with a lower number of possible valid (e.g. satisfying the formula)
assignments to the atoms to be learned. As explained in the previous sections,
these formulas introduce a lower number of local minima into the cost function.
This heuristic is similar to what done in constraint satisfaction programming [15],
where the variables with the smallest number of admissible values remaining in
its domain are selected first during the search process over the possible assign-
ments [10].

4 Experimental Results

The experimental analysis has been carried out on an animal identification
benchmark proposed by P. Winston [18], which was initially designed to show
the ability of logic programming to determine the class of an animal from some
initial clues regarding its features. Unlike in the original challenge, we do not
input to the test phase a sufficient set of clues to perform classification, but
only the raw images, leaving to the learning framework the duty to develop the
intermediate clues over which to perform inference.

The dataset is composed of 5605 images, taken from the ImageNet1 database,
equally divided in 7 classes, each one representing one animal category: albatross,
cheetah, giraffe, ostrich, penguin, tiger and zebra. The feature vector used to rep-
resent each image is composed of bag-of-feature and color histogram descriptors.
In particular, for each image SIFT descriptors [12] have been extracted, and then
later clustering them into 600 visual words. A vector containing the normalized
count of each visual word for the given image is provided as representation. We
also added a 12-dimension normalized color histogram for each channel in the
RGB color space to the feature representation (Fig. 1).

Fig. 1. The feature vector representation for each image in the Winston benchmark.

1 http://www.image-net.org.

http://www.image-net.org
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Table 1. The KB used for training the SBR model. The rules are divided into groups:
only the first “definite” group is formed by definite clauses that were originally proposed
by Winston to classify the animals. The “excl” rule states the fact that one and only
one class should be assigned to each image. The “inter” rules add another intermediate
classification level that can be exploited to perform classification over the final classes.

Type Rule

definite HAIR(x) ⇒ MAMMAL(x)

definite MILK(x) ⇒ MAMMAL(x)

definite FEATHER(x) ⇒ BIRD(x)

definite LAYEGGS(x) ⇒ BIRD(x)

definite MAMMAL(x) ∧ MEAT(x) ⇒ CARNIVORE(x)

definite MAMMAL(x) ∧ POINTEDTEETH(x) ∧ CLAWS(x) ∧
FORWARDEYES(x) ⇒ CARNIVORE(x)

definite MAMMAL(x) ∧ HOOFS(x) ⇒ UNGULATE(x)

definite MAMMAL(x) ∧ CUD(x) ⇒ UNGULATE(x)

definite CARNIVORE(x) ∧ TAWNY(x) ∧ DARKSPOTS(x) ⇒ CHEETAH(x)

definite CARNIVORE(x) ∧ TAWNY(x) ∧ BLACKSTRIPES(x) ⇒ TIGER(x)

definite UNGULATE(x) ∧ LONGLEGS(x) ∧ LONGNECK(x) ∧ TAWNY(x) ∧
DARKSPOTS(x) ⇒ GIRAFFE(x)

definite UNGULATE(x) ∧ WHITE(x) ∧ BLACKSTRIPES(x) ⇒ ZEBRA(x)

definite BIRD(x) ∧ LONGLEGS(x) ∧ LONGNECK(x) ∧ BLACK(x) ⇒
OSTRICH(x)

definite BIRD(x) ∧ SWIM(x) ∧ BLACKWHITE(x) ⇒ PENGUIN(x)

definite BIRD(x) ∧ GOODFLIER(x) ⇒ ALBATROSS(x)

excl CHEETAH(x) ⊕ TIGER(x) ⊕ GIRAFFE(x) ⊕ ZEBRA(x) ⊕ OSTRICH(x) ⊕
PENGUIN(x) ⊕ ALBATROSS(x)

inter MAMMAL(x) ⊕ BIRD(x)

inter HAIR(x) ⊕ FEATHER(x)

inter (DARKSPOTS(x)) ⇒ ¬ BLACKSTRIPES(x)

inter (BLACKSTRIPES(x)) ⇒ ¬ DARKSPOTS(x)

inter TAWNY(x) ⇒ ¬ BLACK(x)) ∧¬ WHITE(x)

inter BLACK(x) ⇒ ¬ TAWNY(x)) ∧¬ WHITE(x)

inter WHITE(x) ⇒ ¬ BLACK(x)) ∧¬ TAWNY(x)

inter BLACK(x) ⇒ ¬ WHITE(x)

inter BLACK(x) ⇒ ¬ TAWNY(x)

inter WHITE(x)) ⇒ ¬ BLACK(x)

inter WHITE(x) ⇒ ¬ TAWNY(x)

inter TAWNY(x) ⇒ ¬ WHITE(x)

inter TAWNY(x)) ⇒ ¬ BLACK(x)
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The images have been split into two initial sets: the first one is composed of
2100 images utilized for building the visual vocabulary, while the second set is
composed of 3505 images used in the learning process. The experimental analysis
has been carried out using by randomly sampling from the overall set of the
supervisions the labels to keep as training, validation and test set, randomly
sampling 50, 25, 25% of the supervisions, respectively.

Knowledge base. The knowledge domain is expressed in terms of FOL rules.
Table 1 shows the full set of rules used in this task. A total of 33 predicates are
available in the KB, but only 7 of them are considered in evaluating the results,
while the other ones are intermediate predicates helping to determine the final
classes during the inference process.

The rules in KB can be subdivided into subsets:

– the original set of the rules as provided in the original problem definition by
Winston. These rules are definite clauses resulting into a convex constraint
and they are marked as definite in the table;

– the excl rule states that each pattern should belong to one and only one final
class, this rule does not translate into a convex constraint;

– the inter rules show how it is possible to inject any amount of additional
knowledge into the classification problem. These rules do not translate into a
convex constraint.

4.1 Results

The first set of experiments tests the performance of SBR in a transductive con-
text, where all the images are available at training time, but only the training

Fig. 2. Experimental results obtained in a transductive setting using standard Neural
Networks with no constraints, SBR with and without using different set of rules and
learning schemas.
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Fig. 3. Experimental results obtained by performing SBR collective classification and
using different set of rules and learning schemas.

labels are made available during training. One Neural Network with one hidden
layer using a sigmoidal activation function on the output layer and a rectified
linear activation in the hidden layer is trained for each of the 33 predicates in
the KB. Figure 2 reports a summary of the results, evaluated over the training
data for the 7 final predicates corresponding to the final classes in the Winston
benchmark. Using the convex constraints coming from the definite clauses pro-
vides an improvement of 2 points of F1. A small additional improvement can be
obtained by adding all the available constraints at the beginning of training. A
larger improvement can be obtained by using a training plan where the convex
constraints are added first, and the remaining constraints are added when the
cost function has converged during learning with the first set of constraints.

Even if the constraints are already enforced on the test data given the trans-
ductive context, there is no guarantee that the input representations are powerful
enough to allow the neural networks to respect the constraints on the test data.
Therefore, it can be beneficial to further perform a collective classification step
as described in Sect. 2.1, where the constraints are enforced over the output
label assignments over the test set. The initialization of the assignments is done
by using the output of the Neural Networks of the transductive step. Figure 3
reports the results of the collective classification on the test set. It is clear that
collective classification improves significantly the results obtained by transduc-
tive classification. In this round of experiments, the subset of convex constraints
is already providing a large improvement, which can not be moved higher by
adding the more complex constraints. This is likely due to the high number of
local minima present in the resulting cost function, which prevent the train-
ing process to discover better solutions. Like in the transductive learning case,
breaking the learning complexity into stages seems to be very useful. Indeed,
using the training plan described in Sect. 3.2 delivers a significant boost of the
classification performance.
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5 Conclusions

Semantic Base Regularization seamlessly integrates First Order Logic into multi-
task learning allowing to tackle complex learning problems even when supervised
data is scarce. This is possible by leveraging unsupervised data and any domain
knowledge available on the field. However, the integration sometimes requires
to solve a challenging optimization problem during the learning process. This
paper shows a large class of FOL knowledge that can be integrated into learn-
ing, while keeping the resulting optimization problem easy. By leveraging this
class of clauses, the paper shows how to improve the trained solution in a more
general case, by breaking the complexity of learning into multiple stages, which
are initialized using a solution built over the “easy” clauses. The experimental
results on image classification show the effectiveness of the framework and of
the proposed training heuristic. While providing extensive prior knowledge is
cumbersome in large and complex experimental setups, we still think that the
integration of prior knowledge and learning will be a required step to achieve real
human-level capabilities in vision and language understanding. As future work
we plan to extend the experimental evaluation to other larger image datasets.
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Abstract. Users in online social networks often have very different
structural positions which may be attributed to a latent factor: roles. In
this paper, we analyze dynamic networks from two datasets (Facebook
and Scratch) to find roles which define users’ structural positions. Each
dynamic network is partitioned into snapshots and we independently find
roles for each network snapshot. We present our role discovery method-
ology and investigate how roles differ between snapshots and datasets.
Six persistent roles are found and we investigate user role membership,
transitions between roles, and interaction preferences.

1 Introduction

Online networks rely extensively on user contributions and participation for their
vibrancy. This requires that users perform certain activities and take on specific
roles within the network. In this paper we take a distinct approach to identify
latent role behaviors which persist over time by examining interaction patterns
and structural positions of users. Our approach provides a novel way of under-
standing latent mechanisms that underlie the structure and processes of dynamic
networks.

Role discovery has been applied to many networks [22] and incorporated into
static network models [27]. Despite the prevalence of role discovery methods
and applications, no experiments have been presented that show the existence of
persistent roles derived directly from data. While network-specific roles are useful
for many purposes, identifying a set of roles which commonly occur in online
social networks enables new methods for comparative analysis which emphasize
relationships between roles.

In this paper, we present a methodology for discovering and tracing persis-
tent roles over time. We discover roles for 26 network snapshots of online social
networks from two datasets (Facebook and Scratch). These roles are found to
persist both within and between the network snapshots from both datasets. We
then conduct a summary analysis to demonstrate how roles may help interpret
network structure by considering role membership, transitions between roles,
and interaction preferences.

In our experiments, we discover six roles from the networks and show these
roles are both distinct from one another and occur in every network from both
datasets. These roles are: popular, friendly, explorer, reciprocated, community
member and active-community member. While the discovered roles are common
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 47–62, 2016.
DOI: 10.1007/978-3-319-46227-1 4
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to both datasets and persist over time, we find the relationships between roles
may differ. These findings suggest common roles shared among social interaction
networks are useful for modeling and comparing networks.

2 Related Work

2.1 Role Discovery

An overview of role discovery approaches is provided in [21] which discusses
graph-based, feature-based, and hybrid definitions of roles and methods for their
discovery from graph and node-attribute data. They show that feature-based
roles are more flexible and capable of capturing more complex roles. A framework
for feature-based role discovery is introduced and discusses classes of approaches
for role feature construction and role assignment.

The use of non-negative matrix factorization (NMF) for discovering node
roles was introduced in [9]. In that paper, the authors use a method [10] to
generate features which aggregate various per-node structural attributes. This
node-attribute matrix is then decomposed using NMF and the resulting basis
vectors correspond to node roles in the network. Later work adds additional
constraints to NMF which can be used to specify expectations of sparsity or
diversity of the roles [7]. The work in our paper differs as we discover persistent
roles across datasets and time using independent decompositions of network
snapshots.

Other work [5,30] uses role-labeled nodes to identify the roles of unlabeled
nodes. However, the roles in their work are not defined in terms of structural
positions in the network but rather functional occupations in an organization
(e.g., roles held in technology companies: research & development, executives,
and human resources). That is, the roles are defined in terms of domain knowl-
edge and non-structural node features. The authors then introduce a classifier for
these functional roles which incorporates information derived from the network
structure.

Aside from identifying patterns of structural positions, roles have also been
used in the context of information cascades to identify groups of nodes which
have similar influence and blockage attributes [6].

A feature-based approach for automatic detection of user roles in online
forums is presented in [4]. Their method uses principal component analysis
(PCA) and agglomerative clustering of feature profile data to find roles; where
each cluster corresponds to a role. Another feature-based approach using a mix-
ture model of roles is presented in [27]. Nodes are first clustered using node
features derived from the network structure and then a qualitative assignment
of nodes to roles follows.

Role discovery has been used to assist in creating compact representations of
networks. In [25] a method is introduced for generating multi-resolution maps of
networks by constructing a hierarchy of roles defined with regular equivalence.
The different levels of the hierarchy are used for different resolution maps.
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2.2 Network Models with Roles

In [22] the role membership for a series of network snapshots are found and
analyzed and the roles are used to construct a transition model of role mem-
berships. Every node in every snapshot is represented as a mixed membership
of roles. This mixed membership may change over time and a transition model
captures the likelihood of transitioning between roles. Their method assumes
roles are stationary and uses the same set of basis vectors (roles) for every snap-
shot rather than directly estimate roles from each snapshot. The authors suggest
roles may generalize over time and across datasets, but do not provide support
for this statement. To our knowledge, this paper is the first to present evidence
of common, persistent roles derived directly from data.

Some models which incorporate roles do not distinguish between node fea-
tures derived from network structure and those external to the graph. In [28],
a probabilistic model which incorporates node features as dependent on latent
factors (roles) is introduced. While these features could be derived from network
structure as described in [21], the experiments performed in [28] only include
external features such as document terms and voting counts. The network topol-
ogy is ignored.

Communities provide extra structural information which can benefit role
discovery. In both [8,23], communities are simultaneously detected with roles.
Roles are used as latent factors of which node attributes are dependent.

Finally, [14,29] add roles to topic models where authors may take a role
when generating a document and the topic of the document is dependent on the
author’s role.

3 Discovering Persistent Roles

We aim to find roles which best characterize the nodes in a network. The net-
work datasets we consider in this paper are dynamic networks which include
timestamped, directed interactions between node pairs. Each interaction repre-
sents a single action such as one user messaging another. As our primary goal
is to identify persistent roles over time, we will partition the dynamic network
D = (N , E) into snapshots, St for each timestep t. The original edges E are
timestamped, directed interactions between node pairs and only edges occurring
at timestep t, Et, are included in snapshot St = (Nt, Et). The edges in Et are
converted from individual interactions to directed, weighted edges, where the
edge weight is the total number of directed interactions occuring between the
nodes in St. Nodes N are derived from the edges E and all nodes present at
timestep t, Nt, participate in at least one edge in Et.

3.1 Temporal Network Snapshots

The snapshots we construct are non-overlapping and each snapshot St spans
the same length of time, known as the observation window Ω. The structure of
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network snapshots are defined by the activity which occurred within the obser-
vation window, thus there is no accumulation of inactive edges. The observation
window Ω is calculated so that most time deltas δtij between interactions of
any two nodes i and j are smaller than Ω. Specifically, we find the average time
deltas 〈δtij〉 for each interacting node pair. The 90th percentile of all average
time deltas is then used as Ω. We assume most connected pairs do not contin-
ually disconnect and reconnect and thus choosing an Ω which preserves most
edges is appropriate. This methodology is described with more detail in [15,19].

3.2 Role Feature Selection

From the network snapshots we find D structural and behavioral features
(D = 12 for our experiments) for all n ∈ Nt nodes and construct a matrix
of node attributes Xt ∈ R

D×Nt . The complete list of features used is shown in
Table 1. Most of the features listed in Table 1 have common definitions, a few do
not. The new activity count is computed for each node as the difference of the
set of nodes reached from outgoing edges at the current snapshot St and the set
of nodes reached from outgoing edges at the previous snapshot St−1. Similarly,
social strategy is a ratio of the count of new outgoing edges (outgoing edges at
snapshot St) that did not exist at the previous snapshot over the total number
of outgoing edges for the given node at snapshot St, num. of new outgoing edges

num. of all outgoing edges .
Users with a higher social strategy value tend to prefer making new connec-
tions (social explorer, or simply explorer) rather than preserve older connections
(social keeper) [15].

Table 1. Node features

Name Description

1 In-degree Count of incoming edges

2 Out-degree Count of outgoing edges

3 Weighted in-degree Count of incoming interactions

4 Weighted out-degree Count of outgoing interactions

5 Reciprocity Ratio of reciprocated edges over all outgoing edges

6 New activity count Count of new outgoing edges

7 Social strategy Ratio of new outgoing edges over all outgoing edges [15]

8 Betweenness centrality Number of all shortest paths which pass through the
node

9 PageRank PageRank measure of centrality [17]

10 Weighted PageRank Weighted variant of PageRank

11 Transitivity Probability any two neighbor nodes are connected (local
clustering coefficient) [26]

12 Weighted transitivity Weighted variant of transitivity [2]
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These features were selected to enable the representation of the unique struc-
tural and behavioral patterns which may exist in online social networks which
include individual, timestamped interactions. For example, while in-degree (count
of incoming edges) captures popularity, the weighted in-degree (count of incoming
interactions, e.g., in Facebook, number of incoming wall comments) captures the
overall level of incoming activity for the target node. Features such as transitiv-
ity encode information about a node’s neighborhood while betweenness centrality
and PageRank capture global information about the node’s position in the net-
work. The reciprocity, new activity count, and social strategy pertain to interaction
behaviors.

3.3 Role Discovery and Membership

To find roles, a decomposition of a node-attribute matrix is performed and the
resulting basis vectors are the discovered roles. We use non-negative matrix fac-
torization (NMF) [13] for this task. The role vectors contain values correspond-
ing to each feature which can be used to characterize the role — features with
higher values are more characteristic of the role. For example, a role with a large
in-degree might be labeled as popular.

NMF decomposes a matrix X ∈ R
D×N into a basis matrix U ∈ R

D×L

and a coefficient matrix V ∈ R
L×N , where L is the factorization rank of the

decomposition X ≈ UV. Each of the L columns of the basis matrix U are the
basis vectors or factors (roles) and the N columns of the coefficient matrix V
are the coefficient (weight) vectors which explain how each observation xi is
represented as a mixture of roles.

NMF is independently run on the matrix of node attributes for each snapshot
Xt with the same parameters. We use the standard Euclidean update equation
and Frobenius cost function. We use non-negative double singular value decom-
position (NNDSVD) [3] to initialize NMF. This helps NMF converge faster and
introduces a bias for sparse factors (roles). We do not expect roles will have non-
zero values for all features as we assume roles are a parts-based representation
[12] of node attributes. Each role is characterized by a subset of all available
features.

3.4 Model Selection

A critical parameter of NMF is the factorization rank L. The common methods
for selecting the rank value include: MDL [20], AIC [1], and error curves [16].
We initially tried to use MDL but found model size dominated the description
length and resulted in the selection of low-performing models.

Recent existing work on role discovery with NMF [9,22] used MDL and we
attempted to use the same MDL function definition. Unfortunately, it appears
the function does not appropriately balance between the model size and error
for our datasets. We found that in all cases, the model with the lowest MDL had
the smallest rank possible (for NMF with NNDSVD), L = 2.
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Fig. 1. Error curves for the first, mid, and final network snapshots in Facebook (top)
and Scratch (bottom).

We inspected the error curves, shown in Fig. 1, and found that L = 2 results
in a relatively large error. These curves were computed by calculating the root-
mean-square error (RMSE) between the actual data X and corresponding NMF
approximation UV. Instead of MDL, we elected to use the knee of the error
curve to estimate the rank. As shown in Fig. 1, networks across both datasets
had a similar error curve. Ranks L = 5 and L = 6 correspond to the knee point
for most of the curves, and therefore are appropriate choices. Rank L = 6 is used
for the factorization of all networks in our experiments.

3.5 Tracking Roles

Given T snapshots and node-attribute matrices for each snapshot Xt, t =
0 . . . T −1, NMF is used to perform the approximate decomposition Xt ≈ UtVt.
Recall the basis matrix Ut corresponds to role features and the coefficient matrix
Vt corresponds to role membership weights for each user. We hypothesize that
roles may persist over time and need to verify whether the same roles do occur
in consecutive basis matrices; i.e., do roles from Ut appear in Ut+1.

This role tracking is performed by measuring the similarity of every pair
of role vectors between consecutive snapshots {ui

t × uj
t+1 | i, j ∈ 1 . . . L}. We

use cosine similarity to evaluate the pairs and ensure that each role in snap-
shot t maps to only one role in snapshot t + 1 (the mapping is injective). We
use a threshold value (0.75) to determine whether a pair matches. That is, if
sim(ui

t,u
j
t+1) > 0.75 then the pair of role vectors match. In practice, we find

most matching pairs in our data have a cosine similarity greater than 0.9.

4 Data

We use two datasets of timestamped, directed interactions to construct dynamic
networks and 26 network snapshots. The first dataset is a collection of Facebook
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wall posts [24] available from KONECT1. In Facebook, users may post on each
other’s wall and these posts are typically comments, photos, and web links. Each
of these posts is recorded as an interaction with a source user (the post author),
a destination user (the owner of the wall), and a timestamp.

Fig. 2. Number of nodes, edges, and interactions over time in the Facebook and Scratch
networks.

Fig. 3. Network diameter over time in the Facebook and Scratch networks.

The second dataset is a collection of Scratch project comments [18] extracted
from a general Scratch dataset available from the MIT Media Lab website2.
Scratch is an online social network and web application for writing and sharing
software programs. Programming education is the primary objective of Scratch
and many users are children and young adults. Scratch users write and share
projects; comments may be made on each other’s projects. Similar to Facebook
walls, project comments in Scratch serve the purpose of public communication
between users.

1 http://konect.uni-koblenz.de/networks/facebook-wosn-wall.
2 https://llk.media.mit.edu/scratch-data.

http://konect.uni-koblenz.de/networks/facebook-wosn-wall.
https://llk.media.mit.edu/scratch-data.
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Fig. 4. Global and average local transitivity (clustering coefficient) over time in the
Facebook and Scratch networks.

In both datasets, the interactions are used to construct a dynamic network
and then network snapshots. The snapshots are constructed using the methodol-
ogy discussed in Sect. 3.1. Figures 2, 3 and 4 show how the size and clustering of
the snapshots from both datasets vary over time. Note that both the Facebook
and Scratch interaction networks are growing over time.

A node-attribute matrix is created for each network snapshot using the fea-
tures described in Sect. 3.2. Attributes are normalized by min-max normalization
with all values belonging to the interval [0, 1].

5 Results

We use the roles found by decomposing the per-snapshot, node-attribute matrix
Xt to answer our research questions. First we demonstrate that a common set
of six persistent roles are found in the series of network snapshots from both
datasets. While the feature proportions of the roles is similar across datasets
and over snapshots, the magnitudes of the vectors change. Correspondingly, the
magnitudes of the coefficient vectors (role membership weights) differ between
snapshots.

We resolve this issue by averaging the basis vectors (roles) across all snap-
shots and then using non-negative least squares (NNLS) [11] to find the optimal
coefficient matrix for the data, given the averaged basis matrix. This normalizes
the role memberships between snapshots and these membership values are used
in the rest of the analysis. Note that since the original basis vectors for all net-
work snapshots had high cosine similarity, the averaged basis vectors also have
a high cosine similarity with every original basis vector.

5.1 Persistent Roles

We use the methodology discussed in Sect. 3.3 to find roles in each network
snapshot from both datasets. Then we follow the methodology described in
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Sect. 3.5 to determine whether the discovered roles occur in all snapshots from
each dataset. We find six roles in both datasets which persist over time and
perform a pairwise comparison of the sets of roles from each dataset. There is
a one-to-one correspondence (bijection) of the two sets of six roles, using the
same cosine similarity test as was used for testing the persistence of roles across
consecutive snapshots. That is, the same set of six roles persist over time in both
datasets. We note that several roles are dominated by a single feature which is
not shared with any other role, this suggests a parts-based factorization of node
attributes.

Fig. 5. Features for all roles, computed as average of role basis vectors from all network
snapshots.

Figure 5 shows the discovered roles and their feature weights. The role names
were selected according to the distinguishing features of the roles and we describe
them here. The popular role is defined by the in-degree and centrality features
while the friendly role has larger proportions in out-degree, weighted out-degree,
and the number of new outgoing edges.

The reciprocated role is dominated by the reciprocity feature and captures
the proportion of a node’s outgoing edges which are reciprocated by the receiver
node. A node with perfect reciprocity would have a high membership weight
in this role. The explorer role is dominated by the social strategy feature which
indicates whether a node prefers to interact with new nodes rather than maintain
existing relationships. We have observed that many nodes start as explorers when
they first join the network.

The final two roles, active-community member and community member,
capture the clustering of nodes. Active-community member is dominated by
weighted transitivity which is similar to standard transitivity (local clustering
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coefficient) but accounts for the strength of the edge when calculating the coeffi-
cient. As we defined edge weight as the number of directed interactions between
a pair of source and destination nodes, a node with a high weighted transitivity
coefficient is involved in an active community. In contrast, a node with a high
unweighted transitivity coefficient simply participates in a densely-connected
community and we cannot say anything about the activity of the community
without further information.

5.2 Evidence of Role Dependence on Network Structure

We conduct an experiment with synthetic data to demonstrate the discovered
roles capture patterns particular to the datasets. Fifty series of rewired net-
works were generated from networks in the original datasets. For each series,
one of the snapshot networks was randomly selected. An increasing percentage
of interactions in the network were removed and replaced with the same number
of random interactions. Non-negative least squares (NNLS) is used to find the
optimal role memberships (coefficient matrix) for each of the rewired networks.

The root-mean-square error between the actual data and the optimal approx-
imation is calculated and Fig. 6 shows the error increases as more interactions
are randomly rewired. Thus our analysis supports the fact that the discovered
roles reflect an intrinsic property of both social interaction networks, and not an
artifact of the methodology used.

5.3 Role Membership

Using the persistent roles, we compare their distributions of role membership
weights and check for correlations between roles. The role membership corre-

Fig. 6. Errors plotted for 50 series of randomly rewired networks.
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lations (Spearman’s coefficients) were calculated for every snapshot network,
however due to space constraints only the results for the final snapshot from
Scratch is shown in Fig. 7.

Fig. 7. Role correlations for the final snapshot from the Scratch dataset. The upper
panels are colored to correspond to positive (blue) and negative (red) correlation.
Darker shaded panels indicate larger correlation. The diagonal panels show the dis-
tribution of role membership weights. The lower panels show a confidence ellipse and
smoothed line of the correlation. (Color figure online)

The role membership correlations tend to be similar between all network
snapshots in each dataset with one notable exception. Several correlations
in early Facebook snapshots (popular and friendly, community member and
friendly) shifted from having a negative correlation to a positive correlation.
This change in Facebook may be due to the growth and sudden increase of
activity after the first few snapshots.

5.4 Role Transitions

Nodes may be members of multiple roles and their role memberships may change
over time. We visualize these transitions in Fig. 9 for both the Facebook and
Scratch datasets by identifying the top-5 % nodes of each role for each network
snapshot and draw a line between the roles of subsequent snapshots if nodes
transition from one role to the other between those two snapshots. We select
the nodes with the highest role membership weights as we expect them to be
exemplary representatives of the roles. The height of the bars corresponds to
the number of nodes with the role. A line is drawn between two roles if at least
10 users transitioned between the roles. The transition lines are sized according
to the logarithm of the number of transitioning users. Since a user may share
multiple roles, some transition lines merge and show users with multiple roles in
common transitioning to a role in the next timestep. Figure 8 helps explain how
to interpret the transition lines.

As shown in [22], role membership of nodes may change over time and under-
standing these transitions allows us to construct predictive models. In this work,
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Fig. 8. A transition line from the red role to the blue role (left). A combined transition
line from the red and green roles to the blue role (right). A combined line corresponds
to transitioning users who belong in the top-5 % of multiple roles in a single timestep.
(Color figure online)

Fig. 9. The role transitions for the top-5 % users in each role over all snapshots for
Facebook (top) and Scratch (bottom).



Persistent Roles in Online Social Networks 59

since a set of common roles has been identified, we can also perform comparative
analysis of role transitions between the two datasets.

In both datasets, we see there are many transitions between popular and
friendly roles as well as both community member roles. This is unsurprising as
membership correlation is high for both pairs of roles. Further we note that nei-
ther popular nor friendly nodes ever transition to the explorer role. In contrast,
users do transition from explorer to popular and friendly. This suggests that the
most-popular users are less inclined to form new connections at the same rate
as the top-5 % explorer users.

There are also differences in the role transitions between the two datasets. In
Facebook, we observe some community member nodes transition to the explorer
role but this does not occur in Scratch. We hypothesize this may be attributed
to the different uses of the social networks. While Facebook is a general social
network, Scratch is used for teaching programming by schools and it is common
for students in those classes to primarily only interact with other classmates.

5.5 Role Affinity

In this section we determine whether the persistent roles affect user link pref-
erences. As the networks used in this study are directed, we consider both how
roles impact the selection of nodes to interact with (outgoing) as well as how
roles affect the attractiveness of some nodes (incoming). All nodes are assigned
their primary role (the role with highest membership weight) for the role affinity
analysis.

In Fig. 10, we have colored nodes according to role and highlighted a subgraph
for demonstration purposes. A standard force-directed layout algorithm was used
to position the nodes. Note that while nodes with a higher in-degree tend to
be either popular (magenta) or friendly (black), the friendly nodes have more
outgoing interactions (larger outgoing edges). While friendly and popular roles
reside in the core of the subgraph, explorer (green) and reciprocated (yellow)
nodes appear on the periphery.

We augment the network visualization with Fig. 11 to present the exact
counts of edges between roles. We note the lack of incoming edges to explorer
nodes; evidence of this is also visible in the network of Fig. 10.

6 Conclusion

User roles have become a critical component for improving our understanding of
user interactions in online social networks. Persistent roles, shared between mul-
tiple datasets, enable a new comparative analysis method based on relationships
between roles.

In this paper, we present a methodology for identifying persistent roles across
time and datasets. Using this methodology, we find the same six user roles which
capture distinct structural positions in 26 network snapshots from two online
social networks. To our knowledge, this paper is the first to present evidence



60 M. Revelle et al.

Fig. 10. A subgraph from a Facebook snapshot network. Nodes are colored by their
primary role and sized according to their in-degree. Edges are sized according to the
number of interactions they represent. (Color figure online)

Fig. 11. The number of users with a primary role linked to/from other user roles. The
column labels refer to the source node roles (for outgoing edges) and destination node
roles (for incoming edges). The roles on the x-axis refer to the adjacent nodes.
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of persistent roles independently derived from multiple datasets. Beyond the
discovery of persistent roles, we provide an analysis of the roles and show there
are differences in role membership and interaction across the snapshots.

The findings presented in this paper will be leveraged in our future work
to develop probabilistic models for the prediction of role membership and node
attributes. We will also investigate the composition and evolution of communities
viewed as interactions of roles.
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Abstract. We present an extension of the DP-means algorithm, a hard-
clustering approximation of nonparametric Bayesian models. Although a
recent work [6] reports that the DP-means can converge to a local mini-
mum, the condition for the DP-means to converge to a local minimum is
still unknown. This paper demonstrates one reason the DP-means con-
verges to a local minimum: the DP-means cannot assign the optimal
number of clusters when many data points exist within small distances.
As a first attempt to avoid the local minimum, we propose an extension
of the DP-means by the split-merge technique. The proposed algorithm
splits clusters when a cluster has many data points to assign the num-
ber of clusters near to optimal. The experimental results with multiple
datasets show the robustness of the proposed algorithm.

Keywords: Clustering · DP-means · Small-variance asymptotics

1 Introduction

As we enter the age of “big data”, there is no doubt that there is an increasing
need for clustering algorithms that summarize data autonomously and efficiently.
Nonparametric models are prospective models to address this need because of
their flexibility. Unlike traditional models with fixed model complexity as a para-
meter, nonparametric Bayesian models [17] dynamically determine the model
complexity, i.e., the number of model components, in accordance with the data.
The traditional nonparametric Bayesian model often needs a high computa-
tion time because the methods need sampling algorithms or variational infer-
ence for model optimization; however, the recently introduced DP-means algo-
rithm [20] can determine model complexity with less computational cost. The
DP-means uses a technique named small-variance asymptotic (SVA) for non-
parametric Bayesian models and derives a hard-clustering algorithm similar to
Lloyd’s k-means algorithm. The DP-means automatically determines the num-
ber of clusters and cluster centroids efficiently without sampling methods or
variational inference techniques.

Convergence to a local minimum is a well-known problem in hard-clustering
algorithms, especially in k-means clustering. Convergence to a local minimum of
the k-means occurs when the initial clusters are assigned to close data points.
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 63–78, 2016.
DOI: 10.1007/978-3-319-46227-1 5
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Fig. 1. Local minima of clustering algorithms. (a) The problem of the local minimum
of the k-means is well-known; the k-means converges to a local minimum when initial-
ization of clusters is not appropriate. (b) The DP-means is believed to be robust for
this type of local minimum because it assigns new clusters when the new data points
are distant from existing clusters. (c) However, as shown in this paper, the DP-means
has a different type of local minimum; the DP-means cannot assign the optimal number
of clusters when data points exist within small distances (Color figure online)

For example in Fig. 1(a), if the initial two clusters are assigned to the left data
points, the final solution can converge to the two clusters of the upper data points
(green) and lower data points (red), although the preferred clustering solution
is left data points and right data points. This convergence occurs because the
k-means assigns the data points to the nearest clusters, so if the cluster initial-
ization is inappropriate, the clustering solution converges to a local minimum.
Therefore, initialization to avoid converging to a local minimum is an important
step for the k-means algorithms, such as the k-means++ algorithm [4].

The DP-means also assigns the data points to the nearest clusters but gen-
erates new clusters when the distances between specific data points and existing
clusters are large (Fig. 1(b)). Therefore, the DP-means is believed to be robust
for convergence to local minima. However, a recent paper [6] reports that the
DP-means can converge to a local minimum with fewer than the optimal number
of clusters. The paper has a huge impact, but the condition for the DP-means
to converge to a local minimum is still unknown.

In this paper, we present an analysis of local minima of the DP-means. As
shown later, the original DP-means can converge to local minima because the
DP-means cannot assign the optimal number of clusters when the many data
points exist within small distances. For example, in Fig. 1(b), the solution with
the lowest cost (i.e. the preferred solution for the DP-means) is not that with
two clusters when the number of data points is large; a solution with lower cost
can be acquired when the number of clusters is six (Fig. 1(c)).

To avoid these local minima, we propose an extension of the DP-means by the
split-merge technique. The proposed algorithm splits clusters when the original
DP-means converges to a local minimum to obtain a good solution1 with a near-
optimal number of clusters.

1 In this paper, the quality of clustering is measured by the DP-means cost function
value defined in Sect. 2.1. Although other clustering evaluation metrics exist, such
as NMI scores or the Rand index, these metrics depend on the hyperparameter of
the DP-means. Note that a similar evaluation metric is commonly used in streaming
clustering [1,2,6] and robust k-means algorithms [4,5].
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1.1 Related Work

DP-means and extensions. Like nonparametric Bayesian models, the DP-
means has many extensions. For example, the DP-means (i.e. the small-variance
asymptotic technique for nonparametric Bayesian models) has been extended
to the hard-clustering version of HDP topic models [19], dependent Dirichlet
process [8], Bayesian hierarchical clustering [22], nonparametric Bayesian sub-
space clustering [31], infinite hidden Markov models [26], and infinite support
vector machines [30]. Also, the DP-means itself has been extended to efficient
algorithms, such as the distributed DP-means algorithm [25], one-pass online
clustering for tweet data [28], and approximate clustering with a small subset
named a coreset [6]. Although the concept of the DP-means has been extended
to many algorithms, the condition of the local minimum of the DP-means is still
unknown. To the best of our knowledge, this paper provides the first insight into
conditions when the DP-means converges to a local minimum.

Hard-clustering algorithms. The Lloyd’s k-means algorithm [24] was pro-
posed half a century ago, but it is still popular for data mining [32]. Although
the original k-means algorithm is a batch clustering algorithm, the k-means
algorithm has been extended to online settings [12,23] and streaming settings
[1,2,27]. These algorithms are mainly based on the k-means++ algorithm [4]
with analysis of the local minimum of k-means clustering. Therefore, analysis
of the local minimum of the DP-means provides useful information for future
efficient DP-means algorithms.

Split-merge clustering algorithms. Split-merge techniques have been used
in clustering including hard-clustering [3,10,14,33]. Recently, split-merge algo-
rithms have been extended to nonparametric Bayesian models optimized by
MCMC [9,11,18,29] and by variational inference [7]. This paper is the first
to apply split-merge techniques to hard-clustering methods of nonparametric
Bayesian models with small-variance asymptotics.

The contributions of this paper are: (1) analysis of a condition of converging
to a local minimum for the DP-means, (2) proposal of a novel DP-means algo-
rithm with split-merge techniques to avoid converging to a local minimum, and
(3) evaluation of the efficiency of the proposed algorithms with several datasets
including real-world data.

2 Analysis of Existing DP-means Approaches

2.1 DP-means Clustering Problem

First, we provide a brief overview of existing DP-means algorithms. The cluster-
ing problem is selecting cluster centroids so as to minimize the distance between
each data point and its closest cluster. Solving this problem exactly is NP-hard
even with two clusters [15], so a local search method known as Lloyd’s k-means
algorithm [24] is widely used to acquire clustering solutions for a fixed number
of clusters. The DP-means [20] (Algorithm 1) is a local search method to acquire
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clustering solutions for a variable number of clusters. Like Lloyd’s k-means, the
DP-means optimizes clusters by iteratively (a) assigning each data point xi to
clusters and (b) updating the centroids of each cluster by using assigned data
points. However, unlike the k-means, the number of clusters optimized by the
DP-means is not fixed. With hyperparameter λ to control clustering granular-
ity, the number of clusters is automatically determined in accordance with data
complexity.

In one view, clustering problems can be regarded as optimization problems
that minimize objective functions between data points and extracted clusters.
Similar to the k-means, the DP-means monotonically decreases the following
objective function, which is called the DP-means cost function:

costDP (X , C) =
∑
x∈X

min
µ∈C

||x − μ||2 + λ2k (1)

Here, X ∈ R
d×n is a set of n data points with d feature dimensions, C ∈ R

d×k

is a set of cluster centroids, and k is the number of clusters. The first term of
Eq. (1) represents the quantization error when approximating data by clusters
as the k-means objective function. The second term represents penalization of
the number of clusters to avoid over-fitting data with too many clusters.

The DP-means can easily be extended to online algorithms like an online
extension of Lloyd’s k-means [12]. Algorithm 2 shows a naive online extension
of the DP-means algorithm. Instead of clustering all data at once, the online
DP-means algorithm successively updates clusters as new data is loaded.

Because the batch DP-means and the online DP-means needs to perform a
nearest-neighbor search for all existing clusters with each data point, the major-
ity of computation time is consumed by this search step. Therefore, the time
complexity of the batch DP-means is O(knl) (l is the number of iterations to
convergence), and that of the online DP-means is O(kn). Note that because the
computation time depends on the number of clusters, the computation time of
the online DP-means can be larger than that of the batch DP-means.

The batch and online DP-means algorithms may assign new clusters when a
new data point is loaded, so intuitively these algorithms seem to be strongly
affected by the order of the data points. However, the problem is not data
order: convergence to a local minimum can occur in both the existing DP-means
approaches regardless of the data order, as shown in the following section.

2.2 Analysis of DP-means Algorithms

First, we provide a simplified condition to analyze DP-means clustering.

Definition 1 (easy case for DP-means clustering). We say the data is in the
“easy case” for DP-means clustering when the maximum of the squared Euclid-
ean distance of data is lower than λ2.

In the easy case, the data points exist within the hypersphere whose diameter
is λ (Fig. 2(a)). Note that even if the data points have multiple clusters, when
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Algorithm 1. Batch DP-means
Input: Data X = {x1, ..., xn},

threshold λ
Output: Centroids C = {μ1, ..., μk}
Init. C ← mean(xi|xi ∈ X ), k = 1.
Init cluster indicators zi = 1 for all
i = 1, ..., n
while not converged do

for xi ∈ X do
c ← arg minc ||xi − μc||2
if ||xi − μc||2 > λ2 then

C ← C ∪ xi

set k = k + 1, zi ← k

else
set zi ← c

for μc ∈ C do
μc ← mean(xi|zi = c)

Algorithm 2. Online DP-
means
Input: New data x, threshold λ
Input: Centroids C = {μ1, ..., μk}
Input: The number of assigned

data to each cluster
w = {w1, ..., wk}

Output: Updated C and w
c ← argminc||x − μc||2
if ||x − μc||2 > λ2 then

C ← C ∪ x
w ← w ∪ {1}

else

μc ← wcµc+x

wc+1

wc ← wc + 1

the distance between clusters is sufficiently large, each individual cluster can be
considered as belonging to the easy case. In this case, the solutions of the batch
and online DP-means are the same, as shown in the following lemma.

Lemma 1. In the easy case, the solutions of the batch DP-means and the online
DP-means are always one cluster whose centroid is the mean of the data points
regardless of data order.

Proof. For the batch DP-means, the initial centroid is the mean of the data
points regardless of data order by initialization. In this case, all data points
are assigned to this centroid because the squared Euclidean distance between
data points is less than λ2. For the online DP-means, the initial centroid is
the top of data, and all data points are assigned to this cluster because the
squared Euclidean distance between data points is less than λ2. In this case, the
coordinates of the centroid converge to the mean of the data points regardless
of the data order. ��

Lemma 1 suggests the DP-means always converges to the solution with one
cluster in easy cases. However, as shown in the following lemma, the solution
with one cluster is not always that with the lowest DP-means cost.

Lemma 2. In easy cases, there exists the case when the DP-means cost with
two clusters is less than that with one cluster.

Proof. Assume that λ2 = 100 and the data consists of 1000 points on (−1, 0)
and 1000 points on (1, 0), as shown in Fig. 2(b). This is an easy case. When the
solution has one cluster, the centroid of the cluster is (0, 0). In this case, the DP-
means cost is costDP (X , C1) = 2000×12+100×1 = 2100. However, if the solution
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Fig. 2. Analysis of DP-means. (a) Easy case. Although DP-means always converges
solution with one cluster in easy case, (b) there exists case of solution with two clus-
ters with less DP-means cost. (c) This characteristic is natural because nonparametric
Bayesian models change model complexity according to data complexity.

has two clusters on (−1, 0) and (1, 0), the DP-means cost is costDP (X , C2) =
1000 × 02 + 1000 × 02 + 100 × 2 = 200. Therefore, in this case, the lower DP-
means cost is acquired when the number of clusters is two. ��

Then, we can find that the DP-means can converge to a local minimum.

Theorem 1. In easy cases, the batch DP-means and the online DP-means can
converge to a local minimum with fewer than the optimal number of clusters.

Proof. By Lemma 2, there exists a case when the number of optimal clusters
is more than one. However, by Lemma 1, the batch DP-means and the online
DP-means always converge to the solution with one cluster. Therefore, in this
case, the DP-means can converge to a local minimum with fewer clusters than
the optimal number.

This result matches a previous experimental result [6]. One reason for con-
verging to the local minimum is that the DP-means ignores the number of data
points assigned to clusters. For example, if the data consists of 10 points with
(−1, 0) and 10 points with (1, 0), the cost with one cluster is 120, and the cost
with two clusters is 210, so the optimal solution is one cluster. Therefore, as sug-
gested above, the optimal solution changes as the number of data points grows.
Figure 2(c) shows an intuitive interpretation of this result. On the left and the
right of this figure, the data points are generated by a mixture of two Gaussian
distributions centered at (−1, 0) and (1, 0), but the numbers of data points are
different. When the number of data points is small (Fig. 2(c) left), the boundary
between two clusters is vague. However, as the number of data points grows
(Fig. 2(c) right), the boundary between two clusters becomes clear. This is the
same characterization as for nonparametric Bayesian models, which is original
distribution of the DP-means: the number of clusters is determined based on the
complexity of data. Therefore, the DP-means should assign more clusters when
the complexity of data grows with many data points.
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3 Split-Merge DP-means

In this section, we discuss an extension of the DP-means named split-merge
DP-means to avoid a local minimum with the split-merge technique. Based on
the analysis in the previous section, the proposed algorithm splits clusters when
the clusters contain many data points. Also, the proposed algorithm merges
insufficiently split clusters.

In particular, as the first step to avoid a local minimum, we derive a split-
merge DP-means with the following approximations2: (a) the distributions of
clusters are approximated as uniform distributions, (b) the algorithm is executed
with a one-pass update rule, and (c) the cluster is split in one dimension3. In
the following section, we discuss the details of the proposed algorithm.

3.1 Condition for Splitting One Cluster into Two

Here, we provide the condition for splitting clusters to acquire the optimal DP-
means cost. We assume that the data X ∈ R

d×w consists of w points generated
by an origin-centered uniform distribution of range σ = (σ1, ..., σd) ∈ R

d. In the
following, we consider two cases. The first is when the data is not split, i.e., the
solution is one cluster. The second is when the data is split in dimension j, i.e.,
the solution is two clusters. When the data is not split, the DP-means solution
is one cluster on C1 = {μ1} = {(0, ..., 0)} with w data points. When the data is
split on dimension j, the DP-means solution is two clusters on C2 = {μ21,μ22} =
{(0, ...,−σj/2, ..., 0), (0, ..., σj/2, ..., 0)} with w/2 points on each cluster because
of assumption of a uniform distribution.

Below, we provide the condition when the DP-means cost with two clusters is
less than the DP-means cost with one cluster. Now, we consider the expectation
values of DP-means cost with one cluster Exp(costDP (X , C1)) and two clusters
Exp(costDP (X , C2)). Because of assumption of a uniform distribution, we can
compute the expectation value of the squared Euclidean distance between a
data point and the cluster center in dimension l when the cluster is not split, as
Exp((xl − μl)2) =

∫ σl/2

−σl/2
1

σl/2−(−σl/2)
x2dx = σ2

l /12. Therefore, we have

Exp(costDP (X , C1)) = w · Exp(
∑
x∈X

||x − μ1||2) + λ2 · 1

= w(
σ2
1

12
+ ... +

σ2
d

12
) + λ2 (2)

2 Although the current form of the proposed algorithm has strong approximations,
as shown in the experimental results (Sect. 4), the proposed algorithm reduces the
DP-means cost in many situations. Therefore, the basic idea of the proposed method
(i.e. splitting clusters with many data points to avoid local minima of DP-means) is
useful for extending more exact algorithms without these approximations.

3 Although the split operation is ideally performed in multiple dimensions, naive selec-
tion from multiple dimensions needs O(2d) time. Therefore, for computational effi-
ciency, we limit the splitting dimension to only one dimension.
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When the cluster is split in dimension j, the range of distance between the
data point and the cluster center is reduced to σj/2. Therefore, the expectation
value of the squared Euclidean distance between a data point and the cluster
center in dimension j is reduced to

∫ σj/4

−σj/4
1

σj/4−(−σj/4)x
2dx = σ2

j /48. Therefore,

Exp(costDP (X , C2)) =
w

2
· Exp(

∑

x∈X
||x − μ21||2) +

w

2
· Exp(

∑

x∈X
||x − μ22||2) + 2λ2

= w(
σ2
1

12
+ ... +

σ2
j

48
+ ... +

σ2
d

12
) + 2λ2 (3)

Note that because the cluster range changes only dimension j, the expec-
tation value of distance in each dimension except dimension j is the same
value as that of one cluster. Then, the condition in which the solution with
two clusters is better than that with one cluster is when Exp(costDP (X , C1)) >
Exp(costDP (X , C2)). Therefore, by using Eqs. (2) and (3), we have the condition
to split the cluster in dimension j:

w > 16
(

λ

σj

)2

(4)

Equation (4) means (a) clusters with many data points should be split and
(b) clusters with a wide range should be split. Also, when w is fixed, this condi-
tion is first satisfied by the dimension with maximum range. Therefore, we can
determine the dimension to split clusters by finding out the dimension with the
maximum range of clusters. Note that the derived splitting condition is based
only on the expectation values of the distance (i.e. the second moment) between
clusters and data points. Therefore, this analysis can easily be extended when the
cluster is approximated to other distributions, such as Gaussian distributions.

3.2 Split DP-means

In the following section, we provide an novel online DP-means algorithm by split-
ting clusters on the basis of the analysis. The basic idea of the proposed online
DP-means algorithm is storing the range of each cluster instead of each data
point. The range of clusters can easily be updated and split with online update
rules. Like the online DP-means algorithm, the proposed algorithm incremen-
tally updates clusters with new data points. However, unlike existing DP-means
algorithms, the proposed algorithm splits massive clusters that satisfy Eq. (4)
to avoid converging to a local minimum.

Here, we provide online update rules when adding a data point and when
splitting clusters. Consider the cluster C = (μ, w,σ,p, q), where μ ∈ R

d is the
cluster centroid, w ∈ R is the number of data points assigned to the cluster, σ ∈
R

d is the range of the cluster, and p ∈ R
d and q ∈ R

d are the minimum values
and the maximum values of the data points assigned to the cluster, respectively.
When a new piece of data x is added to the cluster, the cluster can be updated
in the following manner,
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μnew =
woldμold + x

wold + 1
, wnew = wold + 1,

σnew = qnew − pnew, pnew = min(pold,x), qnew = max(qold,x) (5)

When the splitting condition of Eq. (4) is satisfied in dimension j, the pro-
posed algorithm splits cluster C into two clusters, CL = (μL, wL,σL,pL, qL) and
CR = (μR, wR,σR,pR, qR), centered on the centroid μj of C in dimension j.
The values of each cluster are computed in the following manner:

μL,m =

{
(μm + pm)/2 (m = j)
μm (m �= j)

, μR,m =

{
(μm + qm)/2 (m = j)
μm (m �= j)

wL = w
μj − pj

σj
, σL = qL − pL, wR = w

qj − μj

σj
, σR = qR − pR

pL,m = pm, qL,m =

{
μm (m = j)
qm (m �= j)

, pR,m =

{
μm (m = j)
pm (m �= j)

, qR,m = qm (6)

Here, μL,m, μR,m, pL,m, pR,m, qL,m, and qR,m are the values of μL,μR,pL,
pR, qL, and qR in dimension m, respectively. Note that because the real data
does not follow uniform distributions, splitting clusters causes approximation
errors due to the assumption of uniform distribution. Therefore, reducing the
number of cluster splits is desirable. Therefore, in our implementation, if a new
point is outside the cluster and the splitting condition of Eq. (4) is satisfied, the
point is regarded as a new cluster instead of splitting the cluster. Also, note that
as discussed in Sect. 3.1, when selecting the dimension to split the cluster, we
select the dimension with the maximum range.

Algorithm 3 shows the derived algorithm. Like the online DP-means, the
majority of computation time of split DP-means is consumed by the nearest-
neighbor step. Therefore, the time complexity of split DP-means is O(kn).

3.3 Merge DP-means

The split DP-means (Algorithm 3) uses only the local information of the data,
so the solution might have much more clusters than the optimal number. Here,
we discuss the condition to merge overestimated clusters.

Merging two clusters. First, we provide the condition for merging two
clusters. Consider two clusters: CL = (μL, wL,σL,pL, qL) and CR =
(μR, wR,σR,pR, qR). Like the discussion in Sect. 3.1, the expected value of the
DP-means cost with two clusters Exp(costDP (C2)) can be computed as follows:

Exp(costDP (C2)) = wL(
σ2

L,1

12
+ ... +

σ2
L,d

12
) + wR(

σ2
R,1

12
+ ... +

σ2
R,d

12
) + 2λ2 (7)
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Algorithm 3. Split DP-means
Input: New data x, threshold λ
Input: Clusters C = {C1, ..., Ck}, where Cm = (μm, wm, σm, pm, qm)
Output: Updated clusters C
Ĉ ← ∅, d̂2 ← λ2

for Cm ∈ C do
if x is outside Cm and Eq. (4) is satisfied when x is added to Cm then

continue

if ||x − μm||2 > d̂2 then

Ĉ ← Cm, d̂2 = ||x − μm||2
if Ĉ = ∅ then // New cluster

C ← C ∪ Cnew, where Cnew = (x, 1,0, x, x)
else // Update cluster

update Ĉ with x by Eq. (5)

if Ĉ satisfies Eq. (4) then // Split cluster

split Ĉ by Eq. (6)

Algorithm 4. Merge DP-means
Input: Cluster centroids C = {μ1, ..., μn} with w = {w1, ..., wn}, threshold λ
Output: Cluster centroids C′ = {μ′

1, ..., μ
′
k}

Compute Δcostm for all pairs of clusters with Eq. (10)
for all i, μ′

i = μi and zi = i // Initialize cluster assignments

while min(Δcostm) < 0 do
(k, l) ← argmink,l(Δcostm(Ck, Cl))

zl = k, C′ ← C′ \ {μ′
l} // Merge cluster

μ′
k ←

∑
{i|zi=k} wiµi
∑

{i|zi=k} wi
// Recompute centroid

recompute Δcostm for all pairs of existing clusters with Eq. (10)

When the two clusters are merged to one cluster, the merged centroid
becomes μM = wLµL+wRµR

wL+wR
. In this case, the difference vectors of centroids

between cluster CL, CR and the merged cluster CM are δL = (δL,1, ..., δL,d) =
(μM,1−μL,1, ..., μM,d−μL,d) and δM = (δM,1, ..., δM,d) = (μR,1−μM,1, ..., μR,d−
μM,d). Under the assumption of a uniform distribution, the expectation value of
the squared Euclidean distance between a data point in cluster C and the center
of the merged cluster CM in dimension l is computed as Exp((xl − μm)2) =∫ δl+σl/2

δl−σl/2
1

δl+σl/2−(δl−σl/2)
x2dx = δ2l + σ2

l /12. Therefore, the expectation value of
the DP-means with one merged cluster Exp(costDP (C1)) is

Exp(costDP (C1)) = wL{(δ2L,1 + ... + δ2L,d) + (
σ2

L,1

12
+ ... +

σ2
L,d

12
)}

+wR{(δ2R,1 + ... + δ2R,d) + (
σ2

R,1

12
+ ... +

σ2
R,d

12
)} + λ2 (8)

The condition in which the solution with one merged cluster has lower
cost than that with two clusters is when Exp(costDP (C1)) < Exp(costDP (C2)).
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Therefore, by using Eqs. (7) and (8), we have the condition to merge the clusters:

wL(δ2L,1 + ... + δ2L,d) + wR(δ2R,1 + ... + δ2R,d) − λ2 = wLd2L + wRd2R − λ2 < 0 (9)

Here, d2L and d2R are the squared Euclidean distance between the cluster
centers of CL and CM , CR and CM , respectively.

Merging multiple clusters. Because the original cluster information is lost
if we naively replace the clusters CL and CR with the merged clusters CM , it
is preferable to compute merged clusters with original clusters extracted by the
split DP-means. Below, we discuss the merging condition when using multiple
clusters extracted by the split DP-means.

Consider a cluster Ck that is originally contained in the cluster Cold with
the centroid μold and then contained in the cluster Cnew with the centroid
μnew by a merge operation. Like the discussion of merging two clusters, the
expectation value of the squared Euclidean distance of the dimension l when
Ck is contained by Cold is Exp((xl − μold,l)2) = d2old + σ2

l /12 and that when
Ck is contained by Cnew is Exp((xl − μnew,l)2) = d2new + σ2

l /12, where d2old and
d2new are the squared Euclidean distance between the centroids of C and Cold,
and that between the centroids of C and Cnew, respectively. Therefore, the cost
improvement of merging two clusters Δcostm(CL, CR) is computed as follows:

Δcostm(CL, CR) =
∑

Ci∈CL

wi(d2new,i−d2old,i)+
∑

Ci∈CR

wi(d2new,i−d2old,i)−λ2 (10)

If Δcostm(CL, CR) < 0, the DP-means cost function improves by applying
the merge operation. Algorithm 4 shows the derived algorithm. Our algorithm
greedily merges the clusters with the lowest Δcostm(CL, CR) value to improve
the total DP-means cost.

Figure 3 shows an example result of the split-merge DP-means. In this exam-
ple, the data points are generated by five Gaussians (two Gaussians in the left
side, three Gaussians in the right side). When the number of data points is small,
the split DP-means extracts clusters in the same way as the original DP-means
(Fig. 3(a)). However, when the number of data points grows, the split DP-means
splits clusters even when the data points are within a circle with diameter λ
as shown by the gray dotted circles in Fig. 3(b). Finally, the merge DP-means
merges insufficiently split clusters (Fig. 3(c)).

4 Experiments

In this section, we validate the performance of the proposed algorithms. Although
we should determine λ2 for evaluation, to determine the “correct” value of λ2 is
impossible because the suitable granularity of clusters differs in each application.
Therefore, we conducted experiments with multiple λ2 for feasible results, i.e.,
so as not to generate too many clusters or too few clusters.
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Fig. 3. Example result of split-merge DP-means for synthetic 2D data.

Datasets. We compare our algorithms with the following real data.

(1) USGS [16] contains the locations of earthquakes around the world between
1972 to 2010 mapped to 3D space with WGS 84. The value of each coordinate
is normalized by the radius of the earth. USGS has 59, 209 samples with three
dimensions. We use λ2 = [0.1, 0.32, 1.0, 3.2].

(2) MNIST [21] contains 70,000 images of handwritten digits of size 28×28 pixels.
We transform these images to 10 dimensions by using randomized PCA with
whitening. MNIST has 70, 000 samples with 10 dimensions. We use λ2 =
[8.0 × 100, 4.0 × 101, 2.0 × 102, 1.0 × 103].

(3) KDD2004BIO [13] contains features extracted from native protein sequences.
KDD2004BIO has 145,751 samples with 74 dimensions. We use λ2 = [3.2 ×
107, 1.0 × 108, 3.2 × 108, 1.0 × 109].

(4) SUN SCENES 397 [34] is a widely used image database for large-scale image
recognition. We use GIST features extracted from each image for evaluation.
SUN SCENES 397 has 198, 500 samples with 512 dimensions. We use λ2 =
[0.250, 0.354, 0.500, 0.707].

Note that our experimental settings include “reasonable” λ2 parameters used
in a related work [6] (USGS with λ2 = 1.0, MNIST with λ2 = 1.0×103, KDD2004BIO
with λ2 = 1.0 × 109), which are determined by dataset statistics. Additionally,
to evaluate non-easy cases, we also conducted evaluations with smaller λ2.

Algorithms. We compared the DP-means costs with the following algorithms:

(1) BD: Batch DP-means [20] (Algorithm 1).
(2) OD: Online DP-means (Algorithm 2).
(3) SD (proposed): Split DP-means (Algorithm 3).
(4) SMD (proposed): Split-merge DP-means (Algorithms 3 and 4)4.
4 We first applied split DP-means to the whole data in a one-pass settings and then

applied merge DP-means to the result of split DP-means.
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All algorithms were implemented by Python and ran in a single thread on
an Intel Xeon machine with eight 2.5 GHz processors and 32 GB RAM. We
measured the DP-means convergence when the change in cost was less than
0.01 or the number of iterations was over 300. We ran experiments for each
data set with five different orders of data (the original order and four random
permutations).

Results. Tables 1, 2, 3 and 4 show comparison results for the USGS data, MNIST
data, KDD2004BIO data, and SUN SCENES 397 data, respectively. These tables
show the average lowest DP-means cost with a 95% confidence interval and
the average computation time with five different data orders (±0 means the
clustering results are the same in the five data orders).

As shown by the results, the proposed split-merge DP-means algorithm pro-
vided the solutions with lower cost than the existing DP-means algorithms for
all datasets (including “reasonable” λ2 parameters [6]). Also, the result shows
that the solutions of the batch DP-means result are the same in five different
data orders in several cases (e.g. λ2 = 1.0 × 103 with MNIST data). These cases
can be interpreted as when the batch DP-means converges to a local minimum.
But even in these cases, the split-merge DP-means solutions have lower DP-
means cost. Therefore, the proposed algorithm avoided converging to the local
minima where the original DP-means converged. Also, as expected, the solutions
provided by the split-merge DP-means have lower cost than those provided by
the solutions of the split DP-means algorithm. Note that the split DP-means
increases the computation time by more than the batch DP-means does in many
cases because the solution of split DP-means has more clusters than that of the
batch DP-means. For example, in the case of MNIST with λ2 = 40, though the

Table 1. DP-means cost and runtime comparison for USGS data.

λ2 Cost (×102) Computation time (s)

BD OD SD SMD BD OD SD SMD

0.1 4.68 ± 0.26 7.06 ± 1.13 1.54 ± 0.03 1.20 ± 0.01 2217.9 45.9 525.6 604.4

0.32 18.0 ± 4.31 24.8 ± 3.35 3.39 ± 0.15 2.50 ± 0.06 507.1 17.2 404.1 446.6

1.0 64.1 ± 3.15 80.7 ± 23.6 7.02 ± 0.40 5.07 ± 0.20 119.8 6.3 308.8 328.5

3.2 460 ± 0 422 ± 105 14.5 ± 0.22 10.2 ± 0.22 1.7 2.1 234.3 242.5

Table 2. DP-means cost and runtime comparison for MNIST data.

λ2 Cost (×105) Computation time (s)

BD OD SD SMD BD OD SD SMD

8.0 × 100 1.31 ± 0.01 1.73 ± 0.04 1.14 ± 0.01 1.12 ± 0.00 58255.7 134.5 1739.0 2379.1

4.0 × 101 7.00 ± 0 6.91 ± 0.26 1.86 ± 0.07 1.71 ± 0.04 2.1 2.6 1006.0 1180.3

2.0 × 102 7.00 ± 0 7.00 ± 0 2.78 ± 0.13 2.50 ± 0.07 2.1 2.4 440.2 458.4

1.0 × 103 7.01 ± 0 7.01 ± 0 3.96 ± 0.15 3.60 ± 0.12 2.1 2.4 154.4 155.7
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Table 3. DP-means cost and runtime comparison for KDD2004BIO data.

λ2 Cost (×1011) Computation time (s)

BD OD SD SMD BD OD SD SMD

3.2× 107 1.91± 0.01 3.37± 0.13 1.57± 0.05 1.45± 0.03 30349.0 49.6 2340.9 2522.5

1.0× 108 2.75± 0.00 4.68± 0.03 2.12± 0.12 1.86± 0.06 10810.1 27.1 1543.8 1593.9

3.2× 108 3.19± 0.04 5.69± 0.34 2.89± 0.19 2.45± 0.09 7723.6 20.2 948.9 960.8

1.0× 109 7.33± 0.01 9.27± 3.62 4.49± 0.75 3.59± 0.43 255.5 10.2 661.3 665.5

Table 4. DP-means cost and runtime comparison for SUN SCENES 397 data.

λ2 Cost (×104) Computation time (s)

BD OD SD SMD BD OD SD SMD

0.250 1.15± 0.01 1.37± 0.01 1.13± 0.00 1.13± 0.00 279623.7 605.5 5084.7 5268.8

0.354 1.25± 0.01 1.47± 0.02 1.17± 0.00 1.17± 0.00 101439.4 173.3 4223.2 4346.9

0.500 1.41± 0.02 1.56± 0.04 1.21± 0.00 1.21± 0.00 12746.6 58.1 3518.2 3593.1

0.707 1.79± 0 1.81± 0.01 1.24± 0.01 1.24± 0.01 421.6 23.1 2966.5 3013.5

Table 5. Numbers of clusters for each dataset in original data order. Note that this
table uses the same settings as Bachem et al. [6].

Dataset BD OD SD SMD Optimal [6]

USGS (λ2 = 1.0) 8 6 529 312 156

MNIST (λ2 = 1.0 × 103) 1 1 140 87 65

KDD2004BIO (λ2 = 1.0 × 109) 4 3 202 122 55

split DP-means solution had only one cluster, the split DP-means solution had
average 1700 clusters.

Note that though the DP-means solutions of the proposed algorithms are
worse than Bachem’s recently reported result using a grid search of cluster num-
bers on the coresets [6] (2.50×1011 DP-means cost for KDD2004BIO dataset with
λ = 1.0 × 109), Bachem’s algorithm requires an exhaustive search to determine
the optimal number of clusters. In contrast, the proposed algorithms do not
require an exhaustive search for the number of clusters.

Table 5 shows the number of clusters extracted by each algorithm. In this
table, “optimal” is the optimal number of clusters reported by the grid-search
k-means algorithm of the number of clusters [6]. As reported in this study, the
batch and online DP-means tend to converge to the local minimum due to there
being too few clusters (less than 1/13 of the optimal number). The proposed
algorithms extract the number of clusters nearer the optimal number (the result
by the split-merge DP-means is within 2.5 times the optimal number). Although
the online split DP-means result tends to extract more clusters than the optimal
result, refinement with the split-merge DP-means reduces overestimated clusters.
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5 Conclusion

In this paper, we discussed the condition where the DP-means can converge to a
local minimum and then showed an extension of the DP-means. We provided an
analysis for the condition where the DP-means converges to a local minimum:
though more clusters are needed when the number of data points grows, the
original DP-means cannot assign the optimal number of clusters. To avoid con-
verging to these local minima, we derived an extension of the DP-means with
the split-merge technique. We empirically showed that the proposed algorithm
provides solutions with lower cost values.

The limitations of the current form of our algorithm are (a) data points are
approximated as a specific distribution (uniform distribution), (b) the informa-
tion of detailed data points is lost due to online update rules, and (c) the split
operation is performed only in one dimension. In the future, we hope to extend
the proposed algorithm to an more exact one without these approximations.

References
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Abstract. The availability of massive volumes of data and recent
advances in data collection and processing platforms have motivated
the development of distributed machine learning algorithms. In numer-
ous real-world applications large datasets are inevitably noisy and con-
tain outliers. These outliers can dramatically degrade the performance of
standard machine learning approaches such as regression trees. To this
end, we present a novel distributed regression tree approach that utilizes
robust regression statistics, statistics that are more robust to outliers,
for handling large and noisy data. We propose to integrate robust statis-
tics based error criteria into the regression tree. A data summarization
method is developed and used to improve the efficiency of learning regres-
sion trees in the distributed setting. We implemented the proposed app-
roach and baselines based on Apache Spark, a popular distributed data
processing platform. Extensive experiments on both synthetic and real
datasets verify the effectiveness and efficiency of our approach. The data
and software related to this paper are available at https://github.com/
weilai0980/DRSquare tree/tree/master/.

Keywords: Decision tree · Distributed machine learning · Robust
regression · Data summarization

1 Introduction

Decision trees are at the core of several highly successful machine learning mod-
els for both regression and classification, since their introduction by Quinlan [15].
Their popularity stems from the ability to (a) select, from the set of all attributes,
a subset that is most relevant for the regression and classification problem at
hand; (b) identify complex, non-linear correlations between attributes; and to (c)
provide highly interpretable and human-readable models [7,14,15,20]. Recently
due to the increasing amount of available data and the ubiquity of distributed
computation platforms and clouds, there is a rapidly growing interest in design-
ing distributed versions of regression and classification trees [1,2,14,16,21,23],
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for instance, the decision/regression tree in Apache Spark MLlib machine learn-
ing package1. Meanwhile, since many of the large datasets are from observations
and measurements of physical entities and events, such data is inevitably noisy
and skewed in part due to equipment malfunctions or abnormal events [9,11,22].

With this paper, we propose an efficient distributed and regression tree learn-
ing framework that is robust to noisy data with outliers. This is a significant
contribution since the effect of outliers on conventional regression trees based
on the mean squared error criterion is often disastrous. Noisy datasets contain
outliers (e.g., grossly mis-measured target values), which deviate from the distri-
bution followed by the bulk of the data. Ordinary (distributed) regression tree
learning minimizes the squared mean error objective function and outputs the
mean of the data points in the leaf nodes as predictions, which is especially
problematic and sensitive to noisy data in two aspects [9,11,20]. First, during
the tree growing phase (the learning phase), internal tree nodes are split so as
to minimize the square-error loss function, which places much more emphasis
on observations with large residuals [7,9,20]. As a result, bias on the split of a
tree node due to noisy and skewed data will propagate to descendent nodes and
derail the tree building process. Second, outliers drag the mean predictions away
from the true values on leaf nodes, thereby leading to highly skewed predictors.
Consequentially, the distributed regression tree trained on noisy data can neither
identify the true patterns in data, nor provide reliable predictions [8,9,11,20,22].

Contributions. Previous methods to address robustness in the distributed
regression tree fail to prevent noisy data from deviating the splits and pre-
dictions of tree nodes. In this paper, we focus on enhancing the robustness of
a distributed regression tree as well as the training efficiency. Concretely, this
paper makes the following contributions:

– We define the distributed robust regression tree employing robust loss func-
tions and identify the difficulty in designing an efficient training algorithm for
the distributed robust regression tree.

– We propose a novel distributed training framework for the robust regression
tree, which consists an efficient data summarization method on distributed
data and a tree growing approach exploiting the data summarization to eval-
uate robust loss functions.

– The proposed distributed robust regression tree and baselines are implemented
based on Apache Spark. Extensive experiments on both synthetic and real
datasets demonstrate the efficiency and effectiveness of our approach.

The organization of the paper is as follows: Sect. 2 summarizes the related work.
Section 3 presents the necessary background and the problem definition. Then,
Sects. 4 and 5 present proposed framework and experiment results.

2 Related Work

Robust Classification/Regression Trees. Many methods have been pro-
posed to handle noisy data, but most of them concentrate on refining leaf nodes
1 http://spark.apache.org/docs/latest/mllib-decision-tree.html.

http://spark.apache.org/docs/latest/mllib-decision-tree.html
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after training or purely on the classification problem. [24] applies smoothing on
the leaves of a decision tree but not inner nodes. [5] assigns a confidence score
to the classifier predictions rather than improving the classification itself. [3,24]
improve the classification probabilities by using regression in the leaves. Another
well-known method for dealing with noisy data is fuzzy decision trees [8,13]. The
fuzzy function may be domain specific and require a human expert in order to
correctly define it. The other type of approaches is based on post-processing
applied after a decision tree has already been built on noisy data. John [9] pro-
posed iterative removal of instances with outlier values. [11] requires to perform
back-ward path traversal for examined instances.

Our paper aims to improve the robustness of distributed regression trees by
preventing the outliers from influencing the tree induction phase based on robust
loss functions. Above post-processing methods can be smoothly integrated into
our framework.

Distributed Classification/Regression Trees. Previous distributed regres-
sion tree algorithms do not consider the effect of data noise and outliers.

Parallel and distributed decision tree algorithms can be grouped into two
main categories: task-parallelism and data-parallelism. Algorithms in the first
category [4,18] divide the tree into sub-trees, which are constructed on different
workers, e.g. after the first node is split, the two remaining sub-trees are con-
structed on separate workers. The downside of this approach is that each worker
should either have a full copy of data. For large data sets, this method would
lead to slowdown rather than speed-up.

In the data-parallelism approach, the training instances are divided among
the different nodes of the cluster. Dividing data by features [6] requires the
workers to coordinate which input data instance falls into which tree-node. This
requires additional communication, which we try to avoid as we scale to very
large data sets. Dividing the data by instances [16] avoids this problem. Instance-
partitioning approach PLANET [14] selects splits using histograms with fixed
bins constructed over the value domain of features. Such static histograms over-
looks the variation of underlying data distribution as the tree grows and therefore
could lead to biased splits. [2,21] put forward to construct dynamic histograms
rebuilt for each layer of tree nodes and used for deliberately approximating
the exact splits. [2,21] communicate the histograms re-built for each layer of
tree nodes to a master worker for tree induction. [1] is a MapReduce algorithm
which builds multiple random forest ensembles on distributed blocks of data and
merges them into a mega-ensemble. In [10] ScalParC employs a distributed hash
table to implement the splitting phase for classification problems.

In this paper, our approach falls into the instance-partition category and
we build dynamic histograms to summarize the value distribution of the target
variable for robust loss estimation.
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3 Preliminaries and Problem Statement

In this part, we first present the regression tree employing robust loss functions.
Then, we describe the robust regression tree in the distributed environment and
formulate the problem of this paper.

3.1 Robust Regression Tree

In the regression problem, define a dataset D = {(xi, yi)}, where xi ∈ Nd is a
vector of predictor features of a data instance and yi ∈ R is the target variable.
d is the number of features. Let Dn ∈ D denote the set of instances falling under
tree node n.

Regression tree construction [15,20] proceeds by repeated greedy expansion
of tree nodes layer by layer until a stopping criterion, e.g. the tree depth is met.
Initially, all data instances belong to the root node of the tree. An internal tree
node (e.g., Dn) is split into two children nodes respectively with data subsets
DL(DL ⊂ Dn) and DR(DR = Dn − DL) by using a predicate on a feature, so
as to minimize the weighted loss criteria: |DL|

|Dn|L(DL) + |DR|
|Dn| L(DR), where L(·)

is a loss function (or error criteria) defined over a set of data instances.
This paper proposes the distributed regression tree employing robust loss

functions to handle noisy datasets with outliers on the target variable (the
regression tree is robust to outliers in feature space [7]). In robust regression,
there are two main types of robust loss functions: accommodation and rejec-
tion [7,9,19]. Accommodation approach is to define a loss function that lessens
the impact of outliers The least absolute deviation, referred to as LAD, is an
accommodation method [7,19,20]. It is defined on a set of data instances D as:
Ll(D) = 1

|D|
∑

(xiyi)∈D|yi − ŷ|, and ŷ = median(xiyi)∈D({yi}), which returns the
median of a set of values [20]. On the other hand, rejection approach aims to
restrict the attention only to the data that seems “normal” [9]. The loss func-
tion of the rejection type is the trimmed least absolute deviation, referred to
as TLAD. It is defined as Ll(D̃), where D̃ is the trimmed dataset of D derived
by removing data instances with the k% largest and k% smallest target values
(0 < k < 1) from D and thus in TLAD ŷ = medianyi∈D̃({yi}). Then, the robust
regression tree in this paper is defined as:

Definition 1 (Robust Regression Tree). In a robust regression tree, an
internal tree node is split so as to minimize the weighted robust loss function
|DL|
|Dn|Ll(DL) + |DR|

|Dn| Ll(DR), where DL and DR are two (trimmed) data subsets
corresponding to the children nodes. The leaf nodes take the median of target
values in the leaf node as the prediction value.

3.2 Robust Regression Tree in the Distributed Environment

In contemporary distributed computation systems [12,17], one node of the
cluster is designated as the master processor and the others are the workers.
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Denote the number of workers by P . The training instance set is instance-divided
into P disjoint subsets stored in different workers and each worker can only access
its local data subset. Let Dp be the set of data instances stored at worker p, such
that ∪P

p=1Dp = D. For p, q ∈ {1, . . . , P}, Dp ∩Dq = ∅ and |Dp| � |D|/P . Denote
the data instances in Dp belonging to a tree node n by Dn

p . A straightforward
way to grow the robust regression tree layer by layer on the master is inefficient
[2,14,17], because splitting an internal tree node requests to repeatedly access
distributed data and calculate LAD (or TLAD) via expensive distributed sorting
[2,17], for each trial split predicate per feature. Such a solution incurs dramatic
communication and computation overheads, thereby degrading the training effi-
ciency and scalability [2,20].

To this end, our following proposed distributed robust regression tree will
exploit data summarization [2,14,21], which is able to provide compact repre-
sentations of the distributed data, to enhance the training efficiency.

3.3 Problem Statement

As is presented above, it is non-trivial to design an efficient training approach
for distributed robust regression tree. Therefore, the problem of this paper is
formulated as:

Definition 2 (Training a Distributed Robust Regression Tree). Given
robust lost functions (LAD or TLAD) and training instance partitions
D1, . . . , Dp of a data set D distributed across the workers 1, . . . , p of a cluster,
training a robust regression tree in such a distributed setting involves two sub-
problems: (1) to design an efficient data summarization method for the workers
to extract sufficient information from local data and to transmit only such data
summarization to the master with bounded communication cost. (2) to grow a
robust regression tree on the master by estimating the robust loss function based
on the data summarization.

To keep things simple, we assume that all the features are discrete or categorical.
However, all the discussion below can be easily generalized to continuous features
[7]. Therefore, a split predicate on a categorical feature is a value subset. Let Vk

represents the value set of feature k and k ∈ {1, . . . , d}. For instance, given the set
of data instances Dn on a tree node n and a value subset on feature k, V−

k ⊂ Vk,
two data subsets partitioned by V−

k are DL = {(xi, yi)|(xi, yi) ∈ Dn, xi,k ∈ V−
k }

and DR = Dn − DL.
Often, regression tree algorithms also include a pruning phase to alleviate

the problem of overfitting the training data. For the sake of simplicity, we limit
our discussion to regression tree construction without pruning. However, it is
relatively straightforward to modify the proposed algorithms to incorporate a
variety of pruning methods [2,7].

4 Distributed Robust Regression Tree

In this part, we introduce the key contribution, the distributed robust regression
tree, referred to as DR2-Tree.
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Fig. 1. Framework of the distributed robust regression tree (best viewed in colour).
(Color figure online)

Overview: As is shown in Fig. 1, in DR2-Tree the master grows the regres-
sion tree layer by layer in the top-down manner. Each worker retains the split
predicates of the so-far trained tree nodes for data summarization. An efficient
dynamic-histogram based data summarization approach is designed for work-
ers to communicate with the master (refer to Sect. 4.1). Then, by using such
approximate descriptions of data, the master is able to efficiently evaluate robust
loss functions for determining the best split of each internal tree node, thereby
circumventing expensive distributed sorting for deriving LAD/TLAD (refer to
Sect. 4.2). Finally, the master sends the new layer of tree nodes to each worker
for the next round of node splitting.

4.1 Data Summarization on Workers

Our data summarization technique adopts the dynamic histogram, a concise and
effective data structure supporting mergable operations in the distributed set-
ting [2,21]. The one-pass nature of our proposed data summarization algorithm
enables it to be adaptable to the distributed streaming learning [2] as well. More-
over, we will derive efficient robust loss function estimation algorithm based on
such data summarization in the next subsection.

During the data summarization process, worker p builds a histogram set
denoted by Hn

p = {Hn
r,vr

}, for each tree node on the bottom layer, e.g., node n. It
summarizes the target value distributions of Dn

p , the data instances belonging to
tree node n in data partition Dp. Hn

r,vr
is a histogram describing the target value

distribution of data instances having value vr on feature r in Dn
p . Hn

r,vr
is a space

bounded histogram of maximum β bins ( |Hn
r,vr

| ≤ β ), e.g. Hn
r,vr

= {b1, . . . , bβ}.
Let count(H) (or count(H)) be the number of data instances summarized by a
histogram H (or a histogram set H). Each bin of a histogram is represented by
a quad, e.g. bi = (l, r, c, s), where l and r are the minimum and maximum target
values in this bin, c is the number of target values falling under this bin and s is the
sum of the target values. We will see how such quad elements are used in growing
the tree in the next subsection. The number of bins β in the histograms is speci-
fied through a trade-off between accuracy and computational and communication
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costs: a large number of bins gives a more accurate data summarization, whereas
small histograms are beneficial for avoiding time, memory, and communications
overloads.

Algorithm 1 presents the data summarization procedure on each worker, which
updates the local data instances one by one to the corresponding histogram set.
First, the tree node ni in the bottom layer of the tree for a data instance (xi, yi) ∈
Dp is found (line 1–2) and its associated Hni

p will be updated. For each feature
value of (xi, yi), yi is inserted to the corresponding histogram in Hni

p by either
updating an existing bin having the value range covering yi (line 3–6) or insert-
ing a new bin (yi, yi, 1, yi) to the histogram (line 7–12). Second, if the size of the
histogram exceeds the predefined maximum value β then the nearest bins are con-
tinuously merged until addressing the limit β (line 13–16). A temporary priority
structure (e.g., Tni

vr
) is maintained for efficiently finding closest bins to merge (line

13–16). Finally, workers only send such data summarization to the master.
Complexity Analysis: In line 2–6, the binary search over bins of a histogram

takes log β time. Then the priority structure can support in finding the nearest

Algorithm 1. Data summarization on a worker
Input: data partition in this worker, e.g., Dp

Output: histogram sets {Hn
p} describing the target value distribution in internal tree

node n {Bins in each histogram are maintained according to the order of bin
boundaries.} {Tni

vr : a priority queue recording the distances between neighbouring
bins.}

1: for each data sample (xi, yi) in Dp do
2: search the tree built so far to locate the leaf node, e.g. ni, to which sample (xi, yi)

belongs.
3: for each feature value xi,k of xi do
4: search for the bin bincl such that yi ∈ [bincl.l, bincl.r] by the binary search over

bins of Hni
k,xi,k

5: if there exits such a bin bincl for yi then
6: only update the bin bincl by bincl.c = bincl.c + 1, bincl.s = bincl.s + yi

7: else
8: { blower and bupper are obtained during the above search process for bincl.}
9: blower = argmax

bj∈{bk|bk.r≤yi}
bj .r, bupper = argmin

bj∈{bk|bk.l≥yi}
bj .l

10: insert a new bin (yi, yi, 1, yi) into Hni
k,xi,k

between bin blower and bupper

11: insert two new neighbour-bin distances |blower.r − yi| and |bupper.l − yi| to
the Tni

vr

12: if current |Hni
k,xi,k

| > histogram space bound β then

13: for the pair of bins bu and bv with the minimum distance in
Tni
vr , replace the bins bu and bv in Hni

k,xi,k
by the merged bin

(min(bu.l, bv.l), max(bu.r, bv.r), bu.c + bv.c, bu.s + bv.s)
14: end if
15: end if
16: end for
17: end for
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bins and updating bin distances in log β time (line 13–16). Overall, the time com-
plexity of Algorithm 1 is O(|Dp|d log β). Compared with the histogram building
approach in [2,21], our method circumvents the sorting operation for updat-
ing individual data instances and improves the efficiency, as is demonstrated
in Sect. 5. The communication complexity for transmitting data summarization
of the bottom layer of nodes between the worker and master is bounded by
O(max

r
(|Vr|)dβ) independent of the size of the data partitions. For the features

with high cardinality, our data summarization can incorporate extra histograms
over feature values to decorrelate the communication cost and the feature car-
dinality [2,21].

4.2 Tree Growing on the Master

In this part, we will first outline the tree node splitting process using the data
summarization in growing the tree. Then, we present the involved two funda-
mental operations in detail, namely the histogram merging and LAD/TLAD
estimation.

Tree Node Splitting: In order to find the best split of a tree node, we need a
histogram set summarizing all the data instances falling under this node. There-
fore, as is presented in Algorithm 2, a unified histogram set is built by using the
histogram merging operation, which will be described in Algorithm 3. Then, it
iterates over each feature to find a split predicate, i.e., a feature value subset, such
that the robust lose function is minimized (Line 4–6). For a trial feature value

Algorithm 2. Tree node splitting
Input: histogram sets of tree node n from all data partitions, Hn

1 , . . . , Hn
P .

Output: the split feature and associated value set for tree node n.
1: build a unified histogram set summarizing the overall target value distribution for

this tree node Hn = merge(Hn
1 , . . . , Hn

P ) by using the histogram merging operation
presented in Algorithm 3

2: for each feature k ∈ {1, . . . , d} do
3: Sort the feature values in Vk according to the median estimations of data in the

corresponding histograms [23].
4: Ṽk: the sorted feature values in Vk.
5: iterate over Ṽk to find a vj and the associated feature value subsets V− = {vj |j ≤

i} and V+ = Vk − V−, so as to the minimize robust loss function, namely

{v∗, V+∗, V−∗} = argmin
vi,V+,V−

L̂l(H
−) count(H−)

count(Hn)
+ L̂l(H

+) count(H+)
count(Hn)

where H− = merge({Hn
vj |j ≤ i}) and H+ = merge({Hn

vj |j > i}) are two
merged histograms respectively approximating the distributions of two data sub-
sets defined by V− and V+,
{ L̂l(·) is the histogram based LAD estimation function, which is presented in
Algorithm 4.}

6: end for
7: return the feature and value subsets, which achieve the minimum robust loss.



Efficient Distributed Decision Trees for Robust Regression 87

subset, e.g. V− = {vj |j ≤ i} and V+, we need to estimate the LAD/TLAD over
the data subsets defined by V− and V+. Therefore, two temporary histograms,
e.g., H− and H+ are built by merging the histograms in Hn corresponding to
the feature values present in V− and V+. L̂l(·) is the histogram based LAD (or
TLAD) estimation function, which will be described in Algorithm 4.

Finally, when the tree reaches the stopping depth, the predictions on the leaf
nodes can be exactly derived by accessing the distributed dataset. This step is
only performed when the tree growing phase is finished.

Histogram Merging: Our proposed histogram merging operation is a one-pass
method over the bins of histograms and creates a histogram summarizing the
union of data distribution of the two histograms. As is presented in Algorithm 2,
it is mainly used in two cases: (1) build a unified histogram set for each tree node
on the bottom layer; (2) build temporary histograms to approximate the target
value distributions of two data subsets defined by a trial feature value subset.
Two histograms H1 and H2 are first combined in the merge-sort way. Then, bins
which are closest are merged together to form a single bin. The process repeats
until the histogram has β bins. Limited by the space, refer to [25] for details.

LAD/TLAD Estimation: A straightforward method to estimate LAD (or
TLAD) based on a histogram is to first make a median estimate and then to
sample data in each bin of the histogram to approximate individual absolute
deviations [2,21]. Both the median estimation and data sampling process intro-
duce errors into the LAD (or TLAD) estimation [20].

To this end, we propose a more efficient and precise algorithm to approximate
LAD and TLAD in one-pass way. Before giving the details, we first define some
notations.

Definition 3 (Quantile Bin of a Histogram). Given a histogram H =
{b1, . . . , bβ}, count(H) the number of values this histogram summarizes and
a quantile q over the summarized values, the quantile bin bq addresses∑

bi<bq
bi.c < count(H) · q and

∑
bi≤bq

bi.c ≥ count(H) · q

Definition 4 (R-Partial-Sum of a Bin). Given a bin b = (l, r, c, s) of a his-
togram, R-Partial-Sum of bin b, Sp(b,R) is defined as the sum of the R smallest
values summarized in this bin.

Recall that in the data summarization in Algorithm 1, the histogram updat-
ing process unites neighbouring bins according to the distance of bin boundaries.
This allows the bins to adapt to the data distribution. Regarding the values sum-
marized by a bin in a histogram (e.g., b), we can safely assume that they are
uniformly distributed in range [b.l, b.r] [2]. Therefore, we provide the lemma
below, which will be used for LAD estimation, to approximate R-Partial-Sum:
(Refer to [25] for the derivation.)

Lemma 1. For a bin b = (l, r, c, s) of a histogram and an integer R (R ≤
b.c), under the assumption of the uniform distribution of values in the bin,
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R-Partial-Sum of bin b can be approximated by Sp(b,R) � Ŝp(b,R) ={
b.s : R = b.c
R · b.l + R(R − 1)δ : otherwise

, where δ = (b.s−b.r−b.c·b.l+b.l)
(b.c−2)(b.c−1) .

Now we provide the following lemma for estimating the LAD/TLAD based on
a histogram as:

Lemma 2. Given a histogram H = {b1, . . . , bβ}, the LAD/TLAD over the data
summarized by histogram H can be exactly computed by:

(1) Ll(H) =
∑

bi>bm

bi.s − ∑
bi<bm

bi.s + bm.s − 2Sp(bm, R), where R = 	C
2 
 −

∑
bi<bm

bi.c, C = count(H) is the total number of data instances covered in his-

togram H, and an bm is the 1
2 -quantile bin.

(2) Ll(H, τ) =
∑

bm<bi<bq

bi.s − ∑
bq<bi<bm

bi.s + Sp(bq, R1) − bq.s + Sp(bq, R2) +

bm.s − 2Sp(bm, R), where bm, bq and bq are respectively the 1
2 , τ and (1 − τ)-

quantile bins, R = 	C
2 
 − ∑

bi<bm

bi.c, R1 = C · τ − ∑
bi<bq

bi.c, R2 = C · (1 − τ) −
∑

bi<q

bi.c.

Proof. Limited by the space, refer to [25] for the proof details.

Lemma 2 suggests that in estimating LAD/TLAD based on a histogram,
the median estimation step is circumvented. Meanwhile, given the histogram
LAD/TLAD can be estimated through replacing Sp(·) in Lemma 2 by Ŝp(·)
defined in Lemma 1 and exactly computing the remaining terms.

On the basis of Lemma 2, our proposed LAD/TLAD estimation algorithm is
able to estimate LAD or TLAD in one-pass over the bins of the given histogram.
Limited by the space limit, refer to [25] for the detailed pseudo-code of this
algorithm. In our LAD/TLAD estimation, the only approximate part is Ŝp(b,R).
Now we provide the theoretical error bound on it: (refer to [25] for the proof.)

Theorem 1. Given a bin b = (l, r, c, s) of a histogram and R (R ≤ b.c), if
R = 1 or R = b.c, Ŝp(b,R) provided in Lemma 1 is the exact R-Partial-Sum.
Otherwise, the approximation error of R-Partial-Sum of bin b, Sp(b,R)−Ŝp(b,R)
is bounded within [(R − b.c) · (b.r − b.l), b.s − b.c · b.l].

As a result, the LAD/TLAD estimation has bounded errors as well.

5 Experimental Evaluations

In this section, we perform extensive experiments to demonstrate the efficiency
and effectiveness of DR2-Tree. Due to space limits, additional results are avail-
able at [25].
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5.1 Setup

Dataset: In the experiments, we use one synthetic and two real datasets.
Synthetic Data: Our synthetic data generator2 produces data instances with
specified number of features. For each distinct feature value combination e.g.,
(v1, . . . , vd), where v1 is the value of the first feature and d is the number of
features, it generates several data instances having such feature values and the
target values sampled from a Gaussian distribution. Such Gaussian distribu-
tions are specific w.r.t. feature-value combinations. Meanwhile, data instances
with outliers on the target variable are injected based on a Bernoulli distribution.
The probability of the Bernoulli distribution is specified through the percentage
of outliers in the produced dataset and it is set as 0.05 initially, i.e., 5% of data
instances have outlier target values. The magnitude of outlier target values is
defined as the times of the Gaussian distribution mean. By default, the magni-
tude is 3, which means that the target value of an outlier data instance is sampled
from a Gaussian distribution with 3 times larger mean than the mean of the cor-
responding feature value combination’s distribution. The percentage and mag-
nitude of outliers will be tuned later in Subsect. 5.3. Flight Dataset: It contains
the scheduled and actual departure and arrival times of flights reported by certi-
fied U.S. air carriers from 1987–20083. It contains data instances with abnormal
values on the “arrival delay” and “departure delay” attributes, due to abnor-
mal events, e.g., weather, security, etc. In our experiments, we use the attribute
“ArrDelay” as the target variable and the categorical features as the independent
variables. The cardinalities of these categorical features vary from 10 to 1032.
Network Dataset: It is a dataset provided by a major European telecommuni-
cation service provider consisting of active measurements from probes within a
residential ISP network. The probes measure various performance fields such as
the throughput, jitter and delay between their location and chosen end-points.
Furthermore, each probe and end-point are associated with various categorical
and continuous features, such as the time of the measurement, the location of
the endpoints and the configuration of the lines. Finally the tests cover a period
of 2 days and involve 124 probes and 1314 targets. This dataset is noisy in the
sense that due to network anomalies and events, the measurements could have
huge outlier values (refer to the preliminary analysis of the dataset in [25]).

Baselines: ER2T is a distributed robust regression tree. SRT and DHRT are
two representative distributed regression trees in the literature [2,14,21]. ER2T:
It refers to the exact distributed robust regression tree. It builds the robust
regression tree on the master by exactly calculating the robust loss functions
in a distributed way. SRT: It refers to the distributed regression tree based on
square error criteria [14] in Apache Spark machine learning tool set4. Prior to the
tree induction, a pre-processing step is performed to obtain static and equidepth
histograms for each feature and the split points are constantly selected from the

2 https://github.com/weilai0980/DRSquare tree/tree/master/dr2tree src.
3 http://stat-computing.org/dataexpo/2009/the-data.html.
4 http://spark.apache.org/docs/latest/mllib-decision-tree.html.

https://github.com/weilai0980/DRSquare_tree/tree/master/dr2tree_src
http://stat-computing.org/dataexpo/2009/the-data.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
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bins of such histograms in the training phase. DHRT: It implements a single
distributed regression tree based on [21], which employs dynamic histograms [2]
to summarize statistics in distributed data for evaluating the square error split
criterion on the master. In building histograms, it requires to sort the bins each
time a data instance is added to the set already represented by the histogram [2].

In Subsect. 5.3, we will also use random forests (RF) and gradient boosted
regression trees (GBT) in the distributed machine learning library Spark MLlib
to compare with our robust regression tree in terms of accuracy.

Implementation: Our proposed DR2-Tree and baselines are all implemented
on Apache Spark, a popular distributed data processing engine. The engine is
deployed on a cluster of 23 servers, each with 16 cores (2.8GHz) and 32G of
RAM.

5.2 Efficiency

In this group of experiments, we evaluate the efficiency of growing regression
trees under different conditions. The training time is measured as the total time
for growing a tree from the root node until the specified depth. To mitigate
the effects of varying cluster conditions, all the results have been averaged over
multiple runs.

We consider four parameters to tune in this set of experiments, namely the
tree depth, training data size, maximum number of bins in data summarization
and the number of workers. They have direct effect on the training time [2,14,
17,21]. The experiments are performed by varying one parameter while keeping
the others as default values. By default, the maximum number of bins is set
as 500, the number of workers is 5, the depth is 6 and the size of the training
dataset is 10 million initially.

Depth: Fig. 2 presents the training time as a function of the training depth of
the regression tree. DR2-Tree outperforms ER2T and DHRT by 3× and 2×
faster in average. In ER2T the training time consistently takes the longest,
as it computes the expensive exact median and LAD (TLAD) in the distrib-
uted setting. SRT takes 0.5 times less time than DR2-Tree. This is because
SRT constantly summarizes the data using fixed bins and thus takes less time
to extract statistics in bins from distributed data during the training phase.

Fig. 2. Training time w.r.t. the depth of the tree. (a) synthetic dataset (b) flight dataset
(c) network dataset. (best viewed in colour) (Color figure online)
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But square-error based SRT and DHRT are less robust to noisy data than DR2-
Tree, which will be shown in the next subsection.

Fig. 3. Training time w.r.t. the size of training dataset. (a) synthetic dataset (b) flight
dataset (c) network dataset. (best viewed in colour) (Color figure online)

Data Size: In Fig. 3, we present the training time as a function of the size of
the training dataset, i.e., the number of data instances. Due to the one-pass
nature of data summarization and tree growing processes, the training time of
DR2-Tree increases linearly, highlighting the scalability. DHRT has a quickly
increasing training time in part due to the quadratic computation in updating
histograms. DR2-Tree takes 3× and 2× less training time in average than ER2T
and DHRT.

Fig. 4. Training time w.r.t. the maximum number of bins in data summarization. (a)
synthetic dataset (b) flight dataset (c) network dataset. (best viewed in colour) (Color
figure online)

Maximum Number of Bins: In Fig. 4, we investigate the effect of the maxi-
mum number of bins in data summarization on the training time. ER2T employs
no data summarization. In SRT, bins are built according to the cardinality of
features in data. Therefore, varying the number of bins has no effect on ER2T
and SRT and in Fig. 4 only the results of DR2-Tree and DHRT are reported.
The number of bins affects both the efficiency of data summarization on workers
and tree growing on the master, and thus in general the training time is posi-
tively correlated with the maximum number of bins. At the highest level of bin
numbers, the training time of DR2-Tree is average 4 times less than DHRT.

Number of Workers: In Fig. 5, we proceed to investigate the speedup for
different numbers of workers. For large datasets, the communication between
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Fig. 5. Training time w.r.t. the number of workers. (a) synthetic dataset (b) flight
dataset (c) network dataset. (best viewed in colour) (Color figure online)

workers and the master is negligible relative to the gain in the data summariza-
tion building phase. Therefore, increasing the number of workers is beneficial for
speeding up the training process [2]. DR2-Tree presents 2× higher speedup than
ER2T at the highest level of number of workers.

5.3 Effectiveness

In this part, we evaluate the prediction accuracy of DR2-Tree and baselines
under different dataset properties and regression tree set-ups. Specifically, we
aim to study the effect of the maximum number of bins, the outlier percentage
and magnitude in the training dataset. The prediction accuracy is measured by
normalized root mean square error (NRMSE), so as to facilitate the comparison
between datasets. Lower values of NRMSE are considered better. The trim ratio
in DR2-Tree-TLAD is chosen as 0.1 [7,19]. The un-tuned parameters in each
group of experiments are set as the default values in Sect. 5.2.

Outlier Properties in the Dataset: In this group of experiments, we inves-
tigate the effect of the noise level of the training dataset, namely the outlier
percentage and magnitude, on the prediction accuracy. Since we can only manip-
ulate the noise level of the synthetic dataset, only the results on the synthetic
dataset are reported in Fig. 6.

In Fig. 6(a), we increase the percentage of data instances with outlier target
values while keeping the magnitude of the outlier values as 3× of the target value
mean. It is observed that initially when the training dataset has no outliers,
the accuracies of all approaches are highly close. As the percentage of outliers

Fig. 6. Prediction accuracy w.r.t. the (a) outlier percentage and (b) magnitude in the
training dataset (best viewed in colour). (Color figure online)



Efficient Distributed Decision Trees for Robust Regression 93

increases, the accuracy difference between the square error and robust error
criterion based approaches becomes significant.

In Fig. 6(b), we study the effect of the outlier magnitude on the accuracy. In
this group of experiments, 5% data instances have outlier target values. When
the magnitude of outliers increases, ER2T and DR2-Tree demonstrate stable
accuracy and have 2 times less errors than SRT and DHRT at the highest level
of the outlier magnitude. Compared with Fig. 6(a), we also observe that square
error based approaches are more sensitive to the outlier percentage than to the
outlier magnitude in the dataset.

Fig. 7. Prediction accuracy w.r.t. the maximum number of bins in data summarization.
(a) synthetic dataset (b) flight dataset (c) network dataset. (best viewed in colour)
(Color figure online)

Maximum Number of Bins: Figure 7 displays the prediction accuracy for
different number of bins in the data summarization. As is presented in Sect. 4,
the number of bins affects the precision of error criterion estimation in DR2-Tree.
Meanwhile, it should avoid setting the number of bins too large, otherwise the
training efficiency would degrade, as is shown in Fig. 4. Since only DR2-Tree and
DHRT have tunable dynamic histograms, only the results of them are shown.

For the noisy synthetic and network datasets, as the number of bins increases,
the master in DR2-Tree can obtain more precise data summarization based
LAD/TLAD estimation and thus yields decreasing prediction errors. DR2-Tree
outperforms DHRT by around 3 times. For the flight data, they present compa-
rable accuracies.

Overall Accuracy Comparison: In this part, we perform this group of experi-
ments by cross-validation to choose the depth in ER2T, SRT, DHRT, DR2-Tree-
LAD, DR2-Tree-TLAD, depth and the number of trees in RF and the number
of iterations in GBT. The results are reported in Table 1. The synthetic dataset

Table 1. Overall accuracy comparison (NRMSE).

Datasets ER2T SRT DHRT DR2-Tree-LAD DR2-Tree-TLAD RF GBT

Synthetic data 0.225 0.481 0.493 0.224 0.219 0.481 0.476

Flight data 0.00882 0.00874 0.00908 0.00889 0.00890 0.00836 0.00835

Network data 0.061 0.148 0.153 0.0629 0.0581 0.145 0.181



94 T. Guo et al.

is set to have 5% outlier target values with magnitude 3. It shows that robust
error criterion based approaches have around 50% less error than square error
based approaches, i.e., SRT, DHRT, RF and GBT. For not so noisy data, i.e.
the flight data, two types of approaches have very comparable accuracy. Such
results also demonstrate the wide applicability of our DR2-Tree.

6 Discussion

Our current version of DR2-Tree focuses on the robust regression with categorical
features. It can be smoothly extended to handle numeric or mixed features. For
numeric features, besides the histograms built on the target values in current
DR2-Tree, we can integrate additional histograms on the domains of numeric
features [2,14,21] to form two-dimensional histogram based data summariza-
tion, such that these histograms respectively provide split candidates and error
criterion estimation.

7 Conclusion

In this paper, we propose an efficient distributed robust regression tree for han-
dling large and noisy data. Extensive experiments reveal that: (1) Our proposed
DR2-Tree is robust to datasets with various outlier percentages and magni-
tudes. (2) DR2-Tree exhibits comparable accuracy as the conventional distrib-
uted regression tree for relatively clean datasets with rare outliers. (3) DR2-Tree
is much more efficient than exact robust regression and the dynamic histogram
based regression tree [2,21].
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Abstract. Decision makers increasingly require near-instant models to
make sense of fast evolving data streams. Learning from such evolving
environments is, however, a challenging task. This challenge is partially
due to the fact that the distribution of data often changes over time, thus
potentially leading to degradation in the overall performance. In partic-
ular, classification algorithms need to adapt their models after facing
such distributional changes (also referred to as concept drifts). Usually,
drift detection methods are utilized in order to accomplish this task. It
follows that detecting concept drifts as soon as possible, while resulting
in fewer false positives and false negatives, is a major objective of drift
detectors. To this end, we introduce the Fast Hoeffding Drift Detection
Method (FHDDM) which detects the drift points using a sliding window
and Hoeffding’s inequality. FHDDM detects a drift when a significant
difference between the maximum probability of correct predictions and
the most recent probability of correct predictions is observed. Experi-
mental results confirm that FHDDM detects drifts with less detection
delay, less false positive and less false negative, when compared to the
state-of-the-art.

Keywords: Data stream mining · Concept drift · Hoeffding’s inequal-
ity · Evolving environments

1 Introduction

Learning in evolving environments is a challenging task. This difficulty is caused,
not only by the speed and volume of data arrival, but also by the changes in
the distribution that may occur. Intuitively, distributional changes may cause
degradation in the performance of classification models. To this end, adaptive
learning algorithms utilize drift detection methods to detect such changes and
then take appropriate actions [1]. Typically, classification models are updated or,
alternatively, retrained when a drift has been detected. Alternatively, ensemble
learning algorithms are employed in an attempt to maintain the accuracy [2–6].

It follows that, in such a setting, drift detection methods resulting in fewer
false positives and less false negatives are preferred. Such detectors should also
detect drifts as soon as they arrive. A drift detector with a high false positive
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 96–111, 2016.
DOI: 10.1007/978-3-319-46227-1 7
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number (or rate) causes frequent retraining, leading to more resources being used
[7,8]. On the other hand, a drift detector with a high false negative number causes
decay in the accuracy of classification, since it does not detect drift points. These
types of oversights are costly and should be avoided in many applications, e.g.
in fraud detection and emergency response settings. Moreover, drift detectors
should detect drifts with the least possible delay. Correct approximation of a
drift point, i.e. detecting the drift with less delay, is necessary because it helps
not only to make maximum usage from the data, but also aids us to realize
how the drift happened. Such insights are crucial in Business Intelligence (BI)
applications. Accordingly, false positive, false negative and detection delay are
considered as evaluation measures for drift detection methods [23,24].

We introduce the Fast Hoeffding Drift Detection Method (FHDDM) based on
our requirement that the accuracy of classification models should stay steady, or
increase, as more instances are processed. Otherwise, the degradation in accuracy
may indicate that we face concept drifts. The FHDDM algorithm, in a novel way,
uses a sliding window and Hoeffding’s inequality [9] to calculate and compare
the maximum probability of correct predictions observed so far with the most
recent probability of correct predictions for the purpose of drift detection. We
will show that the FHDDM algorithm results in less detection delay, less false
positive and less false negative, when compared to the state-of-the-art.

The remainder of this paper is organized as follows: We talk about related
works to concept drift detection in Sect. 2. We describe the Fast Hoeffding Drift
Detection Method (FHDDM) algorithm in Sect. 3. Section 4 presents an app-
roach for evaluating drift detectors on the basis of detection delay. We conduct
our experiments on synthetic and real-world datasets in Sect. 5. Finally, we con-
clude the paper and discuss future works in Sect. 6.

2 Related Works

Gama et al. [1] classified concept drift detectors into three general groups of:
(1) Sequential Analysis based Methods: These methods sequentially evaluate pre-
diction results as they become available, and they alarm for drifts when a pre-
defined threshold is met. The Cumulative Sum (CUSUM) [10] and Geometric
Moving Average (GMA) [11] are members of this group. (2) Statistical basedMeth-
ods: These methods probe the statistical parameters such as mean and standard
deviation of prediction results to detect drifts in a stream. The Drift Detection
Method (DDM) [12], Early Drift Detection Method (EDDM) [13] and Exponen-
tially Weighted Moving Average (EWMA) [14] are placed in this group. (3) Win-
dows based Methods : They usually use a fixed reference window summarizing the
past information and a sliding window summarizing the most recent informa-
tion. A significant difference between the distributions of these windows suggests
the occurrence of a drift. Statistical tests or mathematical inequalities, with the
null-hypothesis saying that the distributions are equal, can be used to decide the
level of difference. Kifer’s [15], Nishida’s [16], Bach’s [17], the Adaptive Window-
ing (ADWIN) [18], the Hoeffding Drift Detection Methods (HDDMA−test and
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HDDMW−test) [19], and SeqDrift detectors [23,24] are members of this group. As
discussed in [1], drift detectors in the second and third groups have shown better
performances and have been frequently considered as benchmarks in the litera-
ture [7,13,16,18,19]. We will, thus, compare our FHDDM with DDM, EDDM,
ADWIN, HDDMA−test and HDDMW−test. We describe each one below:

DDM: Drift Detection Method – DDM, by Gama et al. [12], monitors the
error-rate of the classification model to detect drifts. On the basis of PAC learn-
ing model [20], the method considers that the error-rate of a classifier decreases
or stays constant as the number of instances increases. Otherwise, it suggests
the occurrence of a drift. Consider pt as the error-rate of the classifier with stan-
dard deviation of st =

√
(pt(1 − pt)/t) at time t. As instances are processed,

DDM updates two variables pmin and smin when pt + st < pmin + smin. DDM
warns for a drift when pt + st ≥ pmin + 2 ∗ smin, and it detects a drift when
pt + st ≥ pmin + 3 ∗ smin. The pmin and smin are reset in the case of drift
detection.

EDDM: Early Drift Detection Method – EDDM, by Baena-Garcia et al.
[13], checks the distances between wrong predictions to detect concept drifts.
The algorithm is based on the observation that facing a drift is likely when
the distances between errors are smaller. EDDM calculates the average distance
between two recent errors, i.e. p′

t, with its standard deviation s′
t at time t. It

updates two variables p′
max and s′

max when p′
t + 2 ∗ s′

t > p′
max + 2 ∗ s′

max. It
warns for a drift if (p′

t + 2 ∗ s′
t)/(p′

max + 2 ∗ s′
max) < α, and it detects a drift if

(p′
t+2∗s′

t)/(p′
max+2∗s′

max) < β. They set α and β to 0.95 and 0.90 respectively.
The p′

max and s′
max are reset if a drift is detected.

ADWIN: Adaptive Sliding Window – ADWIN, by Bifet et al. [18], slides the
window w on the results of predictions to detect drifts. It examines two large
enough sub-windows, i.e. w0 with size n0 and w1 with size n1, of w for drift
detection where w0 · w1 = w. A significant difference between the means of two

sub-windows suggests a concept drift, i.e. |μw0 − μw1 | ≥ ε where ε =
√

1
2m ln 4

δ′ ,
m is the harmonic mean of n0 and n1, δ′ = δ/n, δ is the confidence level and n
is the size of window w. After a drift detection, elements are dropped from the
tail of the window until no significant difference is seen.

HDDMA−test � HDDMW−test – HDDMA−test and HDDMW−test are pro-
posed by Frias-Blanco et al. [19]. The former compares the moving averages to
detect drifts. The latter uses the EMWA forgetting scheme [14] to weight the
moving averages. Then, weighted moving averages are compared to detects the
drift. For both cases, Hoeffding’s inequality [9] is used to set an upper bound to
the level of difference between averages. The authors noted that the first and the
second methods are ideal for detecting abrupt and gradual drifts, respectively.

The pros and cons of all methods will be discussed in more details in Sect. 5.
However, during our preliminary experiments, we observed that the aforemen-
tioned methods may cause high numbers of false positives and false negatives.
Some resulted in long detection delays, though they had short detection runtimes.
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In the next section, we introduce our Fast Hoeffding Drift Detection Method
(FHDDM), developed to address these shortcomings.

3 Fast Hoeffding Drift Detection Method

We present our Fast Hoeffding Drift Detection Method (FHDDM) which uses the
Hoeffding’s inequality [9] to detect drifts in evolving data streams. The FHDDM
algorithm slides a window with a size of n on the classification results. Subse-
quently, it inserts a 1 into the window if the prediction result is true, otherwise
it inserts 0. As inputs are processed, it calculates the probability of observing
1s, i.e. p1t , in the sliding window at time t, and also keeps the maximum proba-
bility of 1 s occurring, i.e. p1max. Equation (1) shows if the value of p1 at time t
is greater than the value of p1max then the value of p1max will be updated.

if p1max < p1t ⇒ p1t → p1max (1)

On the basis of the probably approximately correct (PAC) learning model
[20], the accuracy of classification would increase or stay steady as the number of
instances increases; otherwise the possibility of facing drifts increases [12]. Thus,
the value of p1max should increase or remain steady as we process instances.
In other words, the possibility of facing a concept drift increases if p1max does
not change and p1t decreases over time. Eventually, as in Eq. (2), a significant
difference between p1max and p1t indicates the occurrence of a drift in the stream.

Δp = p1max − p1t ≥ εd ⇒ Drift := True (2)

We use the Hoeffding’s inequality to define the value of εd, Eq. (4). The
Hoeffding’s inequality has a very attractive property that it is independent of
the probability distribution generating the data [9,19,21]. That is, it assigns an
upper bound for the deviation between the mean of n random variables and its
expected value.

Hoeffding’s Inequality Theorem: Let X1,X2, ...,Xn be n independent ran-
dom variables such that Xi ∈ [0, 1], then with probability at most δ, the differ-
ence between the empirical mean X = 1

n

∑n
i=1 Xi and the true mean E[X] is at

least εH , i.e. Pr(|X − E[X]| ≥ εH) ≤ δ, where:

εH =

√
1
2n

ln
2
δ

(3)

Corollary (FHDDM test): In a stream setting, assume p1t is the probability
of observing 1s in a sequence of n random entries, each in {0, 1}, at time t, and
p1max is the maximum probability observed so far. Let Δp = p1max − p1t ≥ 0 be
the difference between those two probabilities. Then, given the desired δ, i.e. the
probability of error allowed, the Hoeffding’s inequality guarantees a drift has
happened if Δp ≥ εd, where:

εd =

√
1
2n

ln
1
δ

(4)
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Figure 1 depicts an illustrative example of the FHDDM algorithm. In this
example, n and δ are set to 10 and 0.2, respectively. Using Eq. (4), the value
of εd will be equal to 0.28. In this example, a real drift occurs right after the
12th instance. The values of p1 and p1max are null and zero until 10 elements
are inserted into the window. We have seven 1s in the window after reading
the first 10 elements, and so the p110 is equal to 0.7. The value of p1max is set
to 0.7 too. The 1st element is dropped out from the window before the 11th

prediction status is inserted. Since the value of prediction status is 0, the value
of p1 decreases to 0.6. The value of p1max stays the same, because it is greater
than the current p1. This progress is continued until the 18th is inserted. At this
moment the difference between p1max and p118 becomes more than the value of
εd. In this case, the FHDDM algorithm alarms for a drift.

Fig. 1. Illustration of how FHDDM works

We present the pseudocode of the FHDDM approach in Algorithm 1. First,
we need to instantiate an object from FHDDM and then call its Detect func-
tion. The result of prediction, i.e. p, is sent to the Detect function as an input
in order to determine whether a drift has occurred, in line 11. The oldest ele-
ment is dropped out from the sliding window if it is full; then, a new element is
pushed into it, as shown in lines 12 to 15. The algorithm returns False in the
case of having not enough elements in the window, as depicted in lines 16 and
17. Next, the values of p1, p1max, and Δp are calculated or updated (lines 19 to
23). In the case of having Δp ≥ εd, it resets its parameters and alarms for a drift
by returning True.

Window-based approaches [15–18] usually compare two (sub)windows, e.g.
w1 and w2, leading to a considerable memory usage [1]. That is, one window is
used to maintain historic information (from the beginning) and the second main-
tains the most recent information. In contrast, FHDDM compares the current
accuracy of the classifier with its best accuracy, i.e. the best experience, observed
so far using one sliding window size of n. Thus, it occupies only one register,
i.e. p1max, and a sliding window size of n where n 	 |w1| or |w2|. Eventually,
unlike [12–14], as we apply the Hoeffding’s inequality, our method is indepen-
dent of the probability distribution of data. The Hoeffding’s inequality assumes
instances are independent of each other that makes the bound independent of
the probability distribution.
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Algorithm 1. Pseudocode of Fast Hoeffding Drift Detection Method (FHDDM)
1: function Initialize(windowSize, delta)
2: n = windowSize
3: δ = delta

4: εd =
√

1
2n

ln 1
δ

5: Reset()
6: end function
7: function Reset()
8: w = [] � Creating an empty sliding window.
9: p1

max = 0
10: end function
11: function Detect(p) � p is 1 for the correct predictions, 0 otherwise.
12: if w.size() = n then
13: w.tail.drop() � Dropping an element from the tail.
14: end if
15: w.push(p) � Pushing an element into the head.
16: if w.size() < n then
17: return False
18: else
19: p1 = w.count(1)/w.size() � The recent probability of seeing 1s.
20: if p1

max < p1 then
21: p1

max = p1

22: end if
23: Δp = p1

max − p1

24: if Δp ≥ εd then
25: Reset() � Resetting parameters.
26: return True � Signalling for an alarm.
27: else
28: return False
29: end if
30: end if
31: end function

4 On Evaluation of Concept Drift Detectors

True Positive, False Positive and False Negative numbers are useful to evaluate
the performance of concept drift detectors. Intuitively, a drift detector with the
highest true positive, the lowest false positive and the lowest false negative values
is preferred. Huang et al. [7] and Bifet et al. [18] used three types of tests to
measure true positive, false positive, and false negative values of a drift detector.
For instance, to measure the false positive, they generated a stream of bits from
a stationary Bernoulli distribution. If the detector alarms for drifts, one false
positive is counted for each alarm. Thus, one may use three of such tests to
count true positive, false positive, and false negative numbers. However, having
an approach able to count them in one test, for any stream generated by any
probability distribution, is preferred. To this end, we introduce an approach to
count true positive, false positive and false negative by defining the acceptable
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delay length Δ. The acceptable delay length is a threshold set to determine how
far the detected drift could be from the true location of drift, for being considered
as true positive. Considering the acceptable delay length Δ, we describe the true
positive, false positive and false negative calculations as follows:

– True Positive (TP): A drift detector truly detects a drift occurred at time t if it
alarms for that at anytime in [t−Δ, t+Δ]. We call this range as the acceptable
detection interval of true positive. Eventually, the true positive rate is defined
as the number of drifts correctly identified over the total number of drifts
in a stream. For evaluating reactive concept drift detectors, the acceptable
detection interval is [t, t + Δ].

– False Positive (FP): A drift detector falsely alarms for a drift if it detects that
outside of the acceptable detection intervals. The false positive rate is defined
as the number of points incorrectly considered as drifts over the total number
of points which are not drifts.

– False Negative (FN): A drift detector falsely overlooks a drift occurred at time
t if it does not alarm for that at anytime in [t − Δ, t + Δ]. The false negative
rate is defined as the number of drifts incorrectly left unidentified over the
total number of drifts in a stream. For the reactive concept drift detectors,
the range is [t, t + Δ].

Figure 2, as an example, illustrates how the true positive, false positive and
false negative are counted. The upper stream shows the real locations of drifts,
i.e. the squares with D inside, and the lower stream shows the result of detection
at each location. The squares with T inside represent the drifts detected cor-
rectly (true positive), the squares with F inside represent the points incorrectly
considered as drift points (false positive), and the squares with N inside indicate
undiscovered drifts (false negative). The drift detector signals for a drift within
the first acceptable detection interval and so the true positive number increases.
Subsequently, it incorrectly alarms for a drift and the false positive number
increases. Since the detector does not alarm for a drift within the second accept-
able detection interval, the false negative number increases. The figure shows
that the detector incorrectly alarms for a drift at the very end of the stream.

For data stream mining, the usage of resources will be high if the drift detec-
tor incorrectly alarms for drift repeatedly. Further, the error-rate or cost of classi-
fication would be high if the drift detector could not correctly detect the location
of drifts. In other words, the error-rate of classification typically increases as does
the false negative number [7,8,18]. Therefore, false positive and false negative
are essential measures for evaluating concept drift detectors.

The delay of detection may be considered as a performance measure for
drift detectors. Less detection delay results in losing less data for learning, it
means more instances from the new distribution can be used for learning. The
detection runtime and detection memory usage of drift detectors can be also
used as performance measures. Intuitively, a drift detector able to correctly find
drifts with less delays faster by consuming less resources is preferred.
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Fig. 2. Illustration of counting true positive, false positive and false negative

5 Experimental Analysis

We discuss our experimental results by comparing the performance of FHDDM
against that of DDM, EDDM, ADWIN, HDDMA−test and HDDMW−test. We ran
the experiments on synthetic and real-world datasets often used in concept drift
detection research [6,7,12–14,19]. We have considered Hoeffding Tree (HT), also
known as VFDT, and Naive Bayes (NB) as our incremental classifiers; they are
frequently used in the literature [6,7,12,13,16,18,19]. In all experiments, we ran
the Hoeffding Tree with δ = 10−7, τ = 0.05 and nmin = 200 as used in the [21].
Instances are processed prequentially, which means they are first tested and then
used for training. We used MOA [22], a framework for data stream mining, to
implement FHDDM in and compare it with other drift detectors. Experiments
are run on Intel Core i5 @ 2.8 GHz with 16 GB of RAM running Apple OS X
Yosemite.

5.1 Experiments on Synthetic Datasets

Synthetic Datasets – We generated three synthetic datasets of Sine1, Mixed
and Circles, as originally described in [25] and used in the literature [12,13,16],
containing 100,000 instances with 2 classes. We also added 10 % noise to each
dataset. In this way, we can consider how robust drift detectors are against noisy
data streams by distinguishing noises from drifts. One of the advantages of syn-
thetic datasets is being aware of the location of drifts. Therefore, we can measure
the detection delay, true positive, false positive and false negative numbers (or
rates). The datasets are described below:

– Sine1 · with abrupt concept drift : The dataset has two attributes x and y
uniformly distributed in [0, 1]. The classification function is y = sin(x). Before
the first drift, instances under the curve are classified as positive and others
as negative. At a drift point the classification is reversed. We put the drifts at
every 20,000 instances.
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– Mixed · with abrupt concept drift : The dataset has two numeric attributes x
and y uniformly distributed in [0, 1] as well as two boolean attributes v and
w. The instances are classified as positive if at least two of the three following
conditions are satisfied: v, w, y < 0.5 + 0.3 ∗ sin(2πx). The classification is
reversed after drifts. Drifts happen at every 20,000 instances.

– Circles · with gradual concept drift : It has two attributes x and y uniformly
distributed in [0, 1]. The function of a circle <(xc, yc), rc> is (x − xc)2 +
(y − yc)2 = r2c where (xc, yc) is its centre and rc is the radius. Four circles
of <(0.2, 0.5), 0.15>, <(0.4, 0.5), 0.2>, <(0.6, 0.5), 0.25>, and <(0.8, 0.5), 0.3>
classify instances in order. Instances inside the circle are classified as positive.
A drift happens when the classification function, i.e. circle function, changes.
Drifts occur at every 25,000 instances.

Experiments – We ran Hoeffding Tree (HT) and Naive Bayes (NB) with each
drift detector for 100 times and then averaged the detection delays, true posi-
tives, false positives, false negatives, detection runtimes (in millisecond), mem-
ory usage (in bytes) of drift detectors as well as the accuracies of classifiers. The
acceptable drift detection delay length, i.e. Δ, was set to 250 for the Sine1 and
Mixed datasets and to 1000 for the Circles dataset. We consider a longer Δ
for the Circles dataset because it contains gradual concept drifts. Preliminary
experiments and inspections confirmed that a longer Δ should be considered
for gradual drifts, otherwise the false negative numbers would increase. We ran
FHDDM with a sliding window size of 25 on the Sine1 and Mixed datasets,
and with a sliding window size of 100 on the Circles dataset. We considered a
wider sliding window size for the Circles dataset to make sure we have enough
examples in the window as we are facing with the gradual drifts. Preliminary
inspections helped us to adjust our window sizes for resulting in less detection
delay, less false positive and less false negative. Since FHDDMs’ sliding windows
are small and they compare p1t with the p1max, we need to set δ to a small value
to make sure the εd is big enough. It was, therefore, set δ to 10−7 for our exper-
iments. All other drift detectors were run with the default parameters as set in
MOA (or as in the original papers).

Table 1(a) represents the results of experiments on the Sine1 dataset.
FHDDM has the lowest false positive and false negative averages with both clas-
sifiers. HDDMW−test results in the lowest delay followed by FHDDM with small
margins. DDM and EDDM exhibit the highest detection delay. They are also
the only two drift detectors with false negative averages. EDDM and ADWIN
have considerable false positive averages. As shown in Table 1 (b), we achieve the
highest classification accuracies by FHDDM and HDDMW−test with both clas-
sifiers. It is clearly seen that ADWIN has the longest runtimes and the highest
memory usages with considerable margins.

We show the results of experiments on the Mixed dataset in Table 2.
FHDDM and ADWIN have the highest true positive averages without caus-
ing any false negatives. FHDDM has the smallest false positive averages while
EDDM and ADWIN have the highest averages. HDDMW−test and FHDDM have
the shortest detection delays. As represented in Table 2(b), we achieve the highest
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Table 1. Results of experiments on Sine1 dataset (10 % Noise)

(a) Drift Detection Delay, True Positive, False Positive and False Negative

Classifier Detector Delay TP FP FN

HT

FHDDM 16.58 ± 1.39 4.0 0.02 ± 0.14 0.0
DDM 139.82 ± 23.87 3.42 ± 0.72 2.93 ± 1.87 0.58 ± 0.72
EDDM 242.81 ± 16.42 0.20 ± 0.40 32.67 ± 12.97 3.80 ± 0.40
ADWIN 21.23 ± 1.39 4.0 21.74 ± 5.72 0.0

HDDMA-test 32.2 ± 12.69 4.0 0.73 ± 1.01 0.0
HDDMW-test 11.62 ± 1.00 4.0 0.6 ± 0.72 0.0

NB

FHDDM 16.84 ± 1.02 4.0 0.0 0.0
DDM 213.05 ± 69.57 3.39 ± 0.71 2.19 ± 1.51 0.61 ± 0.71
EDDM 412.74 ± 73.03 1.65 ± 0.99 31.01 ± 12.15 2.35 ± 0.99
ADWIN 22.13 ± 1.50 4.0 17.89 ± 5.10 0.0

HDDMA-test 59.34 ± 21.05 4.0 0.27 ± 0.53 0.0
HDDMW-test 11.66 ± 1.29 4.0 0.39 ± 0.69 0.0

(b) Drift Detection Runtime and Memory Usage with Classification Accuracy

Classifier Detector Runtime (ms) Memory (bytes) Accuracy

HT

FHDDM 35.02 ± 5.93 352 87.07% ± 0.15
DDM 17.15 ± 4.47 160 86.16% ± 1.01
EDDM 11.89 ± 3.51 160 84.62% ± 0.54
ADWIN 2538.31 ± 103.53 1399.7 ± 81.43 86.77% ± 0.18

HDDMA-test 43.19 ± 6.35 168 86.99% ± 0.14
HDDMW-test 36.39 ± 5.75 160 87.05% ± 0.15

NB

FHDDM 35.22 ± 5.72 352 86.08% ± 0.21
DDM 17.23 ± 4.69 160 81.70% ± 4.49
EDDM 13.39 ± 3.8 160 83.67% ± 2.27
ADWIN 2532.92 ± 89.88 1356.32 ± 65.79 85.99% ± 0.21

HDDMA-test 43.92 ± 6.16 168 85.96% ± 0.21
HDDMW-test 35.23 ± 6.55 160 86.09% ± 0.21

classification accuracies by FHDDM with both classifiers. EDDM and ADWIN
result in the shortest and longest detection runtimes, respectively. ADWIN con-
siderably occupies the memory.

Tables 3(a) and (b) hold the experiments results on the Circles dataset.
FHDDM results in the shortest detection delay, the highest false positive, the
lowest false positive and the lowest false negative with Hoeffding Tree. ADWIN
has the shortest detection delay and the highest true positive average with Naive
Bayes and it is followed by FHDDM. EDDM and ADWIN have the highest
false positive averages. In the terms of classification accuracies, we achieve the
highest ones by FHDDM with either of classifiers. Like the previous experiments,
EDDM has the shortest detection runtimes and ADWIN has the highest memory
occupations.

We compared FHDDM with existing drift detection methods on the synthetic
datasets containing abrupt and gradual concept drifts. In conclusion, FHDDM
had the first or second shortest detection delay, the highest true positive average,
the lowest false positive average, and the lowest false negative average. Further,
the detection runtime and memory occupation was comparable to HDDMA−test’s
and HDDMW−test’s. Importantly, FHDDM led to the highest classification accu-
racies with both Hoeffding Tree and Naive Bayes.
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Table 2. Results of experiments on Mixed dataset (10 % Noise)

(a) Drift Detection Delay, True Positive, False Positive and False Negative

Classifier Detector Delay TP FP FN

HT

FHDDM 16.05 ± 1.28 4.0 0.24 ± 0.51 0.0
DDM 181.43 ± 24.08 2.69 ± 0.9 2.95 ± 1.92 1.31 ± 0.90
EDDM 248.01 ± 8.95 0.07 ± 0.26 20.81 ± 7.18 3.93 ± 0.26
ADWIN 23.85 ± 1.68 4.0 18.96 ± 5.27 0.0

HDDMA-test 41.12 ± 16.89 3.99 ± 0.10 1.16 ± 1.14 0.01 ± 0.10
HDDMW-test 11.57 ± 5.92 3.99 ± 0.10 3.15 ± 2.04 0.01 ± 0.10

NB

FHDDM 16.15 ± 1.43 4.0 0.03 ± 0.17 0.0
DDM 178.08 ± 27.77 2.77 ± 0.93 2.26 ± 1.33 1.23 ± 0.93
EDDM 248.13 ± 7.55 0.11 ± 0.34 20.71 ± 7.94 3.89 ± 0.34
ADWIN 23.79 ± 1.61 4.0 18.24 ± 5.28 0.0

HDDMA-test 58.10 ± 23.56 3.99 ± 0.10 0.60 ± 0.76 0.01 ± 0.1
HDDMW-test 11.48 ± 6.12 3.99 ± 0.10 1.63 ± 1.16 0.01 ± 0.1

(b) Drift Detection Runtime and Memory Usage, and Classification Accuracy

Classifier Detector Runtime (ms) Memory (bytes) Accuracy

HT

FHDDM 35.98 ± 5.32 352 83.40% ± 0.12
DDM 17.35 ± 4.28 160 81.77% ± 1.74
EDDM 13.09 ± 3.56 160 80.58% ± 0.89
ADWIN 2417.56 ± 89.81 1343.63 ± 69.07 83.28% ± 0.13

HDDMA-test 41.69 ± 6.54 168 83.30% ± 0.13
HDDMW-test 33.07 ± 5.69 160 83.27% ± 0.13

NB

FHDDM 35.71 ± 6.04 352 83.39% ± 0.09
DDM 17.65 ± 4.76 160 80.74% ± 3.52
EDDM 13.38 ± 3.81 160 80.53% ± 1.89
ADWIN 2715.83 ± 99.69 1349.26 ± 58.26 83.31% ± 0.09

HDDMA-test 43.64 ± 6.45 168 83.27% ± 0.11
HDDMW-test 36.89 ± 5.87 160 83.37% ± 0.09

5.2 Experiments on Real-World Datasets

Real-World Datasets – We considered the Airlines [26], Poker Hand [27]
and Electricity [28] datasets widely used in concept drift research [6,7,12,
13,18,19]. The preprocessed and normalized version of datasets are available at
MOA website1. The datasets are described below:

– Airlines: This dataset was created to be used as a non-stationary data stream
for evaluating learning algorithms [26]. It contains 539,383 records of flight
schedules defined by 7 attributes. The task is to predict if a flight is delayed
or not. Concept drift could appear as the result of changes in the flights
schedules, e.g. changes in day, time, and the length of flights.

– Poker Hand: It comprises 1,000,000 instances with 11 attributes. Each
instance is an example of a hand consisting of five playing cards drawn from a
standard deck of 52. Each card is described by two attributes (suit and rank),
for ten predictive attributes. The class predicts the poker hand. Concept drift
happens as changing the card at hand, i.e. the poker hand [4].

– Electricity: It has 45,312 instances, with 8 input attributes, recorded every
half an hour for a period of two years from Australian New South Wales
Electricity. The classification task is to predict a rise (Up) or a fall (Down)

1 http://moa.cms.waikato.ac.nz/datasets/.

http://moa.cms.waikato.ac.nz/datasets/
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Table 3. Results of experiments on Circles dataset (10 % Noise)

(a) Drift Detection Delay, True Positive, False Positive and False Negative

Classifier Detector Delay TP FP FN

HT

FHDDM 94.14 ± 28.05 3.0 0.04 ± 0.20 0.0
DDM 604.7 ± 118.48 2.26 ± 0.8 1.74 ± 1.58 0.74 ± 0.8
EDDM 981.60 ± 62.64 0.11 ± 0.31 22.75 ± 10.83 2.89 ± 0.31
ADWIN 249.45 ± 159.06 2.58 ± 0.55 17.9 ± 5.66 0.42 ± 0.55

HDDMA-test 123.57 ± 72.89 2.95 ± 0.22 0.48 ± 0.77 0.05 ± 0.22
HDDMW-test 101.84 ± 70.79 2.96 ± 0.2 0.54 ± 0.75 0.04 ± 0.20

NB

FHDDM 270.98 ± 125.98 2.83 ± 0.38 0.20 ± 0.40 0.17 ± 0.38
DDM 830.15 ± 139.60 1.35 ± 0.90 2.50 ± 1.58 1.65 ± 0.90
EDDM 949.50 ± 96.80 0.32 ± 0.51 34.84 ± 19.30 2.68 ± 0.51
ADWIN 225.25 ± 56.39 3.0 17.84 ± 5.28 0.0

HDDMA-test 494.95 ± 155.27 2.63 ± 0.52 0.68 ± 0.68 0.37 ± 0.52
HDDMW-test 316.24 ± 149.4 2.68 ± 0.51 1.21 ± 1.06 0.32 ± 0.51

(b) Drift Detection Runtime and Memory Usage, and Classification Accuracy

Classifier Detector Runtime (ms) Memory (bytes) Accuracy

HT

FHDDM 64.38 ± 6.97 952 86.66% ± 0.14
DDM 16.76 ± 4.39 160 85.84% ± 0.81
EDDM 11.92 ± 3.57 160 84.96% ± 0.27
ADWIN 2690.09 ± 129.28 1716.69 ± 106.23 86.04% ± 0.23

HDDMA-test 43.85 ± 6.83 168 86.60% ± 0.19
HDDMW-test 35.67 ± 5.73 160 86.58% ± 0.17

NB

FHDDM 64.54 ± 7.56 952 84.31% ± 0.14
DDM 16.66 ± 0.90 160 82.73% ± 1.57
EDDM 13.25 ± 3.60 160 83.30% ± 0.40
ADWIN 2818.84 ± 41.55 1777.86 ± 77.53 84.31% ± 0.12

HDDMA-test 42.43 ± 6.57 168 84.24% ± 0.14
HDDMW-test 35.81 ± 5.67 160 84.27% ± 0.16

in the electricity price. The concept drift may happen because of changes in
consumption habits, unexpected events and seasonality [29].

Experiments – The ground truth for drifts is not available for the real-world
datasets. This implies that we do not know whether drifts occur in these datasets
or where they occur [6,7]. We, therefore, cannot measure the detection delay,
true positive, false positive, and false negative numbers of drift detectors in
this section. We only evaluate the number of drifts detected and the accuracy
of classification. All classifiers and drift detectors were run with the default
parameters. For FHDDM, we only present the results obtained by the sliding
window size of 25 because we usually obtained better classification accuracies
with size 25 on the real-world datasets in our preliminary experiments, though
the margins of differences were small.

Tables 4, 5 and 6 summarize the results of experiments on the aforementioned
datasets. The accuracy of classification has improved by using drift detectors.
The classification accuracy with FHDDM is among the highest ones. It also
detects less drifts compared to ADWIN, HDDMA−test and HDDMW−test while
their classification accuracies are similar. As argued in [7], there are two possi-
ble cases if a drift detector detects less number of drifts compared to the other
drift detectors while they all lead to similar classification accuracies: (1) That
drift detector caused less false positive compared to others, or (2) Not detected
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Table 4. The results of experiments on Airlines dataset

Classifier Detector Runtime (ms) Memory (bytes) Num. Drifts Accuracy

HT

FHDDM 118.05 ± 12.04 352 339 65.66%
DDM 49.75 ± 9.87 160 14 65.29%
EDDM 41.60 ± 8.37 160 54 65.06%
ADWIN 13439.70 ± 96.48 1879.23 341 65.25%

HDDMA-test 146.45 ± 12.08 168 88 64.99%
HDDMW-test 107.55 ± 10.67 160 652 65.02%
No Detection — — — 65.07%

NB

FHDDM 114.15 ± 7.93 352 297 66.44%
DDM 48.65 ± 6.13 160 13 65.33%
EDDM 39.55 ± 7.17 160 23 65.18%
ADWIN 13034.20 ± 77.13 1896.08 300 66.79%

HDDMA-test 139.80 ± 13.34 168 72 67.22%
HDDMW-test 86.70 ± 9.63 160 620 65.34%
No Detection — — — 64.55%

Table 5. The results of experiments on Poker Hand dataset

Classifier Detector Runtime (ms) Memory (bytes) Num. Drifts Accuracy

HT

FHDDM 173.85 ± 16.54 352 1557 76.45%
DDM 62.00 ± 7.78 160 1046 72.74%
EDDM 56.50 ± 7.05 160 4806 77.30%
ADWIN 12725.25 ± 108.71 1464.42 2373 74.56%

HDDMA-test 200.10 ± 8.81 168 2565 76.40%
HDDMW-test 147.65 ± 12.84 160 2211 77.11%
No Detection — — — 76.07%

NB

FHDDM 166.60 ± 12.60 352 1660 76.30%
DDM 69.05 ± 7.53 160 433 61.97%
EDDM 56.60 ± 8.43 160 4863 77.48%
ADWIN 12650.00 ± 248.42 1453.93 2453 74.60%

HDDMA-test 195.85 ± 13.74 168 2615 76.48%
HDDMW-test 125.55 ± 13.26 160 2312 77.11%
No Detection — — — 59.55%

Table 6. The results of experiments on Electricity dataset

Classifier Detector Runtime (ms) Memory (bytes) Num. Drifts Accuracy

HT

FHDDM 22.70 ± 4.31 352 77 84.38%
DDM 15.70 ± 4.79 160 169 84.41%
EDDM 10.40 ± 3.37 160 191 84.91%
ADWIN 738.05 ± 23.28 1468.29 110 83.40%

HDDMA-test 28.05 ± 6.67 168 210 85.71%
HDDMW-test 24.35 ± 4.66 160 117 85.06%
No Detection — — — 79.20%

NB

FHDDM 23.90 ± 4.17 352 96 82.69%
DDM 13.25 ± 4.90 160 143 81.18%
EDDM 8.60 ± 2.24 160 203 84.83%
ADWIN 691.85 ± 17.82 1408.25 128 81.63%

HDDMA-test 25.40 ± 5.23 168 211 84.92%
HDDMW-test 25.45 ± 5.84 160 132 84.09%
No Detection — — — 73.36%

drifts, i.e. false negatives, were less significant drifts. The second case implic-
itly says having less number of drifts detected leading to lower classification
accuracy suggests significant false negatives. Therefore, based on these argu-
ments, it is more likely that FHDDM caused fewer false positives. Its detection
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runtime is also comparable with HDDMA−test’s and HDDMW−test’s. In all cases,
FHDDM resulted in shorter detection runtimes, less memory occupations and
higher classification accuracies compared to ADWIN.

6 Conclusion and Future Work

Adapting classification learners is essential when they are used to learn from
data in evolving environments. In this paper, we introduced a new concept drift
detection method, so-called FHDDM, that uses the Hoeffding’s inequality. The
method works based on the fact that the accuracy of a classifier should increase
or stay steady as more instances arrive; otherwise it implies the existence of drift
points in the stream. FHDDM slides a window with a size of n on the stream
and measures the p1t , i.e. the probability of correct classification predictions
in the most recent n instances at time t. It updates the value of p1max that
holds the maximum probability of correct predictions seen so far. A significant
difference, bounded by Hoeffding’s inequality, between p1t and p1max suggests a
drift. In addition, we introduced an approach to count true positive, false positive
and false negative of drift detectors by considering their delay of detection for
evolving data streams.

We experimentally evaluated our method on the synthetic and real-world
datasets. Experiments on the synthetic datasets indicated that FHDDM detects
drifts with a shorter delay, leading to the highest true positive, the lowest false
positive and the lowest false negative, when compared to the state-of-the-art.
When considering real-world datasets, the classification accuracies of our method
were consistently high.

In the future, we will investigate the performance of our FHDDM approach on
imbalanced and highly noisy data streams as well as streams containing outliers.
We will also consider implementing an adaptable window size, as based on the
trends of prediction results. In addition, we plan to study the sensitivity of
FHDDM’s parameters, i.e. size of sliding window and confidence level, along
with other drift detectors’ and consider their performances in different domains.
It would also be worthwhile to compare FHDDM with other drift detectors,
as proposed in [14,24], amongst others. Finally, we intend to use our proposed
method in anomaly detection and business intelligence applications.
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Abstract. Service providers typically collect user data for profiling
users in order to provide high-quality services, yet this brings up user
privacy concerns. One hand, service providers oftentimes need to analyze
multiple user data attributes that usually have different privacy concern
levels. On the other hand, users often pose different trusts towards differ-
ent service providers based on their reputation. However, it is unrealistic
to repeatedly ask users to specify privacy levels for each data attribute
towards each service provider. To solve this problem, we develop the first
lightweight and provably framework that not only guarantees differen-
tial privacy on both service provider and different data attributes but
also allows configurable utility functions based on service needs. Using
various large-scale real-world datasets, our solution helps to significantly
improve the utility up to 5 times with negligible computational overhead,
especially towards numerous low reputed service providers in practice.

Keywords: Differential privacy · Multi-level privacy · Optimization

1 Introduction

The last few decades have witnessed a variety of personalized services to users,
such as intelligent assistant, targeted advertising and so on, which has become
key business drivers for many companies. As one can understand, such services
are based on user’s data and oftentimes require substantial user data in order
to provide high-quality services. However, consumer fears over privacy continue
to escalate due to the release of users’ private data. Based on Pew Research [1],
68 % consumers think that current laws are insufficient to protect their privacy
and demand tighter privacy laws; and 86 % of Internet users have taken proac-
tive steps to remove or mask their digital footprints. Responding to increasing
user privacy concerns, governments in US/EU are increasing regulations and
applying/enforcing existing regulations.

More importantly, in order to provide high quality services, service providers
usually profile users by analyzing multiple attributes of their private data. Recent
research has showed that various attributes of data are often associated with
different privacy concerns [13,24,26]. More importantly, Zhang et al. [26] revealed
that user’s perception of privacy concerns will dramatically decrease if providing
them fine-grained privacy controls for different attributes of data.
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 112–128, 2016.
DOI: 10.1007/978-3-319-46227-1 8
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Fig. 1. Data Perturbation with Multi-Level Privacy Controls under Untrusted Server

On the other hand, while traditionally users count on service providers to pro-
tect their data privacy, recent years have witnessed a variety of privacy breaches
through service providers when malicious attackers break into the cloud/server
and steal user data. Target, HomeDepot, and Anaheim health insurance com-
panies are among the largest hits. Huge number of sensitive user data is leaked
through servers. Additionally, the insiders of service providers are another source
of privacy threat. It would be ideal if users do not have to fully trust the service
providers to protect their data; and users can impose different privacy concerns
based on each service provider’s reputation according to recent research [15], i.e.,
trust Google more than aforementioned intruded service providers.

However, it is unrealistic to repeatedly ask ordinary users to specify privacy
levels for each attribute of data every time releasing to different service providers.
Therefore, it is critically desirable to develop technologies that not only allow
business intelligence but also preserve users’ privacy needs toward both different
data attributes and different service providers.

In this paper, we aim to develop the first lightweight and provably private
framework, under untrusted server settings, to automate users multi-level pri-
vacy controls for releasing the aggregates of attributes associated with their pri-
vate data to each service provider. As shown in Fig. 1, our adoption of untrusted
server setting, in which user data is perturbed and anonymized on their private
devices before releasing, enjoys a number of benefits as discussed in [23]. In the
meanwhile, these protections should be done to still provide different reasonable
utilities of perturbed data based on service needs. Our approach is developed to
provide a strong and provable privacy guarantee, differential privacy, which is
the current state-of-the-art paradigm for privacy-preserving data publishing.

Our contributions are summarized as follows:

– We formulate a novel Multi-Level User Privacy Perturbation (MultiUPP)
problem, which aims to release perturbed aggregates on user data attributes
that not only preserves both differential privacy towards a service provider
(overall privacy) and differential privacy on each data attribute (per-attribute
privacy), but also optimizes a specific utility function based on service needs.
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– We analyze the lower bound of overall privacy guarantee with optimal utility,
as well as the lower bounds of utility loss.

– We propose a novel Multi-Level Differential Privacy (MultiDP) mechanism
to understand the condition between utility loss and overall and per-attribute
privacy preservation. Using MultiDP mechanism, we develop a novel Differen-
tially Private Multi-Level User Privacy Perturbation (DP-MultiUPP) frame-
work which allows to plug in different utility objectives. We prove theoretical
guarantee on privacy, utility and time complexity.

– We conduct extensive experiments on various large-scale real-world datasets.
Our solution is shown to outperform the state-of-the-art approach up to 5
times with negligible computational overhead on both PC and Android smart-
phones. Particularly, the utility is significantly improved toward low reputed
service providers in practice.

The rest of paper is organized as follows: Sect. 2 presents notations, prelimi-
naries and problem definition. Section 3 provides the lower bounds of utility loss
and overall privacy budget. Section 4 develops the DP-MultiUPP framework via
a novel Multi-Level Differential Privacy Mechanism. Experimental results and
related work are presented in Sects. 5 and 6. Finally, Sect. 7 concludes the whole
paper and discusses future work.

2 Preliminaries and Problem Definition

In this section, we first introduce notations and restate the definition and exist-
ing mechanism of differential privacy. Then, we define a novel Multi-Level User
Privacy Perturbation (MultiUPP) problem definition, along with its challenges.

2.1 Notations

Let I be the public set/universe of items of size |I| = n. A user’s raw private
data is denoted as a vector dr of dimension n. The ith entry in dr is either 1
or 0, meaning that item i does or does not belong to user’s private/raw history
data. Public attribute set is defined as A of size |A| = m, in which each item
is associated with a subset of attributes represented by a public item-attribute
matrix A of dimension n × m. The entry aij in A is the value that item i has
for attribute j. For the attributes in A, we define their private aggregate vectors
to be ar such that ar = AT dr. The published perturbed attribute histogram
is presented as a vector ap (details in utility objectives of problem definition in
Sect. 2.3).

This user’s multi-level privacy concern on different attributes is denoted as a
vector t = (t1, . . . , tm), in which the jth entry tj > 0 means the privacy budget
of attribute j. This user’s overall privacy concern towards the service provider
is defined as ε > 0. A smaller tj or ε means a higher privacy concern (a stronger
privacy guarantee) on attribute j or towards the service provider. (Note that all
tj and ε correspond to the privacy budget in differential privacy notion, defined
in the next subsection.) For reference, we list all notations in Table 1.
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Table 1. Notations

Symbol Description

I public item set/universe of size |I| = n

A public attribute set of size |A| = m

A public item-attribute matrix A ∈ {0, 1}n×m

dr user private item vector dr ∈ {0, 1}n

ar user private attribute aggregate vector ar ∈ R
∗m

(R∗: non-negative real numbers)

ap user perturbed attribute aggregate vector ap ∈ R
m

t user per-attribute privacy budget vector t ∈ R
+m

(R+: positive real
numbers)

ε user overall privacy budget towards service provider

2.2 Differential Privacy

Differential privacy [9] is a recent privacy model which provides strong privacy
guarantee. Informally, an algorithm A is differentially private if the output is
insensitive to any particular record in the dataset.

Definition 1 (ε-Differential Privacy). Let ε > 0 be a small constant. A ran-
domized function A is ε-differentially private if for all data sets D1 and D2

differing on at most one element, i.e., d(D1,D2) = 1, and all S ⊆ Range(A),

Pr[A(D1) ∈ S] ≤ exp(ε)Pr[A(D2) ∈ S] (1)

The probability is taken over the coin tosses of A.

The parameter ε > 0 is referred to as privacy budget, which allows us to
control the level of privacy. A smaller ε suggests more limit posed on the influence
of an individual item, which gives stronger privacy guarantee. Differential privacy
enjoys the following important composition property:

Lemma 1 (Composition Property [8]). If an algorithm A runs t ran-
domized algorithms A1,A2, . . . ,At, each of which is ti-differentially private,
and applies an arbitrary randomized algorithm φ to their results (A(D) =
φ(A1(D), . . . ,At(D))), then A is

∑
i ti-differentially private.

One of the most widely used mechanisms to achieve ε-differential privacy is
Laplace mechanism [9] (Theorem 1). Laplace mechanism adds random noises to
the numeric output of a query, in which the magnitude of noises follows Laplace
distribution with variance Δf

ε where Δf represents the global sensitivity of query
f (Definition 2).
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Definition 2 (Global Sensitivity [9]). For a query f : D → R
k, the global

sensitivity Δf of f is as follows:

Δf = max
d(D1,D2)=1

‖f(D1) − f(D2)‖1 (2)

for all D1,D2 differing in one element, i.e., d(D1,D2) = 1.

Theorem 1 (Laplace Mechanism [9]). For f : D → R
k, a randomized algo-

rithm Af = f(D) + Lapk(Δf
ε ) is ε-differentially private.

The Laplace distribution with parameter β, denoted Lap(β), has probabil-
ity density function 1

2β exp(− |z|
β ) and cumulative distribution function 1

2 (1 +

sgn(z)(1 − exp(− |z|
β ))).

2.3 MultiUPP Problem Definition

The goal of Multi-Level User Privacy Perturbation (MultiUPP) problem is
to publish an accurate histogram that summaries the distribution of data
attributes, which is sufficient to provide user high-quality services (e.g., per-
sonalized advertising, recommendation) in most cases [22]. In the meanwhile,
MultiUPP also preserves both overall privacy toward a specific service provider
and different privacy needs for different data attributes. More importantly, our
MultiUPP problem is considered as a general framework which can be coupled
with different utility objectives. Next, we specify the MultiUPP problem and its
associated privacy and utility objectives respectively.

Formal Definition: Given a user’s private item vector dr associated with pub-
lic universal item set I and a public item-attribute matrix A; and this user’s
attribute-based privacy budget vector t as well as his overall privacy budget ε
towards a service provider. MultiUPP outputs this user’s perturbed attribute
aggregates ap to satisfy the following privacy and utility objectives:

Privacy Objectives of MultiUPP: We consider two privacy objectives aiming
to defend against privacy leakage via public attribute information.

P1. Overall Differential Privacy Objective towards a service provider: satisfy
ε-differential privacy on published histogram on all attributes with the presence
or absence of an individual item in I. Each service provider is associated with
an overall privacy budget ε based on its reputation, i.e., a smaller ε for a lower
reputed service provider.

P2. Per-attribute Differential Privacy Objectives with Multiple Levels: satisfy
tj-differential privacy on published histogram on each attribute j with the pres-
ence or absence of an individual item in I. Each attribute j of data is associated
with a privacy budget tj based on each user’s privacy concern on this attribute.
For example, if a user considers location more private than price (attribute 1
and 2 of an item), this user will set t1 < t2.

Utility Objectives of MultiUPP: We consider publishing the histogram in
which the number of bins equals to the number of attributes and the count in each
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bin j is perturbed summation of attribute values w.r.t. items in user’s history.
The published histogram is denoted as ap as in Table 1. Following the convention
in [25,27], we measure the accuracy (or utility) of a perturbed histogram in terms
of the following two utility loss functions between raw and perturbed attribute
aggregates ar and ap (denoted as U):

U1. Expected Mean Absolute Error (MAE): UMAE = E
[

1
m‖ap − ar‖1

]

U2. Expected Mean Square Error (MSE): UMSE = E
[

1
m‖ap − ar‖22

]

In addition, we also consider the following third utility regarding per-
attribute utility with multi-level privacy controls, for measuring the utility loss
over the best utility on the aggregate of each attribute:

U3. Expected Mean Absolute Error Loss (MAEL): UMAEL = E
[

1
m

∑m
j=1

|ap
j −ar

j |
BUj

]
− 1, where BUj stands for the best expected utility of attribute j.

More specifically, BUj = Δfj

tj
indicating the expectation of optimal Laplace

noise Lap
(

Δfj

tj

)
for each query function fj : (Z+)n → R [12].

Remarks: According to user study results in [24], what users most prefer is to
control their different privacy concerns on limited number of relatively coarse-
grained data attributes. Thus, we assume that the number of attributes m is
bounded by a constant.

Challenges: (1) An item is usually associated with a number of attributes
while each attribute has a different privacy concern level. How can we perturb
the data to optimize the utility when satisfying all privacy guarantees? (2) When
ε <

∑
tj , the existing composition approach [8] is no longer feasible. In this case,

what are the lower bounds of optimal utilities? What is the lower bound of ε
with such optimal utilities? (3) When overall privacy budget ε is smaller than
the above lower bound, how can we optimize the utility loss?

3 Lower Bounds

In this section, we focus on the queries fj : (Z+)n → R in line with the aggregate
(counting) of each attribute in MultiUPP problem definition. We first discuss the
lower bound of overall privacy budget ε when optimal utilities are achieved, fol-
lowed by the detailed lower bounds of the utility loss functions (optimal utilities)
described in our problem.

3.1 Lower Bound of Overall Privacy Budget ε

We first understand the turning point when all utilities for each attribute aggre-
gate are optimized while both overall and per-attribute privacy guarantees are
satisfied. That is, we study a lower bound of ε on the public domain (item
set/universe I), as shown in the following Theorem 2:
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Theorem 2 (Lower Bound of ε). For a set of queries f1, . . . , fm in which
each fj : (Z+)n → R is associated with its global sensitivity Δfj and a privacy
budget tj > 0. If tj-differential privacy is satisfied for each query with optimal
utility, the overall privacy guarantee ε for all queries is lower bounded as follows:

ε ≥ max
d(D1,D2)=1

{ m∑
j=1

tj
Δfj

|fj(D1) − fj(D2)|
}

(3)

where d(D1,D2) = 1 stands for two neighboring datasets D1,D2.

Proof. According to the result by Hardt et al. [12], the optimal utility for an arbi-
trary query function f (Z+)n → R is Ω(Δf/ε), which can be obtained by Laplace
mechanism. Consider two arbitrary neighboring datasets D1,D2 (d(D1,D2) = 1)
and any s = (s1, . . . , sm) ∈ Range(AN ) when every jth element is obtained by
adding noise Lap(Δfj

tj
) to aggregate of attribute j, in which AN is the naive

randomized algorithm where each AN
j is Lap(Δfj

tj
)):

Pr[AN (D1) = s]
Pr[AN (D2) = s]

=
m∏

j=1

Pr[AN
j (D1)j = sj ]

Pr[AN
j (D2)j = sj ]

=
m∏

j=1

exp(−|fj(D1) − sj | tj

Δfj
)

exp(−|fj(D2) − sj | tj

Δfj
)

≥
m∏

j=1

exp
(

− tj
Δfj

|fj(D1) − fj(D2)|
)

= exp
( m∑

j=1

− tj
Δfj

|fj(D1) − fj(D2)|
)

Therefore, proof is complete.

3.2 Lower Bounds of Utility Loss

We next study the lower bounds of optimal utility loss when the privacy objec-
tives are satisfied. These lower bounds will also be used as baseline for experi-
mental evaluation in Sect. 5.

Theorem 3 (Lower Bounds of Utility Loss). If tj-differential privacy is
satisfied for each query and ε satisfies the lower bound in (3), the lower bounds
of utilities defined in Sect. 2.3 are as follows:

UMAE ≥ 1
m

m∑
j=1

Cj

tj
; UMSE ≥ 2

m

m∑
j=1

C2
j

t2j
; UMAEL ≥ 0

where Cj = max1≤i≤n{aij}.
Proof. As the optimal utility is obtained by Laplace mechanism in our case
[12], we prove the above lower bounds based on the properties of Laplace dis-
tribution. Let Xj be the random variable following distribution Lap(Δfj

tj
), we
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have E[|Xj |] = Δfj

tj
,Var[Xj ] = 2

(
Δfj

tj

)2

. Moreover, Δfj = Cj = max1≤i≤n{aij}
based on the definition of global sensitivity.

UMAE = E
[ 1
m

‖ap − ar‖1
]

≥ 1
m

m∑
j=1

E[|Xj |] =
1
m

m∑
j=1

Cj

tj

UMSE = E
[ 1
m

‖ap − ar‖22
]

≥ 1
m

m∑
j=1

Var[Xj ] =
2
m

m∑
j=1

C2
j

t2j

UMAEL(v) = E
[ 1
m

m∑
j=1

|ap
j − ar

j |
BUj

]
− 1 ≥ 1

m

m∑
j=1

E
[ |Xj |

Δfj

tj

]
− 1 = 0

4 DP-MultiUPP Framework

In this section, we develop a novel Differentially-Private Multi-Level User Pri-
vacy Perturbation (DP-MultiUPP) framework to optimize the utility, especially
when the condition (3) does not hold for ε. Specifically, we first introduce a novel
differential privacy mechanism, called Multi-Level Differential Privacy (Mul-
tiDP) Mechanism, for trading off the utility loss and privacy guarantees. We
then apply MultiDP mechanism to develop the DP-MultiUPP framework, with
the provable privacy and utility guarantees and linear time complexity.

4.1 Multi-level Differential Privacy Mechanism

In this subsection, we focus on the case that ε is smaller than the lower bound in
Theorem 2, i.e., the optimal utility cannot be achieved. In this case, we propose a
novel mechanism, called Multi-Level Differential Privacy (MultiDP) Mechanism,
to optimize the utility loss while preserving both per-attribute tj-DP and overall
ε-DP. In this mechanism, our goal is to find the condition for automating per-
attribute privacy budgets t′j (a reflection of the utility loss without violating
per-attribute tj-differential privacy) and overall ε-differential privacy guarantee.

As the determination of optimal privacy budgets t′j is dependent on public
domain, we consider the following MultiDP condition:

Definition 3 (MultiDP Condition). For a set of queries f1, . . . , fm in which
each fj : (Z+)n → R is associated with its global sensitivity Δfj. The set of
non-negative numbers t′1, . . . , t

′
m satisfies MultiDP condition if the following two

conditions hold:
0 ≤ t′j ≤ tj ,∀1 ≤ j ≤ m (4)

max
d(D1,D2)=1

{ m∑
j=1

t′j
Δfj

|fj(D1) − fj(D2)|
}

≤ ε (5)
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Algorithm 1. DP-MultiUPP Algorithm

Input : user private data dr, public item-attribute matrix A, per-attribute
privacy budgets tj , overall privacy budget ε

Output: perturbed attribute aggregates ap

1 ar ← ATdr;

2 Solve (6) with vTvr ≥ I using [18];
3 v ← reciprocal of each entry in vr;
4 foreach j = 1, . . . , m do
5 ap

j = ar
j + Lap(vj);

6 return ap;

Theorem 4 (MultiDP Mechanism). Given a set of non-negative numbers
t1, . . . , tm, and t′1, . . . , t

′
m satisfying MultiDP condition in Definition 3. For a

set of queries f1, . . . , fm in which each fj : (Z+)n → R is associated with its
global sensitivity Δfj, a randomized algorithm AMultiDP that adds independently

generated noise Lap
(

Δfj

t′
j

)
to each query fj enjoys tj-differential privacy for each

query fj and overall ε-differential privacy for all queries f1, . . . , fm.

Proof. First, it is trivial to prove that AMultiDP achieves tj-differential privacy
for each query since t′j ≤ tj always holds for each query j.

Next, we focus on the proof of overall differential privacy for all queries.
Let D1,D2 be any two neighboring datasets, i.e., d(D1,D2) = 1. For any s =
(s1, . . . , sm) ∈ Range(AMultiDP),

Pr[AMultiDP(D1) = s]
Pr[AMultiDP(D2) = s]

≥
m∏

j=1

exp
(

− t′j
Δfj

|fj(D1) − fj(D2)|
)

≥ exp(−ε)

The first step holds due to the independent Laplace noises on each attribute
aggregate and triangle inequality; and the last step holds from the MultiDP
condition in Definition 3.

The advantage of our proposed lower bound and multi-level mechanism, over
the composition approach in [8], is that we take into account the correlation
between queries. Therefore, our approach not only provides a much better ε
lower bound but also helps to dramatically reduce the utility loss.

4.2 DP-MultiUPP Framework

Applying our proposed MultiDP mechanism, DP-MultiUPP framework aims to
automate per-attribute privacy budgets t′1, . . . , t

′
m based on the overall privacy

levels/budgets ε towards the service provider.
The rest of this subsection consists of notion definition, detailed DP-

MultiUPP framework, and theoretical privacy, utility and time complexity
analysis.
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Notations. We define two notations:
(1) the noise standard deviation reciprocal vector vr = ( t′

1
Δf1

, . . . ,
t′
m

Δfm
),

where the jth entry is proportional to the reciprocal of standard deviation of
injected Laplace noise on attribute j; and the noise standard deviation vector
v = (Δf1

t′
1

, . . . , Δfm

t′
m

), where the jth entry is the reciprocal of corresponding jth

entry in vr, i.e., proportional to the standard deviation of injected Laplace noises.
The dimension of v,vr is given by the number of attributes m.

(2) the global sensitivity diagonal matrix GS = diag(Δf1, . . . ,Δfm), where
the jth entry is the global sensitivity of query fj (aggregate of attribute j).

DP-MultiUPP Algorithm. The goal is to achieve optimal noise magnitude
v. To do so, we first formulate the mathematical programming as follows:

minimize U(v)
subject to Avr ≤ ε1n,vr ≤ GS−1t,vr ≥ 0

(6)

where we optimize the utility function U defined in MultiUPP problem. Specifi-
cally, U takes noise standard deviation vector v as input, denoted as U(v). The
three constraints imposes the MultiDP condition, which is sufficient to guaran-
tee both tj-differential privacy and ε-differential privacy as shown in MultiDP
mechanism. As (6) is not convex in general with an implicit constraint vT vr = I,
we treat v,vr as two vector variables and add one more constraint vT vr ≥ I.
The tweaked formulation has convex property. Algorithm1 describes the DP-
MultiUPP algorithm.

Formulation of Various Utilities for DP-MultiUPP Algorithm: Consider ran-
dom variables Xj ∼ Lap(Δfj

t′
j

) on each attribute j. We specify utility functions
U(v) for three utility objectives discussed in Sect. 2.3.

• UMAE: Expected Mean Absolute Error.

UMAE(v) ∝ E
[
‖ap − ar‖1

]
=

m∑
j=1

E[|Xj |] =
m∑

j=1

vj = ‖v‖1

• UMSE: Expected Mean Square Error.

UMSE(v) ∝ E
[
‖ap − ar‖22

]
=

m∑
j=1

Var[Xj ] ∝
m∑

j=1

v2
j = ‖v‖22

• UMAEL: Expected Mean Absolute Error Loss.

UMAEL(v) ∝ E
[ m∑

j=1

|ap
j − ar

j |
BUj

]
− 1 �

m∑
j=1

vj

BUj
= BUrvT − 1

where BUr = ( t1
Δf1

, . . . , tm

Δfm
) stands for the reciprocal of standard deviation of

injected noise with respect to each given privacy budget tj . That is, BUr
j = 1

BUj
.
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Theoretical Analysis. We provide privacy and utility analysis, as well as time
complexity analysis.

Privacy analysis: DP-MultiUPP framework enjoys tj-differential privacy
for each attribute aggregate and overall ε-differential privacy for all attribute
aggregates. The proof follows directly from the multi-level differential privacy
mechanism proposed in Sect. 4.1.

Utility analysis: DP-MultiUPP framework ensures the utilities upper bounded
by the following:

UMAE ≤ 1
m

m∑
j=1

Cj

t′j
; UMSE ≥ 2

m

m∑
j=1

C2
j

t′2j
; UMAEL ≥ tj

t′j
− 1

where t′j = tjε/maxd(D1,D2)=1

{∑m
j=1

tj

Δfj
|fj(D1) − fj(D2)|

}
when ε is smaller

than lower bound in (3). This is because the equal loss of each attribute leads
to feasible solution regardless of the selected utility function. In the experiment,
we treat this as baseline and show that the performance of our DP-MultiPP
framework is much better in practice. In addition, when overall privacy budget ε
is larger than lower bound in Theorem2, DP-MultiUPP automatically achieves
the lower bounds of utility losses in Theorem3.

Time complexity analysis: DP-MultiUPP framework has O(n) time com-
plexity. This is exactly obtained from the analysis in [18] since the number of
attributes is assumed to be bounded by a constant in this paper. Also, steps 3
and 4–5 both take O(m) time.

5 Experimental Evaluation

In this section, we evaluate the performance of our proposed DP-MultiUPP
framework. We conduct our experiments extensively on a variety of real-world
datasets. We first use different metrics to measure the performance of the utility
of all perturbed attribute aggregates as well as each attribute aggregate. Then,
we report the scalability of DP-MultiUPP framework on both personal computer
with 1.9 GHz CPU and 8 GB RAM, and Android Phone Galaxy S5.

5.1 Datasets, Settings, Metrics and Competitors

Datasets: We use three real world datasets.
MovieLens1: a movie rating dataset collected by the GroupLens Research

Project at the University of Minnesota through the website movielens.umn.edu
during the 7-month period from September 19th, 1997 through April 22nd, 1998.
The number of attributes is 19. We use the MovieLens-1M, with 1,000,209 ratings
from 6,040 users on 3,883 movies.

1 http://grouplens.org/datasets/movielens.

http://grouplens.org/datasets/movielens
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Yelp2: a business rating data provided by RecSys Challenge 2013, in which
Yelp reviews, businesses and users are collected at Phoenix, AZ metropolitan
area. The number of attributes is 21. We use all reviews in training dataset,
with 229,907 reviews from 43,873 users on 11,537 businesses.

MSNBC 3: an anonymous web dataset collected by the UCI Machine Learning
Repository through the msnbc.com domain during a 24-hour period on Septem-
ber 28, 1999. We consider types of websites as their attributes and the number of
attributes is 17. We use the whole dataset, with 4,698,794 reviews from 989,818
users on these 17 attributes of websites.

Settings: We consider a fixed sum of per-attribute privacy budgets, i.e.,
∑

tj =
1, and randomly select a privacy budget tj for each attribute to satisfy this
summation. We test different overall privacy budget ε from 0.05 to 0.4. We run
each experiment 10 times and report the average result.

We test our proposed DP-MultiUPP framework by incorporating it with
different utility functions in Sect. 2.3, denoted as DP-MultiUPP (MAE), DP-
MultiUPP (MSE) and DP-MultiUPP (MAEL).

Metrics: We measure the performance of our DP-MultiUPP framework on util-
ities of both all attribute aggregates and each attribute aggregate, referred to as
Overall Utilities and Per-attribute Utilities.

Overall Utilities. We use the expected Mean Absolute Error (MAE) and the
expected Mean Square Error (MSE) in Sect. 2.3.

Per-attribute Utilities. We first use expected the Mean Absolute Error
Loss (MAEL) in Sect. 2.3. In addition, we also consider another metric, KL-
Divergence on injected per-attribute noise variance over optimal per-attribute
noise variance, to measure the difference between the variance of injected Laplace
noise using the optimized t′j and that using a given tj . Specifically, it can be writ-

ten as DKL =
∑m

j=1
(Δfj/tj)

2
∑

j(Δfj/tj)2
log

( (Δfj/tj)2
∑

j(Δfj/tj)2

(Δfj/t′
j
)2

∑
j(Δfj/t′

j
)2

)
.

Competitors: We consider a baseline algorithm based on the state-of-the-art
composition algorithm in Lemma 1 and our proposed lower bound of ε in The-
orem 2. In detail, this baseline algorithm first scans all items and determines
if the overall privacy budget ε is smaller than its lower bound given by per-
attribute privacy budgets tj . In this case, the utility obtained by this base-
line approach is exactly the lower bound of utility loss in Sect. 3.2. If not,
we simply inject Lap(Δfj

tj
) noises to the aggregate of each attribute j. Other-

wise, we adjust each per-attribute privacy budget tj to t′j = tj/r where ratio

r = maxd(D1,D2)=1

{∑m
j=1

tj

Δfj
|fj(D1) − fj(D2)|

}
/ε. Then, we inject Lap(Δfj

t′
j

)
into each attribute aggregate and it is not hard to see that this also satisfies
overall ε-differential privacy.

2 https://www.kaggle.com/c/yelp-recsys-2013/data.
3 https://archive.ics.uci.edu/ml/datasets/MSNBC.com+Anonymous+Web+Data.

https://www.kaggle.com/c/yelp-recsys-2013/data
https://archive.ics.uci.edu/ml/datasets/MSNBC.com+Anonymous+Web+Data
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Fig. 2. Overall Utility Results (Left to Right: MovieLens, Yelp, MSNBC)

5.2 Utility Results

Overall Utility Results: Figure 2 reports the performance of DP-MultiUPP
on overall utility results. As one can see, DP-MultiUPP consistently outper-
forms baseline algorithm regardless of its associated utility function. When ε is
small (ε = 0.05), DP-MultiUPP improves the performance up to 5 times out
of the baseline approach. When ε is larger than the lower bound in Theorem2,
DP-MultiUPP continuously returns the optimal utility automatically due to its
optimized utility objective.

Fig. 3. Per-attribute Utility Results (Left to Right: MovieLens, Yelp, MSNBC)
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Fig. 4. Running Time of DP-MultiUPP (Left to Right: MovieLens, Yelp, MSNBC)

It is interesting to see that DP-MultiUPP with MSE utility function most of
the time has best performance, especially in MSNBC dataset. This is because
the variance of the injected noises can better capture all these utility losses. This
provides us with an insight regarding how to select a better utility function.

More importantly, the smaller the overall privacy budget ε (w.r.t. lower
reputed services) is, the bigger advantage DP-MultiUPP has over the baseline
algorithm. This makes DP-MultiUPP very practically useful since users need
stronger privacy guarantee especially for numerous low reputed service providers.

Per-attribute Utility Results: Figure 3 reports the performance of DP-
MultiUPP on per-attribute utility results. Figure 3(a) shows DP-MultiUPP
(MAEL) again improves the utility up to twice than using the baseline algo-
rithm. As one can see in Fig. 3(b), the KL-Divergence on injected per-attribute
noise variance over optimal per-attribute noise variance remains small in all
datasets. This is because the optimization of (6) evenly increases privacy levels
for each attribute while preserving the overall privacy level. Thus, user’s pre-
ferred privacy levels for each attribute are very well maintained.

Scalability: Figure 4 reports the averaged running time of all algorithms on
different datasets on both personal computer and Android Phone Galaxy S5.
As one can see, our DP-MultiUPP framework takes at most 0.5 s and 1 s on
PC and Android smartphone respectively and the running time almost remains
invariant with different overall privacy budgets. Overall, thanks to the linear
time complexity, DP-MultiUPP is very scalable on different client devices.

5.3 Case Study: Personalized Recommendation

We conduct an additional case study of personalized recommendation using
perturbed data obtained by our approach on MovieLens dataset, through
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collaborative filtering (SGD algorithm) in GraphLab4. In this case, we first san-
itize perturbed data dp based on the perturbed attribute aggregates using the
following mathematical programming: min 1

2‖AT dp − ap‖2 s.t. dp ∈ {0, 1}n.
Using ε = 0.1, the MAE loss between the recommendation results using user
private/raw and perturbed data against ground truth is shown only up to 8 %.

6 Related Work

Privacy Protection under Untrusted Server Settings: A traditional class of
approaches preserve privacy based on cryptography under untrusted server set-
ting [2,5,19]. Another orthogonal class of privacy protection approaches is based
on injecting noises. Polat et al. [20] developed randomized mechanisms to perturb
the data before releasing to untrusted service providers. However, their method
does not have provable privacy guarantees and was later identified to suffer from
inference attacks. A recent work by Shen et al. [23] introduced a differential
private data perturbation method on user’s client. Although this approach has
formal privacy and utility guarantee, it can only take one privacy budget and
treat every type of data with the same privacy concern.

Differential Privacy: Differential privacy [7,9] has become the de facto standard
for privacy preserving data analytics. Dwork et al. [9] established the guideline to
guarantee differential privacy for individual aggregate queries by calibrating the
Laplace noise to each query regarding the global sensitivity. Various works have
adopted this definition for publishing histograms [25], search logs [14], mining
data streams [6], and record linkage [4]. Later on, a noise mitigation mechanism
was proposed by Machanavajjhala et al. [17].

Histogram Release via Differential Privacy: The most basic approach is to add
noises of full contingency table of the whole dataset that suffers from exponen-
tial computational and space complexity. An improvement of this basic approach
was proposed by Dwork et al. [9] to add independently generated Laplace noise
to each k-way marginal table. Later on, Barak et al. [3] proposed the approach to
add noises in the Fourier domain and improve the expected squared error by 2k.
Li et al. [16] proposed the matrix mechanism for counting queries. However, it
still suffers from high computational complexity. In addition to these approaches,
there exist many other approaches such as [10,11,21]. Unfortunately, none of
these approaches provides an option for multi-level privacy concern configura-
tion.

Multi-level Differential Privacy Preservation: The state-of-the-art method is the
composition approach in [9] which preserves both per-attribute and overall differ-
ential privacy. However, it does not analyze when the achievement of all privacy
guarantees is feasible, and does not provide a utility optimization mechanism
when it is infeasible to achieve all privacy guarantees.

4 http://select.cs.cmu.edu/code/graphlab/pmf.html.

http://select.cs.cmu.edu/code/graphlab/pmf.html
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7 Conclusion and Future Work

In this paper, we develop the first lightweight framework via differential privacy
to automate multi-level privacy controls for releasing different attributes of data
to service providers of different reputations. We theoretically analyze privacy,
utility and time complexity. The experimental results show that our approach
outperforms state-of-the-art approach up to 5 times with high scalability on both
personal computer and smartphone. Particularly, our framework shows signifi-
cant advantage for stronger privacy guarantee towards numerous low reputed
service providers, making it very practically useful.

In the future work, we intend to extend our approach into more practi-
cal scenarios: (1) we will conduct more thorough experiments on personalized
recommendation case study; (2) when the correlation among user private data
attributes and the correlation among public attributes are similar, we will define
a new privacy notion and mechanism to tackle the decreased privacy guarantees;
(3) we will design a streaming mulit-level privacy preserving data publishing
approach to tackle continuously generated user private data.
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Abstract. The ubiquity of data streams has been encouraging the
development of new incremental and adaptive learning algorithms. Data
stream learners must be fast, memory-bounded, but mainly, tailored to
adapt to possible changes in the data distribution, a phenomenon named
concept drift. Recently, several works have shown the impact of a so far
nearly neglected type of drifcccct: feature drifts. Feature drifts occur
whenever a subset of features becomes, or ceases to be, relevant to the
learning task. In this paper we (i) provide insights into how the relevance
of features can be tracked as a stream progresses according to information
theoretical Symmetrical Uncertainty; and (ii) how it can be used to boost
two learning schemes: Naive Bayesian and k-Nearest Neighbor. Further-
more, we investigate the usage of these two new dynamically weighted
learners as prediction models in the leaves of the Hoeffding Adaptive
Tree classifier. Results show improvements in accuracy (an average of
10.69 % for k-Nearest Neighbor, 6.23 % for Naive Bayes and 4.42 % for
Hoeffding Adaptive Trees) in both synthetic and real-world datasets at
the expense of a bounded increase in both memory consumption and
processing time.

1 Introduction

Data streams are ubiquitous, potentially unbounded and generated at a very
fast pace. Examples of streaming data include, but are not limited, to: ATM
transactions, readings in mobile sensor networks, social networks posts and stock
trades. Motivated by these real world problems, data stream mining grew in
popularity and became a very active research field with new techniques proposed
every year aiming at learning from these sequences of data in an incremental, fast
and memory-bounded fashion. Many of these new developments in data stream
learning focus on the ephemeral characteristics of data streams, i.e. when the
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underlying data distribution shifts with time, a phenomenon named concept
drift [27].

More recently, studies [6,7] shed light onto a specific kind of drift which has
so far practically been neglected, the so-called feature drifts, sometimes referred
to as contextual concept drifts in seminal works [27]. In practice, a feature drift
occurs whenever a subset of features of a data stream becomes, or ceases to
be, relevant to the learning task. As surveyed in [7] and empirically analyzed in
[6], feature drifts pose challenges that are yet to be tackled by the data stream
mining community.

In this paper we propose a low complexity and memory-bounded solution to
track the relevance of features in streaming data accordingly to the information
theoretical Symmetrical Uncertainty. Additionally, we show how this metric can
be used to enhance prediction accuracy in k-Nearest Neighbor, Naive Bayes and
Hoeffding Adaptive Tree classifiers when they are applied feature drifting data
streams.

2 Learning from Data Streams

As times goes by, data acquisition and storage becomes cheaper and easier.
As a consequence, companies and individuals can generate and store data at
an increasing rate. Some of these data are generated sequentially and are so
massive that it would not be practical nor useful to store them all. For instance,
the data generated by a wearable gadget may only be meaningful for a small
period of time, such that the burden to store or transmit it may be unjustifiable.
These abundant sources of raw data may also be unintelligible to its possessors
and in these situations, data mining techniques are often employed to extract
meaningful patterns from apparent chaos. Currently, a lot of effort has been
directed towards mining data that is generated in a continuous stream, an area
that has been commonly known as data stream mining [2,10].

Generally, data stream mining combines almost all problems of conventional
batch learning (e.g. missing values, noisy data, outliers) with problems such as
instability of the underlying concept and restrictive resources constraints. Specif-
ically, data stream learners must (i) be able to process instances sequentially
according to their arrival, (ii) act within limited memory space and process-
ing time, (iii) deal with data instability (concept drifts); and (iv) be able to
generalize well as instances’ labels become available [17].

Ideally, algorithms for learning from data streams must include techniques
for dealing with all aforementioned problems. However, not all of them must be
addressed at once since it depends on the problem being tackled. For instance,
a given problem setting may exhibit concept drifts but not suffer from a lack of
labeled data or vice-versa.

2.1 Data Stream Classification

The most common (and widely explored) learning task in a data stream set-
ting is undoubtedly classification. Formally, given a set of possible class labels
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Y = {y1, . . . , yc} and a set of labeled training instances X =
{(x1, y1), . . . , (xn, yn)}, a classifier uses the training set to build a model
f : x → Y capable of predicting the class label of an unlabeled instance xi.
Precisely, each instance x is a d-dimensional feature vector belonging to a fea-
ture set D =

⋃d
i=1 {Di}, that is possibly categorical, ordinal, numeric or most

likely mixed.
Data stream (or online) classification is a variant of the traditional batch clas-

sification, and both are concerned with the problem of predicting class labels for
unlabeled instances. The main difference between the batch and the online set-
ting remains on how data are presented to the classifier. In a batch configuration
data are entirely accessible in a finite and static dataset, while streaming data
are presented sequentially over time [18] while f must be updated accordingly.

2.2 Concept Drift

Due to the inherent temporal aspect of data streams, their underlying data
distribution may change over time, directly influencing changes to the concept
to be learned, a phenomenon often referred as concept drift.

Let Eq. 1 denote a concept C, a set of prior probabilities of the classes and
class-conditional probability density function [22].

C =
⋃

yi∈Y

{(P [yi], P [x|yi])} (1)

Given a stream S, retrieved instances it will be generated by a concept Ct.
If during every instant ti of S we have Cti = Cti−1 , then the concept is stable.
Otherwise, if between any two timestamps ti and tj = ti + Δ (with Δ ≥ 1) it is
the case that Cti �= Ctj , then we have observed a concept drift [17].

3 Problem Statement

Most existing algorithms for data streams tackle the infinite length and drifting
concept characteristics. However, not much attention has been given to a specific
kind of drift: feature drifts. Conversely to conventional concept drifts, where
changes in the data distribution are claimed to occur inside the skewing of classes
in ranges of features’ values, feature drifts occur whenever a subset of features
becomes, or ceases to be, relevant to the concept to be learned.

Until this point, the term “relevance” was used without a proper definition. In
this paper we divide features in two types: relevant and irrelevant [7]. Assuming
Si = D \ {Di}, a feature Di is deemed relevant iff Eq. 2 holds.

∃S′
i ⊂ Si, such that P [Y |Di, S

′
i] �= P [Y |S′

i] (2)

Otherwise, the feature Di is said irrelevant. In practice, if a feature that is
statistically relevant is removed from a feature set, it will reduce overall predic-
tion power since (i) it is strongly correlated with the class; or (ii) it belongs to
a subset of features that is strongly correlated with the class [29].
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Changes in the relevant subset of features enforce the learning algorithm to
adapt its model to ignore the irrelevant attributes and to account for the newly
relevant ones [22]. Given a feature space D at a timestamp t, we are able to
select the ground-truth relevant subset D∗

t ⊆ D such that ∀Di ∈ D∗
t Eq. 2 holds

and ∀Dj ∈ D \ D∗
t the same definition does not. A feature drift occurs if, at any

two time instants ti and tj , D∗
ti �= D∗

tj holds.
Let r(Di, tj) ∈ {0, 1} denote a function which determines whether Eq. 2

holds for a feature Di in a timestamp tj of the stream. A positive relevance
(r(Di, ti) = 1) states that Di ∈ D∗ in a timestamp ti. A feature drift occurs
whenever the relevance of an attribute Di changes in a timespan between tj and
tk, as stated in Eq. 3.

∃tj∃tk, tj < tk, r(Di, tj) �= r(Di, tk) (3)

Changes in r(·, ·) directly affect the ground-truth decision boundary to be
learned by the learning algorithm. Therefore, feature drifts can be posed as a
specific type of concept drift that may occur with or without changes in the data
distribution P [x] [6,7]. We emphasize that feature drifts are indeed targeted by
the generic concept drift formalization, however, most existing works on con-
cept drift detection and adaptation assume that the relevant subset of features
remains the same and that drifts occur if certain values, or ranges of values, of
attributes have their class distribution re-skewed.

As pointed out in [6,7], feature drifts are likely to occur in a variety of
scenarios, but mainly in text stream scenarios, e.g. social media, SMS chats,
online social networks (Facebook, Twitter) and e-mail spam detection systems.

As in conventional concept drifts, changes in r(·, ·) may occur during the
stream. This enforces learning algorithms to detect changes in D∗, discerning
between features that became irrelevant and the ones that are now relevant
and vice-versa. In order to overcome feature drifts, a learner must either (i)
discard and derive an entirely new classification model that is consistent with
the relevant features; or (ii) adapt its current model to relevance drifts [22].

4 Dynamic Feature Weighting

Feature weighting is broadly used in batch learning [1,11] to assign different
weights to features according to their relevance to the concept to be learned and
to improve prediction accuracy. As shown earlier, in opposition to static sce-
narios, the relevance of features may increase or decrease during a data stream,
thus, techniques for tracking and quantifying the proportions of such changes
are needed.

The main hypothesis behind our proposals is that features can be dynamically
weighted in order to augment the importance of relevant features and dimin-
ish the importance of those which are deemed irrelevant according to observed
feature drifts. In this section we show how Symmetrical Uncertainty can be
swiftly computed along a sliding window based on Entropy computation. Later,
we introduce how Symmetrical Uncertainty can be applied into two distinct
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learning schemes to boost prediction accuracy on feature drifting data streams.
Finally, we detail the bounded computational overhead this proposal provides
in processing time and memory usage.

4.1 Preliminaries

The relevance of a feature can be computed in diverse ways. In this section we
discuss evaluation techniques for measuring the goodness of features for classi-
fication. Generally, a feature is good if it is relevant to predict the class. If one
adopts correlation to measure the goodness of a feature, a feature will be deemed
as relevant if its value surpasses a given threshold.

Several approaches exist to measure the correlation between two random
variables. One such approach use linear correlation and another one is based on
measures from information theory.

The most common formula for computing the correlation for a pair of vari-
ables (X,Y ) is the linear correlation coefficient, which can be computed as fol-
lows:

c(X,Y ) =

∑
q∈Di

∑
yi∈Y (q − D̄i)(yi − Ȳ )√∑

q∈Di
(q − D̄i)2

√∑
yi∈Y (yi − Ȳ )2

(4)

The linear correlation coefficient is bounded in the [−1; 1] interval. If X and Y
are completely correlated, c takes the value of 1 or −1; and if these variables are
completely uncorrelated, c is 0. Adopting linear correlation as a feature goodness
measure has the benefit of eliminating completely uncorrelated features. Also, if
data are linearly separable in its original representation then they will also be
separable if all but one a group of linearly dependent features are removed [28].
Nevertheless, assuming linear correlations is not safe for a variety of domains.
Linear correlation is likely to be unable to depict correlations which are non-
linear in nature.

In our proposal, we adopt information theory approaches to compute the
goodness of a feature. The first one is a measure of uncertainty of a random
variable, named Entropy. The Entropy of a variable X is given by:

H(X) = −
X∑
xi

P [X = xi] log2 P [X = xi] (5)

On the other hand, the Entropy of a variable X after observing values of a
variable Y (Conditional Entropy) is given by:

H(X|Y ) = −
Y∑
yj

P [Y = yj ]
X∑
xi

P [X = xi|Y = yj ] log2 P [X = xi|Y = yj ] (6)

Clearly, one of the drawbacks of picking Entropy as a goodness measure is
that is it unable to work with numeric features, unless they are discretized. Since
minimum (min) and maximum (max) values of features in streaming scenarios
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Algorithm 1. Sliding window entropy. Adapted from [25].
input : window size w, a data stream S.
output : be ready to provide the entropy h at any time.

1 Let W ← ∅ be the sliding window;
2 Let h ← 0 be the entropy;
3 Let n ← 0 be the number of instances in W ;
4 Let ni ← 0 be the number of instances with the yi-th label;
5 foreach (xi, yi) ∈ S do
6 if |W | = w then
7 Dequeue oldest element from W from the yj-th class;
8 h ← DEC(h, n, nj);

9 W ← W ∪ {(xi, yi)};
10 h ← INC(h, n, ni);

11 Function INC(h, n, ni)
12 Update n ← n + 1;
13 Update ni ← ni + 1;

14 return n−1
n

(
h − log2

n−1
n

)− ni
n

log2
ni
n

+ ni−1
n

log2
ni−1

n

15 Function DEC(h, n, ni)
16 Update n ← n − 1;
17 Update ni ← ni − 1;

18 return n+1
n

(
h + ni+1

n+1
log2

ni+1
n+1

− ni
n+1

log2
ni

n+1

)
+ log2

n
n+1

are unknown a priori, we adaptively discretized features using a sliding-window
version of the Partition Incremental Discretization algorithm [16] with 10 bins.

One of the advantages of Entropy is that it can be computed along sliding
windows. In Algorithm 1 we present the pseudocode for Entropy computation
over sliding windows. Proofs for Entropy equations (lines 14 and 18) were omitted
from this paper for the sake of brevity, thus, the reader is referred to [25] for
details.

Entropy is the base for computing more robust metrics. One example is Infor-
mation Gain, which is the amount by which the Entropy of a variable X decreases
reflecting additional information about X provided by Y , and is given by:

IG(X|Y ) = H(X) − H(X|Y ) (7)

An important trait of Information Gain is that it is symmetrical, i.e.
IG(X|Y ) = IG(Y |X). To prove it, one needs to verify that H(X) − H(X|Y ) =
H(Y ) − H(Y |X) and this can be derived from H(X,Y ) = H(X) + H(Y |X) =
H(Y ) + H(X|Y ).

As Entropy, Information Gain is biased towards features with more values.
Therefore, different metrics that compensate for this bias are preferred. In this
paper we picked Symmetrical Uncertainty (SU) as a goodness measure since it
atones this bias. Symmetrical Uncertainty can be computed as follows:
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SU(X,Y ) = 2
[

IG(X|Y )
H(X) + H(Y )

]
= 2

[
H(Y ) − H(Y |X)
H(X) + H(Y )

]
(8)

The range of possible values for SU is the [0; 1] interval, where 1 indicates
that the value of a variable completely predicts the other, while 0 indicates that
X and Y are completely independent.

In order to compute SU along a sliding window, one must keep track of
H(Di), H(Y ) and H(Y |Di) entropies. Both H(Di) and H(Y ) can be incre-
mented and decremented in O(1) accordingly to Algorithm1, while the Condi-
tional Entropy H(Y |Di) can be computed with separate H(Y |Di = q) entropies
(see Eq. 6), also given by Algorithm 1. If we assume that q ∈ Di and |Di| = m,
then SU can be computed with low computational complexity in the O(m) order
for a single feature and O(dm) for all features in a d-dimensional data stream.

Memory-wise, the cost of tracking H(Y ) is O(|Y |), while the cost for H(Di)
is O(m), thus, the total complexity is O(md) for a d-dimensional stream. Finally,
H(Y |Di = q) incurs a cost of O(|Y |), therefore the total cost is O(md × |Y |),
when considering all features Di ∈ D.

4.2 Applying Feature Weighting to k-Nearest Neighbor Learning

k-Nearest Neighbor (kNN ) [5] is one of the most fundamental, simple and widely
used classification methods, which is able to learn complex (non-linear) functions
[5]. kNN is a lazy learner since it does not require building a model before
actual use. It classifies unlabeled instances according to the k “closest” buffered
instances. The definition of “close” means that a distance measure is used to
determine how similar/dissimilar two instances are. There are several approaches
to compute distances between instances, nevertheless, the most common one
is the Euclidian distance, given by Eq. 9, where xi and xj are two arbitrary
instances, and the summation occurs over all features Dk ∈ D.

dE(xi,xj) =
√ ∑

Dk∈D
(xi[Dk] − xj [Dk])2 (9)

As discussed in a variety of works [3], Euclidian distances fail on represent-
ing in an effective fashion the distance between points (instances) in a high-
dimensional space, since both irrelevant and redundant features have the same
weight as relevant ones.

k-Nearest Neighbor with Feature Weighting (kNN-FW ) is an extension to the
original kNN algorithm that performs dynamic feature weighting to overcome
both irrelevant features and feature drifts. kNN-FW comprises the following
internal structures: an instance buffer queue and variables to track H(Di), H(Y )
and H(Y |Di = q). Finally, kNN-FW has two distinct steps: a training and a
classification phase.

During the training step, instances it are retrieved from a stream S and
enqueued in a buffer of size W . For every instance being enqueued or dequeued,
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the values of H(Di), H(Y ) and H(Y |Di = q) are updated according to Algo-
rithm1, thus, enabling prompt SU computation.

During the classification step, unlabeled instances xt are classified according
to the k-nearest neighbors available in buffer. In opposition to the conventional
kNN algorithm, we modify the Euclidian distance to perform feature weighting
accordingly to the discriminative power provided by Symmetrical Uncertainty,
i.e. w(Di) = SU(Di, Y ).

d(xi,xj) =
√ ∑

Dk∈D
w(Dk) × (xi[Dk] − xj [Dk])2 (10)

Due to the dynamic computation of Symmetrical Uncertainty, kNN-FW
is expected to assign weights dynamically accordingly to their discriminative
power. In feature-drifting cases, features that become, or cease to be, relevant
to the learning task will be promptly detected by changes in their Symmetrical
Uncertainty values, generating appropriate changes for each feature’s weight.

4.3 Applying Feature Weighting to Naive Bayes

Näıve Bayes (NB) is a probabilistic classifier based on Bayes theorem that works
under the näıve independence assumption between features. These predictors are
easy to build, can easily be incremented, and have no complicated parameter
estimation, making it useful for large datasets and data streams. Classification
(labeling) of instances in this learning scheme is given by Eq. 11, that is, the class
is chosen accordingly to the label yi that maximizes the P [yi]

∏d
j=1 P [x[Dj ] | yi]

probability.

y = argmax
yi∈Y

P [yi]
d∏

j=1

P [x[Dj ] | yi] (11)

Although Näıve Bayes is commonly referred as an appropriate solution for
high dimensionality problems [11], it has been shown to be prone to feature
drifts [6]. Analogously to kNN-FW, we now propose the adoption of a dynamic
weighting factor during Naive Bayes prediction. Näıve bayes with feature weight
(NB-FW) also adopts Symmetrical Uncertainty as a weighting factor during
classification, thus, probabilities are also weighted accordingly with w(Di) =
SU(Di, Y ), thus, labeling is performed as follows:

y = argmax
yi∈Y

P [yi]
d∏

j=1

(w(Di) + ξ) × P [x[Dj ] | yi] (12)

where ξ is a small padding factor, set to 0.0001, used to avoid zero weights
which would nullify the probabilities of some class values.



On Dynamic Feature Weighting for Feature Drifting Data Streams 137

5 Analysis

In order to assess our proposal’s performance, we built an experimentation envi-
ronment encompassing both synthetic and real-world data. This analysis centers
on prediction accuracy, processing time and memory usage.

5.1 Synthetic Data Stream Generators

Drifts are synthesized as the combination of two pure distributions. The proba-
bility that an instance is drawn from the prior or posterior concept inside a drift
window is given by a sigmoid function. This drift framework is the default pro-
vided in the MOA framework [9] and all drift windows in our experiments have a
length of 1,000 instances. All synthesized data streams contain 100,000 instances
and contain 9 feature drifts. In the following, we introduce three synthetic data
generators used to induce feature drifts on our experiments: AGRAWAL [4],
Assets Negotiation (ASSETS) [14] and SEA-FD [6]. In the following experi-
ments, we guarantee that feature drifts occur by changing the relevant subset of
features between prior and posterior concepts.

AGRAWAL. The AGRAWAL generator [4] produces data streams with the aim
of determining whether a loan should or should not be given to a bank customer.
This generator is composed by the following features: salary, commission, age,
education level, car make, zip-code, house value, years house is owned and loan
value. There are 10 functions for mapping instances to 2 possible classes, each
of which relying on different subsets of these features.

Asset Negotiation (AN). This generator was originally presented in [14],
where the aim was to simulate drifting bilateral multi-agent system negotiation
of assets. Assets are described by the following features: color, price, payment,
amount and delivery delay. The task is to predict whether an opposing agent
would be interested, or not, in an asset, making this a binary classification prob-
lem. Feature drifts are synthesized with changes on the interest of an agent by
modifying the concept through time given five functions, each of which is relying
on a different subset of features.

SEA-FD. Described in [6], SEA-FD extends the SEA generator [26] and syn-
thesizes streams with d > 2 uniformly distributed features, where ∀Di ∈ D,Di ∈
[0; 10] and D∗ = {Dα,Dβ} is randomly chosen with the guarantee that it dif-
fers from the relevant subset of features from the earlier concept. As in [26],
instances are labeled using y = 1 if Dα + Dβ ≤ θ and y = 0 otherwise; where θ
is a user-supplied threshold. In the following experiments we chose θ = 7 since
it is a widely used value in many papers of the area [6,8].

5.2 Symmetrical Uncertainty Tracking in Synthetic Experiments

In order to exemplify how the dynamic weights are computed during experi-
ments, we devote this section to present and discuss the Symmetrical Uncer-
tainty tracking during synthetic experiments. Figure 1 presents the Symmetrical
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Fig. 1. Symmetrical Uncertainty of several features during synthetic experiments.

Uncertainty of features during AGRAWAL, ASSETS and SEA-FD experiments,
where each feature is represented by a curve with a different color. We highlight
the fact that different features show higher SU values along the streams, thus
confirming that our tracking strategy is able to depict feature drifts correctly.

5.3 Real-World Data

To complement the synthetic data, some real-world datasets were also used for
the evaluation of the new algorithms. The adoption of real-world data is benefi-
cial since they present differentiated behavior, e.g. the class distribution is often
imbalanced and data are often noisy. On the other hand, it is nearly impossible
to affirm whether drifts occur, making evaluation of drift detection unfeasible.
We refrain from providing a detailed description of each used dataset for brevity.
The used datasets are: Electricity (ELEC) [23], Kaggle’s Give me Some Credit1

(GMSC) and Spam Corpus (SPAM) [21].

5.4 Evaluated Algorithms

Besides kNN and Naive Bayes, we also report results for a Very Fast Decision
Tree (VFDT) and a Hoeffding Adaptive Tree (HAT) since both perform embed-
ded feature selection during training.

VFDT. Very Fast Decision Tree (VFDT) is an incremental decision tree learner
for non-drifting data streams [13]. The tree is recursively built as instances arrive
and new split nodes are generated if the information gain of the two most dis-
criminative features differ at least by ε, given by the Hoeffding bound [19]. The
prediction at the leaves may occur following three different strategies: majority
class, Naive Bayes and Adaptive Naive Bayes. The Adaptive Naive Bayes moni-
tors the error rate of the majority class and Naive Bayes, always employing the
one that currently best fits data, as judged by their recent estimated accuracy.

1 Available at: https://www.kaggle.com/c/GiveMeSomeCredit. Last access in Feb.
25th, 2016.

https://www.kaggle.com/c/GiveMeSomeCredit
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HAT. Hoeffding Adaptive Tree (HAT) algorithm is an extension to the VFDT
to deal with drifts [20]. HAT updates its tree model over a sliding window and
creates or updates decision nodes if the data distribution changes at an arbitrary
split node. HAT detects data distribution changes according to the ADWIN
change detector [8] provided in MOA [9]. Whenever ADWIN detects a change
in a split node, the entire subtree is replaced by a new split node with the
most discriminant feature if the Hoeffding bound is still met. As in VFDTs, the
decision at leaf nodes may occur according to the majority class, Naive Bayes
and Adaptive Naive Bayes methods.

5.5 Experimental Protocol

Accuracy is computed accordingly to the Prequential test-then-train procedure
[15]. Prequential was chosen due to its way of monitoring a model’s performance
over time. Processing time is measured in seconds, while memory usage is given
in RAM-Hours, where 1 RAM-Hour equals 1 GB of RAM dispended per hour
of processing (GB-Hour). We adopted a window size W = 1, 000 to keep track
of Symmetrical Uncertainty in all experiments with the exception of Spam Cor-
pus, where W = 100, due to the smaller number of instances in this dataset.
An analysis of the impact of the window size W is later discussed in Sect. 5.7.
All remaining parameters were set accordingly to the defaults provided in the
Massive Online Analysis (MOA) framework [9].

5.6 Discussion

Table 1 presents the prequential accuracy results obtained during experiments.
In all cases, the usage of our proposed feature weighting scheme was benefi-
cial, providing an average boost of 10.69 % and 6.23 % for kNN and NB, respec-
tively. To provide statistical significance to our claims, we performed Wilcoxon’s,
Friedman’s and Nemenyi’s tests [12]. Pairwise comparisons conducted with
Wilcoxon’s procedure between the original kNN and NB to their dynamically
feature weighted versions with a 95 % confidence level corroborated that there
is statistical difference between their accuracy rates.

Finally, with the aid of Friedman’s and Nemenyi’s tests, we compared
all algorithms in Table 1. Results showed that, {HAT, kNN-FW, VFDT, NB-
FW} � {kNN, NB}, also with a 95 % confidence level. These results highlight
that the weighting scheme is beneficial since it allows both kNN and NB to
achieve comparable results with more sophisticated techniques that embed fea-
ture selection during stream learning, i.e. VFDT and HAT.

Tables 2 and 3 present processing time and memory usage obtained during
the execution of experiments. With the exception of the ASSETS experiment, the
adopted weighting scheme provides an computation overhead in both aspects.
We claim, however, that this computational overhead is not damaging enough to
prevent the usage of our weighting scheme, even in high dimensional problems,
e.g. the SPAM experiment.
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Table 1. Prequential accuracy (%).

Experiment kNN kNN-FW NB NB-FW VFDT HAT

AGRAWAL 57.74 65.64 59.18 62.68 69.98 81.13

ASSETS 85.02 87.87 70.51 77.11 91.57 93.15

SEA-FD 64.02 84.14 76.05 78.35 82.63 83.24

ELEC 54.31 84.08 57.62 73.39 79.23 83.46

GMSC 92.48 92.67 93.09 93.32 93.25 93.37

SPAM 80.56 83.87 66.26 75.22 79.32 84.48

Table 2. Processing time (s).

Experiment kNN kNN-FW NB NB-FW VFDT HAT

AGRAWAL 20.91 21.54 0.45 0.47 1.08 1.57

ASSETS 13.52 13.92 0.28 0.28 1.04 0.97

SEA-FD 104.68 107.82 2.04 2.08 4.85 6.15

ELEC 7.36 7.51 0.36 0.37 1.43 1.08

GMSC 32.35 33.64 1.30 1.31 7.90 15.43

SPAM 5911.54 6088.89 288.38 291.27 253.76 421.45

5.7 On the Impact of the Window Size W

Windowing is a common approach for both data management and dealing with
drifting data. Our proposal relies on a window size parameter W that determines
how much data should be considered to keep track of SU. Finding an optimal
value for W is a trade-off without solution, a problem commonly referred as
the stability-plasticity dilemma. While short windows reflect the current data
distribution and ensures fast adaptation to drifts (plasticity), shorter ones worsen
the performance of the system in stable areas. Conversely, larger windows give
better performance in stable periods (stability), however, these imply a slower
response to drifts.

In this section we evaluate the impact of the window size W in our proposal.
We evaluated the original kNN, kNN -FW and NB-FW with different W val-
ues across the [5; 2000] domain. Results for the Spam Corpus experiment were
omitted since there was not enough time to run kNN -based algorithms in such
high-dimensional scenarios in this amount of window sizes. In Fig. 3 we report
the average accuracy obtained during experiments.

In Figs. 3a and b we present the results obtained by kNN and kNN -FW,
where it is clear that finding an optimal value that achieves the best results on
all datasets is not trivial. However, by comparing the results in both graphics,
we highlight that regardless of the chosen W value, the adoption of the proposed
weighting scheme is beneficial.
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Table 3. RAM-Hours (GB-Hour).

Experiment kNN kNN-FW NB NB-FW VFDT HAT

AGRAWAL 7.57 × 10−7 7.88 × 10−7 1.15 × 10−9 1.18 × 10−9 5.05 × 10−8 3.99 × 10−8

ASSETS 3.77 × 10−7 3.99 × 10−7 4.34 × 10−10 4.51 × 10−10 7.84 × 10−8 3.22 × 10−8

SEA-FD 1.29 × 10−5 1.34 × 10−5 1.40 × 10−8 1.45 × 10−8 8.16 × 10−7 2.65 × 10−7

ELEC 2.43 × 10−7 2.55 × 10−7 6.14 × 10−10 6.51 × 10−10 3.45 × 10−8 9.27 × 10−9

GMSC 5.12 × 10−1 5.43 × 10−1 2.12 × 10−3 2.19 × 10−3 1.34 × 10−3 4.21 × 10−3

SPAM 1.20 × 10−6 1.26 × 10−6 2.38 × 10−9 2.45 × 10−9 3.88 × 10−7 1.70 × 10−6

Table 4. Prequential accuracy (%) for different leaf prediction strategies in HAT.

Experiment HAT HAT-kNN-FW HAT-NB-FW

AGRAWAL 81.13 88.45 91.03

ASSETS 93.15 95.63 93.37

SEA-FD 83.24 81.12 84.80

ELEC 83.46 83.24 83.56

GMSC 93.37 93.43 93.39

SPAM 84.48 92.62 85.25

Fig. 2. Prequential accuracy (%) obtained during experiments.
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Fig. 3. Impact of W in prediction accuracy.

On the other hand, the results presented in Fig. 3c show that for NB-FW
results are robust across different window sizes, although the accuracy drops
very slightly for windows with W > 1, 000. Finally, we highlight the ELEC and
GMSC experiments, where the differences between the maximum and minimum
accuracies were just 0.35 % and 0.97 %, respectively. This shows that the con-
cept is relatively stable during the whole experiment, thus, the weights obtained
across different window sizes are consistent.

5.8 Using Dynamically Weighted Classifiers as Leaves in Hoeffding
Adaptive Trees

Although our weighting scheme favored kNN and NB classifiers, the Hoeffding
Adaptive Tree (HAT) still outperforms both. In this section we investigate the
adoption of our weighting scheme at the leaves of the HAT classifier in replace-
ment of the adaptive Naive Bayes.

In Table 4 we compare the results for HAT with feature weighted KNN (HAT-
kNN-FW) and NB (HAT-NB-FW) leaves against the original HAT. Results show
that, with the exception of the SEA-FD experiment, the weighted approaches
provide accuracy gains, regardless if it is under kNN or NB learning schemes.
On average, results obtained showed a prediction rate gain of 4.42 %.

6 Conclusion

In this paper we presented a time and memory-bounded solution for tracking
the relevance of features based on the information theoretic concepts of Entropy
and Symmetrical Uncertainty. We showed how these metrics can be successfully
used to enhance k-Nearest Neighbor, Naive Bayesian and Hoeffding Adaptive
Tree algorithms during both stable and feature drifting regions of data streams.
Empirical evidence shows that the gains in prediction accuracy are significant
and occur in both synthetic and real-world datasets. Results point out the need
for future research into feature drift detection and adaptation.
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Both Entropy and Symmetrical Uncertainty are computed along a sliding
window, thus allowing adaptation to feature drifts. Finding an optimal window
size is a trade-off without solution, thus, future works include the adopting of
change detectors (e.g. ADWIN [8] and EWMA [24]) to eliminate the need of a
predefined window size, which is a drawback of the proposed method.

Finally, there is the need to investigate the usage of these adaptive metrics
(Entropy and Symmetrical Uncertainty) for the task of dynamic feature selec-
tion for data streams. This would allow a generic filter method that does not
depend on any specific base classifier and that would select features dynamically
according to the occurrence of feature drifts.
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Abstract. Users express their preferences for items in diverse forms,
through their liking for items, as well as through the sequence in which
they consume items. The latter, referred to as “sequential preference”,
manifests itself in scenarios such as song or video playlists, topics one
reads or writes about in social media, etc. The current approach to mod-
eling sequential preferences relies primarily on the sequence information,
i.e., which item follows another item. However, there are other impor-
tant factors, due to either the user or the context, which may dynami-
cally affect the way a sequence unfolds. In this work, we develop genera-
tive modeling of sequences, incorporating dynamic user-biased emission
and context-biased transition for sequential preference. Experiments on
publicly-available real-life datasets as well as synthetic data show signifi-
cant improvements in accuracy at predicting the next item in a sequence.

Keywords: Sequential preference · Generative model · User-biased
emission · Context-biased transition

1 Introduction

Users express their preferences in their consumption behaviors, through the prod-
ucts they purchase, the social media postings they like, the songs they listen
to, the online videos they watch, etc. These behaviors are leaving increasingly
greater traces of data that could be analyzed to model user preferences. Model-
ing these preferences has important applications, such as estimating consumer
demand, profiling customer segments, or supporting product recommendation.

There are diverse forms of expression of preferences yielding different types
of observations. Most of the previous works deal with ordinal preference, where
the objective is to model the observed interactions between users and items [1].
In this scenario, a user’s preference for an item is commonly expressed along
some ordinal scale, e.g., higher rating indicating greater liking or preference.
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In this work, we are interested in another category, namely: sequential prefer-
ence, where the objective is to model the sequential effect between adjacent items
in a sequence. In this scenario, preference is expressed in terms of which other
items may be preferred after consuming an item. For instance, a user’s stream of
tweets may reveal which topics tend to follow a topic, e.g., commenting on pol-
itics upon reading morning news followed by more professional postings during
working hours. The sequence of songs one listens to may express a preference for
which genre follows another, e.g., more upbeat tempo during a workout followed
by slower music while cooling down. Similarly, sequential preferences may also
manifest in the books one reads, the movies one watches, etc.
Problem. Given a set of item sequences, we seek a probabilistic model for
sequential preferences, so as to estimate the likelihood of future items in any par-
ticular sequence. Each sequence (e.g., a playlist, a stream of tweets) is assumed
to have been generated by a single user.

To achieve this goal, we turn to probabilistic models for general sequences.
While there are several such models studied in the literature (see Sect. 2), here we
build on the foundation of the well-accepted Hidden Markov Model (HMM) [16],
which has been shown to be effective in various applications, including speech-
and handwriting-recognition, etc. We review HMM in Sect. 3. Briefly, it models
a number of hidden states. To generate each sequence, we move from one state
to another based on transition probability. Each item in the sequence is sampled
from the corresponding state’s emission probability.

While HMM is fundamentally sound as a basic model for sequences, we iden-
tify two significant factors, yet unexploited, which would contribute towards
greater effectiveness for modeling sequential preferences. First, the generation of
an item from a state’s emission in HMM is only dependent on the state. However,
as we are concerned with user-generated sequences, the selection of items may
be affected by the user’s preferences. However, due to the sparsity of information
on individual users, we stop short of modeling individual emissions. Rather, we
model latent groups, whereby users in the same group share similar preferences
over items, i.e., emissions. Second, the transition to the next state in HMM is
only dependent on the previous state. We posit that context in which a transition
is about to take place also plays a role. For example, in the scenario of musical
playlists, let us suppose that a particular state represents the genre of soft rock.
There are different songs in this genre. If a user likes the artist of the current
song, she may wish to listen to more songs by the same artist. Otherwise, she
may wish to change to a different genre altogether. In this case, the artist is an
observed feature of the context that may influence the transition dynamically.
Contributions. In this work, we make the following contributions. First, we
develop a probabilistic model for sequences, whereby transitions from one state
to another state may be dynamically influenced by the context features, and
emissions are influenced by latent groups of users. We develop this model sys-
tematically in Sect. 4, and describe how to learn the model parameters, as well
as to generate item predictions in Sect. 5. Second, we evaluate these models com-
prehensively in Sect. 6 over varied datasets. Experiments on a synthetic dataset
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investigate the contributions of our innovations on a dataset with known parame-
ters. Experiments on publicly available real-life sequence datasets (song playlists
from Yes.com and hashtag sequences from Twitter.com) further showcase accu-
racy improvements in predicting the next item in sequences.

2 Related Work

Here, we survey the literature on modeling various types of user preferences.

Ordinal Preferences. First, we look at ordinal preferences, which models a
user’s preference for an item in terms of rating or ranking. The most common
framework is matrix factorization [11,17,20], where the observed user-by-item
rating matrix is factorized into a number of latent factors, so as to enable pre-
diction of missing values. Another framework is restricted Boltzmann machines
[21] based on neural networks. Meanwhile, latent semantic analysis [8,9] models
the association among users, items, and ratings via multinomial probabilities.
These works stand orthogonally to ours, as the main interactions they seek to
model are user-to-item ratings/rankings, rather than item-to-item sequences.

Sequential Preferences. Our work falls into sequential preferences, which
models sequences of items, so as to enable prediction of future items. As men-
tioned in Sect. 1, our contribution is in factoring dynamic context-biased transi-
tion and user-biased emission. To make the effects of these dynamic factors clear,
we build on the foundation of HMM [16], and focus our comparisons against this
base platform. Aside from HMM, there could potentially be different ways to
tackle this problem such as probabilistic automata [7] and recurrent neural net-
works [14], which are beyond the scope of this paper. Other works deal with
sequences, but with different objectives. Markov decision processes [2,22,23] are
concerned with how to make use of the transitions to arrive at an “optimal
policy”: a plan of actions to maximize some utility function. Sequential pattern
mining [15] finds frequent sequential patterns, but these require exact matches
of items in sequences. [4,13] model sequences in terms of Euclidean distances in
metric embedding space. Aside from different objectives, these works also model
explicit transitions among items, in contrast to our modeling of latent states.

Hybrid Models. Efforts to integrate ordinal and sequential preferences com-
bine the “long-term” (items a user generally likes) and “short-term” preferences
(items frequently consumed within a session). [27] models the problem as random
walks in a session-based temporal graph. [26] designs a two-layer representation
model for items: the first layer models interaction with previous item and the
second layer models interaction with the user. [6,18] conduct joint factorization
of user-by-item rating matrix and item-by-item transition matrix. It is not the
focus of our current work to incorporate ordinal preferences directly, or to rely
on full personalization by associating each user with an individual parameter.

Temporal Models. Aside from the notion of sequence, there are other tempo-
ral factors affecting recommendation. [19] assumes that users may change their
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Fig. 1. A standard HMM for sequential preferences

ordinal preferences over time. [3] models the scenario where users “lose interest”
over time. [10] takes into account the life stage of a consumer, e.g., products for
babies of different ages, while [28] intends to model evolutions that advance “for-
ward” in event sequences without going “backward”. [25] seeks to predict not
what, but rather when to recommend an item. [5] considers how changes in social
relationships over time may affect a user’s receptiveness or interest to change. In
these and other cases, the key relationship being modeled is that between user
and time, which is orthogonal to our focus in modeling item sequences.

3 Preliminaries

Towards capturing sequential preferences, our model builds upon HMM. The
standard HMM assumes a series of discrete time steps t = 1, 2, . . ., where an
item Yt can be observed at step t. To model the sequential effect in this series of
observed items, HMM employs a Markov chain over a latent finite state space
across the time steps. As illustrated in Fig. 1, at each time step t a latent state
Xt is transitioned from the previous state Xt−1 in a Markovian manner, i.e.,
P (Xt|Xt−1,Xt−2, . . . , X1) ≡ P (Xt|Xt−1), known as the transition probability.

Formally, consider an HMM with a set of observable items Y and a set of
latent states X . It can be fully specified by a triplet of parameters θ = (π,A,B),
such that ∀x, u ∈ X , y ∈ Y, t ∈ {1, 2, . . .},

– π is the initial state distribution with πx � P (X1 = x);
– A is the transition matrix with Axu = P (Xt = u|Xt−1 = x);
– B is the emission matrix with Bxy = P (Yt = y|Xt = x).

Given a sequence of items Y1, . . . , Yt, the optimal parameters θ∗ can be learned
by maximum likelihood (Eq. 1). Note that we can easily extend the likelihood
function to accommodate multiple sequences, but for simplicity we only demon-
strate with a single sequence throughout the technical discussion. Moreover,
given θ∗ and a sequence of items Y1, . . . , Yt, the next item y∗ can be predicted
by maximum a posteriori probability (Eq. 2). Both learning and prediction can
be efficiently solved using the forward-backward algorithm [16].

θ∗ = arg maxθ P (Y1, ..., Yt; θ) (1)
y∗ = arg maxy P (Yt+1 = y|Y1, . . . , Yt; θ∗) (2)
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4 Proposed Models

In a standard HMM, item emission probabilities are invariant across users, and
state transition probabilities are independent of contexts at different times. How-
ever, these assumptions often deviate from real-world scenarios, in which differ-
ent users and contexts may have important bearing on emissions and transitions.
In this section, we model dynamic emissions and transitions respectively, and
ultimately jointly, to better capture sequential preferences.

4.1 Modeling Dynamic User-Biased Emissions (SEQ-E)

It is often attractive to consider personalized preferences [18], where different
user sequences may exhibit different emissions even though they share a similar
transition. For instance, while two users both transit from soft rock to hard rock
in their respective playlist, they might still choose songs of different artists in
each genre. As another example, two users both transit from spring to summer in
their apparel purchases, but still prefer different brands in each season. However,
a fully personalized model catered to every individual user is often impractical
due to inadequate training data for each user. We hypothesize that there exist
different groups such that users across groups manifest different emission prob-
abilities, whereas users in the same group share the same emission probabilities.

Fig. 2. Sequential models with dynamic user groups and contexts

In Fig. 2(a), we introduce a variable Gu to represent the group assignment of
each user u. For simplicity, our technical formulation presents a single sequence
and hence only one user. Thus, we omit the user notation u when no ambiguity
arises. Assuming a set of groups G, the new model can be formally specified by
the parameters (π, σ,A,B), such that ∀x ∈ X , y ∈ Y, g ∈ G, t ∈ {1, 2, . . .},

– π and A are the same as in a standard HMM;
– σ is the group distribution with σg = P (G = g);
– B is the new emission tensor with Bgxy = P (Yt = y|Xt = x,G = g).
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4.2 Modeling Dynamic Context-Biased Transitions (SEQ-T)

In standard HMM, the transition matrix is invariant over time. In real-world
applications, this assumption may not hold. The transition probability may
change depending on contexts that vary with time. Consider modeling a playlist
of songs, where the transitions between genres are captured. The transition prob-
abilities could be influenced by characteristics of the current song (e.g., artist,
lyrics and sentiment). A fan of the current artist may break her usual pattern
of genre transition and stick to genres by the same artist for the next few songs.
As another example, a user purchasing apparels throughout the year may follow
seasonal transitions. If satisfied with certain qualities (e.g., material and style)
of past purchases, she may buy more such apparels out of season to secure dis-
counts, breaking the usual seasonal pattern. We call such characteristics context
features.

It is infeasible to differentiate transition probabilities by individual context
features directly, which would blow up the parameter space and thus pose serious
computational and data sparsity obstacles. Instead, we propose to model a single
context factor that directly influences the next transition. The context factor,
being latent, manifests itself through the observable context features.

As illustrated in Fig. 2(b), consider a set of context features F =
{F 1, F 2, . . .}. As feature values vary over time, let Ft =

(
F 1

t , F 2
t , . . .

)
denote

the feature vector at time t. Each feature F i takes a set of values F i, i.e.,
F i

t ∈ F i,∀i ∈ {1, ..., |F |}, t ∈ {1, 2, . . .}. Similarly, let Rt denote the latent
context factor at time t, and R denote the set of context factor levels, i.e.,
Rt ∈ R,∀t ∈ {1, 2, . . .}. Finally, the model can be specified by the parameters
(π, ρ,A,B,C), such that ∀x, u ∈ X , i ∈ {1, . . . , |F |}, f ∈ Fi, t ∈ {1, 2, . . .},

– π and B are the same as in a standard HMM;
– ρ is the distribution of the latent context factor with ρr = P (Rt = r);
– C is the feature probability matrix with Crif = P (F i

t = f |Rt = r);
– A is the new transition tensor with Arxu = P (Xt = u|Xt−1 = x,Rt−1 = r).

4.3 Joint Model (SEQ*)

As discussed, user groups and context features can dynamically bias the emission
and transition probabilities, respectively. Here, we consider both users and con-
texts in a joint model, as shown in Fig. 2(c). Accounting for all the parameters
defined earlier, the joint model is specified by a six-tuple θ = (π, σ, ρ,A,B,C).
The algorithm for learning and inference will be discussed in the next section.

5 Learning and Prediction

We now present efficient learning and prediction algorithms for the joint model.
Note that the user and context-biased models are only degenerate cases of the
joint model— the former assumes one context factor level (i.e., |R| = 1) and no
features (i.e., F = ∅), whereas the latter assumes one user group (i.e., |G| = 1).
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5.1 Parameter Learning

The goal of learning is to optimize the parameters θ = (π, σ, ρ,A,B,C) through
maximum likelihood, given the observed items and features. Consider a sequence
of T > 1 time steps. Let Y � (Y1, . . . , YT ) as a shorthand; and similarly for
F ,X,R. Subsequently, the optimal parameters can be obtained as follows.

θ∗ = arg maxθ log P (Y , F ; θ) (3)

We demonstrate with one sequence for simpler notations. The algorithm can be
trivially extended to enable multiple sequences as briefly described later.

Expectation Maximization (EM). We apply the EM algorithm to solve the
above optimization problem. Each iteration consists of two steps below.

– E-step. Given parameters θ′ from the last iteration (or random ones in the
first iteration), calculate the expectation of the log likelihood function:

Q(θ|θ′) =
∑

X,G,R P (X,G,R|Y , F ; θ′) log P (Y , F ,X,G,R; θ′) (4)

– M-step. Update the parameters θ = arg maxθ Q(θ|θ′).

Given the graphical model in Fig. 2(c), the joint probability P (Y , F ,X,G,R)
can be factorized as

P (G)P (X1) ·
T∏

t=1

⎛
⎝P (Yt|G,Xt)P (Rt)

|F |∏
i=1

P (F i
t |Rt)

⎞
⎠ ·

T−1∏
t=1

P (Xt+1|Xt, Rt). (5)

Maximizing the expectation Q(θ|θ′) is equivalent to maximize the following,
assuming that Yt = yt and F i

t = f i
t are observed, ∀t ∈ {1, . . . , T}, i ∈

{1, . . . , |F |}.
∑

x∈X P (X1 = x|Y , F ; θ′) log πx +
∑

g∈G P (G = g|Y , F ; θ′) log σg

+
∑T

t=1

∑
r∈R P (Rt = r|Y , F ; θ′) log ρr

+
∑T−1

t=1

∑
x∈X

∑
u∈X

∑
r∈R P (Rt = r,Xt = x,Xt+1 = u|Y , F ; θ′) log Arxu

+
∑T

t=1

∑
x∈X

∑
g∈G P (Xt = x,G = g|Y , F ; θ′) log Bgxyt

+
∑T

t=1

∑|F |
i=1

∑
r∈R P (Rt = r|Y , F ; θ′) log Crifi

t
(6)

The optimization problem is further constrained by laws of probability, such
that

∑
x∈X πx = 1,

∑
g∈G σg = 1,

∑
r∈R ρr = 1,

∑
u∈X Arxu = 1,

∑
y∈Y Bgxy = 1

and
∑

f∈Fi Crif = 1. Applying Lagrange multipliers, we can derive the following
updating rules.
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πx =
P (X1 = x|Y , F ; θ′)

1
=

∑
g∈G
∑

r∈R γgxr(1)

1
, (7)

σg =
P (G = g|Y , F ; θ′)

1
=

∑
x∈X
∑

r∈R γgxr(1)

1
,

ρr =

∑T
t=1 P (Rt = r|Y , F ; θ′)

∑T
t=1

∑
k∈R P (Rt = k|Y , F ; θ′)

=

∑
g∈G
∑

x∈X
∑T

t=1 γgxr(t)

T
,

Arxu =

∑T−1
t=1 P (Rt = r, Xt = x, Xt+1 = u|Y , F ; θ′)
∑T−1

t=1 P (Rt = r, Xt = x|Y , F ; θ′)
=

∑T−1
t=1

∑
g∈G ξgxur(t)

∑T−1
t=1

∑
g∈G γgxr(t)

,

Bgxy =

∑T
t=1 P (Xt = x, G = g|Y , F ; θ′)I(yt = y)
∑T

t=1 P (Xt = x, G = g|Y , F ; θ′)
=

∑T
t=1

∑
r∈R γgxr(t)I(yt = y)

∑T
t=1

∑
r∈R γgxr(t)

,

Crif =

∑T
t=1 P (Rt = r|Y , F ; θ′)I(f i

t = f)
∑T

t=1 P (Rt = r|Y , F ; θ′)
=

∑T
t=1

∑
g∈G
∑

x∈X γgxr(t)I(f i
t = f)

∑T
t=1

∑
g∈G
∑

x∈X γgxr(t)
,

where I(·) is an indicator function and

γgxr(t) � P (G = g,Xt = x,Rt = r|Y , F ; θ′), (8)

ξgxur(t) � P (G = g,Xt = x,Xt+1 = u,Rt = r|Y , F ; θ′). (9)

Note that, to account for multiple sequences, in each updating rule we need to
respectively sum up the denominator and numerator over all the sequences.

Inference. To efficiently apply the updating rules, we must solve the inference
problems for γgxr(t) and ξgxur(t) in Eqs. 8 and 9. Towards these two goals, similar
to the forward-backward algorithm [16] for the standard HMM, we first need to
support the efficient computation of the below probabilities.

αgxr(t) = P (Y1, . . . , Yt, F1, ..., Ft,Xt = x,G = g,Rt = r; θ′) (10)
βgxr(t) = P (Yt+1, ..., YT , Ft+1, ..., FT |Xt = x,G = g,Rt = r; θ′) (11)

Letting θ′ = (π′, σ′, ρ′, A′, B′, C ′) and C ′(r, t) =
∏|F |

i=1 C ′
rifi

t
, both probabili-

ties can be computed recursively, as follows.

αgxr(t) =

{
π′

xσ′
gρ

′
rC

′(r, 1)B′
gxy1

, t = 1
ρ′

rC
′(r, t)B′

gxyt

∑
u∈X

∑
k∈Rαguk(t − 1)A′

kux, else
(12)

βgxr(t) =

{
B′

gxyT
C ′(r, T ), t = T − 1∑

k∈R ρ′
kC ′(k, t + 1)

∑
u∈X B′

guyt+1
A′

rxuβguk(t + 1), else
(13)

Subsequently, γgxr(t) and ξgxur(t) can be further computed.

ξgxur(t) =
αgxr(t)A′

xurB
′
guyt+1

∑
k∈R βguk(t + 1)ρ′

kC ′(k, t + 1)∑
h∈G

∑
v∈X

∑
k∈R αhvk(T )

(14)

γgxr(t) =

{∑
x∈X ξgxur(t) t = T∑
u∈X ξgxur(t) else

(15)
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5.2 Item Prediction

Once the parameters are learnt, we can predict the next item of a user given her
existing sequence of items {Y1, Y2, ..., Yt} and context features {F1, F2, ..., Ft}. In
particular, her next item y∗ can be chosen by maximum a posteriori estimation:

y∗ = arg maxy P (Yt+1 = y|Y1, . . . , Yt, F1, ..., Ft)

= arg maxy P (Y1, . . . , Yt, Yt+1 = y, F1, ..., Ft)

= arg maxy P (Y1, . . . , Yt, Yt+1 = y, F1, ..., Ft, Ft+1)/P (Ft+1)

= arg maxy

∑
g∈G

∑
x∈X

∑
r∈R αgxr(t + 1). (16)

While we do not observe features at time t+1, in the above we can adopt any
value for Ft+1 which does not affect the prediction. Instead of picking the best
candidate item, we can rank all the candidates and suggest the top-K items.

5.3 Complexity Analysis

We conduct a complexity analysis for learning the joint model SEQ*. Consider
one sequence of length T with |X | states, |Y| items, |G| user groups, |R| context
factor levels, |F | features and |F| values for each feature. For this one sequence,
the complexity of one iteration of the EM is contributed by three main steps:

– Step 1: Calculate α, β: O
(
T |G||X ||R|2(|X | + |F |)). Because ρ′

r, C
′(r, t) in

Eq. 12 are independent of g, x, u, k while ρ′
k, C ′(k, t+1) in Eq. 13 are indepen-

dent of g, x, u, r, we can further simplify this to: O
(
T |R|(|G||X |2|R| + |F |)).

– Step 2: Calculate ξ, γ using α, β: O
(
T |G||X |2|R|2|F |). As ρ′

kC ′(k, t + 1) in
Eq. 14 is independent of g, x, u, r, we reduce it to: O

(
T |R|(|G||X |2|R| + |F |)).

– Step 3: Update θ using γ, ξ: O (T |G||X ||R|(|X | + |F |)). As y in Bgxy of Eq. 7
is independent of g, x, r, we first compute the denominator, and update a
normalized score to y in the Bgxy while computing the numerator. Likewise,
i, f in Crif are independent of g, x, r. Thus, we have: O

(
T |R|(|G||X |2 + |F |)).

The overall complexity of SEQ* is O
(
T |R|(|G||X |2|R| + |F |)) for one

sequence, one iteration. The complexities of lesser models are (by substitution):

– HMM with |G| = |R| = 1, |F | = |F| = 0: O
(
T |X |2)

– SEQ-E with |R| = 1, |F | = |F| = 0: O
(
T |G||X |2)

– SEQ-T with |G| = 1: O
(
T |R|(|X |2|R| + |F |))

The result implies that the running times of our proposed models are
quadratic in the number of states and context factor levels, while linear in all
the other variables. HMM is also quadratic in the number of states. Comparing
to HMM with the same number of states, our joint model incurs a quadratic
increase in complexity only in the number of context factor levels (which is typ-
ically small), and merely a linear increase in the number of groups and context
features.
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6 Experiments

The objective of experiments is to evaluate effectiveness. We first look into a syn-
thetic dataset to investigate whether context-biased transition and user-biased
emission could have been simulated by increasing the number of HMM’s states.
Next, we experiment with two real-life, publicly available datasets, to investigate
whether the models result in significant improvements over the baseline.

6.1 Setup

We elaborate on the general setup here, and describe the specifics of each dataset
later in the appropriate sections. Each dataset has of a set of sequences. We
create random splits of 80:20 ratio of training versus testing. In this sequential
preference setting, a sequence (a user) is in either training or testing, but not
necessarily in both. This is different from a fully personalized ordinal preference
setting (a different framework altogether), where a user would be represented in
both sets.

Task. For each sequence in the testing set, given the sequence save the last item,
we seek to predict the last item. Each method generates a top-K recommenda-
tion, which is evaluated against the held-out ground-truth last item.

Comparative Methods. Since we build our dynamic context and user factors
upon HMM, it is the most appropriate baseline. To investigate the contribution
of user-biased emission and context-based transition separately, we compare the
two models SEQ-E and SEQ-T respectively against the baseline. To see their
contributions jointly, we further compare SEQ* against the baseline. In addition,
we include the result of the frequency-based method FREQ as a reference, which
simply choose the most popular item in the training data.

Metrics. We rely on two conventional metrics for top-K recommendation.
Inspired by a similar evaluation task in [24], the first metric we use is Recall@K.

Recall@K =
number of sequences with the ground truth item in the top K

total number of sequences in the testing set

If we assume the ground truth item to be the only true answer, average
precision can be measured similarly (dividing by K) and would show the same
trend as recall. In the experiments, we primarily study top 1% recommendation,
i.e., Recall@1%, but will present results for several other K’s as well. Actually,
it is not clear that the other items in the top-K would really be rejected by a
user [24]. Instead of precision, we rely on another metric.

The second metric is Mean Reciprocal Rank or MRR, defined as follows.

MRR =
1

|Stest| ×
∑

s∈Stest

1
rank of target item for sequence s
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We prefer a method that places the ground-truth item higher in the top-K
recommendation list. Because the contribution of a very low rank is vanishingly
small, we cut the list off at 200, i.e., ranks ≥ 200 contribute zero to MRR. Real-
istically, a recommendation list longer than 200 is unlikely in realistic scenarios.

For each dataset, we create five random training/testing splits. For each
“fold”, we run the models ten times with different random initializations (but
with common seeds across comparative methods for parity). For each method,
we average the Recall@K and MRR across the fifty readings. All comparisons
are verified by one-sided paired-sample Student’s t-test at 0.05 significance level.

6.2 Synthetic Dataset

We begin with experiments on a synthetic dataset, for two reasons. First, one
advantage of a synthetic dataset is the knowledge of the actual parameters (e.g.,
transition and emission probabilities), which allows us to verify our model’s
ability to recover these parameters. Second, we seek to verify whether the effects
of context-biased transition and user-biased emission could have been simulated
by increasing the number of hidden states of traditional sequence model HMM.

Dataset. We define a synthetic dataset with the following configuration: 2
groups (|G| = 2), 2 states (|X | = 2), 2 context factor levels (|R| = 2), 4 items
(|Y| = 4), 4 features (|F | = 4) each with 2 feature values (present or absent).

The complete set of synthetic parameters are specified in the supplementary
material. Here, we discuss the key ideas. A six-tuple θ = (π, σ, ρ,A,B,C) is
specified as follows: π = [0.8, 0.2], σ = [0.9, 0.1], ρ = [0.3, 0.7]. The transition
tensor A is such that we induce self-transition to the same state for the first
context factor level, and switching to the other state for the second context factor
level. The emission tensor B is such that the four (state, group) combinations
each tend to generate one of the four items. The feature matrix C is such that
each context factor level is mainly associated with two of the four features.

We then generate 10 thousand sequences, each of length 10 (T = 10). For
each sequence, we first draw a group according to σ. At time t = 1, we draw the
first hidden state X1 from π, followed by drawing the first item Y1 from B. We
also draw a context factor level from ρ and generate features via C. For time
t = 2, . . . , 10, we follow the same process, but each hidden state is now drawn
from A according to the previous state and context factor level at time t − 1.

Results. We run the four comparative methods on this synthetic dataset, fixing
the context factor levels and groups to 2 for the relevant methods, while varying
the number of states. Figure 3(a) shows the results in terms of Recall@1, i.e.,
the ability of each method in recommending the ground truth item as the top
prediction. There are several crucial observations. First, the proposed model
SEQ* outperforms the rest, attaining recall close to 85 %, while the baseline
HMM hovers around 65 %. SEQ* also outperforms SEQ-T and SEQ-E.

Second, as we increase the number of states, most models initially increase
in performance and then converge. Evidently, increasing the number of states
alone does not lift the baseline HMM to the same level of performance as SEQ*
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Fig. 3. Performance of comparative methods on Synthetic Data for Recall@1 and MRR

or SEQ-T, indicating the effect of context-biased transition. Meanwhile, though
SEQ-E and HMM are similar (due to inability to model context factor), SEQ* is
slightly better than SEQ-T, indicating the contribution of user-biased emission.
Figure 3(b) shows the results for MRR, showing similar trends and observations.

6.3 Real-Life Datasets

We now investigate the performance of the comparative methods on real-life,
publicly available datasets covering two different domains: song playlists from
online radio station Yes.com, and hashtag sequences from users’ Twitter streams.

Playlists from Yes.com. We utilize the yes small dataset1 collected by [4]. The
dataset includes about 430 thousand playlists, involving 3168 songs. Noticeably,
the majority of playlits has length which is shorter than 30. To keep the playlist
lengths relatively balanced, we filter out playlists with fewer than two songs and
retain up to the first thirty songs in each playlist. Finally, we have 250 thousand
playlists (sequences) consisting of 3168 unique songs (items).

Features. We study the effect of features on the context-biased transition model
SEQ-T. Each song may have tags. There are 250 unique tags. We group tags with
similar meanings (e.g.,“male vocals” and “male vocalist”). As the first feature,
we use a binary feature of whether the current song and the previous song shares
at least one tag. For additional features, we use the most popular tags. Note that
we never assume knowledge of the tags of the song to be predicted. Figure 4(a)
shows the performance of SEQ-T, with two context factor levels, for various
number of features. Figure 4(a) has dual vertical axes for Recall@1% (left) and
MRR (right) respectively. The trends for both metrics are similar: performance
initially goes up and then stabilizes. In subsequent experiments, we use eleven
features (similarity feature and ten most popular tags).

1 http://www.cs.cornell.edu/∼shuochen/lme/data page.html.

http://www.cs.cornell.edu/~shuochen/lme/data_page.html
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Fig. 4. Effects of features, context factor on SEQ-T & groups on SEQ-E on Yes.com

Table 1. Performance of comparative methods on Yes.com for Recall@K

FREQ HMM SEQ-T SEQ-E SEQ* Imp.

5 States Recall@1 % 6.8 13.8 18.4† 22.0§ 24.1†§ +10.3

Recall@50 9.6 19.2 25.1† 29.5§ 32.1†§ +13.0

Recall@100 16.2 29.3 37.0† 42.6§ 46.1†§ +16.8

10 States Recall@1 % 6.8 22.3 23.2† 27.8§ 28.6†§ +6.3

Recall@50 9.6 30.0 31.1† 36.9§ 38.1†§ +8.1

Recall@100 16.2 43.4 44.9† 52.1§ 53.5†§ +10.2

15 States Recall@1 % 6.8 26.1 26.5† 30.1§ 30.6†§ +4.5

Recall@50 9.6 34.7 35.5† 39.4§ 40.2†§ +5.5

Recall@100 16.2 49.3 50.8† 55.1§ 56.3†§ +7.0

Context Factor. We then vary the number of context factor levels of SEQ-T
(with eleven features). Figure 4(b) shows that for this dataset, there is not much
gain from increasing the number of context factor levels beyond two. Therefore,
for greater efficiency, subsequently we experiment with two context factor levels.

Latent Groups. We turn to the effect of latent groups on the user-biased emis-
sion model SEQ-E. Figure 4(c) shows the effect of increasing latent groups. More
groups lead to better performance. Because of the diversity among sequences,
having more groups increases the flexibility in modeling emissions while still shar-
ing transitions. For the subsequent comparison to the baseline, we will experi-
ment with two latent groups, as the earlier comparison has shown that the results
with higher number of groups would be even higher.

Comparison to Baseline. We now compare the proposed models SEQ-T,
SEQ-E, and SEQ* to the baseline HMM. Table 1 shows a comparison in terms
of Recall@K for 5, 10, and 15 states. In addition to Recall@1% (corresponding
to top 31), we also show results for Recall@50 and Recall@100. The symbol †
denotes statistical significance due to the effect of context-biased transition. In
other words, the outperformance of SEQ-T over HMM, and that of SEQ* over
SEQ-E, are significant. The symbol § denotes statistical significance due to the
effect of user-biased emission, i.e., the outperformance of SEQ-E over HMM,
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Table 2. Performance of comparative methods on Yes.com for MRR

FREQ HMM SEQ-T SEQ-E SEQ* Imp.

5 States 0.014 0.028 0.037† 0.044§ 0.049†§ +0.021

10 States 0.014 0.045 0.047† 0.057§ 0.059†§ +0.014

15 States 0.014 0.053 0.054† 0.062§ 0.063§ +0.009

Table 3. Performance of comparative methods on Twitter.com for Recall@K

FREQ HMM SEQ-T SEQ-E SEQ* Imp.

5 States Recall@1 % 8.4 16.9 17.1† 20.6§ 21.0†§ +4.1

Recall@50 16.1 28.3 28.6† 33.2§ 33.7†§ +5.4

Recall@100 25.5 40.6 40.9† 46.0§ 46.5†§ +5.9

10 States Recall@1 % 8.4 21.8 22.0† 26.5§ 26.9†§ +5.1

Recall@50 16.1 34.2 34.4† 39.4§ 39.8†§ +5.7

Recall@100 25.5 47.2 47.4† 52.0§ 52.4§ +5.2

15 States Recall@1 % 8.4 25.2 25.3† 29.9§ 30.0†§ +4.8

Recall@50 16.1 38.1 38.2† 43.1§ 43.3†§ +5.1

Recall@100 25.5 51.2 51.3† 55.2§ 55.3†§ +4.1

Table 4. Performance of comparative methods on Twitter.com for MRR

FREQ HMM SEQ-T SEQ-E SEQ* Imp.

5 States 0.019 0.045 0.046† 0.062§ 0.063†§ +0.0183

10 States 0.019 0.063 0.064 0.084§ 0.086†§ +0.0227

15 States 0.019 0.076 0.078† 0.100§ 0.101†§ +0.0246

and that of SEQ* over SEQ-T, are significant. Finally, our overall model SEQ*
is significantly better than the baseline HMM in all cases. The absolute improve-
ment of the former over the latter in additional percentage terms is shown in the
Imp. column. For all models, more states generally translate to better perfor-
mance, and the improvements are somewhat smaller but still significant. Table 2
shows a comparison in terms of MRR, where similar observations hold.

Hashtag Sequences from Twitter.com. We conduct similar experiments on
the Twitter dataset2 [12]. There are 130 thousand users. In our scenario, each
sequence corresponds to the hashtags of a user. The average length of our dataset
is 19. If a tweet has multiple hashtags, we retain the most popular one, so as to
maintain the sequence among tweets. Similarly to the treatment of stop words
and infrequent words in document modeling, we filter out hashtags that are too

2 https://wiki.cites.illinois.edu/wiki/display/forward/Dataset-UDI-TwitterCrawl-
Aug2012.

https://wiki.cites.illinois.edu/wiki/display/forward/Dataset-UDI-TwitterCrawl-Aug2012
https://wiki.cites.illinois.edu/wiki/display/forward/Dataset-UDI-TwitterCrawl-Aug2012
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popular (frequency ≥ 25000) or relatively infrequent (frequency ≤ 1000). Finally,
we obtain 114 thousand sequences involving 2121 unique hashtags. Similarly to
Yes.com, we run the models for two levels of context factor and two latent groups,
but with seven features extracted from the tweet of the current hashtag (not the
one to be predicted): number of retweets, number of hashtags, time intervals
to the previous one and two tweets, time interval to the next tweet, and edit
distances with the previous one and two observations.

The task is essentially predicting the next hashtag in a sequence. In brief,
Tables 3 and 4 support that the improvements due to context-biased transition
(†) and user-biased emission (§) are mostly significant. Importantly, the overall
improvements by SEQ* over the baseline HMM (Imp. column) are consistent
and hold up across 5, 10, and 15 states for both Recall@K and MRR.

Computational efficiency is not the main focus of experiments. We comment
briefly on the running times. For the Twitter dataset, the average learning time
per iteration on Intel Xeon CPU X5460 3.16 GHz with 32 GB RAM for our
models with 15 states, 2 groups, 2 context factor levels are 2, 3, and 6 min for
SEQ-E, SEQ-T and SEQ* respectively. HMM requires less than a minute.

7 Conclusion

In this work, we develop a generative model for sequences, which models two
types of dynamic factors. First, transition from one state to the next may be
affected by context factor. This results in SEQ-T model, with context-biased
transition. Second, we seek to incorporate how different latent user groups may
have preferences for certain items. This results in SEQ-E model, with user-
biased emission. Finally, we unify these two factors into a joint model SEQ*.
Experiments on both synthetic and real-life datasets support the case that these
dynamic factors contribute towards better performance than the baseline HMM
(statistically significant) in terms of top-K recommendation for sequences.
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Abstract. Anomaly detection is a vital task for maintaining and
improving any dynamic system. In this paper, we address the prob-
lem of anomaly detection in time-evolving graphs, where graphs are a
natural representation for data in many types of applications. A key
challenge in this context is how to process large volumes of streaming
graphs. We propose a pre-processing step before running any further
analysis on the data, where we permute the rows and columns of the
adjacency matrix. This pre-processing step expedites graph mining tech-
niques such as anomaly detection, PageRank, or graph coloring. In this
paper, we focus on detecting anomalies in a sequence of graphs based on
rank correlations of the reordered nodes. The merits of our approach lie
in its simplicity and resilience to challenges such as unsupervised input,
large volumes and high velocities of data. We evaluate the scalability
and accuracy of our method on real graphs, where our method facil-
itates graph processing while producing more deterministic orderings.
We show that the proposed approach is capable of revealing anomalies
in a more efficient manner based on node rankings. Furthermore, our
method can produce visual representations of graphs that are useful for
graph compression.

1 Introduction

Dynamic graphs are becoming ubiquitous formats for representing relational
datasets such as social, collaboration, communication and computer networks.
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 162–178, 2016.
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One of the vital tasks for gaining an insight into the behavioral patterns of such
datasets is anomaly detection. Anomaly detection in time-evolving graphs is the
task of finding timestamps that correspond to an unusual event in a sequence
of graphs [2]. For instance, a social network anomaly may correspond to the
merging or splitting of its communities. Anomaly detection plays an important
role in numerous applications, such as network intrusion detection, credit card
fraud [9] and discontinuity detection in social networks [3].

However, there are many challenges associated with event detection in
dynamic graphs. Networks such as Facebook or Twitter comprise billions of inter-
acting users where the structure of the network is constantly updated. Moreover,
there is often a lack of labels for normal and anomalous graph instances, which
requires learning to be unsupervised. Due to these challenges, graph anomaly
detection has attracted growing interest over time.

To address these challenges, many anomaly detection techniques use a pre-
processing phase where they extract structural features from graph representa-
tions. These features may include node centrality [14], ego-nets [3] and eigen-
values [10]. They then apply well-known similarity measures to compare graph
changes over a period of time. In this scenario, the graphs are converted into
feature sets and therefore they do not pose the complexities associated with the
inter-dependencies of nodes, in addition to causing a considerable decrease in
the time and space requirements for the anomaly detection scheme.

However, the process of generating structure-aware features for graphs can
be challenging in itself. For instance, the eigenvalues of a graph can be a suit-
able representation for its patterns of connectivity, but they have high storage
and time requirements. A common shortcoming between these approaches is the
need to perform matrix inversions, where the graphs are too sparse to be invert-
ible. Another property of graph summarization techniques should be their inter-
pretability. Revealing structural information such as communities, node roles or
maximum independent sets can be very useful in further analysis of graphs.

To address these issues we propose an approach for detecting graph anomalies
based on the ranking of the nodes. The novelty of our method lies in a scalable
pre-processing scheme that produces stable results. Our matrix re-ordering app-
roach efficiently assigns ranks to each node in the graph, where the resulting ranks
can be used directly as a basis for comparing consecutive graph snapshots. Our
re-ordering approach reduces the input dimension of a graph from O(n2) to O(n).
We can easily use a rank correlation coefficient as a similarity measure over pairs
of graphs. Another advantage of our approach is its capability to produce inter-
pretable results that identify large independent sets. The compact representation
of the graphs yields faster and simpler anomaly detection schemes.

We review some of the algorithms previously introduced in the domain of
graph anomaly detection in Sect. 2. We then define our notation and outline
the problem statement in Sect. 3. The details of the proposed method and its
properties are summarized in Sect. 4. The benchmark datasets in addition to
the baseline algorithms for comparison are discussed in Sect. 5. We then show
the results of anomaly detection and discuss the scalability and stability of our
algorithm in Sect. 6. Finally, we conclude the paper and present future directions
for research in Sect. 7.
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2 Related Work

One of the most valuable tasks in data analysis is to recognize what stands out
in a dataset. This type of analysis provides actionable information and improves
our knowledge of the underlying data generation scheme. Various approaches have
been developed for detection of such abnormalities [4], however many of these tech-
niques disregard relational datasets where data instances demonstrate complex
inter-dependencies. Due to the abundance and cross-disciplinary property of rela-
tional datasets, graph-based anomaly detection techniques have received growing
attention in social networks, web graphs, road map networks and so forth [3].

We review some of the dominant techniques for the detection of anomalies.
We focus on graphs that are plain where nodes and/or edges are not associated
with attributes and the nodes are consistently labeled over time.

2.1 Graph-Based Anomaly Detection

Several approaches to pattern mining in graphs stem from distance based tech-
niques, which utilize a distance measure in order to detect abnormal vs. normal
structures. An example of such an approach is the k-medians algorithm [8], which
employs graph edit distance as a measure of graph similarity. Other approaches
take advantage of graph kernels [15], where kernel-based algorithms are applied
to graphs. They compare graphs based on common sequences of nodes, or sub-
graphs. However, the computational complexity of these kernels can become
problematic when applied to large graphs.

Other graph similarity metrics use the intuition of information flow when
comparing graphs. The first step in these approaches is to compute the pairwise
node affinity matrices in each graph and then determine the distance between
these matrices. There are several approaches for determining node affinities in
a graph, such as Pagerank and various extensions of random walks [6]. Another
recent approach in this category is called Delta connectivity, which can be used
for the purpose of anomaly detection. This approach calculates the graph dis-
tance by comparing node affinities [16]. It measures the differences in the imme-
diate and second-hop neighborhoods of graphs. These approaches also suffer
from the curse of dimensionality in large graphs.

Moreover, there are approaches that try to extract properties such as graph
centric features before performing anomaly detection. These features can be com-
puted from the combination of two, three or more nodes, i.e., dyads, triads and
communities. They can also be extracted from the combination of all nodes in a
more general manner [1]. Many anomaly detection approaches [12] have utilized
graph centric features in their process of anomaly detection. Since the graph is
summarized as a vector of features, the problem of graph-based anomaly detec-
tion transforms to the well-known problem of spotting outliers in an n-dimensional
space. Therefore standard unsupervised anomaly detection schemes such as ellip-
soidal cluster based approaches can be employed [19]. A thorough survey of such
techniques can be found in [4]. It is worth noting that the extracted features cause
information loss that can affect the performance of the anomaly detection scheme.
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Another approach for graph mining is tensor decomposition. These tech-
niques represent the time-evolving graphs as a tensor that can be considered
as a multidimensional array, and perform tensor factorization. Tensor factoriza-
tion approximates the input graph, where the reconstruction error can highlight
anomalous events, subgraphs and/or vertices [20].

Although this field of research has received growing attention in recent years,
the problem of scalability and interpretability of results still remains. Graph-
centric features can reduce the dimensionality of the input graphs, but they
may not be able to provide visually interpretable results. On the other hand,
decomposition-based methods provide meaningful representations of graphs but
suffer from the curse of dimensionality. The trade-off between these two issues
has motivated us to find a compact representation of graphs that preserves the
structural properties of networks. This can help further analysis of the data
to become computationally efficient. Specifically for the task of anomaly detec-
tion, we provide experiments that demonstrate the efficiency and utility of our
approach.

3 Preliminaries and Problem Statement

We start by describing the basic notation and assumptions of our anomaly detec-
tion task. A graph G = (V,E) is defined as a set of nodes V and edges E ⊆ V ×V ,
where an edge e ∈ E denotes a relationship between its corresponding nodes
vi, vj . The degree di of a vertex vi is defined as the sum of the number of its
incoming (in-degree) and outgoing (out-degree) edges. A Maximum Independent
Set (MIS) is the largest subset of vertices VMIS ⊆ V such that there is no edge
between any pair of vertices in VMIS .

The maximum independent set problem is closely related to common graph
theoretical problems such as maximum common induced subgraphs, minimum
vertex covers, graph coloring, and maximum common edge subgraphs. Finding
MISs in a graph can be considered a sub-problem of indexing for shortest path
and distance queries, automated labeling of maps, information coding, and signal
transmission analysis [18].

Graphs are often represented by binary adjacency matrices, An×n, where
n = |V | denotes the number of nodes. An element of the adjacency matrix
aij = 1 if there is an edge from vi to vj . The simultaneous re-ordering of rows
and columns of the adjacency matrix is called matrix permutation.

We formulate the problem of anomaly detection as follows: Given a sequence
of graphs {G}1...m, where m is the number of input graphs, we want to determine
the time stamp(s), i ∈ {1...m}, when an event has occurred and changed the
structural properties of the graph Gi. We consider the following assumptions
about the input graphs:

– The vertices and edges in the graph are unweighted.
– There is no external vertex ordering.
– The input graphs are plain, i.e., no attributes are assigned to edges or vertices.
– The number of nodes remains the same throughout the graph sequence.
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– The labeling of nodes between graphs is consistent.

An important issue for the design of a scalable anomaly detection scheme is the
number of input features or dimensions that are required to be processed. If a
graph-based anomaly detection uses a raw adjacency matrix as input, then the
input dimensionality is O(n2), which is impractical for large graphs. In order
to address the issue of scalability, we need to find a compact representation for
each graph. We propose a pre-processing algorithm that extracts a rank feature
for each node that is associated with the maximum independent sets in each
graph. Therefore, instead of storing and processing an adjacency matrix of size
n × n, we reduce the input dimensionality and computational requirements for
our anomaly detector to n.

For each graph in the sequence {G1 = (V1, E1), G2 = (V2, E2), ..., Gm =
(Vm, Em)}, we determine the new matrix re-ordering vector {V1

′
, V2

′
, ..., Vm

′}.
We then compute the rank correlation coefficient between every two consequent
tuples, (Vi

′
, Vi+1

′
). We employ the Spearman rank correlation coefficient as

shown in Eq. 1 between two input rank vectors,
−→
V

′
i,

−→
V

′
i+1, where di = vi −vi+1:

ρ = 1 − 6
∑

di
2

n(n2 − 1)
(1)

The computational complexity of Eq. 1 is O(n), where n is the length of the input
vectors. The intuition behind our approach is to design a stable and scalable
algorithm for determining the significance of each node and revealing structural
information by manipulating the adjacency matrix An×n. We need to find a
matrix permutation that satisfies the following properties:

– Locality : Non-zero elements of the matrix should be in close vicinity in the
ordering after the permutation.

– Stability : The initial ordering of the rows and columns should have no effect
on the final outcome of the re-ordering.

– Scalability : The algorithm should have low computational complexity in order
to handle large scale graphs.

– Interpretability : The permuted matrix should reveal structural information
such as MISs about the graph.

4 Our Approach: Amplay

In order to achieve the above objectives, we propose an approach entitled Amplay
(Adjacency matrix permutation based on layers). In each iteration, Amplay sorts
vertices according to their total degree, and picks the vertex with the highest
degree. Ties are resolved according to the ordering in the previous iteration.
We then remove the vertex and its incidental edges, and recursively apply the
algorithm. The outline of the re-ordering approach is given in Algorithm 1.
In order to clarify the process of Amplay implementation, we have provided an
example of Amplay operation in Figs. 1a and 1b.
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(a) A partially reordered matrix at the beginning
of iteration 3 of Amplay. In this iteration, vx
will be placed at position nhead, and Ax will be
placed before position ntail.Ax are vertices that
are only incidental to vertices placed before/to
vx, which results in a zero area at the bottom
right corner, i.e., white squares. Elements at gray
squares can contain 0 or 1.

(b) Amplay ordering for a sample graph. Each
row shows an ordering at the end of each itera-
tion. Rectangles outline sets Vi at the beginning
of each iteration.

Fig. 1. Examples of Amplay algorithm operation

Algorithm 1. Amplay Permutation
Input : Graph G = (V,E) and n = |V |
Output: Node re-ordering V → V′

1 nhead = 1; ntail = n + 1; i = 1; Vi = V ; Ei = E; Gi = (Vi, Ei);
2 while nhead < ntail do
3 Sort Vi according to the degrees of vertices resolving ties using previous

ordering;
4 vx ∈ Vi ← a vertex with the maximum total degree;
5 ex ⊆ Ei ← edges incidental to vx in Gi;
6 Ax ⊆ Vi ← vertices incidental only to vx in Gi;
7 ai = |Ax|;
8 Place vx in position nhead;
9 Place Ax in position ntail − ai, ..., ntail − 1;

10 (preserving ordering of vertices Ax from Gi);
11 Vi+1 = Vi\vx ∪ Ax, Ei+1 = Ei\ex(\ denotes set difference);
12 nhead = nhead + 1, ntail = ntail − a, i = i + 1;

One of the interesting properties of Amplay is its capability to reveal MISs asso-
ciated with each input graph. Figure 2 shows the permuted adjacency matrix of the
Enron email dataset where the MISs are denoted as S1, S2, .... The groupings of
nodes into the MISs indicates that Amplay can be used as a heuristic to determine
the MISs of a graph in various problem domains. A prominent feature of the matri-
ces produced by the Amplay method is a front line such that all non-zero matrix
elements are located above the line. Indeed, we can consider an adjacency matrix
as a grid with integer coordinates. Here the first coordinate spans rows from top to
bottom, the second coordinate spans columns from left to right. We define the front
line as follows: (1, n), (1, n−a1+1), (2, n−a1), (2, n−a1−a2+1), ..., (s, s), ..., (n−
a1 + 1, 1), (n, 1), where {ai} is the sequence produced by Algorithm 1 and s is the
number of iterations of the algorithm.
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Lemma 1. Every matrix element below the front line is zero.

Proof. The front line spans intersections of vertices from sets Ax with their
respective vx. By definition, Ax are vertices that are only incidental to vertices
placed before vx or to vx, which implies that matrix elements below and to the
right from the intersections of Ax and vx are zero.

As we explain below, the front line is important in visualization, because it
allows us to grasp (1) the degree distribution of the graph, and (2) the relative
size of the largest independent set revealed by Amplay. Note that the shape of
the front line is defined by the sequence {ai}, where ai is closely related to the
degree of the vertex placed at position i. As a consequence, the front line reflects
the degree distribution in a graph.

A key property of Amplay is multiple vertex sorting. Recall that at each iter-
ation, vertices are sorted according to the total degree of the remaining graph,
and ties are resolved using the ordering from the previous iteration. Such a sort-
ing has two consequences. First, the resulting index of each vertex depends not
only on the vertex degree, but also on a vertex connectivity pattern (e.g., the
number of connections to high-degree nodes). This pattern is reflected in the
positions of the vertex in subsequent sorting rounds. While many vertices can
have the same degree, the vertices tend to differ in their connectivity patterns.
As such, Amplay tends to produce a relatively deterministic ordering. This in
turn results in a relatively small variance in the behavior of subsequent graph
processing algorithms. Second, vertices that have a similar connectivity pat-
tern will have similar positions during sorting across subsequent iterations, and
thus have similar positions in the resulting Amplay ordering. This explains why
Amplay tends to produce matrices with a smooth visual appearance.

Lemma 2. Graph G = (V,E) contains an independent set with at least n−ntail

vertices, where ntail is the value from Amplay at the moment of termination.

Proof. At the end of each iteration of Amplay, vertices assigned to indices larger
than or equal to ntail are incidental only to vertices assigned to indices smaller
than nhead. At the point of termination nhead = ntail. Hence, vertices assigned
to indices larger than ntail are pairwise disjoint and form an independent set.

In addition to revealing structural properties of the graph, Amplay proves
to be scalable. We describe the computational complexity of this re-ordering
approach in Lemma 3.

Lemma 3. The complexity of Amplay is O(
∑s

i=0 ni log ni) where ni = |Vi|
defined in Amplay, and s ≤ |V | is the number of iterations.

Proof. Each iteration of the algorithm operates on a subgraph with ni vertices,
and involves sorting (which can be performed in O(ni log ni) time), finding neigh-
bors of the chosen vertex vx (linear in ni), and removing incidental edges (linear
in ni). As such the overall complexity of one iteration is bounded by O(ni log ni)
and the total complexity is bounded by O(

∑s
i=0 ni log ni).
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Fig. 2. The Amplay re-ordered adjacency matrix of the Enron email dataset.

It is worth mentioning that in many real-world graphs, ni rapidly decreases,
which reduces the total running time. Moreover, we can improve the scalability of
Amplay further, by choosing k vertices with the largest total degrees, place them,
and advance the nhead pointer by k at each iteration (line 4 in Algorithm 1).
Furthermore, in line 6 of Algorithm 1, we can define Ax as a set of vertices inci-
dental only to the chosen k vertices. The front line is now defined as (k, n), (k, n−
a1 + 1), (2k, n − a1), (2k, n − a1 − a2 + 1), ..., (s.k, s.k), ..., (n − a1 + 1, k), (n, k),
and it is easy to verify that Lemmas 1 and 2 hold. If we increase k, we can
see that the prominent structural features of the graph are preserved. Moreover

the computational complexity of Amplay when k > 1 is O(
∑s

′

i=0 ni
′ × ri) where

ri = max(log ni
′
, k). Using k > 1 is beneficial because it reduces the number of

iterations s
′
, and sequence ni

′
decreases faster than ni.

5 Evaluation Methodology

In this section, we describe each dataset used in our experiments and elaborate
on the baseline algorithms for comparison.

5.1 Benchmark Datasets

For the purpose of anomaly detection, we have selected a representative sample
of sparse real-world datasets. The first real dataset is the Facebook wall posts
data collected from September 26th, 2006 to January 22nd, 2009 from users
in the New Orleans network [22]. The number of users is 90,269, however only
60,290 exhibited activity.
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Table 1. Benchmark description where
* denotes undirected graphs.

Dataset #Nodes #Time stamps

AS * 65,535 733
Facebook * 60,290 1,495
Enron 184 893
DBLP * 1,631,698 57

Table 2. Computational complexity for
baseline and proposed approaches.

Approach Embedding + Similarity complexity

Amplay O(
∑s

i=0 ni log ni) + O(|V |)
DeltaCon O(|E|) + O(|V |)
RP O(n2d) + O(|V |)

The next real dataset is the Autonomous Systems (AS) data [17]. The graphs
comprising the AS dataset represent snapshots of the backbone Internet routing
topology, where each node corresponds to a subnetwork in the Internet. The
edges represent the traffic flows exchanged between neighbors. The dataset is
collected daily from November 8, 1997 to January 2, 2000 with nodes being
added or deleted.

Another real dataset is the Enron email network that gathers the email com-
munications within the Enron corporation from January 1999 to January 2003
[7]. There are 36,692 nodes in this network, where each node corresponds to
an email address. We have used the nodes with a minimum activity level and
reduced the graph to 184 nodes.

The final real data is the DBLP1 dataset that consists of co-authorship infor-
mation in computer science. The number of nodes is 1,631,698 and the data is
gathered from 1954 to 2010. The description of these datasets is summarized in
Table 1. DBLP graphs are used to test the scalability of our approach.

5.2 Baseline Algorithm

For the purpose of comparison, we have used a recent approach for computing
graph similarity with applications in anomaly detection as our baseline. This
algorithm is called delta connectivity (DeltaCon) [16], where the node affinity
matrices for each graph are calculated using a belief propagation strategy shown
in Eq. 2. This approach considers first-hop and second-hop neighborhoods for
calculating the influence of the nodes on each other and has been proven to
converge.

S = [sij ] = [I + η2D − ηA
′ −1

] (2)

After determining the node affinity matrices, they compare the consecutive
graphs by calculating the root Euclidean distance shown in Eq. 3, which varies
in the range [0, 1]. We empirically have chosen η = 0.1 in our experiments.

sim(S1, S2) =

√√√√
n∑

i=1

j=n∑
j=1

(
√

S1,ij − √
S2,ij)2 (3)

The computational complexity of this algorithm is reported to be linear in the
number of edges of each graph, O(|E|).
1 http://dblp.uni-trier.de/xml/.

http://dblp.uni-trier.de/xml/
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Another baseline algorithm is an approach called Random Projection (RP)
that has shown to be effective in determining anomalous graphs in block-
structured networks [21]. The intuition behind RP comes from the Johnson
and Lindenstrauss lemma [11] as presented in Lemma 4. This lemma asserts
that a set of points in Euclidean space, P 1...n ∈ R

n×m, can be embedded into
a d-dimensional Euclidean space, P ′1...n ∈ Rn×d while preserving all pairwise
distances within a small factor ε with high probability.

Lemma 4. Given an integer n and ε > 0, let d be a positive integer such that
d ≥ d0 = O(ε−2 log n). For every set P of n points in R

m, there exists f : Rm →
R

d such that with probability 1 − n−β, β > 0, for all u, v ∈ P

(1 − ε)||u − v||2 ≤ ||f(u) − f(v)||2 ≤ (1 + ε)||u − v||2 (4)

One of the algorithms for generating a random projection matrix that has been
shown to preserve pairwise distances [11] is presented in Eq. 5:

rij =
√

3

⎧
⎪⎨
⎪⎩

+1 with probability 1/6
0 with probability 2/3
−1 with probability 1/6

(5)

6 Results and Discussion

In this section, we outline our experimental setup in five sections and report
the observed results. We first demonstrate the effectiveness of Amplay and rank
correlation in prioritizing nodes that can contribute the most to the structural
change in consecutive graphs. We then investigate the capability of our algo-
rithm in detecting anomalous graphs based on the produced similarity score.
Thereafter, we discuss the scalability of our approach empirically by changing
parameter k. We provide our empirical studies regarding the stability of the
Amplay algorithm on static graphs.

Experiment I: Gradual Change Detection. The effectiveness of Amplay
lies in its ability to reveal maximum independent sets. The nodes that comprise
each set can be considered the most influential nodes collected from every com-
munity in the graph. Figure 3 shows the gradual change in the graph structure
by removing the edge e3,10 connecting v3 and v10. e3,10 is the connecting bridge
between two of the present communities in the graph and its elimination may
lead to discontinuity in the entire graph structure. As can be seen, v3 is the node
that contributes the most to the dissimilarity between G1 and G2.

Experiment II: Anomaly Detection. We have applied the proposed app-
roach (with parameter k = 1) and the baseline algorithms on the benchmark
datasets, and compared their computed similarity score between consecutive
days. The implementations were run in Matlab using a machine with a 3 GHz
Processor and 8 GB RAM. Due to the computational complexity of the random
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(a) G1: Snapshot at t = 1 (b) G2: Snapshot at t = 2

Fig. 3. Example of gradual change in the structure of the graph and the importance
of each node in the overall similarity score.
Initial Node Ordering for G1, G2: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Amplay and Rank Correlation Node Importance: 3, 5, 13, 15, 6, 7, 1, 2, 4, 8, 9, 10, 11,
12, 14, 16
DeltaCon Node Importance: 3, 10, 14, 16, 12, 13, 2, 5, 15, 4, 6, 7, 11, 1, 9, 8

projection approach, we only use this algorithm as a baseline for comparing
scalability.

Our proposed method and DeltaCon generate scores in the range [0, 1]. Fig-
ures 4, 5 and 6 demonstrate the graph similarity scores for the Autonomous
Systems, Facebook and Enron datasets respectively. As can be seen, the trend
of similarity scores is the same for DeltaCon and our proposed method.

Experiment III: Computational Scalability. The reported results for anom-
aly detection were achieved by setting parameter k = 1, where k was defined
at the end of Sect. 4 as the number of vertices that are processed and removed
from the graph in a single iteration. We decided to increase k and investigate the
performance of our anomaly detection scheme. It is worth recalling that we are
using only a subset of nodes for the purpose of anomaly detection. We consider
the top l elements in the rank vectors where l = nhead after the termination of
Amplay.

Increasing parameter k leads to an exponential decrease in computation time.
This observation can be explained by the sparsity of real-world graphs, i.e.,
the small proportion of fully-connected cliques. Since k is the number of ver-
tices that are processed and removed from the graph within a single iteration,
increasing k leads to a more rapid graph reduction. However, at some value of
k, all highly connected vertices are processed within a single iteration, and the
remaining graph contains only vertices with low degrees. Therefore, subsequent
increases of k do not lead to a significant performance improvement. Figure 7
demonstrates the effect of parameter k on the processing time of Amplay for
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Fig. 4. Comparison of graph similarity scores based on the correlation score of
the Amplay-permuted adjacency matrix and DeltaCon on the Autonomous Systems
dataset.

Fig. 5. Comparison of graph similarity scores based on the correlation score of the
Amplay-permuted adjacency matrix and DeltaCon on the Facebook dataset.

Fig. 6. Comparison of graph similarity scores based on the correlation score of the
Amplay-permuted adjacency matrix and DeltaCon on the Enron dataset.
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the Enron dataset. Although the parameter k is increased to 100, we can still
observe the maximum independent sets S1, S2, ..., Sn as demonstrated in Fig. 2.
Another attractive property of our scheme is the compact representation of the
graph produced by Amplay. This compact representation scales linearly in the
number of input nodes n. The real-world graphs are mainly comprised of sets
of dense cores and sparse periphery nodes. Therefore, the number of nodes to
consider for graph similarity computation is only a fraction of the total number
of nodes in a graph. Amplay discards the peripheral nodes that are connected
to only a few vertices from the core. The influential nodes usually appear as
V

′
1 , V

′
2 , ..., V

′
nhead

, where nhead � n. The upper bound of n denotes the worst
case scenario where the input graph is fully-connected. Table 3 demonstrates the
computation time and number of considered nodes in calculating graph sim-
ilarity. The upper bounds for time complexity of the embedding approaches
is demonstrated in Table 2. As can be seen, our proposed method and Delta-
Con outperform random projection, and both are scalable when the adjacency
matrices are sparse. The advantage of our approach lies in its ability to generate
an interpretable result where structural features of a graph, such as MISs, are
revealed as shown in Fig. 2.

Fig. 7. Amplay computation time as the parameter k is increased in the Enron dataset
where k is the number of vertices that are processed and removed from the graph in a
single iteration.

Table 3. Computation time of Amplay on different datasets.

Dataset Amplay time DeltaCon time #Nodes to consider

AS 0.196 ± 0.005 0.087 ± 3.616e-04 1,913

Facebook 0.0538 ± 0.003 0.072 ± 4.482e-04 1,316

Enron 0.0009 ± 0.0008 0.003 ± 8.286e-07 41

DBLP 29.707 ± 6.268e+03 1.7174 ± 0.1998 38,903
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Experiment IV: Amplay Stability. We compare Amplay with other ordering
methods, namely random, RCM [5], and SlashBurn [13]. Random permutation
serves as a naive baseline; RCM is a classical bandwidth reduction algorithm [5];
and SlashBurn is a recent method that is shown to produce adjacency matrices
with localized non-zero elements. This method is shown to be one of the best
state-of-the-art methods [13].

We use a representative sample of sparse real-world graphs of different sizes
for quantitative evaluation (Table 4) where all graphs were downloaded from
the Stanford Large Network Collection2. The table shows graph names as they
appear in the Collection, however in the paper we use simplified names (e.g.,
gnutella instead of p2p-Gnutella08).

We first load each graph as an adjacency matrix S and produce N +1 random
permutations of the graph vertices RNDi(S), i = 0, 1, ..., N . We then take each
random permutation as input and either leave it as it is (method Random), or
apply RCM, SlashBurn or Amplay permutation -respectively, RCM(RNDi(S)),
SlashBurn(RNDi(S)) and Amplay(RNDi(S)).

We then evaluate ordering stability by selecting one of the random permuta-
tions as a reference (e.g., iref = 0), and comparing the vertex ordering between
each of the other permutations and the reference (e.g., compare RND0(S) with
RNDj(S)). In this section, we use both Amplay and SlashBurn with k = 1.
That is, we evaluate the basic forms of these algorithms, as opposed to more
coarse scalable versions.

Table 4. Real-world graphs used in our stability analysis. * mark undirected graphs.

Dataset Vertices Edges Dataset* Vertices Edges

Wiki-Vote 7115 103689 ca-HepTh* 9877 51971

p2p-Gnutella08 6301 20777 oregon1* 10670 22002

soc-epinions1 75879 508837 loc-Gowalla* 196591 1900654

Email-EuAll 265214 420045 flickr* 105936 2300660

We compare two vertex orderings using the Kendall correlation coefficient.
This coefficient takes values in [−1, 1], where 1 is reached in the case of equiva-
lence of the orderings. If the two orderings are independent, one would expect the
coefficient to be approximately 0. Intuitively, vertices with higher degrees tend to
have a higher impact on matrix operations and visual appearance. Therefore, we
also separately look at ordering stability for higher degree vertices only. Specif-
ically, we compute the Kendall correlation while ignoring a certain proportion
(0, 80, 90, 95%) of vertices with low degrees. Here 0% means that we compare
orderings for all graph vertices. On the other hand, 95% means that we only con-
sider the ordering of the top 5% of vertices with the highest degrees. We present
our results in Fig. 8 and Table 5 (permutations with k = 1 were slow for large
2 snap.stanford.edu/data.

http://snap.stanford.edu/data
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Table 5. Stability measured with Kendall Tau at 90% for large graphs. The table
shows the means for three comparisons.

Dataset Random RCM SlashBurn Amplay

Email-Eu < 0.01 0.02 0.11 0.46

gowalla < 0.01 0.41 0.78 0.89

flicker < 0.01 0.27 0.05 0.99

Fig. 8. Amplay stability in comparison to the rival approaches, SlashBurn [13], RCM
[5] and Random ordering, as we vary the percentage of ignored low-degree vertices.

graphs, therefore we have fewer runs for large graphs). Overall, Amplay outper-
forms the other methods by a large margin (p < 0.01, Wilcoxon signed rank test).
In other words, Amplay tends to be less dependent on the input ordering.

7 Conclusion and Future Work

In this paper, we presented an unsupervised approach for detecting anomalous
graphs in time-evolving networks. We created a compact yet structure-aware
feature set for each graph using a matrix permutation technique called Amplay.
The resulting feature set included the rank of each node in a graph and this rank
ordering was used by rank correlation for comparing a pair of graphs. This simple
yet effective approach overcomes the issues of scalability when handling large-
scale graphs. We showed the low time complexity and structure-aware property
of our re-ordering approach both empirically and theoretically. Moreover, we
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designed experiments for the purpose of anomaly detection in four real datasets,
where our approach was compared against an effective graph similarity method
and proved to be successful in highlighting abnormal events. In future work, we
will explore the possibilities of reducing the dimensionality of the graph even fur-
ther by using a random projection approach. Since we reduce the dimensionality
from O(n2) to O(n), we can consider the rank vectors of each graph as a data
stream. Thereafter, we will investigate a window-based approach for determining
anomalous graphs given a history of past normal instances.
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Abstract. A system of nested dichotomies is a method of decompos-
ing a multi-class problem into a collection of binary problems. Such a
system recursively applies binary splits to divide the set of classes into
two subsets, and trains a binary classifier for each split. Although ensem-
bles of nested dichotomies with random structure have been shown to
perform well in practice, using a more sophisticated class subset selec-
tion method can be used to improve classification accuracy. We inves-
tigate an approach to this problem called random-pair selection, and
evaluate its effectiveness compared to other published methods of sub-
set selection. We show that our method outperforms other methods
in many cases when forming ensembles of nested dichotomies, and is
at least on par in all other cases. The software related to this paper
is available at https://svn.cms.waikato.ac.nz/svn/weka/trunk/packages/
internal/ensemblesOfNestedDichotomies/.

1 Introduction

Multi-class classification problems – problems with more than two classes – are
commonplace in real world scenarios. Some learning methods can handle multi-
class problems inherently, e.g., decision tree inducers, but others may require a
different approach. Even techniques such as decision tree inducers may benefit
from methods that decompose a multi-class problem in some manner. Typi-
cally, a collection of binary classifiers is trained and combined in some way to
produce a multi-class classification. This process is called binarization. Popular
techniques for adapting binary classifiers to multi-class problems include pair-
wise classification [11], one-vs-all classification [15], and error correcting output
codes [5]. Ensembles of nested dichotomies [8] have been shown to be an effec-
tive substitute to these methods. Depending on the base classifier used, they can
outperform both pairwise classification and error-correcting output codes [8].

In a nested dichotomy, the set of classes is split into two subsets recursively
until there is only one class in each subset. Nested dichotomies are represented
as binary tree structures (Fig. 1). At each node of a nested dichotomy, a binary
classifier is learned to classify instances as belonging to one of the two subsets of
classes. A nice feature of nested dichotomies is that class probability estimates
can be computed in a natural way if the binary classifier used at each node can
output two-class probability estimates.
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 179–194, 2016.
DOI: 10.1007/978-3-319-46227-1 12
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1, 2, 3, 4

1, 3

1 3

2, 4

2 4

1, 2, 3, 4

1 2, 3, 4

3 2, 4

2 4

Fig. 1. Two examples of nested dichotomies for a four class problem.

The number of nested dichotomies for a c-class problem increases exponen-
tially with the number of classes. One approach is to sample nested dichotomies
at random to form an ensemble of them [8]. However, this may result in binary
problems that are difficult to learn for the base classifier.

This paper is founded on the observation that some classes are generally
easier to separate than others. For example, in a dataset of images of handwritten
digits, the digits ‘5’ and ‘6’ are are much more difficult to distinguish than the
digits ‘0’ and ‘1’. This means that if ‘5’ and ‘6’ were put into opposite class
subsets, the base classifier would have a more difficult task to discriminate the
two subsets than if they were grouped together. Moreover, if the base classifier
assigns high probability to an incorrect branch when classifying a test instance,
it is unlikely that the final prediction will be correct. Therefore, we should try to
group similar classes into the same class subsets whenever possible, and separate
them in lower levels of the tree near the leaf nodes.

In this paper, we propose a method for semi-random class subset selection,
which we call “random-pair selection”, that attempts to group similar classes
together for as long as possible. This means that the binary classifiers close
to the root of the tree of classes can learn to distinguish higher-level features,
while the ones close to the leaf nodes can focus on the more fine-grained details
between similar classes. We evaluate this method against other published class
subset selection strategies.

This paper is structured as follows. In Sect. 2, we give a review of other adap-
tations of ensembles of nested dichotomies. In Sect. 3, we describe the random-
pair selection strategy and give an overview of how it works. We also cover
theoretical advantages of our method over other methods, and give an analysis
of how this strategy affects the space of possible nested dichotomy trees to sam-
ple from. In Sect. 4, we evaluate these methods and compare them to other class
subset selection techniques.



Building Ensembles of Adaptive Nested Dichotomies 181

2 Related Work

The original framework of ensembles of nested dichotomies by Frank and Kramer
was proposed in 2004 [8]. In this framework, a binary tree is sampled ran-
domly from the set of possible trees, based on the assumption that each nested
dichotomy is equally likely to be useful a priori. By building an ensemble of
nested dichotomies in this manner, Frank and Kramer achieved results that are
competitive with other binarization techniques using decision trees and logistic
regression as the two-class models for each node.

There have been a number of adaptations of ensembles of nested dichotomies
since, mainly focusing on different class selection techniques. Dong et al. propose
to restrict the space of nested dichotomies to only consist of structures with
balanced splits [6]. Doing this regulates the depth of the trees, which can reduce
the size of the training data for each binary classifier and thus has a positive
effect on the runtime. It was shown empirically that this method has little effect
on accuracy. Dong et al. also consider nested dichotomies where the number
of instances per subset is approximately balanced at each split, instead of the
number of classes. This also reduces the runtime, but can aversely effect the
accuracy in rare cases.

The original framework of ensembles of nested dichotomies uses random-
ization to build an ensemble, i.e., the structure of each nested dichotomy in
the ensemble is randomly selected, but built from the same data. Rodriguez
et al. explore the use of other ensemble techniques in conjunction with nested
dichotomies [16]. The authors found that improvements in accuracy can be
achieved by using bagging [3], AdaBoost [9] and MultiBoost [17] with random
nested dichotomies as the base learner, compared to solely randomizing the struc-
ture of the nested dichotomies. The authors also experimented with different base
classifiers for the nested dichotomies, and found that using ensembles of deci-
sion trees as base classifiers yielded favourable results compared to individual
decision trees.

Duarte-Villaseñor et al. propose to split the classes more intelligently than
randomly by using various clustering techniques [7]. They first compute the
centroid of each class. Then, at each node of a nested dichotomy, they select
the two classes with the furthest centroids as initial classes for each subset.
Once the two classes have been picked, the remaining classes are assigned to
one of the two subsets based on the distance of their centroids to the centroids
of the initial classes. Duarte-Villaseñor et al. evaluate three different distance
measures for determining the furthest centroids, taking into account the position
of the centroids, the radius of the clusters and average distance of each instance
from the centroid. They found that these class subset selection methods gave
superior accuracy to the random methods previously proposed when the nested
dichotomies were used for boosting.
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3 Random-Pair Selection

We present a class selection strategy for choosing subsets in a nested dichotomy
called random-pair selection. This has the same intention as the centroid-based
methods proposed by Duarte-Villaseñor et al. [7]. Our method differs in that it
takes a more direct approach to discovering similar classes by using the actual
base classifier to decide which classes are more easily separable. Moreover, it
incorporates an aspect of randomization.

3.1 The Algorithm

The process for constructing a nested dichotomy with random-pair selection is
as follows:

1. Create a root node for the tree.
2. If the class set C has only one class, then create a leaf node.
3. Otherwise, split C into two subsets by the following:

(a) Select a pair of classes c1, c2 ∈ C at random, where C is the set of all
classes present at the current node.

(b) Train a binary classifier using these two classes as training data. Then,
use the remaining classes as test data, and observe which of the initial
classes the majority of instances of each test class are classified as.1

(c) Two subsets are created, using the initial classes: s1 = {c1} , s2 = {c2}
(d) The test classes cn ∈ C \ {c1, c2} are added to s1 or s2 based on whether

cn is more likely to be classified as c1 or c2.
(e) A new binary model is trained using the full data at the node, using the

new class labels s1 and s2 for each instance.
4. Create new nodes for both s1 and s2 and recurse for each child node from

Step 2.

This selection algorithm is illustrated in Fig. 2. The process for making pre-
dictions when using this class selection method is identical to the process for the
original ensembles of nested dichotomies. Assuming that the base classifier can
produce class probability estimates, the probability of an instance belonging to
a class is the product of the estimates given by the binary classifiers on the path
from the root to the leaf node corresponding to the particular class.

3.2 Analysis of the Space of Nested Dichotomies

To build an ensemble of nested dichotomies, a set of nested dichotomies needs to
be sampled from the space of all nested dichotomies. The size of this space grows
very quickly as the number of classes increases. Frank and Kramer calculate that
the number of potential nested dichotomies is (2c−3)!! for a c-class problem [8].
For a 10-class problem, this equates to 34, 459, 425 distinct systems of nested
1 When the dataset is large, it may be sensible to subsample the training data at each

node when performing this step.
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Fig. 2. Random-Pair Selection. (a) Original multi-class data. (b) Two classes are
selected at random, and a binary classifier is trained on this data. (c) The binary
classifier is tested on the other classes. The majority of the ‘plus’ class is classified as
‘circle’, and all of the ‘square’ class is classified as ‘triangle’. (d) Combine the classes
into subsets based on which of the original classes each new class is more likely to be
classified as. (e) Learn another binary classifier, which will be used in the final nested
dichotomy tree.

dichotomies. Using a class-balanced class-subset selection strategy reduces this
number:

T (c) =

{
1
2

(
c

c/2

)
T ( c

2 )T ( c
2 ), if c is even(

c
(c+1)/2

)
T ( c+1

2 )T ( c−1
2 ), if c is odd

(1)

where T (2) = T (1) = 1 [6]. The number of class-balanced nested dichotomies
is still very large, giving 113,400 possible nested dichotomies for a 10-class prob-
lem. The subset selection method based on clustering [7] takes this idea to the
extreme, and gives only a single nested dichotomy for any given number of classes
because the class subset selection is deterministic. Even though the system pro-
duced by this subset selection strategy is likely to be a useful one, it does not
lend itself well to ensemble methods.

The size of the space of nested dichotomies that we sample using the random-
pair selection method varies for each dataset, and is dependent on the base clas-
sifier. The upper bound for the number of possible binary problems at each node
is the number of ways to select two classes at random from a c-class dataset, i.e.,(
c
2

)
. In practice, many of these randomly chosen pairs are likely to produce the

same class subsets under our method, so the number of possible class splits is
likely to be lower than this value. For illustrative purposes, we empirically esti-
mate this value for the logistic regression base learner. We enumerate and count
the number of possible class splits for our splitting method at each node of a
nested dichotomy for a number of datasets, and plot this number against the
number of classes at the corresponding node (Fig. 3a). We also show a similar
plot for the case where C4.5 is used as the base classifier (Fig. 3b). Fitting a
second degree polynomial to the data for logistic regression yields

p(c) = 0.3812c2 − 1.4979c + 2.9027. (2)

Assuming we apply logistic regression, we can estimate the number of possible
class splits for an arbitrary number of classes based on this expression by making
a rough estimate of the distribution of classes at each node. Nested dichotomies
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(b) C4.5

Fig. 3. Number of possible splits under a random-pair selection method vs number of
classes for a number of UCI datasets.

Table 1. The number of possible nested dichotomies for up to 12 classes for each
class subset selection technique. The first two columns are taken from [6], and the
random-pair column is estimated from (3).

Number of
classes

Number of nested
dichotomies

Number of class-balanced
nested dichotomies

Number of random-pair
nested dichotomies

2 1 1 1

3 3 3 1

4 15 3 5

5 105 30 15

6 945 90 36

7 10,395 315 182

8 135,135 315 470

9 2,027,025 11,340 1,254

10 34,459,425 113,400 7,002

11 654,729,075 1,247,400 28,189

12 13,749,310,575 3,742,200 81,451

constructed with random-pair selection are not guaranteed to be balanced, so we
average the class subset proportions over a large sample of nested dichotomies on
different datasets to find that the two class subsets contain 1

3 and 2
3 respectively

of the classes on average. Given this information, we can estimate the number
of possible nested dichotomies with logistic regression by the recurrence relation

T (c) = p(c)T (
c

3
)T (

2c
3

) (3)

where T (c) = 1 when c ≤ 2. Table 1 shows the number of distinct nested
dichotomies that can be created for up to 12 classes for the random-pair selection
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Fig. 4. Class centroids of the training component of the CIFAR-10 dataset (above).
Samples from each class (below).

method, class-balanced and completely random selection when we apply this
estimate.

3.3 Advantages Over Centroid Methods

Random-pair selection has two theoretical advantages compared to the centroid-
based methods proposed by the authors of [7]: (a) an element of randomness
makes it more suitable for ensemble learning, and (b) it adapts to the base
classifier that is used.

In the centroid-based methods, each class split is deterministically chosen
based on some distance metric. This means that the structure of every nested
dichotomy in an ensemble will be the same. This is less important in ensemble
techniques that alter the dataset or weights inside the dataset (e.g., bagging or
boosting). However, an additional element of randomization in ensembles is typ-
ically beneficial. When random-pair selection is employed, the two initial classes
are randomly selected in all nested dichotomies, increasing the total number of
nested dichotomies that can be constructed as discussed in the previous section.

Centroid-based methods assume that a smaller distance between two class
centroids is indicative of class similarity. While it is true that this is often the
case, sometimes the centroids can be relatively meaningless. An example is the
CIFAR-10 dataset, a collection of small natural images of various categories such
as cats, dogs and trucks [12]. The classes are naturally divided into two subsets –
animals and vehicles. Figure 4 shows an image representation of the centroids of
each class, and a sample image from the respective class below it. It is clear to
see that most of these class centroids do not contain much useful information
for discriminating between the classes.

This effect is clearer when evaluating a simple classifier that classifies
instances according to the closest centroid of the training data. For illustra-
tive purposes, see the confusion matrix of such a classifier when trained on the
CIFAR-10 dataset (Fig. 5). It is clear to see from the confusion matrix that the
centroids cannot be relied upon to produce meaningful predictions in all cases
for this data.

A disadvantage of random-pair selection compared to centroid-based methods
is an increase in runtime. Under our method, we need to train additional base
classifiers during the class subset selection process. However, the extra base
classifiers are only trained on a subset of the data at a node, i.e., only two of the
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Fig. 5. Confusion matrix of a centroid classifier for the CIFAR-10 dataset. The darkness
of each square corresponds with the number of instances classified as a particular class.

classes, and we can subsample this data during this step if we need to improve
the runtime further.

4 Experimental Results

We present an evaluation of the random-pair selection method on 18 datasets
from the UCI repository [13]. Table 2 lists and describes the datasets we used.
We specifically selected datasets with at least five classes, as our method will
not have a large impact on datasets with few classes. This is due to the fact
that there is a relatively small number of possible nested dichotomies for small
numbers of classes.

4.1 Experimental Setup

All experiments were conducted in WEKA [10], and performed with 10 times 10-
fold cross validation.2 The default settings in WEKA for the base learners and
ensemble methods were used in our evaluation. We compared our class subset
selection method (RPND) to nested dichotomies based on clustering (NDBC) [7],
class-balanced nested dichotomies (CBND) [6], and completely random selection
(ND) [8]. We did not compare against other variants of nested dichotomies such
as data-balanced nested dichotomies [6], nested dichotomies based on cluster-
ing with radius [7] and nested dichotomies based on clustering with average
radius [7], because they were found to either have the same or worse perfor-
mance on average in [6] and [7] respectively. We used logistic regression and

2 Our implementations can be found in the ensemblesOfNestedDichotomies package
in WEKA.
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Table 2. The datasets used in this evaluation

Dataset Classes Instances Attributes Dataset Classes Instances Attributes

audiology 24 226 70 optdigits 10 5620 65

krkopt 18 28056 7 page-blocks 5 5473 11

LED24 10 5000 25 pendigits 10 10992 17

letter 26 20000 17 segment 7 2310 20

mfeat-factors 10 2000 217 shuttle 7 58000 10

mfeat-fourier 10 2000 77 usps 10 9298 257

mfeat-karhunen 10 2000 65 vowel 11 990 14

mfeat-

morphological

10 2000 7 yeast 10 1484 9

mfeat-pixel 10 2000 241 zoo 7 101 18

C4.5 as the base learners for our experiments, as they occupy both ends of the
bias-variance spectrum. In our results tables, a bullet (•) indicates a statistically
significant accuracy gain, and an open circle (◦) indicates a statistically signifi-
cant accuracy reduction (p = 0.05) by using the random-pair method compared
with another method. To establish significance, we used the corrected resampled
paired t-test [14].

4.2 Single Nested Dichotomy

We expect that intelligent class subset selection will have a larger impact in
small ensembles of nested dichotomies. This is due to the fact as ensembles
grow larger, the worse performing ensemble members will not have as great an
influence over the final predictions. Therefore, we first compare a single nested
dichotomy using random-pair selection to a single nested dichotomy obtained
with other class selection methods.

Table 3 shows the classification accuracy and standard deviations of each
method when training a single nested dichotomy. When logistic regression is
used as the base learner, compared to random methods (CBND and ND), we
obtain a significant accuracy gain in most cases, and comparable accuracy in all
others. When using C4.5 as the base learner, our method is preferable to random
methods in some cases, with all other datasets showing a comparable accuracy.

In comparison to NDBC, gives similar accuracy overall, with three signifi-
cantly better results, four significantly worse results, and the rest comparable
over both base learners. It is to be expected that NDBC sometimes has better
performance than our method when only a single nested dichotomy is built. This
is because NDBC deterministically selects the class split that is likely to be the
most easily separable. Our method attempts to produce an easily separable class
subset selection from a pool of possible options, where each option is as likely
as any other.
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4.3 Ensembles of Nested Dichotomies

Ensembles of nested dichotomies typically outperform single nested dichotomies.
The original method for creating an ensemble of nested dichotomies is a ran-
domization approach, but it was later found that better performance can be
obtained by bagging and boosting nested dichotomies [16]. For this reason, we
consider three types of ensembles of nested dichotomies in our experiments:
bagged, boosted with AdaBoost and boosted with MultiBoost (the latter two
applied with resampling based on instance weights). We built ensembles of 10
nested dichotomies for these experiments.

Bagging. Table 4 shows the results of using bagging to construct an ensemble
of nested dichotomies for each method and for both base learners. When logistic

Table 3. Accuracy of a single nested dichotomy with (a) logistic regression and
(b) C4.5 as the base learner.

(a)

Dataset RPND NDBC CBND ND
audiology 75.36±8.45 72.47±8.80 68.55±9.61 71.91±9.85
krkopt 33.13±0.97 33.23±0.80 28.55±1.50 • 28.70±1.56 •
LED24 72.85±2.03 72.73±2.06 67.11±4.08 • 70.26±3.28 •
letter 67.70±2.72 72.23±0.93 ◦ 47.98±3.08 • 53.10±4.36 •
mfeat-factors 95.04±1.99 96.62±1.19 ◦ 91.83±2.20 • 93.08±2.15 •
mfeat-fourier 76.37±3.22 75.17±2.76 73.17±3.34 • 74.00±3.34
mfeat-karhunen 89.83±2.32 90.83±1.75 84.96±3.75 • 86.53±3.06 •
mfeat-morphological 72.64±3.25 70.45±3.03 • 62.31±7.79 • 66.40±5.19 •
mfeat-pixel 71.16±9.98 88.67±2.51 ◦ 61.25±9.25 47.44±9.15 •
optdigits 92.72±2.06 92.00±1.10 87.83±3.01 • 90.95±2.60
page-blocks 96.17±0.75 95.77±0.77 95.44±0.84 • 95.61±0.86
pendigits 90.20±2.32 87.97±0.96 • 82.23±4.42 • 87.08±4.22
segment 94.02±2.40 88.76±1.91 • 87.36±4.16 • 89.11±3.93 •
shuttle 96.87±0.46 96.86±0.20 92.14±6.86 91.72±7.03 •
usps 87.47±1.47 87.64±1.06 84.70±2.26 • 85.83±1.97 •
vowel 81.80±4.46 80.83±4.10 47.86±8.67 • 53.08±8.98 •
yeast 58.35±3.89 59.00±3.58 56.43±4.20 55.91±3.90 •
zoo 90.41±9.15 87.55±9.32 88.88±9.34 89.00±8.65

(b)

Dataset RPND NDBC CBND ND
audiology 76.86±7.23 75.49±7.29 74.45±8.04 73.79±7.62
krkopt 70.04±2.45 69.33±0.99 64.83±1.78 • 65.13±2.19 •
LED24 72.68±2.12 72.99±1.72 72.07±2.08 72.22±2.05
letter 86.32±0.85 86.50±0.88 85.38±0.88 • 86.03±0.88
mfeat-factors 88.47±2.59 88.77±1.73 86.76±2.43 87.47±2.23
mfeat-fourier 74.46±3.09 73.97±2.90 72.63±2.97 73.03±3.29
mfeat-karhunen 82.04±2.84 82.56±2.66 80.11±3.15 80.18±3.28
mfeat-morphological 72.44±2.73 72.27±2.48 71.90±2.40 71.85±2.52
mfeat-pixel 81.83±3.23 81.36±2.79 77.13±3.61 • 79.44±3.91
optdigits 90.72±1.43 90.76±1.15 89.27±1.52 • 89.93±1.44
page-blocks 97.07±0.72 97.05±0.66 97.00±0.67 97.05±0.65
pendigits 95.92±0.70 95.81±0.62 95.60±0.67 95.79±0.68
segment 96.10±1.38 96.59±1.25 95.88±1.49 95.88±1.37
shuttle 99.97±0.02 99.98±0.02 99.97±0.02 99.97±0.03
usps 87.95±1.18 89.44±0.91 ◦ 86.06±1.52 • 86.48±1.37 •
vowel 79.04±4.22 76.96±4.45 76.07±4.75 75.54±4.87
yeast 57.22±3.31 57.58±3.69 56.18±3.43 56.64±3.36
zoo 91.63±8.06 88.65±8.30 90.72±7.12 90.67±8.72



Building Ensembles of Adaptive Nested Dichotomies 189

Table 4. Accuracy of an ensemble of 10 bagged nested dichotomies with (a) logistic
regression and (b) C4.5 as the base learner.

(a)

Dataset RPND NDBC CBND ND
audiology 81.79±7.56 81.25±7.25 80.32±7.69 82.35±7.57
krkopt 33.77±0.78 33.29±0.77 • 31.73±0.98 • 31.99±0.94 •
LED24 73.56±1.90 73.42±2.01 73.50±1.94 73.49±1.85
letter 78.65±0.94 76.16±0.96 • 73.76±1.24 • 74.51±1.27 •
mfeat-factors 98.11±1.02 97.39±1.10 • 97.72±1.09 97.94±1.01
mfeat-fourier 83.08±2.18 80.03±2.25 • 82.16±2.66 82.14±2.39
mfeat-karhunen 95.66±1.54 93.67±1.75 • 94.88±1.56 94.89±1.57
mfeat-morphological 73.71±2.79 72.33±2.87 73.19±2.94 73.55±2.45
mfeat-pixel 94.70±1.95 93.15±1.49 • 90.96±2.51 • 83.65±4.01 •
optdigits 97.15±0.68 93.56±0.93 • 96.50±0.83 • 96.83±0.68
page-blocks 96.46±0.68 96.14±0.66 • 95.92±0.72 • 96.11±0.68 •
pendigits 95.93±0.80 88.90±1.08 • 94.61±1.00 • 95.12±0.88 •
segment 95.37±1.61 89.26±1.95 • 94.03±1.96 • 94.15±1.73 •
shuttle 96.74±0.24 96.86±0.21 94.94±1.52 • 94.86±1.39 •
usps 93.83±0.69 92.02±0.91 • 93.59±0.70 93.32±0.73 •
vowel 89.76±3.04 85.72±3.49 • 77.52±4.90 • 78.30±4.61 •
yeast 58.86±3.85 59.18±3.84 58.91±3.64 58.92±3.62
zoo 94.87±6.03 91.62±8.33 93.36±7.16 93.20±7.37

(b)

Dataset RPND NDBC CBND ND
audiology 79.76±7.32 80.33±6.11 80.65±7.29 79.30±7.30
krkopt 75.70±0.95 73.93±0.90 • 74.20±1.00 • 74.82±1.00 •
LED24 73.22±1.92 73.12±1.82 73.10±1.90 73.23±1.92
letter 93.81±0.55 92.73±0.66 • 93.92±0.50 94.07±0.49
mfeat-factors 95.27±1.58 93.37±1.76 • 95.80±1.40 95.44±1.52
mfeat-fourier 81.36±2.81 78.79±2.64 • 81.30±2.83 80.94±2.76
mfeat-karhunen 92.83±1.96 90.27±2.11 • 92.98±1.42 93.13±1.67
mfeat-morphological 73.38±2.61 72.78±2.72 73.07±2.83 73.37±2.62
mfeat-pixel 92.56±1.91 87.01±2.47 • 92.24±1.82 92.65±1.79
optdigits 97.09±0.70 95.34±0.90 • 97.04±0.72 97.00±0.72
page-blocks 97.41±0.64 97.29±0.62 97.39±0.59 97.36±0.63
pendigits 98.53±0.40 97.67±0.46 • 98.68±0.35 98.64±0.38
segment 97.45±1.09 97.52±1.11 97.54±1.14 97.53±0.88
shuttle 99.98±0.02 99.97±0.02 99.98±0.02 99.98±0.02
usps 94.63±0.59 93.85±0.72 • 94.52±0.59 94.61±0.70
vowel 87.69±3.52 85.82±3.73 89.15±3.46 88.26±3.25
yeast 59.86±3.29 59.55±3.38 59.93±3.54 59.72±3.79
zoo 93.81±7.17 91.70±7.77 93.57±6.81 94.36±6.17

regression is used as a base learner, our method outperforms all other meth-
ods in many cases. When C4.5 is used as a base learner, our method compares
favourably with NDBC and achieves comparable accuracy to the random methods.
Our method is better in a bagging scenario than NDBC because of the first prob-
lem highlighted in Sect. 3.3, i.e., using the furthest centroids to select a class split
results in a deterministic class split. Evidently, with bagged datasets, this method
of class subset selection is too stable to be utilized effectively. Our method, on the
other hand, is sufficiently unstable to be useful in a bagged ensemble.

AdaBoost. Table 5 shows the results of using AdaBoost to build an ensemble of
nested dichotomies for each method and for both base learners. When comparing
with the random methods, we observe a similar result to the bagged ensembles.
When using logistic regression, we see a significant improvement in accuracy in
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Table 5. Accuracy of an ensemble of 10 nested dichotomies boosted with AdaBoost
with (a) logistic regression and (b) C4.5 as the base learner.

(a)

Dataset RPND NDBC CBND ND
audiology 81.42±7.38 80.31±6.92 79.87± 7.49 80.78± 7.50
krkopt 32.99±1.01 32.81±0.77 28.24± 1.47 • 28.66± 1.44 •
LED24 72.41±2.16 72.93±1.99 69.17± 2.77 • 70.44± 2.72 •
letter 71.39±2.50 71.44±1.49 47.42± 3.29 • 55.16± 5.35 •
mfeat-factors 97.71±1.09 97.66±0.99 97.11± 1.25 97.52± 1.17
mfeat-fourier 81.01±2.28 79.96±2.52 80.12± 2.43 80.13± 2.64
mfeat-karhunen 94.93±1.50 94.42±1.61 93.76± 1.54 • 94.01± 1.54
mfeat-morphological 72.81±2.82 71.02±3.10 66.73± 6.80 • 69.38± 5.53
mfeat-pixel 94.15±1.81 93.87±1.59 91.16± 2.39 • 86.21± 3.48 •
nursery 92.51±0.70 92.52±0.70 92.29± 0.74 92.38± 0.69
optdigits 97.01±0.69 96.84±0.77 96.26± 0.74 • 96.37± 0.86 •
page-blocks 96.09±0.80 95.93±0.75 95.43± 0.84 95.77± 0.90
pendigits 94.94±0.93 94.83±0.77 93.86± 1.30 93.67± 1.03 •
segment 94.94±1.40 94.66±1.48 93.88± 1.93 93.82± 1.84
shuttle 96.83±0.45 96.86±0.26 96.51± 1.57 96.40± 2.18
usps 92.03±0.88 91.83±0.86 91.91± 0.91 91.66± 0.85
vowel 90.59±3.11 89.74±3.10 48.45±10.68 • 58.93±11.42 •
yeast 57.97±3.78 58.39±3.62 56.90± 4.05 56.56± 3.66
zoo 94.95±6.40 94.96±6.33 94.38± 7.44 94.77± 6.19

(b)

Dataset RPND NDBC CBND ND
audiology 83.64±7.37 83.29±6.68 82.63±6.87 82.58±7.36
krkopt 81.01±0.78 79.37±0.80 • 77.25±0.95 • 78.36±1.04 •
LED24 69.59±2.13 69.49±2.11 69.04±1.95 69.42±1.78
letter 94.58±0.49 94.37±0.48 94.30±0.49 94.60±0.55
mfeat-factors 95.75±1.36 95.31±1.48 95.49±1.38 95.62±1.37
mfeat-fourier 80.43±2.74 79.54±2.60 80.12±2.49 80.74±2.47
mfeat-karhunen 93.20±1.80 92.67±1.83 92.96±1.76 92.85±1.84
mfeat-morphological 70.48±3.10 70.45±3.19 70.13±2.84 70.50±2.45
mfeat-pixel 93.76±1.53 93.27±1.80 92.48±1.80 • 93.01±1.83
optdigits 97.31±0.72 97.23±0.70 97.25±0.68 97.20±0.70
page-blocks 97.05±0.62 97.05±0.66 97.11±0.64 97.11±0.66
pendigits 98.95±0.30 98.89±0.33 98.91±0.30 98.93±0.28
segment 98.23±0.84 98.24±0.84 98.09±0.86 98.09±0.94
shuttle 99.99±0.01 99.99±0.01 99.99±0.01 99.99±0.01
usps 94.85±0.64 94.86±0.64 94.41±0.72 94.59±0.66
vowel 91.95±2.71 90.73±3.00 91.28±2.82 91.30±2.78
yeast 57.39±3.76 57.42±4.02 56.93±3.27 57.25±4.19
zoo 95.45±6.19 95.53±6.39 95.15±6.21 95.36±6.13

many cases, and when C4.5 is used, we typically see comparable results, with
a small number of significant accuracy gains. When comparing with NDBC, we
see a small improvement for the vast majority of datasets, but these differences
are almost never individually significant. In one instance (krkopt with C4.5 as
the base learner), we achieve a significant accuracy gain using our method.

MultiBoost. Table 6 shows the results of using MultiBoost to build an
ensemble of nested dichotomies for each method and for both base learners.
Compared to the random methods, again we see similar results to the other
ensemble methods – using logistic regression as the base learner results in many
significant improvements, and using C4.5 as the base learner typically produces
comparable results, with few significant improvements. In comparison to NDBC,
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Table 6. Accuracy of an ensemble of 10 nested dichotomies boosted with MultiBoost
with (a) logistic regression and (b) C4.5 as the base learner.

(a)

Dataset RPND NDBC CBND ND
audiology 80.55±7.80 80.05±7.20 78.90± 7.51 79.53± 7.73
krkopt 32.99±1.01 32.81±0.77 28.24± 1.47 • 28.66± 1.44 •
LED24 73.38±1.81 73.31±2.15 72.01± 2.67 72.75± 2.38
letter 77.29±1.83 75.36±1.03 • 47.42± 3.29 • 55.85± 6.25 •
mfeat-factors 97.82±1.16 97.70±1.09 97.40± 1.31 97.53± 1.17
mfeat-fourier 82.12±2.28 80.22±2.28 • 80.22± 2.35 • 80.72± 2.44
mfeat-karhunen 95.22±1.59 94.70±1.57 93.94± 1.62 • 94.17± 1.71
mfeat-morphological 73.63±2.80 72.33±2.64 67.52± 7.04 • 70.40± 5.74
mfeat-pixel 94.37±1.48 94.16±1.30 91.89± 2.71 • 86.37± 4.74 •
optdigits 97.03±0.57 96.10±0.79 • 96.26± 0.78 • 96.47± 0.83 •
page-blocks 96.39±0.69 96.10±0.72 96.01± 0.68 • 96.19± 0.74
pendigits 96.02±0.73 94.27±1.32 • 94.17± 1.05 • 94.76± 0.92 •
segment 95.56±1.40 94.11±1.92 • 94.12± 1.93 • 94.35± 1.63 •
shuttle 96.89±0.27 96.87±0.24 96.63± 1.53 96.65± 1.59
usps 93.12±0.78 92.45±0.84 • 92.62± 0.83 92.57± 0.84
vowel 89.53±3.15 87.52±3.03 48.92±11.26 • 60.91±12.38 •
yeast 58.28±4.19 58.60±3.93 57.13± 4.03 57.03± 3.88
zoo 94.97±6.49 94.65±6.79 94.46± 7.35 94.07± 7.02

(b)

Dataset RPND NDBC CBND ND
audiology 81.32±7.06 82.14±7.39 81.25±7.48 80.32±7.37
krkopt 76.22±0.80 75.05±0.84 • 73.54±1.03 • 74.58±1.14 •
LED24 72.27±2.00 71.90±1.99 71.78±1.89 71.96±1.99
letter 93.98±0.47 93.65±0.53 93.78±0.55 93.98±0.46
mfeat-factors 95.63±1.33 94.82±1.45 95.32±1.46 95.14±1.48
mfeat-fourier 80.46±2.40 79.54±2.36 80.36±2.57 80.68±3.00
mfeat-karhunen 92.88±1.95 91.82±1.91 92.16±2.03 92.64±1.81
mfeat-morphological 71.30±2.75 71.26±2.85 71.32±3.11 71.75±2.84
mfeat-pixel 93.10±1.71 91.15±1.86 • 91.75±1.67 • 92.40±1.90
optdigits 97.00±0.70 96.80±0.75 96.91±0.73 97.00±0.69
page-blocks 97.33±0.65 97.24±0.63 97.34±0.64 97.29±0.66
pendigits 98.78±0.35 98.69±0.35 98.78±0.33 98.75±0.28
segment 97.90±0.93 98.06±0.94 97.79±0.95 97.88±0.99
shuttle 99.99±0.02 99.99±0.02 99.99±0.02 99.99±0.01
usps 94.67±0.65 94.48±0.64 94.25±0.58 94.33±0.71
vowel 88.60±3.40 88.33±3.61 88.79±3.18 88.34±3.56
yeast 58.91±3.58 58.91±3.56 58.53±3.63 58.35±3.92
zoo 95.09±6.73 94.17±7.34 94.26±6.48 95.66±6.11

we see many small (although statistically insignificant) improvements across
both base learners, with some significant gains in accuracy on some datasets.

4.4 Training Time

Figure 6 shows the training time in milliseconds for training a single RPND and
a single NDBC, with logistic regression and C4.5 as the base learners for each
of the datasets used in this evaluation. As can be seen from the plots, there
is a computational cost for building an RPND over an NDBC, which is to be
expected as there is an additional classifier trained and tested at each split node
of the tree. The gradient of both plots is approximately one, which indicates that
our method does not add additional computational complexity to the problem.
The runtime is comparatively worse for logistic regression than for C4.5.
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Fig. 6. Log-log plots of the training time for a single RPND and a single NDBC, for
both base learners.
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Fig. 7. Nested dichotomies trained on CIFAR-10, with (a) random-pair selection, and
(b) centroid-based selection.
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4.5 Case Study: CIFAR-10

To test how well our method adapts to other base learners, we trained nested
dichotomies with convolutional networks as the base learners to classify the
CIFAR-10 dataset [12]. Convolutional networks learn features from the data
automatically, and perform well on high dimensional, highly correlated data such
as images. We implemented the nested dichotomies and convolutional networks
in Python using Lasagne [4], a wrapper for Theano [1,2]. The convolutional
network that we used as the base learner is relatively simple; it has two convolu-
tional layers with 32 5 × 5 filters each, one 3 × 3 maxpool layer with 2 × 2 stride
after each convolutional layer, and one fully-connected layer of 128 units before
a softmax layer.

As discussed in Sect. 3.3, the centroids for a dataset like CIFAR-10 appear
to not be very descriptive, and as such, we expect NDBC with convolutional
networks as the base learner to produce class splits that are not as well founded
as those in RPND. We present a visualisation of the NDBC produced from the
CIFAR-10 dataset, and an example of a nested dichotomy built with random-pair
selection (Fig. 7). We can see that both methods produce a reasonable dichotomy
structure, but there are some cases in which the random-pair method results in
more intuitive splits. For example, the root node of the RPND splits the full
set of classes into the two natural subsets (vehicles and animals), whereas the
NDBC omits the ‘car’ class from the left-hand subset. Two pairs of similar
classes in the animal subset – ‘deer’ and ‘horse’, and ‘cat’ and ‘dog’ – are kept
together until near the leaves in the RPND, but are split up relatively early
in the NDBC. Despite this, the accuracy and runtime of both methods were
comparable. Of course, the quality of the nested dichotomy under random-pair
selection is dependent on the initial pair of classes that is selected. If two classes
that are similar to each other are selected to be the initial random pair, the tree
can end up with splits that make less intuitive sense.

5 Conclusion

In this paper, we have proposed a semi-random method of class subset selec-
tion in ensembles of nested dichotomies, where the class selection is directly
based on the ability of the base classifier to separate classes. Our method
non-deterministically produces an easily separable class-split, which not only
improves the accuracy over random methods for a single classifier, but also
for ensembles of nested dichotomies. Our method also outperforms other non-
random methods when nested dichotomies are used in a bagged ensemble and
an ensemble boosted with MultiBoost, and otherwise gives comparable results.

In the future, it would be interesting to explore selecting several random
pairs of classes at each node, and choosing the best of the pairs to create the
final class subsets. This will obviously increase the runtime, but may help to
produce more accurate individual classifiers and small ensembles. We also wish
to explore the use of convolutional networks in nested dichotomies further.
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Abstract. Online reviews provide viewpoints on the strengths and
shortcomings of products/services, influencing potential customers’ pur-
chasing decisions. However, the proliferation of non-credible reviews —
either fake (promoting/ demoting an item), incompetent (involving irrel-
evant aspects), or biased — entails the problem of identifying credible
reviews. Prior works involve classifiers harnessing rich information about
items/users — which might not be readily available in several domains —
that provide only limited interpretability as to why a review is deemed
non-credible.

This paper presents a novel approach to address the above issues.
We utilize latent topic models leveraging review texts, item ratings, and
timestamps to derive consistency features without relying on item/user
histories, unavailable for “long-tail” items/users. We develop models,
for computing review credibility scores to provide interpretable evidence
for non-credible reviews, that are also transferable to other domains —
addressing the scarcity of labeled data. Experiments on real-world
datasets demonstrate improvements over state-of-the-art baselines.

1 Introduction

Motivation: Online reviews about hotels, restaurants, consumer goods, movies,
books, drugs, etc. are an invaluable resource for Internet users, providing a
wealth of related information for potential customers. Unfortunately, correspond-
ing forums such as TripAdvisor, Yelp, Amazon, and others are being increasingly
game to manipulative and deceptive reviews: fake (to promote or demote some
item), incompetent (rating an item based on irrelevant aspects), or biased (giv-
ing a distorted and inconsistent view of the item). For example, recent studies
depict that 20% of Yelp reviews might be fake and Yelp internally rejects 16%
of user submissions [20] as “not-recommended”.

Starting with the work of [11], research efforts have been undertaken to
automatically detect non-credible reviews. In parallel, industry (e.g., stakehold-
ers such as Yelp) has developed its own standards1 to filter out “illegitimate”
reviews. Although details are not disclosed, studies suggest that these filters
tend to be fairly crude [24]; for instance, exploiting user activity like the number

1 officialblog.yelp.com/2009/10/why-yelp-has-a-review-filter.html.

c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 195–213, 2016.
DOI: 10.1007/978-3-319-46227-1 13
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of reviews posted, and treating users whose ratings show high deviation from
the mean/majority ratings as suspicious. Such a policy seems to over-emphasize
trusted long-term contributors and suppress outlier opinions off the mainstream.
Moreover, these filters also employ several aggregated metadata, and are thus
hardly viable for “long tail” items having very few reviews.

State of the Art: Existing research has cast the problem of review credibility
into a binary classification task, a review is either credible or deceptive, using
supervised and semi-supervised methods that largely rely on features about users
and their activities as well as statistics about item ratings. Most techniques also
consider spatio-temporal patterns of user activities like IP addresses or user
locations (e.g., [14,15]), burstiness of posts on an item or an item group (e.g.,
[6]), and further correlation measures across users and items (e.g., [25]). How-
ever, the classifiers built this way are mostly geared for popular items, and the
meta-information about user histories and activity correlations are not always
available. For example, someone interested in opinions on a new art film or a
“long-tail” bed-and-breakfast in a rarely visited town, is not helped at all by
the above methods. Several existing works [21,26,27] consider the textual con-
tent of user reviews for tackling opinion spam by using word-level unigrams or
bigrams as features, along with specific lexicons (e.g., LIWC [28] psycholinguistic
lexicon, WordNet Affect [30]), to learn latent topic models and classifiers (e.g.,
[16]). Although these methods achieve high classification accuracy, they do not
provide any interpretable evidence as to why a certain review is classified as
non-credible.

Problem Statement: This paper focuses on detecting credible reviews with
limited information, namely, in the absence of rich data about user histories,
community-wide correlations, and for “long-tail” items. In the extreme case,
we are provided with only the review texts and ratings for an item. Our goal
is then to compute a credibility score for the reviews and to provide possibly
interpretable evidence for explaining why certain reviews have been categorized
as non-credible.

Approach: Our proposed method to this end is to learn a model based on
latent topic models and combining them with limited metadata to provide a
novel notion of consistency features characterizing each review. We use the LDA-
based Joint Sentiment Topic model (JST) [18] to cast the user review texts into a
number of informative facets — per-item, aggregating the text among all reviews
for the same item, and also per-review. This allows us to identify, score, and
highlight inconsistencies that may appear between a review and the community’s
overall characterization of an item. Additionally, we learn inconsistencies such
as discrepancy between the contents of a review and its rating, and temporal
“bursts” — where a number of reviews are written in a short span of time
targeting an item. We propose five kinds of inconsistencies in our credibility
scoring model, fed into a Support Vector Machine for classification, or for ordinal
ranking.
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Contribution: In summary, our contributions are summarized as:

• Model: We develop a novel consistency model for credibility analysis of reviews
that works with limited information, with particular attention to “long-tail”
items, and offers interpretable evidence for reviews classified as non-credible.

• Tasks: We investigate how credibility scores affect the overall ranking of items.
To address the scarcity of labeled training data, we transfer the learned model
from Yelp to Amazon to rank top-selling items based on (classified) credible
user reviews. In the presence of proxy labels for item “goodness” (e.g., item
sales rank), we develop a better ranking model for domain adaptation.

• Experiments: We perform extensive experiments in TripAdvisor, Yelp, and
Amazon to demonstrate the viability of our method and its advantages over
state-of-the-art baselines in dealing with “long-tail” items and providing inter-
pretable evidence.

2 Related Work

Previous works on fake review/opinion spam detection focused on 2 different
aspects:

Linguistic Analysis [21,26,27] – This approach exploits the distributional dif-
ference in the wordings of authentic and manually-created fake reviews using
word-level features. However, such artificially created fake review datasets give
away explicit features not dominant in real-world data, as confirmed by a study
on Yelp filtered reviews [24], where the n-gram features performed poorly. Addi-
tionally, linguistic features such as text sentiment [33], readability score (e.g.,
Automated readability index (ARI), Flesch reading ease, etc.) [9], textual coher-
ence [21], and rules based on Probabilistic Context Free Grammar (PCFG) [7]
have been studied in this context.

Rating and Activity Analysis – In the absence of proper ground-truth data,
prior works make simplistic assumptions, e.g., duplicates and near-duplicates
are fake, and make use of extensive background information like brand name,
item description, user history, IP addresses and location, etc. [10,11,14,17,22–
24,29,32]. Thereafter, regression models trained on all these features are used to
classify reviews as credible or deceptive. Some of these works also use crude or ad-
hoc language features like content similarity, presence of literals, numerals, and
capitalization. In contrast to these works, our approach uses limited information
about users and items catering to a broad domain of applications. We harvest
several consistency features from user rating and review text that give some
interpretation as to why a review should be deemed non-credible.

Learning to Rank – Supervised models have also been developed to rank items
from constructed item feature vectors [19]. Such techniques optimize measures
like Discounted Cumulative Gain, Kendall-Tau, and Reciprocal Rank to generate
item ranking similar to the training data based on the feature vectors. We use
one such technique, and show its performance can be improved by removing
non-credible item reviews.



198 S. Mukherjee et al.

3 Review Credibility Analysis

3.1 Language Model

Previous works [3,21,26,27] in linguistic analysis explore distributional difference
in the wordings between deceptive and authentic reviews. In general, authen-
tic reviews tend to have more sensorial and concrete language than deceptive
reviews, with higher usage of nouns, adjectives, prepositions, determiners, and
coordinating conjunctions; whereas deceptive reviews were shown to use more
verbs, adverbs, and superlatives manifested in exaggeration for imaginary writ-
ing. [26,27] found that authentic hotel reviews are more specific about spatial
configurations (small room, low ceiling, etc.) and aspects like location, amenities
and cost; whereas deceptive reviews focus on aspects external to the item being
reviewed (like traffic jam, children, etc.). Extreme opinions were also found to be
dominant in deceptive reviews to assert stances, whereas authentic reviews have
a more balanced view. Our latent facet model implicitly exploits these features
to find opinion on important item facets and the overall rating distribution.

In order to explicitly capture such distributional difference in the language
of credible and non-credible reviews at word-level, we use unigram and bigram
language features shown to outperform other fine-grained psycholinguistic fea-
tures (e.g., LIWC lexicon) and Part-of-Speech tags [27]. We also experimented
with WordNet Affect to capture fine-grained emotional dimensions (like anger,
hatred, and confidence), which, however, were seen not to perform well. In gen-
eral, the bigram features capture context-dependent information to some extent,
and together with simple unigram features performed the best, with the presence
or absence of words mattering more than their frequency for credibility analy-
sis. In our model, all the features were length normalized, retaining punctuations
(like ‘!’) and capitalization as non-credible reviews manifesting exaggeration tend
to over-use the latter features (e.g., “the hotel was AWESOME !!!”).

Feature vector construction: Consider a vocabulary V of unique unigrams
and bigrams in the corpus (after removing stop words). For each token type
fi ∈ V and each review dj , we compute the presence/absence of words, wij ,
of type fi occurring in dj , thus constructing a feature vector FL(dj) = 〈wij =
I(wij = fi) / length(dj)〉,∀i, with I(.) denoting an indicator function (notations
used are presented in Table 1).

3.2 Facet Model

Given review snippets like “the hotel offers free wi-fi”, we now aim to find the
different facets present in the reviews along with their corresponding sentiment
polarities by extracting the latent facets from the review text, without the help
of any explicit facet or seed words, e.g., ideally “wi-fi” should be mapped to a
latent facet cluster like “network, Internet, computer, access, ...”. We also want
to extract the sentiment expressed in the review about the facet. Interestingly,
although “free” does not have a polarity of its own, in the above example “free” in
conjunction with “wi-fi” expresses a positive sentiment of a service being offered
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without charge. The hope is that although “free” does not have an individual
polarity, it appears in the neighborhood of words that have known polarities
(from lexicons). This helps in the joint discovery of facets and sentiment labels,
as “free wi-fi” and “internet without extra charge” should ideally map to the
same facet cluster with similar polarities using their co-occurrence with similar
words with positive polarities. In this work, we use the Joint Sentiment Topic
Model approach (JST) [18] to jointly discover the latent facets along with their
expressed polarities.

Consider a set of reviews 〈D〉 written by users 〈U〉 on a set of items 〈I〉,
with rd ∈ R being the rating assigned to review d ∈ D. Each review document
d consists of a sequence of words Nd denoted by {w1, w2, ...wNd

}, and each
word is drawn from a vocabulary V indexed by 1, 2, ..V . Consider a set of facet
assignments z = {z1, z2, ...zK} and sentiment label assignments l = {l1, l2, ...lL}
for d, where each zi can be from a set of K possible facets, and each label li is
from a set of L possible sentiment labels.

JST adds a layer of sentiment in addition to the topics as in standard LDA [1].
It assumes each document d to be associated with a multinomial distribution θd

over facets z and sentiment labels l with a symmetric Dirichlet prior α. θd(z, l)
denotes the probability of occurrence of facet z with polarity l in document d.
Topics have a multinomial distribution φz,l over words drawn from a vocabulary
V with a symmetric Dirichlet prior β. φz,l(w) denotes the probability of the
word w belonging to the facet z with polarity l. In the generative process, a
sentiment label l is first chosen from a document-specific rating distribution πd

with a symmetric Dirichlet prior γ. Thereafter, a facet z from θd conditioned on
l is chosen, and subsequently a word w from φ conditioned on z and l. Exact
inference is not possible due to intractable coupling between Θ and Φ, and thus
we use Collapsed Gibbs Sampling for approximate inference.

Let n(d, z, l, w) denote the count of the word w occurring in document d
belonging to the facet z with polarity l. The conditional distribution for the
latent variable z (with components z1 to zK) and l (with components l1 to lL)
is given by:

P (zi = k, li = j|wi = w, z−i, l−i, w−i) ∝
n(d, k, j, .) + α∑

k n(d, k, j, .) + Kα
× n(., k, j, w) + β∑

w n(., k, j, w) + V β
× n(d, ., j, .) + γ∑

j n(d, ., j, .) + Lγ

(1)

In the above equation, the operator (.) in the count indicates marginalization,
i.e., summing up the counts over all values for the corresponding position in
n(d, z, l, w), and the subscript −i denotes the value of a variable excluding the
data at the ith position.

3.3 Consistency Features

We extract the following features from the latent facet model enabling us to
detect inconsistencies in reviews and ratings of items for credibility analysis.
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1. User Review – Facet Description: The facet-label distribution of dif-
ferent items differ; i.e., for some items, certain facets (with polarity) are more
important than others. For instance, the “battery life” and “ease of use” for con-
sumer electronics are more important than “color”; for hotels, certain services
are available for free (e.g., wi-fi) which may be charged elsewhere. Hence, user
reviews involving less relevant facets of the item, e.g., downrating hotels for “not
allowing pets”, should also be detected.

Given a review d(i) on an item i ∈ I with a sequence of words {w} and
previously learned Φ, its facet label distribution Φ

′
d(i) with dimension K × L is

given by:
φ

′
k,l =

∑
w:l∗=argmaxl φk,l(w)

φk,l∗(w) (2)

For each word, w, and latent facet dimension, k, we consider the sentiment
label l∗ that maximizes the facet-label-word distribution φk,l(w), and is aggre-
gated over all words. This facet-label distribution for review Φ

′
d(i) (dimension

K ×L) forms a feature vector capturing the importance of various latent dimen-
sions and domain-specific facet-labels.

2. User Review — Rating: The user-assigned rating corresponding to the
review should be consistent to her opinion expressed in the review text. For
example, the user is unlikely to give an average rating to an item when she
expresses a positive opinion about all the important facets of the item. The
inferred rating distribution π

′
d (with dimension L) of a review d consisting of a

sequence of words {w} and learned Φ is computed as:

π
′
l =

∑
w,k:{k∗,l∗}=argmaxk,l φk,l(w)

φk∗,l∗(w) (3)

For each word, we consider the facet and label that jointly maximizes the facet-
label-word distribution, and aggregate over all the words and facets. The absolute
deviation (of dimension L) between the user-assigned rating πd, and estimated
rating π

′
d from user text is taken as a component in the overall feature vector.

3. User Rating: Previous works [9,27,31] on opinion spam found that fake
reviews tend to have overtly positive or overtly negative opinions. Therefore, we
also use π

′
d as a component of the overall feature vector to detect cues from such

extreme ratings.

4. Temporal Burst: Typically observed in group spamming, where a number
of reviews are posted in a short span of time. Consider a set of reviews {dj}
posted at timepoints {tj} for a specific item. The burstiness of review di for the
item is

( ∑
j,j �=i

1
1+eti−tj

)
, with exponential decay used to weigh the temporal

proximity of reviews for burst.

5. User Review – Item Description: In general, the description of the facets
in an item review should not differ much from that of the majority. For example,
if majority says the “hotel offers free wi-fi”, and a user review says “internet
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is charged” — this presents a possible inconsistency. For the facet model this
corresponds to word clusters having the same facet label but different sentiment
labels. However, experimentally we found this feature to play a weak role in the
presence of other inconsistency features.

We aggregate the per-review facet distribution φ
′
k,l over all the reviews d(i)

on the item i to obtain the facet-label distribution Φ
′′
(i) of the item. We use the

Jensen-Shannon divergence, a symmetric and smoothed version of the Kullback-
Leibler divergence as a feature. This depicts how much the facet-label distribu-
tion in the given review diverges from the general opinion of other people about
the item.

JSD(Φ
′
d(i) || Φ

′′
(i)) =

1
2
(D(Φ

′
d(i) || M) + D(Φ

′′
(i) || M)) (4)

where, M = 1
2 (Φ

′
d(i) + Φ

′′
(i)), and D represents Kullback-Leibler divergence.

Feature vector construction: For each review dj , the above consistency fea-
tures are computed, and a facet feature vector 〈FT (dj)〉 of dimension 2 + K ×
L + 2L is created.

3.4 Behavioral Model

Earlier works [10,11,17] on review spam show that user-dependent models
detecting user-preferences and biases perform well in credibility analysis. How-
ever, such information is not always available, especially for newcomers, and not
so active users in the community. Besides, [22,23] show that spammers tend to
open multiple fake accounts to write reviews for malicious activities — using
each of those accounts sparsely to avoid detection. Therefore, instead of relying
on extensive user history, we use simple proxies for user activity that are easier
to aggregate from the community:

1. User Posts: number of posts written by the user in the community.
2. Review Length: longer reviews tend to go off-topic (high emotional digres-

sion).
3. User Rating Behavior: absolute deviation of the review rating from the

mean and median rating of the user to other items, as well as the first three
moments of the user rating distribution — capturing whether a user has a
typical rating behavior.

4. Item Rating Pattern: absolute deviation of the item rating from the mean
and median rating obtained from other users captures the extent to which the
user disagrees with other users about the item quality; the first three moments
of the item rating distribution captures the general item rating pattern.

5. User Friends: number of friends of the user.
6. User Check-in: if the user checked-in the hotel — first hand experience of

the user adds to the review credibility.
7. Elite: elite status of the user in the community.
8. Review helpfulness: number of up-votes received to capture the quality of

reviews.
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Note that user rating behavior and item rating pattern are also captured implic-
itly using the consistency features in the latent facet model.

Since we aim to detect credible reviews in scenarios of limited infor-
mation, we split the above activity or behavioral features into two compo-
nents: (a) Activity− using features [1 − 4], obtained straightforward from the
tuple 〈userId, itemId, review, rating〉 and easily available even for “long-tail”
items/users; and (b) Activity+ using all the features. However the latter requires
additional information (features [5−−8]) that might not always be available, or
takes long time to aggregate for new items/users.

Feature vector construction: For each review dj by user uk, we construct a
behavioral feature vector 〈FB(dj)〉 using the above features.

3.5 Application Oriented Tasks

Credible Review Classification: In the first task, we classify reviews as cred-
ible or not. For each review dj by user uk, we construct the joint feature vector
F (dj) = FL(dj)∪FT (dj)∪FB(dj), and use Support Vector Machines (SVM) [4]
for classification of the reviews. SVM maps the features (using Kernels) to a high
dimensional space, and constructs a hyperplane to separate the two categories.
Although there can be an infinite number of such hyperplanes possible, SVM
constructs the one with the largest functional margin given by the distance of
the nearest point to the hyperplane on each side of it. New points are mapped to
the same space and classified to a category based on which side of the hyperplane
it lies. We use a linear kernel shown to perform the best for text classification
tasks. We use the L2 regularized L2 loss SVM with dual formulation from the
LibLinear package (csie.ntu.edu.tw/cjlin/liblinear) [5], and report 10-fold cross-
validation classification accuracy on TripAdvisor and Yelp datasets.

Item Ranking: Due to the scarcity of ground-truth data pertaining to review
credibility, a more suitable way to evaluate our model is to examine the effect
of non-credible reviews on the relative ranking of items in the community. For
instance, in case of popular items with large number of reviews, even if a fraction
of it were non-credible, its effect would not be so severe as would be on “long-tail”
items with fewer reviews.

A simple way to find the “goodness” of an item is to aggregate ratings of
all reviews – using which we also obtain a ranking of items. We use our model
to filter out non-credible reviews, aggregate ratings of credible reviews, and re-
compute the item ranks.

Evaluation Measures – We use the Kendall-Tau Rank Correlation Co-efficient
(τ) to find effectiveness of the rankings, against a reference ranking — for
instance, the sales rank of items in Amazon. τ measures the number of con-
cordant and discordant pairs, to find whether the ranks of two elements agree
or not based on their scores, out of the total number of combinations possible.
Given a set of observations {x, y}, any pair of observations (xi, yi) and (xj , yj),
where i �= j, are said to be concordant if either xi > xj and yi > yj , or xi < xj

http://csie.ntu.edu.tw/cjlin/liblinear
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and yi < yj , and discordant otherwise. If xi = xj or yi = yj , the ranks are tied —
neither discordant, nor concordant.

We use the Kendall-Tau-B measure (τb) which allows for rank adjustment.
Consider nc, nd, tx, and ty to be the number of concordant, discordant, tied
pairs on x, and tied pairs on y respectively, whereby Kendall-Tau-B is given by:

nc−nd√
(nc+nd+tx)(nc+nd+ty)

.

However, this is a conservative estimate as multiple items — typically the
top-selling ones in Amazon — have the same rating. Therefore, we use a second
estimate (Kendall-Tau-M (τm)) considering non-zero tied ranks to be concor-
dant. Note that, an item can have a zero-rank if all of its reviews are classified
as non-credible. A high positive (or, negative) value of Kendall-Tau indicates
the two series are positively (or, negatively) correlated; whereas a value close to
zero indicates they are independent.

Domain Transfer from Yelp to Amazon – A typical issue in credibility
analysis task is the scarcity of labeled training data. In the first task, we use
labels from the Yelp Spam Filter (considered to be the industry standard) to
train our model. However, such ground-truth labels are not available in Amazon.
Although, in principle, we can train a model MYelp on Yelp, and use it to filter
out non-credible reviews in Amazon.

Transferring the learned model from Yelp to Amazon (or other domains)
entails using the learned weights of features in Yelp that are analogous to the
ones in Amazon. However, this process encounters the following issues:

• Facet distribution of Yelp (food and restaurants) is different from that of
Amazon (products such as software, and consumer electronics). Therefore,
the facet-label distribution and the corresponding learned feature weights from
Yelp cannot be directly used, as the latent dimensions are different.

• Additionally, specific metadata like check-in, user-friends, and elite-status are
missing in Amazon.

However, the learned weights for the following features can still be directly used:

• Certain unigrams and bigrams, especially those depicting opinion, that occur
in both domains.

• Behavioral features like user and item rating patterns, review count and
length, and usefulness votes.

• Deviation features derived from Amazon-specific facet-label distribution that
is obtained using the JST model on Amazon corpus:
• Deviation (with dimension L) of the user assigned rating from that inferred

from review content.
• Distribution (with dimension L) of positive and negative sentiment as

expressed in the review.
• Divergence, as a unary feature, of the facet-label distribution in the review

from the aggregated distribution over other reviews on a given item.
• Burstiness, as a unary feature, of the review.
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Fig. 1. Variation of Kendall-
Tau-M (τm) on different Amazon
domains with parameter C− varia-
tion (using model MYelp trained in Yelp

and tested in Amazon).

Table 1. List of variables and nota-
tions used with corresponding descrip-
tion.

Notation Description

U, D, I set of users, reviews, and items resp.

d, rd review text and associated rating

V, f unigrams and bigrams vocab. &token
types

wij word of token type fi in review dj

I(·) indicator fn. for presence/absence of
words

z, l set of facets and sentiment labels
resp.

K, L cardinality of facets and sentiment
labels

θd(z, l) multinom. prob. distr. of facet z with
sentiment label l in document d

φz,l(w) multinom. prob. distr. of word w

belonging to facet z with
sentiment label l

Φ′, Φ′′ facet-label distr. of review and item
resp.

α, β, γ Dirichlet priors

π, π′ review rating distr. &inferred rating
distr.

n(·) word count in reviews

F x(dj) feature vec. of review dj using lang.
(x=L), consistency (x=T), and
behavior (x=B)

C+, C− C-SVM regularization parameters

Using the above components, that are common to both Yelp and Amazon, we
first re-train the model MYelp from Yelp to remove the non-contributing features
for Amazon.

Now, a direct transfer of the model weights from Yelp to Amazon assumes
the distribution of credible to non-credible reviews, and corresponding feature
importance, to be the same in both domains — which is not necessarily true. In
order to boost certain features to better identify non-credible reviews in Amazon,
we tune the soft margin parameter C in the SVM. We use C-SVM [2], with slack
variables, that optimizes:

minw,b,ξi≥0
1
2
wTw + C+

∑
yi=+1

ξi + C− ∑
yi=−1

ξi

subject to ∀{(xi, yi)}, yi(wTxi + b) ≥ 1 − ξi (5)

C+ and C− are regularization parameters for positive and negative class
(credible and deceptive), respectively. The parameters {C} provide a trade off
as to how wide the margin can be made by moving around certain points which
incurs a penalty of {Cξi}. A high value of C− places a large penalty for mis-
classifying instances from the negative class, and therefore boosts certain features
from that class. As the value of C− increases, the model classifies more reviews
as non-credible. In the worse case, all reviews of an item are deemed as non-
credible, with the aggregated item rating being 0.
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Table 2. Dataset statistics for review classification. (Yelp∗ denotes balanced dataset using

random sampling.)

Dataset Non-credible reviews Credible reviews Items Users

TripAdvisor 800 800 20 -

Yelp 5169 37,500 273 24,769

Yelp∗ 5169 5169 151 7898

Table 3. Amazon dataset statistics for item ranking, with cumulative #items and
varying #reviews.

Domain #Users #Reviews #Items with reviews per-item

≤5 ≤10 ≤20 ≤30 ≤40 ≤50 Total

Consumer
electronics

94,664 121,234 14,797 16,963 18,350 18,829 19,053 19,187 19,518

Software 21,825 26,767 3,814 4,354 4,668 4,767 4,807 4,828 4,889

Sports 656 695 202 226 233 235 235 235 235

We use τm to find the optimal value of C− by varying it in the interval
C− ∈ {0, 5, 10, 15, ...150} using a validation set from Amazon as shown in Fig. 1.
We observe that as C− increases, τm also increases till a certain point as more
and more non-credible reviews are filtered out, after which it stabilizes.

Ranking SVM – Our previous approach uses the model MYelp trained on Yelp,
with the references sales ranking in Amazon being used only for evaluating the
item rankings on the Kendall-Tau measure. To obtain a good item ranking based
on credible reviews, a model MAmazon that directly optimizes for Kendall-Tau
using the reference ranking as training labels can be used. This allows the use of
the entire feature space available in Amazon, including the explicit facet-label
distribution and the full vocabulary. The feature space is constructed similarly
to that of the Yelp dataset.

The goal of Ranking SVM [12] is to learn a ranking function which is con-
cordant with a given ordering of items. The objective is to learn w such that
w · xi > w · xj for most data pairs {(xi,xj) : yi > yj ∈ R}. Although
the problem is known to be NP-hard, it is approximated using SVM tech-
niques with pairwise slack variables ξi,j . The optimization problem is equiv-
alent to that of classifying SVM, but now operating on pairwise difference
vectors (xi − xj) with corresponding labels +1/ − 1 indicating which one
should be ranked ahead. We use the implementation of [12] (obtained from
www.cs.cornell.edu/people/tj/svm light/svm rank.html) that maximizes the
empirical Kendall-Tau by minimizing the number of discordant pairs.

Unlike the classification task, where labels are per-review, the ranking task
requires labels per-item. Consider 〈fi,j,k〉 to be the feature vector for the
jth review of an item i, with k indexing an element of the feature vector.

www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
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We aggregate these feature vectors element-wise over all the reviews on item
i to obtain its feature vector 〈

∑
j fi,j,k∑

j 1 〉.

4 Experimental Setup

Parameter Initialization: The sentiment lexicon from [8] consisting of 2006
positive and 4783 negative polarity bearing words is used to initialize the review
text based facet-label-word tensor Φ prior to inference. We consider the number
of topics, K = 20 for Yelp, and K = 50 for Amazon with the review sentiment
labels L = {+1,−1} (corresponding to positive and negative rated reviews)
initialized randomly. The symmetric Dirichlet priors are set to α = 50/K, β =
0.01, and γ = 0.1.

Datasets and Ground-Truth: In this work, we consider the following datasets
(refer to Tables 2 and 3) with available ground-truth information.
• The TripAdvisor Dataset [26,27] consists of 1600 reviews from TripAdvisor
with positive (5 star) and negative (1 star) sentiment — comprising 20 cred-
ible and 20 non-credible reviews for each of 20 most popular Chicago hotels.
The authors crawled the credible reviews from online review portals like Tri-
pAdvisor; whereas the non-credible ones were generated by users in Amazon
Mechanical Turk. The dataset has only the review text and sentiment label
(positive/negative ratings) with corresponding hotel names, with no other infor-
mation on users or items.
• The Yelp Dataset consists of 37.5K recommended (i.e., credible) reviews, and
5K non-recommended (i.e., non-credible) reviews given by the Yelp filtering algo-
rithm, on 273 restaurants in Chicago. For each review, we gather the following
information: 〈userId, itemId, timestamp, rating, review,metadata〉. The meta-
data consists of some user activity information as outlined in Sect. 3.4.

The reviews marked as “not recommended” by the Yelp spam filter are con-
sidered to be the ground-truth for comparing the accuracy for credible review
detection for our proposed model. The Yelp spam filter presumably relies on
linguistic, behavioral, and social networking features [24].
• The Amazon Dataset used in [11] consists of around 149K reviews from nearly
117K users on 25K items from three domains, namely Consumer Electronics,
Software, and Sports items. For each review, we gather the same information
tuple as that from Yelp. However, the metadata in this dataset is not as rich as
in Yelp, consisting only of helpfulness votes on the reviews.

Further, there exists no explicit ground-truth characterizing the reviews as
credible or deceptive in Amazon. To this end, we re-rank the items using learning
to rank, implicitly filtering out possible deceptive reviews (based on the feature
vectors), and then compare the ranking to the item sales rank considered as the
pseudo ground-truth.

Comparison Baselines: We use the following state-of-the-art baselines (given
the full set of features that fit with their model) for comparison with our proposed
model.
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(1) Language Model Baselines: We consider the unigram and bigram language
model baselines from [26,27] that have been shown to outperform other base-
lines using psycholinguistic features, part-of-speech tags, information gain, etc.
We take the best baseline from their work which is a combination of unigrams
and bigrams. Our proposed model (N-gram+Facet) enriches it by using length
normalization, presence or absence of features, latent facets, etc. The recently
proposed doc-to-vec model based on Neural Networks, overcomes the weakness
of bag-of-words models by taking the context of words into account, and learns
a dense vector representation for each document [13]. We train the doc-to-vec
model in our dataset as a baseline model. In addition, we also consider read-
ability (ARI) and review sentiment scores [9] under the hypothesis that writing
styles would be random because of diverse customer background. ARI measures
the reader’s ability to comprehend a text and is measured as a function of the
total number of characters, words, and sentences present, while review sentiment
tries to capture the fraction of occurrences of positive/negative sentiment words
to the total number of such words used.

(2) Activity and Rating Baselines: Given the tuple 〈userId, itemId, rating,
review, metadata〉 from the Yelp dataset, we extract all possible activity and
rating behavioral features of users as proposed in [10,11,14,17,22–24,32]. Specif-
ically, we utilize the number of helpful feedbacks, review title length, review rat-
ing, use of brand names, percent of positive and negative sentiments, average
rating, and rating deviation as features for classification. Further, based on the
recent work of [29], we also use the user check-in and user elite status information
as additional features for comparison.

Empirical Evaluations: Our experimental setup considers the following eval-
uations:

(1) Credible review classification: We study the performance of the various
approaches in distinguishing a credible review from a non-credible one. Since
this forms a binary classification task, we consider a balanced dataset contain-
ing equal proportion of data from each of the two classes. On the Yelp dataset,
for each item we randomly sample an equal number of credible and non-credible
reviews (to obtain Yelp∗); while the TripAdvisor dataset is already balanced.
Table 4 shows the 10-fold cross validation accuracy results for the different mod-
els on the two datasets. We observe that our proposed consistency and behav-
ioral features exhibit around 15% improvement in Yelp∗ for classification accu-
racy over the best performing baselines (refer to Table 4). Since the TripAdvisor
dataset has only review text, the user/activity models could not be used there.
The experiment could also not be performed on Amazon, as the ground-truth
for credibility labels of reviews is absent.

(2) Item Ranking: In this task we examine the effect of non-credible reviews on
the ranking of items in the community. This experiment is performed only on
Amazon using the item sales rank as ground or reference ranking, as Yelp does
not provide such item rankings. The sales rank provides an indication as to how
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Table 4. Credible review classification accuracy with 10-fold cross validation. TripAd-
visor dataset contains only review texts and no user/activity information.

Models Features TripAdvisor Yelp∗

Deep learning Doc2Vec 69.56 64.84

Doc2Vec + ARI + Sentiment 76.62 65.01

Activity & rating Activity+Rating - 74.68

Activity+Rating+Elite+Check-in - 79.43

Language Unigram + Bigram 88.37 73.63

Consistency 80.12 76.5

Behavioral Activity Model− - 80.24

Activity Model+ - 86.35

Aggregated N-gram + Consistency 89.25 79.72

N-gram + Activity− - 82.84

N-gram + Activity+ - 88.44

N-gram + Consistency + Activity− - 86.58

N-gram + Consistency + Activity+ - 91.09

MYelp - 89.87

well a product is selling on Amazon.com and highlights the item’s rank in the
corresponding category2.

The baseline for the item ranking is based on the aggregated rating of all
reviews on an item. The first model MYelp (C-SVM) trained on Yelp filters out
the non-credible reviews, before aggregating review ratings on an item. The
second model MAmazon (SVM-Rank) is trained on Amazon using SVM-Rank
with the reference ranking as training labels. 10-fold cross-validation results are
reported on the two measures of Kendall-Tau (τb and τm) in Table 5 with respect
to the reference ranking. τb and τm for SVM-Rank are the same since there are
no ties. Our first model performs substantially better than the baseline, which,
in turn, is outperformed by our second model.

In order to find the effectiveness of our approach in dealing with “long-tail”
items, we perform an additional experiment with our best performing model
i.e., MAmazon (SVM-Rank). We use the model to find Kendall-Tau-M (τm) rank
correlation (with the reference ranking) of items having less than (or equal to)
5, 10, 20, 30, 40, and 50 reviews in different domains in Amazon (results reported
in Table 6 with 10-fold cross validation). We observe that our model performs
substantially well even with items having as few as five reviews, with the per-
formance progressively getting better with more reviews per-item.

2 www.amazon.com/gp/help/customer/display.html?nodeId=525376.

www.amazon.com/gp/help/customer/display.html?nodeId=525376
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Table 5. Kendall-Tau correlation of different models across domains.

Domain Kendall-Tau-B (τb) Kendall-Tau-M (τm) Kendall-Tau
(τb = τm)

Baseline MY elp (C-SVM) Baseline MY elp (C-SVM) MAmazon

(SVM-Rank)

CE 0.011 0.109 0.082 0.135 0.329

Software 0.007 0.184 0.088 0.216 0.426

Sports 0.021 0.155 0.102 0.170 0.325

Table 6. Variation of Kendall-Tau-M (τm) correlation with #reviews with MAmazon

(SVM-Rank).

Domain τm with #reviews per-item

≤5 ≤10 ≤20 ≤30 ≤40 ≤50 Overall

CE 0.218 0.257 0.290 0.304 0.312 0.317 0.329

Software 0.353 0.375 0.401 0.411 0.417 0.419 0.426

Sports 0.273 0.324 0.310 0.325 0.325 0.325 0.325

5 Discussions on Experimental Results

Language Model: The bigram language model performs very well (refer to
Table 4) on the TripAdvisor dataset due to the setting of the task. Work-
ers in Amazon Mechanical Turk were tasked with writing fake reviews with
the guideline of knowing all the hotel amenities in its website before writing
reviews. Therefore it is quite difficult for the facet model to find contradictions
or mismatch in facet descriptions. Consequently, the facet model gives marginal
improvement when combined with the language model.

On the other hand, the Yelp dataset is real-world, and therefore more noisy.
The bigram language model and doc-to-vec hence do not perform as good as they
do in the previous dataset; and neither does the facet model in isolation. However
all the components put together give significant performance improvement over
the ones in isolation (around 8%).

Incorporation of writing style using ARI and sentiment measures improves
performance of doc-to-vec in the TripAdvisor dataset, but not significantly in
the real-world Yelp data.

Table 7 shows the top unigrams and bigrams contributing to the language fea-
ture space in the joint model for credibility classification — given by the feature
weights of the C-SVM. We find that credible reviews contain a mix of func-
tion and content words, balanced opinions, with the highly contributing features
being mostly unigrams. Whereas, non-credible reviews contain extreme opinions,
less function words and more of sophisticated content words — consisting of a
lot of signature bigrams — to catch the readers’ attention.
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Table 7. Top n-grams (by feature weights) for credibility classification.

Credible Reviews Non-credible reviews

not, also, really, just, like, get, perfect,
little, good, one, space, pretty, can,
everything, come back, still, us, right,
definitely, enough, much, super, free,
around, delicious, no, fresh, big,
favorite, lot, selection, sure, friendly,
way, dish, since, huge, etc., menu,
large, easy, last, room, guests, find,
location, time, probably, helpful,
great, now, something, two, nice,
small, better, sweet, though, loved,
happy, love, anything, actually, home

dirty, mediocre, charged,
customer service, signature lounge,
view city, nice place, hotel staff,
good service, never go, overpriced,
several times, wait staff,
signature room, outstanding,
establishment,
architecture foundation, will not,
long, waste, food great,
glamour closet, glamour, food service,
love place, terrible, great place, never,
wonderful, atmosphere, signature, bill,
will never, good food, management,
great food, money, worst, horrible,
manager, service, rude

Behavioral Model: We find the activity based model to perform the best in iso-
lation (refer to Table 4). Combined with language and consistency features, the
joint model exhibits around 5% improvement in performance. Additional meta-
data like the user elite and check-in status improves the performance of activity
based baselines, which are not typically available for newcomers in the com-
munity. Our model using limited information (N-gram+Consistency+Activity−)
performs better than the activity baselines using fine-grained information about
items (like brand description) and user history. Incorporating additional user
features (Activity+) further boosts its performance.

Consistency Features: In order to find the effectiveness of the facet based
consistency features, we perform ablation tests (refer to Table 4). We remove the
consistency model from the aggregated model, and see significant performance
degradation of 3 − 4% for the Yelp∗ dataset. In the TripAdvisor dataset the
performance reduction is less compared to Yelp due to reasons outlined before.

Table 8 shows a snapshot of the non-credible reviews, with corresponding
(in)consistency features in Yelp and Amazon. We see that ratings of deceptive
reviews do not corroborate with the textual description, irrelevant facets influ-
encing the rating of the target item, contradicting other users, expressing extreme
opinions without explanation, depicting temporal “burst” in ratings, etc. In prin-
ciple, these features can also be used to detect other anomalous phenomena like
group-spamming (one of the principal indicators of which is temporal burst),
which is out of scope of this work.

Ranking Task: For the ranking task in Amazon (refer to Table 5), the first
model MYelp — trained on Yelp and tested on Amazon using C-SVM — performs
much better than the baseline exploiting various consistency features. The second
model MAmazon — trained on Amazon using SVM-Rank — outperforms the
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Table 8. Snapshot of non-credible reviews (reproduced verbatim) with inconsistencies.

Inconsistency features Yelp review & [rating] Amazon review & [rating]

user review –

rating (promo-

tion/demotion):

never been inside James.

never checked in.

never visited bar. yet, one of my

favorite hotels in Chicago. James

has dog friendly area. my dog

loves it there. [5]

Excellant product-alarm zone,

technical support is almost

non-existent because of this

i will look to another product.

this is unacceptible. [4]

user review – facet

description

(irrelevant):

you will learn that they are actually

EVANGELICAL CHRISTIANS

working to proselytize the coffee

farmers they buy from. [2]

DO NOT BUY THIS. I used turbo

tax since 2003, it never let me

down until now. I can’t file

because Turbo Tax doesn’t

have software updates from the

IRS

“because of Hurricane Katrina”. [1]

user review – item

description

(deviation from

community):

internet is charged in a 300 dollar

hotel! [3]

The book Amazon offers is a joke!

All it provides is the forward

which is not written by

Kalanithi. I don’t have any

sample of HIS writing to know

if it appeals. [1]

extreme user

rating:

GREAT!!!i give 5 stars!!!Keep it up.

[5]

GREAT. This camera takes

pictures. [1]

temporal bursts3: Dan’s apartment was beautiful and a great downtown location... (3/14/2012) [5]

I highly recommend working with Dan and NSRA... (3/14/2012) [5]

Dan is super friendly, demonstrating that he was confident... (3/14/2012) [5]

my condo listing with no activity, Dan really stepped in... (4/18/2012) [5]

3these reviews have also been flagged by the Yelp Spam Filter as not-recommended (i.e., non-
credible)

former exploiting the power of the entire feature space and domain-specific proxy
labels unavailable to the former.

“Long-Tail” Items: Table 6 shows the gradual degradation in performance
of the second model MAmazon (SVM-Rank) in dealing with items with lesser
number of reviews. Nevertheless, we observe it to give a substantial Kendall-Tau
correlation (τm) with the reference ranking, with as few as five reviews per-item,
demonstrating the effectiveness of our model in dealing with “long-tail” items.

6 Conclusions

We present a novel consistency model using limited information for detecting
non-credible reviews which is shown to outperform state-of-the-art baselines.
Our approach overcomes the limitation of existing works that make use of fine-
grained information which are not available for “long-tail” items or newcomers in
the community. Most importantly prior methods are not designed to explain why
the detected review should be non-credible. In contrast, we make use of different
consistency features from latent facet model derived from user text and ratings
that can explain the assessments by our method. We develop multiple models
for domain transfer and adaptation, where our model performs very well in the
ranking tasks involving “long-tail” items, with as few as five reviews per-item.
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Abstract. Data visualization and iterative/interactive data mining are
growing rapidly in attention, both in research as well as in industry. How-
ever, integrated methods and tools that combine advanced visualization
and data mining techniques are rare, and those that exist are often spe-
cialized to a single problem or domain. In this paper, we introduce a novel
generic method for interactive visual exploration of high-dimensional
data. In contrast to most visualization tools, it is not based on the tradi-
tional dogma of manually zooming and rotating data. Instead, the tool
initially presents the user with an ‘interesting’ projection of the data
and then employs data randomization with constraints to allow users
to flexibly and intuitively express their interests or beliefs using visual
interactions that correspond to exactly defined constraints. These con-
straints expressed by the user are then taken into account by a projection-
finding algorithm to compute a new ‘interesting’ projection, a process
that can be iterated until the user runs out of time or finds that con-
straints explain everything she needs to find from the data. We present
the tool by means of two case studies, one controlled study on synthetic
data and another on real census data. The data and software related to
this paper are available at http://www.interesting-patterns.net/forsied/
interactive-visual-data-exploration-with-subjective-feedback/.

1 Introduction

Data visualization and iterative/interactive data mining are both mature,
actively researched topics of great practical importance. However, while progress
in both fields is abundant (see Sect. 4), methods that combine iterative data
mining with visualization and interaction are rare, except for a number of tools
designed for specific problem domains.

Yet, tools that combine state-of-the-art data mining with visualization and
interaction are highly desirable as they would maximally exploit the strengths
of both human data analysts and computer algorithms. While humans are
unmatched in spotting interesting relations in low-dimensional visual represen-
tations but poor at handling high-dimensional data, computers excel in manip-
ulating high-dimensional data but are weaker at identifying patterns that are
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truly relevant to the user. A symbiosis of the human data analyst and a well-
designed computer system thus promises to provide the most efficient way of
navigating the complex information space hidden in high-dimensional data [17].

Fig. 1. This three-step cycle illus-
trates our tool’s flow of action.

Contributions in This Paper. In this
paper we introduce a generically applicable
methodology and a tool that demonstrates
the proposed approach for interactive visual
exploration of (high-dimensional) data. The
tool iteratively cycles through three steps, as
indicated in Fig. 1. Throughout these cycles,
the user builds up an increasingly accu-
rate understanding of the aspects of the
data. Our tool maintains a model for this
understanding—to which we refer as the
background model.
Step 1. The tool initially presents the user with an ‘interesting’ projection of the
data, visualized as a scatter plot (Fig. 1 step 1 ). Here, interesting is formalized
with respect to the initial background model; more details follow below.
Step 2. On investigating this scatter plot, the user may take note of some
features of the data that contrast with, or add to, their beliefs about the data.
We will refer to such features as patterns. In step 2, the user is offered the
opportunity to tell the tool what patterns they have noted and assimilated.
Step 3. In step 3, the tool updates the background model to reflect this newly
assimilated information embodied by the patterns highlighted by the user. Then
the most interesting projection with respect to this updated background model
can be computed, and the cycle can be reiterated until the user runs out of time
or finds that patterns explain everything the user needs at the moment.

Formalizing the Background Model. A crucial challenge in realizing such a tool
is the formalization of the background model. One way to do this is by specifying
a randomization procedure that, when applied to the data, does not affect how
plausible the user would deem it to be [7,13]. Access to such a randomized version
of the data can be sufficient for determining interesting remaining structure in
the data that is not yet known to the user. New patterns are then incorporated by
adding corresponding constraints to the randomization procedure, ensuring that
the patterns remain present after randomization. We will refer to this approach
as the CORAND approach (for Constrained Randomization).

An Illustrative Example. As an example, consider a synthetic data set consisting
of 1000 10-dimensional data vectors of which dimensions 1–4 can be clustered
into five clusters, dimensions 5–6 into four clusters involving different subsets of
data points, and of which dimensions 7–10 are Gaussian noise. All dimensions
have equal variance. Figure 2 shows the scatter plots for all pairs of dimensions.
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We designed this example to illustrate the two pattern types that a user can
specify in the current implementation of our tool. Additionally, it shows how
the tool succeeds in finding interesting projections given previously identified
patterns. Thirdly, it also demonstrates how the user interactions meaningfully
affect subsequent visualizations.

Fig. 2. Subsample of the toy data.

The first projection projects
the data onto a two-dimensional
subspace of the first four dimen-
sions of the data (Fig. 3a), i.e.,
in a subspace of the space in
which the data is clustered into
5 clusters. This is indeed sen-
sible, as the structure within
this four-dimensional subspace
is arguably the strongest.

We then consider two possi-
ble user actions (step 2, shown
in Fig. 3b). In the first possi-
bility, the user marks all points
within each cluster (cluster by
cluster), indicating they have
taken note of the positions of
these groups of points within
this particular projection. In the
second possibility, the user additionally concludes that these points appear to be
clustered, possibly also in other dimensions. (Details on how these two pattern
types are formalized will follow.)

Both these pattern types lead to additional constraints on the randomization
procedure. The effect of these constraints is identical within the two-dimensional
projection of the current visualization (Fig. 3c): the projections of the random-
ized points onto this plane are identical to the projections of the original points
onto this plane. Not visible though, is that in the second possibility the ran-
domization is restricted also in orthogonal dimensions (possibly different ones
for different clusters), to account for the additional clustering assumption.

The most interesting subsequent projection, following the user interaction,
is different in the two cases (see Fig. 3d). In the first case, the remaining cluster
structure within dimensions 1–4 is shown. However, in the second case this clus-
ter structure is fully explained by the constraints, and as a result, the cluster
structure in dimensions 5–6 being is shown instead.

Outline of This Paper. To use the CORAND approach, three main challenges
had to be addressed, as discussed in Sect. 2: (1) defining intuitive pattern types
that can be observed and specified based on a scatter plot of a two-dimensional
projection of the data; (2) defining a suitable randomization scheme, that can
be constrained to take account of such patterns; and (3) a way to identify the



Interactive Visual Data Exploration with Subjective Feedback 217

Fig. 3. Two user interaction scenarios for the toy data set. The smaller filled points
represent actual data vectors, whereas the unfilled circles represent randomized data
vectors. Row (a) shows the first visualization, which is the starting point for both
scenarios. Row (b) shows the sets of data points marked by the user, (c) shows the
randomized data and original data projected onto the same plane as (a), and (d) shows
the most interesting visualization given these specified patterns. The left column shows
the scenario when the user assumes nothing beyond the values of the data points in
the projection in row (a), whereas the right column shows the scenario when the user
assumes each of these sets of points may be clustered in other dimensions as well.
(Color figure online)
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most interesting projections given the background model. The resulting system
is evaluated in Sect. 3 for usefulness as well as computational properties, on the
the synthetic data from the above example as well as on a census dataset. Finally,
related work is discussed in Sect. 4, before concluding the paper in Sect. 5.

2 Methodology

We will use the notational convention that bold face upper case symbols rep-
resent matrices, bold face lower case symbols represent column vectors, and
standard face lower case symbols represent scalars. We assume that our data
set consists of n d-dimensional data vectors xi. The data set is represented by
a real matrix X =

(
xT
1 xT

2 · · · xT
n

)T ∈ R
n×d. More generally, we will denote

the transpose of the ith row of any matrix A as ai (i.e., ai is a column vector).
Finally, we will use the shorthand notation [n] = {1, . . . , n}.

2.1 Projection Tile Patterns in Two Flavours

In the interaction step, the proposed system allows users to declare that they
have become aware of (and thus are no longer interested in seeing) the value of
the projections of a set of points onto a specific subspace of the data space. We
call such information a projection tile pattern for reasons that will become clear
later. A projection tile parametrizes a set of constraints to the randomization.

Formally, a projection tile pattern, denoted τ , is defined by a k-dimensional
(with k ≤ d and k = 2 in the simplest case) subspace of Rd, and a subset of data
points Iτ ⊆ [n]. We will formalize the k-dimensional subspace as the column
space of an orthonormal matrix Wτ ∈ R

d×k with WT
τ Wτ = I, and can thus

denote the projection tile as τ = (Wτ , Iτ ). The proposed tool provides two ways
in which the user can define the projection vectors Wτ for a projection tile τ .

2D Tiles. The first approach simply chooses Wτ as the (two) weight vectors
defining the projection within which the data vectors belonging to Iτ were
marked. This approach allows the user to simply specify that they have taken
note of the positions of that set of data points within this projection. The user
makes no further assumptions – they assimilate solely what they see without
drawing conclusions not supported by direct evidence, see Fig. 3b (left).

Clustering Tiles. It seems plausible, however, that when the marked points are
tightly clustered, the user concludes that these points are clustered not just
within the two dimensions shown in the scatter plot. To allow the user to express
such belief, the second approach takes Wτ to additionally include a basis for
other dimensions along which these data points are strongly clustered, see Fig. 3b
(right). This is achieved as follows.

Let X(Iτ , :) represent a matrix containing the rows indexed by elements from
Iτ from X. Let W ∈ R

d×2 contain the two weight vectors onto which the data
was projected for the current scatter plot. In addition to W, we want to find any
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other dimensions along which these data vectors are clustered. These dimensions
can be found as those along which the variance of these data points is not much
larger than the variance of the projection X(Iτ , :)W.

To find these dimensions, we first project the data onto the subspace orthogo-
nal to W. Let us represent this subspace by a matrix with orthonormal columns,
further denoted as W⊥. Thus, W⊥T

W⊥ = I and WTW⊥ = 0. Then, Principal
Component Analysis (PCA) is applied to the resulting matrix X(Iτ , :)W⊥. The
principal directions corresponding to a variance smaller than a threshold are
then selected and stored as columns in a matrix V. In other words, the variance
of each of the columns of X(Iτ , :)W⊥V is below the threshold.

The matrix Wτ associated to the projection tile pattern is then taken to be:

Wτ =
(
W W⊥V

)
.

The threshold on the variance used could be a tunable parameter, but was
set here to twice the average of the variance of the two dimensions of X(Iτ , :)W.

2.2 The Randomization Procedure

Here we describe the approach to randomizing the data. The randomized data
should represent a sample from an implicitly defined background model that
represents the user’s belief state about the data.

Initially, our approach assumes the user merely has an idea about the overall
scale of the data. However, throughout the interactive exploration, the patterns
in data described by the projection tiles will be maintained in the randomization.

Initial Randomization. The proposed randomization procedure is parame-
trized by n orthogonal rotation matrices Ui ∈ R

d×d, where i ∈ [n], and the
matrices satisfy (Ui)T = (Ui)−1. We further assume that we have a bijective
mapping f : [n] × [d] �→ [n] × [d] that can be used to permute the indices of the
data matrix. The randomization proceeds in three steps:

Random rotation of the rows. Each data vector xi is rotated by multipli-
cation with its corresponding random rotation matrix Ui, leading to a ran-
domised matrix Y with rows yT

i that are defined by:

∀i : yi = Uixi.

Global permutation. The matrix Y is further randomized by randomly per-
muting all its elements, leading to the matrix Z defined as:

∀i, j : Zi,j = Yf(i,j).

Inverse rotation of the rows. Each randomised data vector in Z is rotated
with the inverse rotation applied in step 1, leading to the fully randomised
matrix X∗ with rows x∗

i defined as follows in terms of the rows zT
i of Z:

∀i : x∗
i = Ui

T zi.
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The random rotations Ui and the permutation f are sampled uniformly at ran-
dom from all possible rotation matrices and permutations, respectively.

Intuitively, this randomization scheme preserves the scale of the data points.
Indeed, the random rotations leave their lengths unchanged, and the global per-
mutation subsequently shuffles the values of the d components of the rotated
data points. Note that without the permutation step, the two rotation steps
would undo each other such that X∗ = X. Thus, it is the combined effect that
results in a randomization of the data set.1

Accounting for One Projection Tile. Once the user has assimilated the
information in a projection tile τ = (Wτ , Iτ ), the randomization scheme should
incorporate this information by ensuring that it is present also in all random-
ized versions of the data. This ensures that it continues to be a sample from a
distribution representing the user’s belief state about the data.

This is achieved by imposing the following constraints on the parameters
defining the randomization:

Constraints on the rotation matrices. For each i ∈ Iτ , the component of
xi that is within the column space of Wτ must be mapped onto the first k
dimensions of yi = Uixi by the rotation matrix Ui. This can be achieved by
ensuring that:2

∀i ∈ Iτ : WT
τ Ui =

(
I 0

)
. (1)

Constraints on the permutation. The permutation should not affect any
matrix cells with row indices i ∈ Iτ and columns indices j ∈ [k]:

∀i ∈ Iτ , j ∈ [k] : f(i, j) = (i, j). (2)

Proposition 1. Using the above constraints on the rotation matrices Ui and
the permutation f , it holds that:

∀i ∈ Iτ ,xT
i Wτ = x∗

i
TWτ . (3)

Thus, the values of the projections of the points in the projection tile remain
unaltered by the constrained randomization. We omit the proof as the more
general Proposition 2 is provided with proof further below.

1 The random rotations may seem superfluous: the global permutation randomizes the
data so dramatically that the added effect of the rotations is relatively unimportant.
However, their role is to make it possible to formalize the growing understanding of
the user as simple constraints on this randomization procedure, as discussed next.

2 This explains the name projection tile: the information to be preserved in the ran-
domization is concentrated in a ‘tile’ (i.e. the intersection of a set of rows and a set of
columns) in the intermediate matrix Y created during the randomization procedure.
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Accounting for Multiple Projection Tiles. Throughout subsequent itera-
tions, additional projection tile patterns will be specified by the user. A set of
tiles τi for which Iτi

∩ Iτj
= ∅ if i 
= j is straightforwardly combined simply by

applying the relevant constraints on the rotation matrices to the respective rows.
When the sets of data points affected by the projection tiles overlap though, the
constraints on the rotation matrices need to be combined. The aim of such a
combined constraint should be to preserve the values of the projections onto the
projection directions for each of the projection tiles a data vector was part of.

The combined effect of a set of tiles will thus be that the constraint on the
rotation matrix Ui will vary per data vector, and depends on the set of projec-
tions Wτ for which i ∈ Iτ . More specifically, we propose to use the following
constraint on the rotation matrices:

Constraints on the rotation matrices. Let Wi ∈ R
d×di denote a matrix of

which the columns are an orthonormal basis for space spanned by the union
of the columns of the matrices Wτ for τ with i ∈ Iτ . Thus, for any i and
τ : i ∈ Iτ , it holds that Wτ = Wivτ for some vτ ∈ R

di×dim(Wτ ). Then, for
each data vector i, the rotation matrix Ui must satisfy:

∀i ∈ Iτ : WT
i Ui =

(
I 0

)
. (4)

Constraints on the permutation. Then the permutation should not affect
any matrix cells in row i and columns [di]:

∀i ∈ [n], j ∈ [di] : f(i, j) = (i, j).

Proposition 2. Using the above constraints on the rotation matrices Ui and
the permutation f , it holds that:

∀τ,∀i ∈ Iτ ,xT
i Wτ = x∗

i
TWτ .

Proof. We first show that x∗
i
TWi = xT

i Wi:

x∗
i
T
Wi = zTi U

T
i Wi = zTi

(
I
0

)
= zi(1 : di)

T = yi(1 : di)
T = yT

i

(
I
0

)
= xT

i Wi.

The result follows from the fact that Wτ = Wivτ for some vτ ∈ R
di×dim(Wτ ).��

Technical Implementation of the Randomization Procedure. To ensure
the randomization can be carried out efficiently throughout the process, note
that the matrix Wi for the i ∈ Iτ for a new projection tile τ can be updated by
computing an orthonormal basis for

(
Wi W

)
.3

Additionally, note that the tiles define an equivalence relation over the row
indices, in which i and j are equivalent if they were included in the same set
of projection tiles so far. Within each equivalence class, the matrix Wi will be
constant, such that it suffices to compute it only once, simply keeping track of
which points belong to which equivalence class.
3 Such a basis can be found efficiently as the columns of Wi in addition to the columns

of an orthonormal basis of W−WT
i WiW (the components of W orthogonal to Wi),

the latter of which can be computed using the QR-decomposition.
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2.3 Visualization: Finding the Most Interesting Two-Dimensional
Projection

Given the data set X and the randomized data set X∗, it is now possible to
quantify the extent to which the empirical distribution of a projection Xw and
X∗w onto a weight vector w differ. There are various ways in which this dif-
ference can be quantified. We investigated a number of possibilities and found
that the L1-distance between the cumulative distribution functions works par-
ticularly well in practice. Thus, with Fx the empirical cumulative distribution
function for the set of values in x, the optimal projection is found by solving:

max
w

‖FXw − FX∗w‖1 .

The second dimension of the scatter plot can be sought by optimizing the same
objective while requiring it to be orthogonal to the first dimension.

We are unaware of any special structure of this optimization problem that
makes solving it particularly efficient. Yet, using the standard quasi-Newton
solver in R [18]4 already yields satisfactory result. Note that runs of the method
may produce different local optimum due to random initialization.

3 Experiments

We present two case studies to illustrate the framework and its utility. The case
studies are completed by using a JavaScript version of our tool, made freely
available along with the data used for maximum reproducibility.5

Table 1. Weight vectors of projections for the synthetic data.

Fig. Axis 1 2 3 4 5 6 7 8 9 10

3a X 0.194 0.545 −0.630 0.499 −0.119 −0.041 0.057 0.001 −0.029 0.003

Y −0.269 −0.754 −0.481 0.340 0.091 −0.004 0.016 −0.057 0.003 0.005

3d (left) X 0.143 −0.118 0.005 0.981 0.001 −0.013 −0.031 −0.022 0.044 −0.031

Y −0.245 0.448 0.854 0.088 0.004 −0.001 0.005 0.008 −0.043 0.023

3d (right) X 0.121 0.019 −0.232 0.017 −0.963 −0.008 0.022 0.023 0.037 0.004

Y −0.139 −0.067 −0.369 −0.082 0.111 −0.898 −0.083 0.086 0.005 −0.017

3.1 Synthetic Data Case Study

This section gives an extended discussion of the illustrative example from the
introduction, namely the synthetic data case study. The data is described in
Sect. 1 and shown in Fig. 2. The first projection shows that the projected data
4 The optim optimization function with method = “BFGS” and default settings.
5 Readers can access this tool online at: http://www.interesting-patterns.net/forsied/

interactive-visual-data-exploration-with-subjective-feedback/.

http://www.interesting-patterns.net/forsied/interactive-visual-data-exploration-with-subjective-feedback/
http://www.interesting-patterns.net/forsied/interactive-visual-data-exploration-with-subjective-feedback/
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(blue dots in Fig. 3a) differs strongly from the randomized data (gray circles).
The weight vectors defining the projection, shown in the 1st row of Table 1,
contain large weights in dimensions 1–4. Therefore, the cluster structure seen
here mainly corresponds to dimensions 1–4 of the data. A user can indicate
this insight by means of a clustering tile for each of the clustered sets of data
points (Fig. 3b, right). Encoding this into the background model, results in a
randomization shown in Fig. 3c (right), where in the projection the randomized
points perfectly align with data points. The new projection that differs most from
this updated random background model is given by Fig. 3d (right), revealing the
four clusters in dimensions 5–6 that the user was not aware of before.

If the user does not want to draw conclusions about the points being clus-
tered in dimensions other than those shown, she can use 2D tiles instead of
clustering tiles (Fig. 3b, left). The updated background model then results in a
randomization shown in Fig. 3c (left). In the given projection, this randomiza-
tion is indistinguishable from the one with a clustering tile, but it results in a
different subsequent projection. Indeed, now it shows just another view of the
five clusters in dimensions 1–4 (Fig. 3d, left), as confirmed by the large weights
for dimensions 1–4 in the 2nd row of Table 1.

Thus, by these simple interactions the user can choose whether she will
explore more the cluster structure in dimensions 1–4 or if she already is aware
of the cluster structure or does not find it interesting, in which case the system
would direct her to the structure occurring in dimensions 5–6.

3.2 UCI Adult Dataset Case Study

In this case study, we demonstrate the utility of our method by exploring a real
world dataset. The data is compiled from UCI Adult dataset6. To ensure the
real time interactivity, we sub-sampled 218 data points and selected six features:
“Age” (17−90), “Education” (1−16), “HoursPerWeek” (1−99), “Ethnic Group”
(White, AsianPacIlander, Black, Other), “Gender” (Female, Male), “Income”
(≥ 50k). Among the selected features, “Ethnic Group” is a categorical feature
with five categories, “Gender” and “Income” are binary features, the rest are all
numeric. To make our method applicable to this dataset, we further binarized
the “Ethnic Group” feature (yielded four binary features) and the final dataset
consists of 218 points and 9 features.

We assume the user uses clustering tiles throughout her exploration. Each
of the patterns discovered during the exploration process thus corresponds to
certain demographic clustering pattern. To illustrate how our tool helps the user
rapidly gain an understanding of the data, we discuss the first three iterations
of the exploration process below.

The first projection (Fig. 4a) visually consists of four clusters. The user notes
that the weight vectors corresponding to the axes of the plot assign large weights
to the “Ethnic Group” attributes (1st row, Table 2). As mentioned, we assume
the user marks these points as part of the same clustering tile. When marking

6 https://archive.ics.uci.edu/ml/datasets/Adult.

https://archive.ics.uci.edu/ml/datasets/Adult
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Fig. 4. Projections of UCI Adult dataset: (a) projection in the 1st iteration, (b) clus-
ters marked by user in the 1st iteration, (c) projection in the 2nd iteration, and
(d) projection in the 3rd iteration.

Table 2. Weight vectors of projections for the UCI Adult dataset.

Fig. Axis Age Edu. h/w EG AsPl EG Bl. EG Oth. EG Whi. Gender Income

4a X −0.039 −0.001 0.001 0.312 −0.530 −0.193 0.763 0.017 0.008

Y 0.004 −0.004 −0.002 0.816 −0.141 0.465 −0.313 −0.011 0.002

4c X 0.081 −0.028 −0.022 −0.259 −0.233 −0.104 −0.380 −0.846 −0.001

Y −0.590 0.541 0.143 −0.233 −0.380 −0.026 −0.293 0.232 0.000

4d X 0.119 −0.149 0.047 0.102 0.191 0.104 −0.556 0.0581 −0.769

Y −0.382 −0.626 −0.406 0.346 0.317 −0.0287 0.111 −0.248 0.059

the clusters (Fig. 4b), the tool informs the user of the mean vectors of the points
within each clustering tile. The 1st row of Table 3 shows that each cluster com-
pletely represents one out of four ethnic groups, which corroborates the user’s
understanding.

Taking the user’s feedback into consideration, a new projection is gener-
ated by the tool. The new scatter plot (Fig. 4c) shows two large clusters, each
consisting of some points from the previous four-cluster structure (points from
these four clusters are colored differently). Thus, the new scatter plot elucidates
structure not shown in the previous one. Indeed, the weight vectors (2nd row
of Table 2) show that the clusters are separated mainly according to the “Gen-
der” attribute. After marking the two clusters separately, the mean vector of
each cluster (2nd row of Table 3) again confirms this: the cluster on the left
represents male group, and the female group is on the right.
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Table 3. Mean vectors of user marked clusters for the UCI Adult data set.

Fig. Cluster Age Edu. h/w EG AsPl EG Bl. EG Oth. EG Whi. Gender Income

4b top left 35.0 8.67 34.7 0.00 0.00 1.00 0.00 0.667 0.333

bott. left 37.2 9.43 40.3 0.00 1.00 0.00 0.00 0.286 0.071

top right 35.6 1.3 51.1 1.00 0.00 0.00 0.00 0.750 0.250

bott. right 38.4 10.2 41.6 0.00 0.00 0.00 1.00 0.762 0.275

4c left 39.0 10.2 43.3 0.0377 0.0252 0.0126 0.925 1.00 0.321

right 36.0 9.95 37.9 0.0339 0.169 0.0169 0.780 0.00 0.102

4d left 42.5 11.6 46.3 0.00 0.00 0.00 1.00 1.00 1.00

The projection in the third iteration (Fig. 4d) consists of three clusters, sepa-
rated only along the X-axis. Interestingly, the corresponding weight vector (3rd
row of Table 2) has strongly negative weights for the attributes “Income” and
“Ethnic Group - White”. This indicates the left cluster mainly represents the
people with high income and whose ethnic group is also “White”. As this cluster
has relatively low Y -value, according to the weight vector, they are also gener-
ally older and more highly educated. These observations are corroborated by the
cluster mean (3rd row of Table 3).

This case study shows that the proposed tool facilitates human data explo-
ration iteratively presenting an information projection considering what the user
has already learned about the data.

3.3 Performance on Synthetic Data

Ideally interactive data exploration tools should work in close to real time. This
section contains an empirical analysis of an (unoptimized) R implementation of
our tool, as a function of the size, dimensionality, and complexity of the data.
Note that limits on screen resolution as well as on human visual perception render
it useless to display more than of the order of a few hundred data vectors, such
that larger data sets can be down sampled without noticeably affecting the data
exploration experience.

We evaluated the scalability on synthetic data with d ∈ {16, 32, 64, 128}
dimensions and n ∈ {64, 128, 256, 512} data points scattered around k ∈
{2, 4, 8, 16} randomly drawn cluster centroids (Table 4). The randomization is
done here with the initial background model. The most costly part in random-
ization is the multiplication of orthogonal matrices. Indeed, the running time
of the randomization scales roughly as nd2−3. The results suggests the running
time of the optimization is roughly proportional to the size of the data matrix
nd and the complexity of data k has here only a minimal effect in the running
time of the optimization.

Furthermore, in 69 % of the cases, the L1 on the first axis is within 1%
of the best L1 norm out of ten restarts. The optimization algorithm is thus
quite stable, and in practical applications it may well be be sufficient to run
the optimization algorithm only once. These results have been obtained with
unoptimized and single-threaded R implementation on a 2.3 GHz Intel Xeon
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Table 4. Median wall clock running times for randomization (“rand.”) and for opti-
mization (“optim.”) over ten iterations of the optimization algorithm that finds the
two-dimensional projection using the L1 loss function for datasets of n data items and
d dimensions with k clusters and its randomized version. We also show the number of
iterations in which the L1 norm first component ended up within 1 % of the result with
the largest L1 norm out of 10 tries; 10 means that the L1 of the first component was
within 1% for all ten optimization runs.

n d rand. (s) k ∈ {2, 4, 8, 16}
optim. (s) in top 1 % out of 10

64 16 0.1 {0.4, 0.7, 0.5, 0.8} {10, 2, 9, 5}
64 32 0.2 {1.2, 1.4, 1.5, 1.4} {9, 1, 10, 9}
64 64 1.1 {3.1, 3.6, 3.4, 3.9} {9, 1, 9, 5}
64 128 4.8 {9.1, 10.2, 10.4, 10.2} {4, 2, 8, 8}
128 16 0.1 {0.8, 0.9, 1.3, 1.0} {10, 2, 2, 8}
128 32 0.4 {1.6, 2.2, 2.4, 2.7} {2, 10, 8, 10}
128 64 1.7 {5.6, 5.5, 5.9, 6.9} {7, 10, 7, 10}
128 128 10.5 {11.5, 16.3, 18.2, 18.3} {7, 7, 6, 5}
256 16 0.2 {1.2, 1.3, 1.5, 2.4} {10, 4, 10, 9}
256 32 0.7 {3.6, 3.8, 3.6, 4.3} {7, 8, 1, 9}
256 64 3.8 {8.8, 9.0, 9.8, 12.8} {3, 9, 7, 9}
256 128 21.7 {24.5, 29.3, 28.0, 34.1} {8, 9, 5, 5}
512 16 0.4 {2.8, 2.4, 3.1, 3.3} {10, 9, 9, 10}
512 32 1.5 {5.2, 5.1, 6.8, 7.9} {8, 8, 8, 10}
512 64 7.7 {15.6, 14.8, 17.1, 17.6} {10, 8, 1, 2}
512 128 44.0 {37.2, 44.2, 47.3, 46.9} {9, 1, 9, 7}

E5 processor.7 The performance could probably be significantly boosted, e.g.,
by carefully optimizing the code and the implementation. Yet, even with this
unoptimized code, response times are already of the order of 1 s to 1 min.

4 Related Work

Dimensionality Reduction. Dimensionality reduction for exploratory data
analysis has been studied for decades. Early research into visual exploration
of data led to approaches such as multidimensional scaling [11,21] and pro-
jection pursuit [6,9]. Most recent research on this topic (also referred to as
manifold learning) is still inspired by the aim of multi-dimensional scaling; find
a low-dimensional embedding of points such that their distances in the high-
dimensional space are well represented. In contrast to Principal Component
7 The R implementation used to produce Table 4 is available on our online demo page

(footnote 5).
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Analysis [16], one usually does not treat all distances equal. Rather, the idea
is to preserve small distances well, while large distances are irrelevant, as long
as they remain large; examples are Local Linear and (t-)Stochastic Neighbor
Embedding [8,14,19]. Typically, it is not even possible to achieve this perfectly,
and a trade-off between precision and recall arises [22]. Recent works are mostly
spectral methods along this line.

Iterative Data Mining and Machine Learning. There are two general
frameworks for iterative data mining: FORSIED [3,4] is based on modeling the
belief state of the user as an evolving probability distribution in order to for-
malize subjective interestingness of patterns. This distribution is chosen as the
Maximum Entropy distribution subject to the user beliefs as constraints, at that
moment in time. Given a pattern syntax, one then aims to find the pattern that
provides the most information, quantified as the pattern’s ‘subjective informa-
tion content’. The other framework, which we here named CORAND [7,13], is
similar, but the evolving distribution does not need to have an explicit form.
Instead, it relies on sampling (randomization) of the data, using the user beliefs
as constraints.

Both these frameworks are general in the sense that it has been shown they
can be applied in various data mining settings; local pattern mining, clustering,
dimensionality reduction, etc. The main difference is that in FORSIED, the
background model is expressed analytically, while in CORAND it may be defined
implicitly. This leads to differences in how they are deployed and when they
are effective. Randomization schemes are easier to propose, or at least they
require little mathematical skills. Explicit models have the advantage that they
often enable faster search of the best pattern, and the models may be more
transparent. Also, randomization schemes are computationally demanding when
many randomizations are required. Yet, in cases like the current paper, a single
randomization suffices, and the approach scales well. For both frameworks, the
pattern syntax ultimately determines their relative tractability.

Many special-purpose methods have been developed for active learning, a
form of iterative mining/learning, in diverse settings: classification, ranking, etc.,
as well as explicit models for user preferences. However, since these approaches do
not target data exploration, we do not review them here. Finally, several special-
purpose methods have been developed for visual iterative data exploration in
specific contexts, for example for itemset mining and subgroup discovery [1,5,
12,15], information retrieval [20], and network analysis [2].

Visually Controllable Data Mining. This work was motivated by and can
be considered an instance of visually controllable data mining [17], where the
objective is to implement advanced data analysis method so that they are under-
standable and efficiently controllable by the user. Our proposed method satisfies
the properties of a visually controllable data mining method (see [17], Sect. II B):
(VC1) the data and model space are presented visually, (VC2) there are intuitive
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visual interactions that allow the user to modify the model space, and (VC3)
the method is fast enough to allow for visual interaction.

Information Visualization and Visual Analytics. Many new interactive
visualization methods are presented yearly at the IEEE Conference on Visual
Analytics Science and Technology (VAST). The focus in these communities is
less on the use or development of advanced data mining or machine learning
techniques, and more on efficient use of displays and human cognition, as well
as efficient exploration via selection of data objects and features, but the need
to merge with the data mining community has been long recognized [10].

5 Conclusions

There is a growing need for generic tools that integrate advanced visualization
with data mining techniques to facilitate visual data analysis by a human user.
Our aim with this paper was to present a proof of concept for how this need can
be addressed: a tool that initially presents the user with an ‘interesting’ projec-
tion of the data and then employs data randomization with constraints to allow
users to flexibly express their interests or beliefs. These constraints expressed
by the user are then taken into account by a projection-finding algorithm to
compute a new ‘interesting’ projection, a process that can be iterated until the
user runs out of time or finds that constraints explain everything the user needs
to know about the data.

In our example, the user can associate two types of constraints on a chosen
subset of data points: the appearance of the points in the particular projection
or the fact that the points can be nearby also in other projections. We also
tested the tool on two data sets, one controlled experiment on synthetic data
and another on real census data. We found that the tool performs according to
our expectations; it manages to find interesting projections, although interesting
can be case specific and relies on the definition of an appropriate interestingness
measure, here L1 norm. More research into that is warranted. Nonetheless, we
think this approach is useful in constructing new tools and methods for visually
controllable interactive data analysis in variety of settings. In further work we
intend to investigate the use of the FORSIED approach to formalizing the back-
ground model [3,4], as well as its use for computing the most informative data
projections. Additionally, alternative types of constraints will be investigated.
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Abstract. We propose a nonparametric Bayesian mixture model that
simultaneously optimizes the topic extraction and group clustering while
allowing all topics to be shared by all clusters for grouped data. In addi-
tion, in order to enhance the computational efficiency on par with today’s
large-scale data, we formulate our model so that it can use a closed-
form variational Bayesian method to approximately calculate the poste-
rior distribution. Experimental results with corpus data show that our
model has a better performance than existing models, achieving a 22%
improvement against state-of-the-art model. Moreover, an experiment
with location data from mobile phones shows that our model performs
well in the field of big data analysis.

Keywords: Non-parametric Bayes · Clustering · Hierarchical model ·
Topic modeling

1 Introduction

In this paper, we focus on a nonparametric Bayesian model in which the complex-
ity of data can be controlled by using a stochastic process such as the Dirichlet
process (DP) [9] as a prior distribution. Because of its flexibility against large-
scale, complex data, this framework is useful for cluster analysis and has been
applied to a wide range of research fields such as natural language processing,
image processing, and bioinformatics. As well as cluster analysis, topic analysis
on grouped data, e.g., topic modeling with corpus data, has long been stud-
ied. The hierarchical Dirichlet process (HDP) [22] is an example of successful
nonparametric Bayesian model for topic analysis. Used as a prior distribution
of a mixture model, HDP extracts the mixture components (= topics) across
groups and allows all topics to be shared by all groups, with mixture weights of
topics inferred independently for each group. The following model discussion is
based on document analysis. As such, words, documents, and topic, which are
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the expressions in document analysis, correspond to observations, groups, and
mixture components, which are generic technical expressions, respectively. The
following model discussion can be applied to various fields (e.g., urban dynamics
analysis [17]) in addition to the research fields mentioned above.

These two fields of study have developed independently, but considering that
the cluster structure, or relationship among groups, enhances the performance
of topic modeling described in [20], it is useful to treat these two analyses at the
same time. The naive approach is to follow a sequential process. For example,
first we extract topics using HDP and then cluster the document, or we cluster
documents on the basis of tf-idf [12] and then extract topics for each docu-
ment cluster. However, as shown in [24], the sequential process possibly suffers
from inaccurate results because the optimization criteria of topic extraction and
group clustering are different. Therefore, a nonparametric Bayesian model that
simultaneously optimizes the topic extraction and group clustering as a unified
framework is required.

As an alternative to such naive approaches, the nested Dirichlet process
(nDP) [21] has been proposed. The nDP simultaneously extracts topics and
clusters groups as a unified framework. In this model, groups (documents) of
data are clustered into various clusters and topics are extracted for each cluster.
Since the topics are not shared with groups in different clusters, there is a risk of
over-fitting in the clusters to which few groups belong due to the lack of training
data for the mixture components of such a cluster.

In order to solve this problem in nDP, Ma et al. [15] proposed a hybrid
nested/hierarchical Dirichlet process (hNHDP). The hNHDP extracts global top-
ics, which are shared by all clusters, and local topics, which are shared only by
groups in the same cluster. Using the idea of [16], hNHDP clusters groups and
allows partial topics (global topics) to be shared by all clusters. However, as with
the nDP, this framework has the risk of over-fitting with regard to the cluster
specific local topics of a cluster to which few groups belong due to the lack of
training data for each topic. As mentioned in [15], enhancing the computational
efficiency is also important, since the sampling method is used to infer the model
parameters of hNHDP.

In light of this background, in this paper, we propose a coupled hierarchi-
cal Dirichlet process (cHDP) that archives the desired framework mentioned
above in order to solve the problems that hNHDP is currently facing. The cHDP
extracts topics and clusters groups as well as nDP and hNHDP and allows all
mixture components to be shared by all clusters, as with HDP. In addition, in
order to enhance the computational efficiency for handling large-scale data, we
formulate cHDP so that it can use a variational Bayesian method in which ana-
lytical approximation is provided and convergence speed is improved compared
to conventional sampling methods.

To evaluate our cHDP performance against the existing models, we conduct
experiments with corpus data on topic modeling and document clustering. In
addition, using large-scale mobility logs from smartphones, we apply the cHDP
to big data analysis – in this case, urban dynamics analysis – in order to show
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that cHDP works well in the fields other than document modeling where the data
take continuous values, in contrast to the corpus data represented by discrete
values. We perform experiments in which two simultaneous analyses are tackled:
the extraction of the pattern of a daily transition of population common in target
regions [17] and the clustering of these regions [25]. These analyses correspond to
topic analysis and group clustering, respectively. As well as document modeling,
since these two analyses have developed independently, and because even recent
research [25] has proposed a sequential approach to such analysis, it is assumed
that cHDP is useful in this urban dynamics analysis.

In order to clarify the position of our proposed cHDP, we introduce two
existing models, nested hierarchical Dirichlet process (nHDP) [18] and coupled
Dirichlet process (cDP) [13], whose names or motivation are similar to cHDP,
and describe the differences between them and cHDP. The nHDP was proposed
to extract tree structured, hierarchical topics, so unlike cHDP, it cannot real-
ize simultaneous topic extraction or group clustering. In the case of cDP, its
generic formulation is motivated by the same purpose as cHDP, but no concrete
inference process was proposed in [13]. In this paper, we formulate a specific
model equivalent to cDP and propose a closed-form variational inference that is
superior to one in [13].

Our contributions are as follows. We developed a new nonparametric
Bayesian method that simultaneously extracts topics and clusters groups in a
unified framework while allowing all topics to be shared by all clusters. This is
achieved by stochastic cluster assignment for both clustering processes. In order
to enhance the computational efficiency, we formulate our model so that it can
use a closed-form variational Bayesian method to approximately calculate the
posterior distribution. We apply our proposed model to document analysis and
big data analysis, in this case, urban dynamics analysis. The results of experi-
ments with real data show that our model performs better in both research fields
compared with existing models.

2 Related Works

As discussed in Sect. 1, for grouped data, we propose a new framework that
simultaneously extracts topics and clusters groups, which allows all mixture com-
ponents (topics) to be shared by all clusters. In this section, we briefly describe
the existing nonparametric Bayesian models for grouped data. First, we describe
HDP as a basic model for grouped data that focuses on topic analysis and then
we introduce nDP and hNHDP, which simultaneously do two analyses, as a base-
line for comparison with our model. In the following explanation, we assume that
we have D groups of data, and the nth observation of group d is denoted as xd,n.

2.1 Model for Topic Analysis

HDP. The hierarchical Dirichlet process (HDP) [22] is a nonparametric
Bayesian model for grouped data. The generative process for a mixture model
for grouped data is written as
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G∗
0 ∼ DP(β,H), Gd ∼ DP(α,G∗

0), (1)

where G∗
0 ∼ DP(β,H) denotes the Dirichlet process (DP) [8], which draws dis-

crete distribution G∗
0. β is a concentration parameter and H is a base measure

of DP. This process is described by stick-breaking representation as

G∗
0 =

∞∑
k=1

πkδφk
, φk ∼ H, πk ∼ GEM(β), (2)

where δ· is the Dirac’s delta function. The expression GEM (named after
Griffiths, Engen, and McCloskey [19]) is used as {π}∞

k=1 ∼ GEM(β) if we have
πk = π′

k

∏k−1
j=1 (1 − π′

j), π′
k ∼ Beta(1, β) for k = 1, · · · ,∞.

The group specific distribution Gd is drawn independently from DP(α,G∗
0)

and G∗
0 is shared by all groups, which is itself drawn from another DP. As a result,

mixture components (topics) are shared by all groups while the weights are
independent of each group. The HDP cannot consider the relationship between
groups, and since the mixture weights of each group are inferred independently,
there is a risk of over-fitting.

2.2 Models that Simultaneously Extract Topics and Cluster Groups

NDP. The nested Dirichlet process (nDP) [21] clusters groups and extracts
topics in a unified framework. The nDP is written as the following process, in
which the DP itself is used as the base measure of different DP:

Q ∼ DP(α,DP(β,H)), Gd ∼ Q. (3)

This generative process induces the clustering of groups. The mixture com-
ponents and weights are shared only in the same cluster of groups. The stick-
breaking representation of the nDP is written as

Q =
∞∑

g=1

ηgδG∗
g
, Gd ∼ Q, ηg ∼ GEM(α), (4)

G∗
g =

∞∑
t

πg,tδg,t, φg,t ∼ H, πg,t ∼ GEM(β). (5)

Let G∗
g denote the cluster specific distribution and φg,t denote the tth parameter

of cluster g. In the mixture model with the nDP, as the mixture components in
a cluster are not shared by different clusters, the clusters to which few groups
belong suffer from over-fitting due to the lack of training data.

HNHDP. Ma et al. [15] proposed the hNHDP model, in which the advantages of
the HDP and nDP are integrated. In the hNHDP, the cluster specific distribution
Fg is modeled as the combination of two components, G0 ∼ DP(α,H0) and
Gg ∼ DP(β,H1), and written as

Fg = εgG0 + (1 − εg)Gg, εg ∼ Beta(α, β). (6)



234 M. Shimosaka et al.

G0 is shared by all group clusters and Gg is cluster-specific. α, β are concentration
parameters and H0,H1 are base measures. Therefore, we have global mixture
components shared by all clusters and cluster-specific local mixture components.
With this modeling, we can cluster the groups while some mixture components
are shared by all clusters, which enhances the modeling performance. However, as
well as the nDP, this framework still has the risk of over-fitting due to the cluster
specific mixture components. To tackle this problem, we need a framework in
which all mixture components are shared among all group clusters.

3 Coupled Hierarchical Dirichlet Process (cHDP)

As described in Sect. 2, the existing nonparametric Bayesian models are facing
various issues. In this section, we propose a coupled hierarchical Dirichlet process
(cHDP) in which the advantages of HDP and nDP are integrated. The cHDP
simultaneously extracts topics and clusters groups while allowing all mixture
components to be shared by all group clusters, which solves the problem in
the hNHDP. In addition, in order to enhance the computational efficiency, we
modeled the cHDP so that it can use a variational Bayesian method in closed
form for inferring the model parameters.

In this paper, we assume that we have D groups of data and let xd =
{xd,1, . . . , xd,Nd

} be the observations of group d, where {xd,n} denotes the nth
observation and Nd is the total number of observations in group d. We assume
that each observation xd,n is drawn from the probabilistic distribution p(θd,n)
with parameter θd,n. The figure (D) in Fig. 1 shows the generative process of
cHDP.

3.1 Definition and Formulation

We define the generative process of our proposed cHDP as follows

G∗
0 ∼ DP(γ,H), Q ∼ DP(α,DP(β,G∗

0)), Gd ∼ Q. (7)

The second equation of (7) indicates that the DP is used as the base measure
of another DP as with the nDP described in (3). The base measure of the nested
DP in (7) is drawn from another DP whose base measure G∗

0 is shared with all
groups as with HDP described in (1). Considering this description, we can say
cHDP is the generative process that holds the characteristics of HDP and nDP.

Several representations such as the Chinese restaurant franchise and the
stick-breaking process are candidates for implementing the cHDP. In this paper,
we adopt the stick-breaking representation, which enables us to use variational
Bayesian inference, a computationally efficient approximation method, because
we consider using the cHDP to handle large-scale data. We formulate the stick-
breaking representation of the cHDP as
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Fig. 1. Graphical model of (A) HDP, (B) nDP, (C) hNHDP, and (D) cHDP (proposed).

G∗
0 =

∞∑
k=1

λkδφ∗
k
, φ∗

k ∼ H, λk ∼ GEM(γ), (8)

G∗
g =

∞∑
t

πg,tδψ∗
g,t

, ψ∗
g,t ∼ G∗

0, πg,t ∼ GEM(β), (9)

Q =
∞∑

g=1

ηgδG∗
g
, ηg ∼ GEM(α), Gd ∼ Q, (10)

where k is the index of mixture components shared by all groups and g is the
index of the clusters of groups. Each group belongs to one of the clusters and
cluster g = 1 · · · ∞ has a cluster specific distribution G∗

g drawn as (9). Regarding
the stick-breaking representation of the generative process of G∗

g, which is the
same as the model structure of HDP in (7), there are different representations
by Teh et al. [22] and Wang et al. [23]. The above representation is

G∗
g =

∞∑
k=1

πg,kδφk
, πg,k = π′

g,k

k−1∏
j=1

(1−π′
g,j), π

′
g,k ∼ Beta

⎛
⎝αλk, α

⎛
⎝1 −

k∑
j=1

λj

⎞
⎠

⎞
⎠ .

(11)
With this representation, it is not possible to use a variational method in closed
form in the inference of posterior distribution, so we formulate as (9) using the
representation in the same way as [23], which enables us to use the variational
method. This is achieved by introducing cluster specific parameter {ψg,t}∞

t=1

and a mapping variable that connects ψg,t and mixture component φk, which is
shared by all clusters.
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Next, we introduce additional variables and formulate the mixture model
using the cHDP. Let Y = {yd,g|yd,g = {0, 1},

∑
gyd,g = 1} be a vari-

able that represents the cluster to which a group d belongs. Then, we define
Z = {zd,n,t|zd,n,t = {0, 1},

∑
tzd,n,t = 1} as a variable that represents the

cluster specific component t to which xd,n belongs and C = {cg,t,k|cg,t,k =
{0, 1},

∑
kcg,t,k = 1} as a variable that represents the mixture component k

to which the cluster specific component t of a cluster g corresponds. As men-
tioned above, introducing the cluster specific component t and mapping variable
c enables us to use variational inference. Let Θ denote the parameter set of dis-
tributions that the observations X = {xd,n} follow. The mixture model using
the cHDP is then formulated as

p(X|Y,Z,C,Θ) =
∏

d,g,n,t,k

p(xd,n|Θk)yd,gzd,n,tcg,t,k , (12)

p(Y|η′) =
∏
d,g

⎧
⎨
⎩η′

g

g−1∏
f=1

(1 − η′
f )

⎫
⎬
⎭

yd,g

, (13)

p(Z|Y,π′) =
∏

d,g,n,t

{
π′

g,t

t−1∏
s=1

(1 − π′
g,s)

}yd,gzd,n,t

, (14)

p(C|λ′) =
∏
g,t,k

⎧
⎨
⎩λ′

k

k−1∏
j=1

(1 − λ′
j)

⎫
⎬
⎭

cg,t,k

, (15)

p(η′
g) = Beta(η′

g|1, α), (16)
p(π′

g,t) = Beta(π′
g,t|1, β), (17)

p(λ′
k) = Beta(λ′

k|1, γ). (18)

3.2 Variational Bayesian Inference with Closed Form Update

As with the general nonparametric Bayesian models, the posterior distribution
of this cHDP mixture model cannot be calculated in closed form. We therefore
need to apply an approximation method such as Gibbs sampling or variational
Bayesian inference. In this paper, because we consider application to large-scale
data, we opt to use variational Bayesian inference, which is characterized by its
computational efficiency, to approximately calculate the posterior distribution
and infer the model parameters. We approximate the posterior distribution as

q(·) ≡ q(Y)q(Z)q(C)q(η′)q(π′)q(λ′)q(Θ). (19)

In variational inference, we update each parameter distribution qi by ln qi =
Eq−i[ln p(X, ·)] + const.
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Update q(Y). We introduce ξd,g that satisfies
∑

g ξd,g = 1 and

ln ξd,g =
∑
n,t

Eq[zd,n,t]
(∑

k

Eq[cg,t,k]Eq[ln p(xd,n|Θk)]

+Eq[lnπg,t]
)

+ Eq[ln ηg] + const, (20)

then we have q(yd) = M(yd|ξd) and Eq[yd,g] = ξd,g, where M(·|·) represents the
multinomial distribution.

Update q(Z), q(C). As well as the update of q(Y), both q(Z) and q(C) are
represented as multinomial distribution by introducing variables.

Update q(η′). We have q(η′
g) = Beta(η′

g|αg,1, αg,2), where

αg,1 = 1 +
∑

d

Eq[yd,g], (21)

αg,2 = α0 +
G∑

f=g+1

∑
d

Eq[yd,f ]. (22)

G is a large truncation number for group clusters. We also have

Eq[ln η′
g] = ψ(αg,1) − ψ(αg,1 + αg,2), (23)

Eq[ln (1 − η′
g)] = ψ(αg,2) − ψ(αg,1 + αg,2), (24)

Eq[ln ηg] = Eq[ln η′
g]

g−1∑
f=1

Eq[ln (1 − η′
f )], (25)

where ψ(·) represents the digamma function ψ(x) = d
dx ln Γ (x).

Update q(π′), q(λ′). As well as the update of q(η′), both q(π′) and q(λ′) are
represented as the beta distribution.

3.3 Predictive Distribution for New Observation

By using the approximation p(C,η,π,λ,Θ|X) � q(C)q(η)q(π)q(λ)q(Θ) as
with [23], the likelihood of new observation x∗ of the cHDP model trained with
data X is written as

p∗(x∗|X) �
∑

g

Eq[ηg]
∏
n

∑
t

Eq[πg,t]
∑

k

φg,t,kEq[p(x∗
n|Θk)], (26)

where

Eq[ηg] = Eq[η′
g]

g−1∏
f=1

(1 − Eq[η′
f ]), Eq[η′

g] =

{
1 (g = G)

αg,1
αg,1+αg,2

(o.w.).
(27)

Eq[πg,t] is calculated in the same manner.
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4 Experimental Results

4.1 Document Analysis with Corpus Data

We present the experiments with corpus data to evaluate our framework. We
constructed a topic model, cHDP-LDA, in which our cHDP is applied to latent
Dirichlet allocation (LDA) [6] as a prior distribution. In the experiment with
corpus, the words, documents, and topic correspond to observations, groups,
and mixture components. The cHDP-LDA simultaneously optimizes both words
and document clustering, and topics are shared by all document clusters.

Suppose we have document d ∈ {1, · · · ,D} whose number of words is Nd

and the total number of words found in these documents is W . Let xd,n =
{xd,n,w|xd,n,w = {0, 1},

∑
w xd,n,w = 1} be the nth words in document d. We

assume that the word xd,n is drawn from multinomial distribution M(xd,n|μk),
where k is the topic index and μ· ∈ R

W is a parameter of the multinomial
distribution. The Dirichlet distribution D(μ|δ) ∝ ∏

i μδi−1
i , which is conjugate

to multinomial distribution, is used as a prior distribution for μ, where δ ∈ R
W

is the hyperparameter for the Dirichlet distribution. In this paper, we assume
that {δi}W

i=1=δ and D(μ|δ) is the symmetric Dirichlet distribution.
In the following experiments, we used three corpora: Reuters-21578 Corpus

(Reuters corpus) [10], Nist Topic Detection and Tracking Corpus (TDT2 corpus)
[2], and NIPS Conference Papers Vols. 012 Corpus (NIPS corpus) [4]. With these
datasets, preprocessing (removal of stop words, etc.) has already been done. For
the Reuters corpus, we chose the version used in [3] composed of uniquely labeled
documents with a total of 65 categories. The TDT2 corpus was collected from six
news services from January 4, 1998 to June 30, 1998, and we chose the version
used in [3] composed of uniquely labeled documents with a total of 96 categories.
The NIPS corpus [4] was made with the proceedings of the Neural Information
Processing Systems (Advances in NIPS) [1] from Vols. 0 (1978) to 12 (1999).

Perplexity Evaluation. First, we evaluate the document modeling perfor-
mance of our cHDP model and compare it to other existing topic models. All
three corpora described above were used. As comparative models, we selected
LDA models, each of whose prior distribution is an existing nonparametric
Bayesian model, e.g., nested Chinese restaurant process (nCRP) [5], HDP [23],
nDP [21], and hNHDP [15]. We refer to these models as hLDA, HDP-LDA,
nDP-LDA, and hNHDP-LDA respectively. The hNHDP-LDA is a state-of-the-
art framework that clusters both words and documents simultaneously. We set
the hyperparameters of cHDP-LDA as α=β=γ=δ=1, and those of nDP-LDA
are also 1. As for hLDA, HDP-LDA and hNHDP-LDA, we followed the cited
references.

We evaluate the models with the perplexity to test data. The perplexity
indicates how well a trained model predicts new documents. Suppose we have D
documents X∗ = {x∗

d}D
d=1 and the number of words in the dth document is Nd.

In this case, the perplexity P(X∗) is calculated as
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Table 1. Test data perplexity (best score in boldface).

Corpus Reuter TDT2 NIPS

Training → Test A → B B → A A → B B → A A → B B → A

cHDP-LDA 1591 1529 4157 4200 2543 2463

hLDA 1925 1864 6523 5600 2584 2560

HDP-LDA 2478 2390 6348 6406 3033 2998

nDP-LDA 4557 4460 10043 10189 3404 3374

hNHDP-LDA 2041 1939 5498 5350 2886 2817

P(X∗) = exp
(

−
∑

d ln p(x∗
d)∑

d Nd

)
. (28)

The smaller the perplexity, the better the performance. In this experiment, we
randomly divided each corpus into two groups, set A and set B, and then trained
models with the one set and evaluated with the other.

For all corpora, the perplexities calculated with test sets A and B are shown
in Table 1. The proposed cHDP-LDA performed best. The difference in perfor-
mance between cHDP-LDA and HDP-LDA seems to be caused by the fact that
cHDP can consider the relationship among documents. While the nCRP, which
is the prior distribution of the hLDA, can indirectly consider the relationship
of documents by partially sharing nodes (topics) in learning process, the hLDA
performed worse than cHDP-LDA. We assume this is because the mixture weight
to topics is independent of each document, resulting in over-fitting. HDP-LDA
also suffers from this problem. Although the nDP-LDA can directly consider
the relationship among documents, it exhibited a much worse performance than
the others. This is because the topics in a document cluster to which few doc-
uments belong are inaccurate due to lack of training data, since topics in one
document cluster are not shared by different clusters. The cHDP-LDA also out-
performed the hNHDP-LDA, the state-of-the-art co-clustering model, in which
partial topics are shared with different clusters. The same as the nDP-LDP,
the hNHDP-LDA may suffer from over-fitting since hNHDP holds cluster spe-
cific topics (local topics). The above comparison clearly demonstrates that our
cHDP-LDA, which clusters both words and documents while allowing all topics
to be shared by all documents (or clusters), is suitable for topic modeling.

Document Clustering. We conducted an experiment to evaluate only the
performance of document clustering against the existing methods, some of which
do not extract topics. The datasets used here are the Reuters corpus and the
TDT2 corpus, both of whose documents are categorically labeled. The evaluation
criterion is the adjusted Rand index (ARI) [11], which indicates the accuracy of
the clustering result against the true labeling. If the clustering result coincides
with the true labeling, ARI takes 1 and if the result is from random clustering,
ARI takes 0. The closer the ARI value to 1, the better the clustering accuracy.
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As comparative models, we used spherical k-means (SPK) [7] and spectral
clustering (SC) [14], which cluster documents without topic extraction. In addi-
tion, as nonparametric Bayesian models, we used nDP and hNHDP. For each
model, we conducted 100 clustering trials and evaluated the ARI values. Figure 2
indicates the means and standard deviation of ARI at each number of document
clusters and Table 2 shows the highest ARI value and the corresponding number
of clusters. In the case of cHDP-LDA, nDP-LDA, and hNHDP-LDA, since the
number of document clusters is not manually determined (inferred by model),
we plotted the same value for each number of document clusters.

We firstly compare the cHDP-LDA with SPK and SC, which do not extract
topics. For the Reuters corpus, the ARI value statistically exceeded that of SPK
and SC at the most appropriate number of document clusters. Although the
ARI of the cHDP-LDA was slightly lower than that of SPK with the TDT2
corpus, the difference was not statistically significant. Then, we argue the result
against the nDP-LDA and the hNHDP-LDA, nonparametric Bayesian models
that cluster documents with topic extraction. Against the nDP-LDA, the cHDP-
LDA statistically outperformed with both corpora. In contrast, although the
cHDP-LDA performed slightly worse than the hNHDP-LDA for the Reuters
corpus, without statistically significant difference, it statistically outperformed
for the TDT2 corpus. We found the cHDP is more robust against documents
than the HNHDP-LDA. These results indicate that the document clustering
performance of the cHDP-LDA is the same level or higher compared to the
existing methods.

We summarize the results of both experiments. As for the perplexity evalua-
tion for topic modeling, our cHDP-LDA outperformed all existing models with
all corpora. Regarding the ARI evaluation for document clustering, although
cHDP-LDA performed slightly worse than some combinations of model and cor-
pus, no statistically significant difference was observed by t-testing. In other
cases, cHDP-LDA performed best and the difference was statistically significant
for each case. Therefore, we conclude our cHDP-LDA performs better and more
stably than other models including the hNHDP-LDA, the state-of-the-art model.

Table 2. Results of document clustering.

Reuters
No. of
clusters ARI

cHDP-LDA — 0.419 ± 0.045

nDP-LDA — 0.195 ± 0.103

hNHDP-LDA — 0.424 ± 0.050

SPK 5 0.391 ± 0.109

SC 4 0.385 ± 0.019

TDT2
No. of
clusters ARI

cHDP-LDA — 0.640 ± 0.028

nDP-LDA — 0.083 ± 0.042

hNHDP-LDA — 0.520 ± 0.066

SPK 12 0.646 ± 0.065

SC 7 0.557 ± 0.008
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cHDP-LDA nDP-LDA hNHDP-LDA SC SPK

Fig. 2. Adjusted Rand indices with no. of clusters.

4.2 Big Data Analysis with Mobility Logs

In this section, using large-scale mobility logs from smartphones, we apply our
cHDP to big data analysis, in this case, urban dynamics analysis. In this analysis,
the following two analyses have been developed independently: extraction of
patterns of the daily transition of population common in target regions [17],
whose details are explained below, and clustering of regions [25]. Inspired by the
success of cHDP in simultaneous topic modeling and document clustering, we
apply cHDP to simultaneously tackle these analyses.

First, let us give an overview of this experiment. We set a square area (e.g.,
300 × 300 m) as the target region and define this region as a point of interest
(POI). In each POI, we divide a day into H time segments and describe the
daily transition of population as a histogram, as shown in Fig. 3. Each bin in the
histogram is the number of logs observed in a time segment in the POI. We define
basic patterns in the transition of population as dynamics patterns and assume
that a daily transition of population is generated from the mixture of dynamics
patterns. Using an analogy from document modeling, POI, a daily transition,
and dynamics pattern correspond to document, word, and topic, respectively.
Figure 4 shows the framework of this big data analysis by cHDP. The left side
of the figure shows the collections of the daily transition of population in each
POI and the right side indicates the extracted dynamics pattern.

Let d, n, and h be the index of POI, day, and time segment, respec-
tively. The transition of population in the nth day in POI d is described as
xd,n = {xd,n,1, · · · , xd,n,H} ∈R

H . We assume xd,n,h is drawn from the mixture
of Gaussian distribution and the distribution of the kth dynamics pattern is
written as N (xd,n,h|μk,h, ρ−1

k,h). μ·,·, ρ·,· are the mean and precision. We use the
Gaussian distribution and gamma distribution as the prior distribution for μk,h

and ρk,h.
The dataset and the problem settings in this experiment are as below. We

use the large-scale GPS logs collected from the disaster alert mobile application
released by Yahoo! JAPAN. The logs are anonymized and include no users’ infor-
mation. Each record has three components: timestamp, latitude, and longitude.
We use data collected for 365 days, from 1 July 2013 to 30 June 2014, consisting
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Fig. 3. Daily transition of population.

Dynamics pattern

Fig. 4. Urban dynamics analysis by cHDP.

of 15 million logs per day in the Kanto region in Japan. We focus on the square
area (approximately 8000 × 8000 m) indicated by the thick blue line in Fig. 6.
We divide this focus area into 26× 26 square pixels (each pixel is 300 × 300 m)
and regard each pixel as a POI. A daily transition of population in each POI is
characterized by its scale and shape (e.g., the population peak time). As in [17],
to make the patterns depend only on shape, we use the log counts divided by
the average number of logs per day for training and test data for each POI.

For quantitative evaluation of dynamics pattern modeling, we use mean log
likelihood (MLL) for test data. The models are trained with data of 30, 60, 90,
120, 150, and 180 days and tested by 180 days of data. From the 365 days of the
dataset, training data and test data are randomly selected without duplication.
Five tests are conducted with each number of days and the average values of
MLL are evaluated. As for the evaluation for POI clustering, we visualize the
clustering result and argue the validity on the basis of the real geographical
features. This is because numerical evaluation is difficult for POI clustering.

We use the HDP and nDP as comparative models. Parameters are inferred by
variational method. As for the POI clustering of HDP, we used a DP Gaussian
mixture model with the mixture weight to dynamics pattern for each POI. Due to
the computational performance for large-scale data, we do not use the hNHDP
model, which is trained by sampling. Note that neither SPK nor SC can be
directly used for region clustering without pattern extraction because feature
value must be ratio scale calculated from the set of discrete values such as words.

Results. As shown in Fig. 5, the cHDP model had the best performance for
all the training data condition. We can see a big performance gap between the
cHDP and the others in the test with a small amount of training data. This result
indicates that the cHDP’s framework, i.e., considering the POI’s relationship and
the sharing dynamics patterns among all POIs, enhances the modeling accuracy.
The reason nDP exhibited a worse performance is that the dynamics patterns in
a POI cluster where few POIs belong are inaccurate due to the lack of training
data, since patterns are not shared among different clusters.
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Fig. 5. Quantitative result of MLL.

Next, we evaluate the clustering performance. Since it is almost impossible
to attach category labels by hand to such a small area, numerical evaluation like
ARI is difficult. Therefore, we visualize the clustering result and qualitatively
argue the validity. Figure 7 shows the POI clustering result by the cHDP model.
POIs that belong to the same cluster are drawn in the same color, while similar
colors do not indicate the similarity in dynamics pattern trends. As shown in
Fig. 7, POIs distributed along railways are clustered into the same cluster (POIs
around the Yamanote and Chuo lines are clustered in red and POIs around
private railways are clustered in deep blue). In addition, yellow colored cluster
corresponds to residential regions. Thus, it is shown that the cHDP model could
cluster POIs corresponding to the actual geographical features.

The POI clustering by the HDP is shown in the left side of Fig. 8. We first
extracted dynamics patterns by the HDP and then clustered POIs on the basis
of the mixture weights by DP. The correlation between the result and the actual
geographical feature such as railways is low compared to the cHDP. In addition,
neighboring POIs tended to belong to different clusters. Since we mesh the focus
area into small areas (300 × 300 m), we assumed that spatial continuity of POI
clusters among neighboring POIs can be seen. Therefore, the result is not valid
and we cannot say that this is a meaningful clustering result. The comparison
between cHDP and HDP indicates the advantage of simultaneous extraction of
patterns and POI clusters. In contrast, as shown in the right side of Fig. 8, the
result of the nDP matches the geographical features to some extent. This is
probably because the nDP simultaneously extracts patterns and clusters POIs
as with cHDP. However, compared to the result of cHDP shown in Fig. 7, POIs
along the Yamanote and Chuo liens are not clustered well. We assumed that
this difference stems from over-fitting of the cluster specific dynamics patterns.
Considering the above evaluation, we conclude that the cHDP is useful for big
data analysis, i.e., dynamics pattern extraction and region clustering.

5 Conclusion

In this paper, we proposed cHDP, a new nonparametric Bayesian mixture model
that simultaneously extracts topics and clusters groups while allowing all topics
to be shared by all clusters. In order to achieve better computational efficiency,
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Fig. 6. Analysis area. (Color figure
online)

Fig. 7. Clustering by the cHDP model.
(Color figure online)

Fig. 8. Clustering by (left) HDP + DP clustering and (right) the nDP model.

we formulated our model in order to take variational Bayesian inference in closed
form when inferring the model parameters.

We applied cHDP to document modeling and big data analysis, in this case,
urban dynamics analysis. For the document modeling, we used cHDP as a prior
distribution of LDA, which simultaneously conducts topic extraction and doc-
ument clustering in a unified framework. Experiments with corpus data show
that cHDP performs well in both tasks compared with existing models, achiev-
ing a 22 % improvement against the state-of-the-art model. For big data analysis,
we simultaneously tackled dynamics patterns extraction and region clustering.
Using the GPS logs from smartphones, we showed that the cHDP enhances
performance in pattern modeling and obtains valid clustering results. The com-
parison with nDP indicates the superiority of cHDP’s topic sharing among all
clusters.

For future work, we will introduce an online approach in the learning process.
This is necessary to handle the data that accumulate over time, such as GPS
logs from smartphones, let alone much more large-scale data. One option for this
is using the online variational Bayesian method proposed in [23].
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JST.
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Abstract. Estimating traffic conditions in arterial networks with GPS
probe data is a practically important while substantially challenging
problem. With the increasing availability of GPS equipments installed in
various vehicles, GPS probe data is currently becoming a significant data
source for traffic monitoring. However, limited by the lack of reliability
and low sampling frequency of GPS probes, probe data are usually not
sufficient for fully estimating traffic conditions of a large arterial net-
work. For the first time this paper studies how to explore social media
as an auxiliary data source and incorporate it with GPS probe data
to enhance traffic congestion estimation. Motivated by the increasing
amount of traffic information available in Twitter, we first extensively
collect tweets that report various traffic events such as congestion, acci-
dent, and road construction. Next we propose an extended Coupled Hid-
den Markov Model which can effectively integrate GPS probe readings
and traffic related tweets to more accurately estimate traffic conditions of
an arterial network. To address the computational challenge, a sequential
importance sampling based EM algorithm is also introduced. We evalu-
ate the proposed model on the arterial network of downtown Chicago.
The experimental results demonstrate the superior performance of the
model by comparison with previous methods.

Keywords: Social media · Traffic estimation · CHMM

1 Introduction

Conventional traffic monitoring methods rely on road sensor data collected from
various sensors such as loop detectors [14], surveillance cameras [4], and radars.
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Due to the high cost of deploying and maintaining such devices, their spatialtem-
poral coverage is usually very limited. Recently, GPS based probe vehicle data
have become a significant data source available for the arterials and highways
not covered by dedicated sensing infrastructure. As such, there is considerable
research interest in exploring GPS probes for conducting various traffic related
applications [6,20]. However, the characteristics of probe data, including the
lack of reliability, low sampling frequency, and the randomness of its spatiotem-
poral coverage, make it insufficient for fully estimating traffic states for large
transportation networks [5].

Currently, it is a common practice for drivers and official transportation
departments to release instant traffic information through social media [12,18].
By taking Twitter as an example, a large number of tweets that report traffic
events like congestion and accident are posted instantly every day. Many such
tweets, like “Harrison St: accident at Kilbourn Ave, 2:04-4/2/2015”, explic-
itly give the type of traffic event, time, and location information. Motivated by
the rich traffic information available in social media, many recent efforts have
been devoted to exploring social media data to facilitate traffic related applica-
tions, such as traffic event location identification [16,19], traffic event detection
[1,21], as well as traffic congestion estimation [2,3,10]. Chen et al. made the first
attempt to estimate urban traffic congestions by relying only on the traffic infor-
mation collected from Twitter [10]. To improve long-term traffic prediction, He
et al. tried to use rich semantic information in online social media [7]. Wang et
al. proposed a coupled matrix and tensor factorization model to integrate social
media data, road features, and other information to better estimate traffic con-
gestions of a city [2]. However, existing works mainly focus on studying how to
utilize social media as the major data source for traffic monitoring. How to use
social media data and fuse it with GPS probe data to improve traffic congestion
estimation is still not fully explored.

For the first time, this paper incorporates traffic information extracted from
Twitter with the sparse and noisy GPS probe data to enhance urban traffic con-
gestion estimation. The challenges of the studied problem are two-fold. Firstly,
the traffic information extracted from Twitter can be associated to multi-typed
traffic events including congestion, accident, road construction, etc. It is non-
trivial to model the potential impacts of the diverse traffic events on traffic
congestion. For example, given a tweet that reports a traffic accident, how can
we quantitatively measure its impact on traffic congestion? Secondly, it is also
difficult to combine the two types of data with totally different data formats
seamlessly. A piece of GPS probe reading normally contains the time, speed,
heading, and the exact location (longitude, latitude) information of a vehicle;
while a tweet that reports a particular traffic event typically will mention the
traffic event type, the time, and the road or road segment information. The dif-
ferences of the two types of datasets on both traffic information and location
granularity make the effective combination of them very challenging.

To address the above challenges, we first extensively collect traffic related
tweets from both traffic authority Twitter accounts (explain later) and regular
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Twitter user accounts, and extract the traffic event, time, and location infor-
mation by data processing. Through data analysis, we discover that (1) there
is a high occurrence correlation between traffic events like accident and traffic
congestion, and (2) the data of traffic event related tweets is an important com-
plementary to GPS probe data. Both discoveries indicate that the estimation
performance could potentially improved if Twitter data are properly incorpo-
rated. To effectively fuse the two types of data, we propose an extended Coupled
Hidden Markov Model (E CHMM). Different from traditional models with the
GPS probe observations only [6,8], in this model we consider the GPS probe data
and traffic related tweets as two types of observations generated from two differ-
ent distributions independently. As the exact solution of the E CHMM model is
infeasible for a large network due to the exponential space and time consumption,
we utilize a sequential importance sampling method to more efficiently solve the
E-step of the EM algorithm. In the M-step, we formulate the original optimiza-
tion problem decomposable into smaller problems that can be independently
optimized. We evaluate our model on the arterial network of downtown Chicago
with 1,257 road links whose total length is nearly 700 miles. The result shows
that by incorporating Twitter data, about 15 % GPS probes can be reduced
to achieve the comparable performance to previous method with all the GPS
probes. This research provides us with a promising way to reduce the cost and
improve the performance of urban traffic congestion estimation.

2 Preliminary

In this section, we will start with some definitions, and introduce the framework
of our method. Next we will make some basic assumptions in traffic congestion
estimation to facilitate us model the studied problem.

Definition 1. A tweet observation of traffic event et,l,i. We represent a
tweet observation of traffic event occurring on the road link l at time t as such
a tuple et,l,i = (c, loc, t), where c is the traffic event category, loc represents the
location or road segment of the event, and t denotes the time.

Definition 2. A GPS probe observation yt,l,i. We represent a GPS probe
observation on the road link l at time t as such a vector yt,l,i = (s, lat, lon, head, t),
where s is the vehicle speed, lat is the latitude, lon is the longitude, head is the head-
ing of the probe, and t denotes the time.

Definition 3. A road link l. We use the intersections to partition an arterial
road R into several road links R = {l1, l2, ...}. Each road link l can be represented
as such a tuple l = (Link ID, Start Inter, End Inter), where link ID is the ID
of the road link, Start Inter is the start intersection, and End Inter is the end
intersection.

Definition 4. Neighbor road links. Two road links l1 and l2 are called neigh-
bor road links if they connect to each other, namely they share an intersection.
Particularly, the road link l is also considered as a neighbor road link of itself.
We denote all the neighbor links of road link l as Nl.



250 S. Wang et al.

Fig. 1. Framework of the proposed model (Color figure online)

Figure 1 shows the framework of our method. It contains two major parts:
data collection and processing part, and the model part. There are two types of
data sources in our model, traffic related tweets and GPS probe readings. From
each traffic related tweet, we first extract the traffic event type, location, and
time information, and then map it to the corresponding road link by geocoding.
Similarly, we extract the exact location and travel speed information from each
GPS probe reading, and then map it to the corresponding road link. For each
road link, we assume the occurrence of traffic events on it follows multinomial
distribution, and the traveling speed of vehicles in a particular time interval
follows Gaussian distribution [6].

We model the spatiotemporal conditional dependencies of arterial traffic
using a probabilistic graphical model Coupled Hidden Markov Model. A CHMM
models a system of multiple interaction processes which are assumed to be a
Markov process with unobserved states. In our model, the multiple processes
evolving over time are the discrete traffic states of each link in the road network
(the circles in the model part of Fig. 1). Since we do not observe the state of
each link for all times, we consider them as hidden. We can observe the vehicle
speed and traffic events from GPS probe and tweets (the blue and red squares
in the model part of Fig. 1), and the traffic speed and event on each link are
conditioned on its hidden state. In addition, a coupled structure to the HMM
specifies the local dependencies between adjacent links of the arterial network.
As shown in the model part of Fig. 1, the goal of this paper is to more
accurately infer the hidden congestion states zt,l for each road link l
in each time interval t by utilizing the traffic event observations et,l
and the probe observations yt,l.

Following the classical traffic congestion estimation models [6,8], we make
the following assumptions for computational tractability.
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– Discrete traffic states: For each time interval t, the traffic condition on link l
is represented by a discrete value slt, which indicates the level of congestion.

– Conditional independence of link travel speed: Conditioned on the state slt of
a link l, the travel speed distribution on l is independent from all other traffic
variables.

– Conditional independence of traffic events: Conditioned on the state slt of a
link l, the probability of traffic event et,l,i occurring on link l is independent
from all other traffic variables.

– Conditional independence of state transitions: Conditioned on the states of
link l and its neighbor links in time interval t, the state of link l at time t + 1
is independent from all other current link states, all past link states, and all
past observations.

The second and third assumptions show that the two types of observations are
independent to each other and only determined by the current traffic state of
the road link. The last assumption implies that the traffic state of each road link
is only related to its neighbor links in the last time interval, but independent of
the states of the rest road links in earlier time intervals.

3 Twitter Data Collection

In this section we introduce how we collect traffic event information from Twit-
ter. This paper focuses on studying the traffic conditions in Chicago, and we
collect traffic event tweets in Chicago from two types of accounts as in [2]: traffic
authority Twitter accounts and regular Twitter user accounts.

Traffic Authority Twitter Accounts. Traffic authority Twitter accounts
refer to the Twitter accounts that specialize in posting traffic related informa-
tion. Such accounts are mostly operated by official transportation departments.
Tweets posted by these accounts are formal and easy to process, and the exact
location and time information are explicitly given such as the tweet “Heavy
Traffic on NB Western: Fullerton to Kennedy Expy. 06:15 pm 02/13/2015”.
We identify 10 such Twitter accounts that report real-time traffic information
of Chicago: ChicagoDrives, ChiTraTracker, roadnowChicago, traffic Chicago,
IDOT Illinois, WGNtraffic, TotalTrafficCHI, GeoTrafficChi, roadnowil, and
rosalindrossi.

Regular Twitter user accounts. We also crawl the tweets posted by the regu-
lar users registered in Chicago. In all we target on more than 100,000 such users
and crawl more than 32.3 million corresponding tweets. Next, we preprocess
the data as follows. (1) Traffic Event Tweets Identification. We select traffic
event tweets from all the crawled tweets which match at least one term of the
predefined vocabularies: “stuck”, “congestion”, “jam”, “crowded”, “pedestrian”,
“driver”, “accident”, “crash”, “road blocked”, “road construction”, “slow traf-
fic”, “heavy traffic”, and “disabled vehicle”. Based on the keywords contained
in the tweets, we can also identify the traffic event category. (2) Tweet Geocod-
ing. We then geocode the tweets to the road links by matching their geo-tags
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and text content. By combing the geo-coordinates of tweets and the direction
mentioned in the content, we can geocode the tweets to the road links. For most
tweets without geo-tags, we first identify the streets, landmarks, and direction
information from the content by using gazetteer, and then geocode them to the
road segments.

Note that accurately identifying the locations of traffic events from tweets is
itself a challenging task [1,16]. Traffic event location extraction from the short
and noisy text is out of the scope of this work. In this paper we only keep the
tweets that explicitly give the traffic event type and road segment information.
For those with incomplete or obscure location information, we choose to omit
them. In all we obtain 245,568 traffic event tweets from April 2014 to December
2014, around 80 % of which are collected from traffic authority accounts. Each
tweet reports a traffic event. 163,742 of them are related to slow traffic, 77,454 are
related to accident, and 4,372 report other traffic events such as road construction
and road closure.

To investigate whether the traffic events reported by Twitter can reflect traffic
conditions, we plot the probe speed observations on the road links with a traffic
event reported by Twitter and on normal road links in Fig. 2. Each data point in
the figure represents a probe speed observation on a road link. Blue data points
represent the normal probe observations, while red data points represent probe
observations on the road links where traffic congestions or accidents are reported
by Twitter. One can see that the average probe speed on the road links with
traffic events is lower than that on road links with normal traffic conditions. It
implies that the traffic events reported by tweets usually indicate a slower traffic,
and thus they can help us better estimate traffic conditions.

Fig. 2. Probe speed: Normal vs Accident (left figure), and Normal vs Congestion (right
figure) (Color figure online)

4 Extended Coupled Hidden Markov Model:
Incorporating Two Types of Observations

Before elaborating the method, we first give some notations and their meanings
in Table 1. πs

l denotes the initial probability of road link l in traffic state s.
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Al is the traffic state transition probability matrix for link l with respect to
all its neighbor links. It is a matrix of size S|Nl| × S, where S|Nl| represents
the number of all possible states of the neighbors Nl of link l. Based on our
assumption, the state of link l in the time interval t + 1 is only related to the
states of its neighbor links Nl in the last time interval t. Hence each element
Al(Ri, s) represents the probability of link l to be in state s in the time interval
t + 1 given that its neighbors Nl are in states Ri = (ri1, ri2, ...ri|Nl|) in the time
interval t. gsl (·) is the probability density function of vehicle speed for link l
in state s. We assume it follows Gaussian distribution [6]. fs

l (·) represents the
distribution of traffic event number for link l in state s. We assume it follows
Multinomial distribution. P s

l contains all the parameters of the functions fs
l (·)

and gsl (·). qRi,s
t,l is a variable to help estimate the transition probability matrix

Al. We use boldface capital letters to denote the observations or hidden state
matrixes on all the road links in all the time intervals. For example, Y denotes all
the GPS probe observations. We use capital letters with subscripts to denote the
observations or hidden state vectors in a particular time interval. For example,
Yt denotes the GPS probe observations on all the road links from link l1 to lN
in the time interval t.

Table 1. Notations and meanings

L Number of road segment links

T Number of time intervals

M Number of traffic event types

S Number of traffic states

Nl The set of all the neighbor links of road link l

Nli The i-th neighbor based on the lexicographical order of link ID,
link ID ∈ Nl

yt,l The set of probe observations for link l in time slot t

yt,l,i One probe observation for link l in t, yt,l,i ∈ yt,l

et,l The set of traffic event observations for link l in t

et,l,i One traffic event observation for link l in t, et,l,i ∈ et,l

πs
l The initial probability that link l begins in state s

Al The state transition probability matrix for link l with respect to its
neighbors Nl

gs
l (·) The probability density function of travel speed for link l in traffic state s

fs
l (·) The distribution function of traffic event for link l in traffic state s

P s
l The parameters of the probability density function gs

l (·) and fs
l (·)

zs
t,l The probability of link l being in traffic state s in t

qRi,s
t,l The probability of link l being in traffic state s for time period t given that

its neighboring links Nl are in states Ri = (ri1, ri2, ...ri|Nl|) in t − 1
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With above notations, we give the complete log likelihood of the observation
data and hidden variables. Typically, the log likelihood of the hidden variables
and observations of the CHMM can be written out as follows,

lnP (Y,E,Z) = lnP (Z1) +
T∑

t=2

lnP (Zt|Zt−1) +
T∑

t=1

lnP (Yt, Et|Zt)

= lnP (Z1) +
T∑

t=2

lnP (Zt|Zt−1) +
T∑

t=1

lnP (Yt|Zt) +
T∑

t=1

lnP (Et|Zt)

(1)
The first term of the formula (1) represents the initial probability of traffic

states Z1 for all the road links, the second term is the probability that traffic
states Zt−1 in time interval t−1 transit to the states Zt in the next time interval
t, and the third term is the probability of observations Yt, Et conditioned on
the traffic states Zt. Since the GPS probe observations are independent from
the traffic event observations, we can further decompose

∑T
t=1 lnP (Yt, Et|Zt) as

shown in the second line of formula (1).
The initial probability of the congestion states in the first time interval is

lnP (Z1) =
L∑

l=1

S∑

s=1

zs
1,llnπs

l (2)

The log probability of congestion state transiting from time interval t − 1 to
t can be further represented as follows,

lnP (Zt|Zt−1) =

L∑

l=1

S∑

s=1

S|Nl|∑

i=1

(
∏

Nlj∈Nl

z
rij

t−1,Nlj
zs
t,llnAl(Ri, s)) (3)

The third summation of formula (3) is over all the possible traffic states S|Nl|

of the neighbors Nl, while the subsequent product is over terms on each of its
individual neighbor state given the neighbor states (ri1, ..., ri|Nl|).

The probability of probe speed observations Yt given the congestion states
Zt can be represented as

lnP (Yt|Zt) =
L∑

l=1

S∑

s=1

zs
t,l(

∑

yt,l,i∈yt,l

ln(gs
l (yt,l,i))) (4)

The probability of traffic event observations Et given the congestion states
Zt can be represented as

lnP (Et|Zt) =
L∑

l=1

S∑

s=1

zs
t,l(

∑

et,l,i∈et,l

ln(fs
l (et,l,i))) (5)

4.1 Solution of E CHMM: EM Algorithm

Given the distribution function parameters P s
l of observations and the state

transition matrix Al, it is possible to estimate the congestion states of the links
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based on the observations. Similarly, given the congestion states of the road
links, we can estimate the parameters in the model. Motivated by this idea, EM
algorithm can be applied to solve E CHMM.

In the E-step, for road link l we compute the expected state probabilities zst,l
and the transition probabilities qRi,s

t,l given observations (yt,l, et,l), distribution
parameters P s

l , and the state transition probability matrix Al.

zs
t,l ← E(zs

t,l|yt,l, et,l, P
s
l , Al) (6)

qRi,s
t,l ← E(qr,st,l |yt,l, et,l, P s

l , Al) (7)

One can see that the traffic state zst,l is inferred based on both the GPS probe
observation yt,l and the tweet observation et,l. To distinguish the importance
of the two types of observations in estimating the traffic state zst,l, we rewrite
formula (7) as follows.

zs
t,l ←

{
E(zs

t,l|et,l, P s
l , Al) if Cardinality(yt,l) = 0

wt,lE(zs
t,l|yt,l, P

s
l , Al) + (1 − wt,l)E(zs

t,l|et,l, P s
l , Al) otherwise

(8)

If only the tweet observation et,l is available on road link l in time interval
t, the congestion state zst,l is estimated only based on et,l. Otherwise, zst,l is
estimated by using both types of observations. wt,l is the confidence of the probe
observations. The idea is that if sufficient probe observations are available, we
trust more on the traffic state zst,l estimated by probe observations. If the probe
data are very spare, we trust more on the estimation results with the tweet
observations. Here we use a sigmoid function to estimate the importance of the
coefficient wt,l = 1

1+eθ−Cardinality(yt,l)
, where θ is a predefined threshold of the

probe observation size. More probe observations result in a large wt,l, and thus
the final estimation result zst,l relies more on the probe observations. In this
paper we set θ = 3.

In the M-step, we maximize the expected complete log-likelihood, given the
probabilities zst,l and the transition probabilities qRi,s

t,l .

(P s
l , Al, π

s
l ) ← argmax

P,A,Π
lnP (Y,Z,E,P,A,Π)

subject to
S∑

s=1

Al(Ri, s) = 1, Al(Ri, s) ∈ [0, 1], ∀l, Ri, s;

S∑

s=1

πs
l = 1, πs

l ∈ [0, 1], ∀l, s.

(9)

5 Parameter Inference

On small networks, it is possible to do exact inference in the CHMM by con-
verting the model to an HMM. However, it is intractable to do exact inference
for any reasonable traffic network with the naive solution due to the following
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reasons. (1) Computation of the forward variable involves SL additions and N
multiplications at each of T time steps; (2) each forward variable requires 8SL

bytes of memory to store, and all T of them must be stored; (3) the transition
matrix itself is SL×SL. Next we will introduce a sequential importance sampling
based approach to more efficiently address the computational challenge.

5.1 E-Step: Particle Filtering

As a popular sequential importance sampling method, particle filtering is widely
used to approximately estimate the internal states in dynamical systems such as
signal processing and Bayesian statistical inference. Due to the extremely high
computational cost of the CHMM, particle filtering is introduced in previous
works [9]. In our setting, each particle or sample represents an instantiation
of the traffic state evolution on the traffic network. Given the observed probe
data and traffic events from tweets, each particle or sample is assigned a weight
proportional to the probability of the observations. Using a large number of
sampled particles, we can estimate the probabilities of the traffic states of each
link in each time interval, and the probabilities of traffic state transition among
the neighbor road links in successive time intervals. Details of the algorithm is
given in Algorithm 1.

Algorithm 1. Particle Filtering to Estimate Congestion States
Input: Number of samples K and time intervals T , the state transition matrix Al, the

parameters of the observation probability function P s
l for each road link l.

Output: The state probability distribution matrix Z, and the transition probability q
Ri,s

t,l

1 Initialization: randomly sample K samples {x0
k}K

k=1;

2 for t = 1 : T do

3 Generate K samples of the state xt
k based on the sampled states xt−1

k
and state

transition matrix Al: xt
k ∼ q(xk|xt−1

k
);

4 Compute the weights:

5 wt
k = p(Yt, Et|xt

k) = p(Yt|xt
k)p(Et|xt

k);

6 Normalize the weights:

7 ŵt
k =

wt
k∑K

j=1 wt
j

;

8 Resample K random samples {x̂t
k}K

k=1 from {xt
k}K

k=1 with replacement in proportion to

the weights {ŵt
k}K

k=1;

9 Replace the sample set with these new samples, i.e. {xt
k}K

k=1 ← {x̂t
k}K

k=1;

10 Set the weights to be equal: ŵt
k = 1

N , k = 1, ..., N

11 Estimate the state probability matrix Z and transition probability qR,s
t,l

with the K samples

return Z, q
Ri,s

t,l
;

5.2 M-step: Road Network Decomposition

In the M-step, we update three groups of parameters: the initial congestion
state probability πs

l , the observation distribution function parameters P s
l , and

the transition probability matrix Al. To update these parameters, the expected
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Fig. 3. Data Statistics: (a) Average # of probe readings for each road link in each
hour. (b) Hourly distributions of probe readings and tweets on each road segment.
(c) Hourly occurrence correlations between traffic accidents and congestions reported
by tweets.

complete log-likelihood is maximized given the probability zst,l that each link l

is in state s at time t and probability qRi,s
t,l of link l to be in state s given that

neighbors of link l are in states Ri at time t − 1. Based on formulas (1)–(5), the
expected complete log likelihood is as follows.

lnP (Y,E|Z,Q,P,A,Π) =

L∑

l=1

S∑

s=1

T∑

t=1

zs
t,l(

∑

yt,l,i∈yt,l

ln(gs
l (yt,l,i)) +

∑

et,l,i∈et,l

ln(fs
l (et,l,i)))

+

L∑

l=1

T∑

t=2

S∑

s=1

S|Nl|∑

i=1

qRi,s
t,l ln(Al(Ri, s)) +

N∑

l=1

S∑

s=1

zs
1,lln(πl,s)

(10)

We can simplify the computation of formula (10) in the following two ways.
(1) One can see that formula (10) is comprised of three parts. Different parame-
ters appear in different parts, and thus the three parts can be solved separately.
(2) The optimization problem on the entire road network can be further decom-
posed into S × L smaller optimization problems with each one associated to a
particular congestion state and road link of the network. For example, for the
road link l in state s the first part in the right-hand side of formula (10) can be
decomposed to such an optimization problem.

max
Pl,s

T∑

t=1

zs
t,l(

∑

yt,l,i∈yt,l

ln(gs
l (yt,l,i)) +

∑

et,l,i∈et,l

ln(fs
l (et,l,i))) (11)

6 Evaluation

6.1 Experiment Setup

Datasets and analysis. The Twitter data are described in Sect. 3. From each
tweet, we extract the road segment, time and traffic event information. We cate-
gorize these tweets into three types by keywords matching: congestion, accident
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and others. We also have more than 2 million GPS probe readings generated by
various vehicles on 1,257 arterial road links of downtown Chicago in December
2014. The total length of these road links is nearly 700 miles.

Figure 3 gives the statistics of the two datasets. Figure 2(a) shows the average
numbers of probe readings in each hour of a day for each road segment. One can
see that the probe data are unevenly distributed on the arterial network. Probes
frequently appear on only a small number of road segments, while for most road
segments there are only very limited number of probe data. Figure 3(b) shows
the percentages of probe data and traffic related tweets in each hour of day. One
can see that most probe data are distributed in the time interval from 14:00pm
to 0:00am. Most traffic related tweets are posted in two time intervals from
5:00am to 10:00am and from 15:00pm to 22:00pm. The hourly distributions of
the two datasets are not perfectly consistent, which implies the combination of
them could provide us with more comprehensive information. Figure 3(c) shows
the proportion curves of the traffic accident and congestion reported by tweets in
each hour of a day. One can see that the two curves show very similar increasing
and decreasing trends, which indicates a strong occurrence correlation. Traffic
congestions can cause more accidents, and accidents in turn can make traffic
even worse. The high occurrence correlation between accident and congestion
implies that other types of traffic events captured from tweets may potentially
help us better estimate traffic congestions.

Ground Truth. Obtaining the ground truth itself is a challenge problem. The
manually annotated ground truth is very expensive, and thus is not feasible for
a large transportation network. Previous studies show that the bus probe data
in urban areas can provide a good approximation of the real traffic conditions
[5,22]. Thus we use the traffic conditions reported by Chicago Transit Authority
(CTA) as the ground truth. The traffic conditions are estimated based on more
than 5 million GPS traces generated by more than 2,000 CTA public passenger
buses from 11/25/2014 to 12/30/20141. CTA defines 5-state traffic conditions in
Chicago: heavy congestion, medium-heavy congestion, medium, light, and flow
conditions, with the corresponding traffic speeds as 0–10, 10–15, 15–20, 20–25,
and over 25 miles per hour. We assign the 5 congestion states with values 1.0,
0.8, 0.6, 0.4, and 0.2 respectively. As the real time GPS traces for some links are
sparse, we also consider the historical average traffic speed for each road link in
the last 3 years. Given a time interval t and a road link l, the traffic speed can
be estimated as speedt,l = w

∑n
i=1

speedt,l,i

n + (1 − w)speedht,l, where speedt,l,i is
the ith real time probe speed record, speedht,l is the historical speed, and w is a
weight. For simplicity, we consider a road segment is in congestion if the average
speed is lower than 15 mph.

Competitive Methods. We compare E CHMM with the following baselines.

– CHMM with probe observations (P CHMM) [6]. Herring et al. pro-
posed a CHMM model to estimate arterial traffic conditions with probe data.

1 https://data.cityofchicago.org/Transportation/Chicago-Traffic-Tracker-Historical-
Congestion-Esti/77hq-huss.

https://data.cityofchicago.org/Transportation/Chicago-Traffic-Tracker-Historical-Congestion-Esti/77hq-huss
https://data.cityofchicago.org/Transportation/Chicago-Traffic-Tracker-Historical-Congestion-Esti/77hq-huss


Enhancing Traffic Congestion Estimation with Social Media 259

We use it as a baseline to evaluate whether incorporating the Twitter data
can improve the performance.

– CTCE model [2]. CTCE is a recently proposed traffic congestion estima-
tion model with social media as the primary data source. Instead of utiliz-
ing CHMM, CTCE models the traffic information on the road segments as
matrices and tensors and apply matrix factorization technique to address the
estimation task.

– CHMM with tweet observations (T CHMM). In this model, only the
tweet observations are available. We use this baseline to evaluate the perfor-
mance of the CHMM model with the tweet observations only.

– Linear combination of the two types of data (LC CHMM). We use two
CHMMs with each one associated with one type of data to estimate the traffic
conditions separately. Assuming the estimation results of the two models are
Z1 and Z2, the final estimation is the linear combination of the two results,
Z = αZ1 + (1 − α)Z2.

Evaluation Metrics. We use the following metrics to evaluate the performance
of the proposed model: accuracy, precision@k, and Root Square Error (RMSE).
We use accuracy to evaluate the estimation performance on all the road segments
in all the time intervals. Normally, in a particular time interval only a small
number of road segments are in congestion. Thus to better evaluate whether
the proposed model can give good estimations on the road segments that are
very likely to occur congestion, we also use precision@k as a metric. We first
rank the congestion probabilities zst,l for all the road segments in all the time
intervals. Then we only consider the road segments with the top-k congestion
probabilities are in congestion. To further evaluate the performance of the model
on the above mentioned 5-state traffic conditions, we use the Root Mean Square

Error (RMSE) as the evaluation metric: RMSE =
√∑

t,l(zt,l−ẑt,l)2

L∗T , where zt,l
is the estimated traffic state of link l in time interval t, and ẑt,l is the ground
truth.

6.2 Quantitive Evaluation Results

Evaluation with precision@k. Table 2 shows the average precision@k of dif-
ferent methods over various k. As the traffic conditions on weekdays and week-
ends can be quiet different, we present the results by weekday and weekend
separately. We run the algorithm and calculate the precision@k on each day,
and then average the results. The best results are highlighted in bold type.
One can see that E CHMM performs best among all the methods. LC CHMM
model is inferior to E CHMM, but better than other methods. It is no surprise
that T CHMM presents the worst performance among all the methods. One
can infer that the traffic event tweets are too sparse for the T CHMM model
to get an accurate estimation. P CHMM can achieve comparable performance
with CTCE, but both methods are inferior to LC CHMM and E CHMM. One
can also see that in general the average precision@k on weekday is higher than
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Table 2. Average Precision @k of different methods

Average Precision @k on weekday

top-10 top-20 top-30 top-50 top-100 top-150 top-200 top-250 top-300

P CHMM 0.870 0.850 0.845 0.832 0.812 0.792 0.773 0.744 0.732

T CHMM 0.690 0.665 0.624 0.613 0.585 0.532 0.473 0.464 0.452

LC CHMM 0.890 0.850 0.852 0.842 0.832 0.817 0.792 0.784 0.775

CTCE 0.870 0.860 0.853 0.840 0.824 0.816 0.718 0.705 0.712

E CHMM 0.920 0.900 0.894 0.887 0.864 0.826 0.810 0.795 0.786

Average Precision @k on weekend

top-10 top-20 top-30 top-50 top-100 top-150 top-200 top-250 top-300

P CHMM 0.860 0.850 0.843 0.822 0.816 0.766 0.752 0.745 0.722

T CHMM 0.660 0.650 0.612 0.625 0.570 0.464 0.453 0.415 0.425

LC CHMM 0.870 0.850 0.845 0.825 0.820 0.812 0.805 0.785 0.768

CTCE 0.850 0.834 0.820 0.820 0.754 0.715 0.678 0.654 0.644

E CHMM 0.910 0.900 0.868 0.852 0.844 0.820 0.812 0.794 0.783

Fig. 4. RMSE of the four methods in rush hours

that on weekend. This is because most people travel on weekday more regularly
than on weekend.

Performance evaluation in rush hours. People concern more on the traffic
conditions in rush hours of a day. Thus we also evaluate the performance of
different models in rush hours. Figure 4 shows the experiment results in the rush
hours of 6:00–10:00 and 15:00–17:00 on weekday and on weekend, respectively.
One can see that the RMSE of E CHMM is mostly lower than all the baselines.
The performance of T CHMM is the worst among all the methods, which is con-
sistent with the previous experiment results. LC CHMM is consistently better
than P CHMM and CTCE, which means incorporating traffic event information
from tweets does help us better estimate traffic conditions. However, LC CHMM
is inferior to the proposed E CHMM. Thus we can conclude that E CHMM is
more efficient to fuse the two types of observations. By comparing the results
on weekday and weekend, one can see that on average the RMSE of various
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methods on weekday is larger than that on weekend. This finding also verifies
that traffic conditions on weekend is harder to estimate than on weekday.

Performance evaluation with various proportions of probe data. To
examine how the probe data size affects the estimation performance, we dis-
play the estimation accuracy curves of the methods E CHMM, LC CHMM, and
P CHMM with different probe data sizes in Fig. 5. It shows that E CHMM is
consistently better than the two baselines. When the probe data are extremely
sparse, say only 20 % probe data are available, the accuracy of P CHMM is only
0.22 while E CHMM is 0.42, which shows a significant improvement. However,
with the increase of the probe data size, the difference between E CHMM and
the other two methods becomes smaller. This is probably because the infor-
mation overlapping between the two datasets becomes larger when more probe
date are available. When the probe data are sufficient, the traffic conditions
inferred by traffic event tweets can also be captured by the probe readings. The
LC CHHM is better than P CHHM but inferior to E CHMM. One can see that
E CHMM only needs around 85 % probe data to achieve a comparable accuracy
to P CHMM with the whole probe data.

Scalability Analysis. As the optimization problem of the EM algorithm can
be decomposed into many smaller optimization problems, we can easily solve it
in parallel on multiple machines. Figure 6 shows the running time of solving the
optimization problems by distributing them into multiple machines on the traffic
data of a day on the studied road links. It shows a linearly decreasing trend of
the running time with the increase of machine number. One can see that it needs
more than 12 min for only one machine, but the time decreases to about 2 min if
we distribute these independent smaller optimization problems on 5 machines.
It demonstrates the proposed algorithm is very scalable to handle a large road
network with thousands of road links.

Fig. 5. Estimation accuracy vs probe
data size

Fig. 6. Running time vs # of machines
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7 Related Work

Traditionally, traffic monitoring and estimation mainly rely on various road sen-
sors, and can be roughly categorized into traffic modeling on individual roads
[11,13,14] and on a road network [20]. Helbing employed a Fundamental Dia-
gram to learn the relations among vehicle speed, traffic density, and volume
for a particular road to estimate traffic condition on an individual road [11].
Muoz et al. proposed a macroscopic traffic flow model SMM by utilizing the
loop detector data to estimate the traffic density at unmonitored locations along
a highway [14]. Porikli and Li proposed a Gaussian Mixture Hidden Markov
Models to detect traffic condition with the MPEG video data [13]. Researches
on traffic monitoring on a road network usually need to capture and model the
correlations of the traffic conditions among the road segments connected to each
other [6,15,20]. Such models mainly utilized the Floating Car Data (FCD) or
probe data generated by the GPS sensors equipped in vehicles. Herring et al.
proposed a coupled Hidden Markov Model which can effectively capture the traf-
fic congestion correlations among the road segments [6]. Fabritiis et al. studied
the problem of using FCD data based on traces of GPS positions to predict the
traffic on Italian motorway network [15].

Recently, exploring traffic related information from social media like Twitter
to detect traffic events or monitor traffic conditions has been a hot research
topic [1,2,10,12]. Most previous works focused on investigating either how to
extract and visualize the traffic event information from tweets [1,12] or how to
locate the traffic events mentioned in the tweets [16,19]. As traffic event data
are usually sparse and imbalanced, imbalanced learning techniques are usually
explored [17]. The work in [10] is the first to estimate traffic congestion of an
arterial network by collecting traffic related tweets from Twitter. Wang et al.
further incorporated other information such as social events and road features
with social media data to more effectively estimate citywide traffic congestions
[2]. However, as the probe data are not explored, the performance are usually
not desirable due to very sparse and noisy Twitter data [10].

8 Conclusion

In this paper, we studied the novel problem of incorporating social media seman-
tics to enhance traffic congestion estimation. Motivated by the increasing avail-
ability of traffic information in social media, we first extensively collected traffic
related tweets from Twitter. Then we extended the classical Coupled Hidden
Markov Model to effectively combine the tweet observations and probe observa-
tions. To solve the proposed model, we also introduced an efficient EM algorithm
to infer the parameters. Evaluation on the arterial network of Chicago showed
the proposed model can both effectively combine the two types of observations
and efficiently address the computational challenge.
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Abstract. In this paper, we study the problem of source detection in
the context of information diffusion through online social networks. We
propose a representation learning approach that leads to a robust model
able to deal with the sparsity of the data. From learned continuous pro-
jections of the users, our approach is able to efficiently predict the source
of any newly observed diffusion episode. Our model does not rely neither
on a known diffusion graph nor on a hypothetical probabilistic diffusion
law, but directly infers the source from diffusion episodes. It is also less
complex than alternative state of the art models. It showed good per-
formances on artificial and real-world datasets, compared with various
state of the art baselines.

1 Introduction

Today, hundreds of millions of people use online social networks to access, dis-
cuss, produce and share content. These social networks now have an important
impact on the way information travels worldwide. This has motived a large
amount of research on the topic of information diffusion prediction: how can we
predict which users will be infected by a given piece of information in the future?
This “word of mouth” phenomenon has been widely studied over the last decade
(see [8] for a comprehensive survey).

More recently, the problem of source detection has emerged. This is the oppo-
site task: the goal is to retrieve which user started some diffusion episode, given
the set of eventually infected users. In an epidemiological context, this is also
known as the patient zero problem. For social media, the main application of this
problem is to retrieve the source of some rumor, leak or disinformation, either
to remove it from the network or to take legal action against it.

While several works have already studied this problem (see Sect. 2), they are
all based on the assumption that the social graph on which diffusion takes place
is either known or can be inferred, and that information diffusion follows some
known propagation model such as the SI model [16,20] or the NetRate model
[5]. These turn out to be strong assumptions in most applications.

In this paper, we drop the aforementioned assumptions by using a Represen-
tation Learning approach to embed users in a latent space and use their repre-
sentations to directly retrieve infection sources. This method does not require

c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 265–281, 2016.
DOI: 10.1007/978-3-319-46227-1 17
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the influence graph to be known, and can be applied to partially observed diffu-
sion episodes. Moreover, it allows us to easily consider the topic of the diffusion
in concern, defining content-specific transformations of the representations of
the users involved in the diffusion in concern. To the best of our knowledge,
our approach is the first one to consider the content for source detection tasks.
Our proposals are tested on real diffusion traces extracted from online social
networks, something that is often missing in the literature of the field.

The rest of the paper is organized as follows. Section 2 reviews some related
works and presents the motivations of our proposal. Section 3 introduces our
model. Finally, Sect. 4 compares our model to various baselines.

2 Background and Motivations

While the topic of information diffusion prediction has been studied for a long
time [8,9,18], source detection has been a subject of research for a few years.

As classically done in the field of diffusion modeling, existing approaches for
source detection are based on the Susceptible-Infected framework defined on a
given known graph of diffusion G = (U , E). When a user u ∈ U becomes infected
at time t, each neighbor v in the graph becomes infected at time t + du,v, with
du,v being drawn from some delay distribution [4,5,16,19,20,22]. The various
methods mainly differ in their way of reversing the process of diffusion to predict
the most probable source when some infections are observed.

The work of [20] was the first one to introduce the key concept of rumor
centrality, a measure rendering the likelihood, for any content emitted from a
node u ∈ U , to spread over a given subset of infected users U ′ ⊆ U , knowing some
diffusion relationships between them E′ ⊆ E. When a set U ′ of infected users
is observed at some time T , the source user can be estimated with a maximum
likelihood approach:

s∗ = arg max
s ∈ U ′

P (U ′|s) ∝ arg max
s ∈ U ′

R(s,U ′)

where R(s, V ′) stands for the rumor centrality measure, applied to the source
candidate s ∈ U ′, which is computed by considering the number of possible
sequences of infections of nodes from U ′, that start with s and are consistent with
the precedence graph defined by G′ = (U ′, E′). This work was later extended
in [4,22] to optimize the estimation of R on more complex graph structures.
All these works assume that one observes a complete snapshot of the network
(infected nodes and edges) at some time T , and that the source is among these
infected nodes. The infection times of each node is left unknown. Later, [19]
proposed to consider a framework in which only the states of a subset of all
users (called “monitors”) are observed, and compared various heuristics to select
monitors and to retrieve rumor sources: reachability of infected nodes, distances
to infected nodes in the graph, etc.

Some other works proposed to consider a framework in which we also observe
when each node became infected. In this framework however, some infections
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(including the source one) remain unobserved (due for example to some API
restrictions), and the goal is to retrieve the source node from the set of unob-
served nodes U \ U ′. A first model was developed in [16], which is based on the
assumption that transmission delays in the network follow a Gaussian distribu-
tion. The predicted source then corresponds to an unobserved node that maxi-
mizes the likelihood of the observed infection times. They proposed a heuristic
based on the extraction of trees from the graph, similar to the one described in
[20,22]. Recently, [5] proposed a more precise approach based on previous works
on information diffusion and link prediction [7], where transmission delays follow
a exponential distribution. The computation of the likelihood of a source being
difficult, a method based on importance sampling is employed.

Finally, the problem of multiple sources detection has also been addressed.
In [11], the authors define the k-effectors problem. They assume that diffusion
follows an Independent Cascades Model (IC) and look for the set of k sources
X that minimizes the cost:

C(X) =
∑

ui ∈ U

|a(i) − α(i,X)|

where a(i) indicates wether ui is infected of not (1 or 0) and α(i,X) is the prob-
ability for a user i to become infected when the source set is X. In other words,
they minimize an �1 error. The minimization of C is shown to be NP-complete,
so the authors study the problem on tree graphs, and propose a heuristic for this
case. For general graphs, they suggest to extract a spanning tree and to apply
the heuristic on that tree.

Another approach, NetSleuth, was proposed in [17]. It relies on the Min-
imum Description Length (MDL) principle. The authors propose an efficient
method to describe the diffusion of an information (initial sources and list of all
successive transmissions) in a minimum number of bits, assuming that the graph
and the diffusion model are known.Given a set of infected users, they look for
the set of sources and transmissions that minimizes the amount of bits required
to be encoded. This approach is thus able to determine the number of sources
as well as their identities.

While reasonable, considering the iterative diffusion process on a known
graph faces the two following main limitations:

– The performances for source detection are strongly dependent on the quality
of the diffusion graph that is considered. However, the information about the
diffusion graph is often missing, incomplete or irrelevant. Various methods,
such as those proposed in [10] or [7], can learn the graph from a training set
of diffusion episodes, but their effectiveness greatly depend on the representa-
tiveness of the available training data.

– The estimation of the most probable source s∗ usually requires to compute the
shortest path between all user pairs in the graph, which is computationally
expensive. For instance, the approach presented in [21] is #P -hard.

Finally, these models have usually been tested on synthetic datasets only,
with episodes generated using the diffusion model used in prediction. While this
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definitely gives important insights on their performances, results on real diffusion
episodes are necessary to assess the efficiency of these approaches. For instance,
[5] performed experiments on the memetracker dataset, and the results are
very low compared to those obtained on synthetic datasets.

In this paper, we propose to embed users in a latent space and use distance
between them to retrieve the source. This is related to the work of [2], which
applied representation learning to the information propagation prediction task.
Recently, representation learning has been used in various domains like playlist
prediction [3] or language models [15]. These methods aim at projecting some
items like songs, users or words in a latent, euclidean space so that relation-
ships between them can be modeled with the distances computed in that latent
space. Representation Learning has at least the following main advantages in
the context of source detection:

– Compression abilities offered by representation learning techniques enable the
definition of more compact models, especially for dense social networks;

– Diffusion relationships, which are encoded in a shared representation space, are
regularized naturally: users with similar behaviors are likely to be projected
near each other, and then tend to share some similar transmission tendencies
with other users, which improves the ability of the model to generalize from
sparse data;

– A representation for the diffusion episode can be computed efficiently by com-
bining individual representations of the infected users. This enables simple
and fast source detection procedures;

– The diffused content or any other additional information can be taken into
account, by considering specific transformations of the diffusion representation.

Rather than reversing a given diffusion model as classically done, we thus propose
to consider the use of such techniques for source detection tasks, by directly
learning projections of users that lead to an efficient retrieval of diffusion sources.

3 Diffusion Source Detection

Let U = {u1, . . . , uN} be a population of N users who communicate and
exchange information. When some piece of information propagates in that popu-
lation, we observe a diffusion episode, which corresponds to a sequence of infected
users associated with their timestamps of infection:

D = {(ui, ti), (uj , tj)...}

A diffusion episode can correspond, for instance, to a sequence of users who liked
a specific video or retweeted a specific tweet. The first user of this sequence is
the source user, and is denoted sD. In the following, we note UD the set of users
infected in the episode D and ÛD the same set but without the source user of
D (i.e., ÛD = UD \ {sD}).
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3.1 A Representation Learning Model

Our ultimate goal is to be able to retrieve the source sD of a given diffusion
episode D from which that source is missing (i.e. observed infected users are
those belonging to ÛD).

Basic Idea. To this end, our idea is to embed all users of the network in a
latent space, by defining a representation zi ∈ R

d for every user ui ∈ U , such
that it is possible to predict the source user of an episode by looking at the
relative locations of users in this space. With zD a representation of the episode
D, constructed as a function of individual representations of users in ÛD, we
base our model on the following principle:

The representation of the source user sD of any diffusion episode D ∈
D should be located at the point zD, which corresponds to the synthetic
representation of the diffusion episode.

Following this principle, the episode representation zD corresponds to an initial
diffusion point from which the emitted content can spread to reach all infected
users of the episode D. In this context, building a source prediction model corre-
sponds to making the representation of sD coincide with this continuous initial
diffusion point zD. Like most representation techniques, we seek at defining
a projection space where the similarities between user’s representations render
some interactions propensities between them, which allows the model to leverage
the behavior correlations of the users. Following this, we wish to set the initial
diffusion point zD as the closest possible point to every individual representation
of users in ÛD, so that it can equivalently explains the set of all observed infec-
tions. Various functions φ : 2N → R

d can hold this requirement to transform
a set of individual representations of users in ÛD to the episode representation
zD. Another constraint is the low cost of computation. We therefore consider
the following function φ, which corresponds to an averaged representation of
infected users:

zD = φ(ÛD) =
1

|ÛD|
∑

ui ∈ ÛD

zi (1)

Note that such a function φ also presents the advantage to be rather stable w.r.t.
missing infected users (i.e., when |ÛD| is sufficiently large, ∀u ∈ U : φ(ÛD∪{u}) ≈
φ(ÛD)), which allows the model to manipulate consistent representations in the
case of incomplete observations of the episodes diffusions. An illustration of the
targeted projection of a given observed diffusion episode is given in Fig. 1, where
the source user of the episode D is projected at the center of the representations
of infected user in ÛD.

Source Prediction Model. Now that the basic idea of our proposal is pre-
sented, we can define our model for source prediction based on it. To begin with,
lets us note that learning one representation per user would lead to a symetric



270 S. Bourigault et al.

model, where the tendency of a user to be an information source would be equal
to its tendency to be infected in a diffusion episode. This setting is not realis-
tic, as diffusion is an asymmetric process: while some users are opinion leaders,
others only reproduce some collected content. To include this observation in our
model, we therefore consider two representations for each user ui: while the vec-
tor zi embeds the behavior of ui as a receiver of information, ωi embeds his
behavior as a sender of content (i.e., a source user in our context, since we only
consider transmissions from the source to all eventually infected users). Defining
these two embeddings per user allows us to model asymmetric relationships.

To retrieve the source of the diffusion D given ÛD, the model then considers
the user ui whose sender embedding ωi is the closest to the synthetic represen-
tation of the episode zD:

s� = argmin
ui ∈ U\ÛD

||ωi − zD||2 (2)

where zD is computed by using formula 1 applied to users ÛD. In order to learn
both sets of embedding Ω = (ωi)∀i ∈ U and Z = (zi)∀i ∈ U so that formula 2
returns accurate sources of diffusion, we consider the following pairwise loss on
the learning set of diffusion episodes D:

L(Ω,Z) =
∑

D ∈ D

∑
ui /∈ UD

h
(||ωi − zD||2 − ||ωsD

− zD||2) (3)

where h corresponds to the hingeloss function: h(x) = max(1 − x, 0). This func-
tion is a pairwise ranking loss that follows the principle of the prediction function
(formula 2). Basically, for our prediction function to be valid, we need the sender
representation of the actual source to be closer to the representation of D (sec-
ond term of the subtraction in h) than any other sender representation (first
term of the subtraction), so that it is the one who would be predicted using
formula 2.

This loss can easily be minimized by defining a stochastic gradient descent
process, detailed in Algorithm 1. Intuitively, it can be summed up like this: first,
we initialize all embeddings at random (lines 2 and 3). Then, at each iteration,
we draw one episode D (line 6) and one “non-source” user uj that is not in
UD (line 7). If the embedding ωsD

of the actual source is not closer to the
representation zD than ωj by at least 1 (line 11), all relevant embeddings are
updated with one gradient step (lines 12, 13 and 15). This gradient step moves
the representation zD toward ωsD

and away from ωj . The learning goes on until
convergence, which is tested by checking the variation of L every set number of
iterations (100000 in our case).

Regularization of Embeddings. In the loss defined above, two representation
vectors are learned for each user to account for the difference of its behavior as a
sender and a receiver [1]. While these two representations can be quite different,
it is reasonable to think that they are not uncorrelated: both behaviors are con-
sequences of the centers of interests of that user. To account for this correlation,
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Fig. 1. From a diffusion episode tree to its projection in our representation space.

Algorithm 1. Representation Learning for Source Detection
Data:
U : Users set ;
D : Learning set of diffusion episodes ;
d : Number of dimensions
ε : Gradient step size;
Result:
Z = {∀ui ∈ U : zi ∈ R

d} ; Ω = {∀ui ∈ U : ωi ∈ R
d} ;

foreach ui ∈ U do1

initialize zi with random value in [−1, 1]d2

initialize ωi with random value in [−1, 1]d3

end4

while non-convergence do5

Draw an episode D ∈ D;6

Draw uj �∈ UD ;7

Compute zD with formula 1 ;8

ds ← ||ωsD − zD ||2 ;9

dj ← ||ωj − zD ||2 ;10

if dj − ds < 1 then11

ωsD ← ωsD − ε × 2 (ωsD − zD ) ;12

ωj ← ωj + ε × 2 (ωj − zD ) ;13

forall ux ∈ ÛD do14

zx ← zx − ε × 2

|ÛD| (ωj − ωsD )15

end16

end17

end18

we include a sender-receiver regularization term in the loss considered for the
learning of the model:

L(Ω,Z) + λ
∑
ui

||ωi − zi||2 (4)

where the second term corresponds to the desired regularization weighted by an
hyper-parameter λ. This term favors embeddings such that ωi and zi are close,
and improves the generalization ability of the model. For instance, without this
term, no embedding ωi for a user who never appears as a source in D could
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be learned. With the regularization term that links the two representations ωi

and zi, some information about zi can be transferred on ωi. This also prevents
over-fitting.

3.2 Extensions

Inclusion of User Importance. One possible extension of our model is to
learn an additional weight αi ∈ R

+ for each user in the training set and redefine
zD as:

zD =
∑

ui ∈ ÛD

eαi∑
uj ∈ ÛD

eαj
zi

where the fraction corresponds to the softmax function that allows to map a
vector of k real values to [0; 1]k. This formulation corresponds to the computation
of the barycenter of the representations of users in ÛD, with weights defined by
relative values of the α parameters of these users. These parameters therefore
model the relative importance of each user to predict the source of the diffusion.
For instance, on Twitter, some user ui could happen to actually be a spamming
bot that just reuse all popular hashtags in order to gain visibility and post ads.
In that case, the infection of this user gives little to no information about the
source, and the system will learn a weight αi ≈ 0. Beyond allowing the learning
process to focus on more discriminant infections, and to discard users with very
chaotic behaviors, it may also permit to select the most important users to select
in a situation where only a subset of them can be simultaneously monitored [16].

Integration of Content. It is known that the content of a piece of information
modifies the way it propagates [23]. For instance, two pieces of information
shared by the same source, one about sports and the other about politics, will
probably not spread to the same users. In this subsection, we propose a way to
include it in the model. The content associated to an episode D is represented by
some vector wD ∈ R

a. Depending on the application, this vector may for instance
be a bag-of-words extracted from text, or some visual features extracted from
an image. We learn content transformation parameters θ ∈ R

a×d that are used
to map a given content to R

d by a linear application < wD, θ >. The resulting
vector of this application is used to translate the episode representation zD,
which implies content-specific modifications of the prediction model:

zD =
1

|ÛD|
∑

ui ∈ ÛD

zi+ < wD, θ > (5)

The parameters θ are learned at the same time as user’s projection parameters,
considering the optimization of the loss from formula 4 with this definition of
translated representation zD. Note that other content specific transformations
have been investigated, but this simple translation of zD allowed us to observe
the best results on a validation set.
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4 Experiments

4.1 Datasets

The following datasets have been used:

Artificial. Diffusion episodes generated using the IC model [18] on a scale-free
network of 100 users.

Lastfm. Dataset extracted from a music streaming website. Each diffusion
episode gathers the users who listened to a given song.1

Weibo. Retweet cascades extracted from the Weibo microbloging website using
the procedure described in [12]. The dataset was collected by [6].

Twitter. Diffusion episodes of hashtags on Twitter, over a fixed population of
about 5000 users during the US 2012 presidential campaign.

Each dataset was filtered to keep only a subset of about 5000 of its most active
users. Table 1 gives some statistics on the datasets.

Table 1. Some statistics on the datasets: the number of users |U|, of links |E| in the
graph, of diffusion episodes in the training set, and the density of the graph.

|U| |E| |D| Density

Artificial 100 262 10000 2 %

Lastfm 1984 235011 331829 5 %

Weibo 5000 20784 44345 0.08 %

Twitter 4107 128855 16824 1 %

4.2 Baselines

We compare our model to several graph-based baselines.

OutDeg: This simple baseline was used in [5]. First, we find all the “possible
sources” i.e. all users who can reach every infected one through a series of
hops in the graph. Then, we rank these possible sources by their out-degree,
the higher one being the most likely source.

Jordan Center: The use of a Jordan Center as a source estimator was studied
in [14]. Because our experimental context is not exactly the same as [14],
we slightly adapt its formulation: the predicted source is the one with the
minimum longest distance to any infected user.

Pinto’s: The model described in [16], based on the assumption that infection
delays follow a Gaussian law. It uses a heuristic based on the extraction of a
tree subgraph.

1 http://www.dtic.upf.edu/∼ocelma/MusicRecommendationDataset/lastfm-1K.html.

http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html
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For all these approaches, the diffusion graph used is obtained by using the
Expectation-Maximization procedure described in [10] to learn the parameters
of an Independent Cascades Model. This returns a probability of transmission
pi,j for each pair of users. We then assume that a link (ui, uj) exists in E if
and only if the learned probability of transmission pi,j is greater than S, where
S is a threshold set empirically for each baseline to maximize its results on a
validation set.

4.3 Experimental Contexts and Results

We now present the results obtained by all models on several experiments. We
evaluate the ability of the models to retrieve the source on a testing set of
diffusion episodes D′ with a Top-K measure, for various values of K. The Top-K
measure is computed by sorting users according to their “scores” (i.e. likelihood
or distance to zD, depending on the model). If the actual source is among the
K best-ranked users, the Top-K value is 1, otherwise it is 0.

Choice of Latent Space Dimension. As a preliminary experiment, we study
the effect of the number of dimensions of the latent space d. Figure 2 shows the
time taken by our learning algorithm to converge for various values of d, and
the performances obtained on the source detection task (described in the next
subsection) on a validation set. Results are shown for the Weibo dataset, but we
observed similar results on the other real datasets. We can see that while the
time taken grows linearly with d, performances only grow a little for values of
d beyond about 30. For these reasons, we use a value of d = 30 in all of our
experiments.

Source Detection with Full Cascades. This is the regular experimental con-
text: find sD given ÛD. Results for our model (RL) are given for a regularization
parameter λ = 10−4 that appeared to lead to the best results on a validation
set. Results are presented in Fig. 3.

Firstly, we can see that on the artificial dataset, our model and the Jordan
center model obtain better results that the other two baselines. Let us remember
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Fig. 2. Time to convergence and source detection performance (Top-5 measure) for
various values of d, on the Weibo Dataset
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Fig. 3. Source detection with full cascades. Top-K precision

that on this dataset, diffusion episodes are generated using an Independent Cas-
cade model (IC). Since the dataset is very small and since the data have been
generated following this diffusion model, IC easily retrieves the actual transmis-
sion channels between users from the training set of diffusion episodes. In this
context, the Jordan Center heuristic, which is based on an exhaustive computa-
tion of the number of hops between nodes, can achieve good performances, which
our model is able to match without the use of an external diffusion model. Pinto’s
model, on the other hand, performs its calculation on a tree extracted from the
graph with a Breath-First-Search, which ends up ignoring a lot of information
and reducing its performances.

On the Weibo dataset, the IC algorithm cannot retrieve the real diffusion
graph (to few data w.r.t. the complexity of the network and IC hypothesis not
fully verified). Therefore, the performances of the Pinto model and the Jordan
Center model are closer. Meanwhile, our approach outperforms every baseline,
because it does not rely on any hypothesis about the graph structure or the
diffusion model. The fact that Pinto’s ends up slightly below Jordan can be
explained by the fact that Pinto’s makes the assumption that transmission delays
follow a Gaussian distribution, which is unrealistic in real datasets [5].

Finally, Lastfm and Twitter are noiser datasets: the fact that two users lis-
tened to the same song or used the same hashtag does not always mean that one
of them infected the other one, they might just happen to have similar centers
of interest. In this context, infections may not be linked by causation but by
correlation, which in turn could limit the relevance of the extracted graph. Since
all the baselines are based on that graph, they exhibit poor performances on
those datasets while our model outperforms them.
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Fig. 4. Source detection on partial cascades (20 %). Top-K precision.

While the results of all approaches may appear to be rather low on Twitter,
they can still be useful in some contexts like the one described in [13]: when the
administrator of a network looking for the source of a rumor needs to decide
which users to probe, any model that gives a non-trivial (which is the case here)
result is important.

Source Detection on Partially Observed Cascades. As said in the intro-
duction, diffusion episodes are often partially observed in real-world applications.
We simulate this by removing random users from diffusion episodes in the test-
ing set. For each diffusion episode D in D′, we only keep a set percentage of ÛD.
Results are presented in Fig. 4.

On the Artificial dataset, all models see a large drop in performance. Our
approach ends up below the Jordan Centers heuristic, and on par with Pinto’s,
which remains roughly at the same spot. Here, the superiority of the Jordan
Center method can be explained by the fact that its shortest-path computation
perfectly represents how information transits in an IC model. Also, because we
use a scale-free random graph, a small number of observed users is enough to
narrow down the number of possible sources in the graph.

On the other end, on the Weibo dataset, most models remain stable, and
our approach stays superiors. Interestingly, results on Lastfm and Twitter are
different. On the Lastfm dataset, outDeg ends up being better than the other
baselines, while the Jordan center approach beats the other baselines on the
Twitter dataset. On Lastfm long chains of diffusion are rather rare, as most of
influences occur from one central user to a set of successors in the graph. This
makes the out-degree of a user a good indicator of his tendency to be an “early
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adopter” which influences the whole set of infected users. On Twitter, longer
chains of diffusion are observed, which results in better results for the Jordan
centers heuristic, since it comes down to finding the source that minimizes the
number hops required in the retweet graph to reach all infected users. Like on the
Weibo dataset, Pinto’s method performance is poor because it heavily relies on
the modeling of transmission delays, which are very chaotic and hard to capture
on such a noisy dataset [10]. In the end, in both cases, our approach exhibit
better performances.

Overall, we can see that graph models can have very different results depend-
ing on the dataset considered: the best one on a given dataset can be the worse
one on another. Meanwhile, our approach achieves consistent and better results
on the real datasets, thanks to the use of a latent space that makes it more
robust to noise and sparsity.

Learning on Partially Observed Cascades. In the previous experiments, we
assumed that we had access to complete diffusion episodes during the learning
step. However, it may not be the case in real applications. The same reasons
that can make one unable to observe full episodes during the inference step may
also prevent us from collecting full episodes for learning. To study this case, we
used the filtering procedure described in the previous experiment, and kept only
20 % of the infections contained in each diffusion episode from D and D′. Results
are given in Fig. 5.

On most datasets, the relative performances of the models are similar to
the ones obtained in the previous experiment, which is not surprising since the
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Fig. 5. Source detection with partially observed cascades (20%) during learning and
testing.
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testing sets are the same. However, on the artificial dataset, our model clearly
outperforms the Jordan baseline, contrary to the previous experiments. This is
due to the fact that the influence graph inferred using D is not perfect at all,
since the diffusion episodes in D are partial. This greatly reduces the quality of
the Jordan model. Overall, our model also outperforms the baselines in such a
setting.

Complexity. For the learning part, both our model and the graph-based
approaches use a stochastic algorithm that roughly takes the same time to con-
verge. However, our approach learns a fixed number of parameters for each user,
which grows linearly with the number N of users, while the number of parameters
for graph models is the number of links in the graph, which scales quadratically
with N . Furthermore, during inference, our model is much faster: it usually takes
less than a second to perform source detection for one episode, while baselines
require minutes. We only need to compute the episode representation zD and its
distance to all possible sources, which has a linear complexity. The graph mod-
els usually need to compute shortest distances between all users in the graph,
which is much more complex. This makes our approach more scalable, which is
an important issue when dealing with large online social networks.

Inclusion of User Importance. In this subsection, we test the extension
defined in Sect. 3.2. We compare the results of the model with weights to those
of the base version, on the real datasets. Results are presented in Table 2. We
can see that on the Twitter dataset, using weights improves our results by about
10 %. This is due to the fact that Twitter is a widely used social network and
thus a very noisy dataset. Learning relative importance weights for users enables
our model to limit the impact of users whose behavior disrupt the prediction
process. We observe a similar effect on the Lastfm dataset. On the Weibo dataset,
however, results are not better when learning such weights, which might indicate
that users are more homogeneous on this dataset. This can be verified by looking
at the variance of the alpha values. We measure a variance of 0.12 and 0.15 on the
Twitter and Lastfm datasets, respectively. Meanwhile, this variance on Weibo
is only 0.08. These results may lead to interesting possibilities in the task of
monitors selections, i.e. finding the M best users to monitor in order to achieve
the best possible source detection [19]. In our case, this would come down to
selecting the M users with the highest weights α.

Integration of Content. We now test the content-aware model extension
described in Sect. 3.2. This version of the model was only tested on the Twitter
dataset. We extracted the content of all episodes by using a bag-of-word repre-
sentation of the tweets they contain. The dictionary is filtered to keep only the
most 2000 frequent words. Each word is associated to an integer between 0 and
1999, and the representation of the content is a vector in N

2000 indicating the
number of occurrences of each word in the tweets. The data collection was lim-
ited to tweets written in english, but the approach would remain valid for other
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Table 2. Source Detection with users weights. Models are only tested on diffusion
episodes of length 3 or higher (both models are equivalent on diffusions episodes of
length 2)

Top-K 1 3 5 10 20

Twitter

RL 0.020 0.042 0.058 0.099 0.141

RL w/weights 0.021 0.047 0.073 0.107 0.154

Gain 3% 10 % 25 % 8 % 9 %

Lastfm

RL 0.052 0.12 0.166 0.2545 0.374

RL w/weights 0.065 0.1335 0.175 0.2605 0.378

Gain 25% 11 % 5 % 2 % 1 %

Weibo

RL 0.31 0.51 0.59 0.72 0.82

RL w/weights 0.31 0.50 0.60 0.75 0.84

Gain 0% −2.3 % +0 % +4 % +1 %

Table 3. Source detection with content integration. Tested on the Twitter dataset

Top-K 1 3 5 10 20

RL 0.028 0.05 0.072 0.102 0.142

RL w/content 0.043 0.069 0.099 0.128 0.179

Gain 56 % 38% 38 % 26 % 26 %

languages. Results are presented in Table 3. We can see that the integration of
the content greatly improves our prediction, especially in Top-1.

Since we use a bag-of-words representation of size 2000 and a linear projection
of that content into a d-dimensional space, we learned a 2000 × d projection
matrix (the parameters θ) whose rows can be interpreted as representation of
the words in R

d. Table 4 lists the ten words with the largest representation
norms. We can see that, apart from “new” and “retweet”, all listed words are
meaningful ones which greatly inform about the topic of the diffusion.

Furthermore, words with similar representations should tend to have similar
effects on the diffusion. To verify this, we show in Table 5 the pairs of words
with the highest cosine similarities. We can see that these pairs indeed either
correspond to words with similar meanings (leisur/getawai and iran/iranian) or
words used in similar contexts. OpESR (Operation Empire State Rebellion) and
OccupyHQ are pages used by activists from the “Occupy Wall Street” movement.
“Masen” and “Mapoli” stand for “Massachusetts Senate” and “Massachusetts
Politics”.
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Table 4. Top 10 most important words according to our content-based model.

Word Norm Word Norm

New 9.9646 Iran 7.9415

Obama2012 9.4358 NYC 7.2585

Music 9.2675 Game 7.223

2012 8.9344 Ohio 7.0147

President 8.1841 Retweet 6.8428

Table 5. Pair of words with the highest cosine similarities of their representations

opesr leisur music iran masen

occupyhq getawai hipster iranian mapoli

5 Conclusion

In this paper, we proposed a novel and efficient method to retrieve the sources of
information from diffusion episodes. This method is based on the use of a latent
space that embeds the influences and similarities between users. We tested this
approach on artificial and real diffusion episodes, and found that it achieved
better performances than state of the art approaches, while retaining a lower
complexity. We also proposed a way to learn the importance of each user and to
integrate the content of information in the model, and showed that both led to
performance improvements. Ongoing works are focused on a unifying framework
of cascade completion: how can we retrieve a whole diffusion episode given only
a fraction of its users? Source detection and diffusion prediction are special cases
of this task. An unifying model, fitted for this more general problem, would give
important insights on the nature and dynamics of diffusion.
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Abstract. In contextual bandit problems, an agent has to choose an
action among a bigger set of available ones at each decision step, accord-
ing to features observed on them. The goal is to define a decision strategy
that maximizes the cumulative reward of actions over time. We focus on
the specific case where the features of each action correspond to some
kind of a constant profile, which can be used to determine its intrin-
sic utility for the task in concern. If there exists an unknown linear
application that allows rewards to be mapped from profiles, this can be
leveraged to greatly improve the exploitation-exploration trade-off of sta-
tionary stochastic methods like UCB. In this paper, we consider the case
where action profiles are unknown beforehand. Instead, the agent only
observes sample vectors, with mean equal to the true profiles, for a sub-
set of actions at each decision step. We propose a new algorithm, called
SampLinUCB, and derive a finite time high probability upper bound on
its regret. We also provide numerical experiments on a task of focused
data capture from online social networks.

1 Introduction

The multi-armed bandit is a learning problem aimed at tackling the trade off
between exploration and exploitation in decision processes where, at each round,
an agent chooses an action - or arm - among a finite set of size K and receives a
reward which quantifies the quality of the chosen action. The goal for the agent
is to maximize its cumulative reward trough time. Contextual bandit refers to an
instance of multi-armed bandit problems where a context of decision is observed
before selecting actions. Typically, this context corresponds to feature vectors
observed for each possible action, which is used to drive the decision process.
Contextual bandit strategies have been widely used recently, for example to
design online personalized recommendation systems. Considering the current
decision environment can indeed help to select the most fitted actions for the
problem to solve. Those contexts vectors are used to better predict the rewards
related to each action at each decision step, since rewards pertaining to each
arm are connected by a common unknown parameter to be learned.

c© Springer International Publishing AG 2016
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Here we assume that context vectors are constant through time as in [10].
They therefore stand as profile vectors, that can be leveraged to better explore
the decision environment. Based on the assumption that there exists a linear
application from these profiles to the utility of actions, we propose a new sce-
nario where, for any possible reasons (technical, political, etc.), profile vectors
are not directly available to the learner at each decision step. Instead, the agent
only observes sample vectors, with mean equal to the true profiles, for a subset of
actions at each decision step. This can happen in various situations where some
restrictions might prevent us to observe the whole decision environment. For
example in a technology intelligence scenario on a social media such as Twitter,
where an agent is asked to capture relevant information for his need. Because
of the extremely large number of users, the agent would have to focus only on
a subset of relevant users to follow at each time step. However, given the strict
restrictions of the media owners, current features of the users are only available
for a small fraction of users. As we will see later, the mechanism that selects
the subset of arms for which a sample vector is observed can be independent
or part of the decision process. To the best of our knowledge this contextual
bandit problem has not been studied in the literature. Moreover, existing bandit
approaches are not adapted to tackle such problems for two reasons. Firstly, even
if traditional algorithm such as UCB can be applied, the information provided
by the sample profile vectors would be entirely lost. Secondly, existing contex-
tual bandit policies cannot be applied since they do not take into account any
potential uncertainty on context vectors. We face a bandit problem where uncer-
tainty is not only to be considered on the regression parameters but also on the
description of actions. In this context, we propose the following contributions:

• We propose a new instance of the contextual bandit problem where the rep-
resentations of the actions are not known beforehand, but built from samples
obtained at each iteration (3 cases are investigated for the sampling process);

• We propose the SampLinUCB algorithm to solve this problem; and derive the
corresponding sublinear upper bound of our policy’s regret;

• We perform experiments in a real world scenario of focused data capture on
Twitter.

2 Related Work

The multi-armed bandit originally proposed in [16] in its stationary form has
been widely studied in the literature. This learning problem is aimed at tackling
the trade off between exploration and exploitation in decision processes where,
at each round, an agent chooses an action - or arm - among a finite set of size K
and receives a reward which quantifies the quality of the chosen action. The goal
for the agent is to maximize its cumulative reward trough time. One of the sim-
plest and most straightforward algorithms is the well-known ε-greedy [7], which
exploits the action with best empirical mean with probabilty 1 − ε and explore
others with probability ε, where the parameter ε can possibly decrease with time.



284 T. Gisselbrecht et al.

Another class of algorithms known as Upper Confidence Bound use a cleaver way
to balance exploitation and exploration. This type of strategies keeps an estimate
of the confidence interval related to each reward distribution and plays the arm
with highest upper confidence bound at each time step. Many extensions of the
famous UCB algorithm proposed in [7] are known to converge (see UCBV in [5],
MOSS in [4] or KL-UCB in [11]). Finally Thompson sampling algorithms, orig-
inally proposed in 1933 in [20] are based on a Bayesian approach and have also
proven to be extremely efficient (see [2] and [15]). However, the performances of
such approaches remain quite limited on instances of the problem where context
features can be used to drive the decision process. The structured contextual
bandit problem assumes the existence of a common unknown parameter (to be
learned) linking the contexts of arms to their reward. For the linear case - in
which we are interested in here - the first contextual upper confidence bound
algorithm has been proposed in [6], while more recently the well-known Lin-
UCB algorithm has been formalized. Many other UCB approaches have been
developed since then to improve the performance the two last. In particular,
algorithms such as OFUL or ConfidenceBall proposed in [1] and [9] have the
advantage to enjoy a tighter regret upper bound (see also [14,19]). As in the tra-
dional bandit case, Thompson sampling algorithms have also been designed to
solve the contextual bandit problem. This approach has also proved to be pow-
erful, first empirically in [8] and then theoretically in [3] and [17]. The problem
we tackle in this paper is a variant of the linear case of the Generalized Linear
Bandit described in [10], where each arm is associated with some constant profile
vector. In our case, context vectors are unknown to the agent beforehand.

3 Model and Algorithm

3.1 Problem Setting

Notations: We use ||x||p to denote the p-norm of a vector x ∈ R
d. For a positive

definite matrix A ∈ R
d×d, the weighted 2-norm of x ∈ R

d is defined by ||x||A =√
xT Ax. Finally, λmin(A) denotes the smallest eigenvalue of the positive definite

matrix A.
The contextual bandit problem we study proceeds in the following way: at

each iteration t ∈ {1, .., n}, the learner receives a set {μ1, .., μK} ⊂ R
d of K

context vectors. He then selects an arm at ∈ {1, ...,K} and observe the cor-
responding payoff rat,t ∈ [0..1]. We assume a standard linear behavior of the
reward distribution: ∀t ∈ {1, .., n} ,∀a ∈ {1, ...,K} : ra,t = μT

a θ∗ + ηa,t, where
θ∗ ∈ R

d is an unknown parameter to be learned. As in [1], we consider ηa,t as
a zero-mean conditionally R sub-Gaussian random noise, with constant R > 0

i.e.: ∀λ ∈ R : E[eληa,t |Ft−1] ≤ e

(
λ2R2

2

)
, where Ft = {(at, rat

, μat
)}s=1..t.

As in [1], we consider the following instantaneous pseudo-regret regt:

regt = θT
∗ μa∗ − θT

∗ μat
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where μa∗ = arg max
a=1..K

θT
∗ μa represents the profile vector of the optimal action

a∗. The goal of the algorithm is to bound with high probability the cumulative

regret Rn =
n∑

t=1
regt for the chosen sequence {a1, ..., an}.

Our Problem: In our case, the set of context vectors {μ1, .., μK} cannot be
observed directly. Instead at each time t the learner is given a subset of arms,
denoted Ot, such that for each arm a ∈ Ot, a sample xa,t of a random variable
with mean μa becomes available. Keeping the same hypothesis as before, the
problem can be rewritten the following way:

∀s ≤ t : ra,s = θT
∗ μa+ηa,s = θT

∗ x̂a,t+(μa−x̂a,t)T θ∗+ηa,s = θT
∗ x̂a,t+θT

∗ εa,t+ηa,s

(1)

where x̂a,t =
1

na,t

∑
s∈T obs

a,t

xa,s, with T obs
a,t = {s ≤ t, a ∈ Os} and na,t = |T obs

a,t |.

Concretely, na,t corresponds to the number of samples observed for arm a until
time t, while x̂a,t represents the empirical mean.

In the following we propose an algorithm to tackle this problem in the general
case, i.e. when no specific assumption regarding the process that generates Ot ⊂
{1, ...,K} is made. We derive a general upper bound of the cumulative regret
defined above. Then, we study three specific problems:

- Case 1: At each time t, every arm shows a profile sample i.e.: Ot =
{1, ...,K}.

- Case 2: At each time t, each arm has a probability p to deliver a profile
sample. In this case, the content and the size of Ot changes over time.

- Case 3: At each time t, only the previously selected arm delivers a profile
sample i.e.: Ot = at−1.

3.2 Algorithm

3.2.1 Regression and Confidence Interval
Proposition 1. Suppose that for any a, at every t, xa,t ∈ R

d are iid drawn
from an unknown distribution with mean μa ∈ R

d, and that ||xa,t||2 ≤ L and
||θ∗||2 ≤ S: then, for any a, for every s ≤ t, εT

a,tθ∗ + ηa,s is conditionally Ra,t

sub-Gaussian, with Ra,t =

√
R2 +

L2S2

na,t
.

Proof. See Appendix A.1

Let use the following matrix notations (where we remove the t dependence
to clarify): η

′
= (ηas,s + θT

∗ εas,t)T
s=1..t, X = (x̂T

as,t)s=1..t, Y = (ras,s)T
s=1..t, A =

diag(1/Ras,t)s=1..t. Let θ̂t be the l2-regularized least square estimator of θ∗ with
regularization parameter λ > 0, using the covariate X, where each learning
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example is weighted by its confidence factor 1/Ras,t:1

θ̂t = arg min
θ

t∑
s=1

1
Ras,t

(θT x̂as,t − ras,s)2 + λ||θ||22 = (XT AX + λI)−1XT AY

(2)

Proposition 2. Defining Vt = λI + XT AX, with the same hypothesis as in
Proposition 1, for any δ > 0, with probability at least 1 − δ, for all t ≥ 0:

||θ̂t − θ∗||Vt
≤

√
2 log

(
det(Vt)1/2det(λI)−1/2

δ

)
+

√
λS = αt (3)

Proof. See Appendix A.2.

3.2.2 Algorithm
The principle behind any Upper Confidence Bound algorithm (UCB) is to main-
tain a confidence interval on the rewards and select optimistically the arm with
highest UCB. As precised in [1], the smaller confidence sets on the rewards we
are able to construct, the better regret bounds are, and, more importantly, the
better the algorithm performs empirically. In the traditional contextual bandit
problem, this is equivalent to build a confidence set for the unknown parameter
θ∗, as done in the previous section. However in our case, we have an additional
source of uncertainty due to the observed samples variability, that we need to
deal with. Then, at each time step t, the SampLinUCB algorithm (described in
Algorithm 1) selects the arm that maximizes the following UCB score2:

sa,t = θ̂T
t (x̂a,t + εa,t) + αt||x̂a,t + ε̃a,t||V −1

t−1
(4)

where εa,t =
ρa,t,δ θ̂t

||θ̂t||2
, ε̃a,t =

ρa,t,δx̂a,t√
λ||x̂a,t||V −1

t−1

and ρa,t,δ = Ld

√
1

2na,t
log

(
2dt2

δ

)
.

εa,t and ε̃a,t aim at coping with uncertainty of the estimated profiles. Intuitively,
they allow the algorithm to select actions that either have their estimated profile
in the useful area or are enough uncertain to be assumed to belong to a useful
area (despite their observed samples). The goal is to discard actions that lie in
a useless area with a sufficiently high probability.

Note that to be selected, an arm must have been observed at least once, which
is why we update the set of possible arms at line 5 of Algorithm 1. Moreover,
instead of recalculating matrix Vt and vector bt from scratch at every time step,
their computation time can be reduced by only considering arms in Ot at time t,
as done from line 13 to line 18.

1 This weight increases as the number of observations of a specific arm becomes bigger.
2 To simplify notations, θ̂t in the algorithm corresponds to θ̂t−1 in the previous sub-

section.
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Algorithm 1. SampLinUCB Algorithm
V0 ← λId×d (identity matrix of dimension d); b0 ← 0d (zero vector of dimension1

d); K ← ∅;
for t ← 1 to n do2

θ̂t ← V −1
t−1bt−1;3

Get Ot;4

K ← Ot ∪ K;5

for a ∈ K do6

if a ∈ Ot then Observe xa,t, update x̂a,t and Ra,t;7

Compute sa,t with formula 4 ;8

end9

at ← arg max
a∈K

sa,t ;
10

Receive rat,t;11

Vt ← Vt−1 + x̂at,tx̂
T
at,t/Rat,t; bt ← bt−1 + x̂at,trat,t/Rat,t;12

for s ← 1 to t − 1 do13

if as ∈ Ot then14

Vt ← Vt − x̂as,t−1x̂
T
as,t−1/Ras,t−1 + x̂as,tx̂

T
as,t/Ras,t;15

bt ← bt − x̂as,t−1ras,s/Ras,t−1 + x̂as,tras,t/Ras,t;16

17

end18

end19

3.3 Regret Analysis

Theorem 1. In the general case, if λ ≥ max(1, 2L2), with probability at least

1 − 3δ, the cumulative regret of our algorithm Rn =
n∑

t=1
regt is bounded by:

Rn ≤ C + 4Ld

(√
d

λ
log

(
1 + nL2/λ

δ

)
+ 2S

)√
log

(
2dn2

δ

) n∑
t=2

1√
nat,t

+ 2

(√
d log

(
1 + nL2/λ

δ

)
+

√
λS

)

×
√√√√nd

(√
R2 + L2S2 log

(
1 +

nL2

λd

)
+

L2d2

λ
log

(
2dn

δ

) n∑
t=1

1
nat,t

)
(5)

Proof. See Appendix A.3.

Theorem 2. Upper bounds of the regret in the three cases.

• For case 1, with probability at least 1 − 3δ:

Rn = O
(

d

√
dn log

(n

δ

)
log

(
n2

δ

))
(6)
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• For case 2, with probability at least (1 − 3δ)(1 − δ), for n ≥ �2 log(1/δ)/p2	:

Rn = O
(

d

√
dn

p
log

(n

δ

)
log

(
n2

δ

))
(7)

• For case 3, with probability at least 1 − 3δ:

Rn = O
(

d

√
dnK log

(n

δ

)
log

(
n2

δ

))
(8)

Proof. See Appendices A.4, A.5 and A.6 respectively for case 1, 2 and 3.

Note that in every case the regret is sublinear, and, generally O (log(n)
√

n).
As we could expect, in case 2, both the time from which the upper bound holds
and the bound itself increases as the probability p decreases. Moreover, in case
3, the bound increases with the total number of arms, which seems normal since
the algorithm only allows one observation at each iteration, and then naturally
needs more time to converge when more actions are available.

In the following we consider an extended version of the Algorithm 1, where
k arms are selected simultaneously. So, instead of at, the subset of chosen users
is denoted Kt. The algorithm works the same way, but chooses the top k arms
with highest score at each time step. A similar theoretical upper bound of the
regret can also be derived for every case, whose general idea is given in A.7.

4 Experiments

4.1 Task Definition

We apply our algorithm to the task of dynamic data capture on Twitter pro-
posed in [12]. In this setting, we are given a social network where the whole set
of K users cannot be monitored simultaneously. Given a time period divided
in n steps of size T , the goal is to select, at each iteration t ∈ {1, ..., n} of the
process, a subset Kt of k user accounts to follow, among the whole set of pos-
sible users K (Kt ⊆ K), according to their likelihood of posting relevant tweets
for the formulated information need. Given a relevance score ra,t assigned to
the content posted by user a ∈ Kt during iteration t of the process (the set of
tweets he posted during iteration t), the aim is then to select at each iteration
t the set of user accounts that maximize the sum of collected relevance scores:

max
(Kt)t=1..n

n∑
t=1

∑
a∈Kt

ra,t. On the one hand, listening to the subset of selected users

Kt can be performed thanks to Twitter Follow Streaming API, which allows us
to capture the messages produced by a restrained number of accounts - 5000 at
most - during a certain time. The quality of messages, depending on the data
need, is then measured through some utility function that gives a grade to a
content (see below for some examples). This task can be treated as a bandit
problem by representing each user as an arm. On the other hand, obtaining
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context samples can be performed through different ways. Firstly, with an inde-
pendent random process where each arm has a probability p to belong to Ot

(case 1 and 2)3. Note that in practice, the Twitter Sample streaming API fur-
nishes real-time access to 1 % of all public tweets (i.e. p = 0.01). Secondly, as in
case 3, it can be part of the decision process when Ot = Kt−1.

4.2 Dataset

While our approach behaves well in real-world settings, we report here offline
experiments performed on a pre-collected dataset. This allows us to be able to
easily compare different scenarios and policies. The used dataset is composed
of the contents produced by K = 5000 users during ten days preceding the US
presidential elections in in 2012. The 5000 chosen accounts are the first one who
use either “Obama”, “Romney” or “#USElections”. At the end of the capture
process the number of collected messages is equal to 2148651. We simulate data
collection processes on this closed-world dataset to evaluate our approach.

4.3 Model Definition

4.3.1 Context Model
Each user a is associated to an unknown feature vector μa representing its profile.
Considering this profile as the mean of the messages user a is likely to post, it can
be estimated given a sample of messages we observed. Concretely, the content
obtained by capturing data from a given user a at time step t is denoted ωa,t (if
we get several messages for a given author, these messages are concatenated).
If user a belongs to Ot, its profile sample xa,t for timestep t corresponds to the
messages he posted during step t − 1. Given a dictionary of size m, messages
could be represented as m dimensional bag of word vectors. However the size
m might cause the algorithm to be computationally inefficient since it requires
the inversion of a matrix of size m at each iteration. In order to reduce the
dimension of those features, we use a Latent Dirichlet Allocation method for
short messages [13] (tweets of a same user are aggregated in one document),
which aims at modeling each tweet as a mixture of topics. We choose a number
of d = 30 topics and learn the model on the whole corpus. Then, if we denote
by F : Rm −→ R

d the function that, given a message returns its representation
in the topic space, the features sample of user a at time t is xa,t = F (ωa,t−1).

4.3.2 Reward Model
We use a SVM classifier that we first trained on the 20 Newsgroups dataset.
For our experiments, we focus on 4 classes to test: politics, religion, sport, sci-
ence. The reward obtained by a message equals the number of times it has been
retweeted by other users if it belongs to the specified class according to our classi-
fier, or 0 otherwise. Finally, if a user posted several messages during an iteration,

3 Case 2 is equivalent to case 1 when p = 1.
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its reward ra,t corresponds to the sum of the individual rewards obtained by the
messages he posted during iteration t. This corresponds to the task of seeking to
collect messages, related to some desired topic, that will have a strong impact
on the network.

4.4 Setting

As done in [12], we set k, the number of listened users at each time step, to
100, and T the size of an iteration to 100 s. We implement the three cases for
the process generating Ot, and for case 2, we tested different values for p: 0.1,
0.05 and 0.01. Beyond a Random policy which uniformly chooses users in Kt

at each time step, we compare our contextual algorithm to two existing bandit
algorithms, which do not take features into account and are well fitted for the
task of data capture: CUCB and CUCBV respectively proposed in [18] and [12].
Compared to CUCB, CUCBV adds the variance of reward distributions of users
in the definition of the confidence intervals. This has been shown to well behave
in cases such as our task of data capture [12], where a great variability can be
observed in the content posted by users when they are selected by the process.

4.5 Results

Figure 1 represents the evolution of the cumulative reward through time for dif-
ferent policies and the four rewards defined above. First of all, as in [12], every
algorithm perform better than the Random one. We also notice that SampLin-
UCB, when every user delivers a sample vector at each time (i.e. case 1), always
outperforms every other policies, which confirms the relevance of our approach:
building a mean profile for each user allows us to better predict its reward.
Generally speaking, in case 2, the performance of the algorithm increases with
the probability of observation p, which fits well with the intuition. Moreover,
SampLinUCB performs better than a classical CUCB in almost every cases.
Except for the sport reward where the performances are almost equal for both
approaches, SampLinUCB in case 3 provides better results than CUCBV. This
result is very interesting since for our task, case 3 does not require any external
process for the observation of users’ sample vectors: what we observe is what we
choose. Furthermore, it should be noticed that SampLinUCB in case 3 always
performs significantly better than SampLinUCB in case 2 with p = 0.01 and
usually better than case 2 with p = 0.05 (except for the Politics reward). This
highlights the ability of our algorithm to be active for its learning, by select-
ing useful content: with less observed content samples (only 100 over 5000 each
iteration, which would corresponds to the same observation rate than a Sam-
pLinUCB in case 2 with p = 0.02), it succeeds at capturing greatly more useful
content in most cases. Considering the restrictions of Twitter (only 1% of the
messages observable at each iteration), this is a very interesting result for the
task of data capture from streaming APIs.
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Fig. 1. Cumulative reward vs time for different policies on the USElections dataset.
From upper left to lower right, rewards are: politic, religion, science, sport.

5 Conclusion

In this paper, we formalized a new contextual bandit problem, that differs from
the traditional contextual bandit problem with constant feature vectors, in two
major ways. Firstly, no context vectors is directly observable, but instead, the
learner can only observe a sample of them. Secondly, those samples are available
only for a subset of arms. We proposed an algorithm to deal with this problem
and take advantage of the observed samples. Basically, the algorithm builds an
upper confidence bound of the expected value of each arm’s reward by taking
into account the uncertainty on both the learned regression parameter and the
sampled features. We studied three different cases for the process delivering
profile samples of actions at each time, and proved a sublinear high-probability
upper bound of our algorithm’s regret for all of them. We finally conducted
experiments on a focused data capture task on Twitter that shows the relevance
of the proposed method. Ongoing works concern the extension of the proposal
for non-stationary cases and for processes with non profile-centered samples.
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A Appendix

A.1 Proof of Proposition 1

The two following lemmas come from the defintion of sub Gaussian random
variable.

Lemma 1. For a sub Gaussian centered random variable X, the following state-
ments are equivalent:

• Laplace transform condition: ∃R > 0,∀λ ∈ R,E[eλX ] ≤ eR2λ2/2

• Subgaussian tail estimate: ∃R > 0,∀γ > 0, P (|X| ≥ γ) ≤ 2e−γ2/(2R2)

Lemma 2. Let X1 and X2 be two independent R1 and R2 sub-Gaussian random
variables. Let α1 and α2 be two real numbers. Then the random variable α1X1 +
α2X2 is also sub-Gaussian with constant

√
α2
1R

2
1 + α2

2R
2
2.

Lemma 3. Suppose that for any a, at every t, xa,t ∈ R
d are iid drawn from an

unknown distribution with mean μa ∈ R
d, and that ||xa,t||2 ≤ L and ||θ∗||2 ≤ S.

Then for any a, at every t, εT
a,tθ∗ is sub-Gaussian, with constant

LS√
na,t

.

Proof. By Cauchy-Schwarz inequality, for any a and t, we have |θT
∗ x̂a,t| ≤

||θ∗||2||x̂a,t||2 ≤ LS. Then given that for any a, xa,t are iid and E[x̂a,t] = μa, we
can apply Hoeffding’s Inequality:

∀γ > 0,P
(|θT

∗ x̂a,t − θT
∗ μa| > γ

)
= P

(|θT
∗ εa,t| > γ

) ≤ 2e− na,tγ2

2S2L2

Applying Lemma 1 gives the desired result with na,tγ
2/(2S2L2) = 1/(2R2)

Finally, using Lemma 2 with the sum of θT
∗ εa,t and ηa,s proves Proposition 1.

A.2 Proof of Proposition 2

θ̂t = arg min
θ

t∑
s=1

1
Ras,t

(θT x̂as,t − ras,s)2 + λ||θ||22

= (XT AX + λI)−1XT AY

= (XT AX + λI)−1XT A(Xθ∗ + η
′
)

= (XT AX + λI)−1XT Aη
′
+ (XT AX + λI)−1(XT AX + λI)θ∗

− (XT AX + λI)−1λIθ∗

= (XT AX + λI)−1XT Aη
′
+ θ∗ − λ(XT AX + λI)−1θ∗

Using the same method than in the Proof of Theorem 2 of [1] we have:
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||θ̂t − θ∗||Vt
≤ ||XT Aη

′ ||V −1
t

+ λ||θ∗||V −1
t

with Vt = λI + XT AX, which
is positive definite because λ > 0. Given that ||θ∗||2 ≤ S and ||θ∗||2V −1

t

≤
||θ∗||22/λmin(Vt) ≤ ||θ∗||22/λ we have: ||θ̂t − θ∗||Vt

≤ ||XT Aη
′ ||V −1

t
+

√
λS

Using Theorem 1 of [1] and the fact that
η

′
s

Ras,t
is conditionally 1-sub Gaussian

(Proposition 1), for any δ > 0, with probability at least 1 − δ, for all t ≥ 0:

||XT Aη
′ ||V −1

t
= ||

t∑
s=1

η
′
s

Ras,t
x̂as,t||V −1

t
≤

√
2 log

(
det(Vt)1/2det(λI)−1/2

δ

)

A.3 Proof of Theorem 1

Lemma 4. For any a and t > 0 with probability at least 1 − δ/t2 − δ:
0 ≤ sa,t − θT

∗ μa ≤ 2αt||x̂a,t||V −1
t−1

+ 4(αt/
√

λ + S)ρa,t,δ

Proof. Applying Hoeffding to each dimension i ∈ [1..d] gives:

∀γ > 0: P
(|x̂i

a,t − μi
a| > γ/d

) ≤ 2e−2
na,tγ2

L2d2 . Then, using ||x̂a,t − μa||2 ≤
d∑

i=1

|x̂i
a,t − μi

a| and the union bound property gives: P (||x̂a,t − μa||2 ≤ γ) ≥ 1 −

2de−2
na,tγ2

L2d2 . Choosing the appropriate γ, for any a and t > 0 with probability
at least 1 − δ/t2:

||x̂a,t − μa||2 ≤ Ld

√
1

2na,t
log

(
2dt2

δ

)
= ρa,t,δ

Suppose that the previous inequality holds, then:

• ||x̂a,t − μa||V −1
t−1

≤ ||x̂a,t − μa||2/
√

λ ≤ ρa,t,δ/
√

λ so ||μa||V −1
t−1

≤ ||x̂a,t||V −1
t−1

+

ρa,t,δ/
√

λ = ||x̂a,t + ε̃a,t||V −1
t−1

, with ε̃a,t = ρa,t,δx̂a,t/(
√

λ||x̂a,t||V −1
t−1

).

• |θ̂T
t (x̂a,t − μa)| ≤ θ̂T

t εa,t, with εa,t = ρa,t,δ θ̂t/||θ̂t||2.
Using those two results, Proposition 2 and the union bound property, we are

ready to prove the proposed result:
First part:

θ̂T
t (x̂a,t + εa,t) + αt||x̂a,t + ε̃a,t||V −1

t−1
− θT

∗ μa

=(θ̂t − θ∗)T μa + αt||x̂a,t + ε̃a,t||V −1
t−1

− θ̂T
t (μa − x̂a,t) + θ̂T

t εa,t

≥ − ||θ̂t − θ∗||Vt
||μa||V −1

t−1
+ αt||x̂a,t + ε̃a,t||V −1

t−1
+ θ̂T

t (x̂a,t − μa + εa,t)

≥ − αt||μa||V −1
t−1

+ αt||x̂a,t + ε̃a,t||V −1
t−1

+ θ̂T
t (x̂a,t − μa + εa,t)

≥ − αt||x̂a,t + ε̃a,t||V −1
t−1

+ αt||x̂a,t + ε̃a,t||V −1
t−1

+ θ̂T
t (x̂a,t − μa + εa,t)

≥0
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Second part: using the fact that ||εa,t||V −1
t−1

≤ ||εa,t||2/
√

λ = ρa,t,δ/
√

λ and

||ε̃a,t||V −1
t−1

= ρa,t,δ/
√

λ:

θ̂T
t (x̂a,t + εa,t) + αt||x̂a,t + ε̃a,t||V −1

t−1
− θT

∗ μa

=(θ̂t − θ∗)T μa + αt||x̂a,t + ε̃a,t||V −1
t

− θ̂T
t (μa − x̂a,t) + θ̂T

t εa,t

≤||θ̂t − θ∗||Vt
||μa||V −1

t−1
+ αt||x̂a,t + ε̃a,t||V −1

t−1
+ θ̂T

t (x̂a,t − μa + εa,t)

≤2αt||x̂a,t + ε̃a,t||V −1
t−1

+ 2||θ̂t||Vt−1 ||εa,t||V −1
t−1

≤2αt||x̂a,t||V −1
t−1

+ 2αt||ε̃a,t||V −1
t−1

+ 2(αt + S
√

λ)||εa,t||V −1
t−1

≤2αt||x̂a,t||V −1
t−1

+ 4(αt/
√

λ + S)ρa,t,δ

Proposition 3. For every t, with probability at least 1 − δ/t2 − δ, the instanta-
neous regret regt = θT

∗ μa∗ − θT
∗ μat

is bounded by:
regt ≤ 2αt||x̂at,t||V −1

t−1
+ 4(αt/

√
λ + S)ρat,t,δ = reg

(1)
t + reg

(2)
t

Proof. Due to the selection policy and the first inequality of the previous lemma,
at each time t: sat,t ≥ sa∗,t ≥ θT

∗ μa∗ . On the other hand, due to the second
inequality of the previous lemma, at each time t: sat,t ≤ θT

∗ μat
+2αt||x̂a,t||V −1

t−1
+

4(αt/
√

λ + S)ρa,t,δ, which concludes the proof.

Proof of the Main Theorem: On the one hand, using the fact that
∞∑

t=2
δt =

δ(π2/6 − 1) ≤ δ, the union bound property, and the fact that in Proposition 2
the bound in uniform, with probability at least 1 − 2δ:

n∑
t=1

reg
(2)
t ≤ C +

n∑
t=2

4(αt/
√

λ + S)ρat,t,δ

≤ C +
n∑

t=2

4(αt/
√

λ + S)Ld

√
1

2na,t
log

(
2dt2

δ

)

≤ C + 4Ld(αn/
√

λ + S)

√
log

(
2dn2

δ

) n∑
t=2

1√
nat,t

On the other hand:
n∑

t=1
reg

(1)
t ≤

√
n

n∑
t=1

4α2
t ||x̂at,t||2V −1

t−1
≤ 2αn

√
n

n∑
t=1

||x̂at,t||2V −1
t−1

We need to upper bound the term
n∑

t=1
||x̂at,t||2V −1

t−1
. To do this, let us introduce

νa,t,δ = Ld
√

1/(2nat,t) log (2dn/δ). Still using Hoeffding, with probability at
least 1 − δ/n we have: ||x̂as,t||2 ≤ ||μas

||2 + νas,t,δ for s ≤ t.
Defining: ε̌a,t = νa,t,δμa/||μa||2 we have, for s ≤ t:
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1/
√

Ras,s||μas
− ε̌as,s||2 ≤ 1/

√
Ras,t||x̂as,t||2. So the following holds:

Vt = λI +
t∑

s=1

1
Ras,t

x̂as,tx̂
T
as,t ≥ λI +

t∑
s=1

1
Ras,s

(μas
− ε̌as,s)(μas

− ε̌as,s)T = Wt

Which means that for any vector x: ||x||V −1
t

≤ ||x||W −1
t

.

We also define ε̂a,t = νa,t,δμa/(
√

λ||μa||W −1
t−1

), such that for s ≤ t:

||x̂as,t||W −1
t−1

≤ ||μas
+ ε̂as,s||W −1

t−1
and ||ε̂as,s||W −1

t−1
= νas,s,δ/

√
λ.

So, using the union property and
n∑

t=1

δ

n
= δ, with probability at least 1 − δ:

n∑

t=1

||x̂at,t||2V −1
t−1

≤
n∑

t=1

||x̂at,t||2W −1
t−1

≤
n∑

t=1

||μat + ε̂at,t||2W −1
t−1

≤
n∑

t=1

||μat + ε̂at,t − ε̌at,t

+ ε̌at,t||2W −1
t−1

≤
n∑

t=1

||μat − ε̌at,t||2W −1
t−1

+
n∑

t=1

||ε̂at,t||2W −1
t−1

+
n∑

t=1

||ε̌at,t||2W −1
t−1

≤
n∑

t=1

||μat

− ε̌at,t||2W −1
t−1

+
2

λ

n∑

t=1

ν2
at,t,δ ≤

n∑

t=1

||μat − ε̌at,t||2W −1
t−1

+
L2d2

λ
log

(
2dn

δ

) n∑

t=1

1

nat,t

Secondly, let us notice that:

det(Wn) = det(Wn−1 +
1

Ran,n
(μan

− ε̌an,n)(μan
− ε̌an,n)T )

= det(Wn−1)det(I +
1

Ran,n
W

−1/2
n−1 (μan

− ε̌an,n)(W−1/2
n−1 (μan

− ε̌an,n))T )

= det(λI)
n∏

t=1

(1 +
1

Rat,t
||μat

− ε̌at,t||2W −1
t−1

)

where we used that all the eigenvalues of a matrix of the form I + xxT

are one except one eigenvalue, which is 1 + ||x||2 and which corresponds to the
eigenvector x.

Given that λ > max(1, 2L2): ||μat
− ε̌at,t||2W −1

t

≤ ||x||22/λ ≤ 2L2/λ ≤ 1
So using the fact x ≤ 2 log(1 + x) when 1 ≤ x ≤ 1, we have:

2 log
(

det(Wn)
det(λI)

)
≥

n∑
t=1

1
Rat,t

||μat
− ε̌at,t||2W −1

t−1
≥ 1√

R2 + L2S2

n∑
t=1

||μat

− ε̌at,t||2W −1
t−1

And as in Lemma 11 of [1] we have that log
(

det(Wn)
det(λI)

)
≤ d log

(
1 +

nL2

λd

)

Which gives:
n∑

t=1
||μat

− ε̌at,t||2W −1
t−1

≤ √
R2 + L2S2d log

(
1 +

nL2

λd

)
.

Last, as in Lemma 10 of [1], the Determinant-Trace Inequality gives:

αn ≤
√

d log
(

1 + nL2/λ

δ

)
+

√
λS.

Putting all together, we get the proposed upper bound for the general case.
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A.4 Proof for Case 1

On the one hand
n∑

t=1

1
nat,t

=
n∑

t=1

1
t

≤ 1+log(n). On the other hand
n∑

t=1

1√
nat,t

=

n∑
t=1

1√
t

≤ ∫ n

0

1√
t
dt ≤ 2

√
n. Using the bound of Theorem 1 gives the final result.

A.5 Proof for Case 2

Lemma 5. ∀a,∀t ≥ �2 log(1/δ)/p2	, with probability at least 1 − δ: na,t ≥ tp/2

Proof. By Hoeffding’s inequality, for every ε > 0: P (na,t ≥ tp − ε) ≥ 1 − e−2ε2/t.
Choosing ε = tp/2 leads to P (na,t ≥ tp/2) ≥ 1 − e−tp2/2. If t ≥ 2 log(1/δ)/p2,
then 1 − e−tp2/2 ≥ 1 − δ, which proves the announced result.

In the following, we denote u = �2 log(1/δ)/p2	.
Main Proof: On the one hand, from Lemma 5, with probability at least

1 − δ:
n∑

t=1

1
nat,t

≤ u +
2
p

n∑
t=u+1

1
t

≤ u +
2
p

∫ n

u

1
t

dt ≤ u +
2 log(n)

p
On the other hand, from Lemma 5, we have with probability at least 1 − δ:

n∑
t=1

1√
nat,t

≤ u +
√

2
p

n∑
t=u+1

1√
t

≤ u +
√

2
p

∫ n

u

1√
t
dt ≤ u + 2

√
2n

p
Then, using the general upper bound of Theorem 1 gives the final result.

A.6 Proof for Case 3

Let us decompose n = n/K�K + r with r < K.

Obviously, the sum
n∑

t=1

1
nat,t

is maximized when each arm is observed exactly

n/K� times during the first n/K�K.

So:
n∑

t=1

1
nat,t

≤
K∑

a=1

�n/K�+1∑
t=1

1
t

≤ K
�n/K	∑

t=1

1
t

≤ 1 + log(�n/K	). With the same

argument:
n∑

t=1

1√
nat,t

≤ K
�n/K	∑

t=1

1√
t

≤ 2K
√�n/K	.

Finally, noting that K log(�n/K	) ∼ K log(n/K) and K
√�n/K	 ∼ √

Kn
and using the general upper bound of Theorem 1 gives the final result.

A.7 Proof of the Multiple Plays Extension

We follow a similar way than in [18] with the particular case of the summation:
since we consider that the reward of a set of arms is the sum of its members, the
instantaneous regret is defined as: regt =

∑
a∗∈K∗

θT
∗ μa∗ − ∑

at∈Kt

θT
∗ μat

, with K∗ =

arg max
K̂,|K̂|=k

∑
a∈K̂

θT μa. We then use the fact that for all t:
∑

at∈Kt

sat,t ≥ ∑
a∗∈K∗

sa∗,t,
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which leads to: regt ≤ ∑
at∈Kt

2αt||x̂at,t||V −1
t−1

+ 4
√

d(αt/
√

λ + S)ρat,t,δ. Where Vt

is defined considering that k learning examples come at each time step instead

of 1: Vt = λI +
t∑

s=1

∑
as∈Ks

1
Ras,t

x̂as,tx̂
T
as,t.

Using the same methods than before in the three cases, the cumulative regret
take the same form, expect that k appears explicitly in the regret because of the

two terms:
n∑

t=1

∑
at∈Kt

1
nat,t

and
n∑

t=1

∑
at∈Kt

1√
nat,t

.
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5. Audibert, J.-Y., Munos, R., Szepesvári, C.: Tuning bandit algorithms in stochastic
environments. In: Chaudhuri, K., Gentile, C., Zilles, S. (eds.) ALT 2015. Lecture
Notes in Artificial Intelligence (LNAI), vol. 9355, pp. 150–165. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-75225-7 15

6. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach.
Learn. Res. 3, 397–422 (2003)

7. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47, 235–256 (2002)

8. Chapelle, O., Li, L.: An empirical evaluation of thompson sampling. In: NIPS,
Curran Associates, Inc. (2011)

9. Dani, V., Hayes, T.P., Kakade, S.M.: Stochastic linear optimization under bandit
feedback. In: COLT (2008)

10. Filippi, S., Cappe, O., Garivier, A., Szepesvári, C.: Parametric bandits: The gen-
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Ballpark Learning: Estimating Labels
from Rough Group Comparisons
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Abstract. We are interested in estimating individual labels given only
coarse, aggregated signal over the data points. In our setting, we receive
sets (“bags”) of unlabeled instances with constraints on label proportions.
We relax the unrealistic assumption of known label proportions, made in
previous work; instead, we assume only to have upper and lower bounds,
and constraints on bag differences. We motivate the problem, propose
an intuitive formulation and algorithm, and apply our methods to real-
world scenarios. Across several domains, we show how using only propor-
tion constraints and no labeled examples, we can achieve surprisingly high
accuracy. In particular, we demonstrate how to predict income level using
rough stereotypes and how to perform sentiment analysis using very lit-
tle information. We also apply our method to guide exploratory analysis,
recovering geographical differences in twitter dialect.

1 Introduction

In many classification problems, labeled instances are often difficult, expensive,
or time-consuming to obtain. Unlabeled instances, on the other hand, are easier
to obtain, but it is harder to use them for classification. Semi-supervised learn-
ing [6] addresses this problem, using unlabeled instances together with a small
amount of labeled instances to improve performance.

We are interested in a learning setting where few, if any, labeled instances
exist. Instead, we only know some coarse, aggregated signal over the data points.
In particular, our instances are divided into sets (or bags), and we are given some
aggregate information about the bags; for example, we might know that one bag
has a higher percentage of positive-label instances than another.

There is recent interest in the task of estimating the labels of individual
instances given aggregate information, due to the many real-world scenarios in
which such information is available. In particular, aggregate information (e.g.,
summary statistics) is often published for sensitive data, when one cannot pub-
lish individual statistics. Being able to estimate individual labels from such data
has important implications regarding privacy and data anonymization.

c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 299–314, 2016.
DOI: 10.1007/978-3-319-46227-1 19



300 T. Hope and D. Shahaf

Fig. 1. We are given bags of instances and
rough estimates about label proportions and
differences between bags. Here, the purple bag
has at least 50 % positive instances, more than
the red bag (but the magnitude of the differ-
ence is uncertain). (Color figure online)

Constraining class proportions
of unlabeled data has been shown
to be useful for semi-supervised
learning [20,25,27]. Under this set-
ting, we are given sets of unlabeled
instances with known label propor-
tions (for example, one bag has
30 % positive instances and 70 %
negative instances).

We believe that the assumption
of known proportions is unrealistic,
and limits the applicability of such
methods. For example, suppose we want to classify Twitter users by political
orientation. We have some information about the users (for example, the text
of their tweets), but no explicit political affiliation to use as labels. We could,
however, use the commonly-known fact that political orientation is correlated
with geographic location. Thus, we can construct bags of users based on their
geographic location: bags would correspond to states whose residents predom-
inantly vote for the Republican Party (red states) or Democratic Party (blue
states).

Estimating the proportion of Democrats on Twitter is hard, even using loca-
tion information. Previous election data or polls are unlikely to accurately reflect
the behavior of Twitter users. Instead of assuming known proportions, we pro-
pose a setup where our input is much weaker: we only know some constraints on
bag proportions and on differences between bags. In other words, users from red
states do not necessarily vote for the Republicans, but it is safe to expect to see
more Republicans in the red-state bags. It is also reasonable to assume that, say,
at least 10% of Blue-state users are Democrats. Using only this type of weak,
“ballpark” estimates, we would like to be able to classify individual users.

Figure 1 demonstrates this idea. Our input includes approximate information
on label proportions in some bags (left) and pairwise comparisons between bags
(middle) or sets of bags (right). Our contributions are as follows:

– We extend the Learning from Labeled Proportions setting by proposing a new,
more realistic scenario in which label proportions in each bag are not assumed
to be known, but rather some constraints on them. We suggest various domains
that lend themselves to this setting.

– We propose a simple and intuitive bi-convex problem formulation and an effi-
cient algorithm, including a novel form of cross-validation.

– We apply our algorithm to real data, perform sentiment analysis of movie
reviews from a very coarse signal, and predict income using stereotypes.

– We demonstrate the use of our method for exploratory analysis. We find ver-
nacular difference in geo-tagged tweets by incorporating expressive constraints
such as “Alabama > Florida > New York”.

– Our algorithm is designed to use when human labeling resources are scarce.
Despite the simplicity of our methods, we achieve high accuracy with a very
modest amount of input, and considerably loose (or misspecified) constraints.
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2 Problem Formulation

We begin by formalizing our setting and problem. Consider a set of N training
instances XN = {x1,x2, . . . ,xN}. Each xi has a corresponding unknown label
y∗

i ∈ {−1, 1}. In addition, we could be given a (possibly empty) set of L labeled
training instances XL = {xN+1,xN+2, . . . ,xN+L} with known binary labels yi,
where typically the vast majority of our instances are unlabeled: N � L. In
addition, we are given a set of K subsets of X , which we call bags:

B = {B1,B2, . . . BK},Bk ⊆ XN ∪ XL.

Note that bags B may overlap, and do not have to cover all training instances
XN . Let pk be the proportion of positive-labeled instances in bag Bk:

pk = |{i : i ∈ Bk, y∗
i = 1}/|Bk| (1)

(where y∗
i is replaced with yi for instances xi ∈ XL). Previous work [20] tackled

the case of known label proportions, suggesting that precise proportions could
be estimated using sampling. However, obtaining accurate estimates could be
costly or impractical (e.g., for bags with high label skew). In this work we do
not assume to know pk. Rather, we are given weaker prior knowledge, in the
form of constraints on proportions. We allow constraints of the following forms:

– Lower and upper bounds on bag proportions: lk ≤ pk ≤ uk

– Bag difference bounds: 0 ≤ lk12 ≤ pk1 − pk2 ≤ uk12

We are especially interested in the case where very little information is known:
constraints are loose, and specified only for a small subset of the bags.

Our goal is to predict a label for each xi, using a function f(x) =
sign(wT ϕ(x)), where w is a weight vector and ϕ(·) is a feature map (to simplify
notation we drop a bias term b by assuming a vector 1N+L is appended to the
features). To attain the classification goal, we use a maximum-margin approach.
Let R be the subset of B for which we have upper and/or lower bounds. Let D
be the set of tuples (Bk1 ,Bk2) for which we have difference bounds. To solve this
problem we directly model the latent variable y∗ – the vector of unknown labels
y∗

i ∈ {−1, 1}, in an alternating optimization approach.

Noting that (1) can be written as pk =
∑

i∈Bk
y∗
i

2|Bk| + 1
2 , we formulate the

following bi-convex optimization problem:

argmin
y,w,ξ

1
2
wT w +

C

N

N∑
i=1

max(0, 1 − yiwT ϕ(xi)) +
CL

L

N+L∑
j=N+1

ξj

s.t. − 1 ≤ yi ≤ 1 ∀i ∈ 1, . . . , N

yjwT ϕ(xj) ≥ 1 − ξj ∀j ∈ {N + 1, . . . , N + L}
ξj ≥ 0 ∀j

lk ≤ p̂k ≤ uk ∀{k : Bk ∈ R}
lk12 ≤ p̂k1 − p̂k2 ≤ uk12 ∀{k1 	= k2 : (Bk1 ,Bk2) ∈ D},

(2)
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where p̂k = 1
2|Bk|

∑
i∈Bk

yi + 1
2 is the estimated positive label proportion in bag

Bk, lk (or uk) can be 0 (1) if not given as input, and analogously for difference
bounds lk12(uk12). C and CL are cost hyperparameters for unlabeled and labeled
instances, respectively. Intuitively, the second term in the objective function
helps find a weight vector w accurately predicting y, and constraints ensure that
we find an assignment to y that satisfies proportions constraints. CL controls
how much weight we give to our labeled instances versus our prior knowledge on
B. In our experiments we do not use any labeled instances, thus CL = 0.

3 Algorithm

We have formalized our problem as a bi-convex optimization problem – holding
either w or y fixed, we get a convex problem. We thus propose the following
intuitive alternating algorithm to solve it.

– For a fixed w, solve for y:

argmin
y

1
N

N∑
i=1

max(0, 1 − yiwT ϕ(xi))

s.t. − 1 ≤ yi ≤ 1 ∀i ∈ 1, . . . , N

lk ≤ p̂k ≤ uk ∀{k : Bk ∈ R}
lk12 ≤ p̂k1 − p̂k2 ≤ uk12 ∀{k1 	= k2 : (Bk1 ,Bk2) ∈ D},

(3)

– For a fixed y, solve w.r.t w:

argmin
w

1
2
wT w +

C

N

N∑
i=1

max(0, 1 − yiwT ϕ(xi)) +
CL

L

N+L∑
j=N+1

ξj

s.t. yjwT ϕ(xj) ≥ 1 − ξj ∀j ∈ {N + 1, . . . , N + L}
ξj ≥ 0 ∀j

(4)

Intuitively, the first step finds an assignment to y that is “close” to predictions
made by applying weights w, and also satisfies proportions constraints. The
second step re-adjusts w. Our alternating algorithm for this bi-convex problem
is thus guaranteed to descend, decreasing the objective in every iteration.

In practice, we replace y with Sign(y) (Sign(·) applied elementwise) in order
to use efficient off-the-shelf SVM solvers (See Fig. 2.). Empirically, in most cases
we observed that y were very close to either 1 or −1.

To start off the alternation, we need to initialize w. Specific label proportions
constraints are handled by modeling the latent y∗ directly, which is only possible
in our alternating scheme once a vector w is fixed. Thus, we start the alternating
optimization process by first solving the following simple convex program, which
uses only the partial order between bags. Let the set of pairwise orderings P be
the set of all tuples (Bk1 ,Bk2) such that pk1 ≥ pk2 . To find our initial w we solve:
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argmin
w,ξ

1
2
wT w +

1
|P|

|P|∑
p=1

ξp +
CL

L

N+L∑
j=N+1

ξj

s.t. yjwT ϕ(xj) ≥ 1 − ξj ∀j ∈ {N + 1, . . . , N + L}
wT 1

|Bk1 |
∑

i∈Bk1

ϕ(xi) ≥ wT 1
|Bk2 |

∑
i∈Bk2

ϕ(xi) − ξp

∀{k1 	= k2 : (Bk1 ,Bk2) ∈ P},

(5)

Fig. 2. Alternating algorithm

The second constraint in Prob-
lem 5 amounts to representing
bags with their (w-weighted) mean
in feature-space. Note that in
order for a bag Bk to be well-
approximated by its mean in
feature-space, Bk should induce a
low-variance distribution over bag
instances. This is a strong assump-
tion, but yields a simple quadratic
program easy to solve quickly with
standard solvers, and empirically
leads to good starting points in
parameter-space. We additionally
note that when CL = 0 (no labels),
we recover as a special case the
Multiple-Instance (MI) ranking problem proposed in the image-retrieval frame-
work of [13], albeit with a different objective (we are interested in classifying
instances rather than learning to rank bags). We note that in Problem3, we
impose hard constraints on label proportions. Certain sets of constraints could,
of course, be infeasible. In this case, a practitioner might adjust the constraints,
or simply make them soft (by adding slack variables).

Optimizing C. In practice, we need to tune hyperparameter C. This is typically
done with cross-validation (CV) grid search, measuring performance on held-out
data. However, standard CV is impossible here, as we have no labeled examples.

We thus develop a novel variant of CV, suited for our setting. We run K-fold
CV, splitting each bag Bk into training and held-out subsets. The intuition is
that the label proportion in uniformly-sampled subsets of a bag is similar to the
proportion pk in the entire bag. For each split we run Algorithm 2 on training
bags, and then compute by how much constraints are violated on held-out bags.
More formally, we compute the average deviations from bounds, max(p̂k−uk, 0),
max(lk − p̂k, 0) for p̂k the estimated label proportion in the held-out subset of
bag k. We do so over a grid, and select the C with lowest average violation.

4 Evaluation

In order to evaluate our algorithm, we prepared the following datasets:
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– Movie Reviews: The Movie Reviews dataset [17] contains 1000 positive and
1000 negative movie reviews written before 2002. The task is to classify the
sentiment of movie reviews as positive or negative.

– Census: The Adult dataset [1] (48842 instances) is from the Census bureau.
The task is to predict whether a given adult makes more than $50,000 a year
based on attributes such as education, hours of work per week, etc.

For each of the classification tasks described, we run 10-fold cross-validation
and report average results (note that labels are used only for testing). For text
classification tasks, feature map ϕ(·) is the standard TF-IDF features.

We formed bags corresponding to the different tasks (see below), demon-
strating the wide applicability of the setting and our approach. In order to test
our method’s robustness we used approximate constraints, at times violating the
true underlying proportions.
Baselines. To the best of our knowledge, no other method aims to solve the
problem of Sect. 2. Thus, we compare ourselves to three natural baselines.

– “High vs. low”: One reasonable approach in our setting is to create two sets
of instances: The “high” set contains instances from bags with the highest
label proportions, and the “low” set – from bags with the lowest proportions.
The idea is to pretend all instances in the “high” set are positive, and in the
“low” set – negative, and learn a classifier with the noisy labels. To make the
baseline stronger, we use grid search to optimize hyper-parameter C (chosen
from a commonly used grid for SVM C values, [10−4, 10−3, . . . , 103, 104], with
10-fold cross-validation and selecting C with best average). To counter the
class-imbalance created, we apply a weighted SVM.

– Supervised SVM: Our method does not need labeled instances, but instead
uses weaker, aggregate information. To show how many labels are needed to
obtain comparable results to our method, we report SVM results over a labeled
training set (note that this information is not available to our algorithm). We
use grid search to optimize hyper-parameter C as above.

– Learning from labeled proportions: For the census data set, we compare
our method’s performance to results reported in [20] using known label pro-
portions with various algorithms. Note that our method does not have access
to the exact label proportions.

For our method, we select C using the constraint-violation approach
described in the previous section.

We run the procedure for a maximum of 200 iterations, with convergence
typically occurring long before. A typical iteration (for one value of C, one CV
split) took at most a few seconds on a standard laptop. Our data is available on
https://github.com/ttthhh/ballpark.git.

4.1 One-Word Classifier

Our first task is to classify sentiment of movie reviews. Our goal is not to compete
with the host of previous sentiment-analysis algorithms [18] in terms of accu-
racy, but rather to provide a light-weight tool when very little information and

https://github.com/ttthhh/ballpark.git
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resources are available: a “poor-man’s” classifier. In this section, we show how
we are able to obtain good results while assuming very scarce prior knowledge
with simple, clean tools.

We envision a practitioner who knows a very simple fact – that reviews
containing the word “great” are more likely to be positive than negative, but far
from exclusively: many positive reviews do not use the word “great”, and some
negative reviews do use it (“horrific performance by a usually great actor”).

We construct three bags: Bgreat,Bgood,Bbad, each containing reviews with the
corresponding word in them (note the bags are not necessarily disjoint). For the
three bags created on training set instances (10-fold CV) we find that |Bgreat| ≈
700, |Bgood| ≈ 630, |Bbad| ≈ 160, pgreat ≈ 0.6, pgood ≈ 0.45, pbad ≈ 0.25.

For simplicity, we assume no labels are given, but the practitioner has rough
estimates for proportions. This information could come from a sample or from
domain knowledge. In our experiment, we assume an upper bound on the bag
with the highest proportion and a lower bound for each bag. We used a weak
bound for each bag, underestimating it by 50%. We also assumed that pgreat >
pgood > pbad. Again we use a weak bound, overestimating the real difference by
33%. In Sect. 4.3 we explore how the tightness of the constraints affects accuracy,
showing our method is robust to loose constraints.

For the “high vs. low” baseline, we take bag Bgreat,Bgood as the positive class,
and Bbad as the other. As seen in Table 1, our method outperforms this naive
baseline, and competes with supervised SVM trained on considerable amounts
of labeled examples. Given fewer labels, supervised SVM is inferior to our label-
free method: providing SVM with 25 labeled instances leads to accuracy of 0.51,
50 labels to accuracy of 0.63, and 75 labels increases accuracy to 0.69.

To test stability, we run the same experiment using different words to create
the bags. The results are similar. Table 1 shows the results using “excellent”,
“nice”, and “terrible”. To make sure the classifier is not learning our input
words, we test removing these words (e.g., “good”) from the documents. In our
experiment, the removal reduced accuracy by less than 1%.

Table 1. Movie results for different sets of bags based on different choices of words.
Our method outperforms the naive SVM baseline, and rivals a supervised SVM with
a considerable number of labels.

Method Bgreat,Bgood,Bbad Bexcellent,Bnice,Bterrible

Bag constraints 0.71 0.73

“high vs. low” SVM 0.52 0.55

Supervised SVM 100 labels (0.71) 100 labels (0.71)

4.2 Learning from Stereotypes

In this section we simulate a scenario frequently occurring in practice. We have
a large sample of individuals, and would like to predict their level of income
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using socio-demographic information. One variable that is known to be correlated
with income is education level. This information is difficult to obtain (budgetary
constraints, privacy issues, respondents’ reluctance etc.) and is available only
for a small sub-sample. In addition, we have no labels – individuals with known
income. We do have ballpark-estimations on income proportions for different
education levels, and the difference between them (based on an earlier census,
expert assessments or other external sources).

In our first experiment we construct bags based on education level:
BMasters, BBachelors, BSome-college, BHigh-School. Over 20-fold CV (size of training
set ≈ 1220) we find that |BMasters| ≈ 90, |BBachelors| ≈ 265, |Bsome-college| ≈
360, |BHigh-School| ≈ 520, pMasters ≈ 0.55, pBachelors ≈ 0.42, psome-college ≈
0.19, pHigh-School ≈ 0.16.

We use similar constraints to the previous section, but remove all lower
bounds on bags, thus incorporating even less prior information than before.
For the SVM using “high vs. low” baseline, we use BMasters, BBachelors as one
class, and Bsome-college,BHigh-School as the other.

We start with basic features: age, gender, race. After assigning individuals
to education bags, we discard education features from the data – we assume
not to have this information at test time (only for a small sub-sample available
for training). We do retain those features for the Supervised SVM baseline. Our
method achieves cross-validation accuracy of 0.74, while the baseline achieves
0.57. Supervised SVM, even with 1000 labeled examples, only reaches 0.71.

We also experiment with using less bags (removing “Masters”), and with an
expanded feature set (age, race, gender, hours-per-week, capital-gain, capital-
loss). See Table 2 for results. Here too, our method outperforms the baseline,
and rivals supervised SVM with 900 labels.

Of course, we are not limited to using bags based on only education level.
Another well-known correlation is between gender and income. Thus, we can
also slice the data into bags based on education and gender. In another experi-
ment we create 6 bags, BBachelors+Female, BSome-college+Female, BHigh-School+Female,
BBachelors+Male,BSome-college+Male,BHigh-School+Male. There are stark differences
in label proportions between the groups, notably in favor of males.

For the SVM using “high vs. low” baseline, we try two different class assign-
ments. We start from Bachelors vs. everyone else. (It could seem more natural
to take, for example, BBachelors+Male as the “high” bag and BHigh-School+Female as
“low”, but this results in too small a sample). The baseline performed relatively
well (Table 2) due to good class separation. However, when we tried females vs.
males, performance of our method remained stable (with highest accuracy), but
the baseline suffered a drastic drop (Table 2). This highlights the difficulty of
using this baseline when using multiple bags based on richer information: it is
not immediately clear how to create two well-separated classes. On the other
hand, our method naturally compares groups based on given constraints.
More Baselines. Finally, we report classification accuracy on the same dataset,
taken from [20]. The authors create two artificial bags, one retaining original label
proportions and another containing only one class. With these bags, their method
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Table 2. Census results for different sets of bags. Our method outperforms the naive
SVM baseline, and rivals a supervised SVM with many labeled examples.

Method Education bags Edu + Gender

Bag constraints 0.75 0.77

“high vs. low” SVM (Bachelors vs. other) 0.52 0.6

“high vs. low” SVM (Female vs. Male) - 0.38

Supervised SVM 0.75 (900 labels) 0.77 (900 labels)

(using known proportions) achieved 0.81 accuracy. They also report results for
Kernel Density Estimation (0.75), Discriminative Sorting – a supervised method
(0.77), MCMC sampling (0.81), and a baseline of predicting the major class
(0.75). Our method achieves comparable performance despite having much less
information on label proportions, fewer features, and using more realistic bags.

4.3 Sensitivity Analysis

In this section we give a short demonstration of how the tightness of constraints
could affect model performance. We create artificial bags and vary the tightness
of some constraints, reporting accuracy. This is a preliminary study, serving to
illustrate some of the different factors that come into play.

We use the 20 Newsgroups dataset [2] containing approximately 20,000
posts across 20 different newsgroups. Some of the newsgroups are closely related
(e.g., comp.sys.ibm.pc.hardware and comp.sys.mac.hardware), while others are
further apart (rec.sport.hockey and sci.space). The task is to classify messages
according to the newsgroup to which they were posted.

We assume predefined bags and vary constraints on label proportions within
and between bags. We do not use any labeled data at training time.

We examine three binary classification tasks, between different categories of
posts: space vs. medicine, ibm.pc vs. mac, and hockey vs. baseball. For each of
these binary classification tasks, we create six bags of training instances B =
{B1,B2, . . . B6}. The sizes of each bag are |B1| = |B2| = 200, |B3| = |B4| =
50, |B5| = |B6| = 100. We thus use only 650 instances in this case – about half
of the 1187 in the training set. The real label proportions within each bag are
p1 = p2 = 0.5, p3 = p4 = 0.3, p5 = p6 = 0.2.

We test the effects of three different types of constraints, corresponding to
common types of aggregate information:

– Upper bounds on bag proportions: Let kmax be the index of the bag with
the highest proportion. We assume an upper bound multiplicative factor only
on this bag: pkmax

× um, where we control factor um.
– Lower bounds: For each true pk, we take as a lower bound lp ∗ pk.
– Bag difference bounds: For each true pk1 − pk2 such that pk1 ≥ pk2 , we

lower-bound the difference with ld × (pk1 − pk2).



308 T. Hope and D. Shahaf

Fig. 3. Constraint effects. Accuracy
results on a validation set: (a) Vary-
ing upper-bound factor on highest pk
(b) Varying individual lower-bound fac-
tor (c) Varying lower bound on bag dif-
ferences. Results remain fairly robust
(with fluctuations due to small-sample
noise). The graph stops abruptly where
constraints are no longer feasible.

Figure 3 shows the results of our
experiments. In our initial setting, we take
a fairly loose configuration of constraints
to test our method’s flexibility: ld = 1 (no
lower bound at all for bag differences),
lp = 0.5, and um = 1. In each exper-
iment we vary one factor, keeping the
others fixed: (a) upper bound on pkmax

,
(b) individual lower bound, (c) lower
bound on bag differences.

Notable in Fig. 3 is the overall robust-
ness of the method to misspecified con-
straints. As um is gradually increased,
performance remains overall stable for
a long stretch (Fig. 3a). However, when
um reaches extremely large values, the
upper bound on pkmax

becomes too loose
(reaching 1) and robustness collapses.
Increasing the lower bound on individual
pk slightly improves results, by tighten-
ing constraints (Fig. 3b). Results remain
fairly robust to overestimating the lower
bound on bag differences by increasing
ld,with fluctuations due to small-sample
noise (Fig. 3c). The graph stops abruptly
at ld = 1.3 since beyond that point con-
straints are no longer feasible.

Finally, we compare results to the
baselines of the previous section. For our
method, we fix um = 1, lp = 0.5, ld =
1.33 (with no upper bound on bag dif-
ferences, as in previous sections). For the
SVM using “high vs. low” baseline, we
take bags B1,B2 as one class, and B5,B6

as the other (adding B3,B4 led to inferior
results). Our method outperforms this
naive baseline, and also competes with
supervised SVM trained on considerable
amounts of labeled examples (Table 3).
Given fewer labels, supervised SVM was
inferior to our label-free method.

4.4 Simulation Study

To further test the behavior of our algorithm, we conduct simulation studies
on synthetic data. We use the built-in simulation function make classification
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Table 3. 20 newsgroups results.

Method med-space pc-mac baseball-hockey

Bag constraints 0.94 0.81 0.94

“high vs. low” SVM 0.82 0.62 0.64

Supervised SVM 110 labels (0.93) 95 labels (0.78) 140 labels (0.94)

provided in python package scikit-learn [19] to generate data for a binary clas-
sification problem. We create three equally-sized bags of instances B1,B2,B3 for
our training set, with label proportions p1, p2, p3, respectively. We vary bag sizes
|Bk| and proportions pk, as well as the number of features (n features), number
of informative features (n informative), and class separation (class sep).

We apply our cross-validation procedure to select C, using 3 folds. We observe
some typical behaviors, such as accuracy improvement with growing sample
size. For instance, fixing n features=20, n informative = 1 and p1 = 0.4, p2 =
0.3, p3 = 0.2, mean accuracy increases from 0.65 with |Bk| = 500, to 0.77 with
|Bk| = 1000.

Accuracy suffered with smaller gaps between bag proportions pk. However,
with increasing sample size our algorithm got better at handling minuscule dif-
ferences between pk. For example, fixing p1 = 0.4, p2 = 0.35, p3 = 0.33, mean
accuracy increases from 0.6 with |Bk| = 500 to 0.65 with |Bk| = 1000, and further
increases to 0.67 with |Bk| = 1500.

Finally, we expect that labeled instances can improve performance, helping
to counter bags that are very noisy or constraints that are not sufficiently tight.
Preliminary experiments suggest that labeled instances can improve accuracy,
but a comprehensive study of this effect is beyond the scope of this paper.

5 Exploratory Analysis

In previous sections we tackled classification problems with a clear objective.
In this section our users have no specific classification in mind, but rather are
interested in exploring the data. A sub-field within clustering allows users to
guide the formation of clusters, usually in the form of pairwise constraints on
instances (forcing data points to belong to the same cluster or to different clus-
ters). A recent approach uses a maximum-margin framework [28], which extends
the supervised large margin theory (such as SVMs) to an unsupervised setting.
Similarly, we adapt our method to the exploratory setting. Rather than using
instance-level constraints on cluster membership, we use ranking constraints
based on prior knowledge – or on hypotheses we would like to explore.

We used the Geo-tagged tweets dataset, containing 377616 messages from
9475 geo-located microblog users over one week in March 2010 [9]. The user base
is likely dominantly composed of teens and young adults (as some of the examples
below will make clear). We combine all tweets for each user, and reverse-geocode
the GPS coordinates to obtain the corresponding state.
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Table 4. Geo-tagged tweets. For each set of geographic constraints, we show some
of the top positive and negative words resulting from running our method.

Constraints Positive terms Negative terms

French > English:
Quebec > Texas

je, est, et, le, pour Houston, Texas, dal-
las, bro, tryna, boo

East Coast > West
Coast: CA > NY,
CA > PA, WA > NY,
WA > PA

hella, coo, fasho, af,
la, cali, san, washing-
ton

deadass, niggas,
skool, wassup, dis,
dat, philly, crib, lml,
nah, dey, den

Ranking by reli-
giosity: Alabama >
Florida > New York

thank, easter, pray,
road, trip, drove,
loving, relationship,
spring, folks, happy,
dreams, laugh, friend

mad, bitches, neva,
dis, dat, niggas,ova,
spanish, girls, crazy,
party, fun, high, dead

The dataset was used in [9] to analyze regional dialects. The authors used a
cascading topic model to model geographic topic variation. The observed output
of the generative process includes the texts and GPS coordinates of each user.
We pursue this line of exploration too, but rather than positing a generative
model of language, we investigate how various constraints on differences between
geographic locations interact with dialect.

In Table 4, we show some of the constraints we explored and the resulting
top positive and negative words. We start with a simple check with two bags
BQuebec � BTexas, combining tweets from Quebec and Texas, respectively. We
discover obvious differences in language, with strong positive weights correspond-
ing to French words and negative weights to English.

An ordinary classifier would likely recover similar results, as would stan-
dard unsupervised clustering algorithms. However, our method allows to pursue
richer, more expressive constraints. First, we look into the difference between
the East Coast and West Coast by imposing pairs of constraints such as
BCalifornia � BNew York, BCalifornia � BPennsylvania. We recover various results
previously highlighted by [9], such as the use of the slang terms “fasho” (for
sure) “coo” (cool), “hella” in the West Coast, and “deadass”, “wassup” and
“niggas” in the East Coast. Our results agree with findings by [9,10], as well as
suggest some potential new findings.

Finally, we look at a set of more expressive constraints, aiming to recover
difference based on religiosity (or at least sociological confounders). We take
states from the top, middle and bottom of a list of US states ranked by percentage
of self-reported religiosity1, and build sets of constraints that reflect this ordering.
For instance, in Table 4, we show results for BAlabama � BFlorida � BNew York.
Note that using such information in a standard classifier is unnatural. It is not

1 https://en.wikipedia.org/wiki/List of U.S. states by religiosity.

https://en.wikipedia.org/wiki/List_of_U.S._states_by_religiosity
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clear how to construct the classes, and different splits could lead to very different
results. Again, this artificial splitting is not required by our method.

We removed terms not in the wordnet [11] lexicon to mitigate the effects of
local vernacular and highlight deeper differences. The differences in language are
quite striking. As we traverse from Alabama to Florida to New York, discourse
shifts from words such as “glad”, “loving”, “happy”, “dreams”, “easter” and
“pray”, to words including “mad”, “bitches”, “crazy”, “party”, “fun”, “high”
and other more profane content we spared from the reader. Similar results were
obtained for other state tuples (e.g., Texas instead of Alabama).

Note that our method can be used for formulating new hypotheses. To test
the hypotheses, more experiments (and often more data collection) are needed.
We leave it up to sociologists to provide deeper interpretation of these results.

Our goal in this section was to use coarse prior information (in the form of
relative rankings) for exploring a dataset. We note that the problem could be
tackled with other approaches, such as topic models or classification. However,
classification models assume a much stronger discriminative pattern or signal
than taking a softer, weakly-supervised approach that seeks a direction (weight
vector w) along which one bag of instances is ranked higher than another. While
clustering with pairwise memberships constraints is well-studied, we demonstrate
clustering with expressive pairwise ranking constraints over sets. Many real-
world settings naturally lend themselves to this formulation.

6 Discussion and Criticism

One clear practical issue with our method is the source of the constraints. We
have illustrated several real-world cases where it is plausible to attain rough con-
straints on label proportions within and between groups of instances. In previous
work [20], it is suggested that practitioners could sample from bags of instances
to estimate label frequencies (e.g., in spam classification tasks). However, accu-
rate estimations might require extensive sampling, exacting high costs. We thus
relax this rather strong assumption, and propose that in many cases, it is pos-
sibly enough to get rough estimates. For example, after sampling 10 instances,
we might observe 9 positives and only one negative, and rather conservatively
declare “B should have more than 50% positives”. This sort of statement could of
course be made more rigorous with probabilistic considerations (e.g., confidence
intervals). We have demonstrated that even with considerably mis-specified con-
straints, we are still able to achieve good performance across various domains.

Furthermore, external sources of knowledge could be used to construct these
constraints, such as previous surveys. In many cases taking exact figures from
surveys (such as political polls) and expecting them to accurately reflect the dis-
tribution in new data is not realistic. This is the case, for instance, when looking
at national political polls and wishing to extrapolate from them to new very
different socio-demographic slices, such as Twitter users. Here too, we could use
this external knowledge to approximately guide our model, rather than dictate
precise hard proportions the model should match.
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7 Related Work

There is a large body of work that is related to our problem.
Multiple Instance Learning. The field of Multiple Instance Learning (MIL)
generally assumes instances come in “bags”, each associated with a label modeled
as a function of latent instance-level labels, which can be seen as a form of weak
supervision. MIL methods vary by the assumptions made on this function. For a
comprehensive review of assumptions and applications, see [7,12]. Most work in
MIL focuses on making bag-level predictions rather than for individual instances.
Recently, [15] used a convolutional neural network to predict labels for sentences
given document-level labels.
Learning from Proportions. A niche within MIL which has seen growing
interest and is closely-related to this paper, is concerned with predicting instance-
level labels from known label proportions given for each bag. [20] assume to be
given bags of unlabeled examples, each bag with known label proportions. Their
method is based on estimating bag-means using given label proportions. The
authors provide examples for scenarios in which such information could be avail-
able. In [21], the authors represent each bag with its mean, and model the known
class proportions based on this representative “super-instance” with an SVM
method, showing superior performance over [20]. In [27], instance-level labels
are explicitly modeled to overcome issues the authors raise with representing
bags with their means, such as when data distribution has high variance. The
fundamental property these and other approaches share is that bag proportions
are assumed be known or easily estimated, an assumption we relax.
Classification with Weak Signals. We applied our model to the problem of
text classification when little or no labels are available but only a weaker sig-
nal. A vast amount of literature has tackled similar scenarios over the years,
using tools from semi-supervised [6,14] active [16,22,24] and unsupervised [3]
learning. Druck et al. [8] apply generalized expectation feature-labeling (GE-FL)
approaches, using “labeled features” given by an oracle that encode knowledge
such as “the word puck is a strong indicator of hockey”. In practice, a Latent
Dirichlet Allocation (LDA) [5] topic model is applied to the data to select top
features per topic, for which a user provides labels. [23] propose a semi-supervised
+ active-learning method, with a human-in-the-loop who provides both feature-
level and instance-level labels. We are also able to use labeled instances to refine
the learning process, allowing for a trade-off between the user’s trust in the (typ-
ically few) labeled instances available, and prior knowledge on bag proportions.

Similar to the above work on learning from labeled proportions, [25] considers
a classification problem with no access to labels for individual training examples,
but only average labels over subpopulations. They frame the problem as weakly-
supervised clustering. When using our method for exploratory analysis, it can
also be seen as a weakly-supervised clustering algorithm, using information on
partial ordering between bags rather than assuming known proportions, within a
max-margin framework (somewhat akin to clustering using maximum-margin as
in [28]). The seminal work of [26] uses side-information for clustering in the form
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of pairwise constraints on cluster membership (pairwise similarity). Much work
has since been done along these lines. We incorporate pairwise constraints in our
maximum-margin approach, though with pairs representing bags of instances,
and partial ordering with respect to relative label proportions.
Robust Optimization. Finally, robust optimization [4] research deals with
uncertainty-affected optimization problems, by optimizing for the worst-case
value of parameters. Because of its worst-case design, robust optimization can
do poorly when the constraints are not tight. Our method, on the other hand,
is designed to handle rough estimates and loose constraints.

8 Conclusions and Future Work

In this paper we proposed a new learning setting where we have bags of unlabeled
instances with loose constraints on label proportions and difference between
bags. Thus, we relax the unrealistic assumption of known bag proportions.

We formalized the problem as a bi-convex optimization problem and pro-
posed an efficient algorithm. We showed how, surprisingly, our classifier performs
well using very little input. We also demonstrated how the algorithm can guide
exploratory classifications.

We have empirically studied the behavior of our algorithm under different
types of constraints. One direction for future work is to analytically understand,
for instance, how constraint tightness affects performance, obtain convergence
guarantees, and provide generalization error bounds. This, in turn, could perhaps
lead to better algorithms with theoretical justifications.

Finally, the relative-proportions setting is very natural, and can be found in
various domains. We believe that this line of work will have interesting implica-
tions regarding privacy and anonymization of data – in particular, the amount
of information one can recover using only weak, aggregated signals.
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Abstract. The main advantage of Constraint Programming (CP)
approaches for sequential pattern mining (SPM) is their modularity,
which includes the ability to add new constraints (regular expressions,
length restrictions, etc.). The current best CP approach for SPM uses
a global constraint (module) that computes the projected database and
enforces the minimum frequency; it does this with a filtering algorithm
similar to the PrefixSpan method. However, the resulting system is not
as scalable as some of the most advanced mining systems like Zaki’s
cSPADE. We show how, using techniques from both data mining and
CP, one can use a generic constraint solver and yet outperform exist-
ing specialized systems. This is mainly due to two improvements in the
module that computes the projected frequencies: first, computing the
projected database can be sped up by pre-computing the positions at
which a symbol can become unsupported by a sequence, thereby avoid-
ing to scan the full sequence each time; and second by taking inspira-
tion from the trailing used in CP solvers to devise a backtracking-aware
data structure that allows fast incremental storing and restoring of the
projected database. Detailed experiments show how this approach out-
performs existing CP as well as specialized systems for SPM, and that
the gain in efficiency translates directly into increased efficiency for other
settings such as mining with regular expressions. The data and software
related to this paper are available at http://sites.uclouvain.be/cp4dm/
spm/.

1 Introduction

Sequence mining is a widely studied problem concerned with discovering subse-
quences in a dataset of given sequences, where each (sub) sequence is an ordered
list of symbols. It has applications ranging from web usage mining, text min-
ing, biological sequence analysis and human mobility mining [7]. We focus on
the problem of finding patterns in sequences of individual symbols, which is the
most commonly used setting in those applications.

In recent years, constraint programming (CP) has been proposed as a general
framework for pattern mining [3–5,8]. The main benefit of CP-based approaches
over dedicated algorithms is that it is modular. In a CP framework, a problem is
c© Springer International Publishing AG 2016
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expressed as a set of constraints that the solutions must satisfy. Each such a con-
straint can be seen as a module, and can range from being as simple as ensuring
that a subsequence does not contain a certain symbol at a certain position, up to
computing the frequency of a pattern in a database. This modularity allows for
flexibility, in that certain constraints such as symbol restrictions, length, regular
expressions etc. can easily be added and removed to existing problems. Another
advantage is that improving the efficiency of one constraint will improve the
efficiency of all problems involving this constraint.

However, this increased flexibility can come at a cost. Negrevergne et al. [8]
have shown that a fine-grained modular approach to sequence mining can sup-
port any type of constraints, including gap and span constraints and any quality
function beyond frequency, but that this is not competitive with state-of-the-art
specialized methods. On the other hand, they showed that by using a global
constraint (a module) that computes the pseudo-projection of the sequences in
the database similar to PrefixSpan [10], this overhead can be reduced. Kemmar
et al. [5,6] propose to use a single global constraint for pseudo-projection as well
as frequency counting over all sequences. This approach is much more efficient
than the one of [8] that uses many reified constraints. These CP-based methods
obtain reasonable performance, especially for mining under regular expressions.
While they improve scalability compared to each-other, they are not on par with
some of the best specialized systems such as Zaki’s cSpade [18]. In this work, we
show for the first time that a generic CP system with a custom global constraint
can outperform existing specialised systems including Zaki’s.

The global constraint improves on earlier global constraints for sequence min-
ing by combining ideas from both pattern mining and constraint programming
as follows: first, we improve the efficiency of computing the projected database
and the projected frequency using last-position lists, similar to the LAPIN algo-
rithm [16] but within a PrefixSpan approach. Second, we take into account not
just the efficiency of computing the projected database, but also that of storing
and restoring it during depth-first search. For this we use the trailing mecha-
nism from CP solvers to avoid unnecessary copying of the pseudo-projection data
structure. Such an approach is in fact applicable to any depth-first algorithm in
pattern mining and beyond.

By combining the right ingredients from both research communities in a
novel way, we end up with an elegant algorithm for the projected frequency
computation. When added as a module to a generic CP solver, the resulting
system improves both on previous CP-based sequence miners as well as state-
of-the-art specialized systems. Furthermore, we show that by improving this
one module, these improvements directly translate to other problems using this
module, such as regular-expression based sequence mining.

2 Related Works

We review specialized methods as well as CP-based approaches. A more thorough
review of algorithmic developments is given in [7].
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Specialized Methods. Introduced by Srikant and Agrawal [1], GSP was the
first approach to extract sequential patterns from a sequential database. Many
works have improved on this apriori-based method, typically employing depth-
first search. A seminal work is that of PrefixSpan [10]. A prefix in this context is a
sequential pattern that can only be extended by appending symbols to it. Given
a prefix, one can compute the projected database of all suffixes of the sequences
that have the prefix as a subsequence. This projected database can then be used
to compute the frequency of the prefix and of all its 1-extensions (projected
frequency). A main innovation in PrefixSpan is the use of a pseudo-projected
database: instead of copying the entire (projected) database, one only has to
maintain pointers to the position in each sequence where the prefix matched.

Alternative methods such as SPADE [18] and SPAM [2] use a vertical rep-
resentation of the database, having for each symbol a list of sequence identifiers
and positions at which that symbol appears.

Yang et al. have shown [17] that algorithms with either data representation
can be improved by precomputing the last position of each symbol in a sequence.
This can avoid scanning the projected database, as often the reason for scanning
is to know whether a symbol still appears in the projected sequence.

The standard sequence mining settings have been extended in a number of
directions, including user-defined constraints on length or on the gap or span
of a sequence such as in the cSPADE algorithm [18], closed patterns [15] and
algorithms that can handle regular expression constraints on the patterns such
as SMA [14]. These constraints are typically hard-coded in the algorithms.

CP-Based Approaches for SPM. CP-based approaches for sequence mining
are gaining interest in the CP community. Early work has focused on fixed-
length sequences with wildcards [3]. More generally, [8] proposed two approaches:
a full decomposition of the problem in terms of constraints and an approach
using a global constraint to construct the pseudo-projected database similar to
PrefixSpan. It uses one such constraint for each sequence. Kemmar et al. [6]
propose to gather all these constraints into a unique global constraint to reduce
the overhead of the multiple constraints. They further showed how the constraint
can be modified to take a maximal gap constraint into account [5].

3 Sequential Pattern Mining Background

This section introduces the necessary concepts and definitions of sequence mining
and constraint programming.

3.1 Sequence Mining Background

Let I = {s1, . . . , sN} be a set of N symbols. In the remaining of the paper
when there is no ambiguity a symbol is simply denoted by its identifier i with
i ∈ {1, . . . , N}.
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Table 1. A sequence database SDB1 and list of last positions.

sid Sequence lastPosList lastPosMap

sid1 〈ABCBC〉 [(C,5),(B,4),(A,1)] {A→1, B→4, C→5, D→0}
sid2 〈BABC〉 [(C,4),(B,3),(A,2)] {A→2, B→3, C→4, D→0}
sid3 〈AB〉 [(B,2),(A,1)] {A→1, B→2, C→0, D→0}
sid4 〈BCD〉 [(D,3),(C,2),(B,1)] {A→0, B→1, C→2, D→3}
(1) SDB, (2) lastPosList, (3) lastPosMap

Definition 1. Sequence and sequence database. A sequence s = 〈s1s2 . . . sn〉
over I is an ordered list of (potentially repeating) symbols sj, j ∈ [1, n] with #s = n
the length of the sequence s. A set of tuples (sid,s) where sid is a sequence identifier
and s a sequence, is called sequence database (SDB).

Example 1. Table 1 shows an example SDB1 over symbols I = {A,B,C,D}.
For the sequence s = 〈BABC〉: #s = 4 and s1 = B, s2 = A, s3 = B, s4 = C.

Definition 2. Sub-sequence (�), super-sequence. A sequence α = 〈α1 . . .
αm〉 is called a sub-sequence of s = 〈s1s2 . . . sn〉 and s is a super-sequence of α iff (i)
m ≤ n and (ii) for all i ∈ [1,m] there exist integers ji s.t. 1 ≤ j1 ≤ · · · ≤ jm ≤ n,
such that αi = sji .

Example 2. For instance 〈BD〉 is a sub-sequence of 〈BCCD〉, and inversely
〈BCCD〉 is the super-sequence of 〈BD〉 : 〈BD〉 � 〈BCCD〉.
Definition 3. Cover, Support, Pattern, Frequent Pattern. The cover of
sequence p in SDB, denoted by coverSDB(p), is the subset of sequences in SDB
that are a super-sequence of p, i.e. coverSDB(p) = {(sid, s) ∈ SDB | p � s}. The
support of p in SDB, denoted by supSDB(p), is the number of super-sequences
of p in SDB: supSDB(p) = #coverSDB(p). Any sequence p over symbols in I
can be a pattern, and we call a pattern frequent iff supSDB(p) ≥ θ, where θ is a
given minimum support threshold.

Example 3. Assume that p = 〈BC〉 and θ = 2, coverSDB1(p) = {(sid1,
〈ABCBC〉), (sid2, 〈BABC〉), (sid4, 〈BCD〉)} and hence supSDB1(p) = 3. Hence,
p is a frequent pattern for that given threshold.

The sequential pattern mining (SPM) problem, first introduced by Agrawal
and Srikant [1], is the following:

Definition 4. Sequential Pattern Mining (SPM). Given an minimum sup-
port threshold θ and a sequence database SDB, the SPM problem is to find all
patterns p such that supSDB(p) ≥ θ.

Our method uses the idea of a prefix and prefix-projected database for enu-
merating the frequent patterns. These concepts were first introduced in the sem-
inal paper that presented the PrefixSpan algorithm [10].
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Definition 5. Prefix, prefix-projected database. Let α = 〈α1 . . . αm〉 be a
pattern. If a sequence β = 〈β1 . . . βn〉 is a super-sequence of α: α � β, then the
prefix of β w.r.t. α is the smallest prefix of β that is still a super-sequence of
α: 〈β1 . . . βj〉 s.t. α � 〈β1 . . . βj〉 and �j′ < j : α � 〈β1 . . . βj′〉. The sequence
〈βj+1 . . . βn〉 is called the suffix and it represents the prefix-projection obtained by
projecting the prefix away. A prefix-projected database of a pattern α, denoted by
SDB|α, is the set of prefix-projections of all sequences in SDB that are super-
sequences of α.

Example 4. In SDB1, assume α = 〈A〉, then SDB1|α = {(sid1, 〈BCBC〉),
(sid2, 〈BC〉), (sid3, 〈B〉)}.

We say that the prefix-projected frequency of the symbols I in a prefix-
projected database is the number of sequences in which these symbols appear.
For SDB1|〈A〉 the prefix-projected frequencies are A : 0, B : 3, C : 2,D : 0.

The PrefixSpan algorithm solves the SPM problem by starting from the
empty pattern and extending this pattern using depth-first search. At each step
it extends a pattern by a symbol and projects the database accordingly. The
appended symbol is removed on backtrack. It hence grows the pattern incre-
mentally, which is why it is called a pattern-growth method. A frequent pattern
in the projected database is also frequent in the original database.

There are two important considerations for the efficiency of the method.
The first is that one does not have to consider during search any symbol that
is not frequent in the prefix-projected database. The second is that of pseudo-
projection: to store the prefix-projected database during the depth-first search,
it is not necessary to store (and later restore) an entire copy of the projected
database. Instead, one only has to store for each sequence the pointer to the
position j that marks the end of the prefix in that sequence (remember, the
prefix of α in β is the smallest prefix 〈β1 . . . βj〉 � α).

Example 5. The projected database SDB1|α = {(sid1, 〈BCBC〉), (sid2, 〈BC〉),
(sid3, 〈B〉)} can be represented as a pseudo-projected database as follows:
{(sid1, 2), (sid2, 3), (sid3, 2)}.

3.2 Constraint Programming Background

CP is a powerful declarative paradigm to solve combinatorial satisfaction and
optimization problems (see, e.g., [12]). A CP problem (V,D,C) is defined by
a set of variables V with their respective domains D (the values that can be
assigned to a variable), and a set of constraints C on these variables. A solution
of a CP problem is an assignment of the variables to a value from its domain,
such that all constraints are satisfied.

At its core, CP solvers are depth-first search algorithms that iterate between
searching over unassigned variables and propagating constraints. Propagation is
the act of letting the constraints in C remove unfeasible values from the domains
of its variables. This is repeated until fixed-point, that is, no more constraint
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can remove any unfeasible values. Then, a search exploration step is taken by
choosing an unassigned variable and assigning it to a value from its current
domain, after which propagation is executed again.

Example 6. Let there be 2 variables x, y with domains D(x) = {1, 2, 3},D(y) =
{3, 4, 5}. Then constraint x+y ≥ 5 can derive during propagation that 1 /∈ D(x)
because the lowest value y can take is 3 and hence x ≥ 5−min(D(y)) ≥ 5−3 ≥ 2.

Constraints and Global Constraints. Many different constraints and their prop-
agation algorithms have been investigated in the CP community. This includes
logical and arithmetic ones like the above, up to constraints for enforcing reg-
ular expressions or graph theoretic properties. A constraint that enforces some
non-trivial or application-dependent property is often called a global constraint.
For example, [8] introduced a global constraint for the pseudo-projection of a
single sequence, and [5] for the entire projected frequency subproblem.

State Restoration in CP. In any depth-first solver, there must be some mecha-
nism to store and restore some state, such that computations can be performed
incrementally and intermediate values can be stored. In most of the CP solvers1 a
general mechanism, called trailing is used for storing and restoring the state (on
backtrack) [13]. Externally, the CP solvers typically expose some “reversible”
objects whose values are automatically stored and restored on the trail when
they change. The most important example are the domains of CP variables.
Hence, for a variable the domain modifications (assign, removeValue) are auto-
matically reversible operations. A CP solver also exposes reversible versions of
primitive types such as integers and sets for use within constraint propagators.
They are typically used to store incremental computations. CP solvers consist
of an efficient implementation of the DFS backtracking algorithm, as well as
many constraints that can be called by the fix-point algorithm. The modularity
of constraint solvers stems from this ability to add any set of constraints to the
fix-point algorithm.

4 Global Constraints for Projected Frequency

We first introduce the basic CP model of frequent sequence mining introduced
in [8] and extended in [6]. Then, we present how we improve the computation of
the pseudo-projection, followed by the projected frequency counting and pruning.

4.1 Existing methods [6,8]

As explained before, a constraint model consists of variables, domains and con-
straints. The CP model will be such that a single solution corresponds to a
frequent sequence, meaning that all sequences can be extracted by enumerating
all solutions.
1 One notable exception is the Gecode copy-based solver.
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Let L be an upper bound on the pattern length, e.g. the length of the longest
sequence in the database. The variables used to represent the unknown pattern P
is modeled as an array of L integer variables P = [P1, P2, . . . , PL]. Each variable
has an initial domain {0, . . . , N}, corresponding to all possible symbols identifiers
and augmented with an additional identifier 0. The symbol with identifier 0
represents ε, the empty symbol. It will be used to denote the end of the sequence
in P , using a trailing suffix of such 0’s.

Definition 6. A CP model over P represents the frequent sequence mining prob-
lem with threshold θ, iff the following three conditions are satisfied by every valid
assignment to P :

1. P1 	= 0
2. ∀i ∈ {2, . . . , L − 1} : Pi = 0 ⇒ Pi+1 = 0
3. #{(sid, s) ∈ SDB 〈P1 . . . Pj〉 � s} ≥ θ, j = max({i ∈ {1 . . . L}|Pi 	= 0}).

The first requirement states that the sequence may not start with the empty
symbol, e.g. no empty sequence. The second requirement enforces that the pat-
tern is in a canonical form such that after the empty symbol, all other symbols
are the empty symbol too. Hence, a sequence of length l < L is represented
by l non-zero symbols, followed by L − l zero symbols. The last requirement
states that the frequency of the non-zero part of the pattern must be above the
threshold θ.

Prefix Projection Global Constraint. Initial work [8] proposed to decompose these
three conditions into separate constraints, including a dedicated global constraint
for the inclusion relation 〈P1 . . . Pj〉 � s for each sequence separately. It used the
pseudo-projection technique of PrefixSpan for this, with the projected frequency
enforced on each symbol in separate constraints.

Kemmar et al. [6] extended this idea by encapsulating the filtering of all three
conditions into one single (global) constraint called PrefixProjection. It also
uses the pseudo-projection idea of PrefixSpan, but over the entire database. The
propagation algorithm for this constraint, as executed when the next unassigned
variable Pi is assigned during search, is given in Listing 1.1.

Listing 1.1. PrefixProjection(SDB,P,i,θ)

1 // pre: variables 〈P1, . . . , Pi〉 are bound, SDB is given
2 // Pi is the new instantiated variable since previous

call.
3 if (Pi == 0) {
4 foreach (j ∈ {i + 1, . . . , L}) { Pj .assign(0) }
5 } else if (i ≥ 2) {
6 projFreqs = ProjectAndGetFreqs(SDB, Pi, θ)
7 foreach (j ∈ {i + 1, . . . , L})
8 foreach (a ∈ D(Pj))
9 if (a �= 0 and projFreqs[a] < θ) { Pj .removeV alue(a) }

10 }
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An initial assumption is that the database SDB does not contain any infre-
quent symbols, which is a simple preprocessing step. The code is divided in three
parts: (i) if Pi is assigned to 0 the remaining Pk with k > i is assigned to 0; else
(ii) from the second position onwards (remember that the first position can take
any symbol and be guaranteed to be frequent as every symbol is known to be
frequent), the projected database and the projected frequency of each symbol
is computed; and (iii) all symbols that have a projected frequency below the
threshold are removed from the domain of the subsequent pattern variables.

The algorithm for computing the (pseudo) projected database and the pro-
jected frequencies of the symbols is given in Listing 1.2. It operates as follows
with a the new symbol appended to the prefix of assigned variables since pre-
vious call. The first loop at line 2 attempts to discover for each sequence s in
the projected database if it can be a sub-sequence of the extended prefix. If
yes, this sequence is added to the next projected database at line 5. The second
loop at line 9 computes the frequency of each symbol occurring in the projected
database but counting it at most once per sequence.

Listing 1.2. ProjectAndGetFreqs(SDB,a,θ)

1 PSDBi = ∅
2 foreach (sid,start) ∈ PSDBi−1 {
3 s = SDB[sid]; pos = start
4 while (pos < #s and a �=s[pos]) { pos = pos + 1 }
5 if (pos < #s) { PSDBi = PSDBi ∪ {(sid, pos)} }
6 }
7 projFreqs[a]=0 ∀a ∈ {1, . . . , N}
8 if (#PSDBi ≥ θ) {
9 foreach (sid,start) ∈ PSDBi {

10 s = SDB[sid]; existsSymbol[b] = false ∀b ∈ {1, . . . , N}
11 foreach (i ∈ {start, . . . , #s}) {
12 if (!existsSymbol[s[i]]) {
13 projFreqs[s[i]] = projFreqs[s[i]]+1
14 existsSymbol[s[i]] = true
15 }
16 } } }
17 return projFreqs

4.2 Improving Propagation

Although being the state-of-art approach for solving SPM with CP, the filtering
algorithm of Kemmar et al. [5] presents room for improvement. We identify four
weaknesses and propose solutions to them.

Weakness 1. Databases with long sequences will have a large upper-bound
L. For such databases, removing infrequent symbols from all remaining pattern
variables P in the loop defined at line 7 of Listing 1.1 can take time. This is
not only the case for doing the action, but also for restoring the domains on
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backtracking. On the other hand, only the next pattern variable Pi+1 will be
considered during search, and in most cases a pattern will never actually be
of length L, so all subsequent domain changes are unnecessary. This weakness
is a peculiarity of using a fixed-length array P to represent a variable-length
sequence. Mining algorithms typically have a variable length representation of
the pattern, and hence only look one position ahead. In our propagator we only
remove values from the domain of Pi+1.

Weakness 2. When computing the projected frequencies of the symbols, one
has to scan each sequence from its current pseudo-projection pointer start till
the end of the sequence. This can be time consuming in case of many repetitions
of only a few symbols for example. Thanks to the lastPosList defined next, it is
possible to visit only the last position of each symbol occurring after start. This
idea was first introduced in [17] and exploited in the LAPIN family of algorithms.

Definition 7 (Last position list). For a current sequence s, lastPosList is
a sequence of pairs (symbol, pos) giving for each symbol that occurs in s its last
position: pos = max{p ≤ #s : s[p] = symbol}. The sequence is of length m,
the number of distinct symbols in s. This sequence is decreasing according to
positions: lastPosList[i].pos > lastPosList[i + 1].pos ∀i ∈ {1, . . . ,m − 1}.
Example 7. Table 1 shows the lastPosList sequences for SDB1. We consider
the sequence with sid1 and a prefix 〈A〉. The computation of the frequencies
starts at position 2, remaining suffix is 〈BCBC〉. Instead of visiting all the 4
positions of this suffix, only the last two can be visited thanks to the infor-
mation contained in lastPosList[sid1]. Indeed according to lastPosList[sid1][1]
the maximum last position is 5 (corresponding to the last C). Then according
to lastPosList[sid1][2] the second maximum last position is 4 (corresponding to
the last position of symbol B). The third maximum last position is 1 for symbol
A. Since this position is smaller than 2 (our initial start), we can stop.

Weakness 3. Related to weakness 2, line 4 in Listing 1.2 finds the new position
(poss) of a in SDB[sid]. This code is executed even if the new symbol no longer
appears in that sequence. Currently, the code has to loop over the entire sequence
until it reaches the end before discovering this.

Assume that the current position in the sequence s is already larger than the
position of the last occurrence of a. Then we immediately know this sequence
cannot be part of the projected database. To verify this in O(1) time, we use a
lastPosMap as follows:

Definition 8 (Last position map of symbols). For a given sequence s with
id sid, lastPosMap[sid] is a map such that lastPosMap[sid][i] is the last
position of symbol i in the sequence s. In case the symbol i is not present:
lastPosMap[sid][i] = 0 (positions are assumed to start at index 1).

Example 8. Table 1 shows the lastPosMap arrays next to SDB1. For instance
for sid2 the last position of symbol C is 4.
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Weakness 4. Listing 1.2 creates a new set PSDBi to represent the projected
database. This projected database is computed many times during the search,
namely at least once in each node of the search tree (more if there are other
constraints in the fixPoint set). This is a source of inefficiency for garbage col-
lected languages such as Java but also for C since it induces many “slow” system
calls such as free and malloc leading to fragmentation of the memory. We pro-
pose to store and restore the pseudo-projected databases with reversible vectors
making use of CP trailing techniques. The idea is to use one and the same
array throughout the search in the propagator, and only maintain the relevant
start/stop position during search. Each call to propagate will read from the pre-
vious start to stop position, and write after the previous stop position plus store
the new start/stop position. The projected databases are thus stacked in the
array along a branch of the search tree. We implement the pseudo-projected
database with two reversible vectors: sids and poss respectively for the sequence
ids and the current position in the corresponding sequences. The position φ is
the start entry (in sids and poss) of the current projected database, and ϕ is
the size of the projected database. We thus have the current projected database
contained in sub-arrays sids[φ, . . . , φ+ϕ−1] and poss[φ, . . . , φ+ϕ−1]. In order
to make the projected database reversible, φ and ϕ are reversible integers. That
is on backtrack to an ancestor node those integers retrieve their previous value
and entries of sids and poss starting from φ can be reused.

Example 9. Figure 1 is an example using SDB1. Initially all the sequences are
present ϕ = 4 and position is initialized φ = 0. The A-projected database
contains sequence 1, 2, 3 at positions 1, 2, 1 with φ = 4 and ϕ = 3.

Fig. 1. Reversible vectors technique

Prefix Projection Incremental Counting Propagator (PPIC). Putting
all the solutions to the identified weaknesses together, we list the code of the
main function of our propagator’s in Listing 1.3.
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The main loop at line 3 iterates over the previous (parent) projected database.
In case the sequence at index i in the projected database contains the new
symbol at a subsequent position larger or equal to start, the matching position
is searched and added to the new projected database (at index j of reversible
vectors sids and poss) at line 9. Then the contribution of the sequence to the
projected frequencies is computed in the loop at line 11. Only the entries in
the lastPosList with position larger than current pos are considered (recall
that his list is decreasing according to positions). Finally line 17 updates the
reversible integers φ and ϕ to reflect the newly computed projected database.
Based on these projected frequencies a filtering similar to the one of Listing 1.1
is achieved except that only the domain of the next variable D(Pi+1) is filtered
according to the solution to Weakness 1.

Listing 1.3. ProjectAndGetFreqs(SDB,a, θ,sids,poss,φ,ϕ)

1 projFreqs[b]=0 ∀b ∈ {1, . . . , N}
2 i = φ; j = φ + ϕ; sup = 0
3 while (i < φ + ϕ) {
4 sid = sids[i]; pos = poss[i]; s = SDB[sid]
5 if (lastPosMap[sid][a] − 1 ≥ start) {
6 //find the next position of a in s
7 while (pos < #s and a �=s[pos]) { pos = pos + 1 }
8 // update projected database
9 sids[j] = sid; poss[j] = pos + 1; j = j + 1; sup = sup + 1

10 // recompute projected frequencies
11 foreach ((symbol, posx) in lastPosList[sid]) {
12 if (posx ≤ pos) { break }
13 projFreqs[symbol] = projFreqs[symbol] + 1
14 } }
15 i = i + 1
16 }
17 φ = φ + ϕ; ϕ = sup
18 return projFreqs

Prefix Projection Decreasing Counting Propagator (PPDC). The key
idea of this approach is not to count the projected frequencies from scratch,
but rather to decrement them. More specifically, when scanning the position
of the current symbol at line 7, if pos happens to be the last position of a
symbol (pos==lastPosMap[sid][s[pos]]) then projFreqs[s[pos]] is
decremented. This requires projFreqs to be an array of reversible integers.
With this strategy the loop at line 11 disappears, but in case the current sequence
is not added to the projected database, the frequencies of all its last symbols
occurring after pos must also be decremented. This can be done by adding an
else block to the if defined at line 5 that will iterate over the lastPosList
and decrement the symbol frequencies.

Example 10. Assume SDB1. The initial projected frequency array is
projFreqs= [A:3,B:4,C:3,D:1]. Consider now the A-projected database
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illustrated on Fig. 1. The projected frequency array becomes
projFreqs=[A:0,B:3,C:2,D:0]. The entry at A is decremented three times
as pos moved beyond its lastPos for each of the sequences sid1, sid2 and sid3.
Since sid4 is removed from the projected database, the frequency of all its last
symbols occurring after pos is also decremented, that is for entries B, C and D.

PP-mixed. Both PPID and PPDC approaches can be of interest depending
on the number of removed sequences in the projected database. If the number
of sequences removed is large then PPIC is preferable. On the other hand is
only a few sequences are removed then PPDC can be more interesting. Inspired
from the reset idea of [11] the PP-mixed approach dynamically chooses the best
strategy: if projFreqsSDB(a) < #PSDBi/2 (i.e., more than half of sequences
will be removed) then PPIC is used otherwise PPDC.

4.3 Constraints of SPM

We implemented common constraints such as minimum and maximum pattern
size, symbol inclusion/exclusion, and regular expression constraints. Time con-
straints (maxgap, mingap, maxspan, etc) are outside the scope of this work: they
change the definition of what a valid prefix is, and hence require changing the
propagator (as in [5]).

5 Experiments

In this section, we report our experimental results on the performance of our
approaches with six real-life datasets2 and one synthetic (data200k [14]) with
various characteristics shown in Table 2. Sparsity, representing the average of
the number of symbols that appear in each sequence, is a good indicator of how
sparse or dense a dataset is.

Our work is implemented in Scala in OscaR solver [9] and run under JVM
with maximum memory set to 8GB. All our software, datasets and results are

Table 2. Dataset features. Sparsity is equal to ( 1
#SDB

×∑ #s
#I/s

)

SDB #SDB N avg(#s) avg(#I/s) max(#s) Sparsity Description

BIBLE 36369 13905 21.64 17.85 100 1.2 Text

FIFA 20450 2990 36.24 34.74 100 1.2 Web click stream

Kosarak 69999 21144 7.98 7.98 796 1.0 Web click stream

Leviathan 5834 9025 33.81 26.34 100 1.3 Text

PubMed 17237 19931 29.56 24.82 198 1.2 Bio-medical text

Data200k 200000 26 50.25 18.25 86 2.8 Synthetic data

Protein 103120 25 482.25 19.93 600 24.2 Protein sequences

2
http://www.philippe-fournier-viger.com/spmf/.

http://www.philippe-fournier-viger.com/spmf/
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Fig. 2. CPU times for PPIC, PPDC, PPmixed and Gap-Seq for several minsup (miss-
ing points indicate a timeout)

available online as open source in order to make this research reproducible
(http://sites.uclouvain.be/cp4dm/spm/).

We used a machine with a 2.7 Hz Intel core i5 processor and 8GB of RAM with
Linux 3.19.0-32-generic 64 bits distribution Mint 17.3. Execution time limit is set to
3600 seconds (1 h). Our proposals are compared, first, with CPSM3 [8] and Gap-
Seq4 [5], the recently CP-based approaches including Gap constraint and the previous
version of Gap-Seq, PP5 [6] without Gap but with regular expression constraint. Sec-
ond, we made comparison with cSpade6 [18], PrefixSpan [10]7 and SPMF8.

PPIC vs PPDC vs PPmixed . The CPU time of PPIC, PPDC and PPmixed models
are shown in Fig. 2. PPIC is more efficient than PPDC in 80% of datasets. This is essen-
tially because in many cases at the beginning of mining, there are many unsupported
sequences for which the symbol counters must be decremented (compared to not having
to increase the counters in PPIC). For instance with BIBLE SDB and minsup = 10 %
PPDC need to see 21,979,585 symbols to be complete while only 15,916,652 is needed
for PPIC. Unsurprisingly, PPmixed is between these approaches.

Our proposals vs Gap-Seq (CP method). Figure 2 confirms CPSM is outper-
formed by Gap-Seq which itself improves PP (without gap). We can clearly notice
our approaches outperform Gap-Seq (and hence PP) in all cases. In the case of FIFA

3
https://dtai.cs.kuleuven.be/CP4IM/cpsm/.

4
https://sites.google.com/site/cp4spm/.

5
https://sites.google.com/site/prefixprojection4cp/.

6
http://www.cs.rpi.edu/∼zaki/www-new/pmwiki.php/Software.

7
http://illimine.cs.uiuc.edu/software/.

8
http://www.philippe-fournier-viger.com/spmf/index.php?link=download.php.

http://sites.uclouvain.be/cp4dm/spm/
https://dtai.cs.kuleuven.be/CP4IM/cpsm/
https://sites.google.com/site/cp4spm/
https://sites.google.com/site/prefixprojection4cp/
http://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/Software
http://illimine.cs.uiuc.edu/software/
http://www.philippe-fournier-viger.com/spmf/index.php?link=download.php
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Fig. 3. CPU times for PPIC, PPDC, PPmixed and cSPADE for several minsup

SDB, Gap-Seq reach time limit when minsup ≤ 9%. PPIC is very effective in large
and dense datasets regarding of CPU-times.

Comparison with Specialized Algorithms. Our third experience is the comparison
with specialized algorithms. As we can see in the Fig. 3, we perform better on 84% of
the datasets. However, cSpade is still the most efficient for Kosarak. In fact, Kosarak
doesn’t contain any symbol repetition in its sequences. So it is a bad case for prefix-
projection-based algorithms which need to scan all the positions. On the contrary, with
protein dataset (the sparse one) cSpade requires much more CPU time. The SPMF
implementation of SPAM, PrefixSpan and LAPIN appears to be consistently slower
than cSpade but there is no clear domination among these.

Impact of the Improvements. Figure 4 shows the incremental impact of our proposed
solutions to the weaknesses defined in Sect. 4.2, starting from reversible vectors (fix of

Fig. 4. Incremental impact of our solutions to the different weaknesses
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Fig. 5. Handling of different additional constraints

weakness 4) up to all our proposed modifications. Fix 1 has limited effect, while adding
fix 3 is data dependent but adding fix 2 always improves further.

Handling Different Additional Constraints. In order to illustrate the modu-
larity of our approach we compare with a number of user-defined constraints that
can be added as additional modules without changing the main propagator (Fig. 5).
(a) We compared PPIC and PP (unfortunately the Gap-Seq tool does not sup-
port a regular expression command-line argument) under various size constraints
on the protein dataset with minsup = 99.984. (b, c) We also selected data200k
adding a regular expression constraint RE10 = A ∗ B(B|C)D ∗ EF ∗ (G|H)I∗ and
RE14 = A∗ (Q|BS ∗ (B|C))D∗E(I|S)∗ (F |H)G∗R [14]. The last experiment reported
on Fig. 5d consists in combining size and symbols constraints on the protein dataset:
only sequential patterns that contain VALINE and GLYCINE twice and ASPARATE
and SERINE once are valid. PPIC under constraints still dominates PP.

6 Conclusion

This work improved the existing CP-based sequential pattern mining approaches [5,8]
up to the point that it also surpasses specialized mining systems in terms of efficiency.
To do so, we combined and adapted a number of ideas from both the sequence min-
ing literature and the constraint programming literature; correspondingly last-position
information [16] and reversible data-structures for storing and restoring state dur-
ing backtracking search. We introduced the PrefixProjection-Inc (PPIC) global
constraint and two variants proposing different strategies to compute the projected
frequencies: from scratch, by decreasing the counters, or a mix of both. These can be
plugged in as modules in a CP solver. These constraints are implemented in Scala and
made available in the generic OscaR solver. Furthermore, the approach is compatible
with a number of constraints including size and regular expression constraints. There
are other constraints which change the subsequence relation and which would hence
require hardcoding changes in the propagator (gap [5], span, etc.). We think many of
our improvements can be applied to such settings as well.

Our work shows that generic CP solvers can indeed be used as framework to build
scalable mining algorithms, not just for generic yet less scalable systems as was done
for itemset mining [4]. Furthermore, advanced data-structures for backtracking search,
such as trailing and reversible vectors, can also be used in non-CP algorithms. This
appears to be an understudied aspect of backtracking algorithms in pattern mining
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and data mining in general. We believe there is much more potential for combinations
of techniques from data mining and CP.
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Abstract. With the rapid proliferation of Web 2.0, user-generated con-
tent (UGC), which is formed by the public to reflect their views and
voice, presents rich and timely feedback on news events. Existing research
either studies the common and private features between news and UGC,
or describes the ability of news media to influence the public opinion.
However, in the current highly media-user interactive environment, inves-
tigating the public influence on news is of great significance to risk and
credible management for government and enterprises. In this paper, we
propose a novel topic-aware dynamic Granger test framework to quantify
and characterize the public influence on news. In particular, we repre-
sent words and documents as distributed low-dimensional vectors which
facilitates the subsequent topic extraction. Then, a topic-aware dynamic
strategy is proposed to transfer news and UGC streams into topic series,
and finally we apply Granger causality test to investigate the public
influence on news. Extensive experiments on 45 diverse real-world events
demonstrate the effectiveness of the proposed method, and the results
show promising prospects on predicting whether an event will be prop-
erly handled at its early stage.

Keywords: News · User-generated content · Influence · Distributed rep-
resentation · Granger causality

1 Introduction

Social media presents rich and timely feedback on news events that take place
around the world. According to the report from Pew Research Center, 63 % of
social users from Twitter and Facebook accessed news online, and roughly a
quarter of them actively expressed their opinions on daily news through these
social applications [2]. The various user-generated content not only fuels the
news with different events from different perspectives, but also spurs additional
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 331–346, 2016.
DOI: 10.1007/978-3-319-46227-1 21
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news coverage in the event. On the other hand, reading the social media, under-
standing and responding to public voice timely and objectively, can help news
media promote its influence on the public.

Example. In the event Asia-Pacific Economic Cooperation (APEC) 2014 in
China, region cooperation, global economic were the topics supposed to be
reported by news media. However, in fact, social media users posted signifi-
cant amount of comments on APEC blue – rare blue sky in Beijing during the
summit due to emission reduction campaign directed by Chinese government.
Following that, news media quickly followed and paid great attention on this
topic which was beyond the original news agenda. We found that 38 of the 176
news articles on Sina were related to the APEC blue. Furthermore, how news
responds to the public voice has a significant impact on the government credi-
bility. For example, two severe earthquakes struck China in 2014, i.e., Yunnan
and Sichuan. Both reports covered the major topics, but in Yunnan earthquake,
news media responded the public timely and pictured a comprehensive image
of event progress from the perspectives of the public, and thus harvested better
support from the public. Therefore, investigating the public influence on news
is of great benefit to public opinion management and government credibility
improvement.

Related researches on mutually news and UGC stream analysis mainly follows
three lines. The first studies event evolution within individual news stream [1,8],
e.g., Mei and Zhai adapt PLSA to extract topics in news stream, then identify
coherent topics over time, and finally analyze their lifecycle [17]. The second
focuses on simultaneously modeling multiple news streams, e.g. identifying the
characteristics of social media and news media [26] or their common and pri-
vate features [10,23]. But both of them pay little attention on the interactions
between two streams which could inspire their co-evolution. The last comes from
the journalism communication. It applies agenda setting theory [16] to analyze
the interactions between different news agenda, and it is often completed via
questionnaire survey or manual work on limited events. However, in the era of
social media, agenda setting is not a one-way pattern from news to the public,
but rather a complex and dynamic interaction.

Detecting the public influence on news poses unique technical challenges: (i)
most researches use latent topic to model news and UGC, but the traditional
word distribution representation [5,17] suffers from the sparsity problem due
to the UGC’s short and fragmented characteristics, making it difficult to track
topic changes; (ii) how to detect the cross-media influence links remains another
problem, since the commonly-used measures (e.g., KL-divergence [12,17]) often
leads to heuristic results without statistical explanation.

In this paper, we propose a novel topic-aware dynamic Granger test frame-
work to automatically study the public influence on news media. To address
the sparsity problem, we first represent word as low-dimensional word vec-
tors through skip-gram model [19], and further reform word representation via
sparse coding to capture the latent semantic of each dimension. Then we employ
Granger causality test [9] to theoretically detect the public influence on news.
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Particularly, for a pair of topics extracted from UGC and news respectively,
we propose a topic-aware dynamic strategy to chronologically split those topic-
related documents into disjoint bins with dynamic time intervals, calculate the
topic representations based on the documents falling into each bin, and apply the
multivariate Granger test to judge if the UGC-to-news influence exists. Finally,
we quantify the influence [12] based on the discovered influence links, and val-
idate the influence measures by calculating their correlations with the profes-
sional, manual results provided by China Youth Online.

The main contributions can be summarized as follows:

– We address problem of analyzing public influence analysis on news through a
unified Granger-based framework. Extensive experiments are conducted on 45
real-world events to demonstrate its effectiveness, and results could provide
useful guidance on handling public hot topics in event reporting.

– We propose a novel textual feature extraction method. Instead of directly
using the popular word2vec, it further maps word and document into a low-
dimensional space with each dimension denoting a more compact semantic
thus facilitates topic extraction and representation.

– To track the temporal changes of topic pair from news and UGC respec-
tively, we propose a novel topic-aware dynamic binning strategy, splitting both
streams into chronological bins to achieve smooth topic representations of each
bin.

The rest of the paper is organized as follows. In Sect. 2, we first define
the related concepts and the problem of influence analysis from UGC to news.
Section 3 presents our proposed textual feature extraction method and Granger-
based influence analysis. Our experimental results are reported in Sect. 4.
Section 5 reviews the related literatures, and finally Sect. 6 concludes this paper
with future research directions.

2 Problem Definition

A particular event often brings forth two correlated streams, namely news arti-
cles from newsroom form a news stream and the public voice from different
social applications converge into a UGC stream. Both news stream NS and
UGC stream US are text streams, which are defined as follows:

Definition 1 Text Stream. A text stream TS = 〈s1, s2, . . . , sn〉 is a sequence
of documents, where si (i = 1, 2, . . . , n) is associated with a pair (di, ti), where
di is a document comprising a list of words and ti is the publish time in non-
descending order, i.e. ti ≤ ti+1.

It has been shown that news and UGC streams are mutually dependent [24].
Topic, which bridges these two different streams, plays an important role. In
order to study the cross-stream interactions, we first define topic as follows:
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Definition 2 Topic. Conceptually, topic z expresses an event related sub-
ject/theme within a time period. Mathematically, topic z is characterized as a
vector with each dimension denoting a word feature or a latent aspect. Topic z
covers multiple documents (news articles or users comments).

The interaction between media, public and government has been theoretically
studied in journalism communication, e.g., the agenda setting theory1 evaluated
the ability of mass media to influence the salience of topics on the public [15].
Nowadays, the proliferation of social media is changing the way of news diffusion,
i.e., the public may inversely affect or even drive the news media. It is useful to
explore to what extent the traditional news depends on social media and how
long the public influence lasts, thus we condense the following research problem.

Definition 3 Analyzing Public Influence on News. Given a news stream
NS and a UGC stream US, influence analysis from UGC to news aims to dis-
cover a set of influence links {(zu, zn, ζ)}, where zu ∈ Zu and zn ∈ Zn are
topics extracted from US and NS respectively, and ζ ∈ {0, 1} indicates whether
zu influences (or contributes to) zn.

From the definition above, topic representation and extraction, influence
detection are two major steps to complete the novel task. As mentioned in the
introduction, existing methods suffer from various technical deficiencies, i.e.,
sparse representation and lack of theoretical foundation. To tackle these issues,
we put effort on the following two problems: (i) given news and UGC streams,
properly represent the documents and extract latent topics from both streams;
(ii) given a topic pair (zu, zn), determine if there exists a causality link and
provide a statistical evaluation on how zu contributes to zn.

3 Our Approach

In this paper, we propose a topic-aware dynamic Granger-based method to auto-
matically detect the influence from UGC to news. Specifically, we develop a text
representation method to better represent news and UGC in a low-dimensional
space and extract their corresponding topics (Sect. 3.1). We incorporate tempo-
ral information to transform news and UGC topics into serialized representa-
tions and apply Granger causality test to detect the public influence on news
(Sect. 3.2).

3.1 Text Representation and Topic Extraction

Text representation and topic extraction aims to properly represent the doc-
uments in NS and US and extract topics Zn and Zu. However, traditional
TF-IDF representations suffer problems of the curse of dimensionality and fea-
ture independence assumption in dealing with the short and fragmented UGC.

1 https://en.wikipedia.org/wiki/Agenda-setting theory.

https://en.wikipedia.org/wiki/Agenda-setting_theory
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These methods often ignore the semantic relationships among word features
which leads to document sparse representation with many zero features values.

To alleviate the sparse representation, many methods have been proposed
to unveil the hidden semantics of words, such as topic models (e.g., LDA [3])
and external knowledge enrichment (e.g., ESA [7]). However, topic models rely
much on the word co-occurrence that cannot be accurately computed with short
texts, while ESA requires plenty of high-quality knowledge, which is often not
available in practice. In this paper, we propose a novel textual feature extraction
pipeline, which gradually maps word and document into a low dimensional space
where each dimension represents a unique semantic meaning. It consists of the
following three steps:

Word Vectorization. Word is the basic element in text, so we first transform
words into continuous low-dimensional vectors. Let V denote the vocabulary
in NS and US , we employ skip-gram model [19] to learn a mapping function:
V → R

M , where R
M is a M -dimensional vector. Specifically, given a document

s ∈ NS ∪US associated with word sequence 〈w1, w2, . . . , wW 〉, skip-gram model
maximizes the co-occurrence probability among words that appear within a con-
textual window k:

max
w

1
W

W∑
i=1

j=i+k∑
j=i−k,j �=0

log p(wj |wi) (1)

The probability p(wj |wi) is formulated as:

p(wj |wi) =
exp(wT

j wi)∑V
l=1 exp(wT

l wi)
(2)

where wi ∈ R
M is the M -dimensional representation of wi.

Mid-level Feature Learning. Intuitively, the document representation can be
achieved viawordvector composition.However, eachdimension inwordvector rep-
resents a latent meaning and word semantic scatters over almost all dimensions,
simple composition of individual word vectors ignores the potential correlation
between dimensions [20]. To prevent possible information loss by simple composi-
tion,we reconstruct eachwordvector into amid-level feature [4],where eachdimen-
sion represents a unique dense semantic. In other words, we learn a R

M → R
N

mapping, and it is typically a sparse coding problem, whose objective is:

min
W∗,D

V∑
i=1

‖wi − Dw∗
i ‖22 + λ‖w∗

i ‖1 (3)

where wi ∈ R
M is the vector obtained in word vectorization; w∗

i ∈ W ∗ ⊆ R
N is

the N -dimensional sparse representation (N > M); D is an M × N matrix with
each column denoting a dense sematic; ‖ · ‖1 denotes the �1-norm of input vector;
λ > 0 is a hyperparameter controlling the sparsity of the result representation,
i.e., larger (or smaller) λ induces more (or less) sparseness of w∗

i . Because the
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vocabulary V usually contains tens of thousands of words, optimization of the
non-convex problem would be very time consuming.

To efficiently solve the problem, we apply a two-step approximation method.
Firstly, we learn the matrix D offline. We cluster the learned word vectors into
N clusters through K-means where each cluster denotes a compact semantic,
and use the cluster centers as the columns of D. Secondly, based on the assump-
tion that locality is more essential than sparsity [22], we select the K-nearest
neighbors in D for each word wi based on Euclidean distance, and then adopt
the Locality-constraint Linear Coding (LLC) to learn its transformation w∗

i :

min
W∗

V∑
i=1

‖wi − Biw∗
i ‖22 + λ‖w∗

i ‖22

s.t.1Tw∗
i = 1,∀i

(4)

where Bi is the K-nearest neighbors to wi in D. The problem could be solved
analytically by:

ŵ∗
i = (Vi + λI)\1

w∗
i = ŵ∗

i /1Tŵ∗
i

(5)

where Vi = (Bi − 1wT
i )T(Bi − 1wT

i ) denotes the covariance matrix.

Document Representation and Topic Extraction. We employ spatial pool-
ing to represent each document as a N -dimensional vector R

N based on the
learned sparse word vectors. Given a document si consisting W words with vec-
tor representations w∗

i , i = 1, 2, . . . ,W , we try two different pooling functions to
obtain the document representation si:

sij =
1
W

∑W

k=1
|w∗

kj |︸ ︷︷ ︸
average

or sij =

√
1
W

∑W

k=1
w∗

kj
2

︸ ︷︷ ︸
square root

(6)

where si denotes the final representation of si and sij |Nj=1 is the j-th entry. Note
that different pooling functions assume the underlying distributions differently.
Once completing the document representation, we feed the news and comment
vectors into K-means algorithm separately to obtain topic sets Zn and Zu. The
achieved topics have more compact distributed representations than TF-IDF,
which is convenient to further computation and analysis.

3.2 Topic Influence Detection

Topic influence detection analyzes the relationship between news and UGC
topics, which behaves as inter-stream influence. Normally, KL-divergence is
employed to evaluate topic transition within news stream [13,17] or topic interac-
tion across streams [12], but the idea is heuristic and results are often restricted
within a too short time period to track the topic evolution.
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Therefore, we perform the influence detection in a more theoretical way
through Granger causality test2. Its basic idea is that a cause should be helpful
in predicting the future values of a time series, beyond what can be predicted
solely based on its own historical values [9]. That is to say, a time series x is
to Granger cause another time series y, if and only if regressing for y in terms
of both past values of y and x is statistically significantly more accurate than
regressing for y in terms of past values of y only.

Granger-Based Influence Detection. In this paper, Granger causality analy-
sis is performed on two topics zu ∈ Zu and zn ∈ Zn to test whether zu is the
Granger cause of zn.

In the previous subsection, we achieve the news and UGC topic sets and their
associated documents, but the Granger causality test requires two time series.
So we need to turn topics in Zn and Zu into time-varying topic series. For each
z ∈ Zn ∪ Zu, we need to represent it as 〈zt〉T

t=1 where zt is the status of topic
z at the t-th interval and T is the size of time intervals. A straightforward way
is to partition both streams into disjoint slices with fixed time intervals (e.g.,
one day), i.e., equal-size binning. An alternative is equal-depth binning, i.e.,
evenly partitioning all documents into T bins. For an obtained partition 〈St〉T

t=1,
the representation of topic z at the t-th bin zt could be simply computed via
averaging the related document vectors within that bin:

zt =
1

|St
z|

∑
sz∈St

s (7)

where St
z denotes the documents within t-th bin that are related to topic z.

Once we get the time-varying representations of two target topics 〈zt
n〉T

t=1

and 〈zt
u〉T

t=1, we first fit two vector autoregressive models (VAR) over these two
series:

zt
n = a0 +

q∑
i=1

aizt−i
n + r (8)

zt
n = a0 +

q∑
i=1

(aizt−i
n + bizt−i

u ) + ru (9)

where (8) predicts a news topic zt
n at time stamp t purely based on its historical

values, i.e., zt−i
n , while (9) considers the historical values from both news and

UGC streams, i.e., zt−i
n and zt−i

u , for prediction; q is a predefined maximum lag to
measure how long the influence lasts; ru and r denote the residuals with/without
considering the topic zu.

Then, to test whether or not (9) results in a better regression than (8) with
statistical significance, we apply an F -test (some other similar tests could also
be chosen). More specifically, we calculate the residual sum of squares RSS and
RSSu, based on which we obtain the F -statistic:

F =
(RSS − RSSu)/q

RSSu/(n − 2q − 1)
∼ F (q, n − 2q − 1) (10)

2 http://en.wikipedia.org/wiki/Granger causality.

http://en.wikipedia.org/wiki/Granger_causality
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Given a confidence coefficient α, we say zu Granger causes zn if F is greater
than a predefined Fα, i.e. ζ = 1 as defined in Sect. 2, and otherwise ζ = 0.

However, both streams, especially news articles, are often generated nonuni-
formly. The equal-size binning performs poorly on such streams since it produces
many empty intervals without any news or comments, and the equal-depth bin-
ning often leads to extremely unbalanced time spans. Either empty interval or
unbalanced spans has side effect on Granger test, making it failed or meaningless.

Topic-aware Dynamic Granger Test. To address the uneven distribution
problem, we propose a topic-aware dynamic binning strategy to partition both
streams into several disjoint intervals. The motivation for topic-aware is that: dif-
ferent topics follow their unique patterns and show various distributions along
timeline and the Granger causality test actually processes a topic pair rather
than the whole streams at one time, thus one partition only need to deal
with documents within target topics from news and UGC respectively. And the
dynamic binning aims to alleviate problem of the uneven distribution. Let Sz

denote the streaming documents associated with topic z, 〈St
z〉T

t=1 is a partition
result, we define the following two types of dispersion:

– disamount: the difference between the largest and the smallest bin size with
bin size is defined as the number of contained documents;

– disspan: the difference between the largest and the smallest time span.

Our objective is to balance these two dispersions, namely,

min
〈St

z〉Tt=1

disamount + disspan s.t.|St
z| > 0,∀t (11)

Due to the extremely unbalanced volume of news and comments, we perform
the optimization on news stream and the comments just follow. The problem
could be solved efficiently using dynamic programming (where dynamic comes)
and the best solution is always available [13].

4 Experiments

In this section, we first briefly introduce our datasets, and then present the
detailed experimental results on topic extraction, topic influence detection and
further analysis.

4.1 Dataset Description

To evaluate the effectiveness of the proposed methods, we prepare the following
two kinds of datasets:

Datasets from Hou’s paper [12]. They are composed of five datasets con-
taining four international events: the Federal Government Shutdown in both
Chinese and English (cFGS/eFGS), Jang Sung-taek’s (Jang), The Boston
Marathon Bombing (Boston) and India Election (India). They are collected from
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Table 1. Datasets: duration, numbers of comments and news articles, max and average
number of comments per news

Dataset Days #Comments #News Comments/News

max avg

cFGS 35 12,995 97 7,818 134

Jang 43 3,291 84 467 39.2

eFGS 53 17,295 136 1,112 127

Boston 46 7,521 211 518 29.4

India 66 4,723 88 113 53.7

influential news portals and social media platforms (i.e., Sina, New York Times,
Twitter), and the detailed statistics are summarized in Table 1. These datasets
are used to evaluate the effectiveness of our topic extraction and influence detec-
tion.

Datasets from China Youth Online (CYOL3). CYOL is one of the biggest and
leading public opinion analysis website in China. It monthly publishes opinion
index based on questionnaire surveys from experts and scholars, civil servants,
media people, opinion leaders and ordinary Internet users. The index includes
five well-defined metrics: information coverage, activeness, response arrival rate,
response recognition rate and satisfactory. For each event reported by CYOL in
2014, we crawled the news articles and comments from Sina4 if there existed a
corresponding special issue. Finally, we collected 40 events, and for each event,
there are 140 news articles and 12,849 comments on average. Due to the space
limit, the detailed statistics and data will be published later. We incorporated
these datasets and published opinion index to evaluate the influence measures
that are automatically calculated based on our approach.

4.2 Results for Topic Extraction

In this section, we report the evaluation on text representation and topic extrac-
tion, including the experiment setup (settings, baselines and metrics), compari-
son results and the parameter analysis.

Settings. We use the gensim5 implementation of word2vec to learn word vectors
with M = 200, and K-means to generate the transform matrix D with N = {128,
256, 512, 1024}. For mid-level feature learning, we apply LLC with various K-
nearest neighbors, with K ∈ {1, 5, 10, 50}. The parameter λ is set to be 1e−4 as
the author suggested.

Baselines. We use DeepDoc to denote our proposed text representation method,
and compare it with TF-IDF based method (TF-IDF) and state-of-the-art topic
3 http://yuqing.cyol.com/.
4 http://search.sina.com.cn/?t=zt.
5 http://radimrehurek.com/gensim/models/word2vec.html.

http://yuqing.cyol.com/
http://search.sina.com.cn/?t=zt
http://radimrehurek.com/gensim/models/word2vec.html
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models on news and UGC, i.e., Document Comment Topic Model (DCT) [11]
and Cross Dependence Temporal Topic Model (CDTTM) [12].

Metrics. As for the evaluation metrics, we calculate the inner/inter-cluster dis-
tance for all topics. The inner-cluster distance (inner) is defined as the average
distance between documents within topic, and a smaller value indicates a com-
pact cluster. The inter-cluster distance (inter) is the average distance from one
topic to all the other topics, and a larger value indicates a better result. We also
calculate their relative ratios (ratio) where a bigger value shows better perfor-
mance.

Comparison Results. Table 2 presents the comparison results, from which
we can see: (i) macroscopically, our proposed DeepDoc outperforms three base-
lines consistently, and DCT is more steady than other methods while the TF-
IDF representation obtains the worst performance. (ii) under this measurement,
CDTTM is not so sensitive to the stream distribution as described in [12], and
DeepDoc does not have this problem as we do not include temporal information
in clustering.

Table 2. Results for topic extraction: inner and inter stand for the average inner/inter-
cluster distances, and they are related to the dimension of document representation;
ratio is calculated through dividing the inter by inner to measure the clustering per-
formance, and a larger ratio indicates a better clustering result

Dataset TF-IDF DCT CDTTM DeepDoc

inner inter ratio inner inter ratio inner inter ratio inner inter ratio

cFGS 35.86 92.30 2.574 .5211 1.517 2.911 .5406 1.631 3.017 4.091 15.70 3.838

Jang 17.94 40.28 2.245 .5412 1.596 2.949 .5333 1.697 3.182 4.024 15.19 3.774

eFGS 41.13 120.8 2.938 .5285 1.503 2.844 .5083 1.532 3.014 4.973 19.48 3.917

Boston 25.37 53.48 2.108 .5271 1.529 2.901 .5084 1.509 2.968 3.966 16.60 4.185

India 19.91 37.69 1.893 .5986 1.433 2.394 .6095 1.439 2.361 2.808 8.806 3.136

Parameter Analysis. Then the Boston dataset is chosen to investigate the
effects of the number of neighbours, pooling function and the number of matrix
columns, and the results are presented in Table 3. We have the following conclu-
sions:

– Number of neighbours (K). Regardless of various other settings, generally
small number of neighbors leads to better clustering results. This is a promising
finding, because the smaller the number of neighbors used (i.e., the more sparse
the codes are), the faster the computation will be run, and the less the memory
will be consumed.

– Pooling function. Different choices of pooling functions lead to very different
clustering results. The root mean square pooling achieves better performance
under almost every settings than average pooling, and the smaller the code
sparseness (larger K and smaller matrix), the gap between these two pooling
functions is more significant.
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– Number of matrix columns. It actually denotes the dimensions of trans-
formed space. Intuitively, if the number of dimension is too small, the mid-level
representation will lose discriminative power, but words from the same cate-
gory of documents will be less similar if the size is too big. Here, we mainly
focus on the trade-off between reasonably smaller and bigger size. As can be
seen from the results, larger size leads to better results when K > 10, while
it is likely that smaller matrix is sufficient under higher level of sparseness.

Table 3. Clustering results on Boston dataset with various number of neighbors (K),
pooling functions and number of matrix columns (N).

#Neighbors Pooling func. N

128 256 512 1,024

K = 1 Sqrt 4.1608 4.1625 3.9000 3.8275

Avg 2.9550 2.9325 2.2900 1.9258

K = 5 Sqrt 4.0108 4.0925 4.1850 4.0825

Avg 3.2475 3.2400 2.8442 2.5242

K = 10 Sqrt 4.0108 3.7325 3.7583 4.0033

Avg 3.2475 3.5092 3.4850 3.5658

K = 50 Sqrt 2.6892 3.0642 3.2858 3.6292

Avg 2.6267 2.8575 3.1892 3.3625

4.3 Results for Topic Influence Detection

To evaluate our proposed topic-aware dynamic Granger test method (TDG),
we perform three series of experiments, namely, (1) the overall comparison with
KL-divergence based method in [12], (2) the comparison of different binning
methods, and (3) the effect of the maximum lag.

TDG – KL Divergence. Hou et al. evaluated their method on manually
labeled data, and it achieved comparable results to the human annotation. To
make the comparison fair, we compare the Granger results with α = 0.9/0.8 with
their top 10 %/20 % links (Hou et al. included links with distance less than the
median value). Through manual evaluation, the Granger test achieves 94 % pre-
cision while KL gets only 82 %, indicating our method significantly outperform
theirs. This comes as no surprise because their KL-divergence based method only
finds similar patterns in the other stream (it assumes similar topics share similar
patterns along timeline which may not hold) while our proposed Granger based
method discovers the most useful topics in UGC that contribute to predicting
the target news topic and thus are more likely to influence the news.

Dynamic Binning – Equal Size Binning. Table 4 shows the number of
detected Granger causal links when different time split methods are applied.



342 L. Hou et al.

We can find that, (i) equal-size: the equal-size binning gets the worst perfor-
mance because the streams (especially news stream) distribute nonuniformly
and it often leads to zero vectors for bins with on documents. Though mean
linear interpolation is employed to deal with the zeros, the results are still not
so satisfactory. (ii) dynamic: dynamic binning optimize (11) over whole news
stream without distinguish topics. It can handle the uneven distributed streams
to some extent, thus finds more influence links. (iii) topic: since our proposed
method tests a pair of topics every time and different topics may follow differ-
ent patterns, while the dynamic binning is applied on the whole streams, thus
it might not perform well on different topic pairs. Therefore, the topic-aware
binning further improves the performance.

Table 4. Granger causality links with different time split methods (0.8 and 0.9 are
confidence coefficients)

Dataset equal-size dynamic topic

0.8 0.9 0.8 0.9 0.8 0.9

cFGS 1 0 4 2 6 4

Jang 1 0 5 2 6 3

eFGS 2 0 5 2 7 4

Boston 1 0 4 2 8 5

India 1 0 3 2 7 4

How Long the Influence Lasts. To choose a proper maximum lag q (i.e.,
how many historical values are included in the regression), we select five topic
pairs to conduct Granger causality test with maximum lag ranging from 1 to 10,
and determine the proper value that achieves the best F statistics (divided by
F0.8 due to the different time spans). Table 5 shows the results from 3 to 7, we
observe that the F/F0.8 increases initially until q = 5 to reach stable status. We
therefore execute all the Granger test with q set as 5. Note that here q = 5 does
not mean 5 days since topic aware binning is used for stream split, and actually
the average time difference is about 3.2 days, which tells us that news and UGC
in the previous 3 days have much more influence on the current news report.

Table 5. F -statistic with maximum lag (q): F/F0.8 denotes the average values of the
5 selected topic pairs.

q 3 4 5 6 7

F/F0.8 1.704 2.115 2.493 2.487 2.435
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4.4 Influence Usage Analysis

This experiment exploits whether our automatically obtained results are con-
sistent with the objective CYOL public opinion index. Specifically, with our
achieved influence links {(zu, zn)}, we quantify the public influence on news
through news response rate(NRR), promptness(NRP) and effect(NRE) as
defined in [12]. Their comparable measures in CYOL Public Opinion Index are
information coverage(IC), response activity(RA) and satisfactory(SA). We com-
pute three correlation coefficients for the 3 pairs of measures NRR-IC, NRP-RA,
and NRE-SA respectively, and higher correlations indicates better results. For
comparison, we use LDA+KL-divergence, Hou’s methods(CDTTM+KL) as our
baselines. We further try to only use first half of the event data for analysis
(Ours

1
2 ) to test whether it is helpful in predicting the future influence. Table 6

shows the comparison results.

Table 6. Influence usage results.

Methods Correlation Coefficient

NRR-IC NRP-RA NRE-SA

LDA+KL 0.6573 −0.5832 0.6029

Hou(CDTTM+KL) 0.6814 −0.5933 0.6157

Ours(DeepDoc+TDG) 0.7232 −0.6419 0.6483

Ours
1
2 0.7092 −0.6254 0.6085

As shown in Table 6, our method achieves higher correlations with the CYOL
measures than other two methods. Furthermore, we notice that only using the
first half of event data, our method can achieve comparable results with those on
all data. This implies that it can be used on predicting whether an event could
be handled properly at early stage.

Case Review. Now we review the events mentioned in the introduction. The
APEC 2014 summit shows a good example that the social media can influence
news media. Besides APEC blue, we identify another topic beyond the scheduled
ones, i.e., tourist. It actually covered the part-time activities of the dignitaries Mrs,
especially their clothing. The news media started to report the part-time activi-
ties causally. However, the public was very enthusiastic about the Mrs’ tourist and
discussed a lot about their clothing. To satisfy people’s curiosity, news presented
systematic introduction of the first lady’s activities and dress. Then, we compare
the news response in the two earthquakes: both reports covered the major topics
— both NRRs are pretty high (Yunnan 84 % and Sichuan 82 %); but in Yunnan
earthquake, news media responded the public more timely — the NRP in Yunnan
is much smaller than that in Sichuan, roughly 0.8 day v.s. 1.4 days. The final satis-
factory shows that it is very important to properly handle the heatedly-discussed
topics. Our analysis could summarize about which topic that news should response
at what time, thus benefits the public opinion management.
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5 Related Work

Our work is related to three lines of research as follows:

5.1 Distributed Text Representation

Representing words in continuous vector space has been an appealing pursuit since
1986 [25]. Recently, Mikolov et al. developed efficient method to learn high quality
word vectors [19], and a host of follow-up achievements have been made on phrase
or document representation, such as paragraph-to-vector [20]. Different from these
attempts, we are inspired to borrow the state-of-the-art feature extraction pipeline
in computer vision [4] to represent word and document in a new space where each
dimension denotes a more compact semantic than directly using word2vec.

5.2 Social News Analysis and Topic Evolution

The proliferation of social media encourages researchers to study its relation-
ship between traditional news media, e.g., Zhao et al. employed Twitter-LDA to
analyze Twitter and New York Times and found Twitter actively helped spread
news of important world events although it showed low interests in them [26].
Petrovic et al. examined the relation between Twitter and Newsfeeds and con-
cluded that neither streams consistently lead the other to major events [21].
Besides the common and specific characteristics of news and social media, we
pay more attention on the cross-stream interaction.

As for the topic evolution, Mei et al. solved the problem of discovering evo-
lutionary theme patterns from single text stream [17], Hu et al. modeled the
topic variations and identified the topic breakpoints in news stream [13]. Wang
et al. aimed at finding the burst topics from coordinated text streams based on
their proposed mixture model [24]. Lin et al. formalized the evolution of a topic
and its latent diffusion paths in social community as a joint inference problem,
and solved it through a mixture model (for text generation) and a Gaussian
Markov Random Field (for user-level social influence) [14]. In this paper, we
study the interplay of news and UGC within specific events, trying to analyze
the cross-media influence and figure out how they co-evolve over time.

5.3 Agenda Setting and Granger Causality

Agenda-setting is the creation of public awareness and concern of salient issues
by the news media. Mccombs and Shaw discussed the function of mass media in
agenda setting [16] in 1972. Many researchers studied the interactions between
public agenda and news agenda, e.g., Meraz employed time series analysis to
measure the influence in political blog and news media [18]. Our work falls into
the second-level agenda-setting (also called attribute agenda-setting), and the
major advantage of our framework is that, the attributes are predefined and we
extract the latent topics automatically.

The Granger causality test [9] is a statistical hypothesis test for determining
whether one time series is useful in forecasting the other one. It has been utilized
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in many areas for causality analysis or prediction, e.g., [6] adapted it to model
the temporal dependence from large-scale time series data [6]; Chang et al. used
it in Twitter user influence modeling. In this paper, we apply the agenda-setting
theory and multivariate Granger test to automatically analyze how the social
media influence traditional news.

6 Conclusion

In this paper, we analyze the public influence on news through a Granger-based
framework: first represent words and documents in distributed low-dimensional
space and extract topics from news and UGC streams, then dynamically split
streams to achieve changing topic representations on which we employ Granger
causality test to detect influence links. Experiments on real-world events demon-
strate the effectiveness of the proposed methods and the results show good
prospects on predicting whether an event could be properly handled.

It should be note that Granger test attempts to capture an interesting aspect
of causality, but certainly is not meant to capture all, e.g., it has little to say
about situations in which there is a hidden common cause for the two streams.
In the future work, we will try to address the important but challenging issue.
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Abstract. Guiding representation learning towards temporally stable
features improves object identity encoding from video. Existing models
have applied temporal coherence uniformly over all features based on
the assumption that optimal object identity encoding only requires tem-
porally stable components. We explore the effects of mixing temporally
coherent invariant features alongside variable features in a single repre-
sentation. Applying temporal coherence to different proportions of avail-
able features, we introduce a mixed representation autoencoder. Trained
on several datasets, model outputs were passed to an object classification
task to compare performance. Whilst the inclusion of temporal coherence
improved object identity recognition in all cases, the majority of tests
favoured a mixed representation.

Keywords: Representation learning · Temporal coherence · Object
recognition

1 Introduction

Real world objects likely to appear in video exhibit a natural permanence over
time, a property known as temporal coherence. If an object is present in a given
frame, whilst it might undergo small changes in position and pose, it is likely
the same object will also appear in neighbouring frames [1]. By guiding rep-
resentation learning from video towards the discovery of temporally coherent
structure present in the raw image data, the capture of variance associated with
the identity of individual objects is improved [2–4].

Existing models applying temporal coherence regularization in unsupervised
representation learning have tended to apply the rule uniformly across all avail-
able features. This is based on the assumption that as the identity of objects
remains temporally coherent, encoding this information in an abstract represen-
tation only requires the discovery of input structure exhibiting similar properties.

To investigate whether this approach improves object identity encoding, we
explore the effects of discovering a mixture of temporally coherent and variable
features, all contained in a single representation. Section 3 introduces a mixed
autoencoder, based on a commonly used method for discovering the important
c© Springer International Publishing AG 2016
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variance underlying visual data, the sparse autoencoder [5]. Sparse autoencoders
have previously been adapted to encode temporal coherence [6], with the extra
regularization enforced across every feature. We trained a range of models on
three video datasets, applying temporal coherence regularisation over different
sized subsets of the total available features. We describe our experimental process
in Sect. 4.

Once trained, labelled examples were passed through each of the various mod-
els, providing the input to a classifier trained to recognise object identity. Tem-
porally coherent representations have generally been used for encoding object
identity, so comparing the performance boost each model provides a supervised
classifier is an ideal test bed to evaluate performance. Our results are presented
in Sect. 4.3.

The best classification accuracy from the supervised task came from a repre-
sentation encoding temporal coherence in every test. Interestingly however, the
majority of cases favoured our mixed representation over the all-invariant alter-
natives. A discussion of our results is provided in Sect. 5. This section is followed
by our final conclusions.

2 Background

There are generally two methods for discovering temporally coherent structure
from video. The first discovers variance changing as smoothly [7], also described
as slowly [8], as possible over time. This approach is used in Slow Feature Analy-
sis (SFA). The whole video dataset is analysed, with the slowest changing vari-
ance extracted on the assumption this encodes important properties of an input,
whilst making sure the constant trivial solution is avoided. This approach has
had considerable impact, producing behaviour similar to cells present in early
areas of the visual cortex [9], and discovering features encoding object position
and pose alongside identity [10]. SFA does suffer from drawbacks however. For
complex problems, a non-linear expansion of an input is required, the details of
which are not known in advance. The two instances of SFA on possibly expanded
data can also render the algorithm computationally prohibitive.

The alternative approach manipulates the likelihood that an object present
in a single frame is likely to appear in neighbouring frames. Temporally coher-
ent structure is discovered by constraining network activations for each pair of
neighbouring frames to be as similar as possible on the assumption of their likely
semantic similarity. This method has improved object identity performance on
the benchmark COIL100 dataset [11], applying the temporal coherence to the
output of a Convolutional Neural Network [12], alongside sparsity in a deep
invariant architecture [13] and during pre-training and network output regular-
ization [14]. An architecture relatively similar in nature to ours is that used
by Goroshin et al. [6]. Temporal coherence is applied to sparse autoencoders,
as part of a convolutional architecture. Unlike our approach, regularization is
applied across every feature.

To be the best of our knowledge, there is only one implementation of tempo-
ral coherence where regularization is not applied uniformly across all features.
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The Temporal Product Network (TPN) learns two sets of features simultane-
ously, one encoding temporal coherence, the other discovering variable features
[15]. This work differs from ours as the two sets of features are seeking different
aspects from the input. The invariant features are designed to encode object
identity, with the variable set discovering object position. We are learning the
two types of features for the single purpose of object identity encoding.

3 Model Description

This section provides an overview of the models we have tested, with a full
description of the network cost function to be minimized during training. For
clarity, as features encoded with temporal coherence respond uniformly to small
changes in an input, they are referred to as invariant. Their temporally uncon-
strained counterparts are denoted as variable features. A model with temporal
coherence applied across all features will be described as all-invariant, with its
opposite, a plain sparse autoencoder known as invariant-free. Versions with a
mixture of invariant and variable features are called mixed-representation.

3.1 Overview

To investigate the effects of mixing invariant and variable features together in
a single representation, we required a model capable of extracting good quality
features from a visual dataset, in an unsupervised manner. The sparse autoen-
coder [5] is a well studied model fitting these requirements. An input layer is
passed to a fully connected hidden layer, which is in turn passed to a fully con-
nected output layer of the same dimensionality as the input. During training,
network weights are adjusted via gradient descent to reconstruct the input as
closely as possible at the output layer. Reconstruction of each input during train-
ing guides the representation to retain as much information present in the input
as possible. This has the added benefit of avoiding the trivial constant solution,
which is essential for temporal coherence to be applied successfully. Sparsity reg-
ularization forces a dictionary of distinct commonly occurring features to form
in the hidden layer. Feature learning by this method is known to work well in
unsupervised vision problems [16]. Once training is complete, the output layer
is removed, with the new representation formed by the activations of all units
in the hidden layer.

Whilst sparse autoencoders have previously been adapted to encode tempo-
ral coherence, our investigation mixes invariant and variable features in a sin-
gle representation. Similar to existing methods, temporal coherence is applied by
minimizing thedifference in featurevectors between consecutive frames for theneu-
rons encoding invariance. Instead of applying temporal coherence across all hidden
layer neurons, we only apply the regularization to a variable size subset of the total
available units. Remaining neurons are free to discover variable information com-
ponents. Sparsity is applied across the entire hidden layer, making no distinction
between invariant and variable neurons.To compare themixed representationwith
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existing architectures, we also trained all-invariant and invariant-free versions of
our model. A diagram of the network is shown in Fig. 1.

Fig. 1. Diagram of autoencoder architecture. An input xt of dimensionality M is passed
to a hidden layer, with dimensionality N (in this diagram, M = 4 and N = 5). The
hidden layer ztInv connects to an output of the same dimension as the input. Temporal
coherence regularization is applied across the invariant portion of the hidden layer ztInv

of dimensionality P ≤ N . In this case, P = 2. If P = 0, the network does not encode
temporal coherence, when P = N the representation is all-invariant.

3.2 Cost Function

An autoencoder is a fully connected network with two components, the encoder
and decoder modules. For time-series data, an input at time t is given as xt ∈
R

M , out of a total T frames. Inputs are passed to the autoencoder’s hidden layer
of neurons via the encoder section. Hidden layer neuron activations zt ∈ R

N

are calculated using an affine transformation via the encoder weights WE ∈
R

N×M and bias bE ∈ R
N, followed by a suitable non-linearity f() to give zt =

f(WExt + bE). Similarly, the decoder section output activation values x̂t ∈ R
M

are calculated using a similar process via the decoder weights WD ∈ R
M×N and

bias bD ∈ R
M to produce x̂t = f(WDzt + bD). For the non-linearity, we chose

the commonly used sigmoidal activation function [17].
The first term in the model cost function is the reconstruction term. By

constraining the difference between network input and output to be as small as
possible, information loss is avoided. As mentioned previously, this ensures the
trivial constant solution is avoided. The reconstruction term LRec is given as
follows, with θ representing the encoder and decoder weights and biases:

LRec(xt, θ) =
T∑

t=1

‖xt − x̂t‖2 (1)

We have imposed sparsity in the autoencoder using Kullback-Leibler (KL)
Divergence across the hidden layer activations. KL-Divergence is an approx-
imation to L1-regularization known to perform well on vision problems [18].
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During training, the average activation of each hidden layer neuron is calculated
over all training examples as ρ̂n = 1

T

∑T
t ztn. The sigmoidal activation func-

tion constrains active and inactive neurons to generally have values very close to
one and zero respectively. This characteristic enables the KL-Divergence term to
enforce sparsity by constraining the average activation of each hidden layer neuron
to be as close to a desired value ρ. The sparsity term LSpar is calculated as:

LSpar(xt, θ) =
N∑

n=1

KL(ρ||ρ̂n) =
N∑

n=1

ρ log
ρ

ρ̂n
+ (1 − ρ) log

1 − ρ

1 − ρ̂n
(2)

The invariant term LInv regularises hidden layer neurons with temporal
coherence. The term is applied to the invariant subset of the total hidden layer
neurons zInv ∈ R

P , where P ≤ N is an adjustable parameter setting the num-
ber of invariant features. When P = 0 the network is an invariance-free sparse
autoencoder with no additional temporal cost. When P = N , temporal coherence
is encoded in every hidden layer neuron, similar to the architecture described
in [6]. With values inbetween, a mixed representation of invariant and variable
features forms. Remaining neurons in the hidden layer are not regularized with
temporal coherence, and make up the variable features. It is important to note
that the invariant and variable neurons combine to make a single representa-
tion. Temporal coherence is enforced in the invariant neurons by minimizing the
difference in hidden layer activations for every pair of adjacent frames in the
training set:

LInv(xt, θ) =
T−1∑
t=1

‖ztInv − zt+1
Inv‖2 (3)

Putting these components together, the complete cost function to be mini-
mized during training is given as:

L(xt, θ) =
T∑

t=1

‖xt − x̂t‖2 + α

T−1∑
t=1

‖ztInv − zt+1
Inv‖2 + β

N∑
n=1

KL(ρ||ρ̂n) (4)

where the α and β values are hyperparameters used to control the influence of
the temporal coherence and sparsity terms respectively. Similar to when P = 0,
when the α parameter is set to zero, the network is a sparse autoencoder, with
no temporal coherence regularization.

4 Evaluation of Our Models

4.1 Datasets

To evaluate the representation learning capacity of our different models, we
required datasets consisting of distinct objects moving through a visual field.
To keep things simple, we restricted our tests to videos of single objects moving
across a uniform blank background. Whilst the unsupervised architecture does
not require labelled data, it was necessary that datasets contained object identity
labels to allow the training of a supervised classifier acting as a performance
metric.
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Toy-Data Shapes Dataset. Initial proof-of-concept work was carried out on
a toy dataset. The video consists of a sequence of five simple objects moving
through a 12 × 12 pixel visual field (see Fig. 2). For each sequence, a shape
is positioned at an edge of the visual field, moving in a perpendicular direc-
tion, without changing direction or speed until it hits the opposite side. At this
point, the object moves one pixel in a perpendicular direction to its previous
motion before making the journey back across the visual field. This process is
repeated until an object has traversed the visual field in each of the four cardi-
nal directions. Once an object has exhausted its motion, the next shape in the
dataset appears and the sequence starts again until all five shapes have appeared.
Object speed remains constant, and there is no rotation. Three sequences from
this dataset are shown in Fig. 3.

Fig. 2. The five simple objects used in the toy-data shapes dataset

Fig. 3. Three sequences from the toy-data shapes dataset

COIL20-variant Dataset. COIL20 is a well known benchmark dataset for
visual problems [11]. The dataset is comprised of 20 different labelled objects, in
sequences of 72 images each. Each sequence shows an object rotating on its axis
through 360◦, in 5◦ increments. Whilst not strictly a video, the images can be
shown in sequence to give a good approximation. As we wanted objects to be able
to move around the visual field, COIL20 in its existing form was not appropriate,
so we manipulated the dataset for our purposes. COIL20 was reduced from its
original 128 × 128 pixel size down to 24 × 24 images. For every shape, each 72
image sequence was placed in turn over a blank 48 × 48 pixel background, with
the positioning and movement for each object directed by a random generator.
There is an 85% chance an object carries on moving in the same direction as
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the previous frame, with reduced probability direction might change by either
±22.5◦, 45◦ or 67.5◦. Once an image reached an edge of the visual field, it was
sent back in the direction it arrived. This process was repeated 20 times for each
object producing 1440 examples for each different shape. Three sequences from
our COIL20-variant dataset are shown in Fig. 4.

Fig. 4. Three 12 frame example sequences from the COIL20-variant dataset

Fish Dataset. For our final test, we wanted a dataset with increased image,
motion and rotation complexity. In their 2011 paper describing object recogni-
tion and pose detection using SFA, Franzius, Wilbert and Wiskott used a dataset
consisting of 3D models of fish. The fish rotate and move with variable speed and
direction [10]. After getting in touch with the authors, they kindly provided us
the code with which to create their fish dataset. The parameters used to control
the motion of the artificial fish are user provided. We kept to the same settings
described in the SFA paper, with a couple of exceptions. Firstly, we removed the
chance a fish might randomly switch to a different type of fish between frames.
This was done to ensure the dataset contained the same number of examples for
each fish. Video sequences were created with 2000 frames of each type of fish.
Secondly, to reduce the time taken to train our networks, we only used the first
15 out of the 25 available types of fish in our dataset. Images were resized from
155× 155 pixels to 48× 48 pixels. Three example sequences of frames from this
dataset can be seen in Fig. 5.

4.2 Experimental Setting

Unsupervised Architecture. Our experiments proceeded as follows. For each
dataset, the number of hidden layer neurons in the unsupervised architecture
was fixed by training networks with an increasing number of neurons. We set
the number of hidden layer neurons to be the network size at which the recon-
struction term ceased reducing. The number of hidden layer units trained on
the shapes dataset was fixed at 120 neurons, COIL20-variant at 400, and the
fish dataset at 600. For each experiment, a range of invariant to variable feature
splits for the mixed representations were picked. For the shapes dataset, five
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Fig. 5. Three 8 frame sequences from the fish dataset.

different models were chosen, with the number of invariant neurons increasing
from 0 to 120 in increments of 30. All remaining neurons were trained without
the invariant term applied. For the COIL20-variant and fish dataset, increments
were set at 100 neurons, giving 5 and 7 different models respectively.

Due to the relatively small number of examples available in the shapes
dataset, 2200 in total, the unsupervised architecture was trained using all avail-
able examples. As the COIL20-variant and fish dataset contain significantly more
examples, we reduced the training set to half the available examples. To preserve
the temporal integrity of the datasets, examples were split up into runs of 50
frames, each run containing image sequences of a single object. For each test,
half the available runs for each object were picked at random for the training
set, with remaining examples providing a validation set.

Unsupervised training of each model was carried by minimizing the cost
function by gradient descent. Two measures were applied to determine training
stopping conditions. At increments of 100 epochs, training was halted and the
overall cost function and its individual terms were evaluated on the validation set.
During each pause, a classifier was also trained to predict object identity using
a labelled training set, recording classification accuracy, also on the validation
set. Whilst we used a supervised measure for helping determine when to halt
training, we did not apply any supervised fine-tuning to guide network weights.

Suitable values for the α and β cost function hyperparameters were chosen
by performing a grid search and observing the evolution of the invariant and
sparsity terms in the cost function as training progressed.

Supervised Classifier. Temporal coherence is generally used as a method
for encoding input variance associated with object identity. For this reason, we
passed labelled outputs from each of our various models to a supervised classi-
fier trained to recognise the individual shapes present in the videos. Although
we are using a supervised metric to test the performance of our unsupervised
architecture, the labelled data has no effect on the representations learned by
the various autoencoders.
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For the supervised part of our experiments, we also wanted to observe
whether the quantity of labelled data made available to the object identity clas-
sification task influenced which of the mixed representations produced the best
results. For the shapes dataset, we trained a classifier to recognise object iden-
tity using one in every two, five and twenty labelled examples from the total
available data. For the COIL20-variant and fish datasets, six different classifiers
were trained, picking either every second, third, fifth, tenth, twentieth or fiftieth
examples. All remaining examples provided the testing set.

4.3 Results

The classification accuracy results from each dataset are presented in Figs. 6,
7 and 8. In each figure, the groups of bars indicate results conducted with the
same number of classifier training examples together, with the number indicated
on the x-axis. The bars making up each group indicate an increasing number
of invariant neurons as a percentage of total neurons available. The results dis-
played in each figure depict the highest classification accuracy recorded for that
particular setting, over any of the cost function hyperparameter values tested.

Fig. 6. Classification accuracies for the shapes dataset. Groups of bars display average
classification accuracy, along with one standard deviation, from classifiers trained with
a set number of examples, the number of which is given on the x-axis. Each bar in a
group refers to a variant of the unsupervised architecture. Proportion of total features
that are invariant for each bar is provided in the legend. The same notation is used in
Figs. 7 and 8
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Each test was run four times. The results displayed in each graph represent aver-
age classification accuracy on a testing set, with error bars corresponding to one
standard deviation.

The most obvious thing standing out from each figure is the reduction in
classification accuracy as the amount of labelled data is reduced. As the quan-
tity of training data is reduced, a classifier has less information with which to
make its predictions, which correspondingly suffer. More significantly, it is a rep-
resentation encoding temporal coherence is some shape or form that produces
the highest classification accuracy every time. Across every test, regularizing for
temporal coherence has improved the capture of information related to object
identity.

From the point of view of our experiments, the most important result is the
performance observed from the mixed representations. For each dataset, when
the quantity of labelled data passed to the classifier is at its largest, a mixed
representation always produced the highest classification accuracy. In the case
of our shapes and COIL20-variant datasets, optimal performance swings to the
invariant only representation when the amount of classifier data is at its lowest.
A split representation produces the best result every time for the fish dataset.
We have attributed this anomaly to the higher complexity of the images, motion
and rotation of objects in this dataset. The split representations producing the
best results are those where the proportion of invariant to variable features is
the smallest we tested. As mentioned, an invariant-free representation failed to
produce the best results from a classifier in any of our tests.

Fig. 7. Classification accuracies for the COIL20-Variant dataset.
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Fig. 8. Classification accuracies for the Fish dataset.

Table 1 gives the results gained when the classifiers are trained using half
the available data. Classification accuracy is recorded for the all-invariant and
invariant free models, and the best performance from a mixed representation,
with the proportion of invariant features indicated. As a final comparison, classi-
fication accuracy is also provided from when a classifier is trained using the raw
image data. In each of these cases, a mixed representation produced the best
performance.

Table 1. Average object classification accuracy from each model when 50 % of data is
passed to the classifier. For the mixed representation, values are given for the model
producing the highest classification accuracy, with the percentage of invariant neurons
that produced this result given. Classification accuracy from each dataset was also
recorded for the situation where the classifier is trained on the raw image data, with
no representation learning applied.

Dataset Raw data Best mixed (% invariant) Sparse only All invariant

Shapes 30.16 % 73.82% (25 %) 69.38 % 66.77 %

COIL20-variant 34.06 % 85.27% (25 %) 84.38 % 83.76 %

Fish 57.29 % 84.51% (16.67 %) 83.21 % 80.59 %
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5 Discussions

The goal of regularizing features with temporal coherence is to learn stable vari-
ance common to each pair of frames in video. Image-specific details are discarded
to facilitate the discovery of temporally coherent structure on the assumption
this encodes details related to object identity. Compared to an invariant-free rep-
resentation, the quantity of patterns collected for each object is reduced on the
basis that their classification quality is increased. A mixed-representation seeks
to combine image-specific details, distinguishing adjacent frames apart, along-
side temporally coherent information common over adjacent pairs of frames. A
larger quantity of patterns is produced for each object, whilst still encoding the
invariant structure related to object identity missing in an invariant-free repre-
sentation. A greater percentage of the input structure is captured, losing some
of the generalization present in an all-invariant representation.

When the quantity of labelled data is scarce, a classifier’s performance will
improve when the total pool of possible patterns for each object is reduced.
Similarly, if every feature in a labelled example contains information common to
semantically similar neighbours, a classifier will have a greater chance of learning
how to differentiate between objects. Conversely, when each example contains
image-specific details not applicable to other examples of the same object, this
will confuse a classifier when there is not enough labelled data available to build
a full picture of each object. When data is scarce, the generalized features learned
by an all-invariant representation improves a classifier’s chances of learning the
details required to distinguish between objects.

When the quantity of labelled data is increased, classification performance is
observed across every model tested, but the benefits of having an all-invariant
representation start to dampen. Encoding the structure common to neighbour-
ing examples of distinct objects, alongside a greater amount of image-specific
detail, enables a classifier to build a more complete picture of each object from a
mixed representation. Information discarded by an all-invariant representation,
confusing to a classifier when data is scarce, starts to become useful. When this
point is reached, object identity encoding benefits from having as much image-
specific data as possible, so long as a portion of features remain invariant. This
can clearly be seen from our tests, as a mixed representation predominantly
composed of variable features performs optimally over every test where labelled
data is abundant.

Optimal performance was observed when a classifier was passed a representa-
tion encoding temporal coherence in some manner in all of our tests. Consistent
with previous work, extracting temporally stable aspects from video improves
the encoding of information related to object identity [12]. When labelled data
is plentiful, and a classifier is able to build a more complete picture of the struc-
ture underlying each distinct object, applying a mixed representation improves
object identity encoding.
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5.1 Future Work

The findings of this work lead to quite a wide range of possibilities. Firstly,
we have applied our mixed-representation to a relatively simple single layered
sparse autoencoder. Temporal coherence has been successfully applied to a wide
range of models, including architecturally more complex deep networks. It would
be interesting to investigate whether or not applying a mixed-representation to
these existing models will boost object identity performance further.

Another route of study would be to consider more complex datasets. The
videos in our study were all artificially generated, and only contain a single object
at a time moving across a uniform background. Tests could be conducted to
observe how a mixed representation copes with more complex images, including
more than one object, and natural images.

Finally, whilst we have been capturing a mixture of invariant and variable
features, this study has only been concerned with encoding object identity. As
discussed in Sect. 2, there has been a small body of work applying temporal
coherence to discover the what and the where of objects [10,15]. As position and
motion of objects generally change over quicker time scales than object identity,
it is possible that our mixed representation also contains features associated with
these properties. This is the primary direction we are going to be looking for our
own future studies with this work.

6 Conclusions

We trained a range of sparse autoencoders, encoding temporal coherence over
different portions of the available hidden layer units. We can summarize our
findings as follows:

– Optimal performance across all tests involved an architecture encoding tem-
poral coherence across a portion of the available features.

– For the majority of tests, the greatest classification performance was achieved
when the classifier input received a representation mixing temporally coherent
features alongside ‘variable’ counterparts.

– When a large amount of labelled data was available, a mixed representation
always produced the best encoding.

We believe our work demonstrates there are situations where the previously
accepted method of applying temporal coherence uniformly across all features is
non-optimal. By discovering a mixed representation, consisting of both invariant
and variable neurons, object identity encoding can be improved.
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Abstract. Subgoal discovery in reinforcement learning is an effective
way of partitioning a problem domain with large state space. Recent
research mainly focuses on automatic identification of such subgoals dur-
ing learning, making use of state transition information gathered during
exploration. Mostly based on the options framework, an identified sub-
goal leads the learning agent to an intermediate region which is known to
be useful on the way to goal. In this paper, we propose a novel automatic
subgoal discovery method which is based on analysis of predicted short-
cut history segments derived from experience, which are then used to gen-
erate useful options to speed up learning. Compared to similar existing
methods, it performs significantly better in terms of time complexity and
usefulness of the subgoals identified, without sacrificing solution quality.
The effectiveness of the method is empirically shown via experimenta-
tion on various benchmark problems compared to well known subgoal
identification methods.

Keywords: Abstraction in reinforcement learning · Subgoal discovery ·
Options framework

1 Introduction

Subgoal discovery is a prominent way of coping with the scalability problem
in reinforcement learning (RL). A subgoal in the problem is a natural hint to
partition it into subproblems, so that the agent can focus on learning of smaller
tasks, giving rise to opportunities like the transfer of the learned behaviour into
a similar problem, and more importantly, increase in learning performance.

Subgoal discovery is almost always coupled with a temporal abstraction
mechanism, by which the identified state acts as an artificial target for the
problem partition that the agent is trying to solve. A widely accepted tem-
poral abstraction formalism is the options framework [23]. An option –which is
essentially an abstract action made up of consequent primitive actions through
states– defines how to guide the learning agent by making it follow a route to
a useful intermediate state, assuming it has the potential to improve learning
performance. However, the formalism does not deal with how to decide that an
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intermediate state is useful on the way to the ultimate goal. This requirement
can effectively be fulfilled by subgoal discovery techniques.

There are a number of different approaches that attack the subgoal discovery
problem in RL. Some of the methods are based on graph theory [8,15,19,24],
some use statistical methods [3,13,18,20], while others invoke data mining app-
roach [9,11].

Obviously, since the intrinsic focus of RL is on on-line performance, it is
quite reasonable to expect that the identification of subgoals should better be
confluent with the underlying learning procedure. While some methods natively
support this paradigm [6,18,19], some others may require additional setup.

In this paper, we propose a subgoal discovery method based on sequence
tree based episode history analysis. After each episode, the method first tries to
generate a number of successful shortcut policies for every visited state, construct
a tree of transitions from generated shortcut policies, and then analyze the tree
to extract subgoal states. The method works concurrently with the underlying
RL algorithm, and it performs no worse than existing similar methods in terms
of solution quality. On the other hand, the method uses less CPU time, and
does not depend on any external problem specific variables other than statistical
decision parameters. The time complexity of the algorithm is O((logb(n))2) on
the average, where n is the number of nodes in the generated tree and b is the
branching factor. The worst case scenario happens when the agent follows a path
through which it visits each state only once causing a tree with branching factor
of 1 (which is very unlikely to occur at the initial stages of learning), for which
the time complexity is O(n2).

The paper is organized as follows: A compact summary of the related lit-
erature is given in Sect. 2. Section 3 contains the proposed method for subgoal
discovery. Experimental evaluation of the proposed algorithm is given in Sect. 4,
together with descriptions of problem domains used, parameter settings and a
discussion of results. Section 5 includes concluding remarks and possible future
research directions.

2 Background

Reinforcement learning (RL) has proven itself to be an effective on-line learning
technique [22]. Basically, RL is about self improvements for decisions of a learning
agent using environmental feedback. One of the recent advances in RL tries to
diminish the diverse effects of increasing state space size, which is known to cause
dramatic slow-downs in learning speed. A candidate solution is to partition the
problem into manageable pieces and try to solve each first, then ensemble the
solutions to obtain the overall result. Lately, subgoal discovery methods have
taken attention for this purpose, and are usually coupled with options framework.

2.1 Reinforcement Learning

Generally, RL algorithms are constructed on top of a special form of decision
process model, called Markov decision process (MDP), which possesses Markov
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property, meaning that future states of the process depends solely on the current
state. With this restricted model, RL algorithms provide a convergence guarantee
to the optimal solution under certain conditions, if one exists.

Formally, MDP is a tuple 〈S,A, T,R〉, consisting of a finite set of states S, a
finite set of actions A, a transition function T : S ×A×S → [0, 1] where ∀s ∈ S,
∀a ∈ A,

∑
s′∈S T (s, a, s′) = 1, and a reward function R : S × A → �. T (s, a, s′)

is the probability of being in state s′ if action a is performed in state s. R(s, a)
gives the immediate reward from the environment after taking action a in state
s. A policy π : S×A → [0, 1] is a mapping defining the probability of selecting an
action in a state. The aim is to find the optimal policy π∗ which maximizes the
total expected reward received by the agent. If reward and transition functions
were known, the optimal policy could easily be found using classical dynamic
programming techniques. Otherwise, π∗ can effectively be found by estimating
the value function (i.e. function giving the value of being in a state on the
way to goal) incrementally. Incremental estimation approach makes use of the
average cumulative rewards over different trajectories obtained by following a
policy to calculate the value function and gives rise to the central idea of most
RL algorithms, called the temporal difference (TD) [21].

A famous TD algorithm using action-values (i.e. Q-values) instead of state-
values is named Q-Learning [25], and is widely respected due to its simplicity
and ease of use. The update rule for Q-Learning is

Q(s, a) ← (1 − α)Q(s, a) + α[r + γ max
a′∈A

Q(s′, a′)] (1)

where α ∈ [0, 1) is the learning rate and γ ∈ [0, 1) is the discount factor.
Q-Learning has been shown to converge to the optimal action-value function
denoted by Q∗, under standard stochastic approximation assumptions.

2.2 Options Framework and Macro-Q Learning

An implicit assumption for the MDP model is that an action lasts for a single
time step. However, there are acceptable rationales to relax this assumption.
An obvious one would be the convenience in the reuse of a behaviour pattern
(i.e. skill) in different situations within the problem space. This abstraction idea
took attention by various researchers, and a few different mainstream approaches
emerged [4,16,23].

A Semi-Markov Decision Process (SMDP) extends the MDP model with
transitions of stochastic time duration. An SMDP is a tuple 〈S,A, T,R, F 〉, where
S, A, T and R define an MDP, and F (t|s, a) is the probability that starting at
s, action a completes within time t. MDP is clearly a specialization of SMDP,
where a step function has a jump at 1. In the SMDP model, a policy is still a
mapping from states to actions, thus the Bellman equations [1] still hold for an
optimal policy [2].

As a prominent abstraction formalism based on the SMDP model, options
framework [23] devices a way to define and invoke timed actions via incorporation
of composite actions on top of an MDP model. It allows to create and use abstract
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actions (options) by using primitive actions, lasting for a finite number of discrete
time steps. Briefly, an option is defined by three components: (1) a set of states
that the option can be initiated at, called the initiation set, (2) option’s local
policy, and (3) a probability distribution induced by the termination condition.

A natural extension of Q-Learning to include options is Macro-Q Learn-
ing [14], where the value of each primitive action is again updated according to
regular Q-Learning (as given in the update rule 1), while the value of an option
is updated according to the following rule:

Q(st, ot) ← Q(st, ot) + α × (γn × max
o′

Q(st+n, o′) − Q(st, ot)

+rt+1 + γrt+2 + ... + γn−1rt+n)
(2)

where st is the starting state of the option ot, n is the number of steps taken
while the option is employed, st+n is the state that the option terminates at,
o′ is the option from st+n that has the maximal value and rt+i is the reward
received at time t + i. The reward is discounted by the time it is received.

However, the options framework by itself does not guide or help the designer
to grasp some useful abstractions. Thus, automatic generation of those abstrac-
tions is another interesting research topic, which has its own variety. A widely
used approach is subgoal discovery, where the method seeks bottleneck states or
regions in the problem space to derive artificial subgoals to be used as terminat-
ing points of the options to be generated.

2.3 Automatic Subgoal Discovery

Automatic discovery of subgoals deals with the problem of identifying a set of
intermediate points or regions within an MDP, that are “subgoals” or “bottle-
necks”, naturally partitioning the problem in hand. Due to the vagueness of
the concept, a number of different approaches had been developed for subgoal
discovery in RL context.

Some of the methods transform the experience history to a transition graph
and analyze it to find most suitable bottleneck regions that partitions the prob-
lem [8,15,19,24]. Some other methods rely on state visitation statistics to find
frequently used states, based on the observation that frequently visited states
are more likely to be a bottleneck on the way to goal [3,7,13,18,20]. A yet dif-
ferent approach interprets the same matter as a clustering problem, trying to
find separate regions in state space using experiences and then identify access
points between regions as subgoals [9,11]. Although not explicitly subgoal-based,
a related family of methods focuses on the sequence analysis on episode histories,
under the assumption that the subgoals are signaled via reward peaks [6,12].

However, it is not straightforward to determine whether a state is a subgoal
or not. In the ideal case, one needs the complete transition function T in order to
make an accurate decision, which is practically not possible. Nevertheless, major-
ity of subgoal discovery methods rely on the assumption that an approximate
T can be gathered throughout the RL experience. A drawback of this approach
is that it may not be possible to decide that approximation of T is accurate
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enough to be used for subgoal discovery. Alternatively, few other methods use
a hybrid approach that brings together locally collected transition information
and a means to statistically test its sufficiency for subgoal discovery [17]. This
paper focuses on the latter category of subgoal discovery algorithms.

[17] defines an access state as a state that connects two or more connected
regions having few transitions in between. The key idea is that, a method search-
ing for an access state is allowed to possess only local statistics throughout the
experience, to classify a state as either a target state (an access state) or not.
Observations that are collected for a state by this way are then used in the
following decision rule:

n+

n
>

ln 1−q
1−p

ln p(1−q)
q(1−p)

+
1
n

ln( λfa

λmiss

p(N)
p(T ) )

ln p(1−q)
q(1−p)

(3)

where n is the total number of observations for a state, n+ is the total number
of positive observations for a state, p is the probability of a positive observation
given a target state (an access state), q is the probability of a positive observation
given a non-target state, λfa is the cost of a false alarm, λmiss is the cost of a
miss, p(N) is the prior probability of non-target states and p(T ) is the prior
probability of target states. If the inequality holds, then the state is classified
as an access state. This decision rule pinpoints the time step when the collected
observations are enough to make a decision about the label of a state. This two-
level mechanism enables the methods to avoid the time cost of traversing the
whole problem domain.

In the same study, three access state identification methods are proposed.
Relative Novelty (RN) is a frequency based subgoal identification method, based
on the intuition that an access state allows the agent to pass from a highly visited
region to a new region on the state space. Local Cuts (L-Cut) is a graph based
method that aims to find a good cut, partitioning the local interaction graph
into blocks with a low between-blocks transition probability. Local Betweenness
(LoBet) is also a graph based algorithm which employs a betweenness measure [5]
which is a centrality metric used in graph theory.

Discovered subgoals are of no use unless they are effectively used to diminish
the adverse effects of the large state space. Usually, options framework is used to
achieve this purpose. For each subgoal identified, an option towards that state
is generated. The initiation set for the option is formed by adding the states
observed before the subgoal in each trajectory.

One common way of generating the policy of an option to reach a subgoal is
the Experience Replay (ER) mechanism [10]. ER reuses the past experiences of
the agent to find a policy to reach the identified subgoal by providing artificial
rewards rather than the actual reward yielded by the environment. A general
convention is to provide a positive reward upon reaching the subgoal state, and
a negative reward for any other transition.
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Algorithm 1. LOCAL ROOTS

Require: p, q,
λfa

λmiss
, p(N)

p(T )

1: oi ← 0, o+i ← 0
2: for each episode do
3: h ← Interact with the environment � record episode history
4: if h ended with a peak reward then
5: ntavg ← calculate average number of distinct transitions in h
6: T ← CREATE TREE(h)
7: CALCULATE ROOTING FACTORS(T, ntavg) � for each vertex
8: for s ∈ VT do
9: os ← os + 1

10: if s is a local maximum on T then
11: o+s ← o+s + 1
12: end if
13: if the decision rule is satisfied then � use Decision Rule 3
14: Classify s as a subgoal
15: end if
16: end for
17: end if
18: end for

3 Local Roots Method for Subgoal Discovery

We define a subgoal as a state that serves as a junction point or a region of
the known shortcut paths from each state to the goal state, which is in fact
a likely bottleneck candidate. Following this intuitive definition, our approach
depends on the notion of a successful trajectory, that is, a trajectory ending with
a distinctive reward peak, which is usually the goal state of the problem domain.

Our method named Local Roots generates positive and negative observations
for visited states and feeds them to the Decision Rule 3. This is a common
pattern in local approaches in subgoal discovery, since the local information
gathered from the episode history can be highly dependent on the particular
way of state visitations, and thus, may give rise to noisy results without a high
level decision filter (especially false positives). Decision Rule 3 is calculated for
each visited state, aiming to distinguish the subgoals more accurately.

Local Roots method records the transition history for each episode
(Algorithm 1, line 3). Upon completion of an episode, it first checks whether
the last transition yields the maximum reward for that episode, or not. If so,
it calculates the average number of distinct transitions made through a state
(ntavg) and creates a tree using shortcut paths derived using state equivalences,
to serve as a collection of the best “memorized” trajectories starting from every
visited state up to the goal state (Algorithm 1, line 6). Best trajectories are
calculated by traversing from a leaf of the tree to the root, iteratively updating
the transitions with the best values. The path from a vertex to the root in the
tree forms the shortest path from the corresponding state to the last state in the
episode. The tree generation procedure is given in Algorithm 2. The resulting
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Algorithm 2. CREATE TREE

Require: a successful episode trajectory h
Ensure: a tree T representing shortcut histories to goal from each state
1: t ← length(h) − 2
2: Vst+1 ← 0, bestst+1 ← null
3: while t ≥ 0 do
4: if Vst is undefined ∨ (rt+1 + γ ∗ Vst+1) > Vst then
5: Vst ← rt+1 + (γ ∗ Vst+1)
6: bestst ← st+1

7: end if
8: t ← t − 1
9: end while

10: V ← {sl}, E ← ∅
11: for each state s �= sl do
12: V ← V ∪ {s}
13: E ← E ∪ (s, bests)
14: end for
15: return (V, E)

tree is a collection of shortcut paths (i.e. free of loops) from every visited state
to the goal state, based on the local transition graph derived from experiences.

The core idea of the proposed method lies in a state metric, what we call
the rooting factor, due to the visual resemblance to a root structure of a tree in
the nature fringing underground. To clarify the idea, Fig. 1a illustrates a sample
grid world domain made up of three rooms with passageways between adjacent
rooms, and Fig. 1b is a tree generated for the problem by using an episode history.
The goal state is s76 which is located in the south-east corner of the room and
the agent starts from the north-west corner, namely s0. The agent can move to
any one of the four compass directions at each time step, except that after a
move attempt to the walls and the boundaries of the room, it stays still.

The grid world and the tree instance given in Fig. 1 are colored according to
the rooting factor values of states scaled from black to white, where brighter color
means a higher value. Note that the states in the doorways have high rooting
factor values. In the case of state s48 located at level 9, the rooting factor metric
focuses on the sub-tree having state s48 as the root. To calculate the rooting
factor of state s48, one should first find the widest level for the sub-tree rooted
by state s48, which is the level possessing the first peak in sub-tree width. In
this sub-tree, the widths of each level are 1, 3, 5, 5, 5, 5, 3 consecutively, and
the first peak value in terms of width is 5. The method considers level 11 as the
widest level and ignores the second peak with value 5 starting in level 17 since
level 11 has the first peak. This way, even if there is a wider level below, it is not
taken into account for state s48. Thus, each bottleneck state in the tree possesses
its relative sub-tree, as is the case for another subgoal s22 in level 15 where the
widest level of its relative sub-tree is level 17.

Upon identification of the widest level for state s48, one can think of an
imaginary triangle (i.e. the dotted triangle in Fig. 1b) where the vertices in the
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Fig. 1. (a) A sample grid world with two consecutive subgoals, colored according to
rooting factor values of the states. Shaded cells represent walls. (b) The generated tree,
using the same coloring scheme. Actions are noted on the edges. The numbers at the
bottom are corresponding levels of the tree.

widest level compose its base, and its topmost corner is s48 (w.r.t. a portrait
orientation of the tree, where root is at the top). The shape of this triangle is an
indication of the “importance” of state s48 in the tree. A wider triangle suggests
that, for relatively more states, the agent should pass through state s48 in order
to reach the root state (i.e. goal). The height of the triangle, on the other hand,
pinpoints a state which is the “first” junction point of the merging paths. That
is why, the rooting factor of state s48 is higher than its parent’s, state s51.

As a mathematical interpretation of the above characteristics, the rooting
factor of s can be defined as follows:

rs =
(nwidest)ntavg

dwidest − ds
(4)

where ds is the depth of s in the tree, ntavg is the average number of distinct
transitions of states in the tree, nwidest is the number of vertices in the widest
level and dwidest is the depth of the states in that level. In order to strengthen
the effect of possible connections that a vertex can have, number of vertices in
the widest level is powered by the average number of distinct transitions (ntavg).

After the tree is constructed by using Algorithm 2, the rooting factor cal-
culation takes place for every vertex (Algorithm 1, line 7). Algorithm 3 is
employed for this purpose, where a tree traversal (via breadth first search,
BFS) is employed first, to find the depth of each vertex in the tree. An addi-
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Algorithm 3. CALCULATE ROOTING FACTORS

Require: a successful history tree T , ntavg

1: calculate the depth of each state in T � use BFS
2: dmax ← maxs∈VT (depth(s)) � find maximum depth
3: for every s ∈ VT do
4: ni(s) ← number of nodes at depth i ≥ depth(s) in the subtree rooted at s
5: end for
6: for each state s in VT do � rooting factor calculation for every vertex
7: ds ← depth(s)
8: i ← ds, nwidest ← 1, dwidest ← ds

9: while i ≤ dmax and ni(s) ≥ nwidest do
10: if ni(s) > nwidest then
11: nwidest ← ni(s)
12: dwidest ← i
13: end if
14: i ← i + 1
15: end while
16: rs ← calculate the rooting factor of s using Eq. 4
17: end for

tional traversal is run afterwards, from the level with the deepest state(s) to the
root, to find the number of vertices below each vertex classified by their depths
(Algorithm 3, lines 3–7). Using this information, the rooting factor of each state
can be calculated by traversing from the state under consideration to the deeper
levels.

Having calculated the rooting factor values for every visited state, each state
is checked whether it is a local maximum or not, in terms of rooting factors,
among its children and parent in the tree. The state gets a positive observation
if that is the case, or a negative observation otherwise. The root of the entire
tree does not get a positive observation since it is a possible goal state and is
obviously not a subgoal. The observations made for each state are fed to the
Decision Rule 3 for a further classification.

The most time consuming portion of the Local Roots algorithm is the part
where the rooting factor value is calculated for each state which has O(n2)
worst time complexity. However, the worst case happens when the tree is linear
(although it is usually unlikely at the initial states of learning due to the explo-
ration component, the agent might execute a policy that visits each state only
once) and the branch factor (b) is 1, which means, by our definition, there is no
new subgoal to identify. Thus, the worst case can be avoided by a heuristic check
on the shape of the generated tree. On the other hand, the algorithm performs
O((logb(n))2) on the average, where n is the number of nodes in the tree. Since
the algorithm makes use of local episode trajectories, the number of nodes in the
tree (n) does not directly relate to the number of states in the whole domain.
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4 Experiments

We tested the algorithms on four grid world navigation domains (Fig. 2), three of
the which are well known benchmark problems in the related literature. State and
action set sizes of problems and corresponding references are given in Table 1. A
new 3 rooms grid world problem (Fig. 2b) is designed to investigate the subgoal
identification behaviour of the methods in a 3-way junction situation. Local
Roots, just like the other similar methods, transforms the problem to a transition
graph. Thus, the method is essentially independent of domain specific structure.
Our motivation for experimenting on grid world domains is to better visualize
the bottleneck idea for the reader.

(a) 2 rooms (b) 3 rooms (c) 6 rooms (d) Taxi

Fig. 2. Problem domains

In 2, 3 and 6 rooms problems, the agent can perform four movement actions,
which are north, east, south and west. The environment is non-deterministic,
since the agent moves to the intended direction with probability of 0.9 and moves
randomly in any of the movement directions with 0.1 probability. The reward
for reaching the goal state G is 1.0 while the reward for any other transition is 0.
In the 2 and 3 rooms problems, the agent starts from any cell in the left room(s)
while it starts from any cell in the upper left room in the 6 rooms domain.

The last problem is the famous Taxi domain (Fig. 2d, [4]), in which a taxi
tries to pick a passenger from its location and transfer it to a destination location
in a 5 × 5 grid world with designated locations. The taxi agent can perform 6
actions: movement actions north, east, south, west ; a pickup action to get the
passenger, and a putdown action to drop the passenger. The passenger is initially
located in 4 different cells marked as R, Y, G and B, and the destination of the
passenger is one of these four designated cells. The actions are noisy, leading the
agent to its intended direction with probability of 0.8 and randomly moving it
to the left or the right of the intended direction with probability of 0.1 each. The
agent is punished for wrong pickups and putdowns with −10 and it is rewarded
with +20 when it puts down its passenger in the desired location. Any other
transition is given the reward of −1.

4.1 Settings

We compared Local Roots method (LoRoots) with RN, LoBet and L-Cut, since
they use the same decision rule and can be employed on-line. The decision rule
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Table 1. Problem sizes and parameter values used

Problem Size Parameters used Ref.

|S| |A| Method p q tc tRN k ln

2 rooms 201 4 RN 0.06 0.01 - 2.0 2 7 [19]

L-Cut 0.3 0.01 0.05 - - -

LoBet 0.7 0.07 - - - -

LoRoots 0.6 0.06 - - - -

3 rooms 106 4 RN 0.05 0.01 - 2.0 2 7 -

L-Cut 0.1 0.01 0.05 - - -

LoBet 0.6 0.06 - - - -

LoRoots 0.6 0.06 - - - -

6 rooms 605 4 RN 0.5 0.008 - 2.0 2 7 [15]

L-Cut 0.2 0.01 0.05 - - -

LoBet 0.5 0.05 - - - -

LoRoots 0.75 0.05 - - - -

Taxi 500 6 RN 0.712 0.01 - 2.0 2 7 [4]

L-Cut 0.04 0.002 0.05 - - -

LoBet 0.3 0.03 - - - -

LoRoots 0.24 0.03 - - - -

parameters were optimized separately for each method and problem so that they
find subgoals in the early stages of learning and they eliminate noise properly.
The cost ratio (λfa/λmiss) and the prior ratio (p(N)/p(T )) parameters of Deci-
sion Rule 3 were set to 100 for all experiments. The visitation counts used by
RN were reset at the end of each episode. The remaining parameters used by the
subgoal identification methods are given in Table 1. Unfortunately, there is no
practical way to find the correct values other than a number of trial-and-error
experimentation sessions. Specifically, a heuristic we used to set p and q values
is, to examine the outputs of the used subgoal discovery methods and calibrate
them according to the subgoals that we manually identified. Other parameters
are mostly inherited from [17] where a further analysis can be found.

When a subgoal is found, the agent generates an option to reach that sub-
goal. The initiation set of the new option contained the states before the first
occurrence of the subgoal in each previous episode. Option lag (lo), the number
of time steps to look for states to add the initiation set, was 10. Termination
probability for each state in the initiation set was set to 0.0, while 1.0 was used
for the subgoal. The policy of the option was formed through ER by giving 100
reward upon reaching the subgoal, −10 punishment for leaving the initiation
set and −1 punishment for any other transition. For the policy learning part of
ER, α = 0.125 and γ = 0.9 were used as the learning parameters. The replay is
repeated 10 times for fast convergence.
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The agent incorporated Macro-Q learning algorithm, where Q values of an
option were updated according to Macro-Q learning while Q values of primitive
actions were updated according to regular Q learning. ε-greedy was used as
option selection strategy, with ε = 0.1, and α = 0.05 and γ = 0.9 were set as
learning parameters. The same γ value is used in Algorithm 2. All of the results
are averaged over 200 experiments.

4.2 Results and Discussion

Average number of steps to reach the goal state are compared among methods,
and the results are sketched in Fig. 3. Plots are smoothed for visual clarity. All of
the subgoal identification methods, including Local Roots, improve the learning
speed of the agent by leading it to the goal state earlier and our proposed method
matches the performance of the other methods. In general, subgoals discovered
by Local Roots seem to be as useful as the ones found by L-Cut, LoBet and RN.
We can conclude that the solution quality of Local Roots method is not worse
than others on the average.

LoBet algorithm has O(n · m) and O(n · m + n2 · logn) time complexities
on unweighted and weighted graphs respectively, while L-Cut algorithm requires
O(n3) time when the local interaction graph has n vertices and m edges. On the
other hand, RN algorithm is O(1). The time complexity of our proposed method,
Local Roots, depends on the maximum depth of a state in the tree it creates.
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Fig. 3. Average number of steps to goal for each problem
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It requires O((logb(n))2) time where b is the average branching factor and n is
the number of vertices in the tree.

CPU time measurements, indicating the CPU times used by each subgoal
discovery method excluding the underlying Macro-Q algorithm, are given in
Table 2. The results shows that both LoBet and L-Cut require much more time
than Local Roots because of their higher time complexities. The only exception
is LoBet for Taxi problem, whose time consumption seems to be nearly the same
as in Local Roots. On the other hand, although RN is O(1), its time complexity is
in fact associated with the number of steps taken, since it is invoked at every time
step, unlike the other methods waiting for the episode end. Longer episodes in
the earlier stages of an experiment causes RN to generally take more time than
Local Roots. Table 2 implies that Local Roots algorithm shows a significant
advantage in terms of CPU time compared to other methods.

Table 2. Average CPU time overhead per episode (msec)

Problem RN L-Cut LoBet LoRoots

2 rooms 0.63 5.18 0.65 0.45

3 rooms 0.33 1.78 0.32 0.24

6 rooms 11.00 289.30 7.10 4.08

Taxi 0.85 1.68 0.79 0.81

Figure 6 shows the subgoals discovered by all four methods for 2 rooms
problem, marked with brighter color showing high frequency of identification.
L-Cut, LoBet and RN finds more than one subgoals including the doorway
and states one step near to it. On the other hand, our proposed method finds
only the state before the doorway as it is the first merging point of the short-
est paths of the states in the left room to the goal state in the right room.
This characteristic causes Local Roots to find less number of subgoals than the
other algorithms, especially in 2, 3 and 6 rooms domains. However, as seen
Fig. 4, effectiveness of subgoals discovered are usually higher in Local Roots
method compared to the others. We define the effectiveness of a subgoal as
the (100×nsteps(option)/nsteps(episode))/nsubgoals, where nsteps(option) is the total
number steps passed within option sequences, nsteps(episode) is the total num-
ber of steps taken during the episode, and nsubgoals is the number of subgoals
identified at the end of an episode. Subgoal effectiveness can be interpreted as
the ability of a subgoal to trigger a useful option. Contribution of some of the
additional subgoals found by the other three methods are not as significant as
that are found by Local Roots in general.

Finally, average memory usage of Local Roots does not exceed the graph
based methods (i.e. LoBet and L-Cut) in general, since it uses a tree instead of a
graph, having less number of edges than the graphs used by the other methods. It
is worth noting that, memory usage metrics also include ER repositories (Fig. 5).
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Fig. 6. Subgoals found in 2 rooms domain by (a) L-Cut (b) LoBet (c) RN (d) Local
Roots.

In addition to the parameters of the Decision Rule 3, L-Cut requires one and
RN requires four more parameters while LoBet and Local Roots require none.
These extra parameters determine the quality of the subgoals found by L-Cut
and RN and make them dependent on the structure of the domain. In that
sense, Local Roots, like LoBet, is less dependent on the problem characteristics
compared to L-Cut and RN. Moreover, as seen in Fig. 4, Local Roots outperforms
LoBet in terms of subgoal quality.

5 Conclusion

In this paper, we propose a tree based automatic subgoal discovery method called
Local Roots that helps the learning agent to identify important states on the
way to the goal state in the early stages of learning. Local Roots method can be
employed upon reward peaks, which are usually goal states. Using the options
framework, the learning agent can devise abstractions to reach the identified
subgoals. The method utilizes a tree based metric to locally identify the junction
points of the shortcuts directed from each visited state towards the goal state.
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In terms of learning speed, Local Roots outperforms the regular Q-Learning
for all problem domains experimented. It also keeps up with the performance
of the other local methods on the average, showing that subgoals identified by
Local Roots are no worse than the ones found by other algorithms.

Compared to other graph based methods tested, Local Roots has lower time
complexity. On the other hand, when average CPU times per episode are com-
pared, Local Roots outperforms all other methods on the average, including
Relative Novelty which has the lowest theoretical time complexity, but should
be invoked at every time step. Local Roots is also shown to identify less num-
ber of subgoals with higher effectiveness in general. Moreover, it requires no
additional parameters unlike Relative Novely and Local Cuts.

A possible future research direction is to find an alternative way of discrimi-
nating noise from local subgoal information with less domain specific parameters.
Also, automatic detection of these parameters can be an important improvement
for all the online methods presented here.
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Abstract. We propose the ‘Copula PC’ algorithm for causal discov-
ery from a combination of continuous and discrete data, assumed to be
drawn from a Gaussian copula model. It is based on a two-step approach.
The first step applies Gibbs sampling on rank-based data to obtain sam-
ples of correlation matrices. These are then translated into an average
correlation matrix and an effective number of data points, which in the
second step are input to the standard PC algorithm for causal discovery.
A stable version naturally arises when rerunning the PC algorithm on
different Gibbs samples. Our ‘Copula PC’ algorithm extends the ‘Rank
PC’ algorithm, which has been designed for Gaussian copula models for
purely continuous data. In simulations, ‘Copula PC’ indeed outperforms
‘Rank PC’ in cases with mixed variables, in particular for larger numbers
of data points, at the expense of a slight increase in computation time.

Keywords: Causal discovery · Gaussian copula · Mixed data ·
Extended rank likelihood

1 Introduction

Causal discovery, or causal structure learning [23], aims to find an underlying
directed acyclic graph (DAG), which represents direct causal relations between
variables. It is a very popular approach for multivariate data analysis and there-
fore is widely studied in the past few years, resulting in lots of algorithms.
The PC [27,28] algorithm can be considered the reference causal discovery algo-
rithm. It makes use of conditional independence tests to build the underlying
DAG from observations. Starting from a complete undirected graph, the PC
algorithm removes edges recursively according to the outcome of the conditional
independence tests. This procedure yields an undirected graph, also called the
skeleton. After applying various edge orientation rules, it finally gives back a
partially directed graph to represent the underlying DAGs.

One advantage of the PC algorithm is that it is computationally feasible
for sparse graphs even with thousands of variables. Therefore, it is widely used
in high-dimensional settings, generating a variety of applications [20,29]. Also,
open-source software is available like pcalg [17] and the Tetrad project [25].
c© Springer International Publishing AG 2016
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When applied to Gaussian models, the PC algorithm tests conditional inde-
pendence using partial correlation based on Pearson correlations between vari-
ables: when the joint distribution is a multivariate Gaussian, pairwise conditional
independence is equivalent to the vanishing of the corresponding partial correla-
tion [18]. Following [12], we will refer to the PC algorithm for Gaussian models
as the ‘Pearson PC’ algorithm. As input it takes the correlation matrix of the
observed data and the number of data points. The number of data points is
needed for the conditional independence tests: the higher the number of data
points, the more reliable the observed correlation matrix as an estimate of the
(unknown) true correlation matrix, and the more easily the null hypothesis of
conditional independence (given the same value for the partial correlation and
the significance level) gets rejected. Under relatively mild assumptions regarding
the sparseness of the true underlying DAG, the ‘Pearson PC’ algorithm shows
uniform consistency [16].

Harris and Drton [12] extend the PC algorithm to non-parametric Gaussian
(nonparanormal) models, i.e., continuous data assumed to be generated from
a Gaussian copula model. They propose to apply the standard PC algorithm,
but then replacing the Pearson correlation matrix with rank-based measures
of correlation. The so-called ‘Rank PC’ (RPC) algorithm works as well as the
‘Pearson PC’ algorithm on normal data and much better on non-normal data,
and is shown to be uniformly consistent in high-dimensional settings.

In this paper, we aim to generalize the ‘Pearson PC’ and ‘Rank PC’ algorithm
to Gaussian copula models that can also handle binary and ordinal variables.
The ‘Rank PC’ algorithm is explicitly limited to the continuous situation, where
ties appear with probability zero, making ranks well-defined. In the presence of
binary and ordinal variables, ties make the rank correlations between observed
variables different from those between the corresponding latent variables in the
Gaussian copula setting. Ignorance of this difference typically leads to underes-
timates of the (absolute) correlations [13].

It is tempting to follow a similar two-step approach as for ‘Rank PC’: first
estimate the correlation matrix in the latent space and then use this as input to
the standard PC algorithm. This, however, is not as straightforward as it may
seem, for two reasons. First, because of the ties, estimating the correlation matrix
of Gaussian copula models for mixed data is considerably more complicated.
Second, the ties imply a loss of information, which makes that our estimate of
the correlation matrix will tend to be less reliable than in the fully continuous
case, which should be accounted for when applying the conditional independence
tests in the PC algorithm.

To solve both issues, we propose to make use of a Gibbs sampling procedure,
specifically the one derived by Hoff [13] based on the so-called extended rank
likelihood. This procedure is relatively straightforward and easy to implement
(see the code in the Appendix of [13]). For purely Gaussian data, the correlation
matrix samples follow a specific kind of inverse-Wishart distribution [3], which we
refer to as the projected inverse-Wishart distribution. Projected inverse-Wishart
distributions are characterized by two parameters: the scale matrix and the
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degrees of freedom; the former relates to the average correlation matrix and the
latter to the number of data points. As we will show, under the projected inverse-
Wishart, the variance of each off-diagonal element of the correlation matrix is
an approximate function of its expectation and the degrees of freedom: the more
degrees of freedom, the smaller the variance. The idea is now to estimate the scale
matrix and degrees of freedom from the Gibbs samples of more general Gaussian
copula models on mixed data, as if they were also drawn from a projected inverse-
Wishart distribution. The scale matrix is translated into a correlation matrix and
the degrees of freedom into a so-called ‘effective number of data points’, to take
into account the reliability of our estimate of the correlation matrix. These are
then input to the standard PC algorithm for causal discovery.

We refer to our two-step procedure as the ‘Copula PC’ (CoPC) algorithm.
We also derive a stable version, referred to as ‘Stable Copula PC’ (SCPC), which
runs PC repeatedly on a number of Gibbs samples. Experimental results show
that both CoPC and SCPC outperform the current ‘Rank PC’ algorithm in
mixed databases with discrete and continuous variables.

The rest of this paper is organized as follows. Section 2 reviews some rele-
vant background information and analyzes issues of existing algorithms in more
detail. Section 3 proposes an approximate inference method for the correlation
matrix and the effective number of data points based on the projected inverse-
Wishart distribution, and then derives the resulting algorithms CoPC and SCPC.
Section 4 compares CoPC and SCPC with the ‘Rank PC’ algorithm on simulated
data and provides an illustration on real-world data of ADHD patients. Section 5
gives conclusions and future work.

2 Preliminaries and Problem Analysis

In this section, we first review some necessary background information on causal
discovery, then briefly introduce the PC and ‘Rank PC’ algorithm, and finally
analyze the challenges current PC algorithms face for mixed data.

2.1 Causal Structure Learning

A graph G = (V ,E) consists of a set of vertices V = {X1, . . . , Xp}, representing
random variables, and a set of edges E, representing relations between pairs of
variables. A graph is directed if it only contains directed edges while it is undi-
rected if it only contains undirected edges. Graphs containing both directed and
undirected edges are called partially directed graphs. A graph with no directed
cycles, e.g., Xi → Xj → Xi is acyclic. A graph which is both directed and acyclic
is a Directed Acyclic Graph (DAG). If there is an edge from Xi to Xj , Xi is the
parent of Xj . The set of parents of Xj in graph G is denoted by pa(G,Xj).

A multivariate probability distribution P over variables V = {X1, . . . , Xp} is
said to factorize according to a DAG G = (V ,E), if the joint probability density
function of P can be written as the product of the conditional densities of each
variable given its parents in G, i.e., f(X1, . . . , Xp) =

∏p
i=1 f(Xi|pa(G,Xi)).
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If this condition holds, we can read off conditional independence relationships in
distribution P from the DAG via a graphical criterion called d-separation [24].
D-separation implies that each variable is independent of its non-descendants
given its parents.

Several DAGs may, via d-separation, correspond to the same set of condi-
tional independencies. Such DAGs form a Markov equivalence class, which can be
uniquely represented by a completed partially directed acyclic graph (CPDAG)
[6]. Arcs in a CPDAG indicate a cause-effect relation between variables since the
same arc occurs in all members of the CPDAG. Undirected edges Xi − Xj in
a CPDAG indicate that some of its members contain an arc Xi → Xj whereas
other members contain an arc Xj → Xi. The aim of causal discovery is to learn
the Markov equivalence class of a DAG G = (V ,E) from n i.i.d. observations
of V .

2.2 PC Algorithm and Rank PC Algorithm

The PC algorithm starts from a complete undirected graph, and then removes
edges recursively according to conditional independencies yielding a partially
connected undirected graph called the skeleton, after which some orientation
rules are applied to direct as many edges as possible, resulting in a completed
partially directed acyclic graph, i.e. the underlying CPDAG.

During the process, testing conditional independence plays the most impor-
tant role. The PC algorithm uses partial correlation, denoted by ρuv|S , to do it.
The correlation matrix from independent observations of a random vector Z can
be used to estimate ρuv|S [2]. Then, classical decision theory is applied to judge
conditional independencies using significance level α,

Zu ⊥⊥ Zv|ZS ⇔
√

n − |S| − 3
∣∣∣∣
1
2

log
(

1 + ρ̂uv|S
1 − ρ̂uv|S

)∣∣∣∣ ≤ Φ−1(1 − α/2), (1)

where u �= v and S ⊆ {1, . . . , p}\{u, v}. Thus in order to run the PC algorithm
we need the correlation matrix corresponding to the data to estimate ρ̂uv|S and
the number of observations n.

The PC algorithm has been extended to a broader class of Gaussian copula
by using rank correlations to replace Pearson correlations, resulting in the ‘Rank
PC’ algorithm [12]. Rank correlations, typically Spearman’s ρ and kendall’s τ ,
only consider the ranks among observations, ignoring the actual variables.

Definition 1 (Gaussian Copula Model). Consider two random vectors Z =
(Z1, . . . , Zp) and Y = (Y1, . . . , Yp), satisfying the conditions Z ∼ N (0, C) and
Yi = F−1

i (Φ(Zi)) for i = 1, . . . , p where C denotes the correlation matrix of
Z and Fi

−1(t) = inf{y : Fi(y) ≥ t} is the pseudo-inverse of a cumulative dis-
tribution function Fi. Then this model is called Gaussian copula model with
correlation matrix C and univariate margins Fi.

In the Gaussian copula model, when all margins are continuous, ties occur
with zero probability making ranks well-defined. For such so-called nonparanor-
mal models, the sample correlations among ranks can naturally be used as an
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estimator for the Pearson correlation in the latent space. In this nonparanormal
setting, RPC has been shown to perform well [12,19].

2.3 Challenges for Mixed Data

RPC works well on continuous data, because tied observations occur with prob-
ability zero. In the presence of discrete margins, however, the estimator used in
RPC is no longer consistent because of the tied observations. In this case, stan-
dard rank-based correlation will be different from the true correlation in latent
space [13], typically underestimating it. Hence, our first challenge is to estimate
the underlying C efficiently and consistently from mixed data.

A second challenge concerns the information loss incurred by discrete vari-
ables. Specifically, simply setting n in Eq. (1) to the number of data points can
lead to an underestimate of the p-values provided by the conditional indepen-
dence tests. To solve this problem, we introduce the notion of an effective number
of data points.

3 Approximate Inference and Copula PC Algorithm

In this section, we introduce an approximate inference approach for the under-
lying correlation matrix and the effective number of data points from mixed
data. Subsection 3.1 introduces the projected inverse-Wishart distribution and
its application to Gaussian models. Subsection 3.2 discusses how to obtain cor-
relation matrix samples from mixed data using a Gibbs sampling procedure.
Subsection 3.3 shows how to use these samples to estimate the two parameters
of the projected inverse-Wishart distribution: the scale matrix (as the underlying
correlation matrix) and the degrees of freedom (as the effective number of data
points). Subsection 3.4 gives the resulting Copula PC algorithm and the Stable
Copula PC algorithm.

3.1 Projected Inverse-Wishart Distribution

Priors on correlation matrices are typically derived by choosing the inverse-
Wishart distribution, denoted by W−1(Σ;Ψ0, ν), as a prior on covariance matri-
ces and then turning the covariance matrices into a correlation matrix to end
up with an implied distribution on the correlation matrix. We choose Σ from
W−1(Σ;Ψ0, ν) and write

P (C) = PW−1(C;Ψ0, ν) (2)

where Cij = Σij√
ΣiiΣjj

for ∀ i, j. Since many covariance matrices possibly cor-

respond to the same correlation matrix, the above process can be considered
as a projection from covariance matrices to a correlation matrix. Therefore, we
refer to this distribution on correlation matrix C as a projected inverse-Wishart
distribution.
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For Gaussian models, the projected inverse-Wishart distribution gives exact
inference [21]. Specifically, given data Z = (z1, . . . ,zn), the posterior reads

P (Σ|Z) = W−1(Σ;Ψ0 + Ψ, ν + n) and P (C|Z) = PW−1(C;Ψ0 + Ψ, ν + n),

with Ψ = ZTZ. Also, the projected inverse-Wishart is scale invariant [3,14], in
the sense that we can make the posterior distribution on correlation matrices
independent of the scale of the data by choosing Ψ0 = 0, or perhaps better,
Ψ0 = ε1 in the limit ε ↓ 0.

Summarizing, we consider the prior distribution

P (Σ) = W−1(Σ; ε1, p + 1) in the limit ε ↓ 0,

which in fact boils down to the well-known improper Jeffreys prior [32]:

P (Σ) ∝ ‖Σ‖−(p+1).

For Gaussian copula models, although there is no analytical expression, we
still expect that the posterior P (C|Y ) can be approximated through a projected
inverse-Wishart distribution, i.e., P (C|Y ) ≈ PW−1(C;Ψ, ν) for some Ψ and ν.

3.2 Gibbs Sampler Based on Extended Rank Likelihood

Hoff [13] describes an elegant procedure to obtain samples from P (C|Y ) for a
Gaussian copula model. The essence is that we only consider the ranks among
observations, hence the name extended rank likelihood, ignoring the actual vari-
ables. Since the cumulative distribution functions Fi(Yi) are non-decreasing,
observing yi1,j < yi2,j implies that zi1,j < zi2,j , where yi1,j denotes the ith1
observation of the jth component of random vector Y , To be precise, observing
Y = (y1, . . . ,yn) tells us that Z = (z1, . . . ,zn) must lie in the set

{
Z ∈ Rn×p : max {zk,j : yk,j < yi,j} < zi,j < min {zk,j : yi,j < yk,j}

}
.

Strong posterior consistency for C under the extended rank likelihood has
been proved in the situation with both discrete and continuous marginal distri-
bution functions [22].

An off-the-shelf sampling algorithm based on the extended rank likelihood is
full Gibbs sampling [13]. The code of this sampling algorithm is provided in the
Appendix of [13]. In this algorithm, each component of Z is initialized accord-
ing to the rank information of the corresponding component of Y , after which
each component is resampled alternatively. Here we propose a slight modification
by just resampling the discrete components instead of all of them. Experimental
tests reveal that the results of this faster sampling approach are indistinguishable
from Hoff’s original Gibbs sampler. Although this modification is quite straight-
forward, it significantly reduces computation time because sampling continuous
variables is far more time-consuming than sampling discrete ones in Hoff’s Gibbs
sampler. We will refer to this modified sampling algorithm as SamplingAlgo.

So, given the observed data Y , samples on the underlying correlation matrix,
denoted by {C(1), . . . , C(m)}, can be obtained using SamplingAlgo.
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3.3 Estimation of the Correlation Matrix and the Effective Number
of Data Points

This subsection aims to estimate the underlying correlation matrix and the effec-
tive number of data points from the obtained samples.

Theorem 1 suggests a procedure to estimate the parameters Ψ and ν from
samples of a projected inverse-Wishart distribution PW−1(C;Ψ, ν).

Theorem 1. If the correlation matrix C follows a projected inverse-Wishart
distribution with parameters Ψ (Ψii = 1) and ν, i.e.,

P (C) = PW−1(C;Ψ, ν),

then for each off-diagonal element Cij(i �= j) and large ν, we have

E [Cij ] ≈ Ψij andVar [Cij ] ≈ (1 − (Ψij)2)2

ν
.

The proof is given in the Appendix.
According to Theorem 1, the mean over samples of C is an excellent approx-

imation of Ψ . As for ν, we have,

ν ≈ (1 − (E [Cij ])2)2

Var [Cij ]
. (3)

The idea now is to apply the same estimates, as if the samples obtained by
Gibbs sampling the Gaussian copula model on mixed data also (approximately)
follow a projected inverse-Wishart distribution. Specifically, for the effective
number of data points n̂, we propose to take the average over all p(p − 1)/2
estimates on ν that can be computed by applying (3) to each upper triangular
element of a p-dimensional correlation matrix C.

3.4 Copula PC Algorithm and Stable Copula PC Algorithm

Now, we turn the previous results into a working algorithm. The two key input
arguments of the ‘Pearson PC’ algorithm are the correlation matrix and the
number of data points. In the general Gaussian copula model, we take the mean
over {C(1), . . . , C(m)} and the mean over p(p − 1)/2 estimates on ν as the two
arguments respectively, resulting in the Copula PC algorithm.

Next, we introduce a stable version of the Copula PC algorithm. We take l
instances from all the m samples. For each instance, a corresponding graph can
be obtained via the ‘Pearson PC’ algorithm using the earlier estimated effec-
tive number of data points, by which a collection of l graphs can be generated,
denoted by {G̃1, . . . , G̃l}. We keep those edge marks that emerge with a proba-
bility higher than a pre-defined threshold β and remove the others, leading to a
resulting graph. Since this resulting graph seemingly contains only ‘stable’ edge
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Algorithm 1. Copula PC algorithm and its stable version
1: Input: Observations Y , Initialized parameters m, l, β
2: Output: Causal graph Gc by CoPC, Gs by SCPC
3: C(1), . . . , C(m) = SamplingAlgo(Y )
4: for all Cij with i < j (upper triangular elements) do

5: Compute and store νk =
(1−(E [Cij ])

2)2

Var [Cij ]
� Equation (3)

6: end for
7: n̂ = the average over {ν1, . . . , νp(p−1)/2}
8: if CoPC then � procedures for CoPC
9: Ĉ = 1

m

∑m
j=1 C(j)

10: Gc = pc(Ĉ, n̂) � the ‘Pearson PC’ algorithm
11: else � procedures for SCPC
12: Choose l (l < m) instances from C(1), . . . , C(m)

13: for i = 1 : l do
14: Compute and store G̃i = pc(C(li), n̂)
15: end for
16: for all edge marks do
17: e = the number of graphs containing the current edge mark
18: if e/l > β then
19: keep the edge mark
20: end if
21: Gs = all kept edge marks among {G̃1, . . . , G̃l}.
22: end for
23: end if

marks, we call this method stable Copula PC algorithm (SCPC). The size of l
has a linear influence on running time because choosing l means the ‘Pearson
PC’ algorithm would run l times. As for β, a small value means keeping more
edge marks and vice versa. The Copula PC algorithm and its stable version are
summarized in Algorithm 1.

4 Experiments

In this section, we first verify the property of the projected inverse-Wishart
distribution described by Eq. (3) and check whether it still holds in the presence
of discrete variables. Then, we compare the proposed CoPC and SCPC with the
‘Rank PC’ algorithm on simulated data and give an illustration on real-world
data of ADHD patients.

Following Kalisch and Bühlmann [16], we simulate random DAGs and draw
samples from the distributions faithful to them. Firstly, we generate an adjacency
matrix A, whose entries are zero or in the interval [0.1, 1]. There exists a directed
edge from i to j in the corresponding DAG, if i < j and Aji �= 0. The DAGs
generated in this way have the property E (Ni) = s(p − 1), where Ni is the
number of neighbors of node i, and s is the probability that there is an edge
between any two nodes, called the sparseness parameter. Then, the samples of
a random vector Z are drawn through
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Fig. 1. The relationship between the expectation and the variance of the elements of
sampled correlation matrices. Left panel: The samples are drawn from a given projected
inverse-Wishart distribution. Right panel: The samples are drawn via SamplingAlgo,
with circles for binary cases, triangles for ordinal cases with 4 levels, and squares for
continuous cases.

Z = AZ + ε, (4)

where ε = (ε1, . . . , εp) is a vector of independent standard normal random vari-
ables. The data generated in this way follow a multivariate Gaussian distribution.

4.1 Estimation for the Effective Number of Data Points

As argued in Subsect. 3.3, the expectation and variance of the elements of correla-
tion matrices drawn from a projected inverse-Wishart distribution are strongly
related. To check this relationship, we proceed as follows: (1) we generate a
random p-dimensional correlation matrix Ψ ; (2) we draw 500 samples from a
projected inverse-Wishart distribution with parameters Ψ and ν; (3) for each
upper triangular element, we plot its variance against its expectation.

The left panel in Fig. 1 shows a typical result for p = 20 and ν = 1000.
We see that almost all pairs are distributed around the theoretical curve (solid
line) especially when the expectation is far from zero, which indicates that it
is indeed possible to infer ν of a projected inverse-Wishart distribution via the
expectation and variance of off-diagonal elements.

Next, we study how our inference method works for estimating n̂ in different
cases. We first generate n samples of Z using Eq. (4) and discretize some of
the variables to obtain the simulated samples of the observed random vector
Y . Then, we run SamplingAlgo to get samples of the underlying C. The results
for p = 20 and n = 1000 for different cases are shown in Fig. 1 (right panel),
where ‘bins = 2’ means that all variables are binary, ‘bins = 4’ means that all
variables are ordinal with 4 levels and ‘continuous’ means that all variables are
kept continuous. We take (1 − (E [Cij ])2)2 for the x-axis and n×Var [Cij ] for the
y-axis, so that all data points are expected to be distributed around a straight line
with slope n/n̂. For purely continuous variables, a straight line with slope 1 gives
an almost perfect fit, as expected. For ordinal and binary variables, we still find
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a clear trend, but mild deviations from a perfect straight line, indicating that the
projected inverse-Wishart distribution is a fine, but not perfect approximation
of the exact posterior. The stronger the discretization, the larger the slope n/n̂
and thus the lower our estimated effective number of data points.

More extensive experiments (not shown) done with different numbers of vari-
ables, data points, Gibbs samples and sparseness parameters, reveal that these
hardly influence the general picture, as long as the number of data points and
the number of Gibbs samples are both at least 100.

4.2 Causal Discovery on Simulations

In this subsection, we compare CoPC and SCPC with the ‘Rank PC’ [12] algo-
rithm. All computations are implemented in the R-package pcalg.

We first generate multivariate normal data (p variables) via Eq. (4). After
that, 25% of all p variables are discretized into binary variables, and another
25% of them are discretized into ordinal variables with 5 levels. In this way,
we simulate the observations of Y which are generated from a Gaussian copula
model with both discrete and continuous margins.

Three measures are used to test the performance: (1) percentage of cor-
rect edges in the resulting skeleton, usually called true positive rate (TPR);
(2) percentage of spurious edges, usually called false positive rate (FPR); (3)
Structural Hamming Distance (SHD), counting the number of edge insertions,
deletions, and flips in order to transfer the estimated CPDAG into the correct
CPDAG [30]. The first two measures are for the skeleton while SHD is for the
CPDAG. A smaller SHD indicates better performance.

Next, we compare the performance of three versions of the PC algorithm,
RPC, CoPC, and SCPC in terms of TPR, FPR, and SHD. We restrict the
significance level to α = 0.01, which has been shown to yield the best over-
all SHD [16]. For CoPC, we drop the first 20 Gibbs samples and save the
next 100 samples (m = 100). For SCPC, we take l = 20 equidistant sam-
ples, so {C(1), C(6), . . . , C(96)}, and choose β such that the TPR for SCPC
is more or less equal to that of RPC, which amounts to β = 0.4 for sparse
graphs with 10 nodes, β = 0.45 for sparse graphs with 50 nodes, and β = 0.3
for dense graphs. The remaining parameters are set as follows: p ∈ {10, 50},
n ∈ {500, 1000, 2000, 5000}, and E [N ] ∈ {2 (Sparse), 5 (Dense)}.

The comparative results in Fig. 2 (10 nodes) and Fig. 3 (50 nodes) provide
the mean over 100 repeated experiments and errorbars representing 95 % confi-
dence intervals. First, for sparse graphs (both small and large graphs), the three
algorithms get nearly the same results w.r.t. TPR, but CoPC and SCPC show a
large advantage over RPC w.r.t. FPR and SHD except SCPC with large graphs,
which becomes more prominent with increasing sample size. Second, for dense
graphs, the advantage of CoPC and SCPC over RPC still exists w.r.t. FPR,
although seemingly CoPC performs a little worse than SCPC and RPC w.r.t.
TPR. Third, we note that the performance of RPC deteriorates seriously w.r.t.
FPR with the increase in sample size, while CoPC and SCPC are very stable.
Apparently, using sample size as the effective number of data points, RPC incurs
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Fig. 2. Performance of Rank PC, Copula PC, and Stable Copula PC for 10 nodes,
showing the mean of TPR, FPR, and SHD over 100 experiments together with 95 %
confidence intervals. The first row represents the results with sparse graphs (E [N ] = 2)
while the second row represents those with dense graphs (E [N ] = 5).

more false positives especially for larger sample sizes. Overall, CoPC and SCPC
clearly outperform RPC, especially in the sparse cases with larger sample sizes.

4.3 Application to Real-World Data

In this subsection, we give an illustration on a real-world dataset on pheno-
typic information about children with Attention Deficit Hyperactivity Disorder
(ADHD) [5]. It contains 23 variables for 245 subjects. We focus on nine variables
as in [26], but keep all subjects with missing values since these are easily handled
by the Gibbs sampler. The nine variables considered are: gender (G), attention
deficit level (AD), hyperactivity/impulsivity level (HI), verbal IQ (VIQ), per-
formance IQ (PIQ), full IQ (FIQ), aggressive behavior (Agg), medication status
(Med), handedness (HN), where four of them (G, Agg, Med, HN) are binary.

We run CoPC and SCPC (l = 30, β = 0.4) on the dataset and consider prior
knowledge that no variable can cause gender. The resulting graphs are shown in
Figure 4. The graphs suggest that gender has an effect on attention deficit level,
which then causes hyperactivity/impulsivity level. This point has been confirmed
by many studies [4], [31]. It is common that AD and Agg cause patients to take
medicine. Also, VIQ, PIQ, and FIQ are connected to each other by bi-directed
edges. This indicates that the causal sufficiency assumption is violated, i.e., that
there should be a latent common cause related to IQ, as also suggested in [26].
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Fig. 3. Performance of Rank PC, Copula PC, and Stable Copula PC for 50 nodes,
showing the mean of TPR, FPR, and SHD over 100 experiments together with 95 %
confidence intervals.

Fig. 4. The resulting graphs by CoPC (left panel) and SCPC (right panel) on ADHD
dataset.
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5 Conclusions and Future Work

In this paper we introduced a novel two-step approach for estimating the causal
structure underlying a Gaussian copula model on mixed data. The essence is
to estimate the correlation matrix in the latent space, which can then be given
to any causal discovery algorithm to search for its underlying structure. Ties
between the discretized observations incur information loss, making the esti-
mate of correlation matrix less reliable than in fully continuous cases. For this,
we introduced the notion of ‘effective number of data points’ that can be esti-
mated from the expectation and variance of the correlation matrix elements. Our
approach, based on ranks and correlation matrices, is fully scale invariant and
has a natural uninformative setting when choosing a uniform distribution over
pairwise correlations, which can be adjusted to account for different assumptions.

We like to think of our two-step approach as a general principle, where for
each of the two steps one could plug in one’s favorite choice: e.g., a different
MCMC method [15] or a MAP approach along the lines of [1] for estimating
the correlation matrix and its reliability, and another method, like FCI [28] or
BCCD [7], for causal structure learning. Having generated samples, running the
PC algorithm several times to gain an insight into the reliability of structure esti-
mates is an obvious thing to do. Similar procedures have been proposed, e.g., by
bootstrapping the original dataset [8,10]. In our simulations, the Gibbs sampler
appears to converge quite fast, which makes Gibbs sampling cheap compared to
running the PC algorithm, in particular for models with many variables. Our
choice to only resample the discrete random variables and not the continuous
ones, here also helps. Being fully Bayesian about structure learning as well may
be very nice in theory [11], but is computationally infeasible in practice for any
reasonable number of variables. Altogether, our Bayesian approach to sample
correlation matrices in combination with a more frequentist approach towards
structure learning attempts to combine the best of both worlds.

Our methods require the setting of just a few parameters: the significance
level α to be used in the PC algorithm (typically 0.01 or 0.05), the number of
Gibbs samples and burn-in (the more, the better), and for SCPC, the number
of instances l in the ensemble (the more, the better), and the threshold β (the
higher, the more conservative).

Our estimate of the ‘effective number of data points’ appears to work nicely in
practice, but can and perhaps should be further improved. Instead of considering
the variance of the elements of the correlation matrix, one may come up with
another, more direct estimate, for example the entropy of the distribution and
translate that into an effect number of data points. Preliminary attempts in that
direction failed by being typically much less robust than the one described in this
paper. Our current estimate gives a single, global value for the effective number
of data points. Future work may consider estimating a different value for each
conditional independence test, since each test only relies on a local structure,
involving only part of the variables. Such estimates then can be integrated into
the causal discovery algorithm itself. Another line of future research concerns the
theoretical analysis of CoPC and SCPC, where it can be studied to what extent
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and under which conditions consistency can be proven. Our conjecture here is
that consistency of our two-step procedure follows from the proven consistency of
the two separate steps: Gibbs sampling to estimate the correct correlation matrix
C [22] and the PC algorithm to arrive at the correct causal structure [16].

Appendix: Proof of Theorem 1

Consider partitioning the matrix Σ and Ψ as

Σ =
[

Σaa Σab

Σba Σbb

]
and Ψ =

[
Ψaa Ψab

Ψba Ψbb

]
.

Then, if P (Σ) = W−1(Σ;Ψ, ν), we have

P (Σaa) = W−1(Σaa;Ψaa, ν − dim(b)),
P (Σbb|a) = W−1(Σbb|a;Ψbb|a, ν), (5)

P (Σ−1
aa Σab|Σbb|a) = N (Σ−1

aa Σab;Ψ−1
aa Ψab, Σbb|a ⊗ Ψ−1

aa ),

where dim(b) is the dimension of Σbb and Σbb|a = Σbb − ΣbaΣ−1
aa Σab [9].

Without loss of generality, we restrict our analysis to a two-dimensional sys-
tem and suppose that we draw

Σ ∼ W−1

((
1 ρ
ρ 1

)
, ν

)
.

Then, according to (5), we have

Σ11 ∼ W−1(1, ν − 1), Σ22|1 ∼ W−1(1 − ρ2, ν), Σ−1
11 Σ12|Σ22|1 ∼ N (ρ,Σ22|1).

Rewriting the resulting ρ̂ in terms of these variables, we obtain

ρ̂ =
Σ12√

Σ11

√
Σ22

=
(Σ−1

11 Σ12)
√

Σ11√
Σ22|1 + Σ11(Σ−1

11 Σ12)2
. (6)

Since for large ν,

E [Σ11] =
1

ν − 3
≈ 1

ν
, E [Σ22|1] =

1 − ρ2

(ν − 2)
≈ 1 − ρ2

ν
,

Var [Σ11] =
2

(ν − 3)2(ν − 5)
≈ 2

ν3
,Var [Σ22|1] =

2(1 − ρ2)2

(ν − 2)2(ν − 4)
≈ 2(1 − ρ2)2

ν3
.

we can approximate,

Σ11 ≈ 1
ν

(
1 +

√
2
ν

x

)
, Σ22|1 ≈ 1 − ρ2

ν

(
1 +

√
2
ν

y

)

Σ−1
11 Σ12 ≈ ρ +

√
1 − ρ2

ν
z, (7)
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where x, y, and z are independent random variables, all with mean zero and
unit variance. Indeed, for large ν, all noise terms scale with

√
1/ν relative to the

mean, and can hence be ignored when computing the expectation, to yield, as
expected,

E [ρ̂] ≈ ρ. (8)

To estimate the variance, we substitute (7) into (6), and compute (in leading
order, and evaluated for x = y = z = 0),

∂ρ̂

∂x
≈ ρ(1 − ρ2)

√
1
2ν

,
∂ρ̂

∂y
≈ ρ(1 − ρ2)

√
1
2ν

,
∂ρ̂

∂z
≈ (1 − ρ2)3/2

√
1
ν

,

yielding the variance

Var [ρ̂] =
(

∂ρ̂

∂x

)2

+
(

∂ρ̂

∂y

)2

+
(

∂ρ̂

∂z

)2

≈ (1 − ρ2)2

ν
. (9)
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17. Kalisch, M., Mächler, M., Colombo, D., Maathuis, M.H., Bühlmann, P.: Causal
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Abstract. Recommender Systems are an important tool in e-business,
for both companies and customers. Several algorithms are available to
developers, however, there is little guidance concerning which is the best
algorithm for a specific recommendation problem. In this study, a met-
alearning approach is proposed to address this issue. It consists of relat-
ing the characteristics of problems (metafeatures) to the performance of
recommendation algorithms. We propose a set of metafeatures based on
the application of systematic procedure to develop metafeatures and by
extending and generalizing the state of the art metafeatures for recom-
mender systems. The approach is tested on a set of Matrix Factorization
algorithms and a collection of real-world Collaborative Filtering datasets.
The performance of these algorithms in these datasets is evaluated using
several standard metrics. The algorithm selection problem is formulated
as classification tasks, where the target attribute is the best Matrix Fac-
torization algorithm, according to each metric. The results show that the
approach is viable and that the metafeatures used contain information
that is useful to predict the best algorithm for a dataset.

Keywords: Recommender system · Collaborative filtering · Model
selection · Metalearning

1 Introduction

The digital economy enabled an important source of revenue for companies, by
increasing the number of customers and markets available. However, e-commerce
websites usually have an overwhelming amount of products in their catalog,
which can easily result in the loss of purchase interest. This problem, known as
information overload, has been reduced with the use of Recommender Systems
(RSs), which recommend potentially interesting items [1]. Specifically in Collab-
orative Filtering (CF) algorithms, which is the focus of this work, these systems
gather data from customers, products and relationships established between ele-
ments from these two groups (e.g. a customer visualizes the page of a product
or buys that product) to extract patterns. These patterns can be used to rec-
ommend possibly interesting items in future sessions.
c© Springer International Publishing AG 2016
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There are several recommendation methodologies, each one with a large vari-
ety of algorithms [1]. This makes it difficult to select the best algorithm for a
new problem. The most common strategy is trial and error. However, it has a
high computational cost. In fact, when the data size is large, it becomes virtually
impossible to pursue this approach. The Metalearning (MtL) approach, which
has proved successful in other Data Mining tasks, can provide a good solution
to this problem. Besides, it allows the extraction of knowledge able to explain
why a suggested algorithm is better suited for a specific dataset.

MtL studies how machine learning (ML) can be employed to understand the
learning process and, improve the use of machine learning in future applica-
tions [6]. In MtL, learning occurs at two levels: base-level and meta-level [2]. At
the base-level, base-learners (in this work, they are the CF algorithms) accumu-
late experience on a specific learning task (i.e., a single dataset). At the meta-
level, meta-learners accumulate experience on the behavior of multiple base-
learners on multiple learning tasks (i.e., multiple datasets). This experience is rep-
resented as a metamodel, which can be used to suggest the best base-learner for a
specific dataset.

One of the main challenges in MtL is to define informative metafeatures,
i.e. characteristics that effectively describe the area of competence of each algo-
rithm [2]. In this study, the focus is on rating-based CF datasets and the metafea-
tures proposed here are based on three different perspectives on their distribution:
in terms of user, item and global. These distributions are aggregated using sim-
ple, standard summary statistical functions [18]. These metafeatures are expected
to contain some useful information about the (relative) performance of the algo-
rithms. The experimental approach used in this work can be summarized as:

1. base-level experimental work to estimate the performance of the selected CF
algorithms on the selected datasets;

2. extraction of metafeatures from the datasets;
3. meta-level learning to relate the metafeatures with the base-level algorithm

performance;
4. extraction and presentation of metaknowledge extracted.

This work extends existing studies [7,14,28] by (1) proposing an approach
with algorithm-independent metafeatures and (2) by performing the experimen-
tal work on a significantly larger number of datasets and base-level algorithms.
The goal is to generalize the knowledge extracted from this process, rather than
focus on specific application niches, unlike the related work studies.

This document is organized as follows: Sect. 2 presents the main aspects
of CF and MtL, with emphasis on related work of model selection for RSs.
Section 3 holds the explanation of the metafeature process to extract CF data
characteristics. Section 4 describes the experimental procedure at the base and
meta-levels, while Sect. 5 contains the results from both evaluation experiments.
It also shows the knowledge extracted from the experiments performed. Section 6
presents the main conclusions and points out possible future works.
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2 Related Work

2.1 Collaborative Filtering

RSs are inspired by human social behavior, where it is common to take into
account the tastes and opinions of acquaintances when making decisions [1]. In
this work, the application scope is limited to CF. Extensive surveys discussing
other recommendation strategies can be found elsewhere [1,26].

CF recommendations are based on the premise that a user must like the items
favored by a similar user. Thus, it uses the feedback from each individual user to
recommended items to similar users [26]. There are two types of recommenda-
tion tasks in CF. In rating prediction, the goal is to train models to accurately
estimate the ratings users would give to items. Alternatively, item recommen-
dation aims to recommend ordered lists of items, according to the preference of
the users. These are fundamentally different problems and CF algorithms have
been designed for each task. In this study, we will address both tasks.

Data. Traditionally, the data used in CF approaches are numerical (implicit or
explicit) feedback from the user, related with user preferences concerning some of
the items [1]. Explicit feedback, also known as user ratings, is a numerical value,
within a pre-defined scale, proportional to how the user likes the item. Probably,
the most well known scale ranges from 1 to 5, based on the metaphor of 1 to
5 stars. Implicit feedback, on the other hand, derives a numerical value from
the user interactions with the items on the website (e.g. clickstream data, click-
through data from the search engine, the time users spends on the pages). Col-
lecting user feedback through explicit and implicit methods present advantages
and disadvantages: implicit methods are considered unobtrusive, but explicitly
acquired data are more accurate in expressing the true preferences.

The data structure used in CF is known as the rating matrix R. It is described
as R = U ×I, representing a set of users U, where u ∈ {1...N} and a set of items
I, where i ∈ {1...M}. Each element of this matrix is the numerical feedback
provided by a user u relative to an item i, represented by rui.

Algorithms. CF algorithms can be divided into two major classes: memory-
based and model-based [1,13,26]. Memory-based algorithms apply heuristics on
a rating matrix to compute recommendations, whereas model-based algorithms
induce a model from this matrix and use it to recommend items. Memory-based
algorithms are usually based on Nearest Neighbor (NN) approaches, while model-
based algorithms are mostly based on Matrix Factorization (MF). For reasons
explained below (Sect. 4.1), this work focuses solely on MF algorithms.

MF is one of the most efficient and robust algorithms for CF [12]. It assumes
that the original rating matrix values can be approximated by the multiplica-
tion of at least two matrices with latent features that capture the underlying
data patterns. The computation is iterative and optimizes a performance mea-
sure, usually RMSE. In the simplest formulation of MF, the rating matrix R is
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approximated by the product of two matrices: R ≈ PQ, where P is an N × K
matrix and Q is a K × M matrix. P is the user feature matrix, Q is the item
feature matrix and K is the number of features in the given factorization.

There are three characteristics to be analyzed in each algorithm: the fac-
torization process, the learning strategy and user/item bias. The factorization
process is usually the one explained previously. However, there are algorithms
using other approaches, such as Singular Value Decomposition (SVD).

The most commonly used learning strategies are Alternating Least Squares
(ALS) and Stochastic Gradient Descent (SGD). These strategies are used in
an iterative fashion. In each iteration, a specific formula is optimized until a
threshold value is reached. ALS alternates between two steps: the P -step, which
fixes Q and recomputes P , and the Q-step, where P is fixed and Q is recomputed.
The re-computation on the P -step employs a regression model for each user,
whose input is the vector qi and the output is the original user rating vector. In
the Q-step, the input is the qu vector and the output is the item rating vector.
For SGD, the original rating rui is compared with the predicted value, giving an
error measure: eui = rui − qTi qu. Afterwards, user and item factors are modified
to minimize this error and a new iteration starts.

Next, the user/item bias is introduced in MF as a regularization measure.
This bias (either for users, items or both), tries to compensate the specific
user/item difference against the average values of either users/items. The pur-
pose is to take into account the fact that users have different rating habits. Note
that the user/item bias is different from the model bias: while the first is used
to compensate the specific user/item difference against the average values in
the CF problem, the second refers to the ML model preference for choosing one
hypothesis explaining the data over other (equally acceptable) hypothesis.

There are multiple frameworks with implementations of MF algorithms avail-
able (e.g. Apache Spark1, Recommenderlab2, Prediction.io3). In this work, we
focus on the MyMediaLite framework of MF algorithms [4].

Rating Prediction. (MF) is the most basic algorithm for this task. It uses
a standard factorization strategy, SGD, to perform the learning step and intro-
duces no user/item bias. Another algorithm, BiasedMatrixFactorization (BMF)
uses explicit user/item bias, but still learns through SGD and still uses the stan-
dard factorization approach [20]. SGD is also used as the learning technique in
LatentFeatureLogLinearModel (LFLLM) [16]. However, it is inspired on logistic
regression, instead of the standard MF. Besides, it has no user/item bias, since
the authors state that the algorithm is insensitive to it. SVDPlusPlus (SVD++)
is a MF strategy that extends the basic SVD strategy to include the items rated
by the users in the optimization formula [11]. It is a combination of neighbor-
hood algorithms with MF, which also includes user/item bias. Three asymmetric
algorithms, which are variations of SVD, are also used. The asymmetric changes

1 http://spark.apache.org/.
2 https://cran.r-project.org/web/packages/recommenderlab/index.html.
3 https://prediction.io/.

http://spark.apache.org/
https://cran.r-project.org/web/packages/recommenderlab/index.html
https://prediction.io/
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refer to the fact that the user (or item) factors are modeled by which items were
rated by the users (or by which users rated the items). The algorithms focus
on asymmetric changes on item (SIAFM), user (SUAFM) and both user and
item (SCAFM) [17]. These algorithms assume that by modeling the problem in
an asymmetric fashion, the prediction formula in SVD can be linearly combined
with these factors to obtain more accurate results. All these algorithms have
user/item bias and the learning stage is conducted with SGD. A MF-based algo-
rithm was adopted as baseline: UserItemBaseline (UIB) [12]. It uses the average
rating value plus a regularized user/item bias for prediction. The optimization
problem is solved with ALS. Three average-based algorithms were also included:
GlobalAverage (GA), ItemAverage (IA) and UserAverage (UA). These algo-
rithms make the predictions based on the average rating value of all ratings of
all users, all ratings of an item and all ratings of an user, respectively.

Item Recommendation. A different set of MF algorithms can be used to rec-
ommend rankings of items. BPRMF optimizes a criterion based on Bayesian
logic [19]. It reduces the ranking problem to a pairwise classification task, opti-
mizing the Area under the Curve (AUC) metric. It uses SGD as the learning
strategy and no user/item bias. MultiCoreBPRMF (MBPRMF) is a paral-
lel implementation of the previous algorithm. The algorithm WeightedBPRMF
(WBPRMF) is a variation of BPRMF that includes a sampling mecha-
nism that promotes low scored items and use/item bias. SoftMarginRankingMF
(SMRMF) is another variation of BPRMF, but it replaces the optimization
formula in SGD by a soft margin ranking loss inspired by SVM classifiers [24].
Another MF algorithm used is (WRMF) [10]. This algorithm uses ALS as the
learning technique and introduces user/item bias to regularize the process. The
only baseline algorithm available in this scope is MostPopular (MP). Here, items
are ranked by how often they have been seen in the past.

Evaluation. Due to the experimental nature of this work, the CF algorithms
are evaluated using an offline approach. This evaluation involves a data split
strategy (usually k-fold cross-validation, although others can be used) and the
application of suitable metrics, depending on the application scope. In the case of
Rating Prediction, the metrics are error based and evaluate the rating accuracy.
Examples of these metrics are the Mean Average Error (MAE), the normalized
version of MAE (NMAE) and the Root Mean Squared Error (RMSE) [9]. The
evaluation for the Item Recommendation task is based on predicted rankings,
using metrics like Mean Average Precision (MAP), Normalized Discount Cumu-
lative Gain (NDCG), Mean Reciprocal Rank (MRR) and AUC [9].

2.2 Metalearning

MtL looks for an hypothesis or function associating the characteristics of a
dataset and the behavior of learning techniques, when applied to this dataset. Its
use helps understand algorithm behavior on different conformations of data [22].
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There are two model induction levels in this methodology: the base-level and
the meta-level. In the problem investigated in this paper, the base-level refers to
the application of CF algorithms on CF datasets, while the meta-level studies the
effect of the characteristics of CF datasets on the performance of CF algorithms.
The MtL process addresses the algorithm selection problem in two phases: train-
ing and prediction. In the training phase, datasets are characterized by a set of
measurable characteristics and CF algorithms have their performance evaluated
on these datasets. Next, a learning algorithm is trained on the metadata to
induce a metamodel able to associate the characteristics of the dataset with the
best base-level algorithm to analyze it. In the second phase, this metamodel is
used to predict the best algorithm for a given dataset [21].

Metafeatures are dataset descriptors that are expected to correlate well with
the performance of the models learned by different techniques [2]. The literature
describes two main types of meta-features: (1) Statistical and/or information-
theoretical measures and (2) Landmarkers. This study adopts the first type
of meta-features for CF. More information on metafeatures can be found else-
where [22].

The metatarget determines the type of prediction to be made by the MtL
model for a dataset. Common metatargets are (1) the algorithm with the best
performance on the dataset (2) a non-ordered subset of algorithms that per-
formed well on the dataset, (3) a ranking of algorithms according to their per-
formance on the dataset and (4) the performance of a set of techniques for the
dataset [2]. This study will follow the first approach, namely addressing MtL as
a classification task.

2.3 Model Selection for Recommender Systems

This section presents related work on model selection for RSs using MtL. Firstly,
it is important to notice that, despite sharing the same nature, the problems have
different goals: to predict the performance of CF algorithms at user level [7],
to predict the performance of CF algorithms at dataset level [14] and to pre-
dict the best algorithm for group-oriented recommendations [28]. The studies
diverge between using public [7,14] and private datasets [28], although none has
the appropriate number of datasets required: the maximum found is 4. This is
important since the generalization of the metalearning process requires a large
and diverse collection of datasets. The base level algorithms are mostly based
on NN, which despite being an important technique, have several drawbacks
with larger datasets and are somehow outdated. The main exception is on the
group-aware recommendations, since the algorithms are simply heuristics. The
metafeatures used are of several types:

1. rating distribution analysis: the number of ratings per user, the average rating
per user, the standard rating deviation per user [7], the ratings entropy, the
ratings Gini index and ratings sparsity [14];

2. neighbourhood analysis: the number of neighbors, the average similarity to
the top closest 30 neighbors, the clustering coefficient of a group of users, the
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average Jaccard coefficient per user [7], group size, social contact level and
dissimilarity level [28];

3. general user analysis: the user influence [7], experience level and activity
level [28];

4. general item analysis: the item popularity, the item preference, the user influ-
ence and the average item entropy [7].

The techniques used in the meta-level are divided into 2 types: regression [7,14]
and classification [28]. While the regression is evaluated with MAE measure, the
classification problem uses error and rankings measures: RMSE and MRR.

3 Metafeatures for Recommender Systems Problems

One of the most important factors in the success of a metalearning approach
is the definition of a set of metafeatures that contain information about the
(relative) performance of the base-level algorithms [2]. Given that there is little
work on MtL for recommender systems and that the nature of the data in these
problems is quite different from traditional MtL problems (e.g. classification or
regression), there is not much work we can build upon. The set of metafeatures
proposed here is based on (1) the application of systematic procedure to develop
metafeatures [18] and (2) extend and generalize the state of the art metafeatures
for recommender systems [7,14,28].

The framework requires three main elements: the object that the metafea-
tures characterize, the function that analyzes the object and provides the result
as a data distribution, and the post-processing functions that are applied on
these distributions to extract their characteristics.

In the proposed approach, the objects can be of three types: dataset, row and
column. As previously seen, row and column refer to user and item, respectively.
On the dataset we analyze only the original rating distribution. However, for
each row and column, we use three distinct functions: count the number of
elements, mean value and sum of values. The post-processing functions used
provide the following values: maximum, minimum, mean, standard deviation,
median, mode, entropy, Gini index, skewness and kurtosis. The notation used to
represent metafeatures follows the format: object.function.post function.

For each rating matrix R = U×I, the set of meta-features, M , is extracted in
two steps: (1) application of a function f to the ratings rui in each row (f(U)),
column (f(I)) and the entire dataset (f(R)) to obtain three different ratings
distributions and (2) post-process the outcome of each function f (in the shape
of distribution) with the so-called post-functions pf by extracting statistics that
can be used as meta-features. Therefore, the set of meta-features is described as
M = pf [f(U)] ∪ pf [f(I)] ∪ pf [f(R)]. Four simple statistics were also included
and presented in Table 1.

These combinations enable the exploration of the rating distribution analysis
metafeatures commonly used in selection of CF algorithms and, more impor-
tantly, extend them in a systematic way.



400 T. Cunha et al.

4 Experimental Setup

4.1 Base-Level

The robustness of experimental results in MtL depends on the number of datasets
available as each dataset represents a meta-example [2]. In most MtL studies,
however, only a few dozen datasets are available. This is also true for CF tasks,
as there are not many public datasets. Furthermore, very often these datasets
are very large, which makes it hard to use them for MtL experiments, as it
implies running all the base-level algorithms on the datasets. Thus, we selected
32 datasets for this study. Table 1 lists these datasets, providing their names,
reference and a few simple statistics with approximate values for readability. To
the best of our knowledge, this is the largest experimental study in terms of
number of CF rating based datasets.

These datasets present different numbers of users, items and ratings. As
expected, in most cases the sparsity is greater than 0.9 [26]. To ensure that the
values of the metafeatures and the performance measures are comparable across
datasets, it is necessary to normalize the rating scales. We decided to normalize
all ratings to the scale [1, 5], since it is the most common.

The performance of all selected CF algorithms on each dataset was estimated,
using, as explained earlier, the MyMediaLite framework (Sect. 2.1). Some algo-
rithms, namely the NN algorithms, were not able to obtain results on the largest
datasets. Therefore, we decided to limit the algorithms to those able to process
all the available datasets: the MF algorithms and the baselines. However, no
tuning of these parameters was performed, as this is common practice in MtL.

We evaluated the algorithms using seven commonly employed recommen-
dation metrics (Sect. 2.1). Each of those metrics evaluates the recommendation
problem accordingly to a specific perspective. Thus, the best CF algorithm for
a given dataset may vary for different evaluation metrics. Thus, we generate
a different meta-target variable for each evaluation metric, yielding seven dif-
ferent classification meta-level tasks. The evaluation process uses 10-fold cross-
validation and there is no parameter tuning at this stage. We decided to use the
default parameters, since this is the usual approach in MtL experiments.

4.2 Meta Level

The meta-features defined in this work were implemented using the recom-
menderlab package,4 which is based on the Matrix package.5 These packages
provide a flexible interface for CF data through a sparse matrix data struc-
ture. The implementations from these packages not only allow the application
of functions to each row, column and entire dataset, but also worked efficiently.

Since all meta-features are somehow related to the original ratings distribu-
tion, it is necessary to ensure that the correlated features are removed. There-
fore, a Correlation Feature Selection strategy (CFS) was applied to them, using
4 https://cran.r-project.org/web/packages/recommenderlab/index.html.
5 https://cran.r-project.org/web/packages/Matrix/index.html.

https://cran.r-project.org/web/packages/recommenderlab/index.html
https://cran.r-project.org/web/packages/Matrix/index.html
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Table 1. Datasets used in the base-level experiments

dataset #users #items #ratings sparsity ratings scale ref.

amazon-apps 1.3 M 61 k 2.6 M 0.999 [1,5] [15]

amazon-automotive 851 k 320 k 1.3 M 0.999 [1,5] [15]

amazon-baby 531 k 64 k 915 k 0.999 [1,5] [15]

amazon-beauty 1.2 M 249 k 2M 0.999 [1,5] [15]

amazon-cd 1.5 M 486 k 3.7 M 0.999 [1,5] [15]

amazon-digital-music 478 k 266 k 836 k 0.999 [1,5] [15]

amazon-food 768 k 166 k 1.2 M 0.999 [1,5] [15]

amazon-games 826 k 50 k 1.3 M 0.999 [1,5] [15]

amazon-garden 714 k 105 k 993 k 0.999 [1,5] [15]

amazon-home 2.5 M 410 k 4.2 M 0.999 [1,5] [15]

amazon-instant-video 426 k 24 k 584 k 0.999 [1,5] [15]

amazon-instruments 339 k 83 k 500 k 0.999 [1,5] [15]

amazon-movies 73 k 4 k 111 k 0.999 [1,5] [15]

amazon-office 909 k 130 k 1.2 M 0.999 [1,5] [15]

amazon-pet-supplies 741 k 103 k 1.2 M 0.999 [1,5] [15]

amazon-phones 2.2 M 320 k 3.4 M 0.999 [1,5] [15]

amazon-sports 1.9 M 479 k 3.3 M 0.999 [1,5] [15]

amazon-tools 1.2 M 260 k 1.9 M 0.999 [1,5] [15]

amazon-toys 1.3 M 328 k 2.3 M 0.999 [1,5] [15]

flixter 148 k 49 k 8.2 M 0.998 [0,5] [27]

jester1 25 k 100 1.8 M 0.275 [-10,10] [5]

jester2 24 k 100 1.7 M 0.273 [-10,10] [5]

jester3 25 k 100 617 k 0.753 [-10,10] [5]

movielens100 k 1 k 2 k 100 k 0.937 [0,5] [8]

movielens10m 70 k 11 k 10M 0.987 [0,5] [8]

movielens1m 6 k 4 k 1M 0.955 [0,5] [8]

movielens20m 138 k 27 k 20M 0.995 [0,5] [8]

movielens latest 229 k 27 k 21M 0.997 [0,5] [8]

movietweetings latest 37 k 21 k 389 k 0.999 [0,10] [3]

movietweetings recsys2014 25 k 15 k 211 k 0.999 [0,10] [3]

tripadvisor 778 k 13 k 1.5 M 0.999 [1,5] [23]

yahoo-music 6 k 10 k 364 k 0.994 [1,5] [25]

a threshold t ∈ [0.6, 0.9] with increments of 0.5. This decreased the number of
features from 74 to the interval [11, 28], depending on the threshold used.

Each set of meta-features originated seven meta-level datasets, one per each
CFS threshold. Each metadataset is associated with 1 of the 7 recommendation
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targets, creating 49 metadatasets. As the model selection problem is approached
here as a classification task, 11 classification algorithms representing several
biases were chosen: ctree, C4.5, C5.0, kNN, LDA, Naive Bayes, SVM (linear,
polynomial and radial kernels), random forest and a baseline algorithm: major-
ity vote. Since the metadatasets have a reduced number of examples, the algo-
rithms were evaluated for accuracy in a leave one out strategy and no tuning was
performed. The goal is to reduce the potential overfitting of the meta-models.

5 Experimental Results

5.1 Base-Level Results

The results at the base-level are presented in Table 2. This table presents the best
algorithm for each dataset and metric. Each metric is applicable only to a suitable
type of recommendation algorithm: rating prediction or item recommendation.
These results are used as the target attributes in the meta-datasets.

Regarding the rating prediction experiments, it can be observed that most
datasets have for best algorithm either a baseline or BMF. In fact, only 6 datasets
do not follow this process. Furthermore, the results show that, for the metrics
MAE and NMAE, the best algorithms are almost always the same. Since the
metrics are very similar, this behavior is expected.

In the item recommendation experiments, the distribution of best algorithm
for each dataset is fairly distributed, although it is noticeable that these algo-
rithms have the tendency to not change according to the different metrics. This
is also expected since all of them evaluate the ranking accuracy of the algorithms.
However, since AUC values are more concerned with accuracy assessment regard-
less of the ranking, it produces different results.

It is important to observe that the baseline algorithms often perform best
on the largest datasets, regardless of the recommendation scope: IA, UA and
GA in rating prediction and MP in item recommendation. This relates to the
sparsity problem in CF and how difficult it is to make predictions in a cold start
environment.

Another important observation is that there are few algorithms that are never
chosen as the best in any pair dataset/metric. This may be a consequence of the
lack of tuning on the base level methods. These are the cases of SUAFM and UIB
in rating prediction and SMRMF in item recommendation. This means that it is
not possible to extract useful knowledge from these algorithms in the meta-level.
This can change if we can increase the number and diversify the nature of the
datasets in order to expand the search space.

5.2 Meta-Level Results: Rating Prediction

Figures 1 and 2 show the meta-models performance across several CFS thresh-
olds for the MAE and RMSE metrics, respectively. Each threshold was used to
understand the effect of correlation in our metafeature framework. The NMAE
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Table 2. Best models on multiple evaluation metrics for each dataset

dataset Rating prediction Item recommendation

MAE NMAE RMSE MAP MRR NDCG AUC

amazon-apps BMF BMF BMF MP MP MP MP

amazon-automotive IA IA BMF MP MP MP MP

amazon-baby IA IA BMF MP MP MP MP

amazon-beauty UA UA BMF MP MP MP MP

amazon-cd UA UA BMF MBPRMF MBPRMF MBPRMF MBPRMF

amazon-digital-music UA UA BMF BPRMF MP MP MP

amazon-food IA IA BMF MP MP MP MP

amazon-games BMF BMF BMF MP MP MP MP

amazon-garden IA IA BMF MP MP MP MP

amazon-home IA IA BMF MBPRMF MBPRMF MBPRMF MBPRMF

amazon-instant-video IA IA BMF MP MP MP MP

amazon-instruments IA IA BMF MP MP MP MP

amazon-movies BMF BMF BMF WBPRMF WBPRMF WBPRMF MBPRMF

amazon-office IA IA BMF MP MP MP MP

amazon-pet-supplies IA IA BMF MP MP MP MP

amazon-phones BMF BMF BMF BPRMF BPRMF BPRMF MBPRMF

amazon-sports IA IA BMF BPRMF MBPRMF MBPRMF MBPRMF

amazon-tools IA IA BMF MP MP MP MP

amazon-toys IA IA BMF MP MP MP MP

flixter BMF BMF BMF MP MBPRMF MP MBPRMF

jester1 SVD++ SVD++ SVD++ MP MP MP MP

jester2 SVD++ SVD++ SVD++ MP MP MP MP

jester3 SIAFM SIAFM SIAFM MP MP MP MP

movielens latest BMF BMF BMF WRMF WRMF WRMF MBPRMF

movielens100k BMF BMF BMF WRMF WRMF WRMF WRMF

movielens10m MF MF BMF WRMF WRMF WRMF WRMF

movielens1m MF MF MF WRMF WRMF WRMF MBPRMF

movielens20m BMF BMF BMF WRMF WRMF WRMF MBPRMF

movietweetings latest SCAFM SCAFM SCAFM WRMF WRMF WRMF MBPRMF

movietweetings recsys2014 UA GA GA MP MP MP MBPRMF

tripadvisor SIAFM SIAFM SIAFM WBPRMF WBPRMF WBPRMF MBPRMF

yahoo-music SVD++ SVD++ LFLLM WRMF WRMF WRMF WRMF

analysis was discarded in the paper due to space restrictions. However, the per-
formance is similar to the MAE metric.

The accuracy values are clearly different: while most algorithms, concerning
MAE, performed always above the baseline, on the RMSE meta-level problem,
only 2 of them achieve this goal. This is a consequence of the bias in the meta-
dataset towards the BMF algorithm. Since this algorithm wins most of the times,
the metalearning strategy becomes obsolete for this scope. Hopefully, using more
and diversified datasets will enable to study this specific problem in further detail.
This experiment shows that the meta-models created with our metafeature frame-
work are useful for solving the algorithm selection problem for CF.

One important point lies in the fact that the performances are fairly constant
across the thresholds. This was not expected beforehand and points to the fact
that the metafeatures used are very different in nature, despite having for basis
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Fig. 1. Results of MAE meta-dataset on CFS thresholds

Fig. 2. Results of RMSE meta-dataset on CFS thresholds

the same rating distribution. Therefore, the CFS analysis does not have sufficient
impact on selecting the best meta-models. This means that, in this experimental
setup, if a meta-model beats the baseline, it is of low importance which is the
CFS threshold used to build it.

The strategy to select the best algorithms follows the principle that the aver-
age accuracy across thresholds must be always better than the baseline. To
ensure this principle, the algorithms whose average accuracy for all thresholds
minus the standard deviation is above the performance of the baseline algorithm
(majority voting) were selected as the best ones. Thus, the best algorithms for
the MAE metric are all except the ctree. For the RMSE target, only the SVM
with polynomial kernel satisfies this principle.
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5.3 Meta-Level Results: Item Recommendation

Figures 3 and 4 present the accuracy results for the NDCG and AUC metrics,
respectively. MRR and MAP were discarded due to space restrictions. However,
the performances on these targets are also fairly similar to performance obtained
with the NDCG metric. First of all, one notices that there are several algorithms
whose performance was better than the baseline and remained stable across
the CFS thresholds. This behavior is similar to the one found in the rating
prediction problem. The only exception found shows that in both metrics, the
Naive Bayes algorithm presents a poor predictive performance, scoring always
below the baseline accuracy. The only explanation available is that the class

Fig. 3. Results of NDCG meta-dataset on CFS thresholds

Fig. 4. Results of AUC meta-dataset on CFS thresholds
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distribution is more balanced than the first problem and this affects the Naive
Bayes algorithm specially. However, on the overall analysis, these meta-models
perform better than in the rating prediction problem.

Following the previous strategy to select the best models, for the NDCG
target, the algorithms with the best predictive performance were SVM (linear,
polynomial and radial kernels), random forest, kNN and C4.5. For the AUC
metric, the best algorithms are almost the same, with the difference that the
random forest algorithm was replaced with the C5.0 algorithm.

5.4 Meta-Knowledge

To extract meta-knowledge from the previous MtL experiments, variable impor-
tance analysis was performed on all the algorithms previously identified with
the best performance. Two different analysis were carried out: with and without
model information. Thus, in the first case, the trained model characteristics are
used to infer the most important variables, unlike in the second case.

The first analysis was conducted by assessing the feature frequency in the
best models for all CFS thresholds. Next, the meta-features present in most
meta-datasets (i.e., 5 meta-datasets must contain the feature) were selected.
The results extract 11 meta-features: number of ratings, dataset.ratings.mode,
dataset.ratings.gini, row.mean.median, row.mean.entropy, row.mean.skewness,
row.count.kurtosis, column.count.gini, column.count.skewness, col.mean.min and
column.sum.kurtosis. The features are distributed as follows: 3 features about
the entire dataset, and 4 for each the user and item. This highlights the fact
that not only the original ratings distribution holds important characteristics to
solve the algorithm selection problem for CF. When these metafeatures are com-
pared with the related work (Sect. 2.3), it is observed that few have already been
used and their importance is confirmed in this study (for instance the number
of ratings and the ratings gini index). However, there are others proposed that
have not been used so far and that hold important value. Also, column.count
and row.mean are found to be the most relevant distributions to be analyzed in
this problem. Although the related work has some metafeatures related to the
row.mean distribution (i.e., average of user ratings), the depth level on which
they were used does not compare to our experimental work. This leads us to
the conclusion that our metafeature framework is able to propose novel and
important metafeatures which are useful for the problem of algorithm selection.

A second analysis was carried out using the method RELIEF.6 It finds
weights of attributes based on the distance between instances, using only the
dataset. The results obtained show that, for each meta-dataset, a subset of the
previously mentioned meta-features is selected. These tests assure the validity
of the set of most important features found.

The main pattern found upon model inspection is that a low global number
of ratings leads to the selection of a baseline algorithm. This is expressed in
several ways by a combination of the previous meta-features or simply by the

6 https://cran.r-project.org/web/packages/FSelector/index.html.

https://cran.r-project.org/web/packages/FSelector/index.html
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number of ratings. Other meta-features, despite being important in discerning
the algorithms, are difficult to interpret. This has more impact if the functions
or post-functions are themselves not easily understandable.

One important consideration lies in the fact that the meta-dataset has very
few instances, which prevents a more detailed analysis of the meta-knowledge.
Still, the fact remains that the meta-features proposed are informative and that
help tackling the problem of algorithm selection for CF.

6 Conclusions

In this study, we have proposed a Metalearning approach to select Matrix Fac-
torization algorithms on two scopes of the CF problem: rating prediction and
item recommendation. The meta-features proposed follow a thorough analysis
of the feature space and are based on combinations of the original rating distrib-
ution and generalize the meta-features used in recent studies. Each base-learner
is trained on a collection of real-world datasets and evaluated on a range of suit-
able metrics, which serve as different targets in the meta-level. The meta-models
induced have performed well above the baseline algorithm, even when the meta-
dataset has very few examples. Furthermore, variable importance analysis has
shown that the proposed meta-features provide added knowledge when compared
with the usage of characteristics of only the original rating distribution. Future
work may focus on increasing the number of datasets, perform dimensionality
reduction to expand the range of algorithms available, proposal of meta-features
related to the models characteristics, the extension of the meta-targets to label
ranking problems and tuning of both the base and meta level algorithms.

Acknowledgments. This work is financed by the ERDF Fund through the Opera-
tional Programme for Competitiveness and Internationalization - COMPETE 2020 of
Portugal 2020 through the National Innovation Agency (ANI) as part of the project
3506 and also through project «POCI-01-0145-FEDER-006961» via National Funds
through the FCT – Fundação para a Ciência e a Tecnologia as part of project
UID/EEA/50014/2013. The research was also funded from the ECSEL Joint Undertak-
ing, the framework programme for research and innovation horizon 2020 (2014-2020)
under grant agreement 662189-MANTIS-2014-1.

References

1. Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems sur-
vey. Knowl.-Based Syst. 46, 109–132 (2013)

2. Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning: Applications
to Data Mining, 1st edn. Springer Publishing Company, Incorporated, Heidelberg
(2009)

3. Dooms, S., De Pessemier, T., Martens, L.: MovieTweetings: a movie rating dataset
collected from twitter. In: Workshop on Crowdsourcing and Human Computation
for Recommender Systems, CrowdRec at RecSys 2013 (2013)



408 T. Cunha et al.

4. Gantner, Z., Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: MyMediaLite: a
free recommender system library. In: ACM Conference on Recommender Systems,
pp. 305–308 (2011)

5. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: a constant time
collaborative filtering algorithm. Inf. Retrieval 4(2), 133–151 (2001)
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Abstract. Mining itemsets that are the most interesting under a statis-
tical model of the underlying data is a commonly used and well-studied
technique for exploratory data analysis, with the most recent interest-
ingness models exhibiting state of the art performance. Continuing this
highly promising line of work, we propose the first, to the best of our
knowledge, generative model over itemsets, in the form of a Bayesian net-
work, and an associated novel measure of interestingness. Our model is
able to efficiently infer interesting itemsets directly from the transaction
database using structural EM, in which the E-step employs the greedy
approximation to weighted set cover. Our approach is theoretically sim-
ple, straightforward to implement, trivially parallelizable and retrieves
itemsets whose quality is comparable to, if not better than, existing state
of the art algorithms as we demonstrate on several real-world datasets.

1 Introduction

Itemset mining is one of the most important problems in data mining, with
applications including market basket analysis, mining data streams and mining
bugs in source code [1]. Early work on itemset mining focused on algorithms that
identify all itemsets which meet a given criterion for pattern quality, such as all
frequent itemsets whose support is above a user-specified threshold. Although
appealing algorithmically, the list of frequent itemsets suffers from pattern explo-
sion, i.e., is typically long, highly redundant and difficult to understand [1]. In
an attempt to address this problem, more recent work focuses on mining inter-
esting itemsets, smaller sets of high-quality, non-redundant itemsets that can be
examined by a data analyst to get an overview of the data. Several different
approaches have been proposed for this problem. Some of the most successful
recent approaches, such as MTV [19], KRIMP [28] and SLIM [26] are based on
the minimum description length (MDL) principle, meaning that they define an
encoding scheme for compressing the database based on a set of itemsets, and
search for the itemsets that best compress the data. These methods have been
shown to lead to much less redundant pattern sets than frequent itemset mining.

In this paper, we introduce an alternative, but closely related, viewpoint
on interesting itemset mining methods, by starting with a probabilistic model
of the data rather than a compression scheme. We define a generative model
of the data, that is, a probability distribution over the database, in the form
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 410–425, 2016.
DOI: 10.1007/978-3-319-46227-1 26
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of a Bayesian network model, based on the interesting itemsets. To infer the
interesting items, we use a probabilistic learning approach that directly infers
the itemsets that best explain the underlying data. Our method, which we call
the Interesting Itemset Miner (IIM)1, is to the best of our knowledge, the first
generative model for interesting itemset mining.

Interestingly, our viewpoint has a close connection to MDL-based approaches
for mining itemsets that best compress the data (Sect. 3.9). Every probabil-
ity distribution implicitly defines an optimal compression algorithm, and con-
versely every compression scheme implicitly corresponds to a probabilistic model.
Explicitly taking the probabilistic modelling perspective rather than an MDL
perspective has two advantages. First, focusing on the probability distribution
relieves us from specifying the many book-keeping details required by a loss-
less code. Second, the probabilistic modelling perspective allows us to exploit
powerful methods for probabilistic inference, learning, and optimization, such as
submodular optimization and structural expectation maximization (EM).

The collection of interesting itemsets under IIM can be inferred efficiently
using a structural EM framework [9]. One can think of our model as a prob-
abilistic relative of some of the early work on itemset mining that formulates
the task of finding interesting patterns as a covering problem [11,28], except
that in our work, the set cover problem is used to identify itemsets that cover
a transaction with maximum probability. The set cover problem arises naturally
within the E step of the EM algorithm. On real-world datasets we find that
the interesting itemsets seem to capture meaningful domain structure, e.g. rep-
resenting phrases such as anomaly detection in a corpus of research papers, or
regions such as western US states in geographical data. Notably, we find that IIM
returns a much more diverse list of itemsets than current state of the art algo-
rithms (Table 2), which seem to be of similar quality. Overall, our results suggest
that the interesting itemsets found by IIM are suitable for manual examination
during exploratory data analysis.

2 Related Work

Itemset mining was first introduced by Agrawal and Srikant [2], along with the
Apriori algorithm, in the context of market basket analysis which led to a number
of other algorithms for frequent itemset mining including Eclat and FPGrowth.
Frequent itemset mining suffers from pattern explosion: a huge number of highly
redundant frequent itemsets are retrieved if the given minimum support thresh-
old is too low. One way to address this is to mine compact representations of
frequent itemsets such as maximal frequent, closed frequent and non-derivable
itemsets with efficient algorithms such as CHARM [31]. However, even min-
ing such compact representations does not fully resolve the problem of pattern
explosion (see Chap. 2 of [1] for a survey of frequent itemset mining algorithms).

An orthogonal research direction has been to mine tiles instead of itemsets,
i.e., subsets of rows and columns of the database viewed as binary transaction
1 https://github.com/mast-group/itemset-mining.

https://github.com/mast-group/itemset-mining
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by item matrices. The analogous approach is then to mine large tiles, i.e., sub-
matrices with only 1s whose area is greater than a given minimum area threshold.
The Tiling algorithm [11] is an example of an efficient implementation that uses
the greedy algorithm for set cover. Note that there is a correspondence between
tiles and itemsets: every large tile is a closed frequent itemset and thus algorithms
for large tile mining also suffer from pattern explosion to some extent.

In an attempt to tackle this problem, modern approaches to itemset mining
have used the minimum description length (MDL) principle to find the set of
itemsets that best summarize the database. MTV [20] uses MDL coupled with
a maximum entropy (MaxEnt) model to mine the most informative itemsets.
MTV mines the set of top itemsets with the highest likelihood under the model
via an efficient convex bound that allows many candidate itemsets to be pruned
and employs a method for more efficiently inferring the model itself. Due to the
partitioning constraints necessary to keep computation feasible, MTV typically
only finds in the order of tens of itemsets, whereas IIM has no such restriction.

KRIMP [28] employs MDL to find the subset of frequent itemsets that yields
the best lossless compression of the database. While in principle this could be
formulated as a set cover problem, the authors employ a fast heuristic that does
not allow the itemsets to overlap (unlike IIM) even though one might expect that
doing so could lead to better compression. In contrast, IIM employs a set cover
framework to identify a set of itemsets that cover a transaction with highest
probability. The main drawback of KRIMP is the need to mine a set of frequent
itemsets in the first instance, which is addressed by the SLIM algorithm [26], an
extension of KRIMP that mines itemsets directly from the database, iteratively
joining co-occurring itemsets such that compression is maximised.

The MaxEnt model can also be extended to tiles, here known as the
Rasch model, and, unlike in the itemset case, inference takes polynomial time.
Kontonasios and De Bie [16] use the Rasch model to find the most surprising
set of noisy tiles (i.e., sub-matrices with predominantly 1s but some 0s) by com-
puting the likelihood of tile entries covered by the set. The inference problem
then takes the form of weighted budgeted maximum set cover, which can again
be efficiently solved using the greedy algorithm. The problem of Boolean matrix
factorization can be viewed as finding a set of frequent noisy tiles which form a
low-rank approximation to the data [22].

The MINI algorithm [10] finds the itemsets with the highest surprisal under
statistical independence models of items and transactions from a precomputed
set of closed frequent itemsets. OPUS Miner [29] is a branch and bound algorithm
for mining the top self-sufficient itemsets, i.e., those whose frequency cannot be
explained solely by the frequency of either their subsets or of their supersets.

In contrast to previous work, IIM maintains a generative model, in the form
of a Bayesian network, directly over itemsets as opposed to indirectly over items.
Existing Bayesian network models for itemset mining [14,15] have had limited
success as modelling dependencies between the items makes inference for larger
datasets prohibitive. In IIM inference takes the form of a weighted set cover
problem, which can be solved efficiently using the greedy algorithm (Sect. 3.3).
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The structure of IIM’s statistical model is similar to existing models in the
literature such as Rephil ([24], Sect. 26.5.4) for topic modelling and QMR-DT [25]
for medical diagnosis. Rephil is a multi-level graphical model used in Google’s
AdSense system. QMR-DT is a bi-partite graphical model used for inferring
significant diseases based on medical findings. However, the main contribution
of our paper is to show that a binary latent variable model can be useful for
selecting itemsets for exploratory data analysis.

3 Interesting Itemset Mining

In this section we will formulate the problem of identifying a set of interesting
itemsets that are useful for explaining a database of transactions. First we will
define some preliminary concepts and notation. An item i is an element of the
universe U = {1, 2, . . . , n} that indexes database attributes. A transaction X is
a subset of the universe U and an itemset S is simply a set of items i. The set
of interesting itemsets I we wish to determine is therefore a subset of the power
set (set of all possible subsets) of the universe. Further, we say that an itemset
S is supported by a transaction X if S ⊆ X.

3.1 Problem Formulation

Our aim in this work is to infer a set of interesting itemsets I from a database
of transactions. By interesting, we mean a set of itemsets that will best help
a human analyst to understand the important properties of the database, that
is, interesting itemsets should reflect the important probabilistic dependencies
among items, while being sufficiently concise and non-redundant that they can
be examined manually. These criteria are inherently qualitative, reflecting the
fact that the goal of data mining is to build human insight and understanding.
In this work, we formalize interestingness as those itemsets that best explain the
transaction database under a statistical model of itemsets. Specifically we will
use a generative model, i.e., a model that starts with a set of interesting itemsets
I and from this set generates the transaction database. Our goal is then to infer
the most likely generating set I under our chosen generative model. We want the
model to be as simple as possible yet powerful enough to capture correlations
between transaction items. A simple such model is to iteratively sample itemsets
S from I and let their union form a transaction X. Sampling S from I uniformly
would be uninformative, but if we associate each interesting itemset S ∈ I with
a probability πS , we can sample the indicator variable zS ∼ Bernoulli(πS) and
include S in X if zS = 1. We formally define this generative model next.

3.2 Bayesian Network Model

We propose a simple directed graphical model for generating a database of trans-
actions X(1), . . . , X(m) from a set I of interesting itemsets. The parameters of
our model are Bernoulli probabilities πS for each interesting itemset S ∈ I. The
generative story for our model is, independently for each transaction X:
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1. For each itemset S ∈ I, decide independently whether to include S in the
transaction, i.e., sample

zS ∼ Bernoulli(πS).

2. Set the transaction to be the set of items in all the itemsets selected above:

X =
⋃

S|zS=1

S.

Note that the model allows individual items to be generated multiple times from
different itemsets, e.g. eggs could be generated both as part of a breakfast itemset
{bacon, eggs} and as part of a cake itemset {flour, sugar, eggs}.

Now given a set of itemsets I, let z,π denote the vectors of zS , πS for all
S ∈ I. Assuming z,π are fully determined, it is evident from the generative
model that the probability of generating a transaction X is

p(X, z|π) =

{∏
S∈I πzS

S (1 − πS)1−zS ifX =
⋃

zS=1 S,

0 otherwise
. (1)

3.3 Inference

Assuming the parameters π in the model are known, we can infer z for a specific
transaction X by maximizing the posterior distribution p(z|X,π) over z:

max
z

∏
S∈I

πzS
S (1 − πS)1−zS s.t. X =

⋃
S|zS=1

S. (2)

Taking logs and rewriting (2) in a more standard form we obtain

min
z

∑
S∈I

zS (− ln(πS)) + (1 − zS) (− ln(1 − πS))

s.t.
∑
S|i∈S

zS ≥ 1 ∀ i ∈ X, zS ∈ {0, 1} ∀S ∈ I
(3)

which is (up to a penalty term) the weighted set-cover problem (see e.g. [17],
Sect. 16.1) with weights wS ∈ R

+ given by wS := − ln(πS). This is an NP-hard
problem in general and so impractical to solve directly in practice. It is important
to note that the weighted set cover problem is a special case of minimizing a linear
function subject to a submodular constraint,2 which we formulate as follows (cf.
[30]). Given the set of interesting itemsets T := {S ∈ I |S ⊆ X} that support
the transaction, a real-valued weight wS for each itemset S ∈ T and a non-
decreasing submodular function f : 2T → R, the aim is to find a covering C ⊂ T
of minimum total weight, i.e., such that f(C) = f(T ) and

∑
S∈C wS is minimized.

2 Note that the posterior p(z|X) would not be submodular if we were to use a noisy-OR
model for the conditional probabilities.
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Algorithm 1. Hard-EM

Input: Set of itemsets I and initial probability estimates π(0)

k ← 0
do

k ← k + 1
E-step: ∀ X(j) solve (3) to get z

(j)
S ∀ S ∈ Tj

M-step: π
(k)
S ← 1

m

∑m
j=1 z

(j)
S ∀ S ∈ I

while ‖π(k−1) − π(k)‖ > ε
Remove from I itemsets S with πS = 0
return I, π(k)

For weighted set cover we simply define f(C) to be the number of items in C,
i.e., f(C) := |∪S∈CS|. Note that f(T ) = |X| by construction.

We can then approximately solve the weighted set cover problem (3) using the
greedy approximation algorithm for submodular functions. The greedy algorithm
builds a covering C by repeatedly choosing an itemset S that minimizes the
weight wS divided by the number of items in S not yet covered by the covering.
In order to minimize CPU time spent solving the weighted set cover problem,
we cache the itemsets and coverings for each transaction as needed.

It has been shown [4] that the greedy algorithm achieves a ln|X|+1 approx-
imation ratio to the weighted set cover problem and moreover the following
inapproximability theorem shows that this ratio is essentially the best possible.

Theorem 1 (Feige [7]). There is no (1 − o(1)) ln|X|-approximation algorithm
to the weighted set cover problem unless NP ⊆ DTIME(|X|O(log log|X|)), i.e.,
unless NP has slightly superpolynomial time algorithms.

The runtime complexity of the greedy algorithm is O(|X||T |), however by main-
taining a priority queue this can be improved to O(|X| log|T |) (see e.g. [5]).
Note that there is also an O(|X||T |)-runtime primal-dual approximation algo-
rithm [3], however this has an approximation order of f = maxi|{S | i ∈ S}|, i.e.,
the frequency of the most frequent element, which would be worse in our case.

3.4 Learning

Given a set of itemsets I, consider now the case where both variables z,π in
the model are unknown. In this case we can use the hard EM algorithm [6] for
parameter estimation with latent variables. The hard EM algorithm in our case
is merely a simple layer on top of the inference algorithm (3). Suppose there are
m transactions X(1), . . . , X(m) with supporting sets of itemsets T (1), . . . , T (m),
then the hard EM algorithm is given in Algorithm 1. To initialize π, a natural
choice is simply the support (i.e., relative frequency) of each itemset in I.

3.5 Inferring New Itemsets

We infer new itemsets using structural EM [9], i.e., we add a candidate itemset S′

to I if doing so improves the optimal value p of the problem (3) averaged across
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Algorithm 2. Structural-EM (one iteration)
Input: Itemsets I, probabilities π, optima p(j) of (3) ∀ X(j)

Set profit p ← 1
m

∑m
j=1 p(j)

do
Generate candidate S′ using Candidate-Gen
I ← I ∪ {S′}, πS′ ← 1

E-step: ∀ X(j) solve (3) to get z
(j)
S ∀ S ∈ Tj

M-step: π′
S ← 1

m

∑m
j=1 z

(j)
S ∀ S ∈ I

∀ X(j), solve (3) using π′
S , z

(j)
S ∀ S ∈ Tj to get the optimum p(j)

Set new profit p′ ← 1
m

∑m
j=1 p(j)

I ← I \ {S′}
while p′ ≤ p {until one good candidate found}
I ← I ∪ {S′}
return I, π′

transactions. Interestingly, there is an implicit regularization effect here. Observe
from (3) that when a new candidate S′ is added to the model, a corresponding
term ln(1−πS′) is added to the log-likelihood of all transactions that S′ does not
support. For large databases, this amounts to a significant penalty on candidates.

To get an estimate of maximum benefit to including candidate S′, we must
carefully choose an initial value of πS′ that is not too low, to avoid getting
stuck in a local optimum. To infer a good πS′ , we force the candidate S′ to
explain all transactions it supports by initializing πS′ = 1 and update πS′ with
the probability corresponding to its actual usage once we have inferred all the
coverings. Given a set of itemsets I and corresponding probabilities π along
with transactions X(1), . . . , X(m), each iteration of the structural EM algorithm
is given in Algorithm 2 above.

In practice, we cache the set of candidates that have been rejected by the
Structural-EM function to avoid reconsidering them.

3.6 Candidate Generation

The Structural-EM algorithm (Algorithm 2) requires a method to generate
new candidate itemsets S′ that are to be considered for inclusion in the set of
interesting itemsets I. One possibility would be to use the Apriori algorithm to
recursively suggest larger itemsets starting from singletons, however preliminary
experiments found this was not the most efficient method. For this reason we
take a slightly different approach and recursively combine the interesting item-
sets in I with the highest support first (Algorithm 3). In this way our candidate
generation algorithm is more likely to propose viable candidate itemsets earlier
and in practice we find that this heuristic works well. We did try pruning poten-
tial itemset pairs to join using a χ2-test, however this substantially slowed down
the algorithm and barely improved the model likelihood.

In order to determine the supports of the itemsets to be combined, we store
the transaction database in a Memory-Efficient Itemset Tree (MEI-Tree) [8]
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Algorithm 3. Candidate-Gen

Input: Itemsets I, cached supports σ, queue length q
if � priority queue Q for I then

Initialize σ-ordered priority queue Q
Sort I by decreasing itemset support using σ
for all distinct pairs S1, S2 ∈ I, highest ranked first do

Generate candidate S′ = S1 ∪ S2

Cache support of S′ in σ and add S′ to Q
if |Q| = q break

end for
end if
Pull highest-ranked candidate S′ from Q
return S′

Algorithm 4. IIM (Interesting Itemset Miner)
Input: Database of transactions X(1), . . . , X(m)

Initialize I with singletons, π with their supports
Build MEI-Tree from transaction database
while not converged do

Add itemsets to I, π using Structural-EM
Optimize parameters for I, π using Hard-EM

end while
return I, π

and query the tree for the support of a given itemset. A MEI-Tree stores
itemsets in a tree structure according to their prefixes in a memory efficient
manner. To minimize the memory usage of the MEI-Tree further, we first sort
the items in order of decreasing support (as in the FPGrowth algorithm) as
this often results in a sparser tree [13]. Note that a MEI-Tree is essentially
an FP-tree [13] with node-compression and without node-links for nodes con-
taining the same item. An itemset support query on the MEI-Tree efficiently
searches the tree for all occurrences of the given itemset and adds up their sup-
ports (see Fig. 4 in [8] for the actual algorithm). With the wide availability of
100 GB+shared memory systems, it is reasonable to expect the MEI-Tree to
fit into memory for all but the largest of datasets. The queue length parameter
in the Candidate-Gen algorithm effectively imposes a limit on the number of
iterations the algorithm can spend suggesting candidate itemsets.

3.7 Mining Interesting Itemsets

Our complete interesting itemset mining (IIM) algorithm is given in Algorithm 4.
Note that the Hard-EM parameter optimization step need not be performed
at every iteration, in fact it is more efficient to suggest several candidate item-
sets before optimizing the parameters. As all operations on transactions in our
algorithm are trivially parallelizable, we perform the E and M -steps in both the
hard and structural EM algorithms in parallel.



418 J. Fowkes and C. Sutton

3.8 Interestingness Measure

Now that we have inferred the model variables z,π, we are able to use them
to rank the retrieved itemsets in I. There are two natural rankings one can
employ, and both have their strengths and weaknesses. The obvious approach
is to rank each itemset S ∈ I according to its probability under the model
πS , however this has the disadvantage of strongly favouring frequent itemsets
over rare ones, an issue we would like to avoid. Instead, we prefer to rank the
retrieved itemsets according to their interestingness under the model, that is the
ratio of transactions they explain to transactions they support. One can think
of interestingness as a measure of how necessary the itemset is to the model: the
higher the interestingness, the more supported transactions the itemset explains.
Thus interestingness provides a more balanced measure than probability, at the
expense of missing some frequent itemsets that only explain some of the trans-
actions they support. We define interestingness formally as follows.

Definition 1. The interestingness of an itemset S ∈ I retrieved by IIM (Algo-
rithm 4) is defined as

int(S) =

∑m
j=1 z

(j)
S

supp(S)

and ranges from 0 (least interesting) to 1 (most interesting).

Any ties in the ranking can be broken using the itemset probability πS .

3.9 Correspondence to Existing Models

There is a close connection between probabilistic models and the MDL principle
[18]. Given a probabilistic model p(X|π, I) of a single transaction, by Shannon’s
theorem the optimal code for the model will encode X using approximately
− log2 p(X|π, I) bits. So by finding a set of itemsets that maximizes the proba-
bility of the data, we are also finding itemsets that minimize description length.
Conversely, any encoding scheme implicitly defines a probabilistic model: given
an encoding scheme E that assigns each transaction X to a string of L(X) bits,
we can define p(X|E) ∝ 2−L(X), and then E is an optimal code for p(X|E). Inter-
preting previous MDL-based itemset mining methods in terms of their implicit
probabilistic models provides interesting insights into these methods.

MTV uses a MaxEnt distribution over itemsets S ∈ I, which for a transaction
X can be written (cf. [20]):

p(X) = π0

∏
S∈I

π
1X(S)
S

where the indicator function 1X(S) = 1 if X supports S and 0 otherwise. Thus if
an itemset is present in the MaxEnt model it must be used to explain a supported
transaction, contrast this with IIM (1) where there is a latent variable z

(j)
S for

each transaction X(j) that infers if an itemset is used to explain the transaction.
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KRIMP by contrast, uses an itemset independence model, which for an item-
set S ∈ I is given by (cf. [28]):

p(S) =
m∑
j=1

z
(j)
S

/ ∑
I∈I

m∑
k=1

z
(k)
I

where the z
(j)
S , and therefore itemset coverings for X(j), are determined using

a heuristic approximation. That is, unlike IIM, the itemset coverings are not
chosen to maximise the probability under the statistical model. Instead, for each
transaction X, frequent itemsets S ∈ I are chosen in order of decreasing size
and support and added to the covering if they improve the compression, until all
elements of X are covered. Additionally, itemsets in the covering are not allowed
to overlap, in contrast to IIM which does allow overlap if it is deemed necessary.

SLIM uses the same approach as KRIMP but iteratively finds the candidate
itemsets S directly from the dataset. It employs a greedy heuristic to do this:
starting with a set of singleton itemsets I, pairwise combinations of itemsets in I
are considered as candidate itemsets S in order of highest estimated compression
gain. IIM uses a very similar heuristic that iteratively extends itemsets by the
most frequent itemset in its candidate generation step (Sect. 3.6).

However, IIM is different from these methods in that they all contain an
explicit penalty term for the description length of the itemset database, which
corresponds to a prior distribution p(I) over itemsets. We did not find in practice
that an explicit prior distribution was necessary but it would be possible to
trivially incorporate it. Also, if we view IIM as an MDL-type method, not only
the presence of an itemset, but also its absence is explicitly encoded (in the form
of (1 − πS)1−z

(j)
S in (1)). As a result, there is an implicit penalty for adding too

many patterns to the model and one does not need to use a code table which
would serve as an explicit penalty for greater model complexity.

One can also think of IIM as a probabilistic tiling method: each interesting
itemset S ∈ I can be thought of as a binary submatrix of transactions for which
zS = 1 by items in S, where the choice of items and transactions in the tile
are inferred directly from IIM’s statistical model. That is, IIM formulates the
inference problem (3) as a weighted set cover for each transaction where the
weights correspond to itemset probabilities. This is in contrast to existing tiling
methods: Geerts et al. [11] find k tiles covering the largest number of database
entries and is thus an instance of maximum coverage. Kontonasios and De Bie
[16] extend this to inferring a covering of noisy tiles using budgeted maximum
coverage, that is, finding a covering that maximizes the sum of the surprisal
of each tile, under a MaxEnt model constrained by expected row and column
margins, subject to the sum of the description lengths of each tile being smaller
than a given budget.

4 Numerical Experiments

In this section we perform a comprehensive qualitative and quantitative evalua-
tion of IIM. On synthetic datasets we show that IIM returns a list of itemsets that
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Fig. 1. Precision against recall for each
algorithm on our synthetic database,
using the top-k itemsets as a thresh-
old.(Each curve is the 11-point inter-
polated precision i.e., the interpolated
precision at 11 equally spaced recall
points between 0 and 1 (inclusive), see
[21], Sect. 8.4 for details.)

Fig. 2. IIM scaling as the number of
transactions in our synthetic database
increases.

is largely non-redundant, contains few spurious correlations and scales linearly
with the number of transactions. On a set of real-world datasets we show that
IIM finds itemsets that are much less redundant than state of the art methods,
while being of similar quality.

Datasets. We use five real-world datasets in our numerical evaluation (Table 1).
The plants dataset [27] is a list of plant species and the U.S. or Canadian states
where they occur. The mammals dataset [23] consists of presence records of
European mammals in 50×50 km geographical areas. The retail dataset consists
of anonymized market basket data from a Belgian retail store [12]. The ICDM
dataset [16] is a list of ICDM paper abstracts where each item is a stemmed word,
excluding stop-words. The Uganda dataset consists of Facebook messages taken
from a set of public Uganda-based pages with substantial topical discussion over
a period of three months. Each transaction in the dataset is an English language
message and each item is a stemmed English word from the message.

IIM Results. We ran IIM on each dataset for 1, 000 iterations with a priority
queue size of 100, 000 candidates. The runtime and number of non-singleton
itemsets returned is given in Table 1 (right). We also investigated the scaling of
IIM as the number of transactions in the database increases, using the model
trained on the plants dataset from Sect. 4.1 to generate synthetic transaction
databases of various sizes. We then ran IIM for 100 iterations on these databases
and one can see in Fig. 2 that the scaling is linear as expected. Our prototype
implementation can process one million transactions in 30 s on 64 cores each
iteration, so there is reason to hope that a more highly tuned implementation
could scale to even larger datasets. All experiments were performed on a machine
with 64 AMD Opteron 6376 CPUs and 256 GB of RAM.
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Table 1. Summary of the real datasets
used and IIM results after 1, 000 itera-
tions.

Dataset Items Trans. |I|† Runtime

ICDM 4, 976 859 798 163min

Mammals 194 2, 670 359 22min

Plants 70 34, 781 259 27min

Retail 16, 470 88, 162 957 941min

Uganda 33, 278 124, 566 928 1086min

† excluding singleton itemsets.

Table 2. IID for the top 50 non-singleton
itemsets returned by the algorithms.

ICDM Mam. Plant Retail Ugan.

IIM 4.00 7.42 4.80 3.26 3.78

MTV 3.14 *5.50 *5.00 2.52 *1.60

SLIM 2.12 *1.76 *1.77 1.44 2.08

KRIMP 2.56 1.94 1.88 1.34 2.26

CHARM 1.42 1.44 1.50 1.32 1.72

*returned less than 50 non-singleton
itemsets.

Evaluation Criteria. We will evaluate IIM along with MTV, SLIM, KRIMP
and CHARM with χ2-test ranking according to the following criteria:

1. Spuriousness – to assess the degree of spurious correlation in the mined set
of itemsets.

2. Redundancy – to measure how redundant the mined set of itemsets is.
3. Interpretability – to informally assess how meaningful and relevant the mined

itemsets actually are.

Note that we chose not to compare to the tiling methods from [11,16] as they
have been shown to underperform on the ICDM dataset [20].

4.1 Itemset Spuriousness

The set-cover formulation of the IIM algorithm (3) naturally favours adding
itemsets to the model whose items co-occur in the transaction database. One
would therefore expect IIM to largely avoid suggesting itemsets of uncorrelated
items and so generate more meaningful itemsets. To verify this is the case and
validate our inference procedure, we check if IIM is able to recover the itemsets
it used generate a synthetic database. To obtain a realistic synthetic database,
we sampled 10, 000 transactions from the IIM generative model trained on the
plants dataset. We were then able to measure the precision and recall for each
algorithm, i.e., the fraction of mined itemsets that are generating and the frac-
tion of generating itemsets that are mined, respectively. We used a minimum
support of 0.0575 for all algorithms (except IIM) as used in [20] for the plants
dataset. Figure 1 shows the precision-recall curve for each algorithm using the
top-k mined itemsets (according to each algorithm’s ranking) as a threshold. One
can clearly see that IIM was able to mine about 50% of the generating itemsets
and almost all the itemsets mined were generating. This not only provides a good
validation of IIM’s inference procedure and underlying generative model but also
demonstrates that IIM returns few spurious itemsets. For comparison, SLIM and
KRIMP exhibited very similar behaviour to IIM whereas MTV returned a very
small set of generating itemsets. The set of top itemsets mined by CHARM con-
tained many itemsets that were not generating. It is not our intention to draw
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conclusions about the performance of the other algorithms as this experimental
setup naturally favours IIM. Instead, we compare the itemsets from IIM with
those from MTV, SLIM and KRIMP on real-world data in the next sections.

4.2 Itemset Redundancy

We now turn our attention to evaluating whether IIM returns a less redundant
list of itemsets than the other algorithms on real-world datasets. A suitable
measure of redundancy for a single itemset is the minimum symmetric difference
between it and the other itemsets in the list. Averaging this across all itemsets in
the list, we obtain the average inter-itemset distance (IID). We therefore ran all
the algorithms on the datasets in Table 1. This enabled us to calculate, for each
dataset, the IID of the top 50 non-singleton itemsets, which we report in Table 2.
For CHARM, we took the top 50 non-singleton itemsets ranked according to χ2

from the top 100, 000 frequent itemsets it returned (as the χ2 calculation would
be prohibitively slow otherwise). One can clearly see that the top IIM itemsets
have a larger IID on average, and are therefore less redundant, than the KRIMP,
SLIM or CHARM itemsets. The top CHARM χ2-ranked itemsets are the most
redundant as expected. On all datasets, the IIM itemsets are less redundant
than those mined by the other methods, with only one exception. On the Plants
dataset, MTV is slightly less redundant than IIM, but this is because MTV is
unable to return 50 items on this dataset, instead returning only 21.

4.3 Itemset Interpretability

For the datasets in Table 1 we can directly interpret the mined itemsets and
informally assess how meaningful and relevant they are.

ICDM Dataset. We compare the top ten non-singleton itemsets mined by the
algorithms in Table 3 (excluding KRIMP whose itemsets are similar for space
reasons). The mined patterns are all very informative, containing technical con-
cepts such as support vector machine and common phrases such as pattern dis-
covery. The IIM itemsets suggest the stemmer used to process the dataset could
be improved, as we retrieve {parameter, parameters} and {sequenc, sequential}.

Plants and Mammals Datasets. For both datasets, all algorithms find item-
sets that are spatially coherent, but as we showed in Table 2, those returned
by IIM are far less redundant. Our novel interestingness measure enables IIM
to rank correlated itemsets above singletons and rare itemsets above frequent
ones, in contrast to the other algorithms. For example, for the plants dataset,
the top itemset retrieved by IIM is {Puerto Rico, Virgin Islands} whereas MTV
returns {Puerto Rico}, not associating it with the Virgin Islands (which are
adjacent) until the 20th ranked itemset. For the mammals dataset, the top two
non-singleton IIM itemsets are a group of four mammals that coexist in Scotland
and Ireland and a group of ten mammals that coexist on Sweden’s border with
Norway. By contrast, the top four SLIM and KRIMP itemsets list some of the
most common mammals in Europe (see the supplementary material for details).
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Table 3. Top ten non-singleton ICDM itemsets as found by IIM, MTV and SLIM.

IIM MTV SLIM

associ rule experiment result inform model

local global synthetic real cluster algorithm

support vector machin svm real datasets larg effici

parameter parameters pattern discov perform set

anomali detect associ rule mine propos problem

sequenc sequential frequent pattern mine algorithm method set

linear discriminant analysi train classifi associ rule

synthetic real life address problem problem result

background knowledg classifi class approach base method

semi supervised machin learn base method set

Table 4. Top six non-singleton Uganda itemsets for each algorithm.

IIM MTV SLIM KRIMP

soul, rest, peace heal, jesus, amen !, ? whi, ?

chris, brown god, amen 2, 4 ?, !

bebe, cool 2, 4 whi, ? 2, 4

airtel, red whi, ? god, amen wat, ?

everi, thing god, heal da, dat time, !

time, wast 2, ! heal, jesus, amen soul, rest, peace

Uganda Dataset. The top six non-singleton itemsets found by the algorithms
are shown in Table 4; the IIM itemsets provide much more information about the
topics of the messages than those from the other algorithms. Figure 3 (left) plots
the mentions of each of the top IIM itemsets per day. As one can see, usage of
the top itemsets displays temporal structure (and exhibits spikes of popularity),
even though our model does not explicitly capture this. Of particular interest are
the large spikes of {soul, rest, peac} corresponding to notable deaths: wealthy
businessman James Mulwana on the 15th January, President Museveni’s father
on the 22nd February and six school students in a traffic accident on the 29th
March. Also of interest are the 285 mentions of {airtel, red} on New Year’s Eve
corresponding to mobile provider Airtel’s Red Christmas competition for 10 K
worth of airtime. The spike of {bebe, cool} on the 15th January corresponds
to the Ugandan musician’s wedding announcement and the spike on the 24th
January of {chris, brown} refers to many enthusiastic mentions of the popular
American singer that day. The last two itemsets capture common phrases.

In comparison, the top-six MTV itemsets are plotted in Fig. 3 (right). One
can see that the itemsets {heal, jesus, amen};{god, amen} and {god, heal} sub-
stantially overlap and are strongly correlated with each other, sharing a large
spike on the 8th February and a smaller spike on the 11th March. The remaining
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Fig. 3. Mentions per day of the top six non-singleton IIM (left) and MTV (right)
itemsets from the Uganda messages dataset over three months.

itemsets exhibit no interesting spikes as one would expect. The top six SLIM and
KRIMP itemsets in Table 4 all displayed random time evolution, as one would
expect, except for the religious ones we have already encountered.

5 Conclusions

We presented a generative model that directly infers itemsets that best explain a
transaction database along with a novel model-derived measure of interestingness
and demonstrated the efficacy of our approach on both synthetic and real-world
databases. In future we would like to extend our approach to directly inferring
the association rules implied by the itemsets and parallelize our approach to
large clusters so that we can efficiently scale to much larger databases.
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Abstract. A cross-domain recommendation algorithm exploits user
preferences from multiple domains to solve the data sparsity and cold-
start problems, in order to improve the recommendation accuracy. In
this study, we propose an efficient Joint cross-domain user Clustering
and Similarity Learning recommendation algorithm, namely JCSL. We
formulate a joint objective function to perform adaptive user clustering
in each domain, when calculating the user-based and cluster-based sim-
ilarities across the multiple domains. In addition, the objective function
uses an L2,1 regularization term, to consider the sparsity that occurs in
the user-based and cluster-based similarities between multiple domains.
The joint problem is solved via an efficient alternating optimization algo-
rithm, which adapts the clustering solutions in each iteration so as to
jointly compute the user-based and cluster-based similarities. Our exper-
iments on ten cross-domain recommendation tasks show that JCSL out-
performs other state-of-the-art cross-domain strategies.

Keywords: Collaborative filtering · Cross-domain recommendation ·
Alternating optimization

1 Introduction

The collaborative filtering strategy has been widely followed in recommendation
systems, where users with similar preferences tend to get similar recommen-
dations [13]. User preferences are expressed explicitly in the form of ratings or
implicitly in the form of number of views, clicks, purchases, and so on. Represen-
tative collaborative filtering strategies are matrix factorization techniques, which
factorize the data matrix with user preferences in a single domain (e.g., music or
video), to reveal the latent associations between users and items [14]. However,
data sparsity and cold-start problems degrade the recommendation accuracy, as
there are only a few preferences on which to base the recommendations in a
single domain [5,13].

c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 426–441, 2016.
DOI: 10.1007/978-3-319-46227-1 27
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With the advent of social media platforms and e-commerce systems, such
as Amazon and Epinions, users express their preferences in multiple domains.
For example, in Amazon users can rate items from different domains, such as
books and DVDs, or users express their opinion on different social media plat-
forms, such as Facebook and Twitter. In the effort to overcome the data sparsity
and cold-start problems, several cross-domain recommendation strategies have
been proposed, which exploit the additional information of user preferences in
multiple auxiliary domains to leverage the recommendation accuracy in a target
domain [15]. However, generating cross-domain recommendations is a challeng-
ing task [5,23]; for example, if the auxiliary domains are richer than the target
domain, algorithms learn how to recommend items in the auxiliary domains and
consider the target domain as noise. Moreover, the auxiliary domains might be
a potential source of noise, for example, if user preferences differ in the multi-
ple domains, the auxiliary domains introduce noise in the learning of the target
domain. Therefore, a pressing challenge resides on how to transfer the knowledge
of user preferences from different domains.

In cross-domain recommendation, the auxiliary domains can be categorized
based on users and items overlap, that is, full-overlap, and partial or non
user/item overlap between the domains [5]. In this study, we focus on partial
user overlap between the target and the auxiliary domains, as it reflects on the
real-world setting [8]. Relevant methods, such as [8,20], form user and item clus-
ters to capture the relationships between multiple domains at a cluster level,
thus tackling the sparsity problem; and then weigh the cluster-based and user-
based preferences to generate the top-N recommendations in the target domain.
However, existing cluster-based cross-domain strategies have the following limi-
tations, they form non-adaptive user and item clusters in a common latent space,
when computing the cluster-based associations [8]; or they linearly combine the
cluster-based and user-based relationships in the target domain [20].

1.1 Contribution

In this study, we overcome the aforementioned limitations in a novel approach for
joint cross-domain recommendation based on user adaptive clustering and simi-
larity learning. Our main contribution is summarized as follows, (i) we formulate
an objective function to jointly learn the user-based and cluster-based similar-
ities across multiple domains, while adapting the user clusters in each domain
at the same time. To account for the fact that the user-based and cluster-based
similarities across multiple domains are sparse, we use an L2,1-norm regulariza-
tion to force the similarities to be sparse. (ii) We propose an efficient alternating
optimization algorithm to minimize the joint objective function, thus computing
the user-based similarities across the multiple domains. The user latent factors
are weighted based on the calculated user-based similarities, to generate the final
top-N recommendations. Our experiments on ten cross-domain recommendation
tasks demonstrate the superiority of the proposed approach over competitive
cross-domain strategies.
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The remainder of the paper is organized as follows, Sect. 2 reviews the related
study and in Sect. 3 we formally define the cross-domain recommendation prob-
lem. Section 4 formulates the proposed joint objective function, Sect. 5 presents
our alternating optimization algorithm, and in Sect. 6 we elaborate on how to
generate the top-N cross-domain recommendations. Finally, Sect. 7 presents the
experimental results and Sect. 8 concludes the study.

2 Related Work

Cross-domain recommendation algorithms differ in how the knowledge of user
preferences from the auxiliary domains is exploited, when generating the rec-
ommendations in the target domain [15,23]. For example, various cross-domain
approaches aggregate user preferences into a unified matrix, on which weighted
single-domain techniques are applied, such as user-based kNN [2]. The graph-
based method of [6] models the similarity relationships as a direct graph and
explore all possible paths connecting users or items to capture the cross-domain
relationships. Other methods exploit side information when linking multiple
domains, on condition that the domains are linked by common knowledge, such
as overlap of user/item attributes [4], social tags [1], and semantic networks [12].
However, such side information is not always available [20].

Other cross-domain techniques assume that the auxiliary and target domains
are related by means of shared latent features. Representative methods are tri-
matrix co-factorization, where user and item latent factors are shared between
domains with different user preferences patterns. For example, Pan et al. [22]
transform the knowledge of user preferences from different domains with het-
erogenous forms of user feedback, that is, explicit or implicit feedback, to com-
pute the shared latent features. Hu et al. [10] model a cubic user-item-domain
matrix (tensor), and by applying factorization the respective latent space is con-
structed, based on which the cross-domain recommendations are generated.

More closely related to our approach, cross-domain strategies transfer pat-
terns of user preferences between domains at a cluster level. Li et al. [16] calcu-
late user and item clusters for each domain, and then encode the cluster-based
patterns in a shared codebook; finally, the knowledge of user preferences is trans-
ferred across domains through the shared codebook. Gao et al. [8] compute the
latent factors of user-clusters and item-clusters to construct a common latent
space, which represents the preference patterns e.g., rating patterns, of user
clusters on the item clusters. Then, the common cluster-based preference pat-
tern that is shared across domains is learnt following a subspace strategy, so as
to control the optimal level of sharing among multiple domains. Mirbakhsh and
Ling [20] factorize a cluster-based coarse matrix, to capture the shared interests
among user and item clusters. By factorizing the coarse matrix the preferences
of users on items are computed at a cluster-level. By linearly combining the fac-
torized cluster-based preferences with the individual user preferences, the rec-
ommendation accuracy is improved. However, both [8] and [20] use non-adaptive
clustering strategies, when computing the cluster-based similarities.
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Table 1. Notation.

Symbol Description

d Number of domains

np Number of users in the p-th domain, p = 1, . . . , d

mp Number of items in the p-th domain

Rp ∈ �np×mp User-item interaction (rating) matrix in the p-th domain

Ap ∈ �np×np Adjacency matrix of the users’ graph in the p-th domain

cp Number of user clusters in the p-th domain

Cp ∈ �np×cp Cluster assignment matrix in the p-th domain

Ypk ∈ �cp×ck Cluster-based cross domain matrix between domains p and k

Xpk ∈ �np×nk Cross domain matrix between the users in domains p and k

Meanwhile, there are several graph-based algorithms that perform clustering
on multiple domains such as the studies reported in [3,7], However, these tech-
niques focus on grouping instances e.g., users from different domains, and do not
generate cross-domain recommendations.

3 Problem Formulation

3.1 Notation

Our notation is presented in Table 1. We assume that we have d different
domains, where np and mp are the numbers of users and items in the p-th
domain, respectively. In matrix Rp, we store the user preferences on items, in
the form of explicit feedback e.g., ratings or in the form of implicit feedback
e.g., number of views, clicks, and so on. Based on the matrix Rp, we capture
the user-based similarities in the p-th domain. If users i and j have interacted
with at least a common item q, then users i and j are connected. The connec-
tions/similarities are stored in an adjacency matrix Ap, whose ij-th entries are
calculated as follows [24]:

(Ap)ij =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

mp∑

q=1
(Rp)iq(Rp)jq

√
mp∑

q=1
(Rp)2iq

√
mp∑

q=1
(Rp)2jq

, if users i and j are connected

0 , otherwise

(1)

with i, j = 1, . . . , np.

3.2 Cross-Domain Similarities

In our approach, we consider two types of cross-domain similarities, that is, the
cluster-based and the user-based cross-domain similarities, defined as follows:
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Definition 1 (Cluster-based cross-domain similarities). For the p-th
domain, we consider a cluster assignment matrix Cp, with (Cp)ic expressing
the probability that user i belongs to cluster c. We define a cluster-based cross
domain matrix Ypk�cp×ck , where cp and ck are the numbers of user clusters in
the p-th and k-th domains respectively. The entry (Ypk)ij expresses the similarity
between clusters i and j in the p-th and k-th domains, accordingly.

Definition 2 (User-based cross-domain similarities). We define a cross-
domain matrix Xpk between users in domains p and k. The entry (Xpk)ij

expresses the similarity between users i and j in domains p and k, respectively.

3.3 Problem Definition

In the cross-domain recommendation task, we assume that we have a target
domain p and d − 1 auxiliary domains. The goal is to predict the missing user
preferences on items (recommendations) in the target domain p, while consider-
ing the user-based similarities in the rest of d−1 auxiliary domains. Following the
notation of matrix factorization, let Up ∈ �np×l and Vp ∈ �mp×l be the user and
item latent factor matrices, with the factorized matrix R̂p = UpVT

p ∈ �np×mp

containing the missing user preferences on items. As the i-th row of matrix Up,
denoted by (Up)i∗, contains the l-dimensional user latent factor of user i, we can
use a social regularization term Ω(Up), when learning the factorized matrix R̂p

as follows [19]:

min
Up,Vp

||Rp − UpVT
p ||2F + γ(||Up||2F + ||Vp||2F ) + Ω(Up) (2)

where the first term is the approximation error between the factorized matrix R̂p

and the initial data matrix Rp; the second one is the regularization term to avoid
model overfitting with the parameter γ > 0; and the third term corresponds to
the social regularization term based on the d − 1 auxiliary domains between the
partial user overlaps. In the social regularization term Ω(Up), we have to weigh
the influence of the user latent factors based on the user-based cross-domain
similarities in Xpk (Definition 2) as follows:

Ω(Up) =
np∑
ij

1
d − 1

d−1∑
k=1

(Xpk)ij ||(Up)i∗ − (Up)j∗||2, with p �= k (3)

The term in the sum expresses the approximation error between the user latent
factors, weighted by the user-based cross-domain similarities in Xpk. The goal
of the proposed approach is formally defined as follows:

Definition 3 (Problem). The goal of the proposed approach is to calculate the
weights in Xpk based on the preferences that users have in the different domains,
in order to weigh the approximation error between the user latent factors (Up)i∗
and (Up)j∗ in (3).
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4 Joint Cross-Domain Objective Function

User clustering. To simplify the presentation, from now on we assume that we
have a target domain p and an auxiliary domain k. Given the adjacency matrix
Ap (computed in (1)), first we have to define the objective function for perform-
ing user clustering on the p-th domain, that is, to calculate the cluster assignment
matrix Cp, which corresponds to the following minimization problem:

min
Cp

∑
ij

||(Cp)i∗ − (Cp)j∗||2, with i, j = 1, . . . , np

subject to CT
p Cp = I, Cp ≥ 0

(4)

with orthogonality constraints on the cluster matrix Cp, and the user assign-
ments to clusters being 0 or positive. According to the Laplacian method of [9],
the minimization problem of (4) is equivalent to:

min
Cp

∑
ij

||(Cp)i∗ − (Cp)j∗||2 = min
Cp

Tr(CT
p LpCp)

subject to CT
p Cp = I,Cp ≥ 0

(5)

where Tr(·) is the trace operator. Matrix Lp ∈ �np×np is the Laplacian of the
adjacency matrix Ap, which is computed as follows: Lp = Dp − Ap, where D ∈
�np×np is a diagonal matrix, whose entries are calculated as (Dp)ii =

∑
ij

(Ap)ij .

Similarly, we define the respective objective function in (5), for performing user
clustering on the auxiliary domain k, denoted by matrix Ck ∈ �nk×ck .

Cluster-based and User-based Similarities. To compute the cluster-based
and user-based similarities between domains p and k, we follow a co-clustering
strategy [7], where we have to minimize the following objective function:

min
Ypk,Xpk

||Xpk − CpYpkCT
k ||2F + λx||Xpk||2,1 + λy||Ypk||2,1

subject to YT
pkYpk = I,Ypk ≥ 0,Xpk ≥ 0

(6)

with orthogonality constraints on the cluster-based matrix Ypk, and the user-
based and cluster-based (cross-domain) similarities being 0 or positive. Symbol
|| · ||2,1 denotes the L2,1 norm of a matrix which is calculated as follows [21]:

||Xpk||2,1 =
np∑
i=1

√√√√
nk∑
j=1

(Xpk)ij
2 =

np∑
i=1

||(Xpk)i∗||2 (7)

The L2,1 regularization terms in (6) force the solutions of matrices Xpk and
Ypk to be sparse, reflecting on the real-world scenario, where the user-based
and cluster-based cross-domain similarities are usually sparse [5]. Parameters
λx,λy > 0 control the respective L2,1 regularization terms in (6).
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Joint Objective Function. By combining (i) the objective function in (6) with
(ii) the two clustering objective functions in (5) for domains p and k, we have
to minimize the following joint objective function:

min
Ck,Cp,Ypk,Xpk

F = ||Xpk − CpYpkCT
k ||2F + λx||Xpk||2,1 + λy||Ypk||2,1

+ βpTr(CT
p LpCp) + βkTr(CT

k LkCk)

subject to CT
k Ck = I, CT

p Cp = I,YT
pkYpk = I, Ck,Cp,Ypk,Xpk ≥ 0

(8)

where βp, βk > 0 are the regularization parameters for the clusterings in domains
p and k, respectively.

5 Alternating Optimization

As the joint objective function F(Ck,Cp,Ypk,Xpk) in (8) is not convex with
respect to the four variables/matrices, we propose an alternating optimization
algorithm, where we update one variable, while keeping the remaining three
fixed. The cluster assignment matrices Ck,Cp are initialized by performing k-
means to the respective adjacency matrices Ak and Ap, while Ypk and Xpk are
initialized by random (sparse) matrices. Next, we present the updating steps for
each variable.

Step 1, fix Cp, Ypk, Xpk and update Ck. By considering the optimality
condition ∂F/∂Ck = 0, we calculate the partial derivative of F with respect
to Ck:

∂F
∂Ck

= −2XT
pkCpYpk + 2CkYT

pkC
T
p CpYpk + 2βkLkCk (9)

As the joint objective function F in (8) is subject to the orthogonality constraints
CT

p Cp = I, YT
pkYpk = I, the second term of (9) equals 2Ck. By setting the

partial derivative equal to zero we have to solve the following equation with
respect to Ck:

− XT
pkCpYpk + Ck + βkLkCk = 0 (10)

As (I + βkLk) is a positive definite matrix, we can obtain the following closed-
form solution (updating rule) of Ck:

Ck = (I + βkLk)−1XT
pkCpYpk (11)

Step 2, fix Ck, Ypk, Xpk and update Cp. The partial derivative of F with
respect to Cp is equivalent to:

∂F
∂Cp

= −2XpkCkYT
pk + 2CpYpkCT

k CkYT
pk + 2βpLpCp (12)

Similarly, provided that F is subject to CT
k Ck = I, YT

pkYpk = I, we have the
optimality condition by setting the partial derivative equal to zero:

− XpkCkYT
pk + Cp + βpLpCp = 0 (13)



Joint Cross-Domain Similarity Learning 433

Given that (I + βpLp) is positive definite, we have the following updating rule
for Cp:

Cp = (I + βpLp)−1XpkCkYT
pk (14)

Step 3, fix Cp, Ck, Xpk and update Ypk. The presence of the L2,1-norm
regularization in the objective function F of (8) makes the model difficult to
optimize, as the algorithm cannot be guaranteed to convergence based on the
analysis at [21]. To overcome this issue, we define a diagonal matrix Qy ∈ �cp×ck

(with the same size as Ypk), whose entries are calculated as follows:

(Qy)ii =
1

2||(Ypk)i∗||2 (15)

thus, we can calculate the partial derivative of F with respect to Ypk as follows:

∂F
∂Ypk

= −2CT
p XpkCk + 2CT

p CpYpkCT
k Ck + 2λyQyYpk (16)

where the last term corresponds to the partial derivative of the L2,1 regulariza-
tion term of Ypk in (8), with convergence guarantees [21]. As the joint objective
function F is subject to CT

k Ck = I, CT
p Cp = I, by setting the partial derivative

of (16) equal to zero, we have:

− CT
p XpkCk + Ypk + λyQyYpk = 0 (17)

which results in the following update rule for Ypk:

Ypk = (I + λyQy)−1CT
p XpkCk (18)

where (I + λyQy) is a positive definite matrix.

Step 4, fix Ck, Cp, Ypk and update Xpk. Similarly, given the L2,1 regular-
ization term of Xpk in the joint objective function F , we define the diagonal
matrix Qx ∈ �np×nk , whose entries are computed as follows:

(Qx)ii =
1

2||(Xpk)i∗||2 (19)

Then, we take the partial derivative of F with respect to Xpk:

∂F
∂Xpk

= 2Xpk − 2CpYpkCT
k + βxQxXpk (20)

By setting the partial derivative of (20) equal to zero, we obtain the following
update rule for Xpk:

Xpk = (I + βxQx)−1CpYpkCT
k (21)

Analysis. The alternating optimization is performed iteratively, where in each
iteration matrices Ck, Cp, Ypk and Xpk are updated based on (11), (14), (18)



434 D. Rafailidis and F. Crestani

and (21), respectively. More precisely, at each iteration each variable/matrix is
recalculated based on the rest three matrices, which means that each matrix is
adapted to the values that the rest matrices have taken at the previous iteration,
in order to reach a consensus solution for all four matrices over the iterations.
The alternating optimization algorithm is repeated, until the algorithm con-
verges. The optimization algorithm converges on condition that the joint objec-
tion function F in (8) monotonically decreases after each iteration. Based on [21]
the L2,1-norm regularization terms of F are differentiable at zero, by using the
diagonal matrices Qy and Qx in (15) and (19) when updating Ypk and Xpk

in (18) and (21), respectively1. By considering the optimality condition in each
step, that is, setting the partial derivative of F with respect to each variable
equal to zero when updating the four variables, the proof that the algorithm
converges is similar to the convergence analysis of [11].

6 Generating Top-N Recommendations

The joint objective function F for k = 1, . . . , d − 1 auxiliary domains can be
extended to:

min
Ck,Cp,Ypk,Xpk

F =
d−1∑
k=1

[
||Xpk − CpYpkCT

k ||2F + λx||Xpk||2,1 + λy||Ypk||2,1

]

+ βpTr(CT
p LpCp) +

d−1∑
k=1

βkTr(CT
k LkCk)

subject to CT
k Ck = I, CT

p Cp = I,YT
pkYpk = I, Ck,Cp,Ypk,Xpk ≥ 0

(22)
where the variables of F are (i) the d− 1 clustering matrices Ck of the auxiliary
domains; (ii) the cluster matrix Cp of the target domain p; (iii) the d−1 matrices
Ypk, and Xpk. An overview of our approach is presented in Algorithm1.

7 Experimental Evaluation

7.1 Settings

Cross-domain recommendation tasks. Our experiments were performed on
ten cross-domain tasks from the Rich Epinions Dataset (RED)2, which con-
tains 131,228 users, 317,775 items and 1,127,673 user preferences, in the form
of ratings. The items are grouped in categories/domains, and we evaluate the
performance of cross-domain recommendation on the 10 largest domains. The
evaluation data were provided by the authors of [20]. The main characteristics
of the ten cross-domain recommendation tasks are presented in Table 2. The
evaluation tasks are challenging, as the domains do not have item overlaps, but
1 At the first iteration matrices Qy and Qx are initialized by using the identity

matrix [21].
2 http://liris.cnrs.fr/red/.

http://liris.cnrs.fr/red/
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ALGORITHM 1. Joint Cross-Domain User Clustering and Similarity Learning

Input: Rp, Ap, Rk, Ak, with k = 1, . . . , d − 1

Output: factorized matrix R̂p

1 Initialize Cp,Ck by performing k-means on Ap and Ak, ∀k = 1, . . . , d − 1
2 Initialize Ypk and Xpk, ∀k = 1, . . . , d − 1
3 convergence = False
4 while convergence = False do
5 Update Ck based on (11), ∀k = 1, . . . , d − 1
6 Update Cp based on (14)
7 Update Ypk based on (18), ∀k = 1, . . . , d − 1
8 Update Xpk based on (21), ∀k = 1, . . . , d − 1
9 Calculate F in (22) using the updated Ck,Cp,Ypk,Xpk, ∀k = 1, . . . , d − 1

10 if F converges
11 convergence = true
12 end if
13 end while
14 Calculate Ω(Up) based on the updated Xpk and (3), ∀k = 1, . . . , d − 1
15 Calculate Up and Vp based on Ω(Up) and (2)

16 R̂p = UpV
T
p

Table 2. The ten cross-domain recommendation tasks.

Domain Users Items Ratings Density (%)

Books 15,507 59,346 108,887 0.011

Baby Care 5,422 3,165 21,340 0.124

Destinations 9,290 3,615 31,418 0.093

Music 16,002 35,807 96,226 0.016

Online Stores & Services 28,643 5,518 54,734 0.034

Personal Care 6,214 10,786 28,945 0.043

Sport & Outdoor 6,750 9,597 19,181 0.029

Toys 9,040 18,681 51,152 0.030

Used Cars 17,041 4,174 28,598 0.040

Video & DVD 25,218 28,972 175,665 0.024

only user overlaps. In each cross-domain recommendation task, we consider one
target domain and the remaining nine serve as auxiliary domains. For each task
we preserve all the ratings of the auxiliary domains, and we randomly select
25 %, 50 % and 75 % of the target domain as training set [20]. For each split, the
remaining ratings of the target domain are considered as test set. We repeated
our experiment five times, and we report mean values and standard deviations
over the runs.

Compared methods. In our experiments, we evaluate the performance of the
following methods:

– NMF [14]: a single-domain baseline Nonnegative Matrix Factorization
method, which generates recommendations based only on the ratings of the
target domain, ignoring the ratings in the auxiliary domains.
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– CLFM [8]: a cross-domain Cluster-based Latent Factor Model which uses
joint nonnegative tri-factorization to construct a latent space to represent
the rating patterns of user clusters on the item clusters from each domain,
and then generates the cross-domain recommendations based on a subspace
learning strategy.

– CBMF [20]: a cross-domain Cluster-based Matrix Factorization model, which
defines a coarse cross-domain matrix to capture the shared preferences between
user and item clusters in the multiple domains, and then reveals the latent
associations at a cluster level by factorizing the coarse cross-domain matrix.
The final recommendations are generated by linearly combining the cluster-
based latent associations and the user-based latent associations in the target
domain. CBMF controls the influence of the cluster-based relationships on the
personalized recommendations based on a parameter α.

– JCSL: the proposed Joint cross-domain user Clustering and Similarity Learn-
ing model.

In all models we varied the number of latent factors from [10,100] by a step of 10.
In the cross-domain methods of CLMF, CBMF and JCSL we fixed the number
of clusters to 100, as suggested in [20]. The predefined clusters in both the CLMF
and CBMF methods are computed by performing k-means, also used in [8,20].
Similarly, in the proposed JCSL method, the clusters are initialized by the k-
means algorithm (Sect. 5). Following [8], in CLFM we tuned the dimensionality
of the subspace up to the minimum number of latent factors of the multiple
domains. In CBFM, we varied the α parameter in [0,1], where lower values of
α consider to a fewer extent the cluster-based relationships, when computing
the top-N recommendations. In JCSL the maximum number of iterations3 of
the alternating optimization algorithm is fixed to 50, and the regularization
parameters of the objective function in (22) were varied in [0.0001,0.1]. In all
examined models, the parameters were determined via cross validation and in
our experiments we report the best results.

Evaluation protocol. Popular commercial systems make top-N recommenda-
tions to users, and relevant studies showed that rating error metrics, such as
RMSE (Root Mean Squared Error) and MAE (Mean Absolute Error) do not
necessarily reflect on the top-N recommendation performance [5]. Therefore, in
our experiments we used the ranking-based metrics Recall and Normalized Dis-
counted Cumulative Gain to evaluate the top-N performance of the examined
models directly [20]. Recall (R@N) is defined as the ratio of the relevant items in
the top-N ranked list over all the relevant items for each user. The Normalized
Discounted Cumulative Gain (NDCG@N) metric considers the ranking of the
relevant items in the top-N list. For each user the Discounted Cumulative Gain
(DCG@N) is defined as:

3 The algorithm terminates (converges) in less iterations, if (F (t+1) − F (t))/F (t) ≤
1e − 03, where F (t) is the value of the objective function F after the t-th iteration.
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DCG@N =
N∑

j=1

2relj − 1
log2 j + 1

(23)

where relj represents the relevance score of the item j to the user. NDCG@N
is the ratio of DCG@N over the ideal iDCG@N value for each user, that is, the
DCG@N value given the ratings in the test set. In our experiments we averaged
R@N and NDCG@N over all users.

7.2 Results

In the first set of experiments, we use 75 % of the target domain as training
set, while the remaining is considered as test set. Table 3 presents the exper-
imental results in terms of NDCG@10. The cross-domain methods of CLFM,
CBMF and JCSL significantly outperform the single-domain NMF method, by
exploiting the auxiliary domains when generating the recommendations. This
happens because the cross-domain methods incorporate the additional informa-
tion of user preferences on items from the auxiliary domains, thus reducing the
data sparsity in the target domain. The proposed JCSL method achieves an
8.95 % improvement on average when comparing with the second best method.
Using the paired t-test we found that JCSL is superior over the rest approaches
for p < 0.05. JCSL beats the competitive strategies, as it exploits the cluster-
based similarities more efficiently than the competitive cluster-based models.
The joint learning strategy of the adaptive user clustering while computing the
user-based and cluster-based similarities, makes JCSL to efficiently incorporate
the additional information of user preferences in the auxiliary domains. On the
other hand, CLFM uses a subspace learning strategy on non-adaptive clusters
in a common latent space. Finally, CBMF linearly combines the cluster-based
and the individual latent associations by capturing the user preferences in the
auxiliary domains based on predefined clusters. In this set of experiments there
is the exceptional case of the “Baby Care” cross-domain task, where the pro-
posed method has similar performance with CBMF. This happens because “Baby
Care” is the less sparse domain, as presented in Table 2. Figure 1 compares the
examined models in terms of recall (R@N), by varying the number of the top-N
recommendations. Similarly, JCSL achieves a 12.17 % improvement on average,
for all the cross-domain recommendation tasks.

To evaluate the performance of the examined methods when sparsity
increases, the training set is reduced to 25 % of the target domain, while keeping
all the ratings of the auxiliary domains. Table 4 reports the experimental results
in terms of recall (R@10) based on the reduced training sets. In relation to the
experimental results of Fig. 1, recall drops for all methods, due to the increased
sparsity. As we can observe, the proposed JCSL method achieves relatively high
recall. In all cross-domain recommendation tasks, JCSL is superior to the com-
petitive cross-domain strategies (for p < 0.05), by achieving on average relative
improvement of 14.49 %, when comparing with the second best method.

Figure 2 shows the effect on NDCG@10 of the cross-domain recommenda-
tion models, by varying the training sizes of three representative target domains,
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Table 3. Effect on NDCG@10 for the ten cross-domain recommendation tasks, using
75% of the target domain as training set. Bold values denote the best scores, for
∗p < 0.05 in paired t-test. The last column denotes the relative improvement (%),
when comparing JCSL with the second best method (CBMF).

Target domain NMF CLFM CBMF JCSL Improv. (%)

Books .0997± .0119 .1502± 0308 .1780± .0619 .1919± .0472∗ 7.80∗

Baby Care .2054± .0506 .3144± .0345 .3875± .0153 .3749± .0460 −3.25

Destinations .2991± .0810 .3648± .0961 .4271± .0903 .4587± .0805∗ 7.39∗

Music .1235± .0263 .1631± .0417 .1991± .0399 .2109± .0420∗ 7.43∗

Online Stores .1718± .0909 .2550± .0183 .3222± .0320 .3665± .0509∗ 13.74∗

Personal Care .1385± .0173 .1677± .0687 .2155± .0311 .2491 ± .0460∗ 15.59∗

Sport & Outdoor .1167± .0290 .1469± .0308 .1493± .0917 .1665± .0922∗ 11.52∗

Toys .1718± .0649 .2269± .0406 .2757± .0453 .3017± .0434∗ 9.43∗

Used Cars .0981± .0841 .1301± .0167 .1750± .0471 .1897± .0209∗ 8.15∗

Video & DVD .2413± .0381 .3225± .0350 .3984± .0428 .4451± .0428∗ 11.72∗

Fig. 1. Effect on Recall (R@N) by varying the number of the top-N recommendations.
In the ten cross-domain tasks, 75% of the target domain is considered as training set.
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Table 4. Effect on Recall (R@10) for the ten cross-domain recommendation tasks,
using 25% of the target domain as training set. Bold values denote the best scores,
for ∗p < 0.05 in paired t-test. The last column denotes the relative improvement (%),
when comparing JCSL with the second best method (CBMF).

Target domain NMF CLFM CBMF JCSL Improv. (%)

Books .0856± .0348 .1108± .0744 .1468± .0390 .1779± .0173∗ 21.18∗

Baby Care .1796± .0947 .3411± .0872 .4474± .0752 .4968± .1212∗ 11.04∗

Destinations .2604± .0520 .3748± .0869 .4365± .0803 .5013± .0720∗ 14.84∗

Music .1485± .0431 .1805± .0450 .2073± .0869 .2304± .0330∗ 11.14∗

Online Stores .2099± .0112 .3151± .0860 .3689± .0401 .4230± .0622∗ 14.74∗

Personal Care .1345± .0152 .1690± .0622 .1961± .0560 .2232± .0648∗ 13.81∗

Sport & Outdoor .0800± .0853 .1239± .0.751 .1622± .0306 .1820± .0294∗ 12.63∗

Toys .2448± .0679 .3137± .0585 .3497± .0751 .3921 ± .0655∗ 12.12∗

Used Cars .0730± .0250 .1098± .0959 .1160± .0699 .1439± .0427∗ 24.05∗

Video & DVD .2164± .0162 .3685± .0285 .4421± .0892 .4834± .0733∗ 9.34∗

which are at different scale (Table 2). For presentation purposes, in this set of
experiments the baseline NMF method is omitted, due to its low performance.
We observe that all cross-domain methods increase the NDCG metric, when
a larger training set is used. Figure 2 shows that the proposed JCSL method
keeps NDCG relatively high in all settings, while outperforming CLFM and
CBMF. The three cross-domain models differ in how the knowledge of user
preferences is transferred between the domains when generating the recommen-
dations, which explains their different performance when decreasing the training
set size. JCSL adapts the clustering in each domain separately, while computing
the cross-domain cluster-based similarities; whereas CLFM and CBMF compute
the similarities between predefined/non-adaptive clusters, when generating the
recommendations.

Fig. 2. Effect on NDCG@10 by varying the size of the training set.
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8 Conclusion

In this paper, we presented an efficient cross-domain recommendation algorithm
based on a joint strategy to adapt the user clusters, while calculating the user-
based and cluster-based similarities across multiple domains. The joint opti-
mization problem is solved via an efficient alternating optimization algorithm.
Our experiments on ten cross-domain tasks confirmed the superiority of the
proposed approach over competitive cross-domain strategies at different levels
of sparsity. The main advantages of our approach are that JCSL adapts the
clusters in each domain separately, while computing the cross-domain cluster-
based similarities, whereas the competitors compute the similarities between
predefined/non-adaptive clusters when generating the recommendations. Instead
of linearly combining the cluster-based and user-based similarities, as for exam-
ple CBMF does, JCSL jointly learns both types of similarities. In this study we
considered partial user overlaps, with the mapping of users being known between
the different domains. An interesting future direction is to extend our proposed
approach for unknown user-matching across multiple domains [17]. In addition,
an interesting future direction is to evaluate the performance of different cluster-
ing algorithms, such as spherical k-means [25] or power iteration [18], to initialize
the clusters in the different domains.

Acknowledgments. We would like to thank Nima Mirbakhsh and Charles Ling for
providing us with the evaluation data of the ten cross-domain tasks.
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Abstract. In feature selection algorithms, “stability” is the sensitivity
of the chosen feature set to variations in the supplied training data. As
such it can be seen as an analogous concept to the statistical variance
of a predictor. However unlike variance, there is no unique definition of
stability, with numerous proposed measures over 15 years of literature. In
this paper, instead of defining a new measure, we start from an axiomatic
point of view and identify what properties would be desirable. Somewhat
surprisingly, we find that the simple Pearson’s correlation coefficient has
all necessary properties, yet has somehow been overlooked in favour of
more complex alternatives. Finally, we illustrate how the use of this mea-
sure in practice can provide better interpretability and more confidence
in the model selection process. The data and software related to this
paper are available at https://github.com/nogueirs/ECML2016.

Keywords: Stability · Feature selection

1 Introduction

High-dimensional datasets can be very expensive in terms of computational
resources and of data collection. Predictive models in this situation often suffer
from the curse of dimensionality and tend to overfit the data. For these reasons,
feature selection (FS) has become an ubiquitous challenge that aims at selecting
a “useful” set of features [8].

Stability of FS is defined as the sensitivity of the FS procedure to small
perturbations in the training set. This issue is of course extremely relevant
with small training samples, e.g. in bioinformatics applications - if the alter-
ation/exclusion of just one training example results in a very different choice
of biomarkers, we cannot justifiably say the FS is doing a reliable job. In early
cancer detection, stability of the identified markers is a strong indicator of repro-
ducible research [6,12] and therefore selecting a stable set of markers is said to
be equally important as their predictive power [7].

The study of stability poses several problems such as: What impacts stability?
How can we make FS procedures more stable? How can we quantify it? A large
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part of the literature is dedicated to the later, which is the focus of this paper.
Indeed, at a literature search conducted at the time of writing, we identified at
least 10 different measures used to quantify stability [4,8,10,11,13,14,16,17,19,
21]. The existence of so many different measures without known properties may
lead to an incorrect interpretation of the stability values obtained.

As described by [8], FS procedures can have 3 types of outputs: a weighting
on the features also called scoring (e.g. ReliefF), a ranking on the features (e.g.
ranking by mutual information of the features with the target class) or a feature
set (e.g. any wrapper approach). A weighting can be mapped into a ranking, and
by applying a threshold on a ranking, a ranking can be mapped into a feature
set; but the reverse is clearly not possible. For this reason, there exist stability
measures for each type of output. In this paper, we focus on FS procedures that
return a feature set.

An Example. Imagine we have d = 5 features to choose from. We can model
the output feature set of the FS procedure by a binary vector s of length 5, where
a 1 at the f th position means the f th feature has been selected and a 0 means
it has not been selected. For instance, the vector

[
1 1 1 0 0

]
means that features

1–3 have been selected and features 4–5 have not been selected. Now imagine
we apply two distinct FS procedures P1 and P2 to M = 3 different samples of
the data and that we get the following output:

A1 =

⎡
⎣
s1
s2
s3

⎤
⎦ =

⎡
⎣

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0

⎤
⎦ A2 =

⎡
⎣

1 1 1 0 0
1 0 1 1 0
1 0 1 0 0

⎤
⎦
⎫
⎬
⎭M = 3 feature sets (1)

where the rows of A1 and A2 represent the feature sets respectively returned by
P1 and P2. All the feature sets in A1 are identical, therefore there is no varia-
tion in the output of the procedure. Each column of the matrix A1 represents
the selection of each one of the 5 features. The observed frequency of the first
three features is equal to 1 while the one of the two last features is equal to 0.
This situation corresponds to a fully stable selection. Now let us look at A2. In
that situation, we can see that there is some variation in the output of the FS
procedure since the feature sets in A2 are different. If we look at the second and
fourth columns of A2 corresponding to the selection of the second and fourth
feature over the 3 feature sets, we can see that they are selected with a frequency
equal to p̂2 = p̂4 = 1

3 , which shows some instability in the FS.
Quantifying the stability of FS consists in defining a function Φ̂ that takes

the output A of the FS procedure as an input and returns a stability value. It
is important to note that this is an estimate of a quantity, as the true stability
is a random variable. We present the general framework to quantify stability in
Sect. 2. Coming from an axiomatic point of view, we derive a set of properties
that we argue necessary for a stability measure and show that none of the existing
measures have all desired properties in Sect. 3. In Sect. 4, we propose the use
of the sample Pearson’s correlation coefficient showing that it has all required
properties and we provide an interpretation of the quantity estimated using this
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measure. Finally, we illustrate the use of stability in the context of FS by a L1-
regularized logistic regression and show how when coupled with the error of the
model, it can help select a regularizing parameter.

2 Background

2.1 General Framework

To quantify the stability of FS, the following steps are carried out [1]:

1. Take M perturbed versions of the original dataset D (e.g. by using a resam-
pling technique [3] such as bootstrap or noise injection [2]).

2. Apply the FS procedure to each one of the M samples obtained. This gives
a sequence A = [s1, ..., sM ]T of M feature sets.

3. Define a function Φ̂ : {0, 1}M×d → R taking the sequence of feature sets A as
an input and measuring the stability of the feature sets in A.

The main challenge here lies on the definition of an appropriate function Φ̂
that measures the stability in the choice of features in A. Before looking into the
approaches taken in the literature to define such a function Φ̂, we first establish
the following notations that will be used in the remainder of the paper. We can
denote the elements of the binary matrix A representing the M feature sets as
follows:

A =

⎡
⎢⎣
s1
...

sM

⎤
⎥⎦ =

⎛
⎜⎜⎜⎝

x1,1 x1,2 · · · x1,d

x2,1 x2,2 · · · x2,d

...
...

. . .
...

xM,1 xM,2 · · · xM,d

⎞
⎟⎟⎟⎠

↑ ↑ ↑
X1 X2 Xd

– For all f ∈ {1, ..., d}, the selection of the f th feature is modelled by a Bernoulli
variable1 Xf with unknown parameter pf . Therefore, each column of the
matrix A can be seen as a realisation of the variable Xf , from which we
will assume they are random samples.

– For all f in {1, ..., d}, p̂f = 1
M

∑M
i=1 xi,f is the observed frequency of the fth

feature and is the maximum likelihood estimator of pf .
– For all i in {1, ...,M}, ki = |si| is the cardinality of feature set si (i.e. the

number of features in si). When all feature sets in A are of identical cardinality,
we will simply denote the cardinality of the sets by k.

– For all (i, j) in {1, ...,M}2, ri,j denotes the size of the intersection between
feature sets si and sj (i.e. the number of features they have in common).

1 We therefore have a set of d correlated Bernoulli variables (X1, ..., Xd).
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2.2 Quantifying Stability

The main approach that can be found in the literature is the similarity-based
approach. It consists in defining the stability as the average pairwise simi-
larities between the feature sets in A [8]. Let φ : {0, 1}d × {0, 1}d → R be a
function that takes as an input two feature sets si and sj and returns a similarity
value between these two sets. Then the stability Φ̂(A) is defined as2:

Φ̂(A) =
1

M(M − 1)

M∑
i=1

M∑
j=1
j �=i

φ(si, sj).

This approach has been very popular in the literature and many similarity mea-
sures φ have been proposed to that end. Popular examples of similarity measures
are the Jaccard index [8] defined as follows:

φJaccard(si, sj) =
|si ∩ sj |
|si ∪ sj | =

ri,j
ki + kj − ri,j

.

For instance, if we take back the examples given in Eq. 1, using the Jaccard index
we get the stability values of:

Φ̂Jaccard(A1) =
1
3

(φJaccard(s1, s2) + φJaccard(s1, s3) + φJaccard(s2, s3)) = 1

Φ̂Jaccard(A2) =
1
3

(
2
4

+
2
3

+
2
3

)
=

11
18

� 0.61.

As expected, we get a smaller stability value in the second case.
Nevertheless, as we further discuss in Sect. 3, this similarity measure has been

shown to provide stability estimates Φ̂ that are biased by the cardinality of the
feature sets [11]. Based on this observation, Kuncheva [11] identifies a set of
desirable properties and introduces a new similarity measure φKuncheva between
two feature sets si and sj of identical cardinality as follows:

φKuncheva(si, sj) =
ri,j − E∇[ri,j ]

max(ri,j) − E∇[ri,j ]
=

ri,j − k2

d

k − k2

d

,

where E∇[ri,j ] is a correcting term equal to the expected value of ri,j when the FS
procedure randomly selects ki and kj features from the d available features. As
the random intersection of two sets of ki and kj objects follows a hypergeometric
distribution, this term is known to be equal to kikj

d which is equal to k2

d here
since ki = kj = k. This measure has been very popular in the literature because
of its known properties. Nevertheless, because it is only defined for feature sets
si and sj of identical cardinality, it can only be used to measure the stability of
FS algorithms that are guaranteed to select a constant number of features. As

2 φ is not necessarily symmetric.
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we have illustrated in example (1), the output of an FS procedure is not always
guaranteed to be of constant cardinality. Examples of such FS procedures are in
feature selection by hypothesis testing [15]. For this reason, several attempts at
extending this measure to feature sets of varying cardinality have been made in
the literature, somehow losing some of the important properties. Even though
most similarity measures used to measure stability are increasing functions of
the size of the intersection between the feature sets, they have shown to lack of
some other required properties.

Other approaches have been taken in the literature to define a function Φ̂,
without going through the definition of a similarity measure. A popular measure
in this category is Somol’s measure CWrel [16] (also called Relative Weighted
Consistency Measure). Its definition is a direct function of the observed frequen-
cies of selection of each feature p̂f . This is the only measure in this category that
is not biased by the cardinality of the feature sets in A and holds the property
of correction for chance.

Due to the multitude of stability measures, it is necessary to discriminate
between them with principled reasons which is the purpose of the next section.

3 Required Properties of a FS Stability Measure

In this section, we identify and argue for 4 properties which all stability mea-
sures should possess. These properties we will argue are necessary for a sensible
measure of stability and if missing even one, a measure will behave nonsensically
in certain situations. We will later demonstrate that from 10 stability measures
published and widely used in the literature, none of them possesses all these
properties.

Property 1: Fully Defined

Imagine we have an FS procedure: Procedure P . Procedure P sometimes returns
4 features, but sometimes 5, so the returned set size varies. It would seem sensible
to have a stability measure which accounts for this. Unfortunately not all do -
Kŕızek’s and Kuncheva’s measures [10,11] are undefined in this scenario.

Property 2: Upper/Lower Bounds

For useful interpretation of a stability measure and comparison across problems,
the range of values of a stability measure should be finite. Imagine we wanted
to evaluate the stability of an FS procedure and that we got a value of 0.9. How
can we interpret this value? If we know that the stability values can take values
in [0, 1], then this corresponds to a fairly high stability value as it is close to its
maximum 1. Let us imagine now that we have a stability value that can take
values in (−∞,+∞). A value of 0.9 is not meaningful any more.
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Fig. 1. Illustration of Property 3. Demonstration that Lustgarten’s measure violates
Property 3a [LEFT] by giving the stability when all feature sets in A are identical
against k for d = 10. Demonstration that Wald’s measure and CWrel violate Property
3b [RIGHT]. Features [1, ..., k] are selected half of the time and feature [1, ..., k− 1] are
selected the other half of the time. Stability values against k for d = 10 and M = 100.

Property 3:

(a) Deterministic Selection → Maximum Stability Imagine that Proce-
dure P selects the same k features every time, regardless of the supplied
data. This is a completely stable method, so it would seem sensible that
any stability measure should reflect this, returning its maximum value. Sur-
prisingly, this is not always the case. Figure 1 [LEFT] shows the stability
value using Lustgarten’s measure [13] when for different values of k. The
result clearly varies with k. That is, if Procedure P1 were to repeatedly
select features 1–4 and Procedure P2 then repeatedly selects features 1–5:
this measure judges P1 and P2 to have different degrees of stability, even
though they are both completely deterministic procedures.

(b) Maximum Stability → Deterministic Selection The converse to the
above should also hold. If a measure has a maximum possible value C,
it should only return that value when Procedure P is deterministic. For
example, imagine Procedure P selects features 1–4 half the time, and 1–5
the rest of the time. Wald’s measure and CWrel return a value of 1 in this
scenario – their maximum possible value, even though clearly there is some
variation in the feature sets. Figure 1 [RIGHT] illustrates this.

Property 4: Correction for Chance

This was first noted by Kuncheva [11]. This ensures that when the FS is random,
the expected value of the stability estimate is constant, which we have set here
to 0 by convention. Imagine that a procedure P1 randomly selects 5 features
and that a procedure P2 randomly selects 6 features, the stability value should
be the same. As illustrated by Fig. 2, this is not the case for all measures.
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Fig. 2. Demonstration that Hamming, Jaccard, POG and Dice violate Property 4.
Random selection of k features with probability 50 % and of k − 1 and k + 1 features
with probability 25 % each. Stability against k for d = 10 and M = 100.

Table 1. Properties of Stability Measures

Summary

We provide a formal description of the required properties and sum up the
properties of the different existing stability measures3 in Table 1. We can observe
that none of the measures satisfy all four desired properties.

1. Fully defined. Φ̂ is defined for any sequence A of feature sets.
2. Bounds. Φ̂ is bounded by constants.
3. Maximum. Φ̂ reaches its maximum ⇐⇒ All feature sets in A are identical.
4. Correction for chance. E∇[Φ̂(A)] = 0 when the selection is random.

3 Sketches of proofs are given in the supplementary material available online at www.
cs.man.ac.uk/∼nogueirs/files/supplementary-material-ECML-2016.pdf.

www.cs.man.ac.uk/~nogueirs/files/supplementary-material-ECML-2016.pdf
www.cs.man.ac.uk/~nogueirs/files/supplementary-material-ECML-2016.pdf
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4 The Sample Pearson’s Correlation Coefficient

In this section, we first demonstrate that the stability measure using the sample
Pearson’s correlation coefficient4 as a similarity measure satisfies all 4 properties.
The sample Pearson’s correlation coefficient between two feature sets si and sj
is by definition:

φPearson(si, sj) =
1
d

∑d
f=1(xi,f − x̄i,.)(xj,f − x̄j,.)√

1
d

∑d
f=1(xi,f − x̄i,.)2

√
1
d

∑d
f=1(xj,f − x̄j,.)2

,

where ∀i ∈ {1, ...,M}, x̄i,. = 1
d

∑d
f=1 xi,f = ki

d .
As other similarity measures, we can point out that φPearson(si, sj) is an

increasing function of the size of the intersection of the selected features ri,j
between the feature sets si and sj . Moreover, the sample Pearson correlation
coefficient is already the similarity measure used when the FS outputs a scoring
on the features [8], even though it has never been used or studied in the context
of feature sets. The use of Pearson’s correlation coefficient is therefore going
towards a unification of the assessment of stability of FS.

The sample Pearson’s correlation also subsumes other measures when the
cardinality of the feature sets is constant, as stated by Theorem 2. This result
is quite surprising, knowing that coming from an axiomatic point of view on a
set of desirable properties, Kuncheva defined a measure that is indeed a specific
case of the well-known sample Pearson’s correlation coefficient φPearson.

Theorem 1. For all (i, j) ∈ {1, ...,M}2, the sample Pearson’s correlation coef-
ficient can be re-written:

φPearson(si, sj) =
ri,j − E∇[ri,j ]

d υiυj
=

ri,j − kikj

d

d υiυj
, (2)

where ∀i ∈ {1, ...,M}, υi =
√

ki

d (1 − ki

d ). Therefore it possesses the property of
correction for chance.

Proof. The proof is provided in the supplementary material.

Theorem 2. When k is constant, the stability using Pearson’s correlation is
equal to some other measures, that is:

Φ̂Pearson = Φ̂Kuncheva = Φ̂Wald = Φ̂nPOG.

Proof. Straightforward using Theorem 1 and the definition of the other similarity
measures given in the supplementary material.

4 Also called the Phi coefficient in this case since we are dealing with binary vectors.
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4.1 Required Properties

Property 1: Fully Defined. As most of the other similarity measures, we can
see in Eq. 2 that the given expression presents indeterminate forms for ki = 0,
kj = 0, ki = d and kj = d. Because these indeterminate forms correspond
to situations in which either all features or none of them are selected, these
indeterminate forms are not critical in the context of feature selection since the
main aim of FS is to identify a non-empty strict subset of relevant features taken
from the available features. Nevertheless, for completeness, following the works
on the correlation coefficient in [5], we set φPearson to 0 when:

– ki = 0 and kj �= 0 or vice-versa;
– ki = d and kj �= d or vice-versa.

When ki = kj = 0 or ki = kj = d, then the feature sets are identical (either
empty set ∅ or full set Ω) and in that case, we set φPearson to be equal to 1 so it
meets the property of maximum. Therefore, the resulting stability Φ̂Pearson has
the property of being fully defined.

Property 2: Bounds. φPearson is known to take values between −1 and 1: the
similarity between two sets is minimal (i.e. equal to −1) when the two sets are
fully anti-correlated (i.e. when si and sj are complementary sets) and maximal
(equal to 1) when the two sets are fully correlated (i.e. identical). Since Φ̂Pearson

is the average value of φPearson over all the possible pairs in A, Φ̂Pearson will
also be in the interval −1 and 1 and is therefore bounded by constants.

Theorem 3. The stability estimate Φ̂Pearson is asymptotically in the interval
[0, 1] as M approaches infinity.

Proof. The proof is provided in the supplementary material.
The asymptotic bounds on the stability estimates make the stability values

obtained more interpretable. Indeed, knowing how the stability values behave
as M increases allows us to understand better how to interpret these values.
Theorem 3 tackles the misconception according to which negative stability val-
ues correspond to FS algorithms worse than random: asymptotically, any FS
procedure will have a positive estimated stability.

Property 3: Maximum. When si = sj , we have φPearson(si, sj) = 1 and
therefore Φ̂Pearson = 1 when all the feature sets in A are identical. Conversely,
φPearson(si, sj) = 1 implies si = sj , which gives us that Φ̂Pearson = 1 implies all
sets in A are identical.

Property 4: Correction for Chance. This property is given by Theorem 1.
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(a) Scenario 1: Φ̂ = 1 (b) Scenario 2: Φ̂ = 0.58 (c) Scenario 3: Φ̂ = 0

Fig. 3. The parameters p̂f of the random variables Xf in 3 scenarios for d = 15

4.2 Interpreting Stability

In this section, we aim at providing an interpretation of the stability value when
using the sample Pearson’s correlation. For simplicity, we focus on the case where
the FS selects a constant number of features k. Hereafter, Φ̂ will denote Φ̂Pearson.
By phrasing the concept of stability in this way, it highlights an important point
- that we are estimating a quantity. The stability is a random variable, from
which we have a sample of size M .

Let V̂ ar(Xf ) = M
M−1 p̂f (1 − p̂f ) be the unbiased sample variance of the vari-

able Xf . When the cardinality of the feature sets is constant, we can re-write
the stability using the sample Pearson’s correlation coefficient as follows:

Φ̂Pearson = 1 − S

Smax
, (3)

where the average total variance S = 1
d

∑d
f=1 V̂ ar(Xf ) is a measure of the

variability in the choice of features and where Smax = k
d

(
1 − k

d

)
the maximal

value of S given that the FS procedure is selecting k features per feature set. In
this situation, Eq. 3 shows that the stability decreases monotonically with the
average variance of Xf .

Because V̂ ar(Xf ) = 0 whenever p̂f = 0 or p̂f = 1, the maximum stability
is achieved when all features are selected with an observed frequency equal to
0 or 1. Figure 3 illustrates how to interpret the value Φ̂ in 3 scenarios. Let us
assume we have an FS procedure selecting k = 6 features out of d = 15 features.
Scenario 1 illustrates the situation in which the FS algorithm always returns the
same feature set made of the first k features. In that situation, the probability of
selection of the k first features is equal to 1 and the one of the remaining features
is equal to 0, which gives S = 0 and therefore a stability Φ̂ equal to its maximal
value 1. Scenario 2 illustrates the case where the FS is not completely stable,
even though we can still distinguish two group of features. In that scenario, the
stability is equal to Φ̂ = 0.58. Scenario 3 is the limit case scenario in which the
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selection of the k features is random. In that scenario, the d features have a
frequency of selection all equal to p̂f = k

d = 6
15 . In that situation, the variance

V ar(Xf ) = k
d (1 − k

d ) = 0.24 of each of the random variables Xf is maximal.
This gives S = Smax and therefore Φ̂ = 0. These scenarios illustrate the need to
rescale the mean total variance by the one of a random FS procedure and give
a useful interpretation of the estimated stability using Pearson’s correlation.

5 Experiments

In the previous section we argued for an axiomatic treatment of stability
measures—and demonstrated that the simple solution of using Pearson’s cor-
relation coefficient allows for all desirable properties.

In this section, we illustrate how stability can be used in practice to select
a regularizing parameter in the context of feature selection by a L1-regularized
regression. We show how without sacrificing a significant amount in terms of
error, a regularizing parameter corresponding to a higher stability can be chosen.
On the artificial dataset considered, we show how an increase in stability can
help discarding the use of irrelevant features in the final model.

5.1 Description of Dataset

We use a synthetic dataset [9] – a binary classification problem, with 2000
instances and d = 100 features, where only the first 50 features are relevant
to the target class. Instances of the positive class are i.i.d. drawn from a normal
distribution with mean μ+ = (1, ..., 1︸ ︷︷ ︸

50

, 0, ..., 0︸ ︷︷ ︸
50

) and covariance matrix:

Σ =
[
Σ∗

50×50 050×50

050×50 I50×50

]

where Σ∗
50×50 is the matrix with ones on the diagonal and ρ, a parameter taken

in [0, 1] controlling the degree of redundancy everywhere else. The mean for the
negative class is taken equal to μ− = (−1, ...,−1︸ ︷︷ ︸

50

, 0, ..., 0︸ ︷︷ ︸
50

). The larger the value

of ρ, the more the 50 relevant features will be correlated to each other.

5.2 Experimental Procedure and Results

We use L1-regularized logistic regression with 100 different regularizing para-
meters on the synthetic dataset for different degrees of redundancy ρ. The L1-
regularization results in some coefficients being forced to zero – any coefficients
left as non-zero after fitting the model are regarded as “selected” by the model.5

5 You can reproduce these experiments in Matlab with the code given at https://
github.com/nogueirs/ECML2016.

https://github.com/nogueirs/ECML2016
https://github.com/nogueirs/ECML2016
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Fig. 4. Results for ρ = 0. Each point on the line corresponds to a different regularizing
parameter λ. We can see that both high stability and low error are reached for λ =
4.12 × 10−4.

Our experimental procedure is as follows. We take the 2000 samples and
divide into 1000 for model selection (the regularizing parameter λ) and 1000 for
selection of the final set of features. The model selection set can be used simply
to optimize error, or to optimize error/stability simultaneously – the experiments
will demonstrate that the latter provides a lower false positive rate in the final
selection of features.

For each regularizing parameter λ, we take M = 100 bootstrap samples to
train our models. We then compute the stability Φ̂ and the out-of-bag (OOB)
estimate of the error6 using the coefficients returned.

Figure 4 shows the OOB error [LEFT] and the stability [RIGHT] versus the
regularization parameter λ for a degree of redundancy ρ = 0 (i.e. the relevant
features are independent from each other). On this case, picking up a value of λ
that minimizes the OOB error is also the value of λ that maximizes the stability.
Indeed for λ = 4.12× 10−4, we get an error of 0.30 and a stability of 0.98, which
means the same features are picked up on nearly all bootstrap samples.

Let us now take a degree of redundancy ρ = 0.3. In a normal situation,
we would choose the regularizing parameter that minimizes the error which is
λ = 0.009, shown in the left of Fig. 5. The right of the same figure shows the
pareto optimal front, the trade-off of the two objectives – if we sacrifice some
error, we can drastically increase stability.

Figure 6 gives the observed frequencies of selection p̂f of each feature over
the M = 100 bootstraps for λ = 0.009 [LEFT] and λ = 0.023 [RIGHT]. We
can see on the right figure that nearly all irrelevant features have a frequency of
selection of 0. Only two irrelevant features have a frequency of selection different
from 0 with p̂f = 0.01, which means they have been selected on one of the
100 bootstrap samples only. From looking at the values of p̂f for the value of
λ minimizing the error on the left, we cannot discriminate the set of relevant
features from the set of irrelevant ones by looking at the frequencies of selection.

6 Here, the error is taken to be the negative log-likelihood, a measure of goodness-of-fit
of the model. The lower the value, the better the model.
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Fig. 5. If we optimize just OOB error [LEFT] we obtain λ = 0.009, but if we optimize
a trade-off [RIGHT] of error/stability, sacrificing a small amount of error we get λ =
0.023, and can significantly increase feature selection stability.

(a) λ = 0.009 (b) λ = 0.023

Fig. 6. The observed frequencies of selection p̂f for each feature for two values of λ in
the pareto front for ρ = 0.3. The Features on the left of the red vertical line correspond
to relevant features and the ones on the right to irrelevant ones. (Color figure online)

Even though λ = 0.023 does not provide a high stability value, we can see how
we can benefit from taking λ = 0.023 instead of λ = 0.009. The features used in
the model (the ones with a non-zero coefficient) are indeed relevant to the target
class. As explained in Sect. 4.2, the closer the observed frequencies are to 0 or 1,
the higher the stability value will be.

Final feature set chosen: The model selection procedure on the first 1000
examples has suggested λ = 0.009 and λ = 0.023. We can now use these on
the final 1000 holdout set to select a set of features, again with L1 logistic
regression, and compare the 2 feature sets returned. Table 2 shows the false
positives (irrelevant features that were falsely identified as relevant) and the
false negatives (relevant features that were missed), for three different degrees of
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Table 2. False positives and false negatives for different degrees of redundancy ρ

Redundancy λerror λφ

Low FP = 4, FN = 17 FP = 0, FN = 17

Medium FP = 7, FN = 24 FP = 0, FN = 25

High FP = 5, FN = 35 FP = 0, FN = 33

increasing redundancy. In all cases, the methodology involving stability reduces
the FP rate to zero, with no significant effect on FN rate.

This case study also shows that feature redundancy is a source of instability
of FS, as hypothesized by [8,9,18]. Similar results have been obtained for ρ = 0.5
and ρ = 0.8, with smaller stability values for the data points in the pareto front
as we increased the degree of redundancy ρ.

6 Conclusions and Future Work

There are many different measures to quantify stability in the literature – we
have argued for a set of properties that should be present in any measure, and
found that several existing measures are lacking in this respect. Instead, we
suggest the use of Pearson’s correlation as a similarity measure, in the process
showing that it is a generalization of the widely used Kuncheva index. We provide
an interpretation of the quantity estimated through the typical procedure and
illustrate its use in practice. We illustrate on synthetic datasets how stability
can be beneficial and provides more confidence in the feature set returned.

Depending on the type of application, we might want the stability measure
to take into account feature redundancy. Such measures attempt to evaluate the
stability of the information in the feature sets returned by the FS procedure
rather than the stability of the feature sets themselves [20,21]. These measures
are generalizations of POG, nPOG (called POGR and nPOGR [21]) and of the
Dice coefficient [19] and reduce to these when there is no redundancy between the
features. Because their simpler versions do not have the set of desired properties
as shown in Table 1, we leave this type of measures to future work.
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Abstract. Due to the personalized needs for specific aspect evaluation
on product quality, these years have witnessed a boom of researches on
aspect rating prediction, whose goal is to extract ad hoc aspects from
online reviews and predict rating or opinion on each aspect. Most of
the existing works on aspect rating prediction have a basic assumption
that the overall rating is the average score of aspect ratings or the over-
all rating is very close to aspect ratings. However, after analyzing real
datasets, we have an insightful observation: there is an obvious rating
bias between overall rating and aspect ratings. Motivated by this obser-
vation, we study the problem of aspect mining with rating bias, and
design a novel RAting-center model with BIas (RABI). Different from
the widely used review-center models, RABI adopts the overall rating
as the center of the probabilistic model, which generates reviews and
topics. In addition, a novel aspect rating variable in RABI is designed to
effectively integrate the rating bias priori information. Experiments on
two real datasets (Dianping and TripAdvisor) validate that RABI sig-
nificantly improves the prediction accuracy over existing state-of-the-art
methods.

Keywords: Aspect rating · Rating prediction · Rating bias · Topic
model

1 Introduction

With the rapid development of the Internet, the information which people can
gain from the Internet grows exponentially. Nowadays, people are used to viewing
online reviews before making decisions. For example, if a user wants to go out
for dinner, he or she may look at the reviews of restaurants around on the
Internet and choose one according to his or her taste. These reviews contain
mainly overall ratings which evaluate restaurants from a general view. However,
people may expect more subtle aspect ratings, such as the taste, environment,
service, and so on. This problem has inspired the research on aspect-level opinion
mining. The goal of the aspect-level opinion mining (i.e., aspect identification
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 458–474, 2016.
DOI: 10.1007/978-3-319-46227-1 29
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(a) Rating on Dianping (b) Rating on TripAdvisor

Fig. 1. Distributions of ratings on Dianping and TripAdvisor

and aspect rating prediction) is to extract ad hoc aspects from online reviews
and predict rating or opinion on each aspect.

Because of its great practical significance, there is a surge of researches on
aspect identification and aspect rating prediction in recent years. Some works
generate ratable aspects for reviews with whole overall ratings [7] or scarce overall
ratings [6], and some works consider to integrate external knowledge [9]. Most
of the existing works predict aspect ratings with the help of overall ratings, and
they all have a basic assumption. That is, the overall rating is the average score
of aspect ratings or the overall rating is close to aspect ratings.

However, the analysis on real datasets shows an insightful phenomenon: there
is an obvious and systemic rating bias between overall ratings and aspect rat-
ings. Figure 1 illustrates the rating distributions on two real datasets: Dianping1

(a well-known social media platform in China, which contains the information
and reviews of restaurant, hotel, entertainment, movie, etc.) and TripAdvisor2

(a widely used dataset in this field, which is a social media platform about
travel, hotel, scenic spot, etc.). The datasets we use are the restaurant data in
Dianping and the hotel data in TripAdvisor. Note that the overall ratings of
restaurants/hotels are sorted in an ascending order in Fig. 1. We can find that
the overall ratings in TripAdvisor are obviously lower than two aspect ratings,
while the overall ratings in Dianping are significantly larger than aspect ratings.
The interesting observation implies that the previous aspect rating prediction
approaches may achieve poor performance, if ignoring the rating bias between
overall ratings and aspect ratings.

Motivated by the observed rating bias, we try to study the problem of aspect
mining with rating bias. That is, the goal is to decompose the reviews into dif-
ferent aspects and predict the rating of different aspects on each entity, with
the help of the overall rating and the rating bias priori information. How-
ever, aspect mining with rating bias may face two challenges. First, the rating
process of users may conform to some behaviour patterns, which determine the

1 http://www.dianping.com/.
2 http://www.tripadvisor.com/.

http://www.dianping.com/
http://www.tripadvisor.com/
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dependency relationship among the variables in the topic model. Most of the
existing works on aspect rating prediction are based on probabilistic graphical
model. Inspired by the word generation process, these works usually consider rat-
ings are finally generated by reviews, topics or aspects. However, does it really
comply to user behaviour? We have a different view. We believe that users form
an intuitive impression (good or bad) as soon as they experienced the product,
which is reflected by rating. Only after the impression (rating) is formed will
the user write a review (or words) to express his/her feeling. So we think the
previous models may not conform to user behaviour properly, and thus we need
to mine the authentic rating behaviour of users. Second, how to effectively uti-
lize the rating bias information? As we mentioned above, there is an obvious
bias between overall rating and aspect ratings. The rating bias may cause the
inaccuracy of aspect rating prediction, and influence the results tremendously.
Luo et al. [6] have discovered the rating bias, but nobody has considered it in
the model until now. So how to use the rating bias priori information properly
to improve the prediction accuracy is also a challenge.

To solve the challenges mentioned above, we design a novel RAting-center
model with BIas (RABI). Different from traditional rating generating process
[6,7,9], RABI considers rating as the center of the model, which generates the
reviews and topics. This idea stems from users’ real experiences. When users
decide to write a review, they usually have intuitional opinions (i.e., overall
ratings) on the products, and then they will use proper phrases to represent
their opinions. In addition, RABI introduces a novel latent aspect rating vari-
able which can effectively learn the correlation of the overall rating, aspects,
and rating bias. Experimental results on two real datasets (i.e., Dianping and
TripAdvisor) validate the effectiveness of RABI on both Chinese and English
reviews, compared to existing state-of-the-art methods. The results also show
that RABI can accurately decompose the reviews into different aspects.

Our contributions are summarized as follows:

– We first analyze the rating bias between overall rating and aspect ratings in
real data, and put forward the problem of aspect mining with rating bias.

– We propose a novel RABI model for aspect mining with rating bias. Different
from existing models, RABI considers rating as the center of the model, which
simulates the generation of the review better. In addition, an aspect rating
variable is proposed to effectively utilize the rating bias information.

– Experiments on real datasets have shown the effectiveness of our algorithm
over existing state-of-the-art methods.

2 Data Analysis

In order to show the rating bias phenomenon, we analyze two real datasets.
The first dataset is crawled from Dianping website, a well-known social media
platform in China, which provides a review platform for businesses and enter-
tainments. In Dianping website, a user can give a review to a business after
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Table 1. Statistics of the datasets

Datasets #Products #Reviews #Phrases Avg. overall rating

Dianping 1,097 216,291 696,608 3.97

TripAdvisor 1,850 197,970 2,571,902 3.81

Table 2. Rating bias on each aspect on both datasets

Dataset Category Avg. rating Rating bias

Dianping Overall 3.97

Taste 3.69 +0.28

Service 3.48 +0.48

Environment 3.43 +0.54

TripAdvisor Overall 3.81

Value 3.80 +0.01

Room 3.82 −0.01

Location 4.14 −0.33

Cleanliness 4.07 −0.26

Front Desk/Staff 3.96 −0.15

Service 3.92 −0.11

Business 3.59 +0.22

enjoying a service in this business. Besides an overall rating, the review informa-
tion includes Chinese comments and three aspect ratings on Taste, Service, and
Environment, respectively. In addition, we also employ the widely used TripAd-
visor dataset [10]. Accompanying with English comments, reviews in this dataset
are not only associated with overall ratings, but also with ground truth aspect
ratings on 7 aspects: Value, Room, Location, Cleanliness, Front desk/staff, Ser-
vice, and Business. All the ratings in the datasets are in the range from 1 to 5.
The statistic information of these datasets is shown in Table 1.

We first intuitively show the distributions of overall and aspect ratings on
these two datasets in Fig. 1. Note that, we only show the distributions of some
aspect ratings due to the space limitation. Moreover, we sort products according
to their overall ratings for clarity. From Fig. 1, we can find that there are obvious
rating biases between overall rating and aspect rating on both datasets. In Dian-
ping dataset, the overall rating is far above the aspect ratings in all three aspects,
while the overall rating is smaller than two aspect ratings in TripAdvisor.

Furthermore, we calculate the rating bias on each aspect on both datasets.
The calculating process can be seen in Eq. (1) and the results are listed in Table 2.
The rating biases in Dianping are huge on most aspects, especially +0.48 for
Service and +0.54 for Environment, which are pretty huge values. So the rating
biases in Dianping should be well considered. The rating biases in TripAdvisor
are small on some aspects (e.g., +0.01 for Value and −0.01 for Room), but huge



462 Y. Li et al.

on other aspects (e.g., −0.33 for Location and −0.26 for Cleanliness). Although
the rating biases in TripAdvisor are not as much as those in Dianping, they
all truly exist. The interesting observation implies that the previous aspect rat-
ing prediction approaches may achieve poor performance, if ignoring the rating
bias. As shown in Table 2, the rating biases are different in different datasets
and aspects, which can influence the results to varying degrees and cause the
inaccuracy of aspect rating prediction. So the proper consideration of the rating
bias can improve the prediction accuracy.

3 Preliminary Notations and Problem Definition

In this section, we first introduce the notations and concepts used in this paper,
and then formally propose the problem of aspect mining with rating bias.

Entity: An entity e indicates a product which belongs to the product set E
(e.g., a restaurant in Dianping dataset or a hotel in TripAdvisor dataset). Ne

indicates the number of entities in E.

Review: A review d is the user’s opinion about the entity e. An entity e can
have many reviews from different users. A review consists of the text content,
the overall rating and many aspect ratings. There are Nd reviews in total.

Phrase: A phrase f = (h,m) consists of a pair of words, which are extracted
from the review’s text content. h denotes the head term, and m is the modifier
term which modifies h. A review d contains several phrases f .

Head term: The head term h is used to describe the aspect information. It
decides which aspect the phrase f is expressing. For instance, “attitude” is a
head term, and it belongs to the aspect “Service”.

Modifier term: The modifier term m is used to describe the sentiment infor-
mation. It is used to describe the aspect, which is decided by h, is good or bad.
For instance, for the head term “attitude”, “cold” or “passionate” may be used
as the modifier term.

Overall rating: An overall rating r of a review d is a numerical rating, which
indicates the user’s overall sentiment tendency on the entity e. The number of
the values of rating is Nr and it is usually 5, which means the values of rating r
are from 1 to 5.

Aspect: An aspect Ai is a specific side of the entity e, e.g., the taste of the
restaurant. It is a set of many similar characteristic of the entity e. NA indicates
the number of aspects.

Aspect rating: An aspect rating rAi
is a numerical rating, which indicates the

user’s sentiment tendency on the aspect Ai of the entity e, and is also from 1
to 5. And a review d has NA aspect ratings, which corresponds to NA aspect.

Rating bias: The rating bias is the gap between the average of overall ratings
and the average of aspect ratings. There are NA biases on NA aspects, and they
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are in connection with the current aspect Ai. The rating bias bAi
on aspect Ai

can be calculated as follows:

bAi
=

∑
d r

Nd
−

∑
d rAi

Nd
. (1)

Aspect mining with rating bias: The problem of aspect mining with rating
bias is to predict the rating on each aspect with the rating bias prior informa-
tion. Specifically, given a set of reviews D = {d1, d2, · · · , dNd

} about entities
E = {e1, e2, · · · , eNe

}, we know that each review di ∈ D contains text content
(Chinese or English) and overall rating r on an entity ej ∈ E, as well as the
rating bias bAi

between the overall rating and the aspect rating on NA aspects
for all reviews. The goal is to decompose the phrases f , which are extracted
from texts in D, into NA aspects {A1, A2, · · · , ANA

}, and rate the aspects of
each entity e with {rA1 , rA2 , · · · , rANA

}.
In fact, our goal includes two sub-tasks. (1) The first sub-task is aspect

identification, which is to correctly identify the aspect label Ai given phrase f .
(2) The second sub-task is aspect rating prediction, which is to predict the aspect
rating rAi

given the entity e and aspect Ai.
The problem of aspect mining with rating bias is very important in real

applications. The problem is also the base of many tasks, such as overall rat-
ing prediction and aspect-level product recommendation. Compared to overall
ratings, the aspect ratings are always missing and more unreliable. The aspect
rating prediction is an effective way to repair the missing ratings and correct the
unreliable ratings. However, the existent rating bias may make current methods
on aspect rating prediction not effective anymore, so it is desired to consider rat-
ing bias for aspect rating prediction. Please note that the rating bias is known
in our problem setting. Moreover, the rating bias can be easily obtained through
limited reliable aspect ratings or a small quantity of manual labeling in real
applications. So we can use the information of rating bias to correct the aspect
rating prediction.

4 Rating-Center Model with Bias

The simplest way to handle rating bias is to subtract rating bias from the rating
prediction results of existing models. However, it does not consider the correla-
tions of ratings, aspects, and rating bias, so it may result in poor performances.
In this section, we propose a novel RABI to handle the problem of the existent
rating bias. Furthermore, we derive an iterative optimization solution with the
EM algorithm.

4.1 Model Description

Existing models on aspect rating prediction usually consider reviews as the cen-
ter to generate ratings and topics [6,7,9]. However, it does not conform to the
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Fig. 2. Graphical model of RABI

authentic rating behaviour of users. In daily life, we form an intuitive impression
as soon as we experienced a product. Only after we form an intuitive opinion
(like or dislike, quantitatively represented by a rating) on a product, will we write
a review to express our opinion. In addition, our opinion may involve multiple
aspects of the product, such as taste, service and environment. So in the gener-
ative process of a product review, we will choose proper head terms to represent
the aspect we want to express, and proper modifier terms to express sentiments
on corresponding head terms. Finally, we organize these terms and other words
to form a review. Therefore, we believe it is more reasonable to consider rating
(overall rating) as the center to generate topics and reviews, which conforms
to the authentic rating behaviour of users. Following this idea, we design the
probabilistic model of RABI, shown in Fig. 2.

In Fig. 2, d indicates the reviews, r indicates the overall rating, h indicates
the head term and m indicates the modifier term. These four variables are rep-
resented as the shaded circles, which means these four variables are observable.
z indicates the aspect Ai. In order to keep consistent with the topic model, the
aspect Ai is expressed as the topic z. And rb indicates aspect rating, which will
be introduced in the following. These two variables are represented as the open
circles, which means these two variables are latent variables. Furthermore, N
indicates the number of phrases in a review. And M indicates the number of
reviews, which is equal to Nd.

To utilize the rating bias information effectively, we bring in a new latent
aspect rating variable rb. The modifier term m is used to modify the head term
h to express the opinion (like or dislike) on aspect Ai (represented with z in the
model), so m is actually influenced by the corresponding aspect rating rAi

. As
we mentioned above, there is an obvious rating bias between overall rating and
aspect ratings. This observation causes that we cannot use the overall rating r to
influence the modifier term m directly. So we bring in a new variable rb between
r and m to eliminate the influence of rating bias. rb indicates an unknown aspect
rating, so it is a latent variable. For a certain aspect Ai, the value of rb is set as
the overall rating r minus the rating bias bAi

. Note that rb can take Nr values
in Ai, since the variable r can take Nr values. By bringing in the latent variable
rb, the association between r and m is modeled more reasonably in RABI.

According to the RABI model shown in Fig. 2, as the origin of the model, the
overall rating r generates the review d and the latent topic z. The latent aspect
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rating rb depends on the topic z and the overall rating r. And the head term h
and the modifier term m are influenced by the topic z and the aspect rating rb,
respectively. So the joint probability over all variables is as follows:

p(h,m, r, d, z, rb) = p(m|rb)p(rb|r, z)p(h|z)p(z|r)p(d|r)p(r). (2)

All the parameters can be iteratively calculated using the EM algorithm [4],
which is a common method to solve the problem with latent variable. The detail
derivation is given in next section.

4.2 EM Solution

In the E-step, we need to maximize the lower bound function L0 (i.e., Jensens
inequality [2]),

L0 =
∑
z,rb

q(z, rb) log{p(h,m, r, d, z, rb|Λ)
q(z, rb)

}. (3)

Here, as usual, q(z, rb) is set as follows:

q(z, rb) = p(z, rb|h,m, r, d;Λold). (4)

Then we simplify Eq. (3), we can get

L0 =
∑
z,rb

q(z, rb) log{p(h,m, r, d, z, rb|Λ)
q(z, rb)

}

=
∑
z,rb

q(z, rb) log p(h,m, r, d, z, rb|Λ)

︸ ︷︷ ︸
L

−
∑
z,rb

q(z, rb) log q(z, rb)

︸ ︷︷ ︸
const

= L − const.

(5)

So the second part is a const, which can be ignored. Then we ignore the const,
and only consider the L.

The function for the posterior probabilities of the latent variables is as follows:

L =
∑

h,m,r,d,z,rb

n(h,m, r, d)q(z, rb) log p(h,m, r, d, z, rb|Λ), (6)

where Λ includes all parameters, i.e., p(m|rb), p(rb|r, z), p(h|z), p(z|r), p(d|r)
and p(r), which are mentioned in Eq. (2). Besides, n(h,m, r, d) is the number of
co-occurrences of h, m, r and d.

The function q(z, rb) and p(h,m, r, d, z, rb|Λ) in Eq. (3) are expanded as
follows:

q(z, rb) = p(z, rb|h,m, r, d;Λold) =
p(m|rb)p(rb|r, z)p(h|z)p(z|r)p(d|r)p(r)∑
z,rb

p(m|rb)p(rb|r, z)p(h|z)p(z|r)p(d|r)p(r)
,

(7)
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p(h,m, r, d, z, rb|Λ) = p(m|rb)p(rb|r, z)p(h|z)p(z|r)p(d|r)p(r). (8)

In the M-step, the Lagrangian Multiplier method is used to maximize L and
calculate the parameters.

For p(m|rb), there is a basic constraint as follows:
∑
m

p(m|rb) = 1. (9)

Applying the Lagrangian Multiplier method, we can get a function for p(m|rb)
as follows:

∂[L[p(m|rb)] + λ(
∑

m p(m|rb) − 1)]
∂p(m|rb) = 0. (10)

After calculation, we have

p(m|rb) ∝ n(h,m, r, d)p(z, rb|h,m, r, d;Λold). (11)

Then the update function for p(m|rb) is as follows:

p(m|rb) =

∑
h,r,d,z

n(h,m, r, d)p(z, rb|h,m, r, d;Λold)
∑

h,m′,r,d,z
n(h,m′, r, d)p(z, rb|h,m′, r, d;Λold)

. (12)

Similarly, the update functions for other parameters are as follows:

p(rb|r, z) =

∑
h,m,d

n(h,m, r, d)p(z, rb|h,m, r, d;Λold)
∑

h,m,d,rb′
n(h,m, r, d)p(z, rb′|h,m, r, d;Λold)

, (13)

p(h|z) =

∑
m,r,d,rb

n(h,m, r, d)p(z, rb|h,m, r, d;Λold)
∑

h′,m,r,d,rb

n(h′,m, r, d)p(z, rb|h′,m, r, d;Λold)
, (14)

p(z|r) =

∑
h,m,d,rb

n(h,m, r, d)p(z, rb|h,m, r, d;Λold)
∑

h,m,d,z′,rb
n(h,m, r, d)p(z′, rb|h,m, r, d;Λold)

, (15)

p(d|r) =

∑
h,m,z,rb

n(h,m, r, d)p(z, rb|h,m, r, d;Λold)
∑

h,m,d′,z,rb
n(h,m, r, d′)p(z, rb|h,m, r, d′;Λold)

, (16)

p(r) =

∑
h,m,d,z,rb

n(h,m, r, d)p(z, rb|h,m, r, d;Λold)
∑

h,m,r′,d,z,rb
n(h,m, r′, d)p(z, rb|h,m, r′, d;Λold)

. (17)

Through these functions above, we can iteratively calculate the parameters until
the model has converged.
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4.3 Aspect Rating Prior

To verify our model’s effectiveness, we need to compare the predicted aspect
ratings with the real aspect ratings. So the aspects should correspond to the real
aspects which are set by the e-commerce review sites. To make the predicted
aspects similar to the real aspects, we need to assign some seed words to each
aspect. For instance, the aspect “Taste” may include a few prior words, such as
“taste” and “flavor”.

In our model, we inject the prior knowledge for the aspect z. The function is
as follows:

p(h|z) =

∑
m,r,d,rb

n(h,m, r, d)p(z, rb|h,m, r, d;Λold) + τ(h, z)
∑

h′,m,r,d,rb

n(h′,m, r, d)p(z, rb|h′,m, r, d;Λold) +
∑
h′

τ(h′, z)
, (18)

where τ(h, z) indicates the prior knowledge of the prior words. Only when there
is a relationship between the head term h and the topic z, in other words, h
belongs to z, does τ(h, z) have a value δ, otherwise 0.

Note that, in the real applications, we can set aspects manually or generate
aspects by the model directly. Moreover, manual aspect setting usually has better
performances.

4.4 Aspect Identification and Aspect Rating Prediction

We can get p(z, rb|h,m) from the model by the following function,

rlp(z, rb|h,m) =

∑
r,d p(h,m, r, d, z, rb)∑

r,d,z,rb
p(h,m, r, d, z, rb)

=

∑
r,d p(m|rb)p(rb|r, z)p(h|z)p(z|r)p(d|r)p(r)∑

r,d,z,rb
p(m|rb)p(rb|r, z)p(h|z)p(z|r)p(d|r)p(r)

.

(19)

The goal of aspect identification is to find the mapping function G that
correctly assigns the aspect label for given phrase f .

G(f = (h,m)) = arg max
z

∑
rb

p(z, rb|h,m). (20)

The goal of aspect rating prediction is to predict the aspect rating rAi
of the

entity e given all the phrases f from all reviews and aspect Ai(z). The aspect
rating function is as follows:

re,Ai
=

∑
(h,m)∈all reviews of e

∑
rb

rb · p(z, rb|h,m)∑
(h,m)∈all reviews of e

∑
rb

p(z, rb|h,m)
, (21)

where re,Ai
indicates the aspect rating on the aspect Ai of the entity e.

In this way, RABI learns the joint probability distribution of phrases, aspects
and ratings, and predicts aspect ratings with bias.
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5 Evaluation

In this section, we introduce experimental preparation, evaluation metric and
baselines. Then we conduct extensive experiments to evaluate the effectiveness
of RABI on two real datasets.

Table 3. Prior words for aspect prior

Dataset Category Prior words

Dianping Taste taste, flavor, dish, dishes

Service serving, attitude, waitress, service

Environment environment, location, room, decoration

TripAdvisor Value value, price, quality, worth

Room room, suite, view, bed

Location location, traffic, place, area

Cleanliness clean, dirty, maintain, smell

Front Desk/Staff staff, check, help, reservation

Service service, food, breakfast, buffet

Business business, center, computer, internet

5.1 Experimental Preparation

Experiments are conducted on two real datasets (i.e., Dianping and TripAdvi-
sor), which are introduced in Sect. 2. The preprocessing of TripAdvisor is simi-
lar to that in [6]. But the preprocessing of Dianping is slightly different. Since
Dianping is a Chinese website, the Word Segmenter3 and the rules from [8] are
adopted for preprocessing. To inject the prior knowledge for the aspect, we select
some words as prior for each aspect, and Table 3 lists some of the prior words
(not all of the prior words due to the space limitation). For better understanding,
we translate the Chinese words in Dianping into English.

Besides, all of the initial parameters (p(m|rb), p(rb|r, z), p(h|z), p(z|r), p(d|r)
and p(r) in Eq. (2)) are assigned uniformly and randomly. δ in the Sect. 4.3 is set
as 1 after some preliminary tests. The number of aspects or topics K is set as 3
for Dianping and 7 for TripAdvisor. The experiments are done on different-size
of datasets (i.e., 25 %, 50 %, 75 %, and 100 % of review data) from Dianping and
TripAdvisor, respectively. The maximum number of iterations is set as 500.

5.2 Evaluation Metric

RMSE (Root Mean Square Error) is one of the most common metrics for rating
prediction. RMSE can measure the difference between the real values and the

3 http://nlp.stanford.edu/software/segmenter.shtml.

http://nlp.stanford.edu/software/segmenter.shtml
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predicted values. For every entity e, we have the real aspect rating vector re,Ai

and the predicted aspect rating vector r̂e,Ai
. The function of RMSE is as follows:

RMSE =

√∑Ne

e=0

∑NA

Ai=0(r̂e,Ai
− re,Ai

)2

Ne ∗ NA
(22)

Smaller value of RMSE indicates a stronger predictor, which means the real
values and the predicted values are nearer.

Besides, we use Pearson Correlation Coefficient ρ [10] to measure the relative
ordering of products based on the predicted aspect rating and the real aspect
rating. The correlation is stronger when the absolute value of ρ is closer to 1,
and weaker when the absolute value of ρ is closer to 0. The function is as follows:

ρ =
N

∑
r̂e,Ai

re,Ai
− ∑

r̂e,Ai

∑
re,Ai√

N
∑

(r̂e,Ai
)2 − (

∑
r̂e,Ai

)2
√

N
∑

(re,Ai
)2 − (

∑
re,Ai

)2
, (23)

where N indicates the total amount, which is Ne ∗ NA.

5.3 Baseline Methods

We compare the proposed model with three representative methods and one
variation of RABI. Since all of these baselines do not consider the rating bias,
we adjust the results of these baselines through subtracting the rating bias for
fair comparison. The adjusted method is marked with “∗” to distinguish from
the original method.

– QPLSA/QPLSA∗ [7] uses quad-tuples information to build a model based on
PLSA framework. The model not only can generate fine-granularity aspects
of products, but also capture the relationship between words and ratings.

– GRAOS/GRAOS∗ [6] is a semi-supervised model based on LDA framework.
It also uses the quad-tuples information to capture the relationship between
words and ratings. The model considers the rating distribution as a Gaussian
distribution.

– SATM/SATM∗ [9] is a sentiment-aligned model based on LDA framework.
The model uses two kinds of external knowledge: productlevel overall rating
distribution and wordlevel sentiment lexicon.

– RA/RA∗ is a simplified model which removes the latent aspect rating vari-
able rb from our model RABI. It only considers the rating-center assumption.
Through comparing RA∗ and RABI, we can testify the importance of the good
mechanism to utilize rating bias information.

5.4 Results Evaluation

We firstly validate the effectiveness of aspect identification of RABI through a
case study, and then compare the results of different methods on the accuracy
of aspect rating prediction with two criteria mentioned above.
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Table 4. Representative phrases for different aspects on two datasets

Datasets Aspects Representative phrases (ratings)

Dianping Taste amazing mouthfeel (4.71), first-rate taste (4.58),
common taste (2.75), so-so flavor (1.77)

Service smart waiter (4.51), passive service (3.51), slow
serving (2.51), cold attitude (1.67)

Environment great location (4.45), sumptuous fitment (4.26),
common environment (2.88), small room (2.45)

TripAdvisor Value perfect price (4.81), standard charge (4.65),
delightful priceline (4.05), astronomical deal (1.59)

Room greatest setting (4.81), cool room (4.19), beautiful
decor (4.18), worst setting (1.57)

Location wonderful location (4.90), central location (4.63),
nice place (4.13), remote area (1.27)

Cleanliness normal maintained (4.61), standard cleanliness
(4.38), well homey (4.34), dirty housekeeping
(1.26)

Front Desk/Staff hospitable staff (4.95), great staff (4.71), friendly
hotel (4.65), so-so staff (1.82)

Service super singer (4.71), great wine (4.50), valuable
amenities (4.27), worst experience (1.23)

Business best wifi (4.63), common websites (4.22), nice desk-
top (4.17), standard business (3.52)

Aspect Identification. RABI extracts a set of rated phrases to describe the
product for each aspect. We list the top 20 automatically mined phrases for each
aspect, from which we select several meaningful phrases to be shown in Table 4.
The phrases are ranked by their ratings for every aspect.

Generally, the extracted phrases properly describe the corresponding aspects
and accurately embody the opinion in both English and Chinese reviews. On one
hand, the head terms can indicate the aspects well, such as “attitude” for service,
“fitment” for environment, “setting” for room, and “area” for location. When a
user sees the head term, he can understand which aspect is talked about. On the
other hand, a positive modifier term indicates a positive attitude and is likely to
obtain a higher rating, and a negative modifier term indicates a negative attitude
and is likely to obtain a lower rating. For example, in the Service aspect of
Dianning, the phrase “cold attitude” is rated as 1.67 because “cold” is a negative
modifier term, while the phrase “smart waiter” has a score of 4.51 because
“smart” is a positive modifier term. In addition, the phrases and their ratings
are also able to reflect the different rating styles in Chinese and English. That is,
users tend to give relatively lower ratings in Chinese reviews. The distribution
of the predicted ratings on phrases also conforms to that of aspect-level ratings
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Table 5. RMSE performances of different methods on two datasets

Dianping TripAdvisor

25% 50 % 75 % 100 % 25 % 50% 75% 100 %

QPLSA 0.5816 0.5799 0.5714 0.5635 0.6374 0.6248 0.6129 0.6119

QPLSA∗ 0.3656 0.3584 0.3554 0.3435 0.6262 0.6180 0.6125 0.6071

GRAOS 0.4751 0.4668 0.4624 0.4500 0.6056 0.6072 0.6011 0.5968

GRAOS∗ 0.4228 0.4152 0.4155 0.4136 0.5790 0.5724 0.5691 0.5668

SATM 0.5804 0.5767 0.5639 0.5594 0.5587 0.5502 0.5406 0.5300

SATM∗ 0.3979 0.3890 0.3816 0.3738 0.5419 0.5322 0.5310 0.5188

RA 0.5789 0.5601 0.5511 0.5451 0.6081 0.5935 0.5826 0.5784

RA∗ 0.3471 0.3404 0.3312 0.3267 0.5785 0.5612 0.5599 0.5471

RABI 0.3248 0.3162 0.3047 0.2919 0.5346 0.5267 0.5204 0.5089

Table 6. Pearson correlation coefficient of different methods on two datasets

Dianping TripAdvisor

25 % 50 % 75 % 100 % 25% 50% 75 % 100 %

QPLSA 0.5792 0.5809 0.5836 0.5985 0.3167 0.3451 0.3508 0.3827

GRAOS 0.1281 0.1280 0.1328 0.1376 0.3238 0.3407 0.3463 0.3569

SATM 0.3522 0.3605 0.3742 0.3906 0.3315 0.3521 0.3621 0.3679

RA 0.5248 0.5330 0.5430 0.5494 0.4065 0.4167 0.4291 0.4377

RABI 0.6059 0.6137 0.6174 0.6211 0.5328 0.5522 0.5597 0.5657

on these two datasets in Table 2. It also confirms the effectiveness of RABI on
Chinese and English datasets.

Accuracy Experiment. Then we validate the performances of different meth-
ods through comparing predicted aspect ratings with real aspect ratings using
the RMSE criterion by Eq. (22).

From the results shown in Table 5, we can clearly find that the integration of
the rating bias information can significantly improve the prediction accuracy for
all methods (e.g., QPLSA* has better performances than QPLSA), and RABI
always performs best on both datasets. The improvement is particularly obvious
for Dianping, because this dataset has large rating biases. Although the rating
bias is small in TripAdvisor, the methods considering rating bias all achieve
better performances than original methods. It illustrates that it is necessary to
consider the rating bias for aspect rating prediction.

Besides, the rating-center model (i.e., RA) also achieves good performances
among four baselines, which confirms the correctness of the rating-center
assumption. Compared to simply subtracting the rating bias in four baselines,
the best performances of RABI imply that the good mechanism to utilize
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rating bias information is also necessary. We think the rating-center and the
latent aspect rating variable contribute to the good performances of RABI.

In addition, with the increment of review data, the accuracy of RABI
increases steadily and slowly, which reflects that RABI is a steady method.

Relative Order Experiment. Furthermore, we verify the ability of different
methods to maintain the relative order among products with the Pearson Corre-
lation Coefficient ρ. The results are shown in Table 6. Note that the rating bias
has slight effect on the order of products, so we only display the results of original
methods and ignore the adjusted methods. We can see that RABI obtains much
higher ρ than other methods in all datasets. It once again shows that RABI is
more effective to model the correlations between aspects and ratings, and thus
better maintains aspect ranking orders compared to other methods. The results
also imply that RABI is very promising for aspect-level recommender system,
since it can generate very similar product order to the real order.

6 Related Work

In recent years, sentiment analysis on reviews becomes a research hotspot.
Reviews focus on the products in each aspect, so sentiment analysis on reviews
usually involves aspect. This situation leads to the aspect rating prediction.
Aspect rating prediction usually contains two subtasks, aspect identification and
aspect rating prediction.

Topic model is widely used to solve aspect identification. It mainly contains
LSI [3], PLSA [5] and LDA [1]. Xu et al. [12] centered on implicit feature iden-
tification in Chinese product reviews via LDA and SVM. An AEP-based Latent
Dirichlet Allocation (AEP-LDA) [13] model was also proposed to extract prod-
uct and service aspect words automatically from reviews. Fu et al. [11] proposed
an approach to automatically discover the aspects discussed in Chinese social
reviews and classified the polarity of the associated sentiment by HowNet lexicon.
Our model RABI is designed based on the PLSA framework.

To solve aspect identification and aspect rating prediction simultaneously,
many researches adopted the topic-sentiment mixture models. QPLSA [7]
adopted the quad-tuples, which consist of head, modifier, rating and entity. It
can generate fine-granularity aspects and capture the correlations between words
and ratings. SATM [9] used external knowledge, product-level overall rating dis-
tribution and word-level sentiment lexicon, to extract the product aspects and
predict aspect ratings simultaneously. Luo et al. [6] proposed a model based on
LDA to predict aspect ratings and overall ratings for unrated reviews and made
two assumptions for the rating distribution. However, all of these works did not
consider the existing rating bias, which is firstly studied in this paper.

7 Conclusion

Aspect rating prediction for reviews is a hot research issue nowadays. Most of
researches base on such a basic assumption, the overall rating is the average
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score of aspect ratings or the overall rating is close to aspect ratings. However
in the real world, there may be rating biases between overall rating and aspect
ratings, and existing works did not consider these rating biases.

In this paper, we study the problem of aspect mining with rating bias and
propose a novel probabilistic model RABI based on PLSA framework. The RABI
model makes rating as the center to generate ratings and topics, and introduces
a latent aspect rating variable to integrate the rating bias information. Experi-
ments on two real datasets validate the effectiveness of RABI. In the future, we
can import the Dirichlet prior and redesign our model based on LDA framework.
The effectiveness will be enhanced further.
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Abstract. Information-theoretic principles for learning and acting have
been proposed to solve particular classes of Markov Decision Prob-
lems. Mathematically, such approaches are governed by a variational
free energy principle and allow solving MDP planning problems with
information-processing constraints expressed in terms of a Kullback-
Leibler divergence with respect to a reference distribution. Here we
consider a generalization of such MDP planners by taking model uncer-
tainty into account. As model uncertainty can also be formalized as
an information-processing constraint, we can derive a unified solution
from a single generalized variational principle. We provide a generalized
value iteration scheme together with a convergence proof. As limit cases,
this generalized scheme includes standard value iteration with a known
model, Bayesian MDP planning, and robust planning. We demonstrate
the benefits of this approach in a grid world simulation.

Keywords: Bounded rationality · Model uncertainty · Robustness ·
Planning · Markov decision processes

1 Introduction

The problem of planning in Markov Decision Processes was famously addressed
by Bellman who developed the eponymous principle in 1957 [2]. Since then
numerous variants of this principle have flourished in the literature. Here we are
particularly interested in a generalization of the Bellman principle that takes
information-theoretic constraints into account. In the recent past there has been
a special interest in the Kullback-Leibler divergence as a constraint to limit devi-
ations of the action policy from a prior. This can be interesting in a number of
ways. Todorov [31,32], for example, has transformed the general MDP problem
into a restricted problem class without explicit action variables, where control
directly changes the dynamics of the environment and control costs are mea-
sured by the Kullback-Leibler divergence between controlled and uncontrolled
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 475–491, 2016.
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dynamics. This simplification allows mapping the Bellman recursion to a lin-
ear algebra problem. This approach can also be generalized to continuous state
spaces leading to path integral control [4,5]. The same equations can also be
interpreted in terms of bounded rational decision-making where the decision-
maker has limited computational resources that allow only limited deviations
from a prior decision strategy (measured by the Kullback-Leiber divergence in
bits) [19]. Such a decision-maker can also be instantiated by a sampling process
that has restrictions in the number of samples it can afford [20]. Disregarding the
possibility of a sampling-based interpretation, the Kullback-Leibler divergence
introduces a control information cost that is interesting in its own right when
formalizing the perception action cycle [30].

While the above frameworks have led to interesting computational advances,
so far they have neglected the possibility of model misspecification in the MDP
setting. Model misspecification or model uncertainty does not refer to the uncer-
tainty arising due to the stochastic nature of the environment (usually called risk-
uncertainty in the economic literature), but refers to the uncertainty with respect
to the latent variables that specify the MDP. In Bayes-Adaptive MDPs [7], for
example, the uncertainty over the latent parameters of the MDP is explicitly rep-
resented, such that new information can be incorporated with Bayesian inference.
However, Bayes-Adaptive MDPs are not robust with respect to model misspec-
ification and have no performance guarantees when planning with wrong mod-
els [15]. Accordingly, there has been substantial interest in developing robust
MDP planners [13,16,33]. One way to take model uncertainty into account is
to bias an agent’s belief model from a reference Bayesian model towards worst-
case scenarios; thus avoiding disastrous outcomes by not visiting states where
the transition probabilities are not known. Conversely, the belief model can also
be biased towards best-case scenarios as a measure to drive exploration—also
referred in the literature as optimism in face of uncertainty [28,29].

When comparing the literature on information-theoretic control and model
uncertainty, it is interesting to see that some notions of model uncertainty follow
exactly the same mathematical principles as the principles of relative entropy
control [32]. In this paper we therefore formulate a unified and combined opti-
mization problem for MDP planning that takes both, model uncertainty and
bounded rationality into account. This new optimization problem can be solved
by a generalized value iteration algorithm. We provide a theoretical analysis of
its convergence properties and simulations in a grid world.

2 Background and Notation

In the MDP setting the agent at time t interacts with the environment by taking
action at ∈ A while in state st ∈ S. Then the environment updates the state
of the agent to st+1 ∈ S according to the transition probabilities T (st+1|at, st).
After each transition the agent receives a reward R

st+1
st,at ∈ R that is bounded.

For our purposes we will consider A and S to be finite. The aim of the agent is
to choose its policy π(a|s) in order to maximize the total discounted expected
reward or value function for any s ∈ S
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V ∗(s) = max
π

lim
T→∞

E

[
T−1∑
t=0

γtRst+1
st,at

]

with discount factor 0 ≤ γ < 1. The expectation is over all possible trajecto-
ries ξ = s0, a0, s1 . . . of state and action pairs distributed according to p(ξ) =∏T−1

t=0 π(at|st) T (st+1|at, st). It can be shown that the optimal value function
satisfies the following recursion

V ∗(s) = max
π

∑
a,s′

π(a|s)T (s′|a, s)
[
Rs′

s,a + γV ∗(s′)
]
. (1)

At this point there are two important implicit assumptions. The first is that
the policy π can be chosen arbitrarily without any constraints which, for exam-
ple, might not be true for a bounded rational agent with limited information-
processing capabilities. The second is that the agent needs to know the transition-
model T (s′|a, s), but this model is in practice unknown or even misspecified
with respect to the environment’s true transition-probabilities, specially at ini-
tial stages of learning. In the following, we explain how to incorporate both
bounded rationality and model uncertainty into agents.

2.1 Information-Theoretic Constraints for Acting

Consider a one-step decision-making problem where the agent is in state s and
has to choose a single action a from the set A to maximize the reward Rs′

s,a, where
s′ is the next state. A perfectly rational agent selects the optimal action that is
a∗(s) = argmaxa

∑
s′ T (s′|a, s)Rs′

s,a. However, a bounded rational agent has only
limited resources to find the maximum of the function

∑
s′ T (s′|a, s)Rs′

s,a. One
way to model such an agent is to assume that the agent has a prior choice strategy
ρ(a|s) in state s before a deliberation process sets in that refines the choice strat-
egy to a posterior distribution π(a|s) that reflects the strategy after deliberation.
Intuitively, because the deliberation resources are limited, the agent can only
afford to deviate from the prior strategy by a certain amount of information bits.
This can be quantified by the relative entropy DKL(π||ρ) =

∑
a π(a|s) log π(a|s)

ρ(a|s)
that measures the average information cost of the policy π(a|s) using the source
distribution ρ(a|s). For a bounded rational agent this relative entropy is bounded
by some upper limit K. Thus, a bounded rational agent has to solve a constrained
optimization problem that can be written as

max
π

∑
a

π(a|s)
∑
s′

T (s′|a, s)Rs′
s,a s.t. DKL(π||ρ) ≤ K

This problem can be rewritten as an unconstrained optimization problem

F ∗(s) = max
π

∑
a

π(a|s)
∑
s′

T (s′|a, s)Rs′
s,a − 1

α
DKL(π||ρ) (2)

=
1
α

log
∑

a

ρ(a|s)eα
∑

s′ T (s′|a,s)Rs′
s,a . (3)
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where F ∗ is a free energy that quantifies the value of the policy π by trading off
the average reward against the information cost. The optimal strategy can be
expressed analytically in closed-form as

π∗(a|s) =
ρ(a|s)eα

∑
s′ T (s′|a,s)Rs′

s,a

Zα(s)

with partition sum Zα(s) =
∑

a ρ(a|s) exp
(
α

∑
s′ T (s′|a, s)Rs′

s,a

)
. Therefore, the

maximum operator in (2) can be eliminated and the free energy can be rewritten
as in (3). The Lagrange multiplier α quantifies the boundedness of the agent.
By setting α → ∞ we recover a perfectly rational agent with optimal policy
π∗(a|s) = δ(a − a∗(s)). For α = 0 the agent has no computational resources
and the agent’s optimal policy is to act according to the prior π∗(a|s) = ρ(a|s).
Intermediate values of α lead to a spectrum of bounded rational agents.

2.2 Information-Theoretic Constraints for Model Uncertainty

In the following we assume that the agent has a model of the environment
Tθ(s′|a, s) that depends on some latent variables θ ∈ Θ. In the MDP setting,
the agent holds a belief μ(θ|a, s) regarding the environmental dynamics where
θ is a unit vector of transition probabilities into all possible states s′. While
interacting with the environment the agent can incorporate new data by form-
ing the Bayesian posterior μ(θ|a, s,D), where D is the observed data. When the
agent has observed an infinite amount of data (and assuming θ∗(a, s) ∈ Θ) the
belief will converge to the delta distribution μ(θ|s, a,D) = δ(θ−θ∗(a, s)) and the
agent will act optimally according to the true transition probabilities, exactly as
in ordinary optimal choice strategies with known models. When acting under a
limited amount of data the agent cannot determine the value of an action a with
the true transition model according to

∑
s′ T (s′|a, s)Rs′

s,a, but it can only deter-
mine an expected value according to its beliefs

∫
θ
μ(θ|a, s)

∑
s′ Tθ(s′|a, s)Rs′

s,a.
The Bayesian model μ can be subject to model misspecification (e.g. by

having a wrong likelihood or a bad prior) and thus the agent might want to
allow deviations from its model towards best-case (optimistic agent) or worst-
case (pessimistic agent) scenarios up to a certain extent, in order to act more
robustly or to enhance its performance in a friendly environment [12]. Such devi-
ations can be measured by the relative entropy DKL(ψ|μ) between the Bayesian
posterior μ and a new biased model ψ. Effectively, this allows for mathematically
formalizing model uncertainty, by not only considering the specified model but
all models within a neighborhood of the specified model that deviate no more
than a restricted number of bits. Then, the effective expected value of an action
a while having limited trust in the Bayesian posterior μ can be determined for
the case of optimistic deviations as

F ∗(a, s) = max
ψ

∫

θ

ψ(θ|a, s)
∑
s′

Tθ(s′|a, s)Rs′
s,a − 1

β
DKL(ψ||μ) (4)



Planning with Information-Processing Constraints and Model Uncertainty 479

for β > 0, and for the case of pessimistic deviations as

F ∗(a, s) = min
ψ

∫

θ

ψ(θ|a, s)
∑
s′

Tθ(s′|a, s)Rs′
s,a − 1

β
DKL(ψ||μ) (5)

for β < 0. Conveniently, both equations can be expressed as a single equation

F ∗(a, s) =
1
β

log Zβ(a, s)

with β ∈ R and Zβ(s, a) =
∫

θ
μ(θ|a, s) exp

(
β

∑
s′ Tθ(s′|a, s)Rs′

s,a

)
when inserting

the optimal biased belief

ψ∗(θ|a, s) =
1

Zβ(a, s)
μ(θ|a, s) exp

(
β

∑
s′

Tθ(s′|a, s)Rs′
s,a

)

into either Eq. (4) or (5). By adopting this formulation we can model any degree
of trust in the belief μ allowing deviation towards worst-case or best-case with
−∞ ≤ β ≤ ∞. For the case of β → −∞ we recover an infinitely pessimistic agent
that considers only worst-case scenarios, for β → ∞ an agent that is infinitely
optimistic and for β → 0 an agent that fully trusts its model.

3 Model Uncertainty and Bounded Rationality in MDPs

In this section, we consider a bounded rational agent with model uncertainty
in the infinite horizon setting of an MDP. In this case the agent must take
into account all future rewards and information costs, thereby optimizing the
following free energy objective

F ∗(s) = max
π

ext
ψ

lim
T→∞

E

T−1∑
t=0

γt

(
Rst+1

st,at
− 1

β
log

ψ(θt|at, st)
μ(θt|at, st)

− 1
α

log
π(at|st)
ρ(at|st)

)

(6)

where the extremum operator ext can be either max for β > 0 or min for β < 0,
0 ≤ γ < 1 is the discount factor and the expectation E is over all trajectories
ξ = s0, a0, θ0, s1, a1, . . . aT−1, θT−1, sT with distribution p(ξ) =

∏T−1
t=0 π(at|st)

ψ(θt|at, st) Tθt
(st+1|at, st). Importantly, this free energy objective satisfies a

recursive relation and thereby generalizes Bellman’s optimality principle to the
case of model uncertainty and bounded rationality. In particular, Eq. (6) fulfills
the recursion

F ∗(s) = max
π

ext
ψ

Eπ(a|s)

[
− 1

α
log

π(a|s)
ρ(a|s)+

Eψ(θ|a,s)

[
− 1

β
log

ψ(θ|a, s)
μ(θ|a, s)

+

ETθ(s′|a,s)

[
Rs′

s,a + γF ∗(s′)
]]]

. (7)
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Applying variational calculus and following the same rationale as in the pre-
vious sections [19], the extremum operators can be eliminated and Eq. (7) can
be re-expressed as

F ∗(s) =
1
α

logEρ(a|s)

[
Eμ(θ|a,s)

[
exp

(
βETθ(s′|a,s)

[
Rs′

s,a + γF ∗(s′)
])]α

β

]
(8)

because

F ∗(s) = max
π

Eπ(a|s)

[
1
β

log Zβ(a, s) − 1
α

log
π(a|s)
ρ(a|s)

]
(9)

=
1
α

logEρ(a|s)

[
exp

(
α

β
log Zβ(a, s)

)]
, (10)

where

Zβ(a, s) = ext
ψ

Eψ(θ|a,s)

[
ETθ(s′|a,s)

[
Rs′

s,a + γF ∗(s′)
]

− 1
β

log
ψ(θ|a, s)
μ(θ|a, s)

]
(11)

= Eμ(θ|a,s) exp
(
βETθ(s′|a,s)

[
Rs′

s,a + γF ∗(s′)
])

with the optimizing arguments

ψ∗(θ|a, s) =
1

Zβ(a, s)
μ(θ|a, s) exp

(
βETθ(s′|a,s)

[
Rs′

s,a + γF (s′)
])

π∗(a|s) =
1

Zα(s)
ρ(a|s) exp

(
α

β
log Zβ(a, s)

)
(12)

and partition sum

Zα(s) = Eρ(a|s)

[
exp

(
α

β
log Zβ(a, s)

)]
.

With this free energy we can model a range of different agents for different
α and β. For example, by setting α → ∞ and β → 0 we can recover a Bayesian
MDP planner and by setting α → ∞ and β → −∞ we recover a robust planner.
Additionally, for α → ∞ and when μ(θ|a, s) = δ(θ−θ∗(a, s)) we recover an agent
with standard value function with known state transition model from Eq. (1).

3.1 Free Energy Iteration Algorithm

Solving the self-consistency Eq. (8) can be achieved by a generalized version of
value iteration. Accordingly, the optimal solution can be obtained by initializing
the free energy at some arbitrary value F and applying a value iteration scheme
Bi+1F = BBiF where we define the operator
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BF (s) = max
π

ext
ψ

Eπ(a|s)

[
− 1

α
log

π(a|s)
ρ(a|s)+

Eψ(θ|a,s)

[
− 1

β
log

ψ(θ|a, s)
μ(θ|a, s)

+

ETθ(s′|a,s)

[
Rs′

s,a + γF (s′)
]]]

(13)

with B1F = BF , which can be simplified to

BF (s) =
1
α

logEρ(a|s)

[
Eμ(θ|a,s)

[
exp

(
βETθ(s′|a,s)

[
Rs′

s,a + γF (s′)
])]α

β

]

In Algorithm (1) we show the pseudo-code of this generalized value iteration
scheme. Given state-dependent prior policies ρ(a|s) and the Bayesian posterior
beliefs μ(θ|a, s) and the values of α and β, the algorithm outputs the equilibrium
distributions for the action probabilities π(a|s), the biased beliefs ψ(θ|a, s) and
estimates of the free energy value function F ∗(s). The iteration is run until a
convergence criterion is met. Assuming dimensionality A for the action space, S
for the state space, and B for the (discretized) belief space we have a complexity
of O(AS2B) per iteration, similar to other value iteration algorithms running
on the belief space. The convergence proof of the algorithm is shown in the next
section.

Algorithm 1. Iterative algorithm solving the self-consistency Eq. (8)
Input: ρ(a|s), μ(θ|a, s), α, β
Initialize: F ← 0, Fold ← 0
while not converged do

forall s ∈ S do

F (s) ← 1
α

logEρ(a|s)

[
Eμ(θ|a,s)

[
exp
(
βETθ(s

′|a,s)

[
Rs′

s,a + γFold(s
′)
])]α

β

]

end
Fold ← F

end

π(a|s) ← 1
Zα(s)

ρ(a|s) exp
(

α
β

log Zβ(a, s)
)

ψ(θ|a, s) ← 1
Zβ(a,s)

μ(θ|a, s) exp
(
βETθ(s

′|a,s)

[
Rs′

s,a + γF (s′)
])

return π(a|s), ψ(θ|a, s), F (s)

4 Convergence

Here, we show that the value iteration scheme described through Algorithm1
converges to a unique fixed point satisfying Eq. (8). To this end, we first prove the
existence of a unique fixed point (Theorem 1) following [3,25], and subsequently
prove the convergence of the value iteration scheme presupposing that a unique
fixed point exists (Theorem 2) following [27].
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Theorem 1. Assuming a bounded reward function Rs′
s,a, the optimal free-energy

vector F ∗(s) is a unique fixed point of Bellman’s equation F ∗ = BF ∗, where the
mapping B : R|S| → R

|S| is defined as in Eq. (13)

Proof. Theorem 1 is proven through Propositions 1 and 2 in the following.

Proposition 1. The mapping Tπ,ψ : R|S| → R
|S|

Tπ,ψF (s) = Eπ(a|s)

[
− 1

α
log

π(a|s)
ρ(a|s)+

Eψ(θ|a,s)

[
− 1

β
log

ψ(θ|a, s)
μ(θ|a, s)

+

ETθ(s′|a,s)

[
Rs′

s,a + γF (s′)
]]]

. (14)

converges to a unique solution for every policy-belief-pair (π, ψ) independent of
the initial free-energy vector F (s).

Proof. By introducing the matrix Pπ,ψ(s, s′) and the vector gπ,ψ(s) as

Pπ,ψ(s, s′) := Eπ(a|s)

[
Eψ(θ|a,s) [Tθ(s′|a, s)]

]
,

gπ,ψ(s) := Eπ(a|s)

[
Eψ(θ|a,s)

[
ETθ(s′|a,s)

[
Rs′

s,a

]
− 1

β
log

ψ(θ|a, s)
μ(θ|a, s)

]
− 1

α
log

π(a|s)
ρ(a|s)

]
,

Equation (14) may be expressed in compact form: Tπ,ψF = gπ,ψ + γPπ,ψF . By
applying the mapping Tπ,ψ an infinite number of times on an initial free-energy
vector F , the free-energy vector Fπ,ψ of the policy-belief-pair (π, ψ) is obtained:

Fπ,ψ := lim
i→∞

T i
π,ψF = lim

i→∞

i−1∑
t=0

γtP t
π,ψgπ,ψ + lim

i→∞
γiP i

π,ψF
︸ ︷︷ ︸

→0

,

which does no longer depend on the initial F . It is straightforward to show that
the quantity Fπ,ψ is a fixed point of the operator Tπ,ψ:

Tπ,ψFπ,ψ = gπ,ψ + γPπ,ψ lim
i→∞

i−1∑
t=0

γtP t
π,ψgπ,ψ

= γ0P 0
π,ψgπ,ψ + lim

i→∞

i∑
t=1

γtP t
π,ψgπ,ψ

= lim
i→∞

i−1∑
t=0

γtP t
π,ψgπ,ψ + lim

i→∞
γiP i

π,ψgπ,ψ

︸ ︷︷ ︸
→0

= Fπ,ψ.

Furthermore, Fπ,ψ is unique. Assume for this purpose an arbitrary fixed point
F ′ such that Tπ,ψF ′ = F ′, then F ′ = limi→∞ T i

π,ψF ′ = Fπ,ψ.
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Proposition 2. The optimal free-energy vector F ∗ = maxπ extψ Fπ,ψ is a
unique fixed point of Bellman’s equation F ∗ = BF ∗.

Proof. The proof consists of two parts where we assume ext = max in the
first part and ext = min in the second part respectively. Let ext = max and
F ∗ = Fπ∗,ψ∗ , where (π∗, ψ∗) denotes the optimal policy-belief-pair. Then

F ∗ = Tπ∗,ψ∗F ∗ ≤ max
π

max
ψ

Tπ,ψF ∗

︸ ︷︷ ︸
=BF ∗

=: Tπ′,ψ′F ∗ Induction≤ Fπ′,ψ′ ,

where the last inequality can be straightforwardly proven by induction1

and exploiting the fact that Pπ,ψ(s, s′) ∈ [0; 1]. But by definition F ∗ =
maxπ maxψ Fπ,ψ ≥ Fπ′,ψ′ , hence F ∗ = Fπ′,ψ′ and therefore F ∗ = BF ∗. Further-
more, F ∗ is unique. Assume for this purpose an arbitrary fixed point F ′ = Fπ′,ψ′

such that F ′ = BF ′ with the corresponding policy-belief-pair (π′, ψ′). Then

F ∗ = Tπ∗,ψ∗F ∗ ≥ Tπ′,ψ′F ∗ Induction≥ Fπ′,ψ′ = F ′,

and similarly F ′ ≥ F ∗, hence F ′ = F ∗.
Let ext = min and F ∗ = Fπ∗,ψ∗ . By taking a closer look at Eq. (13), it can

be seen that the optimization over ψ does not depend on π. Then

F ∗ = Tπ∗,ψ∗F ∗ ≥ min
ψ

Tπ∗,ψF ∗ =: Tπ∗,ψ′F ∗ Induction≥ Fπ∗,ψ′ .

But by definition F ∗ = minψ Fπ∗,ψ ≤ Fπ∗,ψ′ , hence F ∗ = Fπ∗,ψ′ . Therefore it
holds that BF ∗ = maxπ minψ Tπ,ψF ∗ = maxπ Tπ,ψ∗F ∗ and similar to the first
part of the proof we obtain

F ∗ = Tπ∗,ψ∗F ∗ ≤ max
π

Tπ,ψ∗F ∗

︸ ︷︷ ︸
=BF ∗

=: Tπ′,ψ∗F ∗ Induction≤ Fπ′,ψ∗.

But by definition F ∗ = maxπ Fπ,ψ∗ ≥ Fπ′,ψ∗, hence F ∗ = Fπ′,ψ∗ and therefore
F ∗ = BF ∗. Furthermore, Fπ∗,ψ∗ is unique. Assume for this purpose an arbitrary
fixed point F ′ = Fπ′,ψ′ such that F ′ = BF ′. Then

F ′ = Tπ′,ψ′F ′ ≤ Tπ′,ψ∗F ′ Induction≤ Fπ′,ψ∗
Induction≤ Tπ′,ψ∗F ∗ ≤ Tπ∗,ψ∗F ∗ = F ∗,

and similarly F ∗ ≤ F ′, hence F ∗ = F ′.

Theorem 2. Let ε be a positive number satisfying ε < η
1−γ where γ ∈ [0; 1) is the

discount factor and where u and l are the bounds of the reward function Rs′
s,a such

1 Base case: Tπ,ψF ≤ F . Inductive step: assume T i
π,ψF ≤ T i−1

π,ψ F then T i+1
π,ψ F =

gπ,ψ + γPπ,ψT i
π,ψF ≤ gπ,ψ + γPπ,ψT i−1

π,ψ F = T i
π,ψF and similarly for the base case

Tπ,ψF ≥ F �.
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that l ≤ Rs′
s,a ≤ u and η = max{|u|, |l|}. Suppose that the value iteration scheme

from Algorithm1 is run for i = �logγ
ε(1−γ)

η � iterations with an initial free-energy
vector F (s) = 0 for all s. Then, it holds that maxs |F ∗(s) − BiF (s)| ≤ ε, where
F ∗ refers to the unique fixed point from Theorem1.

Proof. We start the proof by showing that the L∞-norm of the difference vector
between the optimal free-energy F ∗ and BiF exponentially decreases with the
number of iterations i:

max
s

∣∣F ∗(s) − BiF (s)
∣∣ =:

∣∣F ∗(s∗) − BiF (s∗)
∣∣

Eq. (9)
=

∣∣∣∣max
π

Eπ(a|s∗)

[
1
β

log Zβ(a, s∗) − 1
α

log
π(a|s∗)
ρ(a|s∗)

]

−max
π

Eπ(a|s∗)

[
1
β

log Zi
β(a, s∗) − 1

α
log

π(a|s∗)
ρ(a|s∗)

]∣∣∣∣

≤ max
π

∣∣∣∣Eπ(a|s∗)

[
1
β

log Zβ(a, s∗) − 1
β

log Zi
β(a, s∗)

]∣∣∣∣

≤ max
a

∣∣∣∣
1
β

log Zβ(a, s∗) − 1
β

log Zi
β(a, s∗)

∣∣∣∣

=:
∣∣∣∣
1
β

log Zβ(a∗, s∗) − 1
β

log Zi
β(a∗, s∗)

∣∣∣∣
Eq. (11)

=
∣∣∣∣ext

ψ
Eψ(θ|a∗,s∗)

[
ETθ(s′|a∗,s∗)

[
Rs′

s,a + γF ∗(s′)
] − 1

β
log

ψ(θ|a∗, s∗)
μ(θ|a∗, s∗)

]

− ext
ψ

Eψ(θ|a∗,s∗)

[
ETθ(s′|a∗,s∗)

[
Rs′

s,a + γBi−1F (s′)
] − 1

β
log

ψ(θ|a∗, s∗)
μ(θ|a∗, s∗)

]∣∣∣∣

≤ max
ψ

∣∣∣∣Eψ(θ|a∗,s∗)

[
ETθ(s′|a∗,s∗)

[
γF ∗(s′) − γBi−1F (s′)

]]∣∣∣∣

≤ γ max
s

∣∣F ∗(s) − Bi−1F (s)
∣∣ Recur.≤ γi max

s
|F ∗(s) − F (s)| ≤ γi η

1 − γ
,

where we exploit the fact that |extx f(x) − extx g(x)| ≤ maxx |f(x) − g(x)| and
that the free-energy is bounded through the reward bounds l and u with η =
max{|u|, |l|}. For a convergence criterion ε > 0 such that ε ≥ γi η

1−γ , it then

holds that i ≥ logγ
ε(1−γ)

η presupposing that ε < η
1−γ .

5 Experiments: Grid World

This section illustrates the proposed value iteration scheme with an intuitive
example where an agent has to navigate through a grid-world. The agent starts
at position S ∈ S with the objective to reach the goal state G ∈ S and can choose
one out of maximally four possible actions a ∈ {↑,→, ↓,←} in each time-step.
Along the way, the agent can encounter regular tiles (actions move the agent
deterministically one step in the desired direction), walls that are represented as



Planning with Information-Processing Constraints and Model Uncertainty 485

gray tiles (actions that move the agent towards the wall are not possible), holes
that are represented as black tiles (moving into the hole causes a negative reward)
and chance tiles that are illustrated as white tiles with a question mark (the
transition probabilities of the chance tiles are unknown to the agent). Reaching
the goal G yields a reward R = +1 whereas stepping into a hole results in a
negative reward R = −1. In both cases the agent is subsequently teleported
back to the starting position S. Transitions to regular tiles have a small negative
reward of R = −0.01. When stepping onto a chance tile, the agent is pushed
stochastically to an adjacent tile giving a reward as mentioned above. The true
state-transition probabilities of the chance tiles are not known by the agent, but
the agent holds the Bayesian belief

μ(θs,a|a, s) = Dirichlet
(
Φ

s′
1

s,a, . . . , Φ
s′

N(s)
s,a

)
=

N(s)∏
i=1

(θs′
i

s,a)Φ
s′

i
s,a−1

where the transition model is denoted as Tθs,a(s′|s, a) = θs′
s,a and θs,a =

(
θ

s′
1

s,a . . . θ
s′

N(s)
s,a

)
and N(s) is the number of possible actions in state s. The data

are incorporated into the model as a count vector
(
Φ

s′
1

s,a, . . . , Φ
s′

N(s)
s,a

)
where Φs′

s,a

represents the number of times that transition (s, a, s′) occurred. The prior ρ(a|s)
for the actions at every state is set to be uniform. An important aspect of the
model is that in the case of unlimited observational data, the agent will plan
with the correct transition probabilities.

We conducted two experiments with discount factor γ = 0.9 and uniform
priors ρ(a|s) for the action variables. In the first experiment, we explore and
illustrate the agent’s planning behavior under different degrees of computational
limitations (by varying α) and under different model uncertainty attitudes (by
varying β) with fixed uniform beliefs μ(θ|a, s). In the second experiment, the
agent is allowed to update its beliefs μ(θ|a, s) and use the updated model to
re-plan its strategy.

5.1 The Role of the Parameters α and β on Planning

Figure 1 shows the solution to the variational free energy problem that is
obtained by iteration until convergence according to Algorithm1 under differ-
ent values of α and β. In particular, the first row shows the free energy function
F ∗(s) (Eq. (8)). The second, third and fourth row show heat maps of the position
of an agent that follows the optimal policy (Eq. (12)) according to the agent’s
biased beliefs (plan) and to the actual transition probabilities in a friendly and
unfriendly environment, respectively. In chance tiles, the most likely transitions
in these two environments are indicated by arrows where the agent is teleported
with a probability of 0.999 into the tile indicated by the arrow and with a prob-
ability of 0.001 to a random other adjacent tile.

In the first column of Fig. 1 it can be seen that a stochastic agent (α = 3.0)
with high model uncertainty and optimistic attitude (β = 400) has a strong
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Fig. 1. The four different rows show free energy values and heat-maps of planned
trajectories according to the agent’s beliefs over state-transitions in chance tiles, heat-
maps of real trajectories in a friendly environment and in an unfriendly environment
respectively. The Start-position is indicated by S and the goal state is indicated by G.
Black tiles represent holes with negative reward, gray tiles represent walls and chance
tiles with a question mark have transition probabilities unknown to the agent. The
white tiles with an arrow represent the most probable state-transition in chance tiles
(as specified by the environment). Very small arrows in each cell encode the policy
π(a|s) (the length of each arrow encodes the probability of the corresponding action
under the policy, highest probability action is indicated as a red arrow). The heat map
is constructed by normalizing the number of visits for each state over 20000 steps,
where actions are sampled from the agent’s policy and state-transitions are sampled
according to one of three ways: in the second row according to the agent’s belief over
state-transitions ψ(θ|a, s), in the third and fourth row according to the actual transition
probabilities of a friendly and an unfriendly environment respectively. Different columns
show different α and β cases. (Color figure online)
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preference for the broad corridor in the bottom by assuming favorable transitions
for the unknown chance tiles. This way the agent also avoids the narrow corridors
that are unsafe due to the stochasticity of the low-α policy. In the second column
of Fig. 1 with low α = 3 and high model uncertainty with pessimistic attitude β =
−400, the agent strongly prefers the upper broad corridor because unfavorable
transitions are assumed for the chance tiles. The third column of Fig. 1 shows
a very pessimistic agent (β = −400) with high precision (α = 11) that allows
the agent to safely choose the shortest distance by selecting the upper narrow
corridor without risking any tiles with unknown transitions. The fourth column
of Fig. 1 shows a very optimistic agent (β = 400) with high precision. In this case
the agent chooses the shortest distance by selecting the bottom narrow corridor
that includes two chance tiles with unknown transition.

5.2 Updating the Bayesian Posterior μ with Observations
from the Environment

Similar to model identification adaptive controllers that perform system identi-
fication while the system is running [1], we can use the proposed planning algo-
rithm also in a reinforcement learning setup by updating the Bayesian beliefs
about the MDP while executing always the first action and replanning in the
next time step. During the learning phase, the exploration is governed by both
factors α and β, but each factor has a different influence. In particular, lower
α-values will cause more exploration due to the inherent stochasticity in the
agent’s action selection, similar to an ε-greedy policy. If α is kept fixed through
time, this will of course also imply a “suboptimal” (i.e. bounded optimal) policy
in the long run. In contrast, the parameter β governs exploration of states with
unknown transition-probabilities more directly and will not have an impact on
the agent’s performance in the limit, where data has eliminated model uncer-
tainty. We illustrate this with simulations in a grid-world environment where
the agent is allowed to update its beliefs μ(θ|a, s) over the state-transitions
every time it enters a chance tile and receives observation data acquired through
interaction with the environment—compare left panels in Fig. 2. In each step,
the agent can then use the updated belief-models for planning the next action.

Figure 2 (right panels) shows the number of data points acquired (each time a
chance tile is visited) and the average reward depending on the number of steps
that the agent has interacted with the environment. The panels show several
different cases: while keeping α = 12.0 fixed we test β = (0.2, 5.0, 20.0) and
while keeping β = 0.2 fixed we test α = (5.0, 8.0, 12.0). It can be seen that lower
α leads to better exploration, but it can also lead to lower performance in the
long run—see for example the rightmost bottom panel. In contrast, optimistic β
values can also induce high levels of exploration with the added advantage that
in the limit no performance detriment is introduced. However, high β values can
in general also lead to a detrimental persistence with bad policies, as can be seen
for example in the superiority of the low-β agent at the very beginning of the
learning process.
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Fig. 2. The effect of α and β when updating beliefs over 300 interaction steps with
the environment. The four panels on the left show the grid-world environment and
the pertaining optimal policy if the environment is known. The lower left panels show
paths that the agent could take depending on its attitude towards model uncertainty.
The panels on the right show the number of acquired data points, that is the number
of times a chance tile is entered, and the average reward (bottom panels) for fixed α
(varying β) or fixed β (varying α). The average reward at each step is computed as
follows. Each time the agent observes a state-transition in a chance tile and updates
its belief model, 10 runs of length 2000 steps are sampled (using the agent’s current
belief model). The average reward (bold lines) and standard-deviation (shaded areas)
across these 10 runs are shown in the figure.

6 Discussion and Conclusions

In this paper we are bringing two strands of research together, namely research
on information-theoretic principles of control and decision-making and robust-
ness principles for planning under model uncertainty. We have devised a unified
recursion principle that extends previous generalizations of Bellman’s optimality
equation and we have shown how to solve this recursion with an iterative scheme
that is guaranteed to converge to a unique optimum. In simulations we could
demonstrate how such a combination of information-theoretic policy and belief
constraints that reflect model uncertainty can be beneficial for agents that act
in partially unknown environments.

Most of the research on robust MDPs does not consider information-
processing constraints on the policy, but only considers the uncertainty in the
transition probabilities by specifying a set of permissible models such that worst-
case scenarios can be computed in order to obtain a robust policy [13,16]. Recent
extensions of these approaches include more general assumptions regarding the
set properties of the permissible models and assumptions regarding the data gen-
eration process [33]. Our approach falls inside this class of robustness methods
that use a restricted set of permissible models, because we extremize the biased
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belief ψ(θ|a, s) under the constraint that it has to be within some information
bounds measured by the Kullback-Leibler divergence from a reference Bayesian
posterior. Contrary to these previous methods, our approach additionally con-
siders robustness arising from the stochasticity in the policy.

Information-processing constraints on the policy in MDPs have been previ-
ously considered in a number of studies [14,23,25,32], however not in the context
of model uncertainty. In these studies a free energy value recursion is derived when
restricting the class of policies through the Kullback-Leibler divergence and when
disregarding separate information-processing constraints on observations. How-
ever, a small number of studies has considered information-processing constraints
both for actions and observations. For example, Polani and Tishby [30] and Ortega
and Braun [19] combine both kinds of information costs. The first cost formal-
izes an information-processing cost in the policy and the second cost constrains
uncertainty arising from the state transitions directly (but crucially not the uncer-
tainty in the latent variables). In both information-processing constraints the cost
is determined as a Kullback-Leibler divergence with respect to a reference distri-
bution. Specifically, the reference distribution in [30] is given by the marginal dis-
tributions (which is equivalent to a rate distortion problem) and in [19] is given by
fixed priors. The Kullback-Leibler divergence costs for the observations in these
cases essentially correspond to a risk-sensitive objective. While there is a relation
between risk-sensitive and robust MDPs [6,22,26], the innovation in our approach
is at least twofold. First, it allows combining information-processing constraints
on the policy with model uncertainty (as formalized by a latent variable). Second,
it provides a natural setup to study learning.

The algorithm presented here and Bayesian models in general [7] are compu-
tationally expensive as they have to compute possibly high-dimensional integrals
depending on the number of allowed transitions for action-state pairs. Neverthe-
less, there have been tremendous efforts in solving unknown MDPs efficiently,
especially by sampling methods [10,11,24]. An interesting future direction to
extend our methodology would therefore be to develop a sampling-based version
of Algorithm 1 to increase the range of applicability and scalability [21]. More-
over, such sampling methods might allow for reinforcement learning applications,
for example by estimating free energies through TD-learning [8], or by Thompson
sampling approaches [17,18] or other stochastic methods for adaptive control [1].

Acknowledgments. This study was supported by the DFG, Emmy Noether grant
BR4164/1-1. The code was developed on top of the RLPy library [9].
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Abstract. Subgroup Discovery is the process of finding and describing
sufficiently large subsets of a given population that have unusual distri-
butional characteristics with regard to some target attribute. Such sub-
groups can be used as a statistical summary which improves on the default
summary of stating the overall distribution in the population. A natural
way to evaluate such summaries is to quantify the difference between pre-
dicted and empirical distribution of the target. In this paper we propose to
use proper scoring rules, a well-known family of evaluation measures for
assessing the goodness of probability estimators, to obtain theoretically
well-founded evaluation measures for subgroup discovery. From this per-
spective, one subgroup is better than another if it has lower divergence of
target probability estimates from the actual labels on average. We demon-
strate empirically on both synthetic and real-world data that this leads to
higher quality statistical summaries than the existing methods based on
measures such as Weighted Relative Accuracy.

1 Introduction

Statistical models intend to capture the distributional information in a domain
of interest. While a global statistical model is useful, it is often also of interest
to capture local variations exhibited in a subset of the data. Recognising such
subsets can provide valuable knowledge and opportunities to improve perfor-
mance at tasks relying on the statistical model. In the area of machine learning
and data mining, the problem of obtaining such statistically different subsets is
known as Subgroup Discovery (SD) [6,7,10,17], loosely defined as the process of
finding and describing sufficiently large subsets of a given population that have
unusual distributional characteristics with regard to some target attribute.

Consider a synthetic toy data set relating to someone’s dietary habits. It
contains two (discretised) features: the time of the day, denoted as X1 ∈
{Morning ,Afternoon,Evening} and the calorie consumption in the diet, denoted
as X2 ∈ {Low ,Medium,High}. The target variable is Y ∈ {Weekday ,Weekend}.
Figure 1 visualises the data, with two potentially interesting subgroups (shaded
areas). The subgroup on the right concentrates on the area of maximum sta-
tistical deviation (high calorie intake in the evening is more common during
weekend), while the one on the left covers both medium and high calorie intake
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 492–510, 2016.
DOI: 10.1007/978-3-319-46227-1 31
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Fig. 1. An example bivariate data set with two subgroups (shaded areas) defined on
the discretised features, both capturing an area of statistical deviation in comparison
to the overall population. The subgroup on the left is preferred by a commonly used
evaluation measure (WRAcc) while the right subgroup is preferred by the one of the
measures we propose in this paper.

in the evening. In this paper we study reasons why one of these subgroups might
be preferred over the other.

Clearly, if a subgroup is small, distributional differences may arise purely
because of random chance in sampling, so a trade-off between subgroup size and
distributional deviation needs to be made. Statistical tests such as χ2 can be
used, but are usually over-emphasising size: a very large subgroup with small
deviation is more likely to be picked up than a medium-sized subgroup with
considerable deviation. p-values as reported in rule-based approaches [10] tend
to suffer from the same issue.

Historically, SD developed as a variation on rule-learning and other logic-
based approaches, and hence it is not surprising that many existing quality
measures have been adapted from decision trees and rule-based classifiers. For
instance, [1] explored the use of Gini-split (among several others) as quality
measure for subgroups, which hypothesises that a good binary split in a decision
tree also establishes a good subgroup. One of the most commonly used measures
is Weighted Relative Accuracy (WRAcc), which can be seen as an adaptation
of precision, a measure that is used as a search heuristic in rule learners such
as CN2 [3]. Many other subgroup quality measures have been introduced in the
literature, see [6] for an overview.

Evaluation methods for SD depend on the task for which subgroups need to
be found. In [10], the subgroups are used to construct a ranking model, and the
area under the corresponding ROC curve is used as an evaluation measure. In
[1] the obtained subgroups are used as features for a decision tree and hence
they can be evaluated according to the classification performance of the trees.
However, the predictive task used in evaluation (ranking or classification) is then
different from the descriptive Subgroup Discovery (SD) task, and it is unclear
how the predictive task affects the choice of subgroup quality measure.

In this paper we propose a novel approach to evaluate subgroups as sum-
maries which improve on the default summary of stating the overall distribution
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in the population. A natural way to evaluate such summaries is to quantify the
difference between predicted and empirical distribution of the target. This obvi-
ates the use of proper scoring rules, a well-known family of evaluation measures
for assessing the goodness of probability estimators, to obtain theoretically well-
founded evaluation measures for subgroup discovery. From this perspective, one
subgroup is better than another if it on average has lower divergence of target
probability estimates from the actual labels.

We derive a novel SD method to directly optimise for the proposed evaluation
measure, from first principles. The method is based on a generative probabilistic
model, which allows us to formally prove the validity of the method. We perform
experiments on a synthetic data set where the theoretically optimal subgroup is
known, and demonstrate that our method outperforms alternative methods in
the sense that it finds subgroups that are closer to the theoretically optimal one.
Additionally, we perform experiments on 20 UCI data sets which demonstrate
that the proposed method is superior in summarising the statistical properties
of the data.

The structure of this paper is as follows. Section 2 introduces the notations
and concepts for SD. Section 3 provides an overview of Proper Scoring Rules
(PSRs) and describes related quality measures. In Sect. 4 we propose a novel
generative modelling approach to address the summarisation problem, and derive
the corresponding measures. Section 5 evaluates the proposed quality measures
against existing measures and Sect. 6 presents related work. Section 7 concludes
this paper and discusses possible future research directions.

2 Subgroup Discovery

We start by introducing some notation. Consider a dataset (Xi, Yi), i = 1, . . . , n
in the instance space (X,Y). We assume a multi-class target variable, represent-
ing the k classes in Y by unit vectors, i.e. class j is represented by the vector
with 1 at position j and 0 everywhere else. The set of all considered subgroups
is indicated by G ⊂ 2X. This set is typically generated by a subgroup language
(e.g., the set of all conjunctions over some fixed set of literals) but here it suffices
to deal with subgroups extensionally. A subgroup g ∈ G can then be identified
with its characteristic function g : X → {0, 1} determining whether an instance
Xi is in the subgroup (g(Xi) = 1) or not (g(Xi) = 0). A subgroup quality mea-
sure is a function φ : G → R such that better subgroups g get a higher φ(g).
The task of SD is then to find the subgroup g∗ with the highest value of φ, i.e.
g∗ = arg maxg∈Gφ(g).

A wide range of proposed quality measures can be found in the literature. The
common way of defining a quality measure is to separate them into two factors:
the deviation factor and the size factor. The deviation factor is in charge of
comparing the local statistic to the global statistic. In the case of a discrete
target variable, the deviation factor can be seen as a function that takes two
estimates of class probabilities as input and outputs a single number to indicate
how different these two estimates are. The size factor is normally treated as
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a correction term to encourage the method to find larger subgroups, as small
subgroups tend to be less valuable.

One of the most widely adopted quality measures is the Weighted Relative
Accuracy (WRAcc) family [1,2,9,10]. For a binary target this essentially is the
covariance between the target variable and subgroup membership: since these
are both Bernoulli variables this takes values in the interval [−0.25, 0.25]. For
a multi-class target we take the average of all one-against-rest binary WRAcc
values, taking the absolute value of the latter to avoid positive and negative
covariances cancelling out [1]. For our purposes we derive a related but unnor-
malised quantity, as follows.

Denote the overall class distribution in the data set by π = (
∑n

i=1 Yi)/n (note
that Yi and π are vectors of length k). Let m denote the number of training set
instances belonging to the subgroup g, i.e. m =

∑n
i=1 g(Xi). Denote the class

distribution in the subgroup by ρ(g), i.e., ρ(g) = (
∑n

i=1 g(Xi) · Yi)/m. Then an
unnormalised version of Multi-class Weighted Relative Accuracy (MWRAcc) can
be calculated as:

φMWRAcc(g) = m ·
k∑

j=1

|ρ(g)j − πj | (1)

The definition of [1] is obtained from this by normalising with n · k, where n is
the number of training instances and k is the number of classes (both constant).
Our version can be interpreted as absolute differences between observed and
expected counts.

3 Proper Scoring Rules

The class distribution π is a very simple way to summarise the target vari-
able across the whole training dataset. That is, we summarise the labels vectors
Y1, . . . , Yn with the summary Sπ where we define Sπ

i = π for i = 1, . . . , n. Another
possibility is to separately summarise a particular subgroup g with its class dis-
tribution ρ(g) while its complement is summarised with π. We denote this sum-
mary by Sg,ρ(g),π, and for an instance i this summary predicts Sg,ρ(g),π

i = ρ(g)

if g(Xi) = 1 and Sg,ρ(g),π
i = π if g(Xi) = 0, which can be jointly written as

Sg,ρ(g),π
i = ρ(g)g(Xi) + π(1 − g(Xi)). One could then ask which of the subgroups

gives the best summary, and whether the summary is better than the default sum-
mary Sπ. In order to assess this, we need a way to calculate the extent to which
the probability estimates within the summary deviate from the actual labels.

Proper Scoring Rules (PSRs) have been widely adopted in the area of machine
learning and statistics to assess the goodness of probability estimates [16]. A
scoring rule is a function ψ : S × Y → R that assigns a real-valued loss to the
estimate Si within the summary S with respect to the actual label Yi of instance
i. Two of the most commonly adopted scoring rules are the Brier Score (BS) and
Log-loss (LL), which are defined as:
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ψBS(Si, Yi) =
k∑

j=1

(Si,j − Yi,j)2 (2)

ψLL(Si, Yi) = − log(Si,∗) (3)

where Yi,j = 1 if the i-th instance is of the j-th class and 0 otherwise, Si,j is
the probability estimate of class j for the i-th instance, and Si,∗ denotes the
probability estimate of the i-th instance for the true class as determined by Yi.

The distance from a whole summary S to the actual labels can then be
calculated as follows:

ψ′(S, Y ) =
n∑

i=1

ψ(Si, Yi) (4)

The scoring rule ψ is proper if arg minpψ
′(Sp, Y ) = π for any Y , i.e., if the actual

class distribution is the minimiser of the scoring rule. In particular, both BS and
LL are proper.

For every proper scoring rule ψ there is a corresponding divergence measure d
which quantifies how much a class probability distribution diverges from another
class distribution. Formally, the divergence d(p, q) is the expected value of the
difference ψ(p, Y ) − ψ(q, Y ) where Y is drawn from the distribution q. The
divergences corresponding to BS and LL are the squared error and Kullback-
Leibler (KL) divergence, respectively.

dBS(p, q) =
k∑

j=1

(pj − qj)2 (5)

dLL(p, q) =
k∑

j=1

qj · log
qj

pj
(6)

For more details see [8].

3.1 Information Gain

Suppose we now want to decide whether to summarise the whole dataset by
Sπ or by Sg,ρ(g),π for some g. For this let us take a proper scoring rule ψ′ to
quantify the loss of a summary with respect to actual labels. We can now define
the quality of a subgroup g as the gain in ψ′ of the summary Sg,ρ(g),π over the
default summary Sπ, that is:

φIG(g) = ψ′(Sπ, Y ) − ψ′(Sg,ρ(g),π, Y ) (7)

In principle, we could consider summaries Sg,ρ,π for any other class distribution
ρ. However, the summary with ρ(g) is special among these, as it is maximising
the gain over the summary Sπ due to properness of the scoring rule. This is
stated in the following theorem:
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Theorem 1. Let ψ,ψ′, d be a proper scoring rule, its sum across the dataset, and
its corresponding divergence measure, respectively. Then for any given subgroup
g the following holds:

arg max
ρ

ψ′(Sπ, Y ) − ψ′(Sg,ρ,π, Y ) = ρ(g) (8)

where ρ(g) denotes the class distribution within the subgroup g. The maximum
value achieved is m · d(π, ρ(g)) where m is the size of the subgroup g.

Proofs of all theorems are provided in Appendix A.
The theorem implies that Eq. (7) can be rewritten as follows:

φIG(g) = m · d(π, ρ(g)) (9)

In words, this quality measure multiplies the size of the subgroup by the diver-
gence of the overall class distribution from the distribution within the subgroup1.

If we consider Log-loss as the proper scoring rule, then the corresponding
information gain measure is:

φIG-LL(g) = m · KL(π, ρ(g)) (10)

where KL is the KL-divergence. For Brier Score the corresponding measure is
quadratic error:

φIG-BS(g) = m ·
k∑

j=1

(πj − ρ
(g)
j )2 (11)

where ρ
(g)
j is the proportion of the j-th class in the subgroup g.

These information gain measures have a long history in machine learning, for
example in decision tree learning where they measure the decrease in impurity
when splitting a parent node into two children nodes. If we measure impurity by
Shannon entropy this leads to Quinlan’s information gain splitting criterion; and
if we measure impurity by the Gini index we obtain Gini-split. We have shown
how they can be unified from the perspective of Proper Scoring Rules; we now
proceed to improve them.

4 Generative Modelling

The general context in which SD is applied is where one observes a set of data
points that belongs to a particular domain and the task is to extract information
from the data. As mentioned in the introduction, such information can then be
adopted to improve the performance of corresponding applications. Therefore,
it is desirable that the subgroups as the representation of obtained knowledge
would generalise to future data observed in the same domain.

1 In general, divergence measures are not symmetric, so d(π, ρ(g)) is different from
d(ρ(g), π).
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Two problems need addressing when generalising to future data. First, the
class distribution ρ(g) is calculated on a (small) sample and can therefore be a
poor estimate of the actual distribution in the future. Second, it is not certain
whether the actual distribution of the subgroup is different from the overall
distribution π. In order to capture these aspects we employ a generative model
to generate a new test instance Y of the subgroup g. We assume that the observed
(training) instances of subgroup g were generated according to the same model,
which is defined as follows.

4.1 The Generative Model

First, we fix the default k-class distribution π. We then decide whether the
distribution of the subgroup g is different from the default (Z = 1) or the same
as default (Z = 0):

Z ∼ Bernoulli[γ] (12)

where γ is our prior belief that Z = 1. If Z = 1 then we generate the class
distribution Q for the subgroup g:

Q ∼ Dir[β] (13)

where Dir[β] is the k-dimensional Dirichlet distribution with parameter vector
β. Finally, we assume that the test instance Y and the training instances of the
subgroup g are all independent and identically distributed (iid). For simplicity
of notation, let us assume that the training instances within g are the first m
instances Y1, . . . , Ym. The distribution of Y1, . . . , Ym and the test label Y is as
follows:

Y, Y1, . . . , Ym ∼ Cat[ZQ + (1 − Z)π] (14)

where Cat is the categorical distribution with the given class probabilities. In the
experiments reported later we used non-informative priors for Z and Q (γ = 0.5
and β = (1, . . . , 1), respectively).

4.2 Proposed Quality Measures

The above model can be used to generate instances for a subgroup g. We will
now exploit this model to derive two subgroup quality measures, the first one of
which takes into account the uncertainty about the true class distribution in the
subgroup, while the second one also models our uncertainty whether it is different
from the background distribution. Therefore, we consider the task of choosing
ρ which would maximise the expected gain in ψ′ on the test instances. The
following theorem solves this task, conditioning on the observed class distribution
within the subgroup and on the assumption that this subgroup is different from
background (Z = 1).
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Theorem 2. Consider a subgroup as generated with the model above. Denote
the counts of each class in the training set of this subgroup by C =

∑m
i=1 Yi.

Then

arg max
ρ

E[ψ′(π, Y ) − ψ′(ρ, Y )|C = c, Z = 1] =
c + β∑k

j=1 cj + βj

(15)

Denoting this quantity by ρ̂, the achieved maximum is d(π, ρ̂), where d is the
divergence measure corresponding to ψ.

In the experiments we use β = (1, . . . , 1) and hence the gain is maximised when
predicting the Laplace-corrected probabilities, i.e., adding 1 to all counts and
then normalising. According to this theorem we propose a novel quality measure
which takes into account the uncertainty about the class distribution:

φd(g) = m · d(π, ρ̂) (16)

where m is the size of the subgroup.
The following theorem differs from the previous theorem by not condition-

ing on Z = 1. Hence, it additionally takes into account the uncertainty about
whether the distribution of the subgroup is different from the background.

Theorem 3. Consider a subgroup as generated with the model above and denote
C as above. Then

arg max
ρ

E[ψ′(π, Y ) − ψ′(ρ, Y )|C = c] = a
c + β∑k

j=1 cj + βj

+ (1 − a)π (17)

where a = P[Z = 1|C = c]. Denote this quantity by ˆ̂ρ. Then the achieved maxi-
mum value is d(π, ˆ̂ρ), where d is the divergence measure corresponding to ψ.

Following this theorem we propose another novel quality measure, which takes
into account both the uncertainty about the class distribution and about whether
it is different from the background distribution:

φPSR(g) = m · d(π, ˆ̂ρ) (18)

where m is the size of the subgroup. In order to calculate the value of a = P[Z =
1|C = c] we have the following theorem:

Theorem 4. Consider a subgroup as generated with the model above and denote
C as above. Then the following equalities hold:

P[Z = 1|C = c] =
γ · P[C = c | Z = 1]

γ · P[C = c | Z = 1] + (1 − γ) · P[C = c | Z = 0]

P[C = c | Z = 1] =
(

m

c

)
· Γ (

∑k
j=1 βj)∏k

j=1 Γ (βj)
·
∏k

j=1 Γ (cj + βj)
Γ (m + β0)

P[C = c | Z = 0] =
(

m

c

)
·

k∏
j=1

π
cj
j

(19)

where β0 =
∑k

j=1 βj.
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Referring back to Fig. 1 in the introduction, the subgroup on the left was
discovered with φWRAcc as quality measure and the right one by φPSR with Brier
Score. While WRAcc provides a larger coverage, it can be seen that the PSR
measure captures a more distinct statistical deviation of the class distribution
in the subgroup.

5 Experiments

In this section we experimentally investigate the performance of our proposed
measures. The experiments are separated into two parts. For the first part we
generated synthetic data, such that we know the true subgroup. In the second
part we applied our methods to UCI data to investigate summarisation perfor-
mance.

For our proposed measures, we adopt the generalised divergences of BS and
LL as given in Sect. 3, Eqs. (5 and 6). Plugging these into Eqs. (16) and (18) we
obtain four novel measures d-BS, d-LL, PSR-BS and PSR-LL. We compare these
proposals against a range of subgroup evaluation measures used in the literature:
Weighted Relative Accuracy (WRAcc), IG-LL (Eq. (10)), IG-BS (Eq. (11)), as
well as the χ2 statistic, which is defined as follows:

φChi2 = C ·
K∑

j=1

(ρj − πj)2

πj
(20)

5.1 Synthetic Data

In the experiments on the synthetic data we evaluate how good the methods
are in revealing the true subgroup used in generating the data, as well as in
producing good summaries of the data.

To provide a more intuitive illustration, we construct our data set according
to a real-life scenario. Suppose one has been using a wearable device to record
whether daily exercises were performed or not, for a whole year. As it turned
out, there were 146 out of 365 days when the exercises were performed, which
gives a probability about 2/5 that the exercises were performed on a random
day. According to the website of the wearable device, the same statistics are
about 1/3 for the general population. It is possible that the overall exercise
frequency was different, but perhaps a more plausible explanation might be that
more exercises were performed during a particular period only. SD can hence
be applied to recognise the period of more intensive exercise and summarise the
corresponding exercise frequency.

Following this scenario, the feature space consists of the 52 weeks of the year,
hence X = {1, ..., 52}. We define the subgroup language as the set of all intervals
of weeks of length from 2 to 8 weeks. The data set is assumed to contain a single
year from January to December. This setting allows us to perform exhaustive
search on the subgroup language. As here our aim is to compare the performance



Subgroup Discovery with Proper Scoring Rules 501

among different quality measures, applying exhaustive search can avoid the bias
introduced by other greedy search algorithms.

The way to generate the data is then as described in the previous section.
Given the default class distribution π, the subgroup class distribution Q is sam-
pled from a Dirichlet prior and a true subgroup is selected uniformly within the
language. Therefore, all the 7 days within each week can be distributed either
according to π or according to Q.

We evaluate each subgroup quality measure by comparing the obtained sub-
group against the true subgroup. This is done by measuring similarity of the
respective indicator functions Z and Ẑ. For similarity we use the F-score as we
are not really interested in the ‘true negatives’ (instances in the complements of
both true and discovered subgroups). The F-score for this case can be computed
as (Zi and Ẑi are used to represent whether an instance belongs to the true
subgroup and the obtained subgroup respectively):

F1 =
2 · ∑N

i=1 I(Zi = 1, Ẑi = 1)∑N
i=1(2 · I(Zi = 1, Ẑi = 1) + I(Zi = 1, Ẑi = 0) + I(Zi = 0, Ẑi = 1))

(21)

The results are given in Table 1 as the micro-averaged F-scores from 5 000
synthetic sequences, for different values of π1 (the first component of the class
distribution vector). We can see that the PSR-based approaches generally out-
perform existing measures, with a slight advantage for Log-loss over Brier score.
The information gain-based methods perform particularly poorly, as they have
a preference for pure subgroups, whereas for skewed π it would be advantageous
to look for subgroups with a more uniform class distribution. As π becomes more
uniform, the ‘true’ subgroup becomes more random and harder to identify, which
is why all methods are expected to perform poorly for π1 ≈ 0.5. The variance
is quite high across all methods, probably because the data set is quite small
(52 · 7 = 364 instances).

Since a better statistical summary is essentially our aim, the results are also
evaluated according to their overall loss on a test set (also of length 1 year) drawn
from the same distribution. For each quality measure, a subgroup is obtained from
the training fold together with the local statistical summary (ˆ̂ρ for φPSR, ρ̂ for
other quality measures). The loss for the obtained summarisation can then be

Table 1. Micro-averaged F-scores on the artificial data, for different class distributions
(π1). The best results for each row are shown in bold.

π1 PSR-BS PSR-LL WRAcc Chi2 IG-BS IG-LL d-BS d-LL

.1 .744 .736 .597 .526 .030 .029 .742 .716

.2 .636 .638 .510 .436 .089 .091 .628 .631

.3 .587 .589 .480 .403 .218 .223 .581 .585

.4 .558 .564 .454 .390 .372 .379 .550 .559

.5 .567 .569 .458 .410 .561 .565 .561 .565
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Table 2. Average Brier scores on the artificial data. The best results are shown in bold

π1 PSR-BS PSR-LL WRAcc Chi2 IG-BS IG-LL d-BS d-LL

.1 .195 ± .03 .195 ± .03 .207 ± .03 .212 ± .03 .231 ± .04 .231 ± .04 .195 ± .03 .195 ± .03

.2 .326 ± .03 .326 ± .03 .334 ± .03 .337 ± .03 .350 ± .04 .350 ± .04 .326 ± .03 .326 ± .03

.3 .419 ± .02 .419 ± .02 .424 ± .02 .426 ± .02 .430 ± .03 .430 ± .03 .420 ± .02 .420 ± .02

.4 .475 ± .02 .475 ± .02 .479 ± .02 .480 ± .01 .478 ± .02 .478 ± .02 .476 ± .02 .476 ± .02

.5 .494 ± .02 .494 ± .02 .497 ± .01 .498 ± .01 .494 ± .02 .495 ± .02 .494 ± .02 .494 ± .02

Table 3. Average Log-loss on the artificial data. The best results are shown in bold.

π1 PSR-BS PSR-LL WRAcc Chi2 IG-BS IG-LL d-BS d-LL

.1 .344 ± .04 .344 ± .04 .359 ± .04 .368 ± .04 .406 ± .06 .407 ± .06 .344 ± .04 .347 ± .04

.2 .507 ± .03 .507 ± .03 .517 ± .03 .520 ± .03 .539 ± .05 .540 ± .05 .508 ± .03 .509 ± .03

.3 .610 ± .03 .610 ± .03 .616 ± .02 .618 ± .02 .624 ± .03 .624 ± .03 .611 ± .03 .611 ± .03

.4 .668 ± .02 .668 ± .02 .673 ± .02 .674 ± .02 .671 ± .02 .671 ± .02 .670 ± .02 .669 ± .02

.5 .687 ± .02 .686 ± .02 .690 ± .01 .691 ± .01 .688 ± .02 .687 ± .02 .688 ± .02 .687 ± .02

calculated as in Eq. (4). The corresponding results are given in Tables 2 and 3 for
both Brier score and Log-loss. We see a similar pattern as with the F-score results.

5.2 UCI Data

We proceed to compare our method with existing approaches on UCI data sets
[13]. We selected the same 20 UCI datasets as described in [1]. The information
regarding the number of attributes and instances are provided in the appendix.

The subgroup language we used here is conjunctive normal form, with dis-
junctions (only) between values of the same feature, and conjunctions among
disjunctions involving different features. All features are treated as nominal. If
the original feature is numeric and contains more than 100 values, it is discretised
into 16 bins.

Since for most data sets in this experiment exhaustive search is intractable we
perform beam search instead. The beam width is set to be 32 (i.e., 32 candidate
subgroups are kept to be refined in the next round). The number of refinement
rounds is set to 8.

The resulting average Brier scores and Log-loss are given in Tables 4 and
5. All the results are obtained by 10-fold cross-validation. As in the previous
experiment, a subgroup is learned on the training folds and the class distribution
estimated on the test fold is then used to compute the corresponding loss.

Given these results, it can be seen that our proposed measures generally out-
perform WRAcc, Chi2 and both versions of information gain. The PSR measures
(first two columns) are never outperformed by the generalised divergence (last
two columns) so we recommend using the former unless simplicity of implemen-
tation is an issue (as the latter don’t need estimation of a). Regarding the choice
between (BS, LL), this is still an ongoing debate in the community. Here we
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used both to demonstrate that our novel measure can apply either as the two
most well-known Proper Scoring Rules.

6 Related Work

As is the case for supervised rule learning in general, SD comprises three major
components: description language, quality measure and search algorithm. A
detailed comparison with rule learning can be found in [15]. While early work
in SD has been surveyed in [6], we briefly describe some recent progress in the
area.

Regarding the subgroup description language, most existing work defines it
through logical operations on attribute values. In [14] the authors present an
approach to construct more informative descriptions on numeric and nominal
attributes in linear time. The proposed algorithm is able to find the optimal
interval for numeric attributes and optimal set of values for nominal attributes.
The results show improvements on the quality of obtained subgroups comparing
to traditional descriptions.

In terms of quality measures, recent work has focused on the extension of
traditional measures with improved statistical modelling. In [4,11] Exceptional
Model Mining (EMM) was introduced as a framework to support improved tar-
get concepts with different model classes. For example, if linear regression models
are trained on the whole data set and different candidate subgroups, the quality
of subgroups can be evaluated by comparing the regression coefficient between
the global model and the local subgroup model. In [5] the authors extend the
framework to support predictive statistical information. This further allows sub-
groups to be found where a scoring classifier’s performance deviates from its
overall performance.

With respect to the search algorithm, while greedy search algorithms have
been widely adopted in existing implementations, recent work in [12] presents
a fast exhaustive search strategy for numerical target concepts. The authors
propose and illustrate novel bounds on different types of quality measures. The
exhaustive search can then be performed efficiently via additional pruning tech-
niques.

7 Conclusion

In this paper we investigated how to discover subgroups that are optimal in the
sense of maximally improving the global statistical summary of a given data
set. By assuming that the (discrete) statistical summary is to be evaluated by
the Proper Scoring Rule, we derived the corresponding quality measures from
first principles. We also proposed a generative model to consider the optimal
statistical summary for any candidate subgroup. By performing experiments on
both synthetic data and UCI data, we showed that our measures provide better
summaries in comparison with existing methods.
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The major advantage of adopting our generative model is that it prevents
finding small subgroups with extreme distributions. This can be seen as applying
a regularisation on the class distribution, similar to performing Laplace smooth-
ing in decision tree learning. Given the experiments, we can observe that the
novel measures tend to perform better on small data sets (e.g. Contact-lenses,
Labor).

Since in this paper we assume that only the subgroup with the highest gain
will be discovered, one major direction for further work is to investigate multi-
ple subgroups that can together improve the overall statistical summary. Pre-
vious Subgroup Discovery algorithms have extended the covering algorithm to
weighted covering in order to promote the discovery of overlapping subgroups
[10]. We expect that the PSR approach will be able to derive appropriate weight
updates in a principled fashion.

Another direction would be to generalise our approach to numeric target
variables. Although in general PSRs are designed to work with discrete random
variables, Log-loss has been widely adopted in Bayesian analysis, which provides
an interface to extend our approach to a general form of statistical modelling.
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Appendix A: Proofs

Lemma 1. Let ψ be a proper scoring rule and d its respective divergence mea-
sure. If S, S′ are random vectors representing two sets of class probability esti-
mates for a random variable T representing the actual class, then

E[ψ(S, T )−ψ(S′, T )] = E[d(S, T )− d(S′, T )] = E[d(S,E[T ])− d(S′,E[T ])] (22)

Proof. By using Lemma 1 from the supplementary of [8] we get the decomposi-
tion E[ψ(S, T )] = E[d(S, T )] = E[d(S,E[T ])] + E[d(E[T ], T )] and the analogous
decomposition for S′. The second term is shared and hence when subtracting it
cancels, yielding the required result.

Theorem 1. Let ψ,ψ′, d be a proper scoring rule, its sum across the dataset, and
its corresponding divergence measure, respectively. Then for any given subgroup
g the following holds:

arg max
ρ

ψ′(Sπ, Y ) − ψ′(Sg,ρ,π, Y ) = ρ(g) (23)

where ρ(g) denotes the class distribution within the subgroup g. The value of
achieved maximum is m · d(π, ρ(g)) where m is the size of the subgroup g.
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Proof. For simplicity of notation, let us assume that the training instances within
g are Y1, . . . , Ym (the first m instances). Consider a random variable T obtaining
its value by uniformly choosing one Yi that belongs to g among Y1, . . . , Ym.
The summaries Sπ and Sg,ρ(g),π are equal for instances m + 1, . . . , n, hence
ψ′(Sπ, Y )−ψ′(Sg,ρ(g),π, Y ) = m ·E[ψ(π, T )−ψ(ρ(g), T )]. Using Lemma 1 this is
in turn equal to m ·E[d(π,E[T ])−m ·E[d(ρ(g),E[T ])]. However, since E[T ] = ρ(g)

then the second term is zero and the first is m · d(π, ρ(g)), which is exactly the
required result.

Theorem 2. Consider a subgroup as generated with the model above. Denote
the counts of each class in the training set of this subgroup by C =

∑m
i=1 Yi.

Then

arg max
ρ

E[ψ′(π, Y ) − ψ′(ρ, Y )|C = c, Z = 1] =
c + β∑k

j=1 cj + βj

(24)

Denoting this quantity by ρ̂, the achieved maximum is d(π, ρ̂), where d is the
divergence measure corresponding to ψ.

Proof. Consider a random variable T obtaining its value by uniformly choosing
one Yi that belongs to g among Y1, . . . , Ym. Then E[ψ′(π, Y ) − ψ′(ρ, Y )|C =
c, Z = 1] = E[ψ(π, T ) − ψ(ρ, T )|C = c, Z = 1]. Using Lemma 1 this is in turn
equal to d(π,E[T |C = c, Z = 1]) − d(ρ,E[T |C = c, Z = 1]). Since the first
term does not depend on ρ this quantity is maximised by minimising the second
divergence. As with any divergence, the minimal value is zero and it is obtained
if the two terms are equal, i.e., ρ = E[T |C = c, Z = 1]. It remains to prove that
E[T |C = c, Z = 1] = c+β

∑k
j=1 cj+βj

. This holds because it is a posterior distribution

under the Dirichlet prior Dir(β) after observing c1, . . . , ck of the classes 1, . . . , k,
respectively.

Theorem 3. Consider a subgroup as generated with the model above and denote
C as above. Then

arg max
ρ

E[ψ′(π, Y ) − ψ′(ρ, Y )|C = c] = a
c + β∑k

j=1 cj + βj

+ (1 − a)π (25)

where a = P[Z = 1|C = c]. Denote this quantity by ˆ̂ρ. Then the achieved maxi-
mum value is d(π, ˆ̂ρ), where d is the divergence measure corresponding to ψ.

Proof. Consider a random variable T obtaining its value by uniformly choosing
one Yi that belongs to g among Y1, . . . , Ym. Then E[ψ′(π, Y )−ψ′(ρ, Y )|C = c] =
E[ψ(π, T )−ψ(ρ, T )|C = c]. Using Lemma 1 this is in turn equal to d(π,E[T |C =
c]) − d(ρ,E[T |C = c]). Since the first term does not depend on ρ this quantity
is maximised by minimising the second divergence. As with any divergence,
the minimal value is zero and it is obtained if the two terms are equal, i.e.,
ρ = E[T |C = c]. It remains to prove that E[T |C = c] = aρ̂ + (1 − a)ρ̂ where
ρ̂ is defined in the previous Theorem 2. Indeed, E[T |C = c] = P(Z = 1|C =
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c)E[T |C = c, Z = 1] + P(Z = 0|C = c)E[T |C = c, Z = 0] = aρ̂ + (1 − a)π, where
E[T |C = c, Z = 0] = π due to Y (and therefore T ) drawn from Bernoulli with
the mean ZQ + (1 − Z)π. The achieved maximum is d(π, ˆ̂ρ).

Theorem 4. Consider a subgroup as generated with the model above and denote
C as above. Then the following equalities hold:

P[Z = 1|C = c] =
γP[C = c | Z = 1]

γP[C = c | Z = 1] + (1 − γ)P[C = c | Z = 0]

P[C = c | Z = 1] =
Γ (

∑k
j=1 βj)∏k

j=1 Γ (βj)
·
∏k

j=1 Γ (cj + βj)
Γ (m + β0)

·
(

m

c

)

P[C = c | Z = 0] =
(

m

c

)
·

k∏
j=1

π
cj
j

(26)

where β0 =
∑k

j=1 βj.

Proof. Due to P[Z = 1] = γ, we can obtain the first result from the Bayes
formula with P[Z = 1|C = c] = P[C=c|Z=1]P[Z=1]

P[C=c] . To obtain the second result we
note that in the subgroup Z = 1 the class distribution is drawn from Dir(β),
therefore the distribution of C follows the Dirichlet-Multinomial distribution.
The stated result represents simply the probability distribution function of the
Dirichlet-Multinomial with Dir(β) and multinomial of size m. The third result
is simply the probability distribution function of the Multinomial Distribution.

Appendix B: Information for the UCI Data

See Table. 6

Table 6. The 20 UCI data sets used in the experiments.

Name # instances # features # classes

Abalone 4 176 9 3

Balance-scale 624 5 3

Car 1 727 7 4

Contraceptive 1 472 10 3

Contact-lenses 24 5 3

Credit 589 16 2

Dermatology 365 35 6

Glass 213 11 6

(Continued)
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Table 6. (Continued)

Name # instances # features # classes

Haberman 305 4 2

Hayes-roth 131 5 3

House-votes 434 17 2

Ionosphere 350 34 2

Iris 150 5 3

Labor 57 17 2

Mushroom 8 123 23 2

Pima-indians 767 9 2

Soybean 683 36 19

Tic-Tac-Toe 957 10 2

Breast Cancer 197 34 2

Zoo 100 18 7
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Abstract. Label tree classifiers are commonly used for efficient multi-
class and multi-label classification. They represent a predictive model in
the form of a tree-like hierarchy of (internal) classifiers, each of which
is trained on a simpler (often binary) subproblem, and predictions are
made by (greedily) following these classifiers’ decisions from the root
to a leaf of the tree. Unfortunately, this approach does normally not
assure consistency for different losses on the original prediction task,
even if the internal classifiers are consistent for their subtask. In this
paper, we thoroughly analyze a class of methods referred to as proba-
bilistic classifier trees (PCTs). Thanks to training probabilistic classifiers
at internal nodes of the hierarchy, these methods allow for searching the
tree-structure in a more sophisticated manner, thereby producing pre-
dictions of a less greedy nature. Our main result is a regret bound for 0/1
loss, which can easily be extended to ranking-based losses. In this regard,
PCTs nicely complement a related approach called filter trees (FTs), and
can indeed be seen as a natural alternative thereof. We compare the two
approaches both theoretically and empirically.

1 Introduction

Multi-class and multi-label classification problems are nowadays characterized
not only by large sample sizes and feature spaces, but also by a large number of
labels. In application fields like image classification [12], text classification [8],
online advertising [3], and video recommendation [23], it is not uncommon to
deal with tens or hundreds of thousands [11], or even millions of labels [20].

Label tree classifiers belong to the most efficient approaches for problems at
this scale [2]. In this approach, a solution to the original problem is represented
in the form of a hierarchy of classifiers, each of which is trained on a simpler
subproblem. A prediction for a new example is then derived from the predictions
of these (internal) classifiers, each of which corresponds to a node in the tree-like
hierarchical structure; typically, each label in the original classification problem
is uniquely represented by a path from the root to a leaf of that tree.

c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 511–526, 2016.
DOI: 10.1007/978-3-319-46227-1 32
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However, combining conventional training of the internal classifiers with
greedy inference, namely, following a single root-to-leaf path in the tree, does not
guarantee consistency of this approach [4,10]. Thus, even perfect (zero regret)
classifiers in each node of the tree do not imply a perfect (global) classification
of new examples. There are two ways to remedy this problem: adjusting training
and adjusting inference. The first idea is to modify the training of the inter-
nal classifiers so as to assure the consistency of greedy inference later on. The
second approach, while training more conventionally, guarantees consistency by
searching the tree-structure for an optimal prediction in a less greedy way.

The first idea is realized by the filter tree (FT) approach [4]. By construct-
ing label trees in a bottom-up manner, an internal classifier can anticipate the
decisions of its successor classifiers, and exploit this information to properly
condition its own behavior to these classifiers. In the case of 0/1 loss, this is
accomplished thanks to a specific filter technique, which removes examples from
the training data on which successor classifiers made incorrect predictions. For
this training procedure, a regret bound connecting the global performance with
the average performance of node classifiers can be proved [4]. This bound can
be generalized from 0/1 loss to any cost-based loss function, albeit at the price
of a more expensive training procedure; ranking-based losses, which require the
ordering of labels, cannot be tackled by FTs. Since inference can be done in
a greedy way, the complexity of prediction is only logarithmic in the number
of labels. More recently, the training of FTs has been further improved in the
context of multi-label classification [17].

The second approach ensures consistency thanks to more sophisticated search
of label trees in the inference phase [10,16,18]. To this end, probabilistic classi-
fiers in each node of the tree are required, which allow for assessing the useful-
ness of different search directions. Label trees with probabilistic classifiers have
already been considered in multi-class classification under the name of condi-
tional probability trees [3] and nested dichotomies [14]. In multi-label classifica-
tion, a similar approach has been referred to as probabilistic classifier chains [9].
The same concept also appears in neural networks and natural language process-
ing under the name of hierarchical softmax [19]. In the following we unify all these
approaches and jointly refer to them as probabilistic classifier trees (PCTs).

We restrict to binary label trees, which are especially natural for multi-label
classification; here, each level of the binary tree directly corresponds to one label.
Higher order trees (including nodes with more than two children) are often used
in multi-class classification. This usually improves the predictive performance at
the cost of an increase in prediction time. We also assume the tree structure to be
given beforehand, or to have been induced using any of the methods developed for
this purpose [2,3,23], and focus on the (orthogonal) problem of how training and
prediction should be performed to ensure consistency (given the tree structure).

The main contribution of the paper is a regret bound for PCT in the case of
0/1 loss, which is expressed in terms of the search error and the Kullback-Leibler
(KL) divergence (i.e., log-loss regret) of the internal classifiers. The regret bound
implies the consistency of the method, a good “sanity check” for any learning
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algorithm. Its form quantifies a trade-off between the computational complexity
and the statistical accuracy. Moreover, we show that under log-loss we do not
theoretically pay any price in terms of performance for representing the joint
distribution over classes by a tree structure. Our regret analysis significantly
extends and improves the results of [3] for the estimation error of conditional
probability trees expressed in terms of squared error loss. We also point out that
the bound can be further generalized to ranking-based losses, e.g., recall at k.
We also generalize the tree search algorithms of [10,18] to get an anytime A∗-like
algorithm and study its theoretical guarantees, extending the previous results
given in [10]. Our theoretical contributions are complemented by a comparison
of PCTs with filter trees, both conceptually and experimentally.

The paper is organized as follows. We formally state the problem in Sect. 2.
Section 3 describes PCTs and gives a theoretical analysis of the generalized tree
search algorithm. In Sect. 4, we prove the regret bound for 0/1 loss. Section 5
compares PCTs with other label tree approaches, particularly with conditional
probability and filter trees. Section 6 discusses the use of PCTs for predicting
top-k labels and its extension to multi-label classification. Section 7 presents
experimental results, prior to concluding the paper in Sect. 8.

2 Problem Statement

We formalize our problem in the setting of multi-class classification. Let (x, y)
be an example coming from a probability distribution P (X = x, Y = y) (later
denoted P (x, y)) on X × Y, where x ∈ X = R

d and y ∈ Y = {1, . . . , m}.
A classifier h predicts a label ŷ = h(x) ∈ Y for each x ∈ X . The prediction
accuracy of h can be measured in terms of 0/1 loss:1

�0/1(y, h(x)) = �y �= h(x)�

We are interested in minimizing the expected loss, also referred to as the risk :

L0/1(h) = E(x,y)∼P

[
�0/1(y, h(x))

]
=

∫

X×Y
�y �= h(x)� dP (x, y)

The Bayes classifier
h∗ = arg min

h
L0/1(h)

minimizes the risk among all possible classifiers. While h∗ may not be unique
in general, the risk of h∗, denoted L∗

0/1, is unique, and is called the Bayes risk.
Decomposing the risk over classes, i.e., writing L0/1(h) in the form

L0/1(h) =
∫

X

( ∑
y∈Y

�y �= h(x)�P (y|x)

︸ ︷︷ ︸
=1−P (h(x)|x)

)
dP (x) ,

1 We use �P � to denote a number that is 1 if condition P is satisfied, and 0 otherwise.
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Fig. 1. Different binary codes in multi-class classification.

reveals that h∗ minimizes risk in a pointwise manner, i.e., for every x,

h∗(x) = arg min
y∈Y

{1 − P (y|x)} = arg max
y∈Y

P (y |x) .

Given a classifier h, the regret of h is defined as

reg0/1(h) = L0/1(h) − L∗
0/1 =

∫

X

(
P (h∗(x)|x) − P (h(x)|x)

)
dP (x) . (1)

The regret quantifies the suboptimality of h compared to the optimal classifier
h∗. The goal is to train a classifier h with a small regret, ideally equal to zero.

In the following, we assume h to be represented as a label tree classifier. To
this end, we encode the labels {1, . . . , m} using a prefix code. Any such code can
be represented by a tree with 0/1 splits. Each path from the root to a leaf node
then corresponds to a code word. Recall that codes of fixed length are also prefix
codes. Figure 1 shows two examples of coding trees for multi-class classification
with 4 classes. Under the coding, we represent each label y by a binary vector
y = (y1, . . . , yl), where l is the maximum length of the code. The set of all code
words we denote by C. As another special case, consider the problem of multi-
label (instead of multi-class) classification, where the goal is to predict the set of
labels assigned to a given instance x. Such a set can be represented by a binary
vector y = (y1, . . . , ym), which in turn can be used as a prefix code.

In the label tree approach, we put a binary classifier in each non-leaf node of
the tree. An internal node can be uniquely identified by the partial code word
yi = (y1, . . . , yi). We denote the root node by y0, which is an empty vector
(without any elements). The final prediction is determined by a sequence of
decisions of internal classifiers. In the next section, we present a specific instance
of the label tree approach that uses probabilistic classifiers in internal nodes of
the tree.

3 Probabilistic Classifier Trees

Probabilistic classifier trees (PCTs) are designed to estimate probabilities
P (y |x) by following a path from the root to a leaf node, which corresponds
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to a code word y = (y1, . . . , yl) assigned to label y ∈ Y. Recalling the chain rule
of probability, the process corresponds to computing

P (y |x) = P (y |x) =
l∏

i=1

P (yi|yi−1,x) , (2)

where P (yi|yi−1,x) are probabilities of yi ∈ {0, 1}, estimated in non-leaf nodes
yi−1. In the next two subsections, training and inference (classification of new
examples) for PCT will be discussed in more detail.

3.1 Training

Training of PCT naturally decomposes into learning problems over non-leaf
nodes of the tree. In each node yi−1, the task is to train a probabilistic classifier
(e.g., logistic regression) to estimate P (yi|yi−1,x).

Looking at PCTs as a reduction technique, it is worth mentioning that its
training complexity could be much lower than that of the 1-vs-all approach, since
each example (x, y) is used in only l instead of m binary problems, where l is the
height of the tree (i.e., l = �log2 m� if the tree is balanced). To further improve
the training time complexity, one can use online learning methods, such as sto-
chastic gradient descent [5]. Moreover, internal classifiers in PCT can be trained
independently of each other, thereby allowing for a massive parallelization of the
training procedure. Let us also remark that the learning process can be defined
as a single task; this is the so-called one-classifier trick [4], in which a node indi-
cator is used as an additional feature. Alternatively, one can use a separate task
for each level of the tree. This approach is used in multi-label classification, as
will be discussed in Sect. 6.

3.2 Inference

The classification procedure in PCTs is more involved. To begin with, note that
a probability estimate Q(y |x) for any label y (given instance x) is obtained
quite easily, simply by following the corresponding path in the tree and applying
the chain rule:

Q(y |x) = Q(y |x) =
l∏

i=1

Q(yi|yi−1,x)

However, being interested in minimization of 0/1 loss, we actually seek to find

ŷ∗ = arg max
y∈C

Q(y |x) , (3)

preferably without computing the probability of each label first. A simple idea
is to follow a single path in the tree, starting in the root and always choosing
the branch yi ∈ {0, 1} for which Q(yi|yi−1,x) > 0.5. However, while being
efficient, this approach is not guaranteed to find the optimal solution [4,10].
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Algorithm 1. Inference with ε-approximate A∗

1: input: x (test example)
2: priority list Q ← {y0} (contains root node initially)
3: priority list K ← {} (contains nodes whose both children were not inserted to Q)
4: ε ← 2−c with 1 ≤ c ≤ m
5: while Q �= ∅ do
6: v ← pop first element in Q
7: if v is a leaf then delete all elements in K and break the while loop
8: v1 ← (v, 1) (left child of v) and v0 ← (v, 0) (right child of v)
9: compute E(v1 |x) and E(v0 |x) recursively from E(v |x) using Eq. (4)

10: if E(v1 |x) ≥ ε then add (v1, E(v1 |x)) to Q sorted in descending order of E
11: if E(v0 |x) ≥ ε then add (v0, E(v0 |x)) to Q sorted in descending order of E
12: if v1 and v0 are not inserted to Q then add v to K in descending order of E

13: θ ← 0
14: while K �= ∅ do
15: v′ ← pop first element in K
16: v′ ← apply greedy search downward on v′

17: if Q(v′ |x) ≥ θ then v ← v′ and θ ← Q(v′ |x)

18: return hε(x) = ŷε = v

Better inference methods have been presented in recent years, based on search
algorithms such as uniform-cost search [10], beam search [16], and A∗ [18].

All three approaches allow for trading complexity against optimality, and
hence for using PCTs in an anytime fashion, thanks to a hyper-parameter ε. This
parameter controls the degree of optimality, i.e., of finding the true loss minimizer
(3), as a function of the runtime (it finds a solution ŷε the conditional probability
Q(ŷε |x) of which is not much worse than the probability of the optimal solution
ŷ∗ defined in Eq. 3). In the analysis that follows, we will use this property to
give a formal bound on the error made by such inference algorithms, with a
particular focus on uniform-cost and A∗ search. An extension of the analysis to
beam search is straightforward and omitted due to lack of space. The pseudo
code in Algorithm 1 unifies the approaches of [10,18]. This general algorithm,
which we denote hε(x), is a variant of A∗. It fulfills the anytime property, i.e.,
the search can be stopped at any time and the algorithm will deliver a valid
though possibly suboptimal solution.

Recall that each node in the tree is uniquely defined by a path from the root
to this node, i.e., by the partial code word yi. We use v to denote the node
currently visited by the algorithm, and associate with this node the following
value:

E(v |x) = E(yi |x) = Q(yi |x) × H(yi |x)

This value can be interpreted as an approximation of the maximal value of
Q(y |x), in which Q(yi |x) is the part of the path that can be computed when
moving from the root to node v, and H(yi |x) is a heuristic that optimistically
guesses the part of the path that has not yet been computed (in the considered
case, E(yi |x) has to overestimate or to be the same as the maximal value of
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Q(y |x)). Q(yi |x) can be computed recursively as follows: Q(y0 |x) = 1 and

Q(yi |x) = Q(yi = 1|yi−1,x) × Q(yi−1 |x) . (4)

In [18], a procedure for computing H(yi |x) is proposed for the specific case of
logistic regression as a base learner, whereas the heuristic is simply H(yi |x) = 1
in uniform-cost search used in [10]. The former approach has the advantage of
providing a more accurate estimation of maximal Q(y |x), albeit with an addi-
tional computing cost, while the latter approach makes a more rough estimation
without any additional cost. Interestingly, as shown in experiments in [18], the
former approach is still more expensive in terms of the total search cost than
the latter.

In a nutshell, Algorithm 1 starts from the root of the label tree, which is
the single element of priority list Q, sorted in descending order of E. In every
iteration, the top element of the list is popped and the children v0 and v1 of
the corresponding node v are visited. E(yi |x) is then recursively computed for
the children of node v, which are added to the list if this quantity exceeds the
threshold ε = 2−c with 1 ≤ c ≤ l, where l is the maximal length of the path
in the tree. Basically, they are inserted into the list at the appropriate position,
so that the order imposed by E(yi |x) is respected. The first while-loop of the
algorithm stops in two situations: (i) when the element popped from the list Q
corresponds to a leaf of the tree, or (ii) when the list Q is empty. The label
corresponding to the leaf is then returned in the former case, while in the latter
case, inference by greedy search is applied to define a path from all nodes from
the list K. This list, also sorted in descending order of E, contains nodes for
which none of their children has been added to Q. The use of list K ensures that
by decreasing the value of ε, the algorithm will always find a solution that is not
worse than a solution that would be found with greater ε.

Algorithm 1 enjoys strong theoretical guarantees. Assuming the cost for com-
puting H(yi |x) to be constant, the following result immediately follows from a
theorem proved in [10].

Theorem 1. Let 1 ≤ c ≤ l. Algorithm 1 with ε = 2−c needs at most O(lε−1)
iterations to find a prediction hε(x) = ŷε such that

Q(ŷ∗ |x) − Q(ŷε |x) ≤ ε − 2−l .

From the theorem, we see that the quality of the solution found by the algorithm
improves with the length of the running time. Consequently, the algorithm will
always find the optimal solution, provided its probability mass is greater than
ε. Reformulating the above, we can say that the algorithm finds the solution in
time linear in 1/qmax, where qmax is the probability mass of the best solution in
the estimated distribution Q. For problems with low noise (high values of qmax),
this method should work very fast.

The theorem also implies that the greedy search, which corresponds to the
algorithm with ε = 0.5, has very poor guarantees that approach the bound of
0.5 with m → ∞.
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4 Regret Bounds for PCT

In this section, we are concerned with the generalization ability of the PCT
classifier, measured by means of the regret (1). Assume for a moment that Q(·|x),
the label distribution produced by PCT, coincides with the true conditional
distribution P (·|x) for every x. Then, if the ε-approximate inference algorithm
is used for classification, Theorem 1 implies the regret of the PCT classifier is
at most ε, i.e., the expected classification error of PCT is at most ε larger than
the expected classification error of the Bayes classifier.

It is, however, unrealistic to assume that PCT is able to perfectly match the
true data distribution, hence Q(·|x) and P (·|x) will differ in general. Thus, the
question arises whether the expected classification error of PCT is still not much
worse than the expected classification error of the Bayes classifier if Q(·|x) and
P (·|x) do not coincide, but are close to each other in some sense. This section
presents an affirmative answer to this question, delivering a regret bound on
the classification error that takes into account the predictive performance of the
internal classifiers. More precisely, we bound the PCT regret for 0/1 loss in terms
of the difference between Q and P , quantified in terms of log-loss regret.

We start with a general definition of the log-loss. Consider a problem of
estimating a probability distribution on some outcome space S. The log-loss of
probability estimate Q(·) on S when the observed outcome is y ∈ S is given by

�log(y,Q) = − log Q(y) .

The log-loss is by far the most popular measure for quantifying the accuracy
of probabilistic predictions, and plays an important role in information theory,
data compression, and statistics [7] (we briefly analyze the other loss function,
squared loss, in Sect. 5). The log-loss risk is the expected log-loss of Q(·):

Llog(Q) = Ey∼P [�log(y,Q)] ,

where P (·) is the true distribution of y. The log-loss is a strictly proper loss,
which means that the unique minimizer of the risk is achieved at Q(·) ≡ P (·)
(see, e.g., [21]). We thus define the log-loss regret as:

reglog(Q) = Llog(Q) − Llog(P ) = Ey∼P

[
log

P (y)
Q(y)

]
= D(P‖Q),

where D(·‖·) is the Kullback-Leibler (KL) divergence.
We now turn back to PCTs. Let us first fix an instance x ∈ X and consider

the distribution over code words y ∈ C. There are two ways in which log-loss
can be used in this setting:

– To measure the quality of the estimate of the joint distribution of labels
given x, Q(y|x), i.e., the outcome space is S = C, and the log-loss is
�log(y, Q(·|x)) = − log Q(y|x). The log-loss regret is then the KL divergence
between true joint conditional distribution P (y|x) and its estimate Q(y|x),
reglog(Q(·|x)) = D(P (·|x)‖Q(·|x)).
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– To measure the quality of individual classifiers in each node of the tree.
Given a node yi−1 = (y1, . . . , yi−1), the probability estimate for label yi ∈
{0, 1} at this node is Q(·|yi−1,x). Thus, the outcome space is S = {0, 1},
and �log(yi, Q(·|yi−1,x)) = − log Q(yi|yi−1,x). The log-loss regret is then
reglog(Q(·|yi−1,x)) = D(P (·|yi−1,x)‖Q(·|yi−1,x)).

Both ways described above turn out to be equivalent. Indeed, we have

�log(y, Q(·|x)) = − log Q(y|x) =
l∑

i=1

− log Q(yi|yi−1,x)

=
l∑

i=1

�log(yi, Q(·|yi−1,x)) ,

so that the log-loss of the joint distribution is equal to the sum of log-losses of
individual node classifiers along the path from the root to leaf y. Similarly,

reglog(Q(·|x)) = Ey∼P (·|x)

[
log

P (y|x)
Q(y|x)

]
= Ey∼P (·|x)

[ l∑
i=1

log
P (yi|yi−1,x)
Q(yi|yi−1,x)

]

= Ey∼P (·|x)

[ l∑
i=1

reglog(Q(·|yi−1,x))
]
, (5)

i.e., the log-loss regret of the joint distribution is equal to the sum of the regrets
of node classifiers along the random path from the root to leaf y, where y is
drawn from P (·|x). This basically expresses the chain rule for KL divergence [7].
The consequence of the above is that under log-loss we theoretically do not pay
any price in terms of performance for representing the joint distribution by a
tree structure.

We are now ready to present the main result of this section, which states that
the 0/1-regret of the PCT classifier is bounded by means of the sum of log-loss
regrets along a random path from the root to the leaf (or, equivalently, by the
log-loss regret of the joint distribution) and the search error ε of the inference
procedure.

Theorem 2. Consider PCT, which estimates the probability Q(·|yi−1,x) in
each non-leaf node yi−1, and let hε be the classifier which for any x, outputs
ŷε found by the ε-approximate inference procedure (Algorithm1). Then, for any
distribution P ,

reg0/1(hε) ≤
√

2reglog(Q) + ε − 2−l,

where reglog(Q) = E(x,y)∼P

[∑l
i=1 reglog(Q(·|yi,x))

]
is the expected sum of

regrets at internal classifiers along a path from the root to the leaf.

Proof. We first condition everything on a fixed x. Let y∗ = arg maxy P (y|x) be
the mode of P (·|x), and let ŷε = hε(x) be the output of Algorithm1 for input x.
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Moreover, we let ŷ∗ = arg maxy Q(y|x) denote the mode of Q(·|x), and note
that from Theorem 1,

Q(ŷ∗|x) − Q(ŷε|x) ≤ ε − 2−l. (6)

According to (1), the 0/1-regret of ŷε conditioned at x is given by

reg0/1(ŷε) = P (y∗|x) − P (ŷε|x).

Note that the regret is 0 if y∗ = ŷε, hence we assume y∗ �= ŷε in what follows.
From the definition of ŷ∗, Q(ŷ∗|x)−Q(y∗|x) ≥ 0, which together with (6) gives
Q(ŷε|x) − Q(y∗|x) + ε − 2−l ≥ 0. Hence, we obtain the upper bound

reg0/1(ŷε) ≤
(
P (y∗|x) − Q(y∗|x)

)
+

(
Q(ŷε|x) − P (ŷε|x)

)
+ ε − 2−l

≤ |P (y∗|x) − Q(y∗|x)| + |Q(ŷε|x) − P (ŷε|x)| + ε − 2−l

≤
∑
y∈C

|P (y|x) − Q(y|x)| + ε − 2−l,

where the last inequality is from y∗ �= ŷε. We now make use of Pinsker’s inequality

1
2

∑
y∈C

∣∣P (y |x) − Q(y |x)
∣∣ ≤

√
1
2
D(P (· |x)‖Q(· |x)) ,

which together with (5) implies

reg0/1(ŷε) ≤
√√√√2Ey∼P (·|x)

[ l∑
i=1

reglog(Q(·|yi−1,x))
]

+ ε − 2−l. (7)

Note that the 0/1-regret of hε, reg0/1(hε), is just the expectation of the left-hand
side of (7) with respect to x. Thus, taking expectation on both sides of (7), and
using E

[√·] ≤ √
E [·] on the right-hand side (which is Jensen’s inequality applied

to the concave function x → √
x) gives

reg0/1(hε) ≤
√√√√2E(x,y)∼P

[ l∑
i=1

reglog(Q(·|yi−1,x))
]

+ ε − 2−l

=
√

2reglog(Q) + ε − 2−l .

��
Theorem 2 states that if the log-loss regret of node classifiers is small, the

resulting ε-approximate classifier will be close to the Bayes classifier in terms
of 0/1 loss. This suggests to use node classifiers which minimize log-loss on the
training sample, examples of which include logistic regression, Gradient Boost-
ing Machines, deep neural networks,2 and many others. One can show that the
square-root dependence in the bound of Theorem 2 cannot be improved in gen-
eral, since when the tree consists only of the root node, our bound essentially
specializes to the bound in [1], which also exhibits square-root dependence.
2 In this case, the log-loss if often referred to as “soft-max” function.
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5 Relation to Other Label Tree Approaches

5.1 Conditional Probability Trees

Conditional probability trees (CPTs) [4] estimate a conditional probability dis-
tribution P (y|x) in the multiclass setting and have the same structure as PCTs.
What distinguishes this approach from ours is that CPTs are used for proba-
bility estimation, with squared loss �sq(yi, Q(·|yi−1,x)) =

(
yi − Q(yi|yi−1,x)

)2
as a performance measure, whence there is no inference phase to determine the
mode of the conditional distribution. The main result in [4] relates the squared
loss regret on the joint distribution to the expected squared loss over the nodes
of the tree. This result is analogous to the identity (5), except that an additional
O(

√
l) factor appears in the squared loss bound. Moreover, no result analogous

to Theorem 2 is given, which would relate expected squared loss regret to the
0/1 classification regret.

In fact, we can show a lower bound on the 0/1 regret in terms of expected
squared loss, which is at least a factor of Ω(

√
l) worse than our bound. To be

more precise, one can show that for any l > 2, there exists a true distribution
P and an estimate Q with the following property: even when assuming that the
inference algorithm can identify the mode of the distribution exactly, it holds
that reg0/1(hε) >

√
l regsq(Q), where regsq(Q) is the corresponding regret with

log-loss replaced by squared loss.3 In other words, using squared loss yields a
bound for classification error that is at least a factor Ω(

√
l) worse than the bound

we obtained for log-loss.

5.2 Filter Trees

The filter tree (FT) approach [3] is the first label tree algorithm for which a regret
bound for the classification error has been proved. Interestingly, the specific
training procedure used in FTs ensures that the greedy classification procedure
is sufficient for obtaining consistent predictions.

FT uses the same tree structure as PCT, but with binary classifiers instead
of class probability estimators in the non-leaf nodes of the tree. The method
follows a bottom-up strategy, which can be interpreted as a single elimination
tournament on the set of labels. A classifier in node yi−1 is trained to predict yi,
but FT implicitly transforms the underlying distribution of examples in the node.
The transformation for 0/1 loss relies on filtering out all training examples that
have been misclassified by successor classifiers on a path to a leaf. The learning
algorithm starts with classifiers on the lowest non-leaf level of the tree. The
correctly classified examples are then moved upward to nodes one level above.
This process is repeated until the root node is reached.

In [3], a regret bound for 0/1 loss has been proved that is conceptually similar
to the one given in Theorem 2. The difference is that the right side of the

3 We skip the details of the construction of P and Q due to the space limit.
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bound is expressed in terms of 0/1 loss of the binary classifiers in non-leaf nodes.
Therefore, these two bounds are not directly comparable.

Another advantage of FTs is that they can be used with any cost-based
loss function. An appropriate bound has also been proved in [3]. The classifi-
cation procedure still follows a greedy search, but training is more demanding.
It requires weighting of examples, the use of cost-sensitive learners, and each
training example generally occurs in each internal classifier.

6 Extensions of PCTs

Since PCT estimates the entire conditional distribution over labels, it can be
used with any loss function. This comes with no additional cost during training,
but may lead to very costly inference. Actually, inference can be performed
efficiently only for certain losses, such as 0/1 loss as discussed in Sect. 3.2, but
also some ranking-based loss functions. As an example, consider recall at kth
position defined as

R@k(y,x,Yk) = �y ∈ Yk� ,

where Yk is a set of k labels predicted for x. One can easily verify that an optimal
Yk should contain k top-labels with largest P (y |x). This can be approximated
by k top-labels with largest Q(y |x), which are easily obtained by PCT and
a small extension of the ε-approximate algorithm: it is enough to continue the
search procedure until k leaves are visited. Moreover, the bound in Theorem 2
can be easily extended to this case.

As already mentioned, PCTs can also be used in multi-label classification. In
this case, the tree is of height m and is fully balanced. Each path from the root
to a leaf corresponds to one of possible label combinations. In principle, PCT
contains a single classifier in each non-leaf node. In multi-label case, storing
2m − 1 classifiers for large m is not feasible. One can, however, follow a trick
used in probabilistic classifier chains [9] and condensed filter trees [17], which
relies on using one binary classifier per tree level. In other words, prediction of
the ith label corresponds to the prediction made by the classifier on level i with
additional features that indicate a given node of the tree.

7 Experimental Results

We empirically evaluate PCTs and FTs in two scenarios: multi-label classification
(MLC) and multi-class classification (MCC). We test the algorithms in terms of
0/1 loss and the computational costs of their training and testing procedures.
For PCTs, we additionally report R@k.

We conduct experiments on 3 multi-class and 3 multi-label datasets.4 Table 1
provides a summary of basic statistics of the datasets. Notice that the number of
4 Taken from the libsvm repository https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/

datasets and the image net competition webpage http://www.image-net.org/
challenges/LSVRC/2010.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://www.image-net.org/challenges/LSVRC/2010
http://www.image-net.org/challenges/LSVRC/2010
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Table 1. Multi-class (MCC) and multi-label (MLC) datasets and their properties: the
number of training (#train) and test (#test) examples, the number of labels (m) and
features (d).

MCC MLC

Dataset #train #test m d Dataset #train #test m d

Sector 6412 3207 105 55197 Yeast 1500 917 14 103

Aloi 97200 10800 1000 128 TMC 21519 7077 22 30438

ILSVR2010 1261406 150000 1000 1000 Mediamill 30993 12914 101 120

leaf nodes is equal to m (the number of labels) in case of multi-class problems,
and 2m (the number of all possible label combinations) in case of multi-label
problems. We therefore use multi-label datasets up to around 100 labels. For
datasets with a greater number of labels, the 0/1 loss is usually very close to 1.
We use the original split into a training and test set if available; otherwise, we
use 90/10 train/test splits. For the ILSVR2010 dataset, we use the visual code
words (sbow) vectors provided by the organizers of the challenge. Features were
generated on the basis of the guidance contained in the ILSVR development kit.

7.1 Implementation

We carefully implemented PCTs and FTs in Java. As internal classifiers, we use
L2 linear logistic regression trained by a variant of stochastic gradient descent
(SGD) introduced in [13]. To deal with a large number of weights, we use feature
hashing [22] shared over all tree nodes using hashes up to size of 224. We use
a random complete binary tree to code class labels in the MCC scenarios and
train a classifier in each node of the tree. For MLC problems we take the original
order of the labels to obtain the code words. We use one classifier per tree
level. We tune the hyper-parameters of SGD in a 80/20 simple validation on the
training set. We applied an off-the-shelf hyper-parameter optimizer [15] with a
wide range of parameters. We tune PCTs to optimize the log-loss as suggested
by our theoretical analysis. FTs are tuned to perform well on 0/1 loss.

We use PCTs with the ε-approximate inference algorithm with different val-
ues of ε ∈ {0, 0.25, 0.5}. The variant with ε = 0.5 corresponds to greedy search,
while the algorithm with ε = 0 will always find the optimal solution, but may
visit all nodes of the tree in the worst case (in fact, ε should be set to 2−l instead
to 0 to be concordant with the description of the algorithm; to keep the notation
simple, we use 0 to indicate the smallest possible value of ε for a given dataset).

7.2 Results

The results are given in Table 2. We can observe that PCTs improve with decreas-
ing value of ε. PCT with ε = 0.5 gets worse results than FT, which confirms the
theoretical results, i.e., filtering of misclassified examples during training in FT
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Table 2. Experimental results for 0/1 loss and 1-R@5 (both in %), train (ttrn) and
test (ttest) running times (in seconds), and the average (A) number of inner products
per a test example. The Top 1 column indicates the results for top-1 prediction, while
column Top 5 the results for top-5 prediction (only for PCT with ε < 0.5). The best
results are indicated in bold (except for wall-clock times which can be affected by many
factors). The value in subscript of PCT corresponds to the value of ε.

MCC MLC

ttrn Top 1 Top 5 ttrn Top 1 Top 5

0/1 ttest A 1-R@5 ttest A 0/1 ttest A 1-R@5 ttest A

Sector, m = 105 Yeast, m = 14

FT 11.75 13.43 0.144 6.81 – 2.49 78.73 0.07 14 –

PCT.5 11.56 17.18 0.154 6.81 – 3.12 80.15 0.04 14 –

PCT.25 11.56 13.68 0.16 7.04 12.61 0.24 7.5 3.12 79.28 0.05 17.15 76.22 0.12 21.3

PCT0 11.56 13.28 0.198 7.13 7.23 0.48 18.2 3.12 78.62 0.09 23.82 58.77 0.17 64.6

Aloi, m = 105 TMC, m = 22

FT 15.11 88.98 0.14 9.97 – 30.7 77.06 0.47 22 –

PCT.5 13.43 88.99 0.14 9.97 – 34.3 75.06 0.39 22 –

PCT.25 13.43 88.95 0.15 9.98 88.64 0.21 10.2 34.3 73.74 0.45 27.97 68.50 0.57 34.0

PCT0 13.43 88.95 0.21 9.98 76.19 0.55 26.1 34.3 73.18 0.73 33.50 41.18 1.29 87.9

ILSVR2010, m = 1000 Mediamill, m = 101

FT 1710 95.10 10.12 8.39 – 220 90.79 2.24 101 –

PCT.5 1825 99.96 10.13 8.39 – 274 90.78 2.22 101 –

PCT.25 1825 95.30 13.23 10.03 95.30 20.10 14.4 274 90.06 2.79 107 89.14 3.02 129

PCT0 1825 94.76 15.20 10.57 92.33 44.31 34.3 274 89.65 5.23 274 74.22 9.50 529

improves for the greedy inference. For ε = 0.25, the results are already very com-
petitive to FT. For ε = 0, PCT consistently outperforms FT, but the difference
is not always large.

From a computational perspective, FTs achieve better performance. The
training time of both approaches is very similar, but the testing time is in favor
of FTs (and PCTs with ε = 0.5). To give a deeper insight into the time costs we
also report the average number of inner products computed by internal classifiers
per test example. Interestingly, PCT with ε = 0 always finds the solution in a
reasonable time. Its testing time is never longer than three times that of FT.
Similarly, the number of inner products is only up to three times greater than
that of FT or PCT with ε = 0.5.

Recall at kth position (R@k) can be measured only for PCTs. There is no way
to deliver top-k predictions in FTs, since this algorithm uses binary decisions in
non-leaf nodes, so the search process results only in a single path from the root
to a leaf node. From the results we observe that PCT efficiently finds topmost
results. The positive label appears more often in the top-5 predictions than in
the top-1. Similarly as for 0/1 loss, R@5 improves with decreasing value of ε.
Unfortunately, predicting top-k labels increases test time. Therefore, the label
tree search for ε = 0 requires about 2–3 times more steps to find top-5 labels.
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8 Conclusions

In this paper, we analyzed probabilistic classifier trees for efficient multi-class
and multi-label classification. In particular, we proved a regret bound for 0/1
loss, which provides a strong theoretical foundation of PCTs, and which can also
be extended to ranking-based losses. Moreover, we compared PCTs with the
closely related filter tree method. We conclude the paper by summarizing the
main theoretical and empirical results of FTs and PCTs, pointing out advantages
and disadvantages of both approaches.

An unquestionable advantage of FTs is their prediction time, which is loga-
rithmic in the number of classes or possible label combinations. FT can be used
with any type of binary classifier as base learner and relies on simple 0/1 pre-
dictions. However, to guarantee the consistency of greedy inference, it requires
more demanding training. In the näıve implementation, classifiers are trained
sequentially in a bottom-up manner. The most important disadvantage is a sig-
nificant reduction of the number of training examples in the top levels of the
tree, which is caused by filtering examples in each level from bottom to top.
This sparsity of training data may deteriorate predictive performance. However,
thanks to filtering, an internal classifier is aware of errors of the successor clas-
sifiers. FT can be used with any cost-based loss function, but it is not able to
predict top-k labels.

Prediction with PCTs requires search techniques, whence it is usually more
demanding than FTs (yet significantly faster than 1-vs-all). Moreover, anytime
algorithms can be used for searching the tree. The time complexity of PCT
strongly depends on the noise contained in the data. If the signal-to-noise ratio
is high, we can expect prediction time to be small. However, learning is much
simpler for PCT than for FT, and can be easily parallelized. There is no filtering
of training examples, so all examples are used for training on each level of the
tree. The probabilistic nature of PCTs allows for delivering a list of top-labels
and to work efficiently for R@k.

The results we obtained for FTs are comparable with those reported in [6].
We stress that better results can be obtained by other algorithms, for example
LomTrees introduced in the same paper. This is mainly because LomTrees train
the tree structure online, along with the internal classifiers, whereas PCTs and
FTs use random trees/coding. Interestingly, LomTrees are not consistent. Thus,
an important challenge for future research is to find an algorithm that is able to
train the tree structure online while ensuring consistency.
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References

1. Bartlett, P.L., Jordan, M.I., McAuliffe, J.D.: Convexity, classification, and risk
bounds. J. Am. Stat. Assoc. 101(473), 138–156 (2006)

2. Bengio, S., Weston, J., Grangier, D.: Label embedding trees for large multi-class
tasks. In: NIPS, vol. 23, pp. 163–171. Curran Associates, Inc. (2010)

3. Beygelzimer, A., Langford, J., Lifshits, Y., Sorkin, G.B., Strehl, A.L.: Conditional
probability tree estimation analysis and algorithms. In: UAI, pp. 51–58 (2009)

4. Beygelzimer, A., Langford, J., Ravikumar, P.: Error-correcting tournaments. In:
Chaudhuri, K., Gentile, C., Zilles, S. (eds.) ALT 2015. LNCS (LNAI), vol. 9355,
pp. 247–262. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04414-4 22

5. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In:
Lechevallier, Y., Saporta, G. (eds.) Proceedings of COMPSTAT 2010, pp. 177–
187. Springer, Heidelberg (2010)

6. Choromanska, A., Langford, J.: Logarithmic time online multiclass prediction. In:
NIPS, vol. 29 (2015)

7. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, New York (1991)
8. Dekel, O., Shamir, O.: Multiclass-multilabel learning when the label set grows with

the number of examples. In: AISTATS (2010)
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Abstract. Machine learning approaches that utilize human experts
combine domain experience with data to generate novel knowledge.
Unfortunately, most methods either provide only a limited form of com-
munication with the human expert and/or are overly reliant on the
human expert to specify their knowledge upfront. Thus, the expert is
unable to understand what the system could learn without their involve-
ment. Allowing the learning algorithm to query the human expert in the
most useful areas of the feature space takes full advantage of the data
as well as the expert. We introduce active advice-seeking for relational
domains. Relational logic allows for compact, but expressive interaction
between the human expert and the learning algorithm. We demonstrate
our algorithm empirically on several standard relational datasets.

1 Introduction

Probabilistic logic models (PLMs) [3,8] combine the expressive power of first-
order logic and the ability of probability theory to model noise and uncertainty.
They have been inspired by databases [6,9] and by logic [4,5]. Given their expres-
sivity, several powerful learning algorithms have been developed that allow for
learning from interpretations [5,18] and learning from entailment [4,23]. While
efficient algorithms have been developed to learn the parameters of these mod-
els (either weights or probabilities), full model-learning (also called structure
learning to denote learning of the logical structure) remains a challenging task.
Recently, methods based on ensemble learning have been proposed that allow
for efficient structure learning for PLMs [16].

These methods essentially rely only on data. Given that the primary assump-
tion is that data can be noisy, restricting humans to be mere labelers of the data,
as is done in many popular approaches, is inefficient. Recently, a formulation for
incorporating prior knowledge as preferences over labels for the ensemble learning
method was proposed [19]. The key idea was to explicitly trade-off between the
label preferences suggested by the human expert and the posterior label distrib-
utions obtained from the data. It was demonstrated that advice was particularly
useful where there was targeted noise. For example, missing certain regions in a
segmentation task, or missing stop signs when creating driving demonstrations.

While the framework of Odom et al. [19] does not merely treat the given
advice as “prior” knowledge, it assumes that all the advice is provided up-front
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 527–542, 2016.
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before the learning takes place. Not only is this a potentially time consuming
task for the experts, but it is also highly likely that they, not being experts
in machine learning or probabilistic logic, would find it difficult to identify the
domain knowledge that might be optimal for the learning algorithm. Hence,
inspired by active learning [24], we propose active advice-seeking that aims to
determine the regions of (relational/logical) feature space that is ideal for obtain-
ing advice. For instance, will the accuracy of a model learned to predict heart
attacks be higher if advice is given about the population who is overweight and
has high blood pressure or about the population which smokes but exercises
regularly? The answer is not clear but this is where active advice-seeking should
be helpful. The goal of active advice-seeking is to lessen the responsibility of the
expert both in terms of the effort that must be spent in specifying the advice, as
well as the necessity that the expert understands the intricacies of the algorithm.
The algorithm will automatically identify the regions of the feature space where
the advice will be useful.

More precisely, the proposed algorithm presents a set of conjunctions of pred-
icates as queries to the expert. The size of the set is pre-determined by a budget
given by the expert (i.e., the algorithm and the expert agree in advance for the
number of allowable queries). In order to compute the clause that should be
queried, the algorithm learns a model from only the data to compute a score
for each example, then it uses a regression clause learner to fit the scores. The
best clause is presented to the expert who provides a preference over the labels.
For instance, in a university domain, the clause could be of the form prof(X) ∧
student(Y) ∧ paper(P,X) ∧ paper(P,Y). The expert could then prefer the label
to be advisedBy(X,Y). Essentially the system is asking the expert, what is your
choice of label if a student and a professor are co-authors? The expert replies
saying, I prefer the student to be advised by the professor. Note that this is a
“soft” preference in that this preference may not always hold. This preference is
then explicitly weighed against the data while learning the model.

We make the following key contributions: first, we introduce the notion of
advice-seeking to the probabilistic logic model (PLM) community (and the gen-
eral AI community). Second, we adapt a recent successful knowledge-based prob-
abilistic logic learning algorithm to seek advice from the human expert. Third,
we present the first relational algorithm that can go beyond data and interac-
tively solicit input from the expert. Finally, we demonstrate using experiments,
that such an approach is robust in learning from noisy data.

The rest of the paper is organized as follows: we first introduce the required
background on PLMs and active learning. Then, we present our learning app-
roach before presenting empirical evaluations. Finally, we conclude the paper by
outlining areas for future research.

2 Background

Techniques for incorporating expert knowledge into learning are a key precon-
dition for any active advice-seeking approach to be successful. We aim to intro-
duce a broad learning paradigm that can use any method that incorporates prior
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knowledge. To that effect, we cover one advice-based framework which we will
use to empirically validate our approach.

2.1 Advice-Based PLMs

While there have been many knowledge-based systems developed for proposi-
tional models [7,11,14,26,27], work on probabilistic logic models (PLMs) has
not progressed as far. In PLMs, the expert is typically used to define some prior
structure that can either be used as the complete structure or locally refined.

Recently, Odom et al. [19] introduced a knowledge-based PLM method that
learns seamlessly from data and any expert knowledge. While making use of
Relational Functional Gradient-Boosting (RFGB) to learn the structure and
parameters of the model simultaneously [17], they incorporate expert preferences
which guide the structure and parameters to more robust models.

Extending previous work that considered knowledge as propositional Horn
clauses [7,12,27], they considered their advice as first-order logic Horn clauses.
Thereby, allowing experts to give advice over different granularities of examples.
The body of the clause specifies the examples over which the expert would like to
give advice, while the head of the clause gives the preferred and avoided labels.
For example, a cardiologist might suggest that patients whose close relatives had
heart problems are more likely to have a heart problem.

Odom et al. [19] incorporate this expert knowledge into RFGB [17] which
learns a series of relational regression trees [2]. These relational regression trees
have first-order logic literals in the nodes and regression values at the leaves.
Functional gradient-boosting aims to capture the error in the current model in a
regression tree and then adds this regression tree to the model. The final model
is a sum over all of the learned trees.

The gradients used by Odom et al. [19] incorporate an additional term in
the optimization function that pushes the model in the direction of the expert
advice (represented by nt and nf , the number of advice which say that example
xi should be preferred/avoided)1

Δ(xi) = α · (I(yi) − P (yi;ψ)) + (1 − α) · [nt(xi) − nf (xi)]

While this approach has shown positive results in several difficult tasks, it
still requires the expert to specify all of the advice in advance. Given a particular
dataset, deciding the most useful advice is not a trivial problem. This problem
is exacerbated by the fact that the expert could potentially have no expertise in
machine learning. Active advice-seeking aims to alleviate this issue by querying
the expert directly, using the training data as a guide to select the most useful
queries. Previous work on active advice-seeking is limited to propositional queries
in sequential decision making problems [20]. Grouping ground states into queries
allowed the proposition algorithm to maximize the impact of the human expert.
However, lifting advice to be relational as we do in this work is a more powerful
and principled approach.
1 Note the difference to standard (only data) RFGB which optimizes (I(yi)−P (yi; ψ).
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2.2 Active Learning

Active Learning is a related research problem where the goal is to make use
of an expert that can provide the labels of examples [24]. Pool-based active
learning approaches assume a pool of unlabeled examples from which the learning
algorithm should choose. In active advice-seeking, this pool of examples is the
training set. While there are labels in the training set, it is assumed that either
there is not sufficient training data (and thus there is missing knowledge) or the
training data is noisy and so the labels should not be fully trusted. So while
active learning aims for finding the labels of the examples, we are soliciting
advice.

Most active learning methods repeat the following general steps:

1. Learn a model from training data
2. Compute uncertainty over unlabeled data
3. Select examples based on uncertainty and solicit label
4. Add labeled examples to training set

The process begins by learning a model with the current set of labeled data.
This model is then used to compute some measure of uncertainty (this could be
entropy, KL-divergence or other measures) that suggests how likely the model
would correctly predict the unlabeled examples. Consider a simple, linear clas-
sifier with two possible unlabeled examples, one located close to the decision
boundary with the other located far from the boundary. The example close to
the decision boundary is more likely to effect the decision boundary and would
be selected for labeling.

This cycle accumulates the best examples to label at each step and has been
shown to be effective especially in domains where there is a dearth of data avail-
able. However, labeling individual examples is not an effective use of human
experts availability. Allowing expert’s to give advice results in the expert being
able to select the ideal granularity of advice (over a single example or many exam-
ples). Active advice-seeking aims to effectively use human experts by providing
clauses instead of ground examples. Not only does this allow for automatically
selecting the granularity of advice, but it also provides a compact description of
the most uncertain examples.

A particular active learning paradigm that is closer to our work is the work of
Rashidi and Cook [21]. In their work, they cluster informative examples and run
a rule induction algorithm (such as C4.5) to generate a rule based query to which
the expert can provide a label. The similarity to our approach lies in the use of a
rule to ask the query. The two key differences are that, first, ours is a relational
learning algorithm that goes beyond flat feature vectors. Second, the rule was
used to obtain a label that was used for all the examples that satisfy that rule.
In our case, we go beyond labels and solicit human advice as preferences over
logical rules.

Active learning has been considered for relational data particularly, with
the focus of querying for node labels based on the structure of the net-
work [1,13,15,22] which have been studied under the broad area of active
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inference in relational domains. Particularly relevant to our paper are three of
the most recent works - ALFNET [1], the RAL algorithm [13] and FLIP [25].
ALFNET employed uncertainty sampling to generate committee-based network
clusters (which consisted of three classifiers) in order to query the expert. A
related work in this direction is the RAL algorithm that used a utility met-
ric with network variance as the criteria. This variance was used since the RAL
algorithm is interested in across-network classifications. While we do not employ
this heuristic, our algorithm can handle across-network classifications due to the
underlying logic-based ensemble learner. Finally, the FLIP algorithm by Saha et
al., extends the notion of active inference by considering several query selection
methods and evaluates them on single and multi-labeled networks. Our algo-
rithm is similar in spirit to ALFNET in that we employ uncertainty sampling
as well but our query is generated using clauses learned through logic program-
ming. An important difference to the RAL, FLIP and ALFNET algorithms is
that we query for preferences over the relations instead of the actual labels.

3 Relational Active Advice-Seeking

The aim of relational active advice-seeking is to offload the task of selecting
areas of the feature space to give targeted advice from the human expert to the
learning algorithm. In relational models, experts are often asked to define the
logical structure of the model with the parameters learned from data. However,
it is important to be able to learn the full model (structure and parameters)
especially in complex, real world domains. Experts can still provide valuable
input about targeted areas of the feature space. The wide variety of potential
expert advice complicates the advice-giving process and can lead the expert to
give correct, but not relevant advice.

Fig. 1. An overview of our framework for actively interacting with human experts. The
learner is responsible for selecting where to query the expert.
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Previous work on advice-giving requires significant effort on the part of the
expert to determine the relevant advice [12,19]. If the expert provides exhaustive
advice, the learning algorithm will be able to learn an accurate classifier. How-
ever, the experts time is often limited and only a few queries can be answered.
These queries should not be redundant, focusing on areas that are well covered
by the data. Instead, they should focus on areas where the learning algorithm
cannot distinguish the correct label or behavior. Thus, we extend relational
advice-taking methods to active advice-seeking. Each part of our formulation
is shown in Fig. 1. It consist of the active advice-seeking component that is
capable of generating queries and interacting with the human expert as well as
the knowledge-based learning algorithm which learns from the expert provided
knowledge and any available training data.

4 Problem Formulation

The overall goal of our algorithm is to identify regions of the feature space
that the agent is most uncertain about and query the expert for advice on
these regions. In the propositional case, this was handled by simply clustering
examples based on the distribution over the labels and querying the expert over
this cluster [20]. However, this heuristic may not suffice for relational tasks since
there are typically more negative examples than there are positives. Fortunately,
the use of a rich representation such as first-order logic naturally allows us to
query over the most uncertain regions of the feature space.

We represent the regions of feature space as conjunctions of predicates. Intu-
itively, this corresponds to grouping examples such that a particular condition is
satisfied. More precisely, the goal of our algorithm is to select a set of conjunc-
tions of first-order logic atoms about which to query the expert. These queries
concisely describe the set of training examples to which the advice will apply. In
order to select relevant areas of the feature space, the algorithm learns a clause
(model) based on scores of the given examples. The goal of this learned model
is to group similar examples based on their assigned score which measures the
importance of that query. Queries have low scores if the algorithm is confident
in its prediction, Otherwise, the query will receive a high score, making it more
likely to be selected by the active advice-seeking algorithm. We explain the clause
generation later in this section. We will now formally define advice:

Definition 1. A set of advice (A) is defined as a series of relational queries (Qi)
and the experts corresponding response (Ri), i.e. (A =< (Q1, R1), (Q2, R2), ...,
(Qn, Rn) >).

The algorithm solicits a sequence of queries that depend on the scoring func-
tion that will be discussed in detail later. The number of queries is dependent on
the difficulty of the problem and the availability (query budget) of the expert.

Definition 2. A Relational Query (Q) is defined as a conjunction of literals
(∧fi), which defines the set of examples to which the advice will be applied. Q
will be shown to the human expert.
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Definition 3. An Expert Response (R) is defined as a set of preferred labels
(l+), and a set of avoided label (l−) given with respect to a relational query.
Note that both l + /l− could be empty if the expert does not understand Q or if
the query does not separate different classes.

If the expert is not satisfied with the query - possibly because the query does
not properly delineate between labels - then the expert can provide no preferred
or avoided labels. Such a query is not useful to the learning algorithm and squan-
ders the time of the expert. The relational query and its accompanied response
represent a single piece of advice that can be utilized by the knowledge-based
learning algorithm. We now present an illustrative example before discussing the
algorithm in detail.

4.1 Illustrative Example

Consider the example of heart attack prediction given clinical information about
the patients such as their blood pressure. The training set (e.g. one particular
county in Wisconsin) might show all patients having a lower risk of heart attack,
with patients having high blood pressure having an especially low incidence of
heart attacks. This systematic difference could be attributed to local factors.
The local county data (the training set) could be shown in Fig. 2 in blue, while
the true distribution for the entire nation could be shown in red.

Fig. 2. Example showing the distribution of heart attacks given blood pressure for an
observed and underlying distribution. The difference in these distributions could cause
an expert to give advice that is not customized with respect to the training distribution.
(Color figure online)

Now consider soliciting advice about heart attacks and blood pressure
from a cardiologist in California. Being unfamiliar with Wisconsin, the car-
diologist might give broad, straight-forward advice. However, such knowledge
might already follow from the training data. Examples of such advice include
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“extremely high blood pressure leads to heart attacks” and “heart attacks are
not likely with low blood pressure”. While these pieces of advice are valid, they
are not the most relevant advice for this particular learning problem.

If the algorithm had the ability to solicit advice, then it could direct the
expert to give the most relevant advice at any point. Our proposed algorithm
will identify areas in the data that are unclear and will instead query the expert
automatically with “How likely are heart attacks when the blood pressure is
high, but not extreme”. This is likely the most useful advice given the data.
This approach not only benefits the learning algorithm, but reduces the burden
on the expert who is only required to answer specific questions.

Algorithm 1. Actively Seeking Advice for PLMs (ASAPlm)
function ASAPlm(D,E,MaxQuery)

2: A = ∅
M=RFGB(D) � Model from Noisy Data

4: for xi ∈ D do � Compute Uncertainty per Example
R(xi) = H(xi)

6: end for
AQ=LRC(D, R) � Learn Regression Clauses

8: for i = 1 to MaxQuery do � Query Expert
AQq =MaxScore(AQ)

10: AQ = AQ − AQq

< AQq, R >=Query(E, AQq)
12: A = A∪ < AQq, R >

end for
14: MF=AdvLearner(A, D) � Learn with Advice

return MF

16: end function

4.2 The Algorithm

Our proposed approach involves generating a set of queries, scoring those queries
to rank them according to their usefulness, and finally soliciting the most use-
ful queries to the human expert. The number of queries that can be requested
depends on the problem (more difficult domains require more knowledge) and
the availability of the human expert. The complete active advice-seeking algo-
rithm (ASAPlm) is shown in Algorithm 1. We will address each of these vital
components in turn.

Generating and Scoring Queries. Recall that in standard active learning,
a model is learned from labeled data and using this model, some uncertainty
measure is calculated to identify the most uncertain unlabeled example to query
the expert. We take a similar approach with an important change. We learn an
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ensemble of relational regression trees using RFGB on the noisy data (line 3
of the algorithm) and compute the entropy over the examples given this model
(lines 4–6). Following active learning, we define the score of an example as the
entropy of the model’s prediction (line 5 of Algorithm 1), i.e.,

H(xi) =
∑

l∈Labels

Pl(yi|xi)log(Pl(yi|xi))

where P (yi|xi) is learned using RFGB. Such uncertainty measures have per-
formed extremely well in many active learning methods and similar results can
be shown over relational data. The key difference is that the uncertainty is based
on all of the training examples that satisfy the query. In our empirical evalua-
tion, we focus on entropy as our uncertainty measure. However, the framework is
broad and allows for the selection of the most appropriate uncertainty function
for the problem at hand.

Then these scores are used as regression values for the corresponding example
and a set of weighted first-order-logic clauses are learned that can potentially
group these examples (line 7, function LRC). We learn relational regression trees
using RFGB as our implementation. These clauses are presented to the expert
according to the learned weights. We learn these weighted clauses through an
adaptation of RFGB where instead of learning P (yi|xi), we want to learn a
model for the uncertainty values of xi (by fitting regression trees). The key
intuition is that the regression trees find clauses that apply to examples with
similar uncertainties. Note that unlike in discriminative learning where there are
positive and negative examples, regression does not treat positive and negative
examples differently. Every example has a uncertainty value and regression is
just trying to fit those values. The learned clauses represent a set of possible
queries from which the algorithm can select.

Querying the Expert. After the queries have been generated and ranked,
they can be used to solicit advice from the human expert. For a given relational
query, the expert should supply the suggested preferred labels (should be con-
sidered more likely) and the avoided labels (should be considered less likely).
Alternatively, the expert could decline to answer if the query is too general
or incomprehensible. Declining is an indication that the active advice-seeking
algorithm is not selecting appropriate queries.

Advice-Based Learner. Given the advice, the final step is to utilize the advice-
based learner to learn from both the training data as well as the expert advice.
An ideal algorithm should trade-off between the sources of knowledge when they
offer contradictory information. For the purposes of empirical validation, we uti-
lize KBPLL [19] as our advice-based learner. It combines the target distribution
of the training data and the distribution suggested by the advice to find a robust
model (refer to Sect. 2).

Overall, the proposed approach to active advice-seeking aims to effectively
utilize the human expert by generating queries. These queries are targeted based
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on the perceived weaknesses in the training data. We now thoroughly investigate
the active advice-seeking algorithm.

5 Experiments

Through our experiments, we aim to answer the following questions:

Q1: Does active advice-seeking result in more effective learning?
Q2: Is our algorithm robust to both random and systematic noise?
Q3: Is advice an efficient form of communication between algorithm and expert?

5.1 Methods

We compare our method against two baselines. To evaluate our query gener-
ation method, we compare against learning with randomly generated queries
(Random Queries). Note that the expert still gives the correct answer for the
particular query generated. To evaluate the effectiveness of active advice-seeking,
we compare against learning with no advice (No Advice). This represents the
effectiveness of traditional machine learning systems that do not make use of
expert knowledge. We also discuss the quality of the advice that is generated in
each domain. Given our experience with the domains, we take the role of expert
to answer the queries.

In all the experiments, we compare the accuracy of learned model. To show
that our algorithm is capable of correcting noisy data, we added noise equal
to 25 % of the positive examples. Note that in the relational space the number
of negative examples typically greatly outnumbers the positive examples. This
means that the impact of the noise is much less than 25 %. To show that our
algorithm is capable of correcting systematic noise, we label examples incorrectly
in a targeted region of the feature space. The synthetic heart attack dataset and
driving domain are domains where systematic noise is natural. Heart problems
effect different regions or ethnic groups in different ways and many drivers con-
sistently drive over the speed limit and roll through stop signs. For the remaining
datasets, imdb, webkb and uw, we have experimented with both systematic and
noisy data. Each randomly noisy experimental domain has either 4 or 5 folds and
we randomly add noise 5 times for each fold. Each systematically noisy exper-
iment generated data for each fold or was repeated 5 times. For our relational
advice-based learning algorithm, we use KBPLL [19] with α = 0.25.

5.2 Domains

We have a variety of standard relational datasets as well as an imitation learning
dataset focused on driving. An overview of each domain and the corresponding
typed of noise (the datasets are either systematically noisy or randomly noisy)
used in conjunction with that domain is shown in Table 1.
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Table 1. Describes the prediction task of each of the experimental domains as well as
the kind of noise used in the experiments.

Domain Prediction task (possible labels) Type of noise

Driving moveLeft,moveRight,stayInLane Systematic

Synthetic heartAttack Systematic

IMDB workedUnder Systematic/Noisy

WEBKB faculty Systematic/Noisy

UW advisedBy Systematic/Noisy

IMDB: This dataset is a movie database that consists of movies, actors, direc-
tors and their various genres. Our goal is to predict the workedunder relationship
(i.e. which actors worked on movies under a particular director). This dataset
consist of 5 folds.

WEBKB: This dataset is a university dataset that consists of webpages and
their hyperlinks. Our goal in this domain is to predict which webpage belongs
to a faculty member based on the webpages and their linking structure. This
dataset has 5 folds.

UW: This dataset is a university dataset that consists of professors, students,
courses, and publications each having various relationships and features. Our
goal is to predict the advisedby relationship. This dataset has 4 folds.

Synthetic: The goal of the synthetic dataset, from the illustrative example, is
to predict heart attacks given the blood pressure. There is a systematic differ-
ence (see Fig. 2) between the training set and the testing set. This dataset was
generated 5 independent times.

Driving: The driving domain focuses on navigating down a 5-lane highway,
avoiding the other cars on the road [10]. The possible actions are to stay in the
current lane or change lanes to the left or right. The size of the training set and
testing set are 100 trajectories consisting of 10000 total training examples.

5.3 Systematic Noise

The results with systematic noise (Fig. 3) are shown for the synthetic and driving
domains as well as each of the standard relational datasets. Together they show
the power of our proposed approach when dealing with systematic noise. In
most datasets, the algorithm is capable of selecting useful queries immediately,
providing significant impact. Random queries demonstrate gradual performance
gains in the synthetic and webkb domains, but fail to have a positive effect on
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Fig. 3. The learning curves for the experiments with systematic noise. Each learning
curve shows accuracy as the number of queries to the expert increases. We compare
Active Advice-Seeking to Random Queries and No Advice.
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the other domains. While random queries do not cause performance to degrade,
they have an extremely difficult time isolating systematic noise especially when
there are more features. A key reason there is very little change in these domains
is that the queries generated were ambiguous and useful only for a few examples.
For instance, a common query in the driving domain is “What action should I
take if there is a car both to my left, right, AND in front”. While this is a possible
scenario, it is not likely in this dataset and there is no obvious advice to give for
these states. Alternatively, the queries generated from the active advice-seeking
algorithm select more relevant and overall useful queries. Thus, Q1 is answered
affirmatively in that our proposed approach is able to learn effectively in the
presence of systematic noise.

Table 2. The top queries generated in each domain for the systematically noisy
datasets. Experts respond to these queries by providing l + /l− from Table 1.

Domain Query generated

Driving What if there is a car in the left lane?

Synthetic What if a person has medium to high blood pressure?

IMDB Do female actors work under people in crime movies?

WEBKB What is the title of students working on projects?

UW What is the relationship between students and TA’s?

5.4 Random Noise

The standard relational domains (Fig. 4) are used to show that even when noise
is random, our proposed method can still generate high-quality queries to the
expert. Random noise should be more difficult for our algorithm, as there may
not be specific regions of the feature space that need attention. However, across
all three domains, our proposed approach achieves consistent success, generating
performance gains with each query. In contrast, randomly generated queries can
yield positive performance (as in imdb or uw), or actually result in a model that
is worse than relying on the data (as in webkb). It may seem counter intuitive
for advice to be harmful. However, consider the query “Is a student advised by
a professor”. While it may seem that the advice should be that students are
advised by professors, there are many student and many professors. Therefore,
such an advice could result in many false positives as a student is not advised
by most professors. Thus, our proposed approach is robust to random noise as
well as systematic noise (Q2).

5.5 Quality of Advice

The preceding empirical results show that our proposed approach is able to gen-
erate relevant queries that yield significantly higher accuracy in nearly all of the
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Fig. 4. The learning curves for the experiments with random noise. Each learning curve
shows accuracy as the number of queries to the expert increases. We compare Active
Advice Seeking to Random Queries and No Advice. As previously, randomness (for
Random Queries) does not come from incorrect answer by the experts, but rather from
randomly generated queries.

domains for both systematic and noisy experiments. However, the interpretabil-
ity of the queries is vital as the experts need to easily comprehend the queries in
order to give the proper advice. Table 2 shows the top query generated for each
domain (systematic noise). In the driving domain, the query asks what action to
take when there is a car in the left lane. The expert response would be to stay in
the current lane. As another example, in the uw domain, the query asks about
the relationship between students and TAs. While TAs might help teach stu-
dents, the advice would say that TAs cannot advise students. The best queries
are heavily influenced by the noise in the training set. Overall, the queries are
concise (as shown in Table 2) and effective (as shown in the empirical validation).
Thus, advice is an efficient form of communication (Q3).
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6 Conclusion

We presented the first advice seeking framework for PLMs. Our method, inspired
by active learning, queries the expert with sub-spaces of the feature space where
advice can be provided as preferences over labels. The key insight is that the
learning algorithm can better query the expert based on the uncertainty in the
data as compared to the expert providing all advice pieces in advance. Our exper-
imental results across standard data sets proved that such a method is indeed
effective in soliciting useful advice. It must be mentioned our work is inspired by
and bridges three promising areas of research inside machine learning - knowl-
edge elicitation, active learning and PLMs. It extends knowledge elicitation to
PLMs for the first time. It builds upon the success of active learning in relational
tasks by soliciting advice (as preferences) instead of simple labels as done in pre-
vious research. Finally, it contributes to PLMs by making the learning algorithm
go beyond merely using data by providing a natural way of interacting with the
human expert.

Evaluating on larger data sets such as electronic health records is an impor-
tant future direction. EHRs in particular can provide the opportunity to interact
with domain experts who could provide advice potentially as qualitative state-
ments - increase in one risk factor can increase the risk of a disease. Another
interesting direction is exploring the different measures of uncertainty for group-
ing the different examples. A third direction could be to consider more types of
advice that have been previously employed in machine learning. Learning from
multiple experts by weighing them explicitly is another direction that we will
explore. Finally, performing user studies on more sophisticated test beds is an
interesting research direction.

Acknowledgments. The authors thank the Army Research Office (ARO) grant num-
ber W911NF-13-1-0432 under the Young Investigator Program.
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A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6322, pp. 145–161.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15883-4 10

12. Kunapuli, G., Odom, P., Shavlik, J., Natarajan, S.: Guiding autonomous agents
to better behaviors through human advice. In: ICDM (2013)

13. Kuwadekar, A., Neville, J.: Relational active learning for joint collective classifica-
tion models. In: ICML (2011)
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Abstract. We introduce a modification to the well studied leverage
score sampling algorithm which takes into account data scale, called the
augmented leverage score, and introduce an initial error bound proof for
the case of deterministic sampling – which to our knowledge is the first
bound for this augmented leverage score. We discuss the implications of
the error bounds proof and present an empirical evaluation of the pro-
posed augmented leverage score performance on the column subsample
selection problem (CSSP) as compared to the traditional leverage score
and other methods in both a deterministic and probabilistic sampling
paradigm. We show that the augmentation of the leverage score improves
the empirical performance on CSSP significantly for many kinds of data.

Keywords: Subset selection · Low-rank matrix approximation · Lever-
age scores · Spectral analysis

1 Introduction

In many situations within machine learning and data analysis it is desirable to
represent a data set using either a subset of the features, to ease interpretation, or
a subset of the data, to identify a representative coreset of the data, which can be
thought of as column (or row) subset selection of the data matrix. For example,
many kernelized machine learning methods can be more quickly approximated
using a Nyström method which requires the selection of a coreset [4]. There has
been substantial interest in selecting an optimal subset of columns for a data
matrix [1,5,15,16].

To be precise, we are interested in the Column Subset Selection Problem
(CSSP) recently examined in [15]:

Definition 1. Column Subset Selection Problem. Let A ∈ R
d×n and let

c < n be a sampling parameter. Find c columns for A - denoted as C ∈ R
d×c

that minimize
‖A − CC†A‖η, (1)

for η ∈ {F, 2}, and where C† denotes the Moore-Penrose pseudo-inverse.

c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 543–558, 2016.
DOI: 10.1007/978-3-319-46227-1 34
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Previous work has investigated the use of leverage scores, defined below,
for use in selecting the column samples using both deterministic and random
methods [1]. We use the definition provided in [15],

Definition 2. Leverage scores. Let Vk ∈ R
n×x contain the top k right singular

vectors of a d × n matrix A with rank ρ = rank(A) ≥ k. Then the (rank-k)
leverage score of the i-th column of A is defined as

l
(k)
i = ‖[Vk]i,:‖22, i = 1, 2, . . . , n. (2)

Here, [Vk]i,: denotes the i-th row of Vk.

Leverage scores have a long tradition of being very useful in both determin-
istic and random solutions. However the SVD produces other useful information
and one could ask whether taking advantage of the other components in the
SVD could improve the subsample selection?

Consider this alternative formulation of the CSSP objective, where we
make the assumption that the matrix CCT is invertible (only for this specific
discussion):

‖A − CC†A‖η (3)
‖A − C(CT(CCT)−1)A‖η (4)

‖UΣVT − WdWT
d UΣVT‖η (5)

‖(U − WdWT
d U)ΣVT‖η (6)

where A = UΣVT and C = WΨHT are the respective SVDs. In other words,
this objective encodes the idea of selecting a C such that the columns space W
aligns with the column space of U (corresponding to full A), and the projection
of the data points ΣVT onto that basis.

In this form it becomes more apparent why the VT is important in selecting
a subset of columns. The standard leverage scores are drawn from the rows of
V = ATUΣ† which are the data projected onto the principal components and
rescaled (“whitened”) according to the singular values (“variances”) so that the
covariance is identity. The leverage score is essentially the distance from the
origin in the k-subspace spanned by Vk. However the above objective function
dictates the “unscaled” or “unwhitened” data points ΣVT, not VT are pro-
jected. This indicates an “unscaled” leverage score would be more appropriate
for CSSP.

This intuition informs the core premise of this paper – to propose an aug-
mented leverage score, specifically

Definition 3. Augmented leverage scores. Let Yk = VkΣk ∈ R
n×k contain the

top k singular values multiplied with the right singular vectors of a d × n matrix
A with rank ρ = rank(A) ≥ k. Then the (rank-k) augmented leverage score of
the i–th column of A is defined as

l̂
(k)
i = ‖[Yk]i,:‖22, i = 1, 2, . . . , n. (7)
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Here we prove error bounds with respect to the optimal rank-k approxi-
mation for the corresponding deterministic sampling algorithm, and demon-
strate through various examples how this augmented leverage score performs
with respect to previous work as both a deterministic and random column sam-
pling method. We show that by using this augmentation there is substantial
improvement in the empirical performance for both deterministic and proba-
bilistic sampling strategies.

2 Related Work

As described in Sect. 1, leverage score sampling has a long tradition and recently
there as been substantial interest in analyzing and extending it [13,14]. Specif-
ically, [1] presents a very thorough examination of CSSP in general, presenting
several proofs to help in understanding and analyzing various approaches to
CSSP. [15] presented a deterministic error bound for the traditional leverage
score sampling with a bound very similar to ours,

‖A − CC†A‖2ζ <
1

1 − ε
· ‖A − Ak‖2ζ . (8)

for ζ ∈ {2, F}, where Ak is the best rank-k approximation to A.
Here instead we propose making a very simple modification to leverage scores

which substantially improves the quality of the column subsample found, with
regards to the CSSP error shown in (1). This change is fundamental enough
that existing error bounds in (8) no longer hold for the proposed approach. We
further compare empirically the proposed augmented leverage score sampling
to traditional leverage score sampling in both a deterministic and probabilistic
setting.

Related work also includes CUR and Nyström approximation techniques
which aren’t specifically targeted at solving CSSP, but are performing related
subsampling of datasets with error bound guarantees. CUR [5] is an approx-
imation technique which first computes a column subsample C of A, then a
row subsample R of A, then an interpolative matrix U which minimizes the
approximation error ‖A − CUR‖2,F . However, as described in [5], the column
subsample step uses a leverage sample, and so by comparing to leverage sam-
pling directly, we gain some idea of how the proposed method compares to CUR.
The Nyström method [4,8] is a matrix approximation technique where a column
subsample C of A is found such that ‖A − CUCT‖2,F is minimized. [7] obtains
a direct relationship between Nyström and CSSP by formulating the Nyström
approximation as a CSSP by setting C = A1/2S. However all of the subsampling
approaches discussed use either a naive subsampling (uniformly random) or a
leverage score sampling, so a comparison of our method to leverage score and
uniform random sampling is sufficient.

Note that our new bound adds a multiplicative factor to previous bounds,
σ̂1(Σk) = σ1(Σk)

σk(Σk)
, where σi(M) is the i-th singular value of the matrix M, which

is based on the data scaling. One central premise of the proposed augmentation
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is that we are taking into consideration the data scale, and so it is logical that
the bound now includes singular value terms from the data (for example consider
the bounds in [8] which also include data scale terms). The new factor has some
implications on our error bound – specifically if k is chosen such that σk(Σk)
is very small compared to σ1(Σk), the factor becomes large making the bound
very loose. On the other hand if they are similar in magnitude the bound has
similar tightness to the previous bound in (8). Although this scaling ratio has
implications on the theoretical bound, we observed very good performance in
the empirical results for problems with a large gap in the spectrum, indicating
this is primarily a theoretical problem we hope to improve in future work.

3 Deterministic Column Sampling

In the following we make use of the singular value decomposition (SVD) of A ∈
R

d×n,A = UΣVT, with the left singular vectors UTU = UUT = I,U ∈ R
d×d,

the right singular vectors VTV = VVT = I,V ∈ R
n×n, and the singular value

matrix Σ ∈ R
d×n a diagonal matrix with entries Σii = σi(A) being the singular

values of A, sorted so that σ1(A) ≥ σ2(A) ≥ . . .. The rank-k approximation
Ak = AVkVT

k = UkΣkVT
k ∈ R

d×n, with Uk ∈ R
d×k,Σk ∈ R

k×k, V ∈ R
n×k

is the optimal rank-k matrix approximation under the Frobenius norm of the
difference, ‖A − Ak‖2F = ‖Δk‖2F =

∑k
i=1 σi(Δk) and under the spectral norm

‖Δk‖22 = σ1(Δk). We will use the shorthand, σ̂2
i (Ak) = σ2

i (Ak)

σ2
k(Ak)

, which is a
scaled (unitless) singular value. Note also that for a symmetric matrix M =
ATA = UΣ2UT, the eigenvalues λi(M) correspond to the singular values, so
that λi(M) = σ2

i (M).
The corresponding probabilistic algorithm for augmented leverage scores sam-

ples points randomly according to the probability pi = l̂i∑
j l̂i

, instead of sorting.

We prove the following convergence theorem with respect to Algorithm 1.

Theorem 1. Let θ = k · σ̂2
1(Σk)− ε for some ε ∈ (0, 1), and let S ∈ R

n×c be the
sampling matrix from Algorithm 1, then, for C = AS and ζ = {2, F}

‖A − CC†A‖2ζ <
σ̂2
1(Σk)
1 − ε

· ‖A − Ak‖2ζ . (11)

We can rewrite the bound as

‖A − CC†A‖2ζ < (1 + 2ε) · σ̂2
1(Σk) · ‖A − Ak‖2ζ (12)

if ε < 1
2 [15].

We note that the parameter θ in Algorithm 1 provides the primary connection
between the column subset size and the spectrum of the data, and that while
the algorithm can be run with any choice of θ the provided bounds only hold for
the given choice of θ in Theorem 1.
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Algorithm 1. AugmentedLeverageScoreSampler(A, k, θ)
Input A ∈ R

d×n, k, θ
Compute Yk = VkΣ̂k ∈ R

n×k (top k singular values normalized so that Σii =
σ̂i(Σk) and right singular vectors of A multiplied together)
for i = 1, 2, . . . , n

l̂
(k)
i = ‖[Yk]i,:‖2

2

end for
Let l̂

(k)
i ’s be sorted:

l̂
(k)
1 ≥ . . . ≥ l̂

(k)
i ≥ l̂

(k)
i+1 ≥ . . . ≥ l̂(k)n (9)

Find index c ∈ {1, . . . , n} such that:

c = argmin
c

(
c∑

i=1

l̂
(k)
i > θ

)
. (10)

If c < k, set c = k.
Output S ∈ R

n×c, s.t. AS has the top c columns of A.

4 Experiments

4.1 Algorithms

For the deterministic subsampling problem we compare the proposed determinis-
tic augmented leverage score sampling method (aug-det) from Algorithm 1 with
the traditional deterministic leverage score sampling method (lev-det) from [15]
and the QR-pivot based sampling method (qr) from [9]. QR-pivot based sam-
pling is done by computing the QR decomposition with pivoting and then using
the resulting pivot matrix for column selection as described in [3]. The leverage
score methods are described in more detail in Sect. 2.

In the probabilistic case, we compare the proposed probabilistic augmented
leverage score sampling method (aug-prob) (similar to Algorithm 1 as described
in Sect. 3) with the traditional probabilistic leverage score sampling method (lev-
prob) from [15], and the ubiquitous uniformly random sampling (unif).

The algorithms were compared on the basis of the CSSP projection space
error, ‖A − CC†A‖η for both the Frobenius norm (η = F ) and spectral norm
(η = 2), as well as the projection error sum over all the data points, which is∑n

i=1 ‖Ai − CC†Ai‖2, where C is selected using the corresponding algorithm.

4.2 Datasets

To examine how each of the methods performed we compared them using syn-
thetic datasets, with specific spectral properties, and several real datasets.

We use two small synthetic datasets to examine how the spectral makeup
of the dataset effects the results. The first dataset we sampled from a multidi-
mensional normal distribution with a spectrum, sL(i) that decays linearly from
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d = 10, sL(i) = d− i, which was then rotated to take it off axis. The second syn-
thetic dataset was chosen to see the effect of a power law decay on the spectrum.
As described in [15], this model is of interest because many datasets will have a
spectrum that decays quickly. This was constructed similarly to the first, but a
power-law decay was used, sP (i) = d

i1+η , where for this dataset we used η = 0.5.
The size of both datasets are summarized in Table 1, and the spectrum of each
is shown in Fig. 1, in the top left and bottom left plots. As both leverage score
sampling techniques rely on the selection of a rank-k subspace, we selected the
SVD subspace of size k that captures 90% of the spectral energy and report the
specific k chosen in Table 1. We chose a diverse set of real datasets to provide
insight into how the algorithms compare on real data. We summarize the size
and dimensionality of each dataset used in Table 1, and show the corresponding
spectrum plots along the left column of Fig. 4. The first dataset, diabetes, is a
small dataset of various health measurements, with the goal of finding some rela-
tionship to diabetes used in [6], which has some spectral properties somewhat
similar to the power law decaying synthetic dataset. The second dataset, enron,
is an email social graph derived from the popular Enron public email dataset
from [10,11]. This dataset exhibits a mostly linear decay in the spectrum. The
forest cover, adult, and census dataset are all taken from the UCI data reposi-
tory [12], and were chosen because of their use in other related machine learning
and data analysis task, which helps in comparison to other (future) algorithms.

Table 1. Real and synthetic datasets examined with number of points n, dimension
d, and subspace dimension k which captures 90% of the spectral energy.

Name n d k

Synthetic linear decay 1000 10 9

Synthetic power law decay 1000 10 6

Diabetes 442 9 6

Enron 3000 3000 2108

Forest cover 58102 54 5

Adult 16281 123 73

Census 2273 119 8

4.3 Synthetic

The leverage and augmented leverage scores for the synthetic datasets are shown
in the middle column of Fig. 1, and a visualization of the resulting samples
selected using the deterministic approach are shown in the far right column.
In the center column plots the leverage scores have been normalized so that
the largest value is 1.0 and they have been sorted in descending order to make
the visual comparison easier. This view of the scores makes the effect of the
augmentation on the scores more obvious – for any point whose “magnitude
energy” is in the directions with dominant spectral values the value is preserved
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or increased, while for any point with “magnitude energy” in the directions
corresponding to smaller spectral values the score is decreased. This contrast
in point selection is illustrated in the 2D principal component analysis (PCA)
visualization in the right column of Fig. 1. While the traditional leverage score
selects points that are important in several directions, the augmented leverage
score selects points that are primarily important in the dominant PC modes –
note how the augmented leverage score points are mainly on the outer edges of
this data projection.

Now consider how the augmented score performs on these synthetic datasets
as shown in Figs. 2 and 3. The first column of both figures shows results mea-
sured under the Frobenius norm, the center column under the spectral norm,
and the right column under projection error. The rank-k approximation error is
included in each plot for reference – it is constant because it is independent of the
column subsample size. Consider the deterministic results in Fig. 2, specifically
the first row showing the linear decay dataset. In each error measurement, the
augmented leverage score performs better at column selection, and the QR-pivot
based selection performs the best. Now consider the power law decay dataset in
the second row, in this case, both the augmented leverage score and the QR-
pivot have significant advantage over the traditional leverage score for the first
several samples. This indicates that both QR and augmented leverage are taking
advantage of the fast drop in spectral error, while traditional leverage sampling
does not – this provides a nice insight into not only why augmented leverage
scores perform better, but also why QR based sampling performs so well and
confirms that taking into account the spectrum of the dataset can be important
to the CSSP, for certain kinds of data.

Observe the probabilistic results in Fig. 3 and note that for this case we com-
pare the two leverage score approaches to a uniformly random sampling of the
dataset. For these synthetic results each algorithm was run 100 times and the
solid plot line shows the mean result, while the vertical error bars indicate the
standard deviation at each sample point. The first row shows the probabilistic
results for the linear decaying spectrum dataset, and for this specific case the
three algorithms actually perform very similarly. In contrast, in the bottom row,
when considering the power law spectrum decay data, the augmented leverage
score performs significantly better than both the uniformly random and the
traditional leverage score sampling. Again these results reinforce the idea that,
especially for datasets with a fast decay, taking into account the spectral mag-
nitudes is important to the probabilistic CSSP.

4.4 Real

A similar comparison was run on the real datasets. In Fig. 4, in the right column,
the leverage scores are shown – again these are normalized so that the maxi-
mum leverage score is 1.0, and sorted in descending order for visual comparison.
Note how the varying spectra strongly influence the resulting scores. The enron
dataset has one of the most dramatic changes - it shows a very gradual decrease
in leverage scores over the samples, while after augmentation the leverage score
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Gaussian with linear decay

Gaussian with power law decay

Fig. 1. Synthetic Gaussian datasets. The first row shows the spectrum (top left), the
leverage and augmented leverage scores (top center), and a PCA-based visualization of
the leverage score samples for the deterministic algorithm (top right), all for the linear
decay dataset. The second row shows the same results but for the power law decay
dataset.

Gaussian with linear decay

Gaussian with power law decay

Fig. 2. Deterministic results on the synthetic datasets. The first row is a synthetic
Gaussian dataset with linear spectral decay. The second row is a synthetic Gaussian
dataset with a power law decay. Results are shown for each data set measured under
a Frobenius norm error (left column), a spectral norm error (center column), and a
projection error (right column).
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Gaussian with linear decay

Gaussian with power law decay

Fig. 3. Probabilistic results on the synthetic datasets. The first row is a synthetic
Gaussian dataset with linear spectral decay. The second row is a synthetic Gaussian
dataset with a power law decay. Results are shown for each data set measured under a
Frobenius norm error, a spectral norm error, and a projection error. For these synthetic
results the algorithm was run 100 times and the line shows the mean result, while the
vertical error bar indicates the standard deviation.

values drop off very quickly. The adult dataset also has a dramatic decrease in
leverage score value (and increased decay rate), while the forest dataset actually
decreases the decay rate of the leverage scores.

Figure 5 shows the spatial layout of the deterministic leverage samples in
2D PCA space for the diabetes and enron datasets, the other datasets have so
many points the scatter plot visualization becomes very difficult to read. The
left plot in Fig. 5 for the diabetes dataset shows similar results to the synthetic
datasets - the leverage score appears to select points independent of the dominant
directions, while the augmented and QR based samples select points that are
clearly important in the dominant directions. The right side plot shows the
resulting sample for the enron graph dataset. In this case there is actually a lot
of overlap between the methods – they all pick very similar columns.

The deterministic method performance comparison is shown in Fig. 6, while
the probabilistic results are in Fig. 7. For these probabilistic results, the algo-
rithms were each run 100 times (except enron which was only run 5 times)
and the average is plotted with the standard deviation shown by the error bars.
Consider the diabetes dataset in the top row, where we noted a moderate change
in leverage score distribution, and significant differences in actual leverage sam-
pling in Fig. 5. These modifications resulted in a significant improvement in the
errors reported - in almost every case the augmented leverage scores performed
significantly better than the traditional leverage score.
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As we noted above, the enron dataset in the second row had dramatic changes
in the leverage score distribution, but viewing the actual deterministic samples
taken, the samples were very similar. This small change is reflected in the error
scoring where, for the deterministic approach, the three methods performed very
similarly.

The forest dataset proved interesting in that we noted the augmentation
actually led to a slower decay in leverage score magnitude. This change actually
results in some of the augmented leverage score performing slightly worse in the
deterministic algorithm – though the story is different for the probabilistic case
where the mean is always below the traditional leverage score mean error.

5 Proofs

5.1 Proof of Prerequisite Lemmas

We will first introduce and prove (as needed) the following lemmas, concluding
with a proof for Theorem 1.

Lemma 1 (A more general version of Lemma 3.1 in [1]). Consider the decom-
position A = AYY† 1

σ2
k(L)

+ E, with Y = ZL, Z ∈ R
n×k,ZTZ = Ik, and

L ∈ R
k×k a diagonal matrix where LL† = Ik. Let S ∈ R

n×c be any matrix such
that rank(YTS) = k. Let C = AS ∈ R

d×c. Then for ζ = {2, F}
‖A − CC†A‖2ζ ≤ ‖E‖2ζ‖S(YTS)†L‖22 (13)

Proof. Remember that a projection operator P is equal to the square P2 = P.
We will use the following two Lemmas,

Lemma 2 (Lemma 7 in [1]). Let P be a non-null projection, then
‖I − P‖2 ≤ ‖P‖2.
Lemma 3. For all matrices X ∈ R

d×n of rank at most k in the column space
of C,

‖A − CC†A‖2ζ ≤ ‖A − X‖2ζ (14)

See Lemma 9 in [1].

Now consider the matrix X = C(YTS)†YT, where X is clearly in the column
space of C and rank(X) = k, because rank(Y) = k. Then using Lemma 3,

‖A − C(YTS)†YT‖2ζ (15)

= ‖AYY† + E − (AYY† + E)S(YTS)†YT‖2ζ (16)

= ‖AYY† − AYY†S(YTS)†YT + E − ES(YTS)†YT‖2ζ (17)

= ‖E − ES(YTS)†YT‖2ζ (18)

≤ ‖E‖2ζ‖I − S(YTS)†YT‖22 (19)

≤ ‖E‖2ζ‖S(YTS)†YT‖22 (20)

= ‖E‖2ζ‖S(YTS)†L‖22. (21)
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Forest cover
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Fig. 4. A plot of the spectrum, and a plot comparing the leverage and augmented
leverage scores for each of the real datasets evaluated.

The first 4 lines are simple substitution and the definition of the pseudo-
inverse, the 5th line bound is due to strong submultiplicativity, the 6th line
is bound using Lemma 2, and the 7th line uses the definition of Y = ZL
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Diabetes Enron

Fig. 5. Embedding of the data into the first two dimensions of a principal component
analysis (PCA), which the deterministic sampling results of the traditional leverages
scores (lev-det), proposed augmented leverage scores (aug-det), and QR-pivot sam-
ples (qr).

and because Z is orthogonal. Note that if P = S(YTS)†YT, then P2 = P =
S(YTS)†YTS(YTS)†YT = S(YTS)†YT, allowing the use of Lemma 2 above.

Lemma 4 (A more general version of Lemma 5 in [15]). Let θ = k · σ̂2
1(L) − ε

for some ε ∈ (0, 1), and let S ∈ R
n×c be the output of Algorithm 1, then,

σ2
k(Y T

k S) > σ2
k(L)(1 − ε). (22)

Proof. We use the following lemma,

Lemma 5 (Theorem 2.8.1; part (i) in [2]) Let K and G be symmetric matrices
of order k and, let 1 ≤ i, j ≤ n with i + j ≤ k + 1. Then,

λi(K) ≥ λi+j−1(K + G) − λj(G). (23)

Let S ∈ R
n×c sample c columns from A with c ≥ k. Similarly let Ŝ ∈

R
n×(n−c) sample the other n − c columns of A. Then,

1
σ2

k(L)
L2 =

1
σ2

k(L)
YTY =

1
σ2

k(L)
LZTZL (24)

=
1

σ2
k(L)

L(ZTSSTZ + ZTŜŜTZ)L (25)

=
1

σ2
k(L)

(LZTSSTZL + LZTŜŜTZL) (26)

=
1

σ2
k(L)

(YTSSTY + YTŜŜTY) (27)
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Diabetes
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Adult

Census

Fig. 6. Deterministic results on each of the real datasets. Results are shown for each
data set measured under a Frobenius norm error (left column), a spectral norm error
(center column), and a projection error (right column).
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Diabetes

Enron

Forest

Adult

Census

Fig. 7. Probabilistic results on each of the real datasets. For these results each algo-
rithm was run 100 times on each dataset (except enron which was only run 5 times),
the mean is then plotted with a line, and the standard deviation shown with error
bars. Results are shown for each data set measured under a Frobenius norm error (left
column), a spectral norm error (center column), and a projection error (right column).
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Using Lemma 5 where K = 1
σ2

k(L)
YTSSTY,G = 1

σ2
k(L)

YTŜŜTY,

1
σ2

k(L)
λk(YTSSTY) ≥ 1

σ2
k(L)

λk(L2) − 1
σ2

k(L)
λ1(YTŜŜTY) (28)

= 1 − 1
σ2

k(L)
‖YTŜ‖22 (29)

≥ 1 − 1
σ2

k(L)
‖YTŜ‖2F (30)

> 1 − (k · σ̂2
1(L) − θ). (31)

The last step is true because ‖YTŜ‖2F ≤ (k · σ̂2
1(L)), which can be shown by

considering that ‖YT‖2F = ‖YTS‖2F + ‖YTŜ‖2F , ‖YT‖2F ≤ rank(YT)‖Y T
k ‖22,

and ‖Y T S‖ > θ, so that ‖Y T S‖2F = ‖Y T ‖2F − ‖Y T S‖2F ≤ kσ̂1(L) − ‖Y T S‖2F <
kσ̂1(L) − θ.

This implies that,
σ2

k(YTS) > (1 − ε)σ2
k(L). (32)

5.2 Proof of Theorem 1

The proof of Theorem 1 is a combination of Lemmas 1 and 4.

Proof. We start with Lemma 1 where Z = Vk and L = Σk so that

‖A − CC†A‖2ζ ≤ ‖A − Ak‖2ζ‖S(ΣkVT
k S)†Σk‖22 (33)

≤ ‖A − Ak‖2ζ‖S‖22‖Σk‖22‖(ΣkVT
k S)†‖22 (34)

= ‖A − Ak‖2ζσ2
1(Σk)‖(ΣkVT

k S)†‖22 (35)

=
‖A − Ak‖2ζσ2

1(Σk)

σ2
k(ΣkVT

k S)
(36)

<
‖A − Ak‖2ζσ2

1(Σk)
(1 − ε)σ2

k(L)
(37)

=
‖A − Ak‖2ζ σ̂2

1(Σk)
1 − ε

. (38)

6 Conclusion

In conclusion, we have shown motivation for taking into account the scale when
computing leverage scores, which we call an augmented leverage score. We have
shown the first error bound for the deterministic case of an augmented lever-
age score. This proof highlights some of the effect of the spectral scales on the
bound – specifically that a steep dropoff in spectral scale makes the bound very
loose, while a very gradual decay makes the bound much more tight.

We have shown empirically the method benefits both the probabilistic and
the deterministic leverage score sampling algorithms on a variety of datasets, as
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well as a few cases where the improvement is less noticeable or even made the
result slightly worse. In contrast to the theoretical results, we have shown that
the augmented leverage score performs exceptionally well, as compared to the
traditional leverage score, on datasets with a steep dropoff in spectral scale. This
indicates there is some room for improvement in the error bounds, something
we hope to obtain in future work.
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Abstract. The Anti Imitation-based Policy Learning (AIPoL) app-
roach, taking inspiration from the Energy-based learning framework
(LeCun et al. 2006), aims at a pseudo-value function such that it induces
the same order on the state space as a (nearly optimal) value function. By
construction, the greedification of such a pseudo-value induces the same
policy as the value function itself. The approach assumes that, thanks to
prior knowledge, not-to-be-imitated demonstrations can easily be gen-
erated. For instance, applying a random policy on a good initial state
(e.g., a bicycle in equilibrium) will on average lead to visit states with
decreasing values (the bicycle ultimately falls down). Such a demonstra-
tion, that is, a sequence of states with decreasing values, is used along
a standard learning-to-rank approach to define a pseudo-value function.
If the model of the environment is known, this pseudo-value directly
induces a policy by greedification. Otherwise, the bad demonstrations
are exploited together with off-policy learning to learn a pseudo-Q-value
function and likewise thence derive a policy by greedification. To our
best knowledge the use of bad demonstrations to achieve policy learning
is original. The theoretical analysis shows that the loss of optimality of
the pseudo value-based policy is bounded under mild assumptions, and
the empirical validation of AIPoL on the mountain car, the bicycle and
the swing-up pendulum problems demonstrates the simplicity and the
merits of the approach.

1 Introduction

Reinforcement learning aims at building optimal policies by letting the agent
interact with its environment [32,33]. Among the signature challenges of RL are
the facts that the agent must sufficiently explore its environment in order to
ensure the optimality of its decisions, and that the consequences of its actions
are delayed. Both facts raise severe scalability issues in large search spaces, which
have been addressed in two ways in the last decade (Sect. 2). One way relies on
the human expert’s support to speed up the discovery of relevant behaviors,
ranging from inverse reinforcement learning [1,27] and learning by imitation [5,
19,29] to learning from the expert’s feedback [2,15,25,35]. Another way relies on
the extensive interaction of the agent with its environment; it mostly operates in
simulated environments, where the agent can interact with the environment and
tirelessly evaluate and improve its policy without suffering exploration hazards;

c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 559–575, 2016.
DOI: 10.1007/978-3-319-46227-1 35



560 M. Sebag et al.

following the pioneering TD-Gammon [34], are the Monte-Carlo Tree Search
approaches [3,11,13,18] and Deep Reinforcement Learning [26].

Yet another approach is investigated in this paper, taking some inspiration
from the Inverse Reinforcement Learning setting, although it almost entirely
relaxes the expertise requirement on the human teacher. Specifically, the pro-
posed approach referred to as Anti Imitation-based Policy Learning (AIPoL) is
based on a weak prior knowledge: when in a good state, some trivial (random
or constant) policies will on average tend to deteriorate the state value, and lead
to a sequence of states with decreasing value. For instance, starting from the
state where the bicycle is in equilibrium, a random policy will lead the bicycle
to sooner or later fall down. This knowledge provides an operational methodol-
ogy to tackle RL with very limited support from the human expert: the human
expert is only asked to set the agent in a target state (e.g., the car on the top
of the mountain or the bicycle in equilibrium); from this initial state, the agent
applies a random policy, defining a trajectory. Contrasting with the IRL set-
ting, this demonstration is a bad demonstration, showing something that should
not be done. One merit of the approach is that it is usually much easier, and
requires significantly less expertise, to generate a bad demonstration than a good
one. However, such bad demonstrations provide an operational methodology to
derive a good value function, as follows. Assuming that the sequence of states
visited by the demonstration is such that the state value likely decreases along
time (the bicycle falls down and the car arrives at the bottom of the slope), a
value function can thus be derived on the state space along a learning-to-rank
framework [16]. If the model of the environment is known, this value function
directly defines a policy, enabling the agent to reach the target state. Otherwise,
the bad demonstrations are exploited together with off-policy learning to build
a Q-value function. The optimality loss of the resulting policy is bounded under
mild assumptions (Sect. 3).

The empirical validation of the approach is conducted on three benchmark
problems − the mountain car, the bicycle balancing and the swing-up pendulum
problems − and the performances are compared to the state of the art (Sect. 4).
The paper concludes with a discussion about the limitations of the AIPoL
approach, and some research perspectives.

Notations. In the rest of the paper the standard Markov decision process nota-
tions (S,A, p, r) are used: S and A respectively stand for the state and action
spaces, p : S × A × S �→ IR is the transition model (when known), with
p(s, a, s′) the probability of reaching state s′ after selecting action a in state
s, and r : S �→ IR is the deterministic, bounded reward function. At the core of
mainstream RL approaches are the value functions associated to every policy π.
V π : S �→ IR, yields for each state the expected discounted cumulative reward
gathered by following π from this state, with discount factor γ in [0, 1]. Likewise,
Q-value Qπ : S × A �→ IR associates to each state-action pair s, a the expected
discounted cumulative reward Qπ(s, a) gathered by selecting action a in state s
and following policy π ever after.
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V π(s) = r(s) + IEst∼p(st−1,π(st−1),·)
[∑

t
γtr(st)|s0 = s

]

Qπ(s, a) = r(s) + γ
∑

s′p(s, a, s′)V π(s′) (1)

2 State of the Art

While RL traditionally relies on learning value functions [32], their learning (using
dynamic programming and approximate dynamic approaches [4]) faces scalabil-
ity issues w.r.t. the size of state and action spaces.1 In the meanwhile, there is
some debate about the relevance of learning value functions to achieve reinforce-
ment learning, on the ground that solving an RL problem and defining a policy
only requires to associate an action with each state. Associating a value with each
state or each state-action pair thus requires more effort than needed to solve the
problem. Along this line, direct policy search (DPS) (see [9] for a comprehensive
presentation) directly tackles the optimization of the policy. Furthermore, DPS
does not need to rely on the Markovian assumption, thus making it possible to
deal with a more agile description of the search space. DPS faces two main difficul-
ties: (i) the choice of the parametric representation, granted that the optimization
landscape involves many local optima; (ii) the optimization criterion, the policy
return expectation, is approximated by an empirical estimate thereof, thus defin-
ing a noisy and expensive optimization problem.

Other RL trends addressing the limitations of learning either value functions
or policies are based on the expert’s help. In early RL, the human expert stayed
behind the stage, providing a precious and hidden help through the design of the
representation space and the reward function. In inverse reinforcement learning
(IRL), the expert explicitly sets the learning dynamics through demonstrating a
few expert trajectories, narrowing down the exploration in the vicinity of these
trajectories [1,5,19,28]. In preference-based reinforcement learning, the expert
is on the stage, interacting with the learning agent. Constrasting with IRL,
preference-based RL does not require the human expert to be able to demon-
strate a competent behavior; the expert is only assumed to be able to rank
state-action pairs [12,17], fragments of behaviors [35], or full-length trajectories
[2,15] while the RL agent achieves active ranking, focusing on the generation of
most informative pairs of state-actions, behaviors or trajectories. In summary,
RL increasingly puts the human expert in the learning loop, and relaxes the
expertise requirement; in counterpart, the RL agent becomes more and more
autonomous, striving to ask more informative preference queries to the expert
and to best exploit her input [25]. Supervised learning-based policy learning, pio-
neered by [20], also increasingly relies on expert knowledge. In [21], a sequence
of reward-sensitive classification problems is built for each time step, assuming
that the optimal actions will be executed in the remaining steps (akin structured

1 A most appealing approach sidestepping these scalability issues, Deep Reinforcement
Learning (see, e.g., [26]) requires intensive interactions between the learning agent and
the environment. It is outside the scope of this paper.
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learning [6]). In [22], Direct Policy Iteration (DPI) handles cost-sensitive clas-
sification problems where the loss function is defined from the Q-regret of the
current policy. Further work on DPI [7] use expert demonstrations. In [10], the
Classification-based Approximate Policy Iteration also relies on the estimation
of the Q-value based on the current policy.

As these classification-based RL approaches involve loss functions related to
the value regret, they rely on the estimation of the value function, which is com-
putationally or expertise-wise demanding. Another limitation of classification-
based RL approaches is related to the ties, that is, the fact that there might be
several optimal actions in a given state. A supervised learning approach address-
ing the tie issue is energy-based learning (EBL) [23]: When aiming at finding
a classifier h : X �→ Y, mapping an instance space X onto a (possibly struc-
tured) output space Y, the EBL claim is that in some cases, learning an energy
function g : X × Y �→ IR, and defining h(x) as

(
arg maxy∈Y g(x, y)

)
leads to sig-

nificantly more robust results than learning directly h. An appealing argument
for the EBL approach is that g is only defined up to a monotonous transforma-
tion.2 Along these lines, RL might be content with learning an energy-like value
function U(s, a), such that policy πU (s) = arg maxa∈A U(s, a) is a (nearly) opti-
mal policy, regardless of whether U satisfies the Bellman optimality equation.
Next section will present a methodology for learning such an energy-based value
function, however with limited help from the human expert.

3 Overview of AIPoL

3.1 Rationale

AIPoL is based on the assumption that, while quite some expertise is required
to perform an expert demonstration, it is usually very easy to generate terrible
demonstrations, in a sense defined below. Let V ∗ be the (unknown) optimal
value function, satisfying the Bellman equation for some 0 < γ ≤ 1:

V ∗(s) = r(s) + γ arg max
a∈A

∑
s′∈S

p(s, a, s′)V ∗(s′) (2)

Definition 1. A counter-demonstration (CD), is a sequence of states
(s1, . . . sT ) with decreasing V ∗ values, i.e., s.t.

∀ 1 ≤ i < j ≤ T, V ∗(si) > V ∗(sj)

Definition 2. Let E = {CD1, . . . CDn} be a set of n CDs, with CDi = (si,t, t =
1 . . . Ti). The learning-to-rank problem associated to E is defined from the set of
constraints si,t ≺ si,t′ ∀i in [1..n] and ∀1 ≤ t < t′ ≤ Ti.

Find Û = arg minU :S�→IR {L(U, E) + R(U)} (3)

with L a ranking loss function and R(U) a regularization term.
2 For any non-decreasing scalar function f , g and f ◦ g define the same classifier.
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Following the learning-to-rank setting [16] and denoting (A)+ = max(0, A), the
ranking loss function used in AIPoL is the sum of the hinge loss between U(si,t)
and U(si,t′) over all pairs (t, t′) such that 1 ≤ t < t′ < Ti, with i = 1 . . . n:

L(U, E) =
n∑

i=1

∑
1≤t<t′≤Ti

(U(si,t′) + 1 − U(si,t))+ (4)

A solution Û of Pb (3) (solved using e.g., [16,24]) is thereafter referred to as
pseudo-value function. Of course, it is unlikely that pseudo-value Û satisfies the
Bellman optimality equation (2). Nevertheless, it will be seen that the optimality
of the policy based on Û can be assessed in some cases, when V ∗ and Û define
sufficiently similar orderings on the state space.

AIPoL relies on the assumption that CDs can be easily generated without
requiring any strong expertise. CDs are additionally required to sufficiently visit
the state space, or the interesting regions of the state space. How much does
sufficient mean will be empirically assessed in Sect. 4.

3.2 AIPoL with a Known Transition Model

In this section, the transition model is assumed to be known. In the case of a
deterministic transition model, let s′

s,a denote the arrival state when selecting
action a in state s.

Definition 3. In the deterministic transition model case, the greedy policy based
on Û selects the action leading to the arrival state with maximal Û value:

πÛ (s) = arg max
a∈A

{
Û(s′

s,a)
}

(5)

It immediately follows from this definition that:

Proposition 1. In the deterministic transition setting, if Û derives the same
order on the state space as the optimal value function V ∗, i.e.,

∀(s, s′) ∈ S, (Û(s) > Û(s′)) ⇔ (V ∗(s) > V ∗(s′))

then greedy policy πÛ is an optimal policy.

In the case of a stochastic transition model, by slight abuse of notation
let s′

s,a denote a state drawn after distribution p(s, a, ·).
Definition 4. In the stochastic transition model case, the greedy policy based
on Û selects the action leading to the maximal Û value expectation:

πÛ (s) = arg max
a∈A

{
IEp(s,a,·)Û(s′

s,a)
}

(6)
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Some assumptions on the regularity of the transition model, on V ∗ and Û
are required to establish a result analogous to Proposition 1 in the stochastic
case. The main assumption regards the sub-Gaussianity of the transition model.
Note that this assumption does hold, of course, for Gaussian transition models,
and also in robotic settings, where the distance between two consecutive states
is bounded due to physical and mechanical constraints.

A guarantee on the πÛ optimality can be obtained under the following
assumptions:

Proposition 2. Assuming (1) a continuous optimal value function V ∗ on S;
(2) a pseudo-value Û deriving the same order on the state space as V ∗; (3) a
β-sub-Gaussian transition model, that is,

∀t ∈ IR+, IP(||IEs′
s,a − s′

s,a||2 > t) < 2e−βt2

(4) Û being Lipschitz with constant M , that is,

∀s, s′ ∈ S, |Û(s) − Û(s′)| < L||s − s′||2
(5) for all every s, there exists a margin between the best and the second best
action after Û , such that:

∀a′ 	= a = πÛ (s), IEÛ(s′
s,a) > IEÛ(s′

s,a′) + M (7)

Then, if 2L < Mβ, πÛ is an optimal policy.

Proof. The idea of the proof is the following: Consider the average value
IEV ∗(s′

s,a), where the expectation is taken over p(s, a, ·). By continuity of
V ∗ there exists a state noted s′

s,a,V in the neighborhood of IEs′
s,a such

that V ∗(s′
s,a,V ) = IEV ∗(s′

s,a). Likewise there exists a state s′
s,a′,V such that

V ∗(s′
s,a′,V ) = IEV ∗(s′

s,a′).
Let us assume by contradiction that optimal policy π∗ is such that

π∗(s) = a′ 	= a. It follows that

V ∗(s′
s,a′,V ) > V ∗(s′

s,a,V )

and therefore, as Û and V ∗ define same orderings on S,

Û(s′
s,a′,V ) > Û(s′

s,a,V ) (8)

Let us denote K(u) = ||s′
s,a′,V − s′

s,a′,u||. For any ε > 0, we have

|Û(s′
s,a′,V ) − IEuÛ(s′

s,a′)| = IEu|Û(s′
s,a′,V ) − Û(s′

s,a′,u)|
= IEK(u)<ε|Û(s′

s,a′,V ) − Û(s′
s,a′,u)|

+IEK(u)>ε|Û(s′
s,a′,V ) − Û(s′

s,a′,u)|
≤ Lε + L

∫ ∞
ε

t · 2e−βt2dt (∗)
≤ Lε + L

β e−βε2
< L(ε + 1

β )
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where (*) is derived using the Lipschitz property of Û and the sub-Gaussian
property of the transition model.

If L(ε + 1
β ) < M/2, then from Eq. (8) it comes:

IEÛ(s′
s,a′) + M/2 ≥ Û(s′

s,a′,V ) > Û(s′
s,a,V ) ≥ IEÛ(s′

s,a) − M/2

which contradicts the margin assumption (Eq. 7), hence the result. �
Overall, in the known transition model case, AIPoL proceeds by generating

the CDs, defining the associated ranking problem, finding a solution Û thereof
and building policy πÛ by greedification of Û (Algorithm 1).

Algorithm 1. Model-based AIPoL

Input: E = {CD1, . . . CDn}
Û = arg min {L(U, E) + R(U)} (Pb (3))

with L(U, E) (from Eq. 4) and R(U) an L2 regularization.
Return: πÛ (Eq. (5))

3.3 AIPoL with Unknown Transition Model

When the transition model is unknown, a pseudo Q-value Q̂ is built from the
pseudo-value Û learned from the CDs using off-policy learning. The intuition
is that, given Û and triplets (s1, a1, s

′
1) and (s2, a2, s

′
2), the pseudo Q-value of

state-action pair (s1, a1) is lower than for state action pair (s2, a2) if state s′
1

has a lower pseudo-value than s′
2 (Û(s′

1) < Û(s′
2)).

Definition 5. With the same notations as above, let Û be a pseudo value func-
tion solution of Pb (3), and let

G = {(si, ai, s
′
i), i = 1 . . . m}

be a set of state-action-next-state triplets. The learning-to-rank problem associ-
ated to G is defined from the set of ranking constraints (si, ai) ≺ (sj , aj) for all
i, j such that Û(s′

i) < Û(s′
j).

Find Q̂ = arg min
Q:S×A�→IR

{L(Q,G) + R(Q)} (9)

with L a loss function and R(Q) a regularization term.

In AIPoL, the ranking loss function is set to:

L(Q,G) =
m∑

i=1

m∑
j=1

yij (Q((si, ai) + 1 − Q(sj , aj))+ (10)

with yij = 1 iff Û(s′
i) < Û(s′

j) and 0 otherwise.
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Definition 6. Letting Q̂ be a pseudo Q-value function learned from Pb (9),
policy πQ̂ is defined as:

πQ̂(s) = arg max
a∈A

{
Q̂(s, a)

}
(11)

Some more care must however be exercized in order to learn accurate pseudo
Q-value functions. Notably, comparing two triplets (s1, a1, s

′
1) and (s2, a2, s

′
2)

when s1 and s2 are too different does not yield any useful information. Typically,
when Û(s1) � Û(s2), it is likely that Û(s′

1) > Û(s′
2) and therefore the impact of

actions a1 and a2 is very limited: in other words, the learned Q̂ does not deliver
any extra information compared to Û . This drawback is addressed by filtering the
constraints in Pb (9) and requiring that the triplets used to learn Q̂ be such that:

||s1 − s2||2 < η (12)

with η a hyper-parameter of the AIPoL algorithm (set to 10 % or 1 % of the state
space diameter in the experiments). Empirically, another filter is used, based on
the relative improvement brought by action a1 in s1 compared to action a2 in s2.
Specifically, the constraint (s1, a1)  (s2, a2) is generated only if selecting action
a1 in s1 and going to s′

1 results in a higher value improvement than selecting
action a2 in s2 and going to s′

2:

Û(s1) − Û(s′
1) > Û(s2) − Û(s′

2) (13)

Overall, the model-free AIPoL (Algorithm 2) proceeds by solving the model-
based problem (Algorithm 1), using traces (s, a, s′) to build the learning-to-rank
problem (9), finding a solution Q̂ thereof and building policy πQ̂ by greedification

of Q̂.

Algorithm 2. Model-free AIPoL

Input: E = {CD1, . . . CDn}
Input: G = {(si, ai, s

′
i), i = 1 . . . m}

Û = arg min {L(U, E) + R(U)} (Pb (3))
with L(U, E) (Eq. 4) and R(U) an L2 regularization.

Q̂ = arg min {L(Q, G) + R(Q)} (Pb (9))
with L(Q, G) (Eq. 10) and R(Q) an L2 regularization.

Return: πQ̂(s) (Eq. 11)

3.4 Discussion

In the model-based setting, the quality of the AIPoL policy essentially depends
on sufficiently many CDs to be generated with limited expertise, and on the
coverage of the state space enforced by these CDs. In many benchmark problems,
the goal is to reach a target state (the car on the mountain or the bicycle in
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equilibrium). In such cases, CDs can be generated by simply setting the starting
state to the target state, and following a random or constant policy ever after.
Such a trivial policy is likely to deviate from the good state region, and visit
states with lower and lower values, thus producing a CD. Additionally, the CDs
will sample the neighborhood of the target state; the pseudo value function Û
learned from these CDs will then provide a useful guidance toward the (usually
narrow) good region. The intuition behind AIPoL is similar to that of TD-
gammon [34]: the value function should steadily increase when reaching the
desirable states, regardless of satisfying the Bellman equation.

In the known transition model case, under the assumption that the pseudo
value Û induces the same ordering on the state space as V ∗, policy πÛ is optimal
in the deterministic case (Proposition 1). Under additional assumptions on the
regularity of the optimal value function V ∗, of Û and on the transition noise,
the optimality still holds in the stochastic transition case (Proposition 2). This
is true even though no reward is involved in the definition of Û .

In the unknown transition model case, the constraints used to learn Q̂ intro-
duce a systematic bias, except in the case where the reward function r is equal
to 0 almost everywhere. Let us consider the deterministic case for simplicity. By
definition,

Q∗(s1, a1) = r(s1) + γV ∗(s′
1)

If the reward function is equal to 0 almost everywhere, then with high probability:

(V ∗(s′
1) > V ∗(s′

2)) ⇔ (Q∗(s1, a1) > Q∗(s2, a2))

Then, if Û induces the same ordering on the state space as V ∗, the constraints on
Q̂ derived from the traces are satisfied by Q∗, and the learning-to-rank problem
(9) is noiseless.

Otherwise, the difference between the instantaneous rewards r(s1) and r(s2)
can potentially offset the difference of values between s′

1 and s′
2, thus leading to

generate noisy constraints. The generation of such noisy constraints is alleviated
by the additional requirement on the constraints (Eq. 13), requiring the Û value
gap between s1 and s′

1 be larger than between s2 and s′
2.

Overall, the main claim of the AIPoL approach is that generating CDs,
though requiring much less expertise than that required to generate quasi expert
behavior or asking the expert to repair or compare behaviors, can still yield
reasonably competent policies. This claim will be examined experimentally in
next section.

4 Experimental Validation

This section presents the experimental setting used for the empirical validation
of AIPoL, before reporting and discussing the comparative results.
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4.1 Experimental Setting

The AIPoL performance is assessed on three standard benchmark problems:
The mountain car problem, using SARSA as baseline [31]; The bicycle balancing
problem, using preference-based reinforcement learning as baseline [2,35]; the
under-actuated swing-up pendulum problem, using [14] as baseline. In all exper-
iments, the pseudo-value Û and Q̂ functions are learned using Ranking-SVM
with Gaussian kernel [16]. The hyper-parameters used for all three benchmark
problems are summarized in Table 1.

The first goal of the experiments is to investigate how much knowledge is
required to generate sufficiently informative CD, enabling AIPoL to yield state-
of-art performances. This issue regards (i) the starting state of an CD, (ii) the
controller used to generate an CD, (iii) the number and length of the CDs. A
second goal is to examine whether and to which extent the performances obtained
in the model-free setting (transition model unknown) are degraded compared to
the model-based setting. A third goal is to investigate the sensitivity of the
AIPoL performance w.r.t. the algorithm hyper-parameters (Table 1), including:
(i) the number and length of the CDs; (ii) the Ranking-SVM hyper-parameters C
(weight of the data fitting term) and σ (Gaussian kernel width); (iii) the AIPoL

parameter η used to filter the ordering constraints used to learn Q̂ (Eq. 12).

Table 1. AIPoL hyper parameters on the three benchmark problems: number and
length of CDs, starting state and controllers used to generate the CDs; hyper parame-
ters used to learn pseudo-value Û (parameters C1 and 1/σ2

1 ; hyper-parameters used to

learn pseudo value Q̂ (parameters C2 and 1/σ2
2 ; # of constraints).

Mountain car Bicycle Pendulum

CD number 1 20 1

length 1,000 5 1,000

starting state target st random target st

controller neutral random neutral

Û C1 103 103 10−5

1/σ2
1 10−3 10−3 .5

Q̂ nb const 500 5,000 −
C2 103 103 −
1/σ2

2 10−3 10−3 −

4.2 The Mountain Car

Following [31], the mountain car problem involves a 2D state space (position,
speed), and a discrete action space (backward, neutral position, forward). The
friction coefficient ranges in [0, .02]. AIPoL is compared to the baseline SARSA
with λ = .9, α = .05/10m, ε = 0, with 9 × 9 tile coding, with 100 episodes for
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Fig. 1. Mountain car: Number of time
steps to reach the goal for AIPoL (solid
blue line) and SARSA (dashed red line)
vs friction value (average and standard
deviation over 20 runs) (Color figure
online)
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Fig. 2. Bicycle (model-based setting):
Fraction of success of AIPoL w.r.t.
number and length of CDs.

learning, stopping an episode whenever a terminal state is reached, or after 1000
steps. AIPoL uses 1 CD of length 1000. In the unknown transition model case,
the 500 constraints are generated from random trajectories where pairs (s, a)
and (s′a′) were selected subject to constraints (Eqs. 12 and 13) with proximity
threshold η = 10%.

The performances are excellent for both known (1 CD with length 1,000) and
unknown transition model cases, with negligible runtime. Figure 3a depicts the
CD in the 2D (position, speed) space, starting from the target state and selecting
the neutral action for 1,000 time steps. The pseudo-value Û function learned by
AIPoL and the approximation of V ∗ learned by SARSA in two representative
runs are respectively displayed in Fig. 3b and c, showing that Û is very smooth
compared to that approximate value.

Figure 3e and f display the policy based on Q̂ in the model-free case, and the
optimal policy learned by SARSA, suggesting that the policy learned by AIPoL
is much simpler than for SARSA. Figure 3d shows a typical trajectory based on
the AIPoL policy in the model-free case.

The sensitivity analysis shows that the main parameter governing the AIPoL
performance on the mountain car problem is the friction (Fig. 1). For low friction
values, the dynamics is quasi reversible as there is no loss of energy; accordingly,
letting the car fall down from the target state does not generate a sequence of
states with decreasing value (the value of the state intuitively increases with its
energy). In the low friction region (friction in [0, .05]), AIPoL is dominated by
SARSA. For high friction values (> .02), the car engine lacks the required power
to climb the hill and both approaches fail. For moderate friction values (in [.01,
.02]), AIPoL significantly outperforms SARSA.
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Fig. 3. The mountain car problem: Comparative evaluation of AIPoL and SARSA in
the model-free setting, on two representative runs (friction = .01). The policy map
visually displays the selected action for each state in the 2D (position, speed) space
(best seen in color: red= forward, blue= backward, green= neutral). (Color figure
online)

4.3 The Bicycle Balancing

Following [20], the bicycle balancing problem involves a 4-dimensional state space
(the angles of the handlebar and of the bicycle and the angular velocities), and
a 3-action action space (do nothing, turn the handlebar left or right, lean the
rider left or right). The goal is to maintain the bicycle in equilibrium for 30,000
time steps; note that a random controller starting from the equilibrium state
(0, 0, 0, 0) leads the bicycle to fall after 200 steps on average.

Known Transition Model Case. To assess the sensitivity of the approach w.r.t.
the starting state, the CDs are generated using a random starting state and a
random controller. The definition of the policy πÛ (Eq. 5) is adapted to account
for the fact that, due to the temporal discretization of the transition model [20],
the effect of action at on the angle values is only visible in state st+2. Some look-
ahead is thus required to define the greedy policy πÛ . Formally, the selected
action is obtained by maximization of the value obtained after two time steps:

πÛ (s) = argmax
a∈A

{max
a′∈A

IEÛ(s′′
s̄′
s,a,a′)}

Given this definition, AIPoL only requires 20 CD of length 5 to learn a
competent policy, keeping the bicycle in equilibrium for over 30,000 time steps
with high probability (in all of the 100 runs, Fig. 2). In comparison, the state
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of the art requires a few dozen trajectories to be ranked by the expert (15 for
[2] and 20 for [35]), the starting point of which is close to the equilibrium. With
same starting point, AIPoL reaches the goal (keeping the bicycle in equilibrium
100 times out of 100 runs) with a single CD of length 5.

Unknown Transition Model Case. The ordering constraints on the state-
action pairs likewise take into account the temporal discretization and the
delayed impact of the actions. Formally, from sequences (s1, a1, s

′
1, a

′
1, s

′′
1) and

(s2,a2, s
′
2, a

′
2, s

′′
2), constraint (s1, a1)  (s2, a2) is generated if

Û(s′′
1) − Û(s1) > Û(s′′

2) − Û(s2)

The proximity threshold is set to η = 1%. 5,000 constraints are required to
achieve the same performance as in the model-based setting.

4.4 The Under-Actuated Swing-Up Pendulum

Following [14], the swing-up pendulum involves a 2-dimensional state space
(s = (θ, θ̇)) and a 3 action space. The pendulum has two equilibrium states,
a stable one and an unstable one. The goal, starting from the stable state (bot-
tom position) is to reach the unstable one (top position). The task is under-
actuated since the agent has a limited torque and must gain some momentum
before achieving its swing-up. The task is stopped after 20 s or when the agent
successfully maintains the pendulum in an up-state (θ < π/4) for 3 consecutive
time steps. Only the model-based setting has been considered for the pendulum
problem, with a computational cost of 3 s.

On the pendulum problem, the sensitivity of the approach w.r.t. the Ranking-
SVM hyper-parameters is displayed in Fig. 4. Two failure regions appear when
learning the pseudo-value Û from a single CD of length 1,000: if the kernel width
is too small, there is no generalization and the pendulum does not reach the top.

Fig. 4. The pendulum problem: Sensitivity of AIPoL performance (average over 10
runs) w.r.t Ranking-SVM hyper-parameters C and 1/σ2 (see text for details).
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If the kernel width is too large, the accuracy is insufficient and the pendulum
does not decrease its speed sufficiently early: it reaches the top and falls down
on the other side. For good hyper-parameter settings (C = 1 and 1/σ2 ranging
in [1.7, 2.7]; or C and 1/σ2 very small), the pendulum reaches the target state in
3 s and stays there. The AIPoL performance matches the state of the art [14],
which relies on a continuous variant of the Bayes-adaptive planning, and achieves
the goal (staying in an up-state for 3 s) after on average 10 s of interaction.

5 Discussion and Perspectives

The AIPoL approach to reinforcement learning has been presented together
with an analytic and empirical study of its performances. Its main novelty is
twofold compared to the state of the art. On the one hand, AIPoL learns a
pseudo-value function and derives a policy by greedification; computationally-
wise, it tackles a much less complex problem than e.g., inverse reinforcement
learning [1,19] (learning a reward function and solving a complete RL prob-
lem) or preference-based RL [2] (learning a return value and solving a difficult
optimization problem). In addition, AIPoL significantly relaxes the require-
ments on the human teacher. She is not required to perform (nearly) optimal
demonstrations as in IRL, or to compare, and possibly repair, trajectories as in
preference-based learning: she is only required to know what will go wrong.

In the mountain car and the pendulum problems, AIPoL uses informed CDs
(starting in the target state). In the bicycle problem however, the CD sequences
start in a random state. In this latter case, the pseudo value function coarsely
leads to get away from state regions with low value: the inadequacy of the pseudo
value in low value regions is (almost) harmless should the learning agent spend
little or no time in these regions.

A first limitation of the AIPoL approach, illustrated on the bicycle problem,
is when the effect of the selected actions is fully visible after a few time steps, that
is, when the transition dynamics involves some latency. This latency occurs when
some coordinates of action at (e.g. the angular speed) make no difference on state
st+1 and only influence e.g. st+�. In this case some look-ahead is required in the
greedification process. The extra computational cost is in O(|A|�), exponential
in the latency � and in the size of the action set. Note that this phenomenon,
distinct from the delayed rewards of the actions, only concerns the transition
dynamics: An alternative could be to commit to an action for a sequence of time-
steps, rather than just a single step [26]. A second limitation of the approach
is that the computational cost of building the Q-value function might be high
(e.g. on the swing-up pendulum) as it scales up quadratically with the number of
ranking constraints. Other ranking approaches with linear learning complexity
will be considered (e.g., based on neural nets [30] or ranking forests [8]) to
address this limitation. A third and most important limitation concerns the
non-reversible MDP case, where the transition from s to s′ might take much
longer than from s′ to s. Further work is on-going to address the non reversible
case. A main theoretical perspective is to investigate the quality of the AIPoL
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policy in the unknown transition model case, depending on the structure of the
MDP dynamics and the sparsity of the reward function.

Acknowledgments. We wish to thank the anonymous reviewers for their insightful
comments, which helped to greatly improve the paper.
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Abstract. Subtropical algebra is a semi-ring over the nonnegative real
numbers with standard multiplication and the addition defined as the
maximum operator. Factorizing a matrix over the subtropical algebra
gives us a representation of the original matrix with element-wise max-
imum over a collection of nonnegative rank-1 matrices. Such structure
can be compared to the well-known Nonnegative Matrix Factorization
(NMF) that gives an element-wise sum over a collection of nonnegative
rank-1 matrices. Using the maximum instead of sum changes the ‘parts-
of-whole’ interpretation of NMF to ‘winner-takes-it-all’ interpretation.
We recently introduced an algorithm for subtropical matrix factoriza-
tion, called Capricorn, that was designed to work on discrete-valued
data with discrete noise [Karaev & Miettinen, SDM ’16]. In this paper
we present another algorithm, called Cancer, that is designed to work
over continuous-valued data with continuous noise – arguably, the more
common case. We show that Cancer is capable of finding sparse factors
with excellent reconstruction error, being better than either Capricorn,
NMF, or SVD in continuous subtropical data. We also show that the
winner-takes-it-all interpretation is usable in many real-world scenarios
and lets us find structure that is different, and often easier to interpret,
than what is found by NMF.

1 Introduction

Matrix factorizations such as Singular Value Decomposition (SVD) or Nonneg-
ative Matrix Factorization (NMF) are among the most-used methods in data
analysis. One way to interpret the factorization is the so-called ‘components
view’ that considers the factorization as a sum of rank-1 matrices. The rank-1
matrices can be considered as patterns found from the data, and different con-
straints on the factorizations yield different types of patterns. The non-negativity
constraint in NMF, for example, yields patterns that are ‘parts-of-whole’.

Instead of – or in addition to – constraining the rank-1 matrices, we can also
change how we aggregate them. For factorizations made under the standard alge-
bra, the aggregation is always the standard sum, but if we change the algebra,
we can have different kinds of aggregations. One possible algebra is the so-called
subtropical algebra: a semi-ring over the non-negative real numbers with the stan-
dard multiplication but with the addition defined as the maximum operation.
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 576–592, 2016.
DOI: 10.1007/978-3-319-46227-1 36
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A subtropical factorization gives us non-negative rank-1 matrices, just as NMF,
but unlike NMF’s parts-of-whole interpretation, the subtropical factors are best
interpreted using the ‘winner-takes-it-all’ interpretation: for each element of the
matrix, only the largest value in any of the rank-1 components matter.

The winner-takes-it-all interpretation means that each rank-1 component
tries to present a dominant pattern: the elements should be as close to the
original matrix’s elements as possible (but without being much larger) to have
any effect to the final outcome of the factorization. Consequently, the values of
a component that do not contribute to the final result (i.e. are not the largest
ones) can be made as small as possible without any adverse effects; often, many
of them can simply be set to 0.

Recently, we introduced an algorithm for subtropical matrix factorization
called Capricorn [9]. Capricorn aims at finding subtropical factorizations from
discrete-valued (e.g. integer) data and consequently, it also assumes a discrete
noise model where only some of the entries are perturbed. We also empirically
validated that Capricorn is capable of finding the exact subtropical decom-
position if it exists. Many real-world data, however, are better modelled using
Gaussian noise, where every element is slightly perturbed, but Capricorn often
fails finding good factorizations from such data sets. In this paper we present
Cancer, another algorithm for subtropical factorizations. Cancer is comple-
mentary to Capricorn as it is designed to work well on data perturbed with
Gaussian noise; conversely, Cancer does not do well if the noise follows the
model Capricorn was designed for. One could say that if Capricorn is the
south, Cancer is the north.

2 Related Work

Our recent work on the Capricorn algorithm [9] is, to the best of our knowledge,
the only existing work using tropical or subtropical algebra in data analysis. It
also provides a number of theoretical results regarding the subtropical algebra
and its close cousin, the tropical algebra (see below). Another application of
subtropical algebra is [12], where it is used as a part of a recommender system.

In general, though, matrix factorization methods are ubiquitous in data
analysis. A popular example is the nonnegative matrix factorization (NMF)
(see, e.g. [5]), where the factorization is restricted to the semi-ring of the
nonnegative real numbers. Another example of a matrix factorization over a
non-standard algebra is the Boolean matrix factorization (see [11]), where the
factorization is restricted to binary matrices and the algebra is the Boolean one
(i.e. the summation is defined as 1 + 1 = 1).

The tropical, or max-plus, algebra [1] is another semi-ring over the extended
set of reals R ∪ {−∞} with addition defined as the maximum operator and the
multiplication defined as the standard plus operator. Tropical and subtropical
algebras are isomorphic (take the logarithm of the latter to obtain the former),
and as such, many results obtained for max-plus automatically hold for max-
times, although this is not directly true in the case of approximate matrix factor-
izations (see [9]). Despite the theory of max-plus algebra being relatively young,
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it has been thoroughly studied in recent years. The reason for this is an explosion
of interest in so called discrete event systems (DES) [4], where max-plus algebra
has become ubiquitously used for modeling (see e.g. [2,6]).

Yet another approach of computing the matrix factorization over non-
standard algebras involves using the �Lukasiewicz algebra. They have been
recently applied to decompose matrices with grade values [3].

3 Notation and Definitions

Throughout this paper, we will denote a matrix by upper-case boldface letters
(A), and vectors by lower-case boldface letters (a). The ith row of matrix A is
denoted by Ai and the jth column by Aj . The matrix A with the ith column
removed is denoted by A−i, and A−i is the respective notation for A with
a removed row. Most matrices and vectors in this paper are restricted to the
nonnegative real numbers R+.

In this paper we consider matrix factorization over so called max-times alge-
bra. It differs from the standard algebra of real numbers in that addition is
replaced with the operation of taking the maximum. Also the domain is restricted
to the set of nonnegative real numbers.

Definition 1. The max-times (or subtropical) algebra is a set R+ of nonneg-
ative real numbers together with operations a � b = max{a, b} (addition) and
a � b = ab (multiplication) defined for any a, b ∈ R+. The identity element for
addition is 0 and for multiplication it is 1.

In the future we will use the notation a � b and max{a, b} and the names max-
times and subtropical interchangeably. It is straightforward to see that the max-
times algebra is a dioid, that is, a semiring with idempotent addition (a � a = a).
It is important to note that subtropical algebra is anti-negative, that is, there is
no subtraction operation.

The subtropical matrix algebra follows naturally:

Definition 2. The max-times matrix product of two matrices B ∈ R
n×k
+ and

C ∈ R
k×m
+ is defined as

(B � C)ij =
k

max
s=1

BisCsj . (1)

The definition of a rank-1 matrix over the max-times algebra is the same
as over the standard algebra, i.e. a matrix that can be expressed as an outer
product of two vectors. We will use the term block to mean a rank-1 matrix.
The general rank of a matrix over the max-times algebra is defined analogously
to the standard Schein rank:

Definition 3. The max-times rank of a matrix A ∈ R
n×m
+ is the least inte-

ger k such that A can be expressed as a max of k rank-1 matrices, A =
F 1 � F 2 � · · · � F k, where all F i are rank-1.
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Now that we have sufficient notation, we can formally introduce the main
problem considered in the paper.

Problem 1. Given a matrix A ∈ R
n×m
+ and an integer k > 0, find factor matrices

B ∈ R
n×k
+ and C ∈ R

k×m
+ minimizing

E(A,B,C) = ‖A − B � C‖2F =
∑
i,j

(Aij − (B � C)ij)2. (2)

4 Algorithm

As we work over the max-times algebra, the common approaches for finding
matrix factorizations under normal algebra do not work as such. The main prob-
lem is the non-linear behavior of the maximum function, and our algorithm tries
to alleviate the problems caused by it. The two main ideas we employ are updat-
ing the rank-1 factors one-by-one in an iterative fashion, and approximating the
max-times reconstruction error with a low-degree polynomial. The first idea is
similar to what we used in [9], except that here we only update parts of the rank-
1 factors. The motivation behind this is to avoid building few factors that try
to explain the whole data (badly), but instead build many factors that explain
small parts of the data well.

4.1 The Main Algorithm

Our proposed algorithm, Cancer, is outlined in Algorithm1. It accepts as input
the data to be decomposed A, the required rank k, and three additional scalar
parameters M , t, and f . Integer M is the number of cycles that the algorithm will
make, that is each one of k blocks will be visited M times. A reasonable value
for M would be 15 since further rounds provide only marginal improvement,
although to make sure that the algorithm has converged, a value as high as
40 might be required. The next parameter, t ∈ N, represents the maximum
allowed degree of polynomials: after each cycle the degree of polynomials used
for approximation is incremented, but when it reaches t, it is reset to the value
of 2. Typically, we can set t = 16. Finally, f ∈ (0, 1) controls how much of
each block (rank-1 matrix) is revealed on each iteration. Namely, each block
bc ∈ R

n×m
+ consists a total of n + m variables, and the maximum number of

variables we can change when a block is visited is �f(n + m)/2�. The algorithm
outputs two factor matrices B ∈ R

n×k
+ and C ∈ R

k×m
+ whose product is a rank-k

max-times approximation of A.
Cancer starts with empty blocks (line 2) and updates them iteratively

(lines 6–14) using the UpdateBlock routine (line 9). UpdateBlock updates one
block while keeping all others fixed. We then compare the current decomposition
to the best one seen so far, and if it provides an improvement, then the best solu-
tion is replaced with the current one (lines 10–12). The final step of the loop is to
increment the degree of polynomials used for approximation (lines 13–14). Intu-
itively, lower degrees polynomials give more latitude for varying the variables,
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Algorithm 1. Cancer
Input: A ∈ R

n×m
+ , k > 0, M > 0, t > 2, 0 < f < 1

Output: B∗ ∈ R
n×k
+ , C∗ ∈ R

k×m
+

1: function Cancer (A, k, M, t, f)
2: B ← 0n×k, C ← 0k×m

3: B∗ ← B,C∗ ← C
4: bestError ← E(A,B,C)
5: deg ← 2
6: for count ← 0 to k × M − 1 do
7: i ← count (mod k) + 1 � Index of the current block.
8: N ← B−i � C−i � Reconstructed matrix without the i-th block.
9: [Bi,C i] ← UpdateBlock(A,N ,Bi,C i, deg, f)

10: if E(A,B,C) < bestError then
11: B∗ ← B,C∗ ← C
12: bestError ← E(A,B,C)

13: if count > k and count (mod k) = 0 then
14:

deg ←
{
deg + 1 if deg < t

2 otherwise

15: return B∗, C∗

whereas polynomials of higher degrees are better suited for finalizing results
since they provide better approximations. This is similar to an execution of a
simulated annealing algorithm, where high temperatures are used to make big
steps and get out of local minima, and lower temperatures are better suited for
converging to a particular minimum. In our case low degrees correspond to high
temperatures and vice versa.

Most of the time the reconstruction error decreases gradually with increased
iterations of Cancer. There are however rare cases where it would remain almost
constant for some time or even increase slightly, and then start dropping again.
For this reason the algorithm is run until all cycles are complete and is not
stopped using any sort of convergence criteria.

4.2 Updating a Block

The UpdateBlock procedure (Algorithm 2) performs the work of updating a
single block bc ∈ R

n×m
+ on one iteration of Cancer. It takes a block bc, where

b ∈ R
n×1
+ and c ∈ R

1×m
+ , and performs alternating updates of b and c one

element at a time using the AdjustOneElement function. That function is called
�f(n + m)/2� times to update only a part of the block, as explained above.

The AdjustOneElement function (Algorithm3) updates a single entry in
either a column vector b or a row vector c. Let us consider the case when b
is fixed and c varies. In order to decide which element of c to change, we need
to compare the best changes to all m entries and then choose the one that yields
the most improvement to the objective. A single element cl only has an effect on
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Algorithm 2. UpdateBlock
Input: A ∈ R

n×m
+ , N ∈ R

n×m
+ , b ∈ R

n×1
+ , c ∈ R

1×m
+ , deg ≥ 2, 0 < f < 1

Output: b ∈ R
n×1
+ , c ∈ R

1×m
+

1: function UpdateBlock (A,N , b, c, deg, f)
2: niters ← �f(n + m)/2�
3: for count ← 1 to niters do
4: c = AdjustOneElement(A,N , b, c, deg)
5: b = AdjustOneElement(AT ,NT , cT , bT , deg)T

6: return b, c

Algorithm 3. AdjustOneElement
Input: A ∈ R

n×m
+ , N ∈ R

n×m
+ , b ∈ R

n×1
+ , c ∈ R

1×m
+ , deg ≥ 2

Output: c ∈ R
1×m
+

1: function AdjustOneElement (A,N , b, c, deg)
2: for j ← 1 to m do
3: baseError ←∑n

i=1 (Aij − max{N ij , bicj})2

4: [err,xi] ← PolyMin(Aj ,N j , b, deg)
5: ui ← baseError − err

6: i ← the index i of largest value of u
7: ci ← xi

8: return c

the error along the column l. Assume that we are currently updating block with
index q and let N denote the reconstruction matrix without this block, that is
N = B−q � C−q. Minimizing E(A,B,C) with respect to cl is then equivalent
to minimizing

γ(Al,N l, b, cl) =
n∑

i=1

(Ail − max{N il, bicl})2. (3)

Instead of minimizing (3) directly, we use polynomial approximation in the
PolyMin routine (line 4). The routine returns the (approximate) error err and
the value x achieving that. Since we are only interested in the improvement of the
objective achieved by updating a single entry of c, we compute the improvement
of the objective after the change (line 5). After trying every column of c, we
update only the column that yield the largest improvement.

4.3 The PolyMin Procedure

The function γ that we need to minimize in order to find the best change to
the vector c in AdjustOneElement is hard to work with directly since it is not
convex, and also not smooth because of the presence of the maximum operator.
To alleviate this, we approximate the error function γ with a polynomial g of
degree deg. Notice that when updating cl, other variables of γ are fixed and we
only need to consider function γ′(x) = γ(Al,N l, b, x). To build g we sample
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deg + 1 points from (0, 1) and fit g to the values of γ′ at these points. We then
find the x ∈ R+ that minimizes g(x) and return g(x) (the approximate error)
and x (the optimal value).

4.4 Computational Complexity

We will express the complexity of the algorithm asymptotically in terms of the
dimensions of the input data n and m and the rank k of the factorization. Most
of the work in Cancer is performed in the UpdateBlock routine, which is called
Mk times. UpdateBlock is in turn just a loop that calls AdjustOneElement
�f(n + m)� times. In AdjustOneElement the contributors to the complexity are
computing the base error (line 3) and a call to PolyMin (line 4). Both of them are
performed n or m times depending on whether we supplied the column vector
b or the row vector c to AdjustOneElement. Finding the base error takes time
O(m) for b and O(n) for c. The complexity of PolyMin boils down to that of
evaluating the max-times objective at deg + 1 points and then minimizing a
degree deg polynomial. Hence, PolyMin runs in time O(m) or O(n) depending
on whether we are optimizing b or c, and the complexity of AdjustOneElement
is O(nm). Since the parameters f and M are fixed, this gives the complexity
O

(
(n + m)nm

)
for UpdateBlock and O

(
(n + m)nmk

)
= O(max{n,m}nmk) for

Cancer.

5 Experiments

In this section we evaluate the performance of Cancer against other algorithms
on various synthetic and real-world datasets. The purpose of the synthetic exper-
iments is to verify that Cancer is capable of finding subtropical structure from
data where we know it is present, and to evaluate its performance under different
data characteristics in a controlled manner. Our tests demonstrate that Cancer
not only provides better approximations than other methods, but also produces
much sparser factors. The main purpose of experiments with real-world datasets
is to see if they possess the max-times structure and whether Cancer is capable
of extracting it.

Setting the parameters for Cancer. For all synthetic experiments we used M =
14, t = 16, and f = 0.1. For the real world experiments we set t = 16, f = 0.1,
and M = 40 (except for Eigenfaces for which we used M = 50).

5.1 Other Methods

We compared Cancer against Capricorn, which is our previous tropical matrix
factorization algorithm designed for discrete data [9],1 SVD, and four different

1 The source code for Cancer and Capricorn and the scripts to repeat the experiments
are available at http://people.mpi-inf.mpg.de/∼pmiettin/tropical/.

http://people.mpi-inf.mpg.de/~pmiettin/tropical/
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versions of NMF. The first form of NMF is a sparse NMF algorithm by Hoyer [8],2

which we call SNMF. Hoyer’s algorithm [8] defines the sparsity of a vector x ∈
R

n
+ as

sparsity(x) =
√

n − (
∑

i|xi|) /
√∑

i x
2
i√

n − 1
, (4)

and returns factorization where the sparsity of the factor matrices is user-
controllable. In all of our experiments, we used the sparsity of Cancer’s factors
as the sparsity parameter of SNMF.

The second form of NMF is a standard alternating least squares algorithm
called ALS [5]. The remaining two versions of NMF are essentially the same as
ALS, but they use L1 regularization for increased sparsity [5], that is, they aim
at minimizing

‖A − BC‖F + α‖B‖1 + β‖C‖1.
The first method is called ALSR and uses regularizer coefficient α = β = 1,

and the other, called ALSR 5, has regularizer coefficient α = β = 5. All NMF
algorithms were restarted 10 times, and the best result was selected.

5.2 Synthetic Experiments

The general setup of synthetic experiments is as follows. First we create data that
is guaranteed to have the subtropical structure by generating random factors of
some density with nonzero elements drawn from a uniform distribution on the
[0, 1] interval and then multiplying them using the max-times matrix product.
Then we add noise and feed the obtained noisy matrices into algorithms to see
how well they can approximate the original data. We distinguish two types of
noise. One is the normal, or Gaussian, noise with 0 mean, for which we define
the level of noise to be its standard deviation. Since adding this noise to the data
might result in negative entries, we truncate all values in a resulting matrix that
are below zero. We use two noise levels, 0.01 and 0.08, called low and high noise
levels, respectively.

The other type of noise is a discrete (tropical) noise, which is introduced in
the following way. Assume that we are given an input matrix A of size n-by-
m. We first generate an n-by-m noise matrix N with elements drawn from a
uniform distribution on the [0, 1] interval. Given a level of noise l, we then turn
�(1− l)nm� random elements of N to 0, so that its resulting density is l. Finally,
the noise is applied by taking elementwise maximum between the original data
and the noise matrix F = max{A,N}.

All synthetic experiments were performed on 1000-by-800 matrices. In all
tests, except those with varying rank, the true max-times rank of the data was 10.
For all experiments we report errors, which are measured as relative Frobenius
errors between original and reconstructed matrices, that is, E(A,B,C)/‖A‖2F .

2 https://github.com/aludnam/MATLAB/tree/master/nmfpack.

https://github.com/aludnam/MATLAB/tree/master/nmfpack


584 S. Karaev and P. Miettinen

We also report the sparsity s of factor matrices obtained by algorithms, which
is defined as a fraction of zero elements in the factor matrices,

s(A) = |{(i, j) : Aij = 0}|/(nm), (5)

for an n-by-m matrix A. The results were averaged over 10 repetitions. The
reconstruction errors are reported in Fig. 1 and the sparsities in Fig. 2.

Varying Gaussian noise. Here we investigate how the algorithms respond to
different levels of Gaussian noise, which was varied from 0 to 0.14 with increments
of 0.01. A level of noise is a standard deviation of the noise matrix as described
earlier. The factor density was kept at 50 %. The results are given on Fig. 1(a)
(reconstruction error) and Fig. 2(a) (sparsity of factors).

Here, Cancer is generally the best method in reconstruction error, and second
in sparsity only to Capricorn. The sole exception to reconstruction error is the
no-noise case, where Capricorn – as designed – obtains essentially a perfect
decomposition, though its results deteriorate rapidly with increased noise levels.

Varying density. In this experiment we studied what effects the density of factor
matrices used in data generation has on the algorithms’ performance. For this
purpose we varied the density from 10 % to 100 % with increments of 10 % while
keeping the other parameters fixed. There are two versions of this experiment,
one with low noise level of 0.01 (Figs. 1(b) and 2(b)), and a more noisy case at
0.08 (Figs. 1(c) and 2(c)).

Cancer provides the least reconstruction error in this experiment, being
clearly the best until the density is 0.7, from which point on it is tied with SVD
and the NMF-based methods (the only exception being the least-dense high-
noise case, where ALSR obtains slightly better reconstruction error). Capricorn
is the worst by a wide margin, but this is not surprising, as the data does not
follow its assumptions. On the other hand, Capricorn does produce generally
the sparsest factorization, but these are of little use given its bad reconstruction
error. Cancer produces the sparsest factors from the remaining methods, except
in the first few cases where ALSR 5 is sparser (and worse in reconstruction error),
meaning that Cancer produces factors that are both the most accurate and very
sparse.

Varying rank. The purpose of this test is to study the performance of algorithms
on data of different max-times ranks. We varied the true rank of the data from
2 to 20 with increments of 2. The factor density was fixed at 50 % and Gaussian
noise at 0.01. The results are shown on Fig. 1(d) (reconstruction error) and
Fig. 2(d) (sparsity of factors). The results are similar to the two above ones, with
Cancer returning the most accurate and second-most sparsest factorizations.

Varying tropical noise. In this setup we used the tropical noise instead of the
Gaussian one. The level of noise represents the density of the noise matrix with
which the original data is ‘maxed’. We varied the noise from 0 % to 14 % with
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increments of 1 %. There are two forms of this experiment, one with density
50 % (Fig. 1(e) shows the reconstruction error and Fig. 2(e) shows the sparsity
of factors) and with density 90 % (Figs. 1(f) and 2(f), respectively).

As Capricorn was designed for tropical noise, unlike Cancer that was
designed for standard ‘white’ noise, it obtains the least reconstruction error of all
the methods (albeit with high deviation when the noise density is higher). Cancer
is generally the second-best method, although with the high-density noise, it is
mostly tied with SVD, ALS and ALSR. In the sparsity of the factors, Cancer and
Capricorn are quite similar, with Capricorn having slightly sparser factors in
the low-density noise case, but Cancer having an edge in the high-density noise
case. In the latter case, ALSR 5 is also comparable on sparsity, but clearly the
worst in reconstruction error.

Discussion. The synthetic experiments verify that Cancer can find the max-
times structure from the data when it is present and potentially perturbed with
Gaussian noise. It also shows strong invariance over the level of noise, rank,
or density of the factors. The experiments also highlight the design differences
between Cancer and Capricorn: the former is superior in Gaussian noise situ-
ation, while the latter excels with tropical noise. If the type of noise cannot be
predetermined, it seems it is best to try both methods.
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Fig. 1. Reconstruction error (Frobenius norm) for synthetic data. The markers are
averages of 10 random matrices and the width of the error bars is twice the standard
deviation.
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Fig. 2. Sparsity (fraction of zeroes) of the factor matrices for synthetic data. The
markers are averages of 10 random matrices and the width of the error bars is twice
the standard deviation.

5.3 Real-World Experiments

The main purpose of the real-world experiments is to study to which extend
Cancer can find max-times structure from various real-world data sets. Having
established with the synthetic experiments that Cancer is indeed capable of
finding the structure when it is present (and potentially perturbed with Gaussian
noise), here we look at what kind of results it obtains in the real-world data.

It is probably unrealistic to expect real-world data sets to have ‘pure’ max-
times structure, as in the synthetic experiments. Rather, we expect SVD to be
the best method (in reconstruction error’s sense), and Cancer to obtain recon-
struction error comparable to the NMF-based methods. We will also verify that
the results from the real-world data sets are intuitive.

The datasets. Worldclim was obtained from the global climate data repository.3

It describes historical climate data across different geographical locations in
Europe. Columns represent minimum, maximum and average temperatures and
precipitation, and rows are 50-by-50 kilometer squares of land where measure-
ments were made. We preprocessed every column of the data by first subtracting
its mean, dividing by the standard deviation, and then subtracting its minimum
value, so that the smallest value becomes 0.

3 The raw data is available at http://www.worldclim.org/.

http://www.worldclim.org/
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NPAS is a nerdy personality test that uses different attributes to determine
the level of nerdiness of a person.4 It contains answers by 1418 respondents
to a set of 36 questions that asked them to self assess various statements about
themselves on a scale of 1 to 7. We preprocessed NPAS analogously to Worldclim.

Eigenfaces is a subset of the Extended Yale Face collection of face images [7].
It consists of 32-by-32 images under different lighting conditions. We used a
preprocessed data by Xiaofei He et al.5 We selected a subset of pictures with
lighting from the left and then preprocessed the input matrix by first subtracting
from every column its mean and then dividing it by its standard deviation.

4News is a subset of the 20Newsgroups dataset,6 containing the usage of
800 words over 400 posts for 4 newsgroups.7 Before running the algorithms we
represented the dataset as a TF-IDF matrix, and then scaled it by dividing each
entry by the greatest entry in the matrix.

HPI is a land registry house price index.8 Rows represent months, columns are
locations, and entries are residential property price indices. We preprocessed the
data by first dividing each column by its standard deviation and then subtracting
its minimum, so that each column has minimum 0.

The basic properties of these data sets are listed in Table 1.

Table 1. Real world datasets specs.

Algorithm Rows Columns Density

Worldclim 2575 48 99.9 %

NPAS 1418 36 99.6 %

Eigenfaces 1024 222 97.0 %

4News 400 800 3.5 %

HPI 253 177 99.5 %

Reconstruction error, sparsity, and convergence. Table 2 provides the relative
Frobenius reconstruction errors for the real-world data sets. We omitted ALSR 5
from these experiments due to its bad performance with the synthetic data. SVD
is, as expected, consistently the best method. Somewhat surprisingly, Hoyer’s
SNMF is usually the second-best method, even though in the synthetic experi-
ments it usually was the second-worst of the NMF-based methods. Cancer is
usually the third-best method (with the exception of 4News and NPAS), and
often very close to SNMF in reconstruction error. Overall, it seems Cancer is

4 Tha dataset can be obtained on the online personality website http://personality-
testing.info/ rawdata/NPAS-data.zip.

5 http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.
6 http://qwone.com/∼jason/20Newsgroups/.
7 The authors are grateful to Ata Kabán for pre-processing the data, see [10].
8 Available at https://data.gov.uk/dataset/land-registry-house-price-index-backg

round-tables/.

http://personality-testing.info/_rawdata/NPAS-data.zip
http://personality-testing.info/_rawdata/NPAS-data.zip
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
http://qwone.com/~jason/20Newsgroups/
https://data.gov.uk/dataset/land-registry-house-price-index-background-tables/
https://data.gov.uk/dataset/land-registry-house-price-index-background-tables/
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capable of finding max-times structure that is comparable to what NMF-based
methods provide. Consequently, we can study the max-times structure found by
Cancer, knowing that it is (relatively) accurate.

Table 2. Reconstruction error for various real-world datasets.

Worldclim NPAS Eigenfaces 4News HPI

k = 10 10 40 20 15

Cancer 0.071 0.240 0.204 0.556 0.027

Capricorn 0.392 0.395 0.972 0.987 0.217

SNMF 0.046 0.225 0.178 0.546 0.023

ALS 0.087 0.227 0.313 0.538 0.074

ALSR 0.122 0.226 0.294 1.000 0.045

SVD 0.025 0.209 0.140 0.533 0.015

The sparsity of the factors for real-world data is presented in Table 3,
except for SVD. Here, Cancer often returns the second-sparsest factors (being
second only to Capricorn), but with 4News and HPI, ALSR obtains sparser
decompositions.

Table 3. Factor sparsity for various real-world datasets.

Worldclim NPAS Eigenfaces 4News HPI

k = 10 10 40 20 15

Cancer 0.645 0.528 0.571 0.812 0.422

Capricorn 0.795 0.733 0.949 0.991 0.685

SNMF 0.383 0.330 0.403 0.499 0.226

ALS 0.226 0.120 0.434 0.513 0.331

ALSR 0.275 0.117 0.480 1.000 0.729

We also studied the convergence behavior of our algorithm using some of the
real-world data sets. The results can be seen in Fig. 3, where we plot the relative
error with respect to the iterations over the main for-loop in Cancer. As we can
see, in both cases Cancer has obtained a good reconstruction error already after
few full cycles, with the remaining runs only providing minor improvements. We
can deduce that Cancer reaches quickly an acceptable solution.

Interpretability of the results. The crux of using max-times factorizations
instead of standard (nonnegative) ones is that the factors (are supposed to)
exhibit the ‘winner-takes-it-all’ structure instead of the ‘parts-of-whole’ struc-
ture. To demonstrate this, we plotted the left factor matrices for the Eigenfaces
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Fig. 3. Convergence rate of Cancer for two real-world datasets. Each iteration is a
single run of UpdateBlock, that is if a factorization has rank k, then one full cycle
would correspond to k iterations.

(a) Cancer

(b) ALS

Fig. 4. Cancer finds the dominant patterns from the Eigenfaces data. Pictured are the
left factor matrices for the Eigenfaces data.
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data for Cancer and ALS in Fig. 4. At first, it might look like ALS provides more
interpretable results, as most factors are easily identifiable as faces. This, how-
ever, is not very interesting result: we already knew that the data has faces, and
many factors in the ALS’s result are simply some kind of ‘prototypical’ faces. The
results of Cancer are harder to identify on the first sight. Upon closer inspec-
tion, though, one can see that they identify areas that are lighter in the different
images, that is, have higher grayscale values. These factors tell us the variances
in the lightning in the different photos, and can reveal information we did not
know a priori. Further, as seen in Table 2, Cancer obtains better reconstruction
error than ALS with this data, confirming that these factors are indeed useful to
recreate the data.

In Fig. 5, we show some factors from Cancer when applied to the Worldclim
data. These factors clearly identify different bioclimatic areas from Europe: In
Fig. 5(a) we can identify the mountainous areas in Europe, including the Alps,
the Pyrenees, the Scandes, and Scottish Highlands. In Fig. 5(b) we can identify
the mediterranean coastal regions, while in Fig. 5(c) we see the temperate climate
zone in blue, with the green color extending to the boreal zone. In all pictures,
red corresponds to (near) zero values. As we can see, Cancer identifies these
areas crisply, making it easy for the analyst to know which areas to look at.

In order to interpret NPAS we first observe that each column represents a
single personality attribute. Denote by A the obtained approximation of the
original matrix. For each rank-1 factor X and each column Ai we define the

Table 4. Top three attributes for the first two factors of NPAS.

Factor 1 Factor 2

I am more comfortable with my hobbies
than I am with other people

I have played a lot of video games

I gravitate towards introspection I collect books

I sometimes prefer fictional people to real
ones

I care about super heroes

Fig. 5. Cancer can find interpretable factors from the Worldclim data. Shown are the
values for three columns in the left-hand factor matrix B on a map. Red is zero.
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score σ(i) as the number of elements in Ai that are determined by X. By sorting
attributes in descending order of σ(i) we obtain relative rankings of the attributes
for a given factor. The results are shown in Table 4. The first factor clearly shows
introvert tendencies, while the second one can be summarized as having interests
in fiction and games.

6 Conclusions

Using max-times algebra instead of the standard (nonnegative) algebra, we can
find factors that adhere to the ‘winner-takes-it-all’ interpretation instead of the
‘parts-of-whole’ interpretation of NMF. The winner-takes-it-all factors give us
the most dominant features, building a sharper contrast between what is and is
not important for that factor, making the factors potentially easier to interpret.
As we saw in our experimental evaluation, the factors are also sparse, emphasiz-
ing the winner-takes-it-all interpretation.

Finding a good max-times factorization, unfortunately, seems harder than
– or at least as hard as – finding a good nonnegative factorization. Our earlier
algorithm, Capricorn, was designed to work with discrete-valued data and what
we call ‘tropical’ noise; in this paper we presented Cancer that is designed to
work with Gaussian noise and matrices with continuous values. It seems that
this latter case is more applicable to real-world data, as witnessed by Cancer’s
good results with real-world data.

There are still questions that need to be addressed by future research. Could
these two approaches be merged? That is, is it possible to design an algorithm
that works well for both tropical and Gaussian noise? Can one achieve provable
approximation ratios for max-times factorizations? In addition to data analysis,
can max-times factorizations be used in other data mining and machine learning
tasks (e.g. to do matrix completion or latent topic models)? We hope our initial
work in this paper (and its predecessor [9]) helps to increase data mining and
machine learning community’s interest to max-times algebras so that the above
question could be answered.
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Abstract. Principal Components Analysis (PCA) is a data analysis
technique widely used in dimensionality reduction. It extracts a small
number of orthonormal vectors that explain most of the variation in
a dataset, which are called the Principal Components. Conventional
PCA is sensitive to outliers because it is based on the L2-norm, so to
improve robustness several algorithms based on the L1-norm have been
introduced in the literature. We present a new algorithm for robust L1-
norm PCA that computes components iteratively in reverse, using a new
heuristic based on Linear Programming. This solution is focused on find-
ing the projection that minimizes the variance of the projected points.
It has only one parameter to tune, making it simple to use. On common
benchmarks it performs competitively compared to other methods. The
data and software related to this paper are available at https://github.
com/visentin-insight/L1-PCAhp.

Keywords: Principal components analysis · Linear programming ·
L1-norm · Robust

1 Introduction

Principal Components Analysis (PCA) is a data analysis technique to find ortho-
normal vectors that explain the variance structure of the data [12]. These are
the vectors in which lie most of the variance and they are called principal com-
ponents (PCs). Since the number of PCs is generally low compared to the total
dimension of the dataset, PCA is often use for dimensional reduction or data
analysis. Its applications include quality control [2], image reconstruction [20],
wave reconstruction [25], and outlier detection [11].

PCs can be computed forward or backward . Classical PCA uses the forward
approach: in each iteration it aims to find the direction that yields the maxi-
mum information. The backward approach aims to find the direction with least
information, so that when it is eliminated the projection of the data into the
remaining subspace retains the maximum amount of variation. If only the few
PCs with most variation in them are needed then the forward approach is more
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suitable, while if the aim is to eliminate only the few least useful components
then the backward approach is appropriate [1]. The two approaches are equiva-
lent under the L2-norm (Euclidean space) but under other norms they can give
different results.

The quality of PCA algorithms can be evaluated in two ways: by reconstruc-
tion error or variance of the projected points. Under the L2-norm these two
measures are equivalent. However, L2-norm based methods are rather sensitive
to outliers so they are not well-suited to noisy datasets. To improve robustness
different methods have been applied to PCA. The algorithms in [5–7] are based
on the projection pursuit method for which the L1-norm is widely used. [16]
describes a greedy method that aims to maximize the L1-norm distance of the
projected points. In [15] a heuristic estimate for the general L1 reconstruction
error is presented, which assumes that the projected and lifted data are the prod-
uct of two matrices. [3] proposes a backward L1-norm method. [22] introduces
two algorithms to compute PCs by minimizing different objectives: an iterative
weighted approach that minimizes the reconstruction error, and one that uses
linear programming (LP) to maximize the L1-norm of the projected points. The
LP-based method aims to compute directly the orthonormal matrix of the PCs.
It uses LP to perturb a projection matrix, and if this is an improvement it forces
the new one to be orthonormal. Technically this can not be done in LP because
maximizing a sum of absolute values is NP-hard (see [13,14,23,24,26] for a dis-
cussion of this issue). It can be done by adding binary decision variables to obtain
a mixed integer programming (MIP) model but this is far less scalable than a
pure LP approach. To resolve this problem [22] relax the MIP model to an LP
and restrict moves to small distances. They show that their search algorithm is
locally convergent.

Our approach is also based on an LP model, but instead of computing the
PCs simultaneously it iteratively computes them in backward order. This enables
us to use a direct LP model, so we do not need to restrict it to small steps. The
rest of the paper is organized as follows. In Sect. 2 the problem is formulated.
In Sect. 3 we introduce a new algorithm for the L1-PCA. In Sect. 4 the algo-
rithm is compared with others for robustness and the competitiveness. Section 5
concludes the paper.

2 Problem Formulation

Let A ∈ �n×m be the data set, where m denotes the number of attributes
(dimension of the original input space) and n the number of instances. The goal
of PCA is to find a projection matrix X ∈ �m×k whose rows are the bases of a
k-dimensional linear subspace (so XTX = Ik). This subspace will be referred as
the feature space. This matrix must minimize the reconstruction error:

Ep(X,Y ) =
∥∥A − Y XT

∥∥p

p
(1)

where ‖·‖pp is the Lp-norm, and Y ∈ �n×k is the coefficient matrix whose rows
correspond to the coordinate of each instance of A projected into the feature
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space spanned by X. If X is fixed then the Y minimizing the error function is
uniquely determined by Y = AX, by the projection theorem [19]. So the error
function becomes:

Ep(X) =
∥∥A − AXXT

∥∥p

p
(2)

Another possible approach is to maximize the variance of the projected point in
the feature space:

arg max
X

‖AX‖pp (3)

Classical PCA is based on L2-norm (p = 2) in which case minimizing (1) and
maximizing (3) are equivalent because of singular value decomposition.

Consider the case p = 1 so that we use the L1-norm. We minimize the error
as in Eq. (2) by solving the problem

min
X∈�m×k

∑
i∈I

∑
j∈J

|eij | (4a)

s.t. XTX = Ik, E = A − AXXT (4b)

where I = {1, . . . , n} and J = {1, . . . ,m}. Even if (4) is more robust compared
to the L2-norm version it is not invariant under rotation of the data, and the
shape of equidistance surfaces becomes very skewed [9].

Similarly, setting p = 1 in (3):

max
X∈�m×k

∑
i∈I

∑
h∈K

|yih| (5a)

s.t. XTX = Ik, Y = AX (5b)

where K = {1, . . . , k}. The solution of this problem is also invariant under data
rotation because the maximization is done in the feature space [9].

3 Rotation-Invariant L1-PCA by LP

In this section we present an iterative LP-based algorithm that aims to solve
problem (5). In a forward approach we would iteratively look for the projection
that maximizes variance in the feature space. Denoting by t the projection we
are looking for, the problem would be:

max
∑
i∈I

|yi| (6a)

s.t. yi =
∑

j∈[1,m]

aijtj i ∈ I (6b)

∑
j∈J

t2j = 1 (6c)

Having found a solution proj0 we would then look for the next most interesting
projection proj1 under the added constraint proj1 · proj0 = 0; and so on,
adding a new orthogonality constraint for each new projection.
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Unfortunately (6) can not be solved by LP. As pointed out above, maximiz-
ing a sum of absolute values is NP-hard. Even under the L2-norm we can not
solve it: quadratic objectives are allowed in quadratically constrained quadratic
programs, but only if the resulting matrix is positive semidefinite, and in this
case it is not because of constraint (6c). Instead we use a backward approach
which does not require the solution of any NP-hard problems.

Like many other methods we start by centering and normalizing the dataset
by subtracting the centroid and dividing by standard deviations. Then at each
dimension iteration we choose a starting vector p and iteratively improve it via an
LP-based heuristic. To find such an improvement we find a vector transformation
that minimizes the LP without the (6c) constraint, but forcing the vector to lie
in the hyperplane tangent to the unit hypersphere at the point defined by t. This
idea is illustrated in Fig. 1. Solving the LP yields a vector that is likely to be quite
close to the direction we want, but the result is not a unit vector because it lies in
the hyperplane and not on the unit hypersphere. We therefore project the solution
onto the hypersphere to obtain a unit vector, which is the new starting vector t.
We iterate this procedure until the improvement in the objective function of the
LP is smaller than a fixed threshold, which is the only parameter needed by this
solution. In practice we found that the procedure converges in a small number of
iterations, and that a value such as 0.01 is reasonable.

The LP to solve at every iteration is:

min
∑
i∈I

li (7a)

s.t. li ≥ −
∑
j∈J

aijtj i ∈ I (7b)

li ≥
∑
j∈J

aijtj i ∈ I (7c)

∑
j∈J

tjprojqj = 0 projq ∈ X (7d)

∑
j∈J

tjpj = 1 (7e)

whereX is the matrix that contains all the PCs already computed, (7d) guarantees
that t is orthogonal to them. (7e) assures that t satisfy the hyperplane equation.
p is the starting vector or the solution of the previous iteration, so the coordi-
nates of the point in which the hyperplane is tangent to the unit hypersphere. We
introduced real auxiliary variables li (i ∈ I). The inequality constraints enforce
li ≥ |t ·Ai|, and because we minimize the sum of the li this forces the objective to
be equal to the sum of the absolute values of the projected points. This approach
exploits that fact that minimizing a sum of absolute values is trivial in LP.

We call this algorithm L1-PCAhp, where hp stands for hyperplane: it is sum-
marised in Algorithm 1. L1-PCAhp is not globally convergent as it can become
trapped in local minima, but it is locally convergent. We can improve the prob-
ability of finding a global optimum restarting from different starting vectors,
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Fig. 1. Hyperplane iterative heuristic. (a) the starting vector p. (b) p is projected
on the unit hypersphere. (c) the hyperplane tangent to the hypersphere in p. (d) the
objective function of (7) projected on the hyperplane. (e) t the solution of (7). (f) t
will be the new starting vector of the new iteration

Algorithm 1. L1-PCAhp
1: P � Contains the starting vectors
2: Initialize P randomly or with L2-PCA
3: X ← ∅ � Contains the PCs
4: for j ∈ J do
5: p ← Pj

6: ObjLP ← ∞
7: do
8: PrevObj ← ObjLP

9: t ← SolutionLP(7)
10: ObjLP ← objectiveValueLP(7)
11: if ObjLP ≤ PrevObj then
12: p ← t/ |t|
13: while PrevObj − ObjLP ≥ threshold
14: X ← X ‖ p
15: return X
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but empirically we found that using the classical L2-PCA solution as a starting
vector is satisfactory.

4 Computational Results

We implemented L1-PCAhp in R using IBM ILOG CPLEX 12.6.3 to solve the
LP instances, and cplexAPI is used to invoke the solver1. We evaluate it against
several other PCA variants: L2-PCA, PCAgrid, PCAproj, PCA-L1, L1-PCA
and L1-PCA*. L2-PCA is the classical PCA method implemented in the stats
package, the function used is princomp. PCAproj and PCAgrid are solutions
based on Projection Pursuit. PCAproj uses the algorithms of [7], PCAgrid uses
the robust non-sparse version of [6]; both these implementation are present in
the pcaPP package for R. PCA-L1, L1-PCA and L1-PCA* are respectively the
algorithms introduced in [16], [15] and [3]. These methods are implemented in
the pcaL1 R package. In each case we used default algorithm configurations,
while for L1-PCAhp we set the threshold to 0.01. We believe that using the
default configuration is a fair comparison, because algorithm configurations are
held constant across all tests.

4.1 Simulated Data

Tests on simulated data provide a controlled comparison of data analysis algo-
rithms, and we use a test from [3]. The goal of this test is to evaluate the impact of
outliers while varying their magnitude. Each dataset contains a “true” subspace
and a subset of attributes that contain the information; the other attributes
contain only noise. A fixed percentage of the instances are outliers with high
norm. If a solution is robust to these outliers the reconstruction of the true sub-
space should be accurate. We also take into account the variance of the projected
points.

Each dataset has n = 1000 instances and m = 10 attributes. The first q
attributes define the true subspace, and 10 % of the observations have outliers.
These observations have the first p of the m− q noise attributes affected by the
outliers, where p is the number of outlier-contaminated attributes. The true sub-
space attributes, the noise attributes and the outliers are sampled respectively
from Laplace(0,10), Laplace(0,1) and Laplace(µ,0.01) distributions, where µ is
the outlier magnitude. We take averages over 100 runs for every possible combi-
nation of q ∈ {2, 5}, p ∈ {1, 2, 3} and µ ∈ {25, 50, 75}. We repeat the experiment
with Gaussian distributions while maintaining the same parameters.

Figure 2 contains the average performance (variance in feature space and
reconstruction error) versus outlier magnitude (µ). Plots in which the x-axis
is the number of outlier-contaminated attributes (p) are similar, but we omit
them for space reasons. L1-PCA, PCA-L1 and L1-PCAhp perform better than
the other algorithms with respect to variance in feature space. Regarding recon-
struction error L1-PCA* is the best method, and its breakdown point is higher:
1 The code is available at https://github.com/visentin-insight/L1-PCAhp.

https://github.com/visentin-insight/L1-PCAhp
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Fig. 2. Performance on the simulated datasets. Variance of the projected points against
magnitude of the outliers on the left. Reconstruction error of the “true” subspace
against magnitude of the outliers on the right.

the breakdown point is reached where the methods begin to fit the outlier obser-
vations better than the non-contaminated data. This confirms the robustness of
L1-PCAhp as it ranks joint second with L1-PCA.

4.2 Datasets with Known Outliers

We also applied the various PCA methods to datasets with known outliers. This
experiment has been used to prove the robustness of PCA algorithms to outliers
[3]. The artificial dataset generated by [10] has 75 instances of which the first 14
are outliers. The others dataset are real-world data. The milk and the pollution
dataset were introduced respectively by [8] and [21]. In the milk dataset the
outliers are instances 70, 45, 31, 12, 14 and 15 according to [5]. In the pollution
dataset instances 29 and 48 are identified as outliers by [7]. We centered and
normalized the datasets as in Sect. 3.

To evaluate the robustness of the solutions the PCs are computed as usual
with the full datasets. Then we measured the L1-norm reconstruction error using
Formula (4), and the variance of the projected points. Both were calculated only
on the non-outlier instances. If the quality of the solution is good and robust to
the outliers then the total reconstruction error should be small and the variance
should be large.

Table 1 shows the results. Regarding the variance of the projected points, the
best method depends on the dataset. Overall L1-PCA has the best average rank,
but L1-PCAhp has the better average variance (slightly better than L1-PCA*).
Regarding the reconstruction error L1-PCAhp clearly outperforms the others,
even L1-PCA* which was the previous winner [3]: this is quite surprising because
L1-PCAhp is based on the maximization of the projected variance and not on
the reconstruction error.
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Table 1. Rank of the performances for the 2 benchmarks. Average results are in
parentheses.

Variance on the feature space

L2-PCA PCAproj PCAgrid PCA-L1 L1-PCA L1-PCA* L1-PCAhp

milk 7(4.43) 5(5.52) 6(5.21) 2(5.59) 1(5.71) 3(5.59) 4(5.57)

pollution 7(7.31) 5(11.01) 6(10.35) 3(11.17) 4(11.05) 2(11.2) 1(11.24)

artificial 7(0.09) 2(0.12) 1(0.12) 4(0.1) 3(0.1) 6(0.09) 5(0.09)

average 7(3.94) 4(5.55) 4.33(5.22) 3(5.62) 2.67(5.62) 3.67(5.63) 3.33(5.63)

Reconstruction error

L2-PCA PCAproj PCAgrid PCA-L1 L1-PCA L1-PCA* L1-PCAhp

milk 7(175.78) 4(112.76) 6(131.04) 3(105.17) 5(115.91) 2(103.54) 1(100.62)

pollution 7(400.9) 5(214.18) 6(248.3) 3(209.11) 4(213.54) 2(207.33) 1(201.69)

artificial 7(48.95) 5(36.95) 6(43.56) 1(16.34) 4(16.61) 3(16.55) 2(16.43)

average 7(208.55) 4.67(121.3) 6(140.96) 2.33(110.21) 4.33(115.35) 2.33(109.14) 1.33(106.25)

Generally the methods based on the L1-norm without projection pursuit
outperform the others. As expected, the worst performance is L2-PCA, as it
is well-known to be sensitive to outliers. Scaling the dataset by the standard
deviation mitigates the effects of the outliers with high norm, but it is not
enough to impart robustness. We removed it from the table to make the results
more readable.

4.3 UCI Datasets

This test is used in several PCA papers [9,16,17]. For data analysis problems
with a large number of input variables, dimensionality reduction methods are
typically used to reduce the number of input variables to simplify the problems
without degrading performance. The test is based on the idea that if the dimen-
sionality reduction of the PCA preserves the information then the performance
of a classifier should not degrade with a reduced dataset. Moreover, the projec-
tion in the feature space can eliminate some information that is not useful for
the classifier, thus improving its performance.

The algorithms were applied to several datasets from the UCI machine learn-
ing repository [18]. All datasets were centered and normalized as in Sect. 3. For
each dataset we extracted all possible features from 1 to 10 or from 1 to m (total
number of attributes if smaller, k ∈ [1, . . . ,min (10,m)]. We choose to limit to
10 the number of maximum extracted features because all the datasets can be
reduced to 10 or fewer dimensions without affecting the classifier performances.
Adding more PCs only makes the performances fluctuate almost randomly, as
shown in Fig. 3. So, as in other work that uses this test [9,16,17], we limit the
number of extracted features.

We used the one-nearest neighbourhood (1-NN) coded in the class package
as a classifier, trained and tested with a 10-fold cross validation. As the results
depends on the instances order the tests were conducted 10 times with different
shuffles, and we report the average results.
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Fig. 3. Average Correct Classification Rate versus dimension of the projected space
of 4 UCI datasets. The performances of the methods get almost stable after some
features are extracted. Adding tests on the remaining dimensions will only dilute the
ones relative to the dimensional reduction. We omitted error bars since the variances
are quite high and make the graphs hard to read.

Table 2 shows the dataset information and solution rank, with the averageCor-
rect Classification Rate (CCR) in parentheses. Algorithm performances vary sig-
nificantly across datasets: even L2-PCA, which usually performs poorly in this
test, wins in one case. This is caused by the heterogeneity of the datasets. The
algorithms with best average CCRs are PCA-L1 and PCAgrid. The winner in
the highest number of datasets is L1-PCA, but its average ranking and CCR are
worse than those of the other algorithms. We believe that the poor performance
of L1-PCA* is explained by the fact that it is designed to minimize reconstruction
error: classification is applied to projected points, so algorithms that preserve a
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Table 2. Datasets information and Rank of the performances. Average Correct Classi-
fication Rates are in parentheses. Bold value are the best Classification Rates of every
dataset

Datasets information CCR of the solutions

Name Classes m n L2-PCA PCAproj PCAgrid PCA-L1 L1-PCA L1-PCA* L1-PCAhp

australian 2 14 690 6(71.2%) 2(77.74%) 1(79.59%) 3(76.62%) 7(70.09%) 5(76.24%) 4(76.24%)

balance 3 4 625 5(62.84%) 3(63.65%) 2(68.79%) 1(73.24%) 4(63.44%) 7(58.69%) 6(61.52%)

brestcancer 2 9 683 7(93.77%) 2(95.88%) 6(95.21%) 3(95.66%) 1(96.27%) 4(95.58%) 5(95.55%)

dermatology 6 34 358 6(77.24%) 1(87.51%) 4(80.19%) 3(84.03%) 7(74.46%) 2(85.43%) 5(78.91%)

heart 4 13 303 7(46.58%) 1(54.11%) 6(50.64%) 4(51.44%) 5(51.12%) 3(51.85%) 2(51.85%)

ionoosphere 2 32 351 7(81.87%) 4(84.62%) 6(83.47%) 2(84.86%) 1(85.08%) 3(84.67%) 5(84.1%)

iris 3 4 150 6(79.53%) 4(90.25%) 5(89.2%) 3(90.7%) 1(93.77%) 7(72.45%) 2(92%)

liver 2 6 345 1(58.34%) 5(56.02%) 2(56.55%) 7(54.5%) 3(56.43%) 6(54.77%) 4(56.09%)

sonar 2 60 208 7(68.14%) 5(75.54%) 6(72.75%) 2(78.78%) 4(75.72%) 3(77.61%) 1(79.15%)

vehicle 4 18 846 7(54.9%) 6(56.47%) 5(56.56%) 3(57.57%) 1(60.34%) 2(57.75%) 4(57.17%)

waveform 3 21 5000 7(55.36%) 2(77.43%) 4(77.42%) 2(77.43%) 6(74.32%) 5(76.62%) 1(77.53%)

yeast 8 8 1484 6(42.22%) 2(47.23%) 1(47.28%) 4(45.93%) 7(39.65%) 5(42.99%) 3(46.04%)

letter 26 16 20000 3(26.34%) 5(24.82%) 6(24.65%) 7(24.43%) 1(26.93%) 2(26.69%) 4(25.54%)

average 5.77(62.47%) 3.23(67.4%) 4.15(66.81%) 3.38(67.75%) 3.69(66.07%) 4.15(65.19%) 3.54(66.84%)

high variance among projected points should have an advantage in this test. L1-
PCAhp exhibits good CCR and ranking, and excels in some datasets. This shows
the robustness of the algorithm to different types of dataset and different noise or
outliers, and that it can compete with existing methods on real-world problems.

This test shows that there is no method that dominates the others, because
they exploit different structures in different datasets. So we can not select a best
method for robust PCA, because in real world applications the performances
vary greatly according to the data. We suggest applying several methods during
the test phase, and keeping the one that performs best.

4.4 Initialization

We wanted to analyze the effect different initialization have on our solution. We
repeated the test in Sect. 4.3 applying every time the random and the L2-PCA
initialization. The Correct Classification Rate obtained is almost identical, with
very small fluctuation. The only difference is the computational time, since the
L2-PCA initialization is 5% faster on average.

We think that the performance does not vary significantly because it generally
converges to similar projections under different initializations, so hardly it get
stuck in a completely different minimum. The improvement in the computational
times are due to the small number of hyperplanes required for convergence. We
believe this is because the local minimum to which our solution converges is
closer to the classical PCA solution than to a random projection.

4.5 Computational Times

Making a correct time comparison is not an easy task in this situation, because
the different methods are implemented in different programming languages and
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use different MIP solvers. Some can improve the performances with paralleliza-
tion, others can not. Backwards methods compute all components every time,
while the others only compute the required components. Some depend more on
the number of original dimensions than on the number of instances.

We coded our method using the same language code and the same MIP solver
as pcaL1 R package. We decided to use this setting to have a direct comparison
with the others LP-based methods that are implemented in that package. An R
wrap function call C code that uses Coin Clp to solve the LP instances.

We used the same dataset generator used in Sect. 4.1, because it allows us to
manage directly the size of the problem. The algorithms configuration is the kept
the same. All the computations are done in a single core, so no parallelization is
involved.

We kept constant the number of attributes. We varied the number of instances
from 100 to 50000. We computed each time a number of components equal to
half the number of attributes.

Figure 4 shows the comparison with m = 10, both the computational time
and the instances number use logarithmic scale. As expected the fastest method
is always L2-PCA. The only method with comparable execution time on large
instances is PCA-L1, which is approximately 10 times slower on average. The
two methods that use projection pursuit, PCAproj and PCAgrid, are approxi-
mately 100 times slower than L2-PCA. We omitted the error bars since both the
standard deviation and the mean error were too small to be plotted.

All the methods that use LP are generally slower than the others. The L1-
PCA* and L1-PCAhp computational times are not dependent on the number of
components required, because they always compute all components. Our solution

Fig. 4. Computational time comparison. The number of attributes is 10.
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is always faster than the other LP-based methods, and this gap increases with
the dimension of the dataset. This may seems odd, since our solution needs to
solve numerous LP models for every component, even if the dimension of our
LP are smaller. The main reason is that we do not have to solve a new model
everytime, but simply edit the hyperplane constraint (7e) in every iteration and
add a new orthogonality constraint (7d) every time it finds a components.

The execution time of our solution does not depend on the number of compo-
nents we are searching. In contrast, the performance of L1-PCA strongly varies
according to the number of required components. If we need only a few compo-
nents then it has good performance.

The performances of our solution can be improved by using a more improved
MIP solver. Also the parallelization will strongly improve the performances.

5 Conclusion

In this paper we introduced a new algorithm for PCA called L1-PCAhp which is
intuitively straightforward, easy to implement and has only one runtime parame-
ter to tune. Its novelty lies in the way it uses LP, and in its hyperplane-based iter-
ative improvement approach. Moreover it is the only L1-PCA LP-based methods
with a backward approach that tries to maximize the variance of the projected
points in the projection space. In experiments its performance was consistently
good compared to other algorithms in the literature. We showed its versatility
and good performance both in variance maximization and in reconstruction error
minimization, where it excels on real datasets with outliers. In classification tests
the different algorithms exploit different information in each dataset, so we sug-
gest that in a real-world setting different PCA methods should be tested and the
best one used. Even if some solutions outperform ours in computational time,
our PCA is the fastest of the LP-based methods. And they found plenty of real
world applications due to their ability to extrapolate different relationship in the
data [4,27].

We believe that our method is a valuable addition to the collection of known
methods, due to its high robustness and its easy implementation and tuning.
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Abstract. We consider the problem of node classification in hetero-
geneous graphs, where both nodes and relations may be of different
types, and different sets of categories are associated to each node type.
While graph node classification has mainly been tackled for homoge-
neous graphs, heterogeneous classification is a recent problem which has
been motivated by applications in fields such as social networks, where
graphs are intrinsically heterogeneous. We propose a transductive app-
roach to this problem based on learning graph embeddings, and model
the uncertainty associated to the node representations using Gaussian
embeddings. A comparison with representative baselines is provided on
three heterogeneous datasets.

Keywords: Node graph classification · Representation learning ·
Gaussian embeddings

1 Introduction

Classification of nodes in graphs is a relational classification problem where the
labels of each node depend on its neighbors. Many problems in domains like
image, biology, text or social data labeling can be formulated as graph node
classification and this problem has been tackled with different approaches like
collective classification [21], random walks [1], and transductive regularized mod-
els [10]. Most approaches consider homogeneous graphs, where all the nodes share
the same set of labels, propagating labels from seed nodes to their neighbors.
Many problems in domains like biology or social data analysis involve heteroge-
neous networks where the nodes and the relations between nodes are of different
types, each node type being associated to a specific set of labels. For example, the
LastFM social network, one of the datasets used in our experiments, links users,
tracks, artists and albums via seven different types of relations such as friend-
ship, most listened tracks, and authorship. In such a network, nodes of different
types influence each other and their labels are interdependent. The dependency
is, however, more complex than with homogeneous networks and depends both
on the nodes type and on their specific relation. Classical methods for homoge-
neous graphs based for example on label propagation, usually relies on a simple
c© Springer International Publishing AG 2016
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relational hypothesis like homophily in social networks. They cannot be easily
extended to heterogeneous networks, and new methods have to be developed for
dealing with this relational classification problem.

In this paper, we consider the problem of node classification in heterogeneous
graphs. We propose a transductive approach based on graph embeddings where
the node embeddings are learned so as to reflect both the classification objective
for the different types of nodes and the relational structure of the graph. When
most embedding techniques consider deterministic embeddings where each node
is represented as a point in a representation space, we focus here on density-based
embeddings which capture some form of uncertainty about the learned represen-
tations. Uncertainty can have various causes related to the lack of information
(isolated nodes in the graph) or because of the contradiction between neighbor-
ing nodes (different labels). Our hypothesis is that, because of these different
factors, training will result in learned representations with different confidence,
and that this uncertainty is important for this classification problem. For that,
we will use Gaussian embeddings which have been recently proposed for learn-
ing word [23] and knowledge graph [7] embeddings in an unsupervised setting.
More precisely, each graph node representation corresponds to a Gaussian dis-
tribution where the mean and the variance are learned. The variance term is
a measure of uncertainty associated to the node representation. The objective
function is composed of two terms, one reflecting the classification task and the
other one reflecting the relations between the nodes. Both mono and multi-label
classification can be handled by the model. For the experiments, we focus on
classification in social network data. This type of data offers a variety of sit-
uations which allows us to illustrate the behavior and the performance of the
model for different types of heterogeneous classification problems.

To summarize, our contributions are as follows: (i) We propose a new method
for learning to classify nodes adapted to heterogeneous graph data; (ii) We model
the uncertainty associated with the nodes representation; (iii) We provide a
comparison with state of the art baselines on a series of social data classification
problems representative of different situations.

2 Related Work

2.1 Graph Node Classification

Several different models have been proposed to solve the graph node classifica-
tion task. We discuss below three main families [4] (i) collective classification,
(ii) random walk type methods, and (iii) semi-supervised/transductive graph
regularized models.

Random Walks. This family gathers methods where labels are iteratively prop-
agated from seed nodes to all the other nodes in a network. Propagation follows
a random walk or a similar iterative mechanism. [8,28] are among the early ML
models using random walks for classification in homogeneous graphs. [27] propose
an extension of these models for heterogeneous graphs. It relies on hand-defined
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projections of the graph onto homogeneous graphs, the approach being difficult
to adapt automatically to new datasets. The Graffiti random surfer model [1] is
a state of the art random walk classifier for heterogeneous graphs. It is based on
two intertwined random walks. Both are between nodes of the same type, but
allowing either one hop (standard) or two-hop (extended) steps in the graph. It
models up to a certain extent the influence among nodes of different types. In
our preliminary tests on different datasets, this model was among the best ones.

Collective Classification. Collective classification algorithms are extensions of
classical inductive classification to relational data. They take as input a fixed size
vector composed of node features and of statistics on the node neighbors current
labels. Sen et al. [21] provide an introduction and a comparison of some of these
models. They distinguish between two families: local and global models. The
former make use of local classifiers. In [14,15] for example, naive Bayes classifiers
are used iteratively, dynamically updating the attributes of nodes as inferences
are made about their neighbors. Along these lines, [18] recently introduced an
iterative model for sparsely labeled network which forces the label predictions to
map the distribution of the observed data with a maximum entropy constraint.
Global classifiers optimize a global loss function using graphical models, like
e.g. Markov Random Fields. Iterative methods suppose features associated with
nodes to learn the classifier, which is not the case in our work.

Random Walk Type Methods. This family gathers methods where labels are
iteratively propagated from seed nodes to all the other nodes in a network.
Propagation follows a random walk or a similar iterative mechanism. [8,28] are
among the early Machine Learning (ML) models using random walks for clas-
sification in homogeneous graphs. [27] propose an extension of these models for
heterogeneous graphs. It relies on hand-defined projections of the graph onto
homogeneous graphs, the approach being difficult to adapt automatically to
new datasets. The Graffiti random surfer model [1] is a state of the art random
walk classifier for heterogeneous graphs. It is based on two intertwined random
walks. Both are between nodes of the same type, but allowing either one hop
(standard) or two-hop (extended) steps in the graph. It models up to a certain
extent the influence among nodes of different types. In our preliminary tests on
different datasets, this model was among the best ones.

Semi-Supervised Transductive Learning. The third family has been developed
for exploiting the manifold assumption in semi-supervised learning. The loss
function is composed of two main terms, one is for classification on the labeled
nodes, the other one is a propagation equation which encourages neighbor nodes
to share similar labels. Seminal works in this direction include [2,19,24,26]. All
these models have been developed for homogeneous graphs and perform some
form of label propagation similar to random walks. The difference with the lat-
ter is that the problem is formulated as a loss minimization one, which is more
general than simply formulating a propagation rule. Relations between random
walks and loss-based models are discussed more at length in [4,29]. Extensions
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have been proposed over the years to handle more general situations. Multi-
relational graphs where nodes are all of the same type, but can be linked by
different relations are considered in [9,12]. This also allows them to extend the
transductive models to inductive formulations. Some authors have attempted to
extend homogeneous formulations to the heterogeneous setting. All follow more
or less the idea of projecting the heterogeneous graph onto a series of homoge-
neous ones, thus creating a series of homogeneous classification problems. Work
in this direction includes [11] which is a direct extension of the homogeneous for-
mulation in [25]. Graph projections have to be defined for each new problem and
none of these models is able to directly exploit the correlation between nodes of
different types. The work closer to ours is [10] who was among the first to pro-
pose an embedding model for transductive heterogeneous graph classification.
This has been the starting point of our work, but they only consider determin-
istic representations while we use a more general transductive formulation with
probabilistic embeddings.

To summarize heterogeneous graph classification approaches, very few allow
modeling the influences between nodes of different types. In the experimental
section, we will compare our model to [1,10] which have been designed specifically
for heterogeneous classification, as well as an unsupervised graph embedding
model [22] and a homogeneous graph model [28].

2.2 Learning Representations for Graphs and Relational Data

In the last years, there has been a growing interest in learning latent representa-
tions. This has led to breakthroughs in domains like image recognition, speech
or natural language processing [3,13]. Graph node embeddings have been pro-
posed for unsupervised learning where the goal is to learn node representations
that preserves the graph structure and that can be exploited latter for different
purposes like visualization, clustering or classification. [17] learns node represen-
tations by performing truncated walks on the graph – and supposing that nodes
along the path should be close together in the representation space. [22] propose
an algorithm designed for very large graphs, which can be used for different
types of graphs (undirected, directed, weighted or not) – we use their method as
our unsupervised baseline that embeds all data points, and then train a classifier
on labeled ones. Somewhat related to this topic is the learning of embeddings
for graphs where a unique representation of the whole graph is learned [20] and
the learning of triplets in knowledge graphs where both relations and nodes rep-
resentations are learned for ranking positive triplets over negative ones [5–7].
The setting is, however, quite different from the one considered here. Finally,
modeling uncertainty via Gaussian embeddings has been proposed recently for
unsupervised learning in [7,23]. Based on sentences in the former and knowledge
graph in the latter, they propose energy-based models to learn Gaussian embed-
dings. In this paper, we borrow their formalization and graph regularization cost
in a transductive setting.
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3 Model

In this section we present our model, namely Heterogeneous Classification with
Gaussian Embeddings (HCGE).

We first introduce the notations used throughout this paper. A heterogeneous
network is modeled as a directed weighted graph G = (N , E ,W) where N is the
set of nodes, E the set of edges and W the weights associated to the edges. Each
node xi ∈ N of the graph has a type ti ∈ T , where T = 1, 2, . . . , T . We denote
Ni the neighbors of xi.

Regarding the classification task, let Yt denotes the set of categories associ-
ated with nodes of type t, and #Yt the cardinality of Yt. L ⊂ N is the set of
indices of labeled nodes. For i ∈ L, yi is the class vector associated to xi: node
xi belongs to category c if yc

i = 1 and does not belong if yc
i = −1.

In our model, each node xi is mapped onto a representation which is a
Gaussian distribution over the space zi ∼ N (μi, Σi) in R

Z . The latent space
is common to all nodes. In this paper, we compare two different parameteri-
zations of Σ. We experimented with a spherical (Σi = σiId) and a diagonal
(Σi = diag (σp

i )p) covariance matrix. We use a weight wr for each type of rela-
tion. To simplify we use wij for the weight wrij

of the edge (i, j) linking node i
to node j with a relation rij .

Loss Function. We learn the representations of nodes and classifiers parameters
by minimizing an objective loss function. It takes the general form of transductive
regularized loss [11,25], with a classification (ΔC) and a regularization term
(ΔG), both being detailed later:

L(z, θ) =
∑
i∈L

ΔC(fθti (zi), yi) + λ
∑
i∈N

∑
j∈Ni

wijΔG(zi, zj) (1)

As for classical transductive graph losses, the minimization in (1) aims at finding
a trade-off between the difference between observed and predicted labels in Yt,
and the amount of information shared between two connected nodes. There are
however major differences, since here z is not a label as in classical formulations,
but a node embedding. Finally, the function fθt(.) is a parametric classifier for
a node of type t – there is one such classifier for each node type. Since we are
using Gaussian embeddings, the zs are random variables and the regularization
term is a dissimilarity measure between distributions.

To avoid overfitting, following [23], we regularize the mean and the covariance
matrix associated to each node. We add two constraints to prevent means and
covariances to be too large and to keep the covariance matrices positive definite
(this also prevents degenerate solutions):

||μi|| ≤ C and ∀p, m ≤ σp
i ≤ M (2)

where the different parameters C, m and M have been set manually after some
trials on a subset of the DBLP training set to respectively 10, 0.01 and 10 (and
not changed after that), but any other reasonable value will do.

The two following paragraphs refer to the respective parts of (1).
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Classifier. The mapping onto the latent space is learned so that the labels of
each type of node can be predicted from the (Gaussian) embedding. For that, we
use a parametric classification function fθt depending on the type t of the node.
This multivariate function takes as input a node representation and outputs a
vector of scores for each label corresponding to the node type. The parameters
θt of the classifier are learned by minimizing the following loss on labeled data:

LClassification =
∑
i∈L

ΔC(fθti (zi), yi) (3)

where ΔC(fθti (zi), yi) is the loss associated with predicting labels fθti (zi) given
the observed labels yi. We recall that in this equation fθti (zi) and yi have values
in R

#Yt

.
In our experiments, we used different losses for ΔC . We first considered

the case where a class decision is simply the expectation of the classifier score
together with a hinge loss, adapting the loss proposed in [10]. For a given node
x of type t with an embedding z, this gives:

ΔC(fθt(z), y) = ΔEV (fθt(z), y) def=
#Yt∑
k=1

max
(
0; 1 − yk

Ez[fk
θt(z)]

)
(4)

where yk is 1 if x belongs to category k and −1 otherwise, and fk
θt(z) is a random

variable for category k.
Alternatively, the density based formulation allows us to leverage the density-

based representation through a probabilistic criterion, even in the case of linear
classifiers. We used here for ΔC the log-probability that ykfθt(z) take a positive
value. In this case, the variance will be influenced by the two loss terms: if the
two terms act in opposite directions, one solution will be to increase variance.
As we will see, this is confirmed by the experiments.

ΔC(fθt(z), y) = ΔPr(fθt(z), y) def= −
#Yt∑
k=1

logP
(
ykfk

θt(z) > 0
)

(5)

In our experiments and for both costs, we used a linear classifier for fk
θt , which

allows to easily compute the different costs and gradients, since the random
variable fk

θt(z), being a linear combination of Gaussian variables, is Gaussian
too. A basic derivation shows that:

P
(
ykfk

θt(z) > 0
)

=
1
2

⎛
⎝1 + erf

⎛
⎝ μ · θt

√
2
∑

p (θt
pσ

p)2

⎞
⎠

⎞
⎠ (6)

where erf is the Gauss error function.
There are some notable differences between the two classification losses

during learning. In the case of a linear classifier fθt , Ez[fk
θt(z)] = μ · θt

k.
Thus, minimizing ΔEV only updates the mean of the Gaussian embedding: the
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covariance matrix of the embedding does not interfere with the classification
term, and is only present in the second term of (1).

For the ΔPr loss, the probability is proportional to erf
(

μ·θt√
2
∑

p (θt
pσp)2

)
where

the variance is present. When the graph regularization and classification cost pull
the representation mean in opposite directions (opposite gradients), the model
will respond by increasing the variance for the spherical variance model1: this
behavior is interesting since it transforms an opposition between regularization
and classification costs into increased uncertainty.

Graph Embedding. We make the hypothesis that two nodes connected in the
graph should have similar representations, whatever their type is. Intuitively,
this will force nodes of the same type which are close in the graph to be close in
the representation space. The strength of this attraction between nodes of the
same class will be proportional to their closeness in the graph and to the weight
of the path(s) linking them. We use the asymmetric loss proposed in [7,23]:

LGraph =
∑

i

∑
j∈Ni

wijDKL(zj ||zi) (7)

where ΔG(zi, zj) = DKL(zj ||zi) is the Kullback-Leibler divergence between the
distributions of zi from zj :

DKL(zj ||zi) =
∫

x∈R

N (x;μj , Σj) log
N (x;μj , Σj)
N (x;μi, Σi)

dx

=
1
2

(
tr(Σ−1

i Σj) + (μi − μj)T Σ−1
i (μi − μj) − d − log

det(Σj)
det(Σi)

)

(8)
The loss LGraph is a sum over the neighbors Ni of i, where wij is the weight

of the edge between xi and xj . Other similarity measures between distributions
could be used as well, the Kullback-Leibler divergence having the advantage
of being asymmetric, which fits well the social network datasets used in the
experiments.

Algorithm. Learning the Gaussian embeddings z ∼ N (μ,Σ) and the classifiers
parameters θ consists in minimizing loss function in (1). We used here a Sto-
chastic Gradient Descent Method to learn the latent representations, i.e. the μi,
Σi as well as the parameters θ of the classifiers.

Our algorithm samples a pair of connected nodes and then makes a gradient
update of the nodes parameters. For each sampled node zi that is part of the
labeled training set L, the algorithm performs an update according to the first
term of (3). This update consists in successively modifying the parameters of
the classification functions θti and of the latent representations μi and Σi so as

1 the increase will be in the direction of the normal to the classifier hyperplane for the
diagonal variance model.
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to minimize the classification loss term. Then, the model updates its parameters
with respect to the smoothness term of (7). Note that, while we use a stochastic
gradient descent, other methods like mini-batch gradients or batch algorithms
could be used as well.

4 Experiments

4.1 Datasets

Experiments have been performed on three datasets respectively extracted from
DBLP, Flickr and LastFM. For all but the first dataset (DBLP), each node can
have multiple labels. The three datasets are described below and summarized in
Table 1.

Table 1. Datasets

DBLP Nodes Type Nb. Nodes Nb. Labeled Nodes Nb. Labels

Paper 14,376 14,376 20

Author 14,475 4,057 4

Edges Type Nb. Edges

Author↔Paper 41,794

Flickr Nodes Photos 46,926 8,766 21

User 4,760 3,476 42

Edges User↔User 175,779

User↔Photo 46,926

LastFM Nodes Users 1,013 321 59

Tracks 35,181 24,562 28

Albums 32,118 15,966 47

Artists 17,138 11,564 47

Edges User↔User 1,109

User↔Album 47,541

User↔Artist 47,812

User↔Track 47,807

Track↔Album 29,647

Track↔Artist 35,181

Album↔Artist 32,118

The DBLP dataset is a bibliographic network composed of authors and
papers. Authors are labeled with their research domain (4 different domains)
while papers are labeled with the conference name they were published in
(20 labels). Authors and papers are connected through an authorship relation.
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The graph is thus composed of two types of nodes and is bipartite with only one
relation type. Classification is monolabel on papers and authors.

The Flickr corpus is a dataset composed of photos and users. The photo
labels correspond to different possible tags while the user labels correspond to
their subscribed groups. The classification problem is multi-label: images and
users may belong to more than one category. Photos are related to users through
an authorship relation, while users are related to others through a following
relation. We have kept the image tags that appear in at least 500 images, and
user categories that also appear at least 500 times in the dataset resulting in 21
possible labels for photos and 42 for authors.

The LastFM dataset is a social network composed of users, tracks, albums
and artists. This dataset was extracted using the LastFM API2. The task is
multi-label, and all node types have their specific set of labels. Users are labeled
with the type of music they like (59 labels), tracks with the kind of music they
belong to (28 labels), albums with their type (47 labels) and artists with the kind
of music they play the most (47 labels). Users are related to users (friendship),
tracks (favorite tracks), albums (favorite albums) and artists (favorite artists).
Tracks are related to albums (belong to) and artists (singer). Finally, albums
are related to artists (sing in). Note that one track can be related to several
artists, and an album can be related to several artists. This dataset contains
tracks labeled by their genre (rock, indie, ...), users by the type of music they
like (female vocalists, ambient, ...), albums by their type (various artists, live,
...) and artists by the kind of music they make (folk, singer songwriter, ...). Some
labels may be the same string-wise for different types of nodes, but we consider
that labels of different types of nodes are distinct, e.g. pop is not the same for
an artist or a track.

We compare our approach with four state-of-the-art models (see Sect. 2):

– LINE [22], which is representative of unsupervised learning of graph embed-
dings suitable for various tasks such as classification. We performed a logistic
regression with the learned representations as inputs.

– HLP [28], which is representative of transductive graph algorithms developed
for semi-supervised learning. As HLP is designed for homogeneous graphs, we
perform as many random walks as the number of node types, considering each
time that all the nodes are of a same given type.

– Graffiti [1], which is a state of the art model for the task of classification with
random walk in heterogeneous graph.

– LSHM [10], which is another state of the art model for the task of classifica-
tion with deterministic vector representations in heterogeneous graph.

Evaluation Measures and Protocol. For the evaluation, we have considered two
different evaluation measures. The Precision at 1 (P@1) measures the per-
centage of nodes for which the category with the highest score is among the
observed labels. The Precision at k (P@k) is the proportion of correct labels

2 To access the API go to http://www.lastfm.fr/api.

http://www.lastfm.fr/api
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in the set of k labels with the highest predicted scores. Here micro P@k is an
average on all the node types, with k set to the number of relevant categories.
This is a measure of the capacity of a model to correctly pick the k relevant
categories of any node. In the case of DBLP (mono-label dataset), we consider
that the predicted category is the category with the highest score. We make use
of the Precision at 1 (P@1) measure as there is at most one label per node.
We optimize and compare the different models with regard to micro-average,
and also report macro-average.

Regarding the experimental protocol, we partition a dataset into two dif-
ferent subsets, namely a training set and a testing set. As all the models have
hyperparameters, one subset of the training set is used as a validation set to opti-
mize by grid search the hyperparameters. The optimization is done with respect
to the Micro P@k measure, which corresponds to the mean of P@k over all
nodes. The other part of the training set is used to learn the parameters of the
different models. We then compare the different models based on the results on
the testing set, by using the model for which the performance over the validation
set was the best.

Experiments are performed with different training set sizes: 10%, 30%, 50%.
Within our transductive setting, the training set size refers to the proportion
of labeled nodes used in the training set3. The training nodes are selected at
random. The proportion of nodes used during the parameters training phase and
used for the hyperparameters selection depends on the size of the training set.
We use 50–50 for a training set size of 10% and 80–20 (train/validation) for the
others. Experiments are performed with 5 random splits. The hyper-parameters
are selected for each split using the validation set. We then average 5 runs over
each split.

4.2 Results

In this section we present the results of four variants of our Gaussian embedding
model, and compare to LINE [22], Graffiti [1], HLP [28] and LSHM [10]. The
experiments are performed on the three datasets described in Table 1 and the
results are described in Tables 2 (DBLP), 3 (FlickR) and 4 (LastFM). The best
performing classifier (on the test set) is presented in bold.

Concerning the four variants of our model, HCGE(Δ•, X) refers to the HCGE
model with the classification loss Δ• (ΔEV or ΔPr) and a spherical (X=S) or
diagonal (X=D) covariance matrix.

For micro P@k, our model generally outperforms the others on all the
datasets. Supervised models (HLP, Graffiti, LSHM and HCGE) using the class
information outperform unsupervised representation learning, which matches the
results reported in [10]. On all datasets, the performances of HLP are below the
performances of Graffiti, LSHM and HCGE. This clearly shows that model-
ing the heterogeneity of the graph brings noteworthy improvements. Comparing
the heterogeneous models, both LSHM and HCGE outperform Graffiti on all

3 We did not prune the graph.
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Table 2. P@1 DBLP

Train size Model Train Val Test

Micro Micro Macro Author Paper

10% LINE 25.1 18.9 19.5 23.0 29.1 16.8

HLP 100 24.7 24.1 27.2 32.6 21.8

Graffiti 100 32.4 30.9 38.1 50.8 25.3

LSHM 99.8 33.8 32.1 40.0 53.9 26.0

HCGE(ΔEV , S) 99.7 33.1 30.9 38.5 52.1 24.9

HCGE(ΔEV , D) 95.6 31.4 30.4 37.4 49.9 24.9

HCGE(ΔPr, S) 83.8 29.0 27.9 34.3 45.6 22.9

HCGE(ΔPr, D) 92.9 29.0 28.3 34.3 45.1 23.6

30% LINE 24.0 21.5 21.9 24.8 30.1 19.5

HLP 100 35.8 36.0 41.9 52.4 31.4

Graffiti 100 39.6 38.5 46.6 61.1 32.1

LSHM 99.7 43.0 41.2 52.9 73.8 31.9

HCGE(ΔEV , S) 98.5 44.4 42.3 52.6 71.0 34.3

HCGE(ΔEV , D) 98.8 42.9 41.2 50.8 68.0 33.6

HCGE(ΔPr, S) 97.5 41.8 41.3 52.1 71.4 32.8

HCGE(ΔPr, D) 97.4 43.8 42.3 54.1 75.0 33.1

50% LINE 24.2 21.1 22.3 25.0 29.8 20.2

HLP 100 39.7 39.4 46.5 59.3 33.7

Graffiti 100 41.5 41.2 49.4 64.1 34.8

LSHM 99.9 45.5 44.4 56.8 79.2 34.5

HCGE(ΔEV , S) 99.3 45.6 44.6 55.2 74.1 36.3

HCGE(ΔEV , D) 98.1 44.7 43.9 53.7 71.0 36.3

HCGE(ΔPr, S) 99.4 45.8 45.5 57.1 77.8 36.4

HCGE(ΔPr, D) 97.6 45.9 45.7 57.7 79.2 36.2

datasets. On average, compared to Graffiti, LSHM is 2.4 better on DBLP, 2.1
better on FlickR and 2.5 better on LastFM. We observed the same behavior
for HCGE, with +2.8 on DBLP, +4.4 on FlickR and +6.0 on LastFM. We can
note that the more complex the dataset, the higher the gap compared to the
baselines. This also shows that the use of representations can clearly improve
the performances.

On each dataset, our model outperforms LSHM (and the other competitors)
8 times over 9, with on average +1.0 points for DBLP, +2.3 for FlickR, and +3.8
for LastFM over the second ranked model. According to the results, introducing
uncertainty in representations clearly improves results when compared to LSHM.
Let us also point out that, according to our initial intuition, the effect of using
uncertainty has more impact when the amount of training data is lower: the
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Table 3. P@k FlickR

Train size Model Train Val Test

Micro Micro Macro User Photo

10 % LINE 24.4 19.4 20.7 23.2 29.1 17.3

HLP 100 26.0 26.3 27.8 31.3 24.3

Graffiti 100 24.3 24.5 27.0 32.7 21.2

LSHM 99.3 29.6 29.3 29.1 28.6 29.5

HCGE(ΔEV , S) 98.9 33.5 32.7 32.6 32.4 32.8

HCGE(ΔEV , D) 99.1 33.4 32.6 32.6 32.7 32.5

HCGE(ΔPr, S) 96.0 30.4 29.7 29.2 28.1 30.3

HCGE(ΔPr, D) 98.7 31.7 31.9 32.2 33.0 31.5

30 % LINE 23.0 21.6 21.5 24.2 30.6 17.9

HLP 100 47.6 47.7 43.7 34.5 53.0

Graffiti 100 47.5 47.0 43.7 36.1 51.3

LSHM 100 49.2 48.4 43.6 32.5 54.7

HCGE(ΔEV , S) 99.1 51.5 50.0 45.6 35.4 55.8

HCGE(ΔEV , D) 98.7 51.6 50.1 45.7 35.3 56.0

HCGE(ΔPr, S) 98.3 50.1 49.0 44.4 33.8 55.1

HCGE(ΔPr, D) 98.5 50.6 50.0 45.8 36.1 55.5

50 % LINE 23.2 21.8 21.8 24.6 31.0 18.2

HLP 100 54.2 54.1 48.6 35.8 61.4

Graffiti 100 54.4 54.0 48.8 36.9 60.8

LSHM 99.9 55.1 54.0 47.9 33.7 62.0

HCGE(ΔEV , S) 97.9 56.7 55.8 50.0 36.5 63.4

HCGE(ΔEV , D) 97.3 56.6 55.8 50.0 36.5 63.4

HCGE(ΔPr, S) 98.8 55.7 54.8 49.0 35.5 62.5

HCGE(ΔPr, D) 98.4 56.4 55.9 50.3 37.2 63.3

difference between LSHM and HCGE decreases in general when more training
data is available (except for DBLP).

Let us compare the performance of the variants ΔEV and ΔPr. Globally,
ΔPr seems to be disadvantaged by a low number of training examples, when
ΔEV seems to be more stable in comparison to other baselines. However, the
more training data, the closer the ΔPr variant is to ΔEV . For example, on the
DBLP dataset, moving from 10 % to 30 % improves on average ΔPr results by
+13.7 but only by +11.1 for ΔEV . For a training set size of 50 %, the difference
between ΔPr and ΔEV is +1.1 on DBLP, and +0.1 on FlickR. For LastFM, the
difference is resp. −14.6 for 10 %, −6.5 for 30 % and −1.5 for 50 % of the dataset
used for training. On the three datasets, the lower the training set size, the
better ΔEV seems to be compared to ΔPr. We could not explain this difference
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Table 4. P@k LastFM

Train size Model Train Val Test

Micro Micro Macro User Track Album Artist

10 % LINE 20.8 20.6 20.4 15.9 5.6 26.0 14.5 17.4

HLP 98.7 38.1 38.4 30.0 9.9 47.8 27.2 35.1

Graffiti 100 40.1 40.0 31.4 10.6 49.0 28.1 38.1

LSHM 99.9 36.4 36.3 27.2 9.0 48.4 26.2 25.3

HCGE(ΔEV , S) 99.8 44.4 44.0 34.1 9.6 52.3 35.0 39.7

HCGE(ΔEV , D) 99.3 44.0 43.6 34.0 10.5 52.2 34.4 38.7

HCGE(ΔPr, S) 97.6 27.7 27.8 20.7 4.1 34.9 21.0 23.0

HCGE(ΔPr, D) 96.0 30.3 29.4 21.9 6.7 38.7 22.1 20.2

30 % LINE 20.5 20.9 20.5 17.0 10.1 25.9 14.4 17.5

HLP 98.9 50.2 49.7 40.0 17.2 60.5 37.7 44.8

Graffiti 100 50.8 50.3 40.4 17.2 61.7 36.2 46.5

LSHM 99.8 54.2 53.3 40.3 9.7 65.8 42.7 42.9

HCGE(ΔEV , S) 99.6 58.2 57.3 45.0 14.8 68.2 45.9 51.2

HCGE(ΔEV , D) 99.5 57.9 57.0 45.3 16.8 67.5 45.7 51.3

HCGE(ΔPr, S) 97.5 50.5 50.4 37.7 9.9 66.4 32.6 42.0

HCGE(ΔPr, D) 96.9 51.5 50.8 38.5 13.2 65.0 41.4 34.4

50 % LINE 20.5 20.5 20.5 17.0 10.3 26.0 14.4 17.5

HLP 98.8 51.9 52.1 42.3 19.4 63.1 40.2 46.4

Graffiti 100 53.2 53.5 43.2 19.1 65.4 39.5 48.7

LSHM 99.7 56.6 56.7 43.2 11.0 68.8 45.6 47.6

HCGE(ΔEV , S) 99.4 60.3 60.4 48.7 20.4 71.2 48.8 54.4

HCGE(ΔEV , D) 99.9 60.1 60.3 48.6 20.1 71.1 48.7 54.3

HCGE(ΔPr, S) 99.2 58.6 58.5 45.0 11.8 69.8 47.4 51.0

HCGE(ΔPr, D) 99.9 58.9 58.9 47.2 18.9 70.2 46.4 53.4

in the behavior between ΔEV and ΔPr, but believe that this is due to the fact
that the covariance matrix is only optimized in the graph regularization term
in the case of ΔEV . Let us now compare the use of a spherical and a diagonal
covariance matrix. For the ΔEV variant, it looks like moving from a spherical
covariance matrix to a diagonal one brings no improvement. It even decreases
the performance on DBLP. Concerning the ΔPr variant, for which the covariance
matrix plays a role in the classification cost, conclusions are reversed and using
diagonal covariance matrices improves the results. On the FlickR dataset, using
a diagonal variance improves the results by 1.4 on average. However, it looks like
the more training data, the less the improvement, with +2.2 improvement for a
training set size of 10 %, +1.0 for 30 % and +1.1 for 50 %.

4.3 Qualitative Discussion

In this section, we focus on studying qualitatively the representations found by
HCGE. We consider the most robust variant of our model (ΔEV , S), and the
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most challenging dataset, LastFM (similar observations were made on the other
datasets). We will examine the respective role of regularization and classification
costs on labeled training nodes, and the relationship between the learned variance
of a node and the local node properties (like its number of neighbors).

We first examined the respective role of classification and regularization costs.
In (1), the max-margin classification cost implies that the gradient of a node x is 0
if yk

Ez[fk
θt(z)] is above 1. In this case, the only constraints on the node are due

to the graph regularization cost. We can see how many of the nodes are used by
the classification cost by looking at the number of cases for which yk

Ez[fk
θt(z)]

is below or equal to 1. In Fig. 1a, we have shown a histogram of yk
Ez[fk

θt(z)] for
labeled nodes in the training set (after convergence). For around one third of the
nodes, the value of the classifier is above 1.1 – they could be removed from the
labeled set without harming the solution (however, these could have been useful
in early stages of optimization). This is clearly in agreement with the experiments
where we have shown that representation-based models were performing better
than the others, and suggests that it would be interesting to use these statistics
to predict the performance of the model on held-out data.

(a) Histogram of yk
Ez fk

θt(z) . (b) σ against the log-PageRank.

Fig. 1. Qualitative results for the model HCGE(ΔEV , S) on the LastFM dataset with
50% of the dataset used for training. In Fig. 1b, we computed Gaussian kernel density
to show high density regions in the plot.

Regarding the relationship between the learned variance and the local prop-
erties of each node, we looked at the relationship between the PageRank4 [16]
of a node and its variance. Figure 1b shows that high PageRank implies a small
variance. Which means that for central nodes, representations are less uncertain.
However, the reverse implication is not true.

4 Using a standard damping factor of 0.15.
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5 Conclusion

We have explored the use of uncertainty for learning to represent nodes in the
challenging task of heterogeneous graph node classification. The proposed model,
Heterogeneous Classification with Gaussian Embeddings (HCGE), learns for
each node a Gaussian distribution over the representation space, parameterized
by its mean and covariance matrix, by optimizing a loss function that includes a
classification loss and graph regularization loss. We have examined four variants
of this model, by using either spherical and diagonal covariance matrices, and
by using two different loss functions for classification. Our model can easily be
extended to inductive learning by defining the Gaussian representation z as a
parameterized function of the input features.

Based on the experimental results obtained on datasets representative of
different situations, our main findings are that (i) integrating uncertainty in rep-
resentations improved classification (ii) according to our initial intuition, the
effect of using uncertainty has generally more impact when the amount of train-
ing data is lower and (iii) according to our expectation, highly central nodes
seem to have less variance associated to their representation.

Future work will address more in detail the relationship between the variance
and node properties, as well as understanding the interplay between regulariza-
tion and classification loss when both include the variance in their formulation.
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Abstract. Recent graph computation approaches have demonstrated
that a single PC can perform efficiently on billion-scale graphs. While
these approaches achieve scalability by optimizing I/O operations, they
do not fully exploit the capabilities of modern hard drives and processors.
To overcome their performance, in this work, we introduce the Bimodal
Block Processing (BBP), an innovation that is able to boost the graph
computation by minimizing the I/O cost even further. With this strat-
egy, we achieved the following contributions: (1) M-Flash, the fastest
graph computation framework to date; (2) a flexible and simple pro-
gramming model to easily implement popular and essential graph algo-
rithms, including the first single-machine billion-scale eigensolver; and
(3) extensive experiments on real graphs with up to 6.6 billion edges,
demonstrating M-Flash’s consistent and significant speedup. The soft-
ware related to this paper is available at https://github.com/M-Flash.

Keywords: Graph algorithms · Graph processing · Graph mining ·
Complex networks

1 Introduction

Large graphs with billions of nodes and edges are increasingly common in many
domains and applications, such as in studies of social networks, transportation
route networks, citation networks, and many others. Distributed frameworks
(find a thorough review in the work of Lu et al. [13]) have become popular
choices for analyzing these large graphs. However, distributed approaches may
not always be the best option, because they can be expensive to build [11], and
hard to maintain and optimize.

These potential challenges prompted researchers to create single-machine,
billion-scale graph computation frameworks that are well-suited to essential
graph algorithms, such as eigensolver, PageRank, connected components and
many others. Examples are GraphChi [11] and TurboGraph [5]. Frameworks
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 623–640, 2016.
DOI: 10.1007/978-3-319-46227-1 39
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in this category define sophisticated processing schemes to overcome challenges
induced by limited main memory and poor locality of memory access observed
in many graph algorithms. However, when studying previous works, we noticed
that despite their sophisticated schemes and novel programming models, they
do not optimize for disk operations and data locality, which are the core of
performance in graph processing frameworks.

In the context of single-node, billion-scale, graph processing frameworks, we
present M-Flash, a novel scalable framework that overcomes critical issues
found in existing works. The innovation of M-Flash confers it a performance
many times faster than the state of the art. More specifically, our contributions
include:

1. M-FlashFramework & Methodology: we propose a novel framework
named M-Flash that achieves fast and scalable graph computation. M-
Flash (https://github.com/M-Flash) introduces the Bimodal Block Process-
ing, which significantly boosts computation speed and reduces disk accesses
by dividing a graph and its node data into blocks (dense and sparse) to min-
imize the cost of I/O.

2. Programming Model: M-Flash provides a flexible and simple program-
ming model, which supports popular and essential graph algorithms, e.g.,
PageRank, connected components, and the first single-machine eigensolver
over billion-node graphs, to name a few.

3. Extensive Experimental Evaluation: we compared M-Flash with state-
of-the-art frameworks using large graphs, the largest one having 6.6 bil-
lion edges (YahooWeb https://webscope.sandbox.yahoo.com). M-Flash was
consistently and significantly faster than GraphChi [11], X-Stream [15],
TurboGraph [5], MMap [12], and GridGraph [19] across all graph sizes.
Furthermore, it sustained high speed even when memory was severely con-
strained, e.g., 6.4X faster than X-Stream, when using 4 GB of Random Access
Memory (RAM).

2 Related Works

A typical approach to scalable graph processing is to develop a distributed frame-
work. This is the case of Gbase [7], Powergraph, Pregel, and others [13]. Among
these approaches, Gbase is the most similar to M-Flash. Despite the fact that
Gbase and M-Flash use a block model, Gbase is distributed and lacks an adap-
tive edge processing scheme to optimize its performance. Such scheme is the
greatest innovation of M-Flash, conferring to it the highest performance among
existing approaches, as demonstrated in Sect. 4.

Among the existing works designed for single-node processing, some of them
are restricted to SSDs. These works rely on the remarkable low-latency and
improved I/O of SSDs compared to magnetic disks. This is the case of Turbo-
Graph [5], which relies on random accesses to the edges — not well supported
over magnetic disks. Our proposal, M-Flash, avoids this drawback by avoiding
random accesses.

https://github.com/M-Flash
https://webscope.sandbox.yahoo.com
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Fig. 1. Organization of edges and vertices in M-Flash. Edges (left): example of a
graph’s adjacency matrix (in light blue color) using 3 logical intervals (β = 3); G(p,q)

is an edge block with source vertices in interval I(p) and destination vertices in interval
I(q); SP (p) is a source-partition containing all blocks with source vertices in interval
I(p);DP (q) is a destination-partition containing all blocks with destination vertices in
interval I(q). Vertices (right): the data of the vertices as k vectors (γ1 ... γk), each
one divided into β logical segments. (Color figure online)

GraphChi [11] was one of the first single-node approaches to avoid random
disk/edge accesses, improving the performance over mechanical disks. GraphChi
partitions the graph on disk into units called shards, requiring a preprocessing
step to sort the data by source vertex. GraphChi uses a vertex-centric approach
that requires a shard to fit entirely in memory, including both the vertices in
the shard and all their edges (in and out). As we demonstrate, this fact makes
GraphChi less efficient when compared to our work. M-Flash requires only a
subset of the vertex data to be stored in memory.

MMap [12] introduced an interesting approach based on OS-supported map-
ping of disk data into memory (virtual memory). It allows graph data to be
accessed as if they were stored in unlimited memory, avoiding the need to man-
age data buffering. Our framework uses memory mapping when processing edge
blocks but, with an improved engineering, M-Flash consistently outperforms
MMap, as we demonstrate.

GridGraph [19] divides the graphs into blocks and processes the edges reusing
the vertices’ values loaded in main memory (in-vertices and out-vertices). Fur-
thermore, it uses a two-level hierarchical partitioning to increase the perfor-
mance, dividing the blocks into small regions that fit in cache. When compar-
ing GridGraph with M-Flash, both divide the graph using a similar approach
with a two-level hierarchical optimization to boost computation. However, M-
Flash adds a bimodal partition model over the block scheme to optimize even
more the computation for sparse blocks in the graph.

GraphTwist [18] introduces a 3D cube representation of the graph to add
support for multigraphs. The cube representation divides the edges using three
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partitioning levels: slice, strip, and dice. These representations are equivalent to
the block representation (2D) of GridGraph and M-Flash, with the difference
that it adds one more dimension (slice) to organize the edge metadata for multi-
graphs. The slice dimension filters the edges’ metadata optimizing performance
when not all the metadata is required for computation. Additionally, Graph-
Twist introduces pruning techniques to remove some slices and vertices that
they do not consider relevant in the computation.

M-Flash also draws inspiration from the edge streaming approach introduced
by X-Stream’s processing model [4,15], improving it with fewer I/O operations
for dense regions of the graph. Edge streaming is a sort of stream processing
referring to unrestricted data flows over a bounded amount of buffering. As we
demonstrate, this leads to optimized data transfer by means of less I/O and
more processing per data transfer.

3 M-Flash

The design of M-Flash considers the fact that real graphs have a varying density
of edges; that is, a given graph contains dense regions with many more edges
than other regions that are sparse. In the development of M-Flash, and through
experimentation with existing works, we noticed that these dense and sparse
regions could not be processed in the same way. We also noticed that this was
the reason why existing works failed to achieve superior performance. To cope
with this issue, we designed M-Flash to work according to two distinct processing
schemes: Dense Block Processing (DBP) and Streaming Partition Processing
(SPP). For full performance, M-Flash uses a theoretical I/O cost-based scheme
to decide the kind of processing to use in face of a given block, which can be
dense or sparse. The final approach, which combines DBP and SPP, was named
Bimodal Block Processing (BBP).

3.1 Graph Representation in M-Flash

A graph in M-Flash is a directed graph G = (V,E) with vertices v ∈ V labeled
with integers from 1 to |V |, and edges e = (source, destination), e ∈ E. Each ver-
tex has a set of attributes γ = {γ1, γ2, . . . , γK}; edges also might have attributes
for specific processings.

Blocks in M-Flash: Given a graph G, we divide its vertices V into β intervals
denoted by I(p), where 1 ≤ p ≤ β. Note that I(p) ∩ I(p

′) = ∅ for p �= p′, and⋃
p I(p) = V . Consequently, as shown in Fig. 1, the edges are divided into β2

blocks. Each block G(p,q) has a source node interval p and a destination node
interval q, where 1 ≤ p, q ≤ β. In Fig. 1, for example, G(2,1) is the block that
contains edges with source vertices in the interval I(2) and destination vertices
in the interval I(1). We call this on-disk organization as partitioning. Since M-
Flash works by alternating one entire block in memory for each running thread,
the value of β is automatically determined by the following equation:
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β =
⌈

φ(T + 1) |V |
M

⌉
(1)

where the constant 1 refers to the need of one buffer to store the input vertex
values that are shared between threads (read-only), φ is the amount of data to
represent each vertex, T is the number of threads, |V | is the number of vertices,
and M is the available RAM. For example, 4 bytes of data per node, 2 threads,
a graph with 2 billion nodes, and for 1 GB RAM, β = �(4 × (2 + 1) × (2 ×
109))/(230)� = 23, thus requiring 232 = 529 blocks. The number of threads enters
the equation because all the threads access the same block to avoid multiple
seeks on disk, and they use an exclusive memory buffer to store the vertex data
processed (one buffer per thread), so to prevent “race” conditions.

3.2 The M-Flash Processing Model

This section presents our proposed processing model. We first describe the two
strategies targeted at processing dense or sparse blocks. Next, we present the
novel cost-based optimization used to determine the best processing strategy.

Dense Block Processing (DBP): Figure 2 illustrates the DBP; notice that
vertex intervals are represented by vertical (Source I) and horizontal (Destina-
tion I) vectors. After partitioning the graph into blocks, we process them in a
vertical zigzag order, as illustrated. There are three reasons for this order: (1)
we store the computation results in the destination vertices; so, we can “pin” a

G (3,3)

Source I(2) 

Source I(1) 

Source I(3)

Destination I(3) Destination I(2) Destination I(1) 

G (2,3)

G (1,3)

G (3,2)

G (2,2)

G (1,2)

G (3,1)

G (2,1)

G (1,1)

Fig. 2. M-Flash’s computation schedule for a graph with 3 intervals. Vertex intervals
are represented by vertical (Source I) and horizontal (Destination I) vectors. Blocks
are loaded into memory, and processed in a vertical zigzag manner, indicated by the
sequence of red, orange and yellow arrows. This enables the reuse of input, as when
going from G(3,1) to G(3,2), M-Flash reuses source node interval I(3)), which reduces
data transfer from disk to memory. (Color figure online)
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Fig. 3. Example of DBP I/O operations to process the dense block G(2,1).

Fig. 4. I/O operations for SPP taking SP (3) and DP (1) as illustrative examples. Step 1:
the edges of source-partition SP (3) are sequentially read and combined with the values
of their source vertices from I(3). Next, edges are grouped by destination, and written to
β files, one for each destination partition. Step 2: the files corresponding to destination-
partition DP (1) are sequentially processed according to a given desired computation,
with results written to destination vertices in I(1).

destination interval (e.g., I(1)) and process all the vertices that are sources to
this destination interval (see the red vertical arrow); (2) using this order leads to
fewer reads because the attributes of the destination vertices (horizontal vectors
in the illustration) only need to be read once, regardless of the number of source
intervals. (3) after reading all the blocks in a column, we take a “U turn” (see
the orange arrow) to benefit from the fact that the data associated with the
previously-read source interval is already in memory.

Within a block, besides loading the attributes of the source and des-
tination intervals of vertices into RAM, the corresponding edges e =
〈source, destination, edge properties〉 are sequentially read from disk, as
explained in Fig. 3. These edges, then, are processed using a user-defined func-
tion so to achieve the desired computation. After all blocks in a column are
processed, the updated attributes of the destination vertices are written to disk.

Streaming Partition Processing (SPP): The performance of DBP decreases
for graphs with sparse blocks; this is because, for a given block, we have to read
more data from the source intervals of vertices than from the very blocks of
edges. In such cases, SPP processes the graph using partitions instead of blocks.
A graph partition is a set of blocks sharing the same source node interval – a
line in the logical partitioning, or, similarly, a set of blocks sharing the same
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destination node interval – a column in the logical partitioning. Formally, a
source-partition SP (p) =

⋃
q G(p,q) contains all the blocks with edges having

source vertices in the interval I(p); a destination-partition DP (q) =
⋃

p G(p,q)

contains all the blocks with edges having destination vertices in the interval
I(q). For example, in Fig. 1, SP (1) is the union of blocks G(1,1), G(1,2), and
G(1,3); meanwhile, DP (3) is the union of blocks G(1,3), G(2,3), and G(3,3). In a
graph, hence, there are β source-partitions and β destination-partitions.

Considering the graph organized into partitions, SPP takes two steps (see
Fig. 4). In the first step, for a given source-partition SP (p), it loads the values
of the vertices of the corresponding interval I(p); next, it reads the edges of the
partition SP (p) sequentially from disk, storing them in a buffer together with
their source-vertex values. At this point, it sorts the buffer in memory, grouping
the edges by destination. Finally, it stores the edges on disk into β files, one
for each of the β destination-partitions. This processing is performed for each
source-partition SP (p), 1 ≤ p ≤ β, so to iteratively build the β destination-
partitions.

In the second step, after processing the β source-partitions (each with β
blocks), it is possible to read the β files according to their destinations, so to
logically “build” β destination-partitions DP (q), 1 ≤ q ≤ β, each one containing
edges together with their source-vertex values. For each destination-partition
DP (q), we read the vertices of interval I(q); next, we sequentially read the edges,
processing their values through a user-defined function. This function uses the
properties of the vertices and of the edges to perform specific computations
whose results will update the vertices. Finally, SPP stores the updated vertices
of interval I(q) back on disk.

Bimodal Block Processing (BBP): Schemes DBP and SPP improve the
performance in complementary circumstances. But, How can we decide which
processing scheme to use when we are given a graph block to process? To answer
this question, we join DBP and SPP into a single scheme – the Bimodal Block
Processing (BBP). The combined scheme uses the theoretical I/O cost model
proposed by Aggarwal and Vitter [1] to decide for SBP or SPP. In this model,
the I/O cost of an algorithm is equal to the number of disk blocks with size B
transferred between disk and memory plus the number of non-sequential reads
(seeks). Since we use this model to choose the scheme with the smaller cost, we
need to algebraically determine the cost of each scheme, as follows.

For processing a graph G = {V,E}, DBP performs the following operations:
it reads the |V | vertices β times and it writes the |V | vertices once; it also reads
the |E| edges once – disk blocks of size B, vertices and edges with constant sizes
omitted from the equation for simplification. β2 seeks are necessary because the
edges are read sequentially. Hence, the I/O cost for DBP is given by:

O (DBP (G)) = O

(
(β + 1) |V | + |E|

B
+ β2

)
(2)

In turn, SPP initially reads the |V | source vertices and the |E| edges; then,
still in its first step, it sorts (simple shuffling) the |E| edges grouping them by
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destination into a set of edges and vertices |Ê|, writing them to disk. In its second
step, it reads the Ê edges/vertices to perform the update operation, writing |V |
destination vertices back to disk. The I/O cost for SPP comes to be:

O (SPP (G)) = O

⎛
⎝2 |V | + |E| + 2

∣∣∣Ê
∣∣∣

B
+ β

⎞
⎠ (3)

Equations 2 and 3 define the I/O cost for one processing iteration over the
whole graph G. However, in order to decide in relation to the graph blocks, we
are interested in the costs of Eqs. 2 and 3 divided by the number of graph blocks
β2. The result, after the appropriate algebra, reduces to Eqs. 4 and 5.

O
(
DBP

(
G(p,q)

))
= O

(
ϑφ (1 + 1/β) + ξψ

B

)
(4)

O
(
SPP

(
G(p,q)

))
= O

(
2ϑφ/β + 2ξ(φ + ψ) + ξψ

B

)
(5)

where ξ is the number of edges in G(p,q), ϑ is the number of vertices in the
interval, and φ and ψ are, respectively, the number of bytes to represent a vertex
and an edge e. Once we have the costs per graph block of DBP and SPP, we can
decide between one and the other by simply analyzing the ratio SPP/DBP:

O

(
SPP

DBP

)
= O

(
1

β
+

2ξ

ϑ

[
1 +

ψ

φ

])
(6)

This ratio leads to the final decision equation:

BlockType
(
G(p,q)

)
=

{
sparse, if O

(
SPP
DBP

)
< 1

dense, otherwise
(7)

We apply Eq. 6 to select the best option according to Eq. 7. With this scheme,
BBP is able to select the best processing scheme for each graph block. In Sect. 4,
we demonstrate that this procedure yields a performance superior than the cur-
rent state-of-the-art frameworks.

Algorithm 1. MAlgorithm: Algorithm Interface for coding in M-Flash
initialize (Vertex v)
process (Vertex u, Vertex v, EdgeData data)
gather (Accum v 1, Accum v 2, Accum v out)
apply (Vertex v)

Algorithm 2. PageRank in M-Flash
degree(v): = out degree for Vertex v
initialize(v): v.value = 0
process(u, v, data): v.value += u.value/ degree(u)
gather(v 1, v 2, v out): v out = v 1 + v 2
apply(v): v.value = 0.15 + 0.85 * v.value
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Algorithm 3. Algorithm M-Flash
Input: Graph G(V, E) and vertex attributes γ
Input: user-defined MAlgorithm program
Input: memory size M and number of iterations iter
Output: vector v with vertex results
1: set φ from γ attributes, and β using Eq. 1. ϑ = |V | /β
2: execute graph preprocessing and partitioning
3: for i = 1 to iter do
4: execute the first step of SPP (Fig. 4) to process the sparse source-partitions
5: for q = 1 to β do
6: load vertex values of destination interval I(q)

7: initialize I(q) of v using MAlgorithm.initialize
8: if there is a sparse destination-partition associated with I(q) then
9: for each edge

10: invoke MAlgorithm.process storing results in vector v

11: if q is odd then
12: partition-order = {1 to β}
13: else
14: partition-order = {β to 1}
15: for p = {partition-order} do
16: if G(p,q) is dense then
17: load vertex values of source interval I(p)

18: for each edge in G(p,q)

19: invoke MAlgorithm.process storing results in vector v

20: invoke MAlgorithm.gather for I(q) of v
21: invoke MAlgorithm.apply for I(q) of v
22: store interval I(q) of vector v

3.3 Programming Model in M-Flash

The M-Flash’s computational model, which we named MAlgorithm (short for
Matrix Algorithm Interface) is shown in Algorithm1. Since MAlgorithm is a
vertex-centric model, it stores computation results in the destination vertices,
allowing for a vast set of iterative computations, such as PageRank, Random
Walk with Restart, Weakly Connected Components, Sparse Matrix Vector Mul-
tiplication, Eigensolver, and Diameter Estimation.

The MAlgorithm interface has four operations: initialize, process, gather,
and apply. The initialize operation, optionally, loads the initial value of each
destination vertex; the process operation receives and processes the data from
incoming edges (neighbors) – this is where the desired processing occurs; the
gather operation joins the results from the multiple threads so to consolidate a
single result; finally, the apply operation is able to perform finalizing operations,
such as normalization – apply is optional.
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3.4 System Design and Implementation

M-Flash starts by preprocessing an input graph dividing the edges into β par-
titions and counting the number of edges per logical block (β2 blocks), at the
same time that the blocks are classified as sparse or dense using Eq. 7. Note
that M-Flash does not sort the edges during preprocessing, it simply divides
them into β2 blocks, β2 
 |V |. In a second preprocessing, M-Flash processes
the graph according to the organization given by the concept of source-partition
as seen in Sect. 3.2. At this point, blocks are only a logical organization, while
partitions are physical. The source-partitions are read and, whenever a dense
block is found, the corresponding edges are extracted from the partition and
a file is created for this block in preparation for DBP; the remaining edges in
the source-partition will be ready for processing using SPP. Notice that, after
the second preprocessing, the logical blocks classified as dense, are materialized
into physical files. The total I/O cost for preprocessing is 4|E|

B , where B is the
size of each block transferred between disk and memory. Algorithm 3 shows the
pseudo-code of M-Flash.

4 Evaluation

We compare M-Flash (https://github.com/M-Flash) with multiple state-of-the-
art approaches: GraphChi, TurboGraph, X-Stream, MMap, and GridGraph. For
a fair comparison, we used the experimental setups recommended by the respec-
tive authors. GridGraph did not publish nor share its code, so the compari-
son is based on the results reported in its publication. We omit the compari-
son with GraphTwist because it is not accessible and its published results are
based on a hardware that is less powerful than ours. We use four graphs at
different scales (See Table 1), and we compare the runtimes of all approaches
for two well-known essential algorithms PageRank (Subsect. 4.2) and Weakly
Connected Components (Subsect. 4.3). To demonstrate how M-Flash general-
izes to more algorithms, we implemented the Lanczos algorithm (with selective
orthogonalization), which is one of the most computationally efficient approaches
to computing eigenvalues and eigenvectors [8] (Subsect. 4.4). To the best of
our knowledge, M-Flash provides the first design and implementation of
Lanczos that can handle graphs with more than one billion nodes. Next, in Sub-
sect. 4.5, we show that M-Flash maintains its high speed even when the machine
has little RAM (including extreme cases, like 4 GB), in contrast to the other
methods. Finally, through a theoretical analysis of I/O, we show the reasons for
the performance increase using the BBP strategy (Subsect. 4.6).

4.1 Experimental Setup

All experiments ran on a standard personal computer equipped with a four-core
Intel i7-4500U CPU (3 GHz), 16 GB RAM, and 1 TB 540-MB/s (max) SSD disk.
Note that M-Flash does not require an SSD to run, which is not the case for

https://github.com/M-Flash
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Table 1. Graph datasets used in our experiments.

Graph Nodes Edges Size

LiveJournal [2] 4,847,571 68,993,773 Small

Twitter [10] 41,652,230 1,468,365,182 Medium

YahooWeb 1,413,511,391 6,636,600,779 Large

R-Mat (Synthetic graph) 4,000,000,000 12,000,000,000 Large

all frameworks, like TurboGraph. We used an SSD, nevertheless, to make sure
that all methods can perform at their best. Table 1 shows the datasets used
in our experiments. GraphChi, X-Stream, MMap, and M-Flash ran on Linux
Ubuntu 14.04 (x64). TurboGraph ran on Windows (x64). All the reported times
correspond to the average time of three cold runs, that is, with all caches and
buffers purged between runs to avoid any potential advantage due to caching or
buffering.

Table 2. Runtime (in seconds) with 8 GB of RAM. The symbol “-” indicates that the
corresponding system failed to process the graph or the information is not available in
the respective papers.

GraphChi X-Stream TurboGraph MMap GridGraph M-Flash

PageRank

LiveJournal (10
iter.)

33.1 10.5 7.9 18.2 6.4 5.3

Twitter (10
iter.)

1,199 962 241 186 269 173

YahooWeb (1
iter.)

642 668 628 1,245 235.95 195

R-Mat (1 iter.) 2,145 1,360 - - - 745

Connected Components

LiveJournal
(Union Find)

3.2 5.7 4.4 10.7 4.4 1.3

Twitter (Union
Find)

70 1,038 128 45 287 25

YahooWeb
(WCC - 1
iter.)

668 889 - - - 125

R-Mat (WCC -
1 iter.)

3,334 2,167.63 - - - 663.17
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4.2 PageRank

Table 2 presents the PageRank runtime of all the methods, as discussed next.

LiveJournal (small graph): Since the whole graph fits in RAM, all approaches
finish in seconds. Still, M-Flash was the fastest, up to 6X faster than GraphChi,
3X than MMap, and 2X than X-Stream.

Twitter (medium graph): The edges of this graph do not fit in RAM (it requires
11.3 GB) but its node vectors do. M-Flash had a similar performance if compared
to MMap, however, MMap is not a generic framework, rather it is based on
dedicated implementations, one for each algorithm. Still, M-Flash was faster.
In comparison to GraphChi and X-Stream, the related works that offer generic
programming models, M-Flash was the fastest, 5.5X and 7X faster, respectively.

YahooWeb (large graph): For this billion-node graph, neither its edges nor
its node vectors fit in RAM; this challenging situation is where M-Flash has
notably outperformed the other methods. The results of Table 2 confirm this
claim, showing that M-Flash provides a speed that is 3X to 6.3X faster that
those of the other approaches.

R-Mat (Synthetic large graph): For our big graph, we compared only
GraphChi, X-Stream, and M-Flash because TurboGraph and MMap require
indexes or auxiliary files that exceed our current disk capacity. GridGraph was
not considered in the comparison because its paper does not provide information
about R-Mat graphs with a similar scale. Table 2 shows that M-Flash is 2X and
3X faster that X-Stream and GraphChi respectively.

4.3 Weakly Connected Components (WCC)

When there is enough memory to store all the vertex data, the Union Find
algorithm [16] is the best option to find all the WCCs in one single iteration.
Otherwise, with memory limitations, an iterative algorithm produces identical
solutions. Hence, in this round of experiments, we use Algorithm Union Find to
solve WCC for the small and medium graphs, whose vertices fit in memory; and
we use an iterative algorithm for the YahooWeb graph.

Table 2 shows the runtimes for the LiveJournal and Twitter graphs with 8 GB
RAM; all approaches use Union Find, except X-Stream. This is because of the
way that X-Stream is implemented, which handles only iterative algorithms. In
the WCC problem, M-Flash is again the fastest method with respect to the entire
experiment: for the LiveJournal graph, M-Flash is 3x faster than GraphChi, 4.3X
than X-Stream, 3.3X than TurboGraph, and 8.2X than MMap. For the Twitter
graph, M-Flash’s speed is 2.8X faster than GraphChi, 41X than X-Stream, 5X
than TurboGraph, 2X than MMap, and 11.5X than GridGraph.

In the results of the YahooWeb graph, one can see that M-Flash was signifi-
cantly faster than GraphChi, and X-Stream. Similarly to the PageRank results,
M-Flash is pronouncedly faster: 5.3X faster than GraphChi, and 7.1X than X-
Stream.
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4.4 Spectral Analysis Using the Lanczos Algorithm

Eigenvalues and eigenvectors are at the heart of numerous algorithms, such as
singular value decomposition (SVD) [3], spectral clustering, triangle counting
[17], and tensor decomposition [9]. Hence, due to its importance, we demonstrate
M-Flash over the Lanczos algorithm, a state-of-the-art method for eigen compu-
tation. We implemented it using method Selective Orthogonalization (LSO). To
the best of our knowledge, M-Flash provides the first design and implemen-
tation that can handle Lanczos for graphs with more than one billion nodes.
Different from the competing works, M-Flash provides functions for basic vector
operations using secondary memory. Therefore, for the YahooWeb graph, we are
not able to compare it with the other frameworks using only 8 GB of memory.

To compute the top 20 eigenvectors and eigenvalues of the YahooWeb graph,
one iteration of LSO over M-Flash takes 737 s when using 8 GB of RAM. For
a comparative panorama, to the best of our knowledge, the closest comparable
result of this computation comes from the HEigen system [6], at 150 s for one
iteration; note however that, it was for a much smaller graph with 282 million
edges (23X fewer edges), using a 70-machine Hadoop cluster, while our experi-
ment with M-Flash used a single personal computer and a much larger graph.

4.5 Effect of Memory Size

Since the amount of memory strongly affects the computation speed of single-
node graph processing frameworks, here, we study the effect of memory size.
Figure 5 summarizes how all approaches perform under 4 GB, 8 GB, and 16 GB
of RAM when running one iteration of PageRank over the YahooWeb graph.
M-Flash continues to run at the highest speed even when the machine has very
little RAM, 4 GB in this case. Other methods tend to slow down. In special,
MMap does not perform well due to thrashing, a situation when the machine
spends a lot of time on mapping disk-resident data to RAM or unmapping
data from RAM, slowing down the overall computation. For 8 GB and 16 GB,
respectively, M-Flash outperforms all the competitors for the most challenging
graph, the YahooWeb. Notice that all the methods, but for M-Flash and X-
Stream, are strongly influenced by restrictions in memory size; according to our
analyses, this is due to the higher number of data transfers needed by the other
methods when not all the data fit in the memory. Despite that X-Stream worked
efficiently for any memory setting, it still has worse performance if compared to
M-Flashbecause it demands three full disk scans in every case – actually, the
innovations of M-Flash, as presented in Sect. 3, were designed to overcome such
problem.

4.6 Theoretical (I/O) Analysis

Following, we show the theoretical scalability of M-Flash when we reduce the
available memory at the same time that we demonstrate why the performance of
M-Flash improves when we combine DBP and SPP into BBP, instead of using
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Fig. 5. Runtime comparison for PageRank over the YahooWeb graph. M-Flash is sig-
nificantly faster than all the state-of-the-art competitors for three different memory
settings, 4GB, 8GB, and 16GB.

DBP or SPP alone. Here, we use a measure that we named t-cost ; 1 unit of t-cost
corresponds to three operations, one reading of the vertices, one writing of the
vertices, and one reading of the edges. In terms of computational complexity,
t-cost is defined as follows:

t-cost(G(E, V )) = 2 |V | + |E| (8)

Notice that this cost considers that reading and writing the vertices have the
same cost; this is because the evaluation is given in terms of computational
complexity. For more details, please refer to the work of McSherry et al. [14],
who draws the basis of this kind of analysis.

We measure the t-cost metric to analyze the theoretical scalability for
processing schemes DBP only, SPP only, and BBP . We perform these analy-
ses using MatLab simulations that were validated empirically. We considered
the characteristics of the three datasets used so far, LiveJournal, Twitter, and
YahooWeb. For each case, we calculated the t-cost (y-axis) as a function of the
available memory (x-axis), which, as we have seen, is the main constraint for
graph processing frameworks.

Figure 6 shows that, for all the graphs, DBP-only processing is the least
efficient when memory is reduced; however, when we combine DBP (for dense
region processing) and SPP (for sparse region processing) into BBP, we benefit
from the best of both worlds. The result corresponds to the best performance, as
seen in the charts. Figure 7 shows the same simulated analysis – t-cost (y-axis)
in function of the available memory (x-axis), but now with an extra variable: the
density of hypothetical graphs, which is assumed to be uniform in each analysis.
Each plot, from (a) to (d) considers a different density in terms of average
vertex degree, respectively, 3, 5, 10, and 30. In each plot, there are two curves,
one corresponding to DBP-only, and one for SPP-only; and, in dark blue, we
depict the behavior of M-Flash according to combination BBP. Notice that, as



M-Flash 637

Fig. 6. I/O cost using DBP, SPP, and BBP for LiveJournal, Twitter and YahooWeb
Graphs using different memory sizes. BBP model always performs fewer I/O operations
on disk for all memory configurations.

Fig. 7. I/O cost using DBP, SPP, and BBP for a graph with average degree (density)
k = {3, 5, 10, 30}, where |E| ≈ k|V |, and varying amount of memory (Color figure
online)

the amount of memory increases, so does the performance of DBP, which takes
less and less time to process the whole graph (decreasing curve). SPP, in turn,
has a steady performance, as it is not affected by the amount of memory (light
blue line). In dark blue, one can see the performance of BBP; that is, which kind
of processing will be chosen by Eq. 7 at each circumstance. For sparse graphs,
Figs. 7(a) and (b), SPP answers for the greater amount of processing; while the
opposite is observed in denser graphs, Figs. 7(c) and (d), when DBP defines
almost the entire dark blue line of the plot.

These results show that the graph processing must take into account the
density of the graph at each moment (block) so to choose the best strategy. It
also explains why M-Flash improves the state of the art. It is important to note
that no former algorithm considered the fact that most graphs present varying
density of edges (dense regions with many more edges than other regions that
are sparse). Ignoring this fact leads to a decreased performance in the form of
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a higher number of data transfers between memory and disk, as we empirically
verified in the former sections.

4.7 Preprocessing Time

Table 3 shows the preprocessing times for each graph using 8 GB of RAM. As
one can see, M-Flash has a competitive preprocessing runtime. It reads and
writes two times the entire graph on disk, which is the third best performance,
after MMap and X-Stream. GridGraph and GraphTwist, in turn, demand a pre-
processing that divides the graph using blocks in a way similar to M-Flash. We
did not compare preprocessing with these frameworks because, as already dis-
cussed, we do not have their source code. Despite the extra preprocessing time
required by M-Flash – if compared to MMap and X-Stream, the total processing
time (preprocessing + processing with only one iteration) for algorithms PageR-
ank and WCC over the YahooWeb graph, is of 1, 460s and 1, 390s, still, 29 % and
4 % better than the total time of MMap and X-Stream respectively. Note that
the algorithms are iterative and M-Flash needs only one iteration to overcome
its competitors.

Table 3. Preprocessing time (seconds).

LiveJournal Twitter YahooWeb R-Mat

GraphChi 23 511 2,781 7,440

X-Stream 5 131 865 2,553

TurboGraph 18 582 4,694 -

MMap 17 372 636 -

M-Flash 10 206 1,265 4,837

5 Conclusions

We proposed M-Flash, a single-machine, billion-scale graph computation frame-
work that uses a block partition model to optimize the disk I/O. M-Flash uses an
innovative design that takes into account the variable density of edges observed
in the different blocks of a graph. Its design uses Dense Block Processing (DBP)
when the block is dense, and Streaming Partition Processing (SPP) when the
block is sparse. In order to take advantage of both worlds, it uses the combina-
tion of DBP and SPP according to the Bimodal Block Processing (BBP) scheme,
which is able to analytically determine whether a block is dense or sparse, so
to trigger the appropriate processing. To date, our proposal is the first frame-
work that considers a bimodal approach for I/O minimization, a fact that, as we
demonstrated, granted M-Flash the best performance compared to the state of
the art (GraphChi, X-Stream, TurboGraph, MMap, and GridGraph); notably,
even when memory is severely limited.
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The findings observed in the design of M-Flash are a step further in deter-
mining an ultimate graph processing paradigm. We expect the research in this
field to consider the criterion of block density as a mandatory feature in any such
framework, consistently advancing the research on high-performance processing.
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Abstract. We present a novel data embedding that significantly reduces
the estimation error of locality sensitive hashing (LSH) technique when
used in reproducing kernel Hilbert space (RKHS). Efficient and accu-
rate kernel approximation techniques either involve the kernel principal
component analysis (KPCA) approach or the Nyström approximation
method. In this work we show that extant LSH methods in this space
suffer from a bias problem, that moreover is difficult to estimate apri-
ori. Consequently, the LSH estimate of a kernel is different from that
of the KPCA/Nyström approximation. We provide theoretical rationale
for this bias, which is also confirmed empirically. We propose an LSH
algorithm that can reduce this bias and consequently our approach can
match the KPCA or the Nyström methods’ estimation accuracy while
retaining the traditional benefits of LSH. We evaluate our algorithm on
a wide range of realworld image datasets (for which kernels are known to
perform well) and show the efficacy of our algorithm using a variety of
principled evaluations including mean estimation error, KL divergence
and the Kolmogorov-Smirnov test.

Keywords: Locality sensitive hashing · Kernel similarity measure ·
Similarity estimation · Nyström method

1 Introduction

In recent past, Locality Sensitive Hashing (LSH) [1] has gained widespread
importance in the area of large scale machine learning. Given a high dimen-
sional dataset and a distance/similarity metric, LSH can create a small sketch
(low dimensional embedding) of the data points such that the distance/similarity
is preserved. LSH is known to provide approximate and efficient solution for
estimating the pairwise similarity among data points, which is critical in solving
applications for many domains ranging from image retrieval to text analytics
and from protein sequence clustering to pharmacogenomics. Recently kernel-
based similarity measures [22] have found increased use in such scenarios in part
because the data becomes easily separable in the kernel induced feature space.
The challenges of working with kernels are two fold – (1) explicit embedding
of data points in the kernel induced feature space (RKHS) may be unknown
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 641–656, 2016.
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or infinite dimensional and (2) generally the kernel function is computationally
expensive. The first problem prohibits building of a smart index structure such
as kdtrees [3] that can allow efficient querying, while the second problem makes
constructing the full kernel matrix infeasible.

LSH has been used in the context of kernels to address both of the aforemen-
tioned problems. Existing LSH methods for kernels [12,13] leverage the KPCA
or Nyström techniques to estimate the kernel. The two methods differ only in
the form of covariance operator that they use in the eigenvector computation
step to approximately embed the data in RKHS. While KPCA uses the centered
covariance operator, Nyström method uses the uncentered one (second moment
operator). Without loss of generality, for the rest of the paper, we will use the
Nyström method and hence by covariance operator we will mean the uncentered
one. The LSH estimates for kernel differ significantly from the Nyström approx-
imation. This is due to the fact that the projection onto the subspace (spanned
by the eigenvectors of covariance operator) results in reduction of norms of the
data points. This reduction depends on the eigenvalue decay rate of the covari-
ance operator. Therefore, this norm reduction is difficult to estimate apriori.
Assume that the original kernel was normalized with norm of the data points
(self inner product) equaling 1. As a consequence of this norm reduction, in
the resulting subspace the Nyström approximated kernel is not normalized (self
inner product less than 1). Now, it is shown in [6] that LSH can only estimate
normalized kernels. Thus in the current setting, instead of the Nyström approx-
imated kernel, it estimates the re-normalized version of it. The bias arising out
of this re-normalization depends on the eigenvalue decay rate of the covariance
operator, and is unknown to the user apriori. This is particularly problematic,
since for the LSH applications (index building and estimation) in the context
of similarity (not distance), accurate estimation is paramount. For instance, the
All Pairs Similarity Search (APSS) [2,4,5] problem finds all pairs of data points
whose similarity is above a user defined threshold. Therefore, APSS quality will
degrade in case of high estimation error. In APSS using LSH [5], it is clearly
noticeable that the quality for non-kernel similarity measures is better than
their kernel counterparts.

We propose a novel embedding of data points that is amenable to LSH
sketch generation, while still estimating the Nyström approximated kernel matrix
instead of the re-normalized version (which is the shortcoming of existing work).
Specifically the contributions of this paper are as follows:

1. We show that Nyström embedding based LSH generates the LSH embedding
for a slightly different kernel rather than the Nyström approximated one. This
bias becomes particularly important during the LSH index construction where
similarity threshold (or distance radius) is a mandatory parameter. Since this
radius parameter is given in terms of the original similarity (kernel) measure,
if the LSH embedding results in a bias (estimating a slightly different kernel),
then the resulting index generated will be incorrect.
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2. We propose an LSH scheme to estimate the Nyström approximation of the
original input kernel and develop an algorithm for efficiently generating the
LSH embedding.

3. Finally we empirically evaluate our methods against state-of-the-art
KLSH [12,13] and show that our method is substantially better in estimat-
ing the original kernel values. We additionally run statistical tests to prove
that the statistical distribution of pairwise similarity in the dataset is better
preserved by our method. Preserving the similarity distribution correctly is
particularly important in applications such as clustering.

Our results indicate upto 9.7x improvement in the kernel estimation error and
the KL divergence and Kolmogorov-Smirnov tests [15] show that the estimates
from our method fit the pairwise similarity distribution of the ground truth
substantially better than the state-of-the-art KLSH method.

2 Background and Related Works

2.1 LSH for Cosine Similarity

A family of hash functions F is said to be locality sensitive with respect to some
similarity measure, if it satisfies the following property [6]:

Ph∈F (h(x) = h(y)) = sim(x, y) (1)

Here x, y is a pair of data points, h is a hash function and sim is a similarity
measure of interest. LSH for similarity measures can be used in two ways:

1. Similarity Estimation: If we have k i.i.d. hash functions {hi}k
i=1, then a

maximum likelihood estimator (MLE) for the similarity is:

̂sim(x, y) =
1
k

k∑
i=1

I(hi(x) = hi(y)) (2)

2. LSH Index Search: The concatenation of the aforementioned k hash func-
tions form a signature and suppose l such signatures are generated for each
data point. Then for a query data point q, to find the nearest neighbor,
only those points that have at least one signature in common with q need
to be searched. This leads to an index construction algorithm that results in
a sublinear time search. It is worth noting that a similarity threshold is a
mandatory parameter for an LSH index construction. Consequently, a bias in
its estimation may lead to a different index than the one intended based on
input similarity measure (Table 1).

Charikar [6] introduced a hash family based on the rounding hyperplane
algorithm that can very closely approximate the cosine similarity. Let hi(x) =
sign(rix

T ), where ri, x ∈ Rd and each element of ri is drawn from i.i.d. N(0, 1).
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Table 1. Key symbols

n, d Number of data points, Dimensionality of data

p, c Parameters: Number of eigenvectors to use, Number of extra
dimensions to use

κ(x, y) Kernel function over data points x, y (=< Φ(x), Φ(y) >)

Φ(x) Kernel induced feature map for data point x

Xi ith data point (ith row of matrix Xn×d)

Ki,j (i, j)th value of true kernel matrix Kn×n (= κ(Xi, Xj))

Yi p dimensional Nystrom̈ embedding of Φ(Xi) (ith row of Yn×p

matrix)

K̂i,j Approximation of Ki,j due to Nystroöm embedding (=<
Yi, Yj >)

Zi Our (p+n) dimensional Augmented Nystrom̈ embedding of
Φ(Xi)

K̂(Z)i,j Approximation of Ki,j due to Augmented Nystrom̈ embed-
ding (=< Zi, Zj >)

Z′
i Our (p + c) dimensional Remapped Augmented Nystrom̈

embedding of Φ(Xi)

Essentially the hash functions are signed random projections (SRP). It can be
shown that in this case,

P (hi(x) = hi(y)) = 1 − θ(x, y)
π

= sim(x, y)

=⇒ cos(θ(x, y)) = cos(π(1 − sim(x, y)))

where θ(x, y) is the angle between x, y. The goal of this work is to find a locality
sensitive hash family for the Nyström approximation κ̂ of any arbitrary kernel
κ that will satisfy the following property:

P (hi(x) = hi(y)) = 1 − cos−1(κ̂(x, y))
π

(3)

2.2 Existence of LSH for Arbitrary Kernels

Kernel similarity measures are essentially the inner product in some transformed
feature space. The transformation of the original data into the kernel induced
feature space is usually non-linear and often explicit embedding in the kernel
induced space are unknown, only the kernel function can be computed. Shrivas-
tava et al. [23] recently proved the non-existence of LSH functions for general
inner product measures. In spite of the non-existence of LSH for kernels in the
general case, LSH can still exist for a special case, where the kernel is normal-
ized – in other words the inner product is equal to the cosine similarity measure.
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As mentioned in previous section, Charikar [6] showed that using signed random
projections, cosine similarity can be well approximated using LSH. To summa-
rize, LSH in kernel context is meaningful in the following two cases:

1. The case where the kernel is normalized with each data object in the kernel
induced feature space having unit norm.

||Φ(x)||2 = κ(x, x) = 1 (4)

Here κ(., .) is the kernel function and Φ(.) is the (possibly unknown) kernel
induced feature map in RKHS.

2. In the case Eq. 4 does not hold, LSH does not exist for κ(., .). But it exists
for a normalized version of κ, say κN (., .), where:

κN (x, y) =
κ(x, y)√

κ(x, x)
√

κ(y, y)
(5)

2.3 Kernelized Locality Sensitive Hashing

KLSH [13] is an early attempt to build an LSH index for any arbitrary kernel
similarity measure. Later work by Xia et al. [26] tries to provide bounds on
kernel estimation error using Nyström approximation [25]. This work also pro-
vides an evaluation of applying LSH directly on explicit embedding generated by
KPCA [21]. A follow up [12] to KLSH provided further theoretical insights into
KLSH retrieval performance and proved equivalence of KLSH and KPCA+LSH.

KLSH computes the dot product of a data point and a random Gaussian
in the approximate RKHS spanned by the first p principal components of the
empirical centered covariance operator. It uses an approach similar to KPCA to
find out a data point’s projection onto the eigenvectors in the kernel induced
feature space and it approximates the random Gaussian in the same space by
virtue of the central limit theorem (CLT) of Hilbert spaces by using a sample
of columns of the input kernel matrix. Let Xn×d denote the dataset of n points,
each having d dimensions. We denote the ith row/data point by Xi and i, jth

element of X by Xi,j . Let Kn×n be the full kernel matrix (Ki,j = κ(Xi,Xj)).
KLSH takes as input p randomly selected columns from kernel matrix - Kn×p.
The algorithm to compute the hash bits is as follows:

1. Extract Kp×p from input Kn×p. Kp×p is a submatrix of Kn×n created by
sampling the same p rows and columns.

2. Center the matrix Kp×p.
3. Compute a hash function h by forming a binary vector e by selecting t indices

at random from 1, ..., p, then form w = K
−1/2
p×p e and assign bits according to

the hash function

h(Φ(Xa)) = sign(
∑

i

w(i)κ(Xi,Xa))
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One thing worth noting here is, unlike vanilla LSH, where an LSH estimator
tries to estimate the similarity measure of interest directly, in case of KLSH,
the estimator tries to estimate the kernel similarity that is approximated by the
KPCA embedding. The idea is that the KPCA embedding should lead to good
approximations of the original kernel and hence KLSH should be able to approxi-
mate the original kernel as well. Alternatively, instead of directly computing the
dot product in RKHS, one may first explicitly compute the KPCA/Nyström
p−dimensional embedding of the input data and generate a p−dimensional mul-
tivariate Gaussian, and then compute the dot product. The two methods are
equivalent [12]. Next, we discuss why approximation error due to applying LSH
on kernels may be significant.

3 Estimation Error of LSH for Kernels

According to Mercer’s theorem [16], the kernel induced feature map Φ(x) can
be written as Φ(x) = [φi(x)]∞i=1 where φi(x) =

√
σiψi(x) and σi and ψi are

the eigenvalues and eigenfunctions of the covariance operator whose kernel is
κ. The aforementioned infinite dimensional kernel induced feature map can be
approximated explicitly in finite dimensions by using Nyström style projec-
tion [25] as described next. This can be written as Φ̂(x) = [φ̂i(x)]pi=1 where
φ̂i(x) = 1√

λi
< K(x, .), ui >. Here K(x, .) is a vector containing the kernel val-

ues of data point x to the p chosen points, λi and ui are the ith eigenvalue
and eigenvector of the sampled p × p kernel matrix Kp×p. Note that, both the
KPCA and Nyström projections are equivalent other than the fact that in case
of KPCA, Kp×p is centered, whereas in case of Nyström, it is uncentered. Essen-
tially, Φ̂(x) = PŜΦ(x), where PŜ is the projection operator that projects Φ(x)
onto the subspace spanned by first p eigenvectors of the empirical covariance
operator. Let Yn×p represent this explicit embedding of the data points.

In the next lemma, we show that the above approach results in a bias for
kernel similarity approximation from LSH.

Lemma 1. If ̂K(LSH)i,j is the quantity estimated by using LSH on Nyström
embedding, then ̂K(LSH)i,j ≥ K̂i,j.

Proof. Since K̂(LSH) is the quantity estimated by the LSH estimator for cosine
similarity on embedding Yn×p, then by Eq. 5

̂K(LSH)i,j =
YiY

T
j

||Yi||||Yj || =
K̂i,j√

K̂i,i

√
K̂j,j

(6)

where Yi is the ith row of Y.
By assumption, ||Φ(Xi)|| = 1, ∀i. Hence

K̂i,i = < PŜΦ(Xi), PŜΦ(Xi) > = ||PŜΦ(Xi)||2 ≤ 1, ∀i
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(since PŜ is a projection operator onto a subspace). Specifically if i ∈ p, then
K̂i,i = Ki,i. Putting K̂i,i ≤ 1 in Eq. 6, we get the following.

̂K(LSH)i,j ≥ K̂i,j

Thus, applying LSH to the Nyström embedding results in an overestimation of
the kernel similarity when compared to the Nyström approximation to the kernel
similarity. In terms of our goal, Eq. 3 will have K̂(LSH) instead of K̂ (Nyström
approximated kernel). Unlike K̂, K̂(LSH) does not approximate K (true kernel)
well, unless p is extremely large. This is not feasible since eigendecomposition is
O(p3). Interestingly, the above bias ||Φ(x)−PŜΦ(x)|| depends on the eigenvalue
decay rate [28], that in turn depends on the data distribution and the kernel
function. Hence this error in estimation is hard to predict beforehand.

Additionally, another cause of estimation error, specifically for KLSH is due
to the fact that KLSH relies on the CLT in Hilbert space to generate the random
Gaussians in the kernel induced feature space. Unlike the single dimensional
CLT, Hilbert space’s CLT’s convergence rate could be much worse [20], implying
that the sample size requirement may be quite high. However, the number of
available samples is limited by p (number of sampled columns). Typically p is
set very small for performance consideration (in fact we found that p = 128
performs extremely well for dataset size upto one million).

We next propose a transformation over the Nyström embedding on which the
SRP technique can be effectively used to create LSH that approximates the input
kernel κ(., .) (K) well. Our methods apply to centered KPCA case as well.

4 Augmented Nyström LSH Method (ANyLSH)

In this section we propose a data embedding that along with the SRP technique
forms an LSH family for the RKHS. Given n data points and p columns of the
kernel matrix, we first propose a p+n dimensional embedding for which the bias
is 0 (LSH estimator is an unbiased one for the Nyström approximated kernel).
Since p + n dimensional embedding is infeasible in practice due to large n, we
propose a p + c dimensional embedding, where c is a constant much smaller
than n. In this case the estimator is biased, but that bias can be bounded by
setting c and this bound hence is independent of the eigenvalue decay rate of the
covariance operator. We provide theoretical analysis regarding the preservation
of the LSH property and we also give the runtime and memory cost analysis.

4.1 Locality Sensitive Hash Family

We identify that the major problem with using Nyström embedding for LSH is
the underestimation bias of the norms (K̂i,i) of these embedding. Hence, though
the estimates of the numerator of Eq. 6 are very good, the denominator causes
estimation bias. We propose a new embedding of the data points such that the
numerator will remain the same, but the norms of the embedding will become 1.



648 A. Chakrabarti et al.

Definition 1. We define the augmented Nyström embedding as the feature map
Zn×(p+n) such that Zn×(p+n) = [Yn×p Vn×n], where Vn×n is an n × n diagonal

matrix with the diagonal elements as
{√

1 − ∑p
j=1 Y 2

i,j

}n

i=1
.

Lemma 2. For Zn×(p+n), if K̂(Z)n×n is the inner product matrix, then for (i)
i = j, K̂(Z)i,j = 1 and (ii) for i �= j, K̂(Z)i,j = K̂i,j

Proof. Case (i):

K̂(Z)i,j = ZiZ
T
j

=
p∑

k=1

Y 2
i,k +

n∑
l=1

V 2
i,l

=
p∑

k=1

Y 2
i,k +

(√√√√1 −
p∑

j=1

Y 2
i,j

)2

= 1

Case (ii):

K̂(Z)i,j = ZiZ
T
j

=
p∑

k=1

Yi,kYj,k +
n∑

l=1

Vi,lVj,l

=
p∑

k=1

Yi,kYj,k + 0 (V is a diagonal matrix)

= YiY
T
j

= K̂i,j

Hence Zi gives us a p+n dimensional embedding of the data point Xi where
Zi approximates Φ(Xi). The inner product between two data points using this
embedding gives the cosine similarity as the embedding are unit norm and the
inner products are exactly same as that of Nyström approximation. Hence we
can use SRP hash family on Zn×(p+n) to compute the LSH embedding related
to cosine similarity. Essentially we have:

P (h(Zi) = h(Zj)) = 1 − cos−1(K̂i,j)
π

(7)

Hence we are able to achieve the LSH property of the goal Eq. 3.

4.2 Quality Implications

The quality of an LSH estimator depends on (i) similarity and (ii) number of
hash functions. It is independent of the original data dimensionality. From Eq. 1,
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it is easy to see that each hash match is a i.i.d. Bernoulli trial with success
probability sim(x, y) (s). For k such hashes, the number of matches follow a
binomial distribution. Hence the LSH estimator ŝ of Eq. 2 is an MLE for the
binomial proportion parameter. The variance of this estimator is known to be
s(1−s)

k . Therefore, even with the increased dimensionality of p+n, the estimator
variance remains the same.

4.3 Performance Implications

The dot product required for a single signed random projection for Zi can be
computed as follows:

Zir
T
j =

p+n∑
l=1

Zi,lRj,l

=
p∑

l=1

Yi,lRj,l +
n∑

k=1

Vi,kRj,p+k

=
p∑

l=1

Yi,lRj,l + Vi,iRj,p+i

Hence there are (p+1) sum operations (O(p)). Though Zi ∈ Rp+n, the dot
product for SRP (Zir

T
j ) can be computed in O(p) (which is the case for vanilla

LSH). Since Vn×n is a diagonal matrix, the embedding storage requirement is
increased only by n (still O(np)). However, the number of N(0, 1) Gaussian
samples required is O(k(p + n)), where as in case of vanilla LSH it was only
O(kp) (k is the number of hash functions). In the next section, we develop an
algorithm with probabilistic guaranty that can substantially reduce the number
of hashes required for the augmented Nyström embedding.

4.4 Two Layered Hashing Scheme

Next we define a p + c dimensional embedding of a point Xi to approximate
Φ(Xi). The first p dimensions contain projections onto p eigenvectors (same as
first p dimensions of Zi). In the second step, the norm residual (to make the
norm of this embedding 1.0) will be randomly projected to 1 of c remaining
dimensions, other remaining dimensions will be set zero.

Definition 2. Remapped augmented Nyström embedding is an embedding
Z ′

n×(p+c) (∀i, Z ′
i ∈ Rp+c) obtained from Zn×(p+n) (∀i, Zi ∈ Rp+n) such that,

(i) ∀j ≤ p, Z ′
i,j = Zi,j and (ii) Z ′

i,p+ai
= Zi,p+i, where ai ∼ unif{1, c}.

Definition 3. C(i, j) is a random event of collision that is said to occur when
for two vectors Z ′

i, Z ′
j ∈ Z, ai = aj.
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Since this embedding is in Rp+c rather than Rp+n, the number of N(0, 1) samples
required will be O(k(p + c)), rather than O(k(p + n)). Next we show that using
SRP on Z ′

n×(p+c) yields LSH embedding, where the estimator converges to K̂n×n

with c → n.

Lemma 3. For Z ′
n×(p+c), the LSH property that will be satisfied is

P (h(Z ′
i) = h(Z ′

j)) =

1
c

[
1 −

cos−1(K̂i,j +
√

1 − ∑p
l=1 Y 2

i,l

√
1 − ∑p

l=1 Y 2
j,l)

π

]
+

c − 1
c

[
1 − cos−1(K̂i,j)

π

]

Proof. For the remap we used, collision probability is given by,

P (C(i, j)) =
1
c

(8)

If there is a collision, then the norm correcting components will increase the dot
product value.

P (h(Z ′
i) = h(Z ′

j)|C(i, j)) =

1 −
cos−1(K̂i,j +

√
1 − ∑p

l=1 Y 2
i,l

√
1 − ∑p

l=1 Y 2
j,l)

π
(9)

If there is no collision, LSH will be able to approximate the Nyström method.

P (h(Z ′
i) = h(Z ′

j)|¬ C(i, j)) = 1 − cos−1(K̂i,j)
π

(10)

We can compute the marginal distribution as follows:

P (h(Z ′
i) = h(Z ′

j)) = P (h(Z ′
i) = h(Z ′

j)|C(i, j))P (C(i, j))

+ P (h(Z ′
i) = h(Z ′

j)|¬ C(i, j))P (¬C(i, j))

Applying Eqs. 8, 9 and 10 above, we get the result.

There are two aspects to note about the aforementioned lemma:

1. According to Nyström approximation [25], as we increase p (higher rank
approx.), the quantity

√
1 − ∑p

l=1 Y 2
i,l tends to 0 and the lemma leads to

the desired goal of Eq. 3, but at a computational cost of O(p3) for the eigen-
decomposition operation. Of course increasing p improves the overall quality
of Nyström approximation itself, however in practice small values of p suffice.

2. Interestingly, instead of p, if we increase c, then also we converge to the goal
of Eq. 3 as the first term of the lemma converges to 0. The computational
cost is O(k(p+c)) which usually is much less than O(p3). This is the strategy
we adopt and as we will show shortly, small values of c are sufficient even for
large scale datasets. Hence c can be used to bound the bias (difference from
the probability of Eq. 3).
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5 Evaluation

5.1 Datasets and Kernels

We evaluate our methodologies on five real world image datasets varying from
3030 data points to 1 million and three popular kernels known to work well on
them. Summary of the datasets can be found in Table 2.

Caltech101: This is a popular image categorization dataset [9]. We use 3030
image from this data. Following KLSH [12,13] we use this dataset with the
CORR kernel [27].

PASCAL VOC: This is also an image categorization dataset [8]. We use 5011
images from this data. Following [7] we use the additive χ2 kernel for this data.

Notre Dame image patches: This dataset contains 468159 small image
patches of Notre Dame [10] and the image patch descriptors used are as per [24].
We use the Gaussian RBF kernel on this data.

INRIA holidays: To test at large scale, we use 1 million SIFT as well as
1 million GIST descriptors from the INRIA holidays dataset [11]. Following
KLSH [12,13] we use the additive χ2 kernel with this data.

Table 2. Dataset and kernel details

Dataset Size Kernel

Caltech101 3030 CORR

PASCAL VOC 2007 5011 Additive χ2

Notre Dame image patches 468159 Gaussian RBF

INRIA holidays SIFT-1M 1000000 Additive χ2

INRIA holidays GIST-1M 1000000 Additive χ2

5.2 Evaluation Methodology

The focus of this work is accurate estimation of the input kernel similarity mea-
sure through LSH. For evaluating the quality of similarity estimation, we use
two approaches - (i) we take a sample of pairs from each dataset, and compute
the average estimation error directly and (ii) we use a sample of pairs from each
dataset, compute the similarity of the pairs, both accurately (ground truth) and
approximately (ANyLSH) and then compare the statistical distribution of the
pairwise similarity of ground truth with ANyLSH. The former gives a direct
measure of estimation accuracy, while the latter gives us insights on how well
the pairwise similarity distribution is preserved. In terms of execution times, our
algorithm performs the same as the baseline we compare against.

We use state-of-the-art KLSH as our baseline. We randomly sample 1000
pairs of data points from each dataset for our experiments. We use the values
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64 and 128 for p, and vary h from 1024 to 4096 in steps of 1024. For ANyLSH,
we set c = 1000. In our evaluation, we see that c generalizes well to varying
data sizes. For KLSH, we set q = 16, 32 for p = 64, 128 respectively as per the
guideline in the source code [13].

5.3 Results

Similarity Estimation Comparisons. Figures 1(a), (c), (e), (g) and (i) report
the results on estimation error. We clearly see that our ANyLSH method out-
performs KLSH in every single case by a large margin. The improvement of
estimation error varies from a minimum of 2.4x (Fig. 1(e), p = 128, h = 1024)
to a maximum of 9.7x (Fig. 1(e), p = 64, h = 4096), with average reduction in
error of 5.9x across all datasets. With fixed p, the estimation error of our method
decreases consistently across all datasets with the increase of hashes, as should
be the case per Eq. 2. Interestingly, for KLSH, there are multiple cases when
with the increase in hashes, the estimation error also increased. For instance, in
Fig. 1(i), at p = 64, by increasing h from 2048 to 4096, KLSH’s error increased
from 0.076 to 0.078. This provides empirical evidence as well that not only the
estimates are off, but in case of KLSH, they are converging towards a biased
value as described in Lemma 1. Additionally note that our average absolute
error varies between 0.011 − 0.038 across all datasets and there is no trend that
the error increases with larger datasets. This provides strong empirical evidence
to the theoretical insight that at fixed c (1000 in our case), the average esti-
mation error generalizes extremely well to different datasets of varied sizes and
different kernels. Though the error is a function of the eigenvalue decay rate, it
is upper bounded by ANyLSH.

Similarity Distribution Comparisons. As second part of our qualitative
evaluation, in this section, we investigate how well the pairwise similarity dis-
tribution of the data is preserved. This is particularly important in applications
that rely heavily on similarity distribution such as clustering. Our goal is to com-
pare the two distributions in a non-parametric fashion as we do not have any
prior knowledge of these distribution. Our first approach is to compare normal-
ized histograms (probabilities). We choose the popular KL divergence measure
to compare probability distributions represented by histograms. We discretized
both our data and the ground truth by splitting the similarity range 0–1 into
fixed length bins of length 0.1. Figures 1(b), (d), (f), (h) and (j) report the KL
divergence numbers. The improvement in terms of KL divergence is even better,
with upto two orders of magnitude improvement over KLSH. This improvement
can be partly attributed to the discretization process – since we used length 0.1
bins and our estimation errors are significantly less than 0.1, most of our errors
get absorbed in the discretization process. With KLSH’s error being substan-
tially higher than 0.1, it’s KL divergence becomes very high.

To account for the binning issue, we additionally run the non-parametric
Kolmogorov-Smirnov two sample test that is more suitable for comparing empir-
ical distributions of continuous data. This test is particularly challenging in our
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(a) Caltech 101 (b) Caltech 101

(c) VOC 2007 (d) VOC 2007

(e) PATCH (f) PATCH

(g) SIFT-1M (h) SIFT-1M

(i) GIST-1M (j) GIST-1M

Fig. 1. Estimation error and KL divergence are reported in the first and second columns
respectively for all datasets.
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Table 3. Results of Kolmogorov Smirnov tests on ANyLSH method. Critical value at
1 % significance level was 0.073.

Dataset p-value Test statistic

Caltech101 0.006 0.076

PASCAL VOC 2007 0.716 0.031

Patch 0.565 0.035

INRIA SIFT-1M 0.603 0.034

INRIA GIST-1M 0.011 0.072

setting as the test statistic is the supremum of absolute differences across all
values in the empirical CDFs. Thus, error in even a single region may result in
the failure of this test. Moreover, our proposed method being an approximate
one, will always have some estimation error. The null hypothesis is that the
two samples come from the same underlying distribution and the alternative
hypothesis is that they are from different distributions. The results for p = 128
and h = 4096 are are reported in Table 3. All of the datasets (only exception
being Caltech) did not reject the null hypothesis, providing strong evidence that
they are indeed from same underlying distribution. Note that, even the Caltech
result was very close to the threshold. For KLSH, in every single dataset the null
hypothesis was rejected and the p − values were extremely far away from the
threshold. This conclusively proves that applying KLSH to a dataset significantly
changes the pairwise similarity distribution.

6 Future Works

There has been a wide range of works that build on the KLSH foundations
- improve quality through supervised learning [14,17]; develop LSH for non-
metric measures [18]; We believe that these methods can be used in conjunction
with our hashing scheme as well to improve performance, and in future, we
propose to investigate them. Additionally, we plan to explore the case of non-
normalized kernel measures. Though LSH is known not to exist in the general
case for maximum inner product search, but augmented data embedding along
with modified LSH functions [19,23] are known to work well for maximum inner
product search. We believe these ideas can be leveraged by our data embedding
framework to handle kernel similarities for the general case.

7 Conclusion

In this paper we proposed a locality sensitive hash family for arbitrary nor-
malized kernel similarity measures. We analytically showed that the existing
methods of LSH for kernel similarity measures based on KPCA/Nyström pro-
jections suffer from an estimation bias, specific to the LSH estimation technique.
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In other words, these LSH estimates differ from the KPCA/Nyström estimates
of the kernel. This bias depends on the eigenvalue decay rate of the covariance
operator and as such unknown apriori. Our method, ANyLSH, can directly esti-
mate the KPCA/Nyström approximated input kernel efficiently and accurately
in a principled manner. Key to our method are novel data embedding strate-
gies. We showed that, given p columns of the input kernel matrix, the bias can
be completely removed by using a p + n-dimensional embedding. Since n can
be rather large and also not fixed, we additionally propose a p + c-dimensional
embedding where c is fixed and much smaller than n. In our analysis we showed
that in this case the worst case bias can be controlled by the user by setting c.
Consequently, we overcame the short coming that resulted from the bias term
being unknown to the user apriori. Our methods, when compared to the state-
of-the-art KLSH improves the kernel similarity estimation error by upto 9.7x.
Further evaluations based on the KL divergence and Kolmogorov-Smirnov tests
provide strong evidence that pairwise similarity distribution is well preserved by
ANyLSH.
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Abstract. Kernel learning is the problem of determining the best ker-
nel (either from a dictionary of fixed kernels, or from a smooth space
of kernel representations) for a given task. In this paper, we describe a
new approach to kernel learning that establishes connections between the
Fourier-analytic representation of kernels arising out of Bochner’s theo-
rem and a specific kind of feed-forward network using cosine activations.
We analyze the complexity of this space of hypotheses and demonstrate
empirically that our approach provides scalable kernel learning superior
in quality to prior approaches.

1 Introduction

Kernel methods have been a powerful tool in machine learning for decades and
kernel learning is the problem of learning the “right” or “best” kernel for a
given task. Broadly speaking, we can divide kernel learning methods into two
categories. Multiple kernel learning (MKL) methods largely assume that the
desired kernel can be represented as a combination of a dictionary of fixed kernels,
and seeks to learn their mixing weights. The other approach is based on a Fourier-
analytic representation of shift-invariant kernels via Bochner’s theorem: roughly
speaking, a kernel can be represented (in dual form) as a probability distribution,
and so the search for a kernel becomes a search over distributions.

In both approaches, training the model is challenging with many thousands
of training points and hundreds of dimensions. Standard training approaches
either employ some form of convex or alternating optimization (for MKL) or
parameterize the space of distributions in terms of known distributions and try
to optimize their parameters.

In this paper, we describe continuous kernel learning (CKL), a new way of
tackling this problem by establishing and exploiting a connection to feed-forward
networks. Working within the Fourier-analytic framework for kernel learning,
we propose to search directly over the space of shift-invariant kernels instead
of optimizing the parameters of a known family of distributions. In doing so,
though we lose the ability to isolate parameters of a single learned kernel, we

This research was partially supported by the NSF under grants CCF-0953066,
IIS-1251049 and CNS-1302688.

c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 657–673, 2016.
DOI: 10.1007/978-3-319-46227-1 41



658 J. Moeller et al.

gain representability in terms of a nonlinear basis of cosines that can be naturally
interpreted as activations for a feed-forward network. This interpretation allows
us to deploy the power of backpropagation on this network to learn the desired
kernel representation. In addition, the generalization power of the cosine repre-
sentation can be established formally using machinery from learning theory: this
also helps guide the regularization that we use to learn the resulting kernel. We
support these arguments with a suite of experiments on relatively large data sets
(tens of thousands of points, hundreds of dimensions) that demonstrate that our
learned kernels are more accurate than the state-of-the-art MKL methods.

In summary, our main contributions are:

– We develop the continuous kernel learning (CKL) framework, a kernel learning
method that learns an implicit representation of a kernel. We show that we
can interpret the learning task as a feed-forward network. This allows us to
utilize recent advances in optimization technology from deep learning to train
a classifier.

– We prove VC-dimension and generalization bounds for a single Fourier embed-
ding, which yields natural regularization techniques for CKL.

– We show via experiments that CKL outperforms existing scalable MKL
methods.

1.1 Technical Overview

The starting point for our work is the representation of any shift-invariant ker-
nel1 as an infinite linear combination of cosine basis elements via Bochner’s
theorem [9], as first demonstrated by Rahimi and Recht [41]. This representa-
tion is typically used to generate a random low-dimensional embedding of the
associated Hilbert space.

If we move away from a random low-dimensional embedding and embrace
the entire distribution that we sample from, we reach infinite-width embed-
dings. Dealing with infinite-width embeddings simply means that we consider
the expectation of the embedding over the distribution. Neal [36] linked infinite-
width networks to Gaussian processes when the distribution is Gaussian. Much
later, Cho and Saul [11] applied the technique to infinite-width rectified lin-
ear units (ReLUs), and showed a correspondence to a kernel they called the
arc-cosine kernel. Hazan and Jaakkola [21] extended this result further, and
analyzed the kernel corresponding to two infinite layers stacked in series. In all
of this, a specific distribution is chosen in order to obtain a kernel.

In our work, we return to the infinite representation provided by Bochner’s
theorem. Rather than picking a specific distribution over weights, we learn a
distribution based on our training data. This effectively means we learn a repre-
sentation of a kernel. While we cannot learn an infinite-width embedding directly,
since the space of functions is itself infinite, we are able to construct approximate
representations from a finite number of Fourier embeddings. Since the learned

1 A kernel κ(x, y) expressible as κ(x, y) = k(x − y).
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kernel representations are a form of kernel learning, we dub our technique con-
tinuous kernel learning (CKL).

2 Prior Kernel Learning Work

2.1 Multiple Kernel Learning (MKL)

Multiple Kernel Learning, or MKL, is an extension to kernelized support vector
machines (SVMs) that employs a combination of kernels to extend the space of
possible kernel functions. MKL algorithms learn not only the parameters of the
SVM, but also the parameters of the kernel combination. In this sense, MKL
algorithms seek to find the correct kernel function for the training data instead
of relying on a predefined kernel function.

Lanckriet et al. [28] describe several convex optimization problems that learn
the coefficients of a linear combination of kernel functions κγ(·, ·) =

∑
i γiκi(·, ·).

There are several algorithms to solve the MKL problem, including [1,3,17,18,42].
In addition to solving the MKL problem, MWUMKL [34] and SPG-GMKL [22]
also work at scale.

2.2 Approaches Utilizing Bochner’s Theorem

The key mathematical tool that drives much of kernel learning work is Bochner’s
theorem:

Theorem 1 (Bochner [9]). A continuous function k : Rd → R is positive-
definite iff k(·) is the Fourier transform of a non-negative measure.

Several papers have been published that explore the connection between
Bochner’s theorem and learning a kernel2. A Bayesian view produces an inter-
pretation of this optimization as learning the kernel of a Gaussian process (GP).
Wilson and Adams [46] equate stationary (shift-invariant) kernels to the spec-
tral density function of a GP. They observe that linear combinations of squared-
exponential kernels are dense in the space of stationary kernels. The resulting
kernel has few parameters and is relatively easy to interpret.

Yang et al. [51] extend the ideas in [46] and combine it with the principles
from Fastfood [29]. The authors also discuss variants of their algorithms such as
computing a piecewise linear kernel. Similarly, the BaNK method by Oliva et al.
[37] learns a kernel using the GP technique and trains the kernel using MCMC.
Finally in the GP vein, Wilson et al. [47] integrate a deep network as input to
the GP, treating the GP as an “infinite-dimensional” layer of the network, and
optimize the parameters of the GP simultaneously with the parameters of the
network using backpropagation.

2 Note that Yang et al. [50] are not producing a kernel learning method, but an
effective way to sparsify CNNs. No comparison to other kernel learning methods is
made in [50].
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Băzăvan et al. [10], in contrast, optimize Fourier embeddings, but decompose
each ωi into a parameter σi multiplied by a nonlinear function of a uniform
random variable to represent the sample. The uniform variable is resampled
during optimization as the parameter is learned.

3 Continuous Kernel Learning

3.1 Bochner’s Theorem

A couple observations must be made in order for Theorem 1 to be relevant to our
setting. First, we observe that (for the purposes of this paper) a positive definite
function k(·) is a positive definite kernel κ(·, ·) when κ(x,x′) = k(x − x′). A
kernel of this type is a shift-invariant kernel. Examples include the Gaussian or
RBF kernel (e−‖x−x′‖2/σ2

) and the Laplacian kernel (e−λ‖x−x′‖).
Next, any non-negative measure μ : Rd → R

+ can be converted to a prob-
ability distribution if we normalize by Z =

∫
Rd dμ. Since Fourier transforms

are linear, we can normalize the kernel by the same factor Z and maintain the
equivalence. So without loss of generality, we can assume that the measure μ
is a probability measure. This equivalence between shift-invariant kernel and
distribution is important in the rest of this paper.

3.2 Fourier Embeddings

Rahimi and Recht [41] built on Bochner’s theorem by observing that the Fourier
transform of μ is also an expectation:

k(x − x′) =
∫

Rd

eiω�(x−x′)fμ(ω) dω = Eω[ζω(x)ζω(x′)],

if ζω(x) = eiω�x and ω ∼ Dμ, where Dμ is the probability distribution over Borel
sets on R

d with measure μ. This shows that ζω(x)ζω(x′) is an unbiased estimate
of k(x − x′). Because k(x − x′) is real, we know that Eω[ζω(x)ζω(x′)] has no
imaginary component. A straightforward Chernoff-type argument [35, see Ch.4]
shows that averaging ζω(x)ζω(x′) over D samples of ω produces a bound on the
error of the estimate that diminishes exponentially in D. The lifting map then
becomes Φ(x) =

√
1/D(ζω1(x), . . . , ζωD

(x)). The inner product 〈Φ(x), Φ(x′)〉 is
obviously the desired average.

We can avoid complex numbers by using zω,b(x) =
√

2 cos(ω�x + b) with
ω ∼ Dμ and b ∼ U [0, 2π), which offers the same unbiased estimate (see [41]).
The lifting map in this case is Φ(x) =

√
2/D(zω1,b1(x), . . . , zωD,bD (x)). In this

work we will refer to these maps (of the real or complex type) as Fourier embed-
dings. In [41] these embeddings are called random Fourier features, because they
are selected at random from the distribution that is Fourier-dual to the approx-
imated kernel. We will demonstrate that Fourier embeddings of this type need
not be selected at random, and can in fact be optimized.
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Our Approach. Our approach is most similar to that in Băzăvan et al. [10].
Like the authors of [10], we recognize that we can optimize the parameters {ωi}
of a Fourier embedding. Băzăvan et al. [10] decompose ωi as follows:

ωi = σi � h(ui),

where σi is the parameter of a shift-invariant kernel, � is the Hadamard
(element-wise) product of two vectors, h is an element-wise nonlinear function
(essentially an inverse quantile function), and ui is a sample drawn from a multi-
variate uniform distribution (cube). The procedure is to optimize σi and period-
ically resample ui. This has the advantage of being able to represent the kernel
with its parameter σi, which adds to clarity, but the kernel must be one of
a particular class of shift-invariant kernels that decomposes into this form. A
Gaussian kernel, however, does decompose this way.

In contrast, we sample the vectors ωi from the distribution Dμ, and then
optimize them directly. The weights {ωi} become different vectors {ω′

i} ⊂ R
d –

and are now very unlikely to be drawn i.i.d. from the distribution Dμ anymore.
As in prior approaches, by learning the embeddings, we learn the kernel, because
the Bochner equivalence between distributions and kernels guarantees this. We
use backpropagation to learn the weights, avoiding the need to resample at every
step, and allowing us to take advantage of recent neural network technology to
perform scalable optimization. While other approaches focus on decomposing
the representation of the kernels into individual kernel components and learn
their parameters, we avoid this and focus only on producing the final weights
ω′

i. We lose the clarity and sparsity of individual kernel parameters but gain the
flexibility of learning a representation of a shift-invariant kernel free of individual
base kernels, and recent technology allows us to do this training quickly.

For brevity, we refer to the d × D matrices W (for the {ωi}) and W′ (for
the {ω′

i}), since there are D samples from R
d.

3.3 Generalization Bounds in Fourier Embeddings

We now examine the capacity of this class of kernels by analyzing its VC-
dimension. Note that the cosine function complicates this analysis since it has
nontrivial gradient almost everywhere.

Fortunately we can exploit an observation already well-known in kernel learn-
ing that a narrow kernel function, for example, a Gaussian kernel with a small
variance, is more likely to overfit (and therefore have higher capacity). This is
because a narrow kernel function only allows the model to examine a very small
range around each point, so a new point is unlikely to be affected by the model
at all. Because the kernel is the Fourier transform of a distribution, a narrow
kernel function corresponds to a distribution with high variance – using the same
example, a Gaussian kernel with variance parameter σ2 is the Fourier transform
of a Gaussian distribution with variance 1/σ2. So a small variance in the kernel
corresponds to a high variance in the distribution, and vice-versa. In fact, we
can demonstrate that if the norm of the embedding parameter ω is high, then
this translates to higher capacity.
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Let z(x) = e2πix, Re(z) and Im(z) be the real and imaginary components of
z, respectively, let [a..b] refer to the set of integers between a and b, inclusive
(i.o.w., {n ∈ Z | a ≤ n ≤ b}), and let 1P (x) be the indicator (or characteristic)
function of P : R → {0, 1}.

Definition 1. An (ω, β, d)-range is the set {x ∈ R
d | Im(z(ω·x+β)) ≥ 0, ‖x‖ <

1} where d ≥ 1 is an integer, ω ∈ R
d, and β ∈ [0, 1).

Definition 2. Let Gd(R) be the set of all (ω, β, d)-ranges such that ‖ω‖2 ≤ R.

Lemma 1. The decision function 1Im(z(wx+β))≥0 induces a unique binary label-
ing for the set x ∈ {1/2i}n

i=1 for every integer value of w ∈ [1..2n], and any
β ∈ (0, 2−(n+1)).

Proof. For any integer w ∈ [1..2n] and i ∈ [1..n], choose the binary label as
0 if z(w/2i + β) lands in the upper half-plane of C, and 1 if the lower half-
plane. The label can be read as the most significant fractional digit of the binary
representation of w/2i, as long as β ∈ (0, 2−(n+1))3. The labeling is then unique
for integer values of w up to 2n. �

Clearly, every (ω, β, d)-range corresponds to a binary classifier and the range
space (Rd,Gd(R)) is the hypothesis space of interest. We denote the unbounded
range space ∪RGd(R) by Gd(∞).

Theorem 2. The VC-dimension of the range space (Rd,Gd(R)) is Θ(max
{d log R, d + 1}).

We prove this theorem in two parts.

Lemma 2. The VC-dimension of (Rd,Gd(R)) is at least d max{�log2 R�, 1}+1.

Proof. Let n = �log2 R�, for R ≥ 2. We now construct a set of dn points.
Along each axis of Rd, place n points with corresponding coordinate from the set
{1/2i}n

i=1. From Lemma 1, we know that we can induce a binary labeling on every
axis-restricted set, using integers [1..2n]. Given ω ∈ [1..2n]d, each ωj ∈ [1..2n]
will give a unique labeling to the points on axis j ∈ [1..d], independent of any
other axis j. Therefore we can uniquely label the whole set of dn points, for all
possible labelings.

To add one more point to the set, we select a point c, the d-dimensional vector
with all coordinates equal to a constant c, and make sure that we can find values
β+ and β− so that 〈c,ω〉 + β+ ≥ 0 and 〈c,ω〉 + β− < 0, independently of ω.
Observe that 〈c,ω〉 = c

∑
j ωj , and that d ≤ ∑

j ωj ≤ d2n. For 〈c,ω〉+β− < 0 we
need that β+ < −〈c,ω〉 for all ω, since the choice of β must be independent of ω.
This means that first, c < 0 since β− > 0 and

∑
j ωj > 0. Then −cd ≤ −〈c,ω〉 ≤

−cd2n, so we need to pick β+ < −cd. Similarly, we require β+ ≥ −cd2n, and since
β+ < 2−(n+1), we need −c < 1/d2−(2n+1). Set c = −1/d22n+2, β+ = 2−(n+2),

3 To avoid ambiguity, we require β > 0, to prevent z(w/2i) from landing on the real
axis when 2i divides w.
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and β− = 2−(2n+3). We can now uniquely label dn + 1 points for all possible
labelings, when R > 2.

Regardless of the value of R, there is always a unique labeling of d+1 points
induced by the range space, since we can restrict to a ball small enough that
Im(z(ωx + β)) = sin(2π(ωx + β)) is monotonic for appropriate values of β.
Within the ball, the range space is effectively the range of half-spaces, which has
VC-dimension d + 1. �
Corollary 1. The VC-dimension of the range space (Rd,Gd(∞)) is unbounded.

To prove the corresponding upper bound, we use the notion of the shatter
function of (Rd,Gd(R)) [20]. For a positive integer n, the shatter function of a
range space is the maximum highest number of subsets induced by the range
space on any set of n points Xn. That is, any range R induces a subset of Xn

simply by the intersection R ∩ Xn, and the shatter function counts all unique
subsets of this type.

Lemma 3. The shatter function of (Rd,Gd(R)) is O(Rdnd+1).

Proof. We can first observe that ‖ω‖2 ≤ R implies that ‖ω‖∞ ≤ R. This implies
that |ωj | ≤ R for every j ∈ [1..d]. Treating each coordinate separately this way,
each term in 〈ω,x〉 + β contributes a factor in the growth function.

For a fixed ω, the number of subsets of a set of n points selected by (ω, β, d)-
ranges is O(n), because as β changes, at most one point exits or leaves the
upper half-plane (because the points all travel at the same speed around the
unit circle).

For fixed β, and fixed ω save for some coordinate ωj , on the other hand, how
often a point enters or leaves the upper half-plane as ωj varies in (0, R] depends
upon the value of xj . For higher values of xj , the mapped point travels more
rapidly. In fact, for x = 1, z takes R revolutions around the circle, so enters
and exits the upper half-plane 2R times. The number of subsets is bounded
by

∑n
i=1 2R|xi| = 2R

∑n
i=1 |xi| ≤ 2Rn. We take the absolute value because a

negative xi simply changes the direction of travel of z(ωjxi +β). Everything else
remains the same. For ω and β varying independently, we now have the bound
stated in the lemma. �
Lemma 4. The VC-dimension of (Rd,Gd(R)) is O(d log R).

Proof. Follows directly from the relationship between the shatter function and
VC-dimension [20]. �

With Lemmas 2 and 4, we have proven Theorem 2. The VC dimension also
gives us a generalization bound, due to Bartlett and Mendelson [4]:
Theorem 3. Let F be a class of ±1-valued functions defined on a set X. Let P
be a probability distribution on X×{±1}, and suppose that (X1, Y1), . . . , (Xn, Yn)
and (X,Y ) are chosen independently according to P . Then for any positive inte-
ger n, w.p. (1 − δ) over samples of length n, every f ∈ F satisfies

P (Y �= f(X)) ≤ 1
n

n∑
i=1

1Yi �=f(Xi) + O

(√
max{d log R, d + 1}

n
+

√
ln 1/δ

n

)
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Regularization. Theorems 2 and 3 immediately suggest three regularization tech-
niques: First, we limit the norm of the Fourier weights with weight decay (a.k.a.
L2 regularization). Alternatively, we simply cap the norm of each Fourier weight
vector to some constant at each round of the training. We can further control
the initial capacity by setting the variance of the initializing distribution.

4 From an Embedding to a Feed-Forward Network

We now return to the single Fourier embedding

zω,b =
√

2 cos(ω�x + b)

If we fix an input x, then we can view the mapping zω,b as a neuron with a cosine
activation function and biases of the form b ∈ [0, 2π). We call this type of neuron
a cosine neuron. Such a neuron, with a cutoff to ensure zero support outside an
interval, was introduced in [15]. We impose no such cutoff in this work.

Consider a layer of cosine neurons, each with associated weight vector ωj .
Each of these weights can be viewed as a sample from some distribution, and
therefore the entire ensemble is a (dual) representation of some shift-invariant
kernel (by Bochner’s theorem). We can then write the associated classifier for
such a combination. Denoting the bias vector by b and the collection of all the
weight vectors ωj by W , the resulting classifier (with a softmax layer to combine
the individual activations and logarithmic loss), can be written as

�log(softmax(cos(W · xi + β)), yi),

where softmax(r)j = erj/
∑

k erk , and �log is the log loss.
What we now have is a standard (shallow) 2-layer network that we can train

using backpropagation and stochastic gradient descent.

5 Experiments

We have designed our experiments to answer the following questions: (1) Does
allowing the learning algorithm to pick an arbitrary kernel improve performance
over standard MKL techniques that are only allowed to select from a fixed library
of kernels? (2) How does the learning algorithm for CKL adapt to large datasets
and higher dimensions?

5.1 MKL Vs. CKL on Small Datasets

Since CKL is proposed as an alternative to MKL, we compare CKL to two
scalable MKL algorithms, namely SPG-GMKL [22] and MWUMKL [34].

Data Sets. All of the datasets used for the experiments are taken from the
libsvm repository4. See Table 1 for details of the datasets.
4 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Table 1. Summary of datasets

LibSVM datasets Features Examples

Liver 6 345

Diabetes 8 768

Cod-RNA 8 59535

Breast cancer 10 683

German-Numeric 24 1000

Mushroom 112 8192

Adult 123 32561

Gisette 5000 6000

Million Song Datasets (MSD) Features Examples Notes

Genre 1 182 37, 037 “Classic pop and rock” vs. “folk”

Genre 2 182 59, 485 “Classic pop and rock” vs. everything else

Year pred 90 515, 345 Prior to year 2000 vs. after year 2000

Experimental Procedure. The data for Adult and Mushroom datasets consist of
binary features (one-hot representations of categorical features), so no scaling
was applied. Features were scaled to the range [−1, 1] for other datasets.

For MKL experiments, we used the Scikit-Learn Python package [40] for
much of the testing infrastructure. For testing with MKL methods, the training
data is split randomly into 75 % training and 25 % validation data. The random
splits were repeated 100 times for all sets except Mushroom, Gisette, and Adult,
which received 20 splits for considerations of time. The C parameter was selected
through cross validation and for MWUMKL, the ε parameter was chosen to be
0.005, to achieve high accuracy while allowing all of the experiments to complete
(the number of iterations of the algorithm in [34] is proportional to 1/ε). We use
two kernels: a linear kernel and a Gaussian kernel. For the Gaussian kernel, a wide
range of γ are tried and the the best accuracy observed is used in the results.

For CKL experiments, the same test/train split was applied, and additionally,
the training portion was split further into 75 % training and 25 % validation. We
apply early stopping and momentum, and random searches for: the width (h0)
of the hidden layer, a parameter (σ) used for initializing the weights of the
hidden layer, and the learning rate (�) hyperparameters. Training was stopped
if the validation objective did not decrease within 100 epochs and was otherwise
permitted to run for up to 10, 000 epochs. Momentum was applied from the first
epoch with a value of 0.5 that was increased to 0.99 over the course of 10 epochs.

Values for h0 were selected from {2i} with i sampled uniformly from [0..9],
except for Gisette, where i was sampled uniformly from [0..14]. The weights of
the hidden layer were sampled from a Gaussian distribution with variance σ
selected from {2i} where i was sampled uniformly from [−6..0]. The weights of
the softmax layer were selected from U [−0.1, 0.1]. Finally � was sampled from
LU [10−5, 0.2)5. 100 models with random hyperparameters were trained, and

5 A random variable X is drawn from LU [a, b] if X = eY , where Y ∼ U [ln(a), ln(b)).
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then the one with the highest performance was chosen and validated with 100
random splits (as described in the previous paragraph).

Results. The results are shown in Table 2. CKL is not different in any significant
capacity from either GMKL or MWUMKL on very small datasets. Letting the
learning algorithm pick an arbitrary kernel improves performance over standard
MKL techniques that only choose a mixture of kernels. Additionally, we see that
CKL adapts to large datasets and higher dimensions better than MKL.

Table 2. Mean accuracies (standard deviations) for various datasets on MKL and
CKL. If a mean, minus the standard deviation, is greater than all other means plus
standard deviations in the row, then the mean is bold. Note that for all MSD tests,
the difference is more than three standard deviations.

Small datasets GMKL MWUMKL CKL

Liver 67.78 % (4.78 %) 59.34 % (6.04 %) 66.45 % (6.19 %)

Diabetes 77.06 % (2.66 %) 75.59 % (2.92 %) 76.08 % (2.95 %)

Cod-RNA 87.31% (0.13 %) 72.42 % (7.30 %) 85.7 % (1.14 %)

Breast cancer 97.14 % (1.20 %) 91.89 % (2.22 %) 96.87 % (1.22 %)

German-Numeric 73.05 % (3.25 %) 74.40 % (3.01 %) 76.14 % (2.57 %)

Mushroom 99.80 % (0.08 %) 99.93 % (0.04 %) 100% (0.0042 %)

Adult income 83.94 % (0.28 %) 76.90 % (0.82 %) 84.80% (0.35 %)

Gisette 95.15 % (0.53 %) 93.50 % (0.72 %) 96.90% (0.52 %)

Million Song Dataset GMKL MWUMKL CKL

Genre 1 77.62 % (0.36 %) 68.14 % (1.06 %) 81.68% (0.39 %)

Genre 2 69.12 % (0.33 %) 53.02 % (0.55 %) 74.16% (0.36 %)

Year pred 75.38 % (0.1 %) 57.72 % (1.64 %) 77.57% (0.11 %)

5.2 MKL Vs. CKL on Million Song Datasets

In this section, we compare MKL methods with CKL on the Million Song
Dataset [6]. The Million Song Dataset consists of audio features and metadata of
one million contemporary popular music tracks. For the experiments, we utilized
three different subsets of the Million Song Dataset, all binary. The features are
the average and covariance of the pitch and timbre vectors for each track:

– Genre 1: The two most common genres in Million Song Dataset - “classic pop
and rock” and “folk.” The tracks which have both genres as tags are removed
to avoid confusion.

– Genre 2: The ten most common genres in the Million Song Dataset. Since
the “classic pop and rock” genre has significantly more tracks than any other
genre, “classic pop and rock” is considered as one class and everything else
together as another class.
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– Year Prediction: Taken from the UCI Machine Learning Repository. All
tracks prior to the year 2000 are considered as one class and all tracks after
and including the year 2000 are considered as the other class. The dimensions
of the dataset are summarized in Table 1.

Results. The results are shown in Table 2. CKL is clearly superior to the scal-
able MKL methods that we tested against, adding to the evidence that higher-
dimensional and larger datasets can benefit from our technique.

5.3 MKL Vs. CKL on Images

We compare MKL and CKL on CIFAR10. CIFAR10 [27] is a labeled image
dataset containing 60,000 1,024-dimensional (32 × 32) images and 10 classes
used extensively for testing image classification algorithms. While image classi-
fication is an important benchmark for neural networks, we wish to point out
that our objective is not to classify the CIFAR10 dataset better than all other
previous techniques. Instead, we wish to provide comparisons between the meth-
ods described in this paper on a large and very challenging task using a simple
convolutional neural architecture.

Preprocessing. We first centered the CIFAR10 training set by mean, and then
used Pylearn2 [19] to apply two transformations: global contrast normaliza-
tion [12] and ZCA whitening [5]6. We applied the same transformations com-
puted for the training set to the testing set.

Feature extraction. For MKL, we used a convolutional neural network (CNN) [30]
to learn a representation from the data. In total, we trained 100 models and
we extracted the features from the model with the best performance. All of the
models had the form convReLU → poolmax → fcReLU → softmax where convReLU

is a convolutional layer using ReLU non-linearities, poolmax is a max-pool layer,
fcReLU was a fully-connected layer using ReLU non-linearities, and softmax was
a softmax layer.

We trained the models with (1) momentum, initialized to 0.5 and increased
to 0.99 over the first 100 epochs, and (2) early stopping: we set aside the last
10, 000 samples of the training set as a validation set for early stopping, and
trained the models for at most 5, 000 epochs. We initialized the weights of all
layers by selecting values uniformly at random from the range [−0.01, 0.01]. The
parameters of best performing model were as follows: (1) the convolutional layer
(with ReLU activations): a 5 × 5 kernel with 1 × 1 stride, 32 channels, a max

6 PCA whitening attempts to decorrelate features and normalize singular values
(“whitening”) of the original data by rotating the data by singular vectors, and
then normalizing singular values. ZCA whitening, in contrast, attempts to do the
same, but make the resulting data as close to the original as possible, in a least-
squares sense. The ZCA transformation is simply to multiply by the inverse square
root of the covariance matrix of the data.
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kernel norm of 1.8, and cross channel normalization with α = 3.2 × 10−4 and
β = 0.75, (2) the max pooling layer: a 3 × 3 kernel with 2 × 2 stride, (3) the
fully connected layer: 1, 000 rectified linear units, and (4) the softmax layer: one
output for each CIFAR10 class. Each sample of CIFAR10 was passed through
the CNN and the activations of the fully connected layer were recorded as the
new representation.

CIFAR10 with MKL. For MKL experiments, the testing infrastructure
and the experimental procedures are similar to the experimental procedure of
Sect. 5.1 except for the following details: (1) One-vs-one multiclass strategy is
used for the classification task, (2) Random 75% of the training data is used for
training and tested on the standard test data. The runs were repeated 20 times,
and (3) We used two Gaussian kernels, one with γ = 1 and the other with a
range of γ from 2−7 to 27. The best accuracy observed is used in Table 3.

CIFAR10 with CKL. For comparison with MKL, we trained a network of the
form convReLU → poolmax → fcReLU → fccos → softmax. A CKL model of this
form uses the same structure as the CNN used for the MKL/CKL experiments
(defined in the paragraph “Feature Extraction”), up to and including the fully
connected layer of rectified linear units. Instead of a softmax layer, the units of
the fully connected layer were connected to a CKL model with 1, 000 hidden
units (untuned).

The primary difference between this model and MKL trained on features
extracted from a CNN (see Sect. 5.3) is that this model is trained all at once,
while in the MKL experiments the CNN used for feature learning and the MKL
model were trained separately. This end-to-end learning allows the features of
each layer to adapt to the features that appear later in the network. It is also
important to note that the MKL experiments were trained on a one-vs.-one
basis, while the CKL model uses multinomial (softmax) regression with log loss.

Experimental procedure. The models in these experiments were trained using
stochastic gradient descent for a maximum of 1, 000 epochs with early stopping
and momentum. The initial momentum rate was 0.5 and was adjusted from the
first epoch to 0.99 over the first 500 epochs of the training.

Results. The CKL model outstrips the MKL methods by a wide margin. We con-
jecture that this is due to two effects: (1) the end-to-end training allows for better
adaptation in the training process and (2) the search space of kernels is much
larger. The first effect demonstrates that CKL is more adaptable than MKL in
these settings. It is also important to note that training is a crucial component
for CKL models when operating on large datasets. For CIFAR10, evaluating
any random model upon initialization yielded an accuracy of only 10.1 % with
standard deviation of 0.235 %. In contrast, evaluating random models on smaller
datasets frequently yields accuracies that are better than chance.
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Table 3. Accuracy for CIFAR10 on MKL and CKL with CNN.

GMKL MWUMKL CKL+CNN

44.43 % (0.57 %) 48.2 % (0.41 %) 67.77% (0.61 %)

CIFAR10 with Two Layer Convnets. One might ask whether stacking
two cosine layers has any beneficial effect, since stacking two cosine layers is
similar to composing two lifting maps, which if defined, yields a kernel. Zhuang
et al. [53] construct an algorithm specifically for the composition of two kernels
– essentially layering the kernels. Lu et al. [31] discuss extensions to [41] that
cover products, sums, and compositions of kernels. Since these are based on
the sampling methodology of [41], there is a direct analogy to composing two
cosine layers (fixed, in this case). We did not observe significant improvement
in accuracy when we employed combinations of two cosine layers. One possible
explanation is that since the composition of a kernel is itself a kernel, it can be
argued that optimizing a network that contains two consecutive cosine layers
accomplishes no more than doing so with one individual cosine layer.

6 Related Work

Multiple kernel learning. The general area of kernel learning was initiated by
Lanckriet et al. [28] who proposed to simultaneously train an SVM as well as
learn a convex combination of kernel functions. The key contribution was to
frame the learning problem as an optimization over positive semi-definite kernel
matrices which in turn reduces to a QCQP. Soon after, Bach et al. [3] proposed
a block-norm regularization method based on second order cone programming
(SOCP).

For efficiency, researchers started using optimization methods that alternate
between updating the classifier parameters and the kernel weights. Many authors
then explored the MKL landscape, including Rakotomamonjy et al. [42], Sonnen-
burg et al. [43], Xu et al. [48,49]. However, as pointed out by Cortes [13], most of
these methods do not compare favorably (both in accuracy as well as speed) even
with the simple uniform heuristic. More recently, Moeller et al. [34] developed a
multiplicative-weight-update based approach that has a much smaller memory
footprint and scales far more effectively. Other kernel learning methods include
[14,33,38,39,44] and notably methods using the �p-norm [25,26,45].

Infinite-width networks. Early work on infinite-width networks was done by
Neal [36], who tied infinite networks to Gaussian processes, assuming that the
distribution is Gaussian. Cho and Saul [11] analyzed the case where the network
is either a step network (the output is 1 if the input is positive, 0 otherwise) or a
rectified linear unit (ReLU), a type of network used frequently in deep networks
(the input z is passed through the function max{0, z}). They showed that if
the distribution is Gaussian in these settings, the function φx output by the
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network is a lifting map corresponding to a kernel they dub the arc-cosine kernel.
Hazan and Jaakkola [21] extended this result further, and analyzed the kernel
corresponding to two infinite layers stacked in series. They showed that such a
network, when the distribution of the first layer is Gaussian, and the second layer
is treated as a Gaussian process, (a process is a distribution of distributions),
corresponds to a kernel that can be computed explicitly. Globerson and Livni
[16] produce an online algorithm for infinite-layer networks that avoids the kernel
trick. They demonstrate a sample complexity equal to methods that use the
kernel trick, demonstrating that sampling can be as effective as methods that
have access to kernel values.

Layered kernels. Zhuang et al. [53] develop a multiple kernel learning technique
where they use a layered kernel to combine the output of several other kernels.
Their algorithm alternates the use of standard SVM and stochastic gradient
descent. Lu et al. [31] scale up [41] by making some interesting mathematical
observations about kernels and distributions. Their work relies heavily on the
correspondence between distributions and kernels, a theme that we explore as
well. Yu et al. [52] also seek to optimize a kernel, using alternating optimiza-
tion and also based on Bochner’s theorem. Jiu and Sahbi [23,24] exploit kernel
map networks and Laplacians of nearest-neighbor graphs [24] to produce “deep”
kernels for use in SVMs.

Neural networks as kernels. Yang et al. [50] exploit the correspondence between
ReLUs and arc-cosine kernels [11], and the sparsity of the Fastfood transform [29]
to reduce the complexity of a convolutional neural net.

Aslan et al. [2] seek to make the optimization of neural networks convex
through kernels and matrix techniques. Mairal et al. [32] extend hierarchical
kernel descriptors [7,8] to act as convolutional layers. Very recently, Wilson et al.
[47] combine neural networks with Gaussian processes, drawing on the infinite-
width network setting, to produce “deep” kernels.
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Abstract. PageRank is one of the most popular measures for ranking
the nodes of a network according to their importance. However, PageR-
ank is defined as a steady state of a random walk, which implies that
the underlying network needs to be fixed and static. Thus, to extend
PageRank to networks with a temporal dimension, the available tempo-
ral information has to be judiciously incorporated into the model.

Although numerous recent works study the problem of computing
PageRank on dynamic graphs, most of them consider the case of updat-
ing static PageRank under node/edge insertions/deletions. In other
words, PageRank is always defined as the static PageRank of the current
instance of the graph.

In this paper we introduce temporal PageRank, a generalization of
PageRank for temporal networks, where activity is represented as a
sequence of time-stamped edges. Our model uses the random-walk inter-
pretation of static PageRank, generalized by the concept of temporal ran-
dom walk. By highlighting the actual information flow in the network,
temporal PageRank captures more accurately the network dynamics.

A main feature of temporal PageRank is that it adapts to concept
drifts: the importance of nodes may change during the lifetime of the
network, according to changes in the distribution of edges. On the other
hand, if the distribution of edges remains constant, temporal PageRank
is equivalent to static PageRank.

We present temporal PageRank along with an efficient algorithm, suit-
able for online streaming scenarios. We conduct experiments on various
real and semi-real datasets, and provide empirical evidence that tempo-
ral PageRank is a flexible measure that adjusts to changes in the network
dynamics. The data and software related to this paper are available at
https://github.com/polinapolina/temporal-pagerank.

Keywords: PageRank · Graph mining · Social-network analysis ·
Dynamic graphs · Time-evolving networks · Interaction networks

1 Introduction

PageRank is a classic algorithm for estimating the importance of nodes in a
network. It has been considered a success story on applying link analysis infor-
mation seeking and ranking, and has been listed as one of the ten most influential
c© Springer International Publishing AG 2016
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data-mining algorithms [24]. PageRank has been applied to numerous settings
and it has inspired a family of fixed-point computation algorithms, such as,
TopicRank [6], TrustRank [8], SimRank [11], and more.

PageRank is defined to be the steady-state distribution of a random walk.
As such, it is implied that the underlying network structure is fixed and does
not change over time. Even though numerous works have studied the problem of
computing PageRank on dynamic graphs, the emphasis has been given on main-
taining PageRank efficiently under network updates [12,19], or on computing
PageRank efficiently in streaming settings [22]. Instead there has not been much
work on how to incorporate temporal information and network dynamicity in
the PageRank definition.

To make the previous claim more clear imagine that starting from an initial
network G we observe k elementary updates in the network structure e1, . . . , ek
(such as edge additions or deletions), resulting on a modified network G′. A
typical question is how to compute the PageRank of G′ efficiently, possibly by
taking into consideration the PageRank of G, and the incremental updates. Nev-
ertheless, the PageRank of G′ is defined as a steady-state distribution and as
the network G′ would “freeze” at that time instance.

Our goal in this paper is to extend PageRank so as to incorporate temporal
information and network dynamics in the definition of node importance. The
proposed measure, called temporal PageRank, is designed to provide estimates
of the importance of a node u at any given time t. If the network dynamics and
the importance of nodes change over time, so does temporal PageRank, and it
duly adapts to reflect these changes.
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Fig. 1. (a) A static graph, in which hubs a and e have the highest static PageRank score;
(b) and (c) represent two different temporal networks: in (b) the temporal PageRank
score of nodes a and e are expected to be stable over time; in (c) node e becomes more
important than a as the time goes by, and the temporal PageRank scores of a and e
are expected to change accordingly.

An example illustrating the concept of temporal PageRank, and presenting
the main difference with classic PageRank, is shown in Fig. 1. First, a static
(directed) graph is shown in Fig. 1(a). Vertices a and e are the hubs of the graph,
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and thus, the nodes with the highest static PageRank score. Figures 1(b) and (c)
show two temporal networks; the number next to each edge denotes the time-
stamp that the edge arrives. In Fig. 1(b) the in-coming edges of nodes a and e
are arriving in an interleaving manner, so we expect that the importance of a
and e will be stable over time, and that their temporal PageRank scores will
be approximately equal to their static PageRank scores. On the other hand, in
Fig. 1(c) we are witnessing a concept drift: node a receives its in-coming edges in
the initial phase, while node e receives its in-coming edges later on. Due to this
change, node e becomes more important than a as time goes by. Accordingly the
scores of temporal PageRank for a and e are changing over time reflecting the
change in the network dynamics.

Note also that a dynamic algorithm for computing PageRank is required to
report the same output (the static PageRank of the graph in Fig. 1(a)) indepen-
dently of whether it receives its input as in Fig. 1(b) or (c).

As illustrated in the previous example, temporal PageRank is defined for
temporal networks [9,18], i.e., networks with time-stamped edges. We generalize
the random-walk interpretation of static PageRank by using temporal random
walks, i.e., time-respecting random walks on the temporal network.

We provide a simple update algorithm for computing temporal PageRank.
Our algorithm processes the graph edges in order of arrival and it is proven to
converge to the correct temporal PageRank scores. We also prove that if the
edge distribution remains constant, temporal PageRank converges to the static
PageRank of the underlying graph that the edge distribution is drawn.

We conduct extensive experimental evaluation on various real and semi-real
datasets, which support our theoretical results and provide empirical evidence
that temporal PageRank is a flexible measure that adjusts to changes in the
network dynamics.

2 Models

2.1 Static PageRank

Consider a static weighted directed graph Gs = (V , Es, w) with n nodes. Let
P be the adjacency matrix of Gs, such that each row is normalized to unit sum.
To avoid dangling nodes it is typically assumed that the all-zero rows of P are
substituted by rows of 1/n.

Given adjacency matrix P ∈ R
n×n and a unit-normalized personalization

row vector h ∈ R
n, we consider a random walk that visits the nodes of the

graph Gs at discrete steps i = 1, 2, . . . . At step i = 1 the random walk starts
at a node u ∈ V with probability h(u). Given that at step i the random walk
has visited a node u, at step i + 1 it visits a node v selected as follows: with
probability 1−α the node v is chosen according to the distribution h , while with
probability α the node v is chosen according to the distribution specified by the
u-th row of P .
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Consider now a Markov chain with nodes V as its state space and transition
matrix

P ′ = αP + (1 − α)1h ,

where 1 is a unit column vector. This Markov chain models the random walk
defined above. Assuming that the matrix P ′ is stochastic, aperiodic, and irre-
ducible, by the Perron–Frobenius theorem there exists a unique row vector π,
such that πP ′ = π and π1 = 1. The vector π is the stationary distribution of the
Markov chain, and it is also known as the PageRank vector. The u-th coordinate
of π is the PageRank score of node u.

A closed-form expression for π can be derived as

π = (1 − α)h(I − αP )−1 = (1 − α)h
∞∑
k=0

αkP k,

and the PageRank score of a node u can be written as

π(u) =
∑
v∈V

h(v)
∞∑
k=0

(1 − α)αk
∑

z∈Z(v,u)
|z|=k

∏
(i,j)∈z

P (i, j)

=
∑
v∈V

∞∑
k=0

(1 − α)αk
∑

z∈Z(v,u)
|z|=k

h(v)Pr [z | v]

=
∑
v∈V

∞∑
k=0

(1 − α)αk
∑

z∈Z(v,u)
|z|=k

Pr [z] , (1)

where Z(v, u) is a set of all walks from v to u, and (i, j) is used to denote two
consecutive nodes of a certain walk z ∈ Z(v, u). The product

∏
(i,j)∈z P (i, j) =

Pr [z | v] = Pr [z] /h(v) expresses the probability that a random walk reaches
node u, provided that it starts at node v and it follows only graph edges.

In the definition of PageRank, it is assumed that the transition probability
matrix P ′ is given in advance, and it does not change. A number of works address
the problem of computing PageRank incrementally, when nodes and edges are
added or removed. However, PageRank is still defined by its static version, as the
stationary distribution of the graph that contains all nodes and edges that are
currently active [4,5,12,19]. Here we propose another view of PageRank, where
temporal information and network dynamics are explicitly incorporated in the
underlying random walk that defines the PageRank distribution.

2.2 Temporal PageRank

Temporal PageRank extends static PageRank by incorporating temporal infor-
mation into the random-walk model. Our model uses temporal networks [9,13,
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18,21]. A temporal network G = (V,E) consists of a set of n nodes V and a set
of m timestamped edges (or interactions) E between pairs of nodes

E = {(ui, vi, ti)} , with i = 1, . . . , m, such that ui, vi ∈ V and ti ∈ R,

where ti represents the timestamp when an interaction between ui and vi is
taking place. For generality we assume that the edges of the temporal graph
are directed. We also assume more than one different edge may exist between a
given pair of nodes, with different timestamps, representing multiple interactions
in time between a pair of nodes.

Following previous studies on temporal networks [9,18], given a temporal
network G, we define a temporal walk on G, or a time-respecting walk, to be a
sequence of edges (u1, u2, t1), (u2, u3, t2), . . ., (uj , uj+1, tj), such that ti ≤ ti+1

for all 1 ≤ i ≤ j − 1.
Our extension of static PageRank to temporal PageRank is based on modify-

ing the PageRank definition of Eq. (1) so that only temporal walks are considered
instead of all possible walks.

The intuition behind the idea can be illustrated by the example shown in
Fig. 1(c). Node a initially receives many in-links and it should be considered
important. After time t = 8, however, it does not receive any more in-links and
thus, its importance should diminish. By using time-respecting walks one can
accurately model the fact that the probability of the random walk being at node
a decreases as time increases beyond time t = 8. Essentially, the probability that
a random walk being at node a after time t = 8 corresponds to the probability
that the random walk has arrived at node a before time t = 8 and it has not left
yet. Clearly this probablity decreases as time increases beyond t = 8.

We now define temporal PageRank more formally. Let ZT (v, u | t) be a set of
all possible temporal walks that start at node v and reach node u before time t.
We can compute the probability of a particular walk z ∈ ZT (v, u | t) as the
number c(z | t) of all such walks (starting at v and reaching u before time t)
normalized by a number of all temporal walks that start at node v and have the
same length

Pr′ [z ∈ ZT (v, u | t)
]

=
c(z | t)∑

z′∈ZT (v,x|t)
x∈V, |z′|=|z|

c(z′ | t)
. (2)

To compute the number c(z | t) of temporal walks that start at v and reach
u before time t one can consider the unweighted count of all possible temporal
walks. Such a count implies that once reaching u at time t1 the random walk
selects uniformly at random one of the future interactions (u, x, t2), with t2 >
t1, to move out of u. This model is not very intuitive as it assumes that the
random walk has knowledge of the future interations. Instead, once reaching u
by an interaction (v, u, t1) it is more likely to move out of u in one of the next
interactions (u, x, t2). Thus, we assume that the probability of taking (v, u, t1)
followed by (u, x, t2) increases as the time difference (t2 − t1) decreases.

To model this decreasing probability we consider an exponential distribution.
Our motivation for this definition is the exponential-decay model in data-stream
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processing, which is commonly used. We define the probability that interaction
(v, u, t1) is followed by (u, x, t2):

Pr [(v, u, t1), (u, x, t2)] = β|(u,y,t′)|t′∈[t1,t2], y∈V |.

We will refer to β as transition probability. The weighted number of temporal
walks is then defined as

c(z | t) = (1 − β)
∏

((ui−1,ui,ti),(ui,ui+1,ti+1))∈z

β|(ui,y,t
′)|t′∈[ti,ti+1], y∈V |,

where (1 − β) is a normalization term. Note that β = 1 with omitted nor-
malization corresponds to the unweighted case. In this case we view temporal
network as a sequence of samples from some unknown and changing distribu-
tion P ′.

By combining Eqs. (1) and (2), the temporal PageRank score of a node u at
time t is defined as

r(u, t) =
∑
v∈V

t∑
k=0

(1 − α)αk
∑

z∈ZT (v,u|t)
|z|=k

Pr′ [z | t] . (3)

Note that according to this definition, the temporal PageRank score of a node
u is a function of time. Thus, although our definition is an adaptation of the
path-counting formulation of static PageRank (Eq. (1)), the temporal PageRank
is not a limiting distribution as static PageRank.

Also note that the definition of temporal PageRank (Eq. (3)) does not incor-
porate explicitly a personalization vector h . Instead, in the temporal PageRank
model presented above, the probability of starting a temporal walk at a node u
is proportional to the number of temporal edges that start in u. The vector that
contains the starting probabilities for all nodes is referred to as walk starting
probability vector and it is denoted by h ′. The vector h ′ is learned from the
data, in particular, for each node u, it is h′(u) = |(u,v,t)∈E: ∀v∈V |

|E| .
On the other hand, given a personalization vector h∗, the personalized tem-

poral PageRank is defined as

r(u, t) =
∑
v∈V

t∑
k=0

(1 − α)αk h∗(v)
h′(v)

∑

z∈ZT (v,u|t)
|z|=k

Pr′ [z | t] (4)

Equation (4) assumes that the walk starting probability vector h ′ is known.
In practice, h ′ can be learned by one scan of the edges of the temporal network.

3 Algorithms

3.1 Computing Temporal PageRank

In order to compute temporal PageRank we need to process the sequence of
interactions E and calculate the weighted number of temporal walks. When a
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Algorithm 1. stream processing
input : E, transition probability β ∈ (0, 1], jumping probability α

1 r = 0 , s = 0 ;
2 foreach (u, v, t) ∈ E do
3 r(u) = r(u) + (1 − α);
4 s(u) = s(u) + (1 − α);
5 r(v) = r(v) + s(u)α;
6 if β ∈ (0, 1) then
7 s(v) = s(v) + s(u)(1 − β)α;
8 s(u) = s(u)β;

9 else if β = 1 then
10 s(v) = s(v) + s(u)α;
11 s(u) = 0;

12 normalize r ;
13 return r;

new interaction (u, v, t) arrives it can be used to advance any of the temporal
walks that end in u, or it can be the start of a new walk. To keep count of the
number of walks ending at each node we use an active mass vector s(t) ∈ R

|V |,
with s(u, t) being equal to the weighted count of walks ending at node u at
time t. We also use a vector r(t) ∈ R

|V | to keep temporal PageRank estimates,
where r(u, t) stores the value of temporal PageRank (t-pr) of node u at time t.
Algorithm 1 processes a sequence of interactions E, updates the counts s(t) and
r(t) for each new interaction (u, v, t), and outputs r as a t-pr estimate.

Proposition 1. Algorithm 1 computes temporal PageRank defined in Eq. (3).

Proof. Algorithm 1 counts explicitly the weighted number of temporal walks.
Lines 3 and 4 correspond to initiating a new walk with probability 1 − α. With
probability α the last interaction is chosen to continue active walks that wait in
node u (line 5). Line 7 (or 10, depending on transition probability β) increments
the active walks (active mass) count in the node v with appropriate normalization
1−β. Line 8 (or 11) decrements the active mass count in node u. If the transition
probability is β = 1, then the random walk chooses the first suitable arrived
interaction to continue the walk. ��

Algorithm 1 processes all interactions E in one pass and O(n) space. We need
O(1) space per node, leading to total O(n) space, while every interaction initiates
a constant number of updates, leading to O(1) update time per interaction.

To compute personalized temporal PageRank for a given personalization h∗

we perform normalization, defined by Eq. (4), and multiply terms (1 − α) in
lines 3 and 4 by h∗(u)

h′(u) . Unless we know the distribution of temporal edges in
advance, we need to learn h ′. Thus, we obtain a 2-pass algorithm to calculate
personalized temporal PageRank for a given personalization vector h∗.
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3.2 Temporal Vs. Static PageRank

Temporal PageRank is defined to handle network dynamics and concept drifts.
An intuitive property that one may expect is that if the edge distribution of the
temporal edges remains constant, then temporal PageRank approximates static
PageRank. In this section we show that indeed this is the case.

Consider a weighted directed graph Gs = (V,Es, w) and a time period
T = [1, .., T ]. Without loss of generality assume

∑
e∈Es

w(e) = 1 and let Nout(u)
be the out-link neighbors of u. Let edges e ∈ Es be associated with a sampling
distribution SE : p[e = (u, v)] = w(e). A temporal graph G = (V,E) is con-
structed by sampling T edges from Gs using SE (probability to pick an edge
into E is proportional to the weight of this edge in the static graph). We will
consider a simple case of transition probability β = 1: a random walk takes the
first suitable interaction to continue.

In the setting described above we can prove the following statement.

Proposition 2. The expected values of temporal PageRank on graph G = (V,E)
converge to the values of static PageRank on graph Gs = (V,Es, w), with per-
sonalization vector h(u) =

∑
v∈Nout(u)

w(e = (u, v)) (weighted out-degree).

Proof. At any time moment t every vertex u ∈ V has PageRank score r(u, t)
and active mass (number of walkers that wait to continue) equal to s(u, t).

The expected value E(r(v, T )) of the PageRank count of node v at time T is
a sum over expected increments of r(v) over time:

E(r(v, T )) =
T∑

t=1

E(Δr(v, t)).

At time t the increment of r(v) can be caused by selecting an edge e(t) =
(v, q) with starting point in v and q ∈ V . In this case r(v) is incremented by
(1 − α). Another possibility to increment r(v) is to select an edge e(t) = (q, v)
with u as an end point and q ∈ V . In this case r(v) is incremented by αs(q, t),
where s(q, t) is a value of active mass in node q at time t. Let p(u) be a probability
that sampled interaction has u as its start point. Note, that

p(u) =

∑
j∈V w(e = (u, j))∑

i∈V

∑
j∈V w(e = (i, j))

,

that is, the normalized out-degree of u. Thus, E(Δr(v, t)) can be written as

E(Δr(v, t)) = (1 − α)p(v) + α
∑
u∈V

p(u)p(v|u)E(s(u, t)).

To calculate expected amount of active mass in s(u, t), notice that s(u, t)
equals to total increments of r(u) happened between the time moment, when
edge with starting point in u was selected to update, and t:

E(s(u, t)) = Δr(u, t)p(u) + (Δr(u, t) + Δr(u, t − 1))p(u)(1 − p(u)) + . . .

· · · + p(u)(1 − p(u))t−1
t−1∑

t′=0

Δr(u, t − t′) =

t−1∑

t′=0

E(Δr(u, t − t′))p(u)

t−1∑

k=t′
(1 − p(u))k
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The inner sum is a geometric progression:

E(s(u, t)) =
t−1∑
t′=0

E(Δr(u, t − t′))p(u)
1

p(u)
[
(1 − p(u))t

′ − (1 − p(u))t
]
.

We sum E(s(u, t)) over time and consider the two summations separately:

T∑
t=1

E(s(u, t)) =
T∑

t=1

t−1∑
t′=0

E(Δr(u, t − t′))(1 − p(u))t
′

−
T∑

t=1

t−1∑
t′=0

E(Δr(u, t − t′))(1 − p(u))t.

The first summation term can be written as:

T∑
t=1

t−1∑
t′=0

E(Δr(u, t − t′))(1 − p(u))t
′
=

T∑
t=1

E(Δr(u, t))
T−t∑
t′=0

(1 − p(u))t.

The second summation term is:

T∑
t=1

t−1∑
t′=0

E(Δr(u, t − t′))(1 − p(u))t =
T∑

t=1

E(Δr(u, t))(1 − p(u))t
T−t∑
t′=0

(1 − p(u))t.

Putting the parts together:

T∑
t=1

E(s(u, t)) =
T∑

t=1

E(Δr(u, t))(1 − (1 − p(u))t)
T−t∑
t′=0

(1 − p(u))t

=
T∑

t=1

E(Δr(u, t))(1 − (1 − p(u))t)
1

p(u)
(1 − (1 − p(u))T−t+1).

Now the expected total increment E(r(v, T )) can be expressed as:

E(r(v, T )) = (1 − α)
T∑

t=1

p(v)

+ α
∑
u∈V

p(v|u)
T∑

t=1

E(Δr(u, t))(1 − (1 − p(u))t)(1 − (1 − p(u))T−t+1).

We need to show that

lim
T→∞

E(r(v, T ))
T

= (1 − α)p(v) + α lim
T→∞

∑
u∈V

p(v|u)
E(r(u, T ))

T
. (5)

Let us upper-bound E(Δr(v, t)). Consider a time moment t′ ≤ t. A value of
mass introduced to the system at t′ is (1 − α). This mass can arrive to the node
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v at time moment t through a sequence of t − t′ steps of transmission (when a
node u, which currently holds this mass, was chosen for action) or retainment
(a node u was not chosen for action and the mass remains in u). Transmission
happens with probability p(u)α; the probability of retainment is 1−p(u). Define
p = maxv∈V {1−p(v), αp(v)}. Then the expected value remained from this mass
is upper-bounded by (1 − α)p(t−t′). The sum of all introduced bits of mass is an
upper-bound for the active mass expected to enter node v at time t:

E(Δr(v, t)) ≤
T∑

t′=1

(1 − α)pt
′ ≤ (1 − α)

p(1 − pt)
1 − p

≤ 1
1 − p

Now we need to show that the following limit goes to 0:

lim
T→∞

1
T

T∑
t=1

E(Δr(u, t))((1 − p(u))T+1 − (1 − p(u))t − (1 − p(u))T−t+1)

= lim
T→∞

1
T

T∑
t=1

E(Δr(u, t))(1 − p(u))T+1 − lim
T→∞

1
T

T∑
t=1

E(Δr(u, t))(1 − p(u))t

− lim
T→∞

1
T

T∑
t=1

E(Δr(u, t))(1 − p(u))T−t+1

Consider three limits separately. The first one:

lim
T→∞

1
T

T∑
t=1

E(Δr(u, t))(1 − p(u))T+1 = lim
T→∞

(1 − p(u))T+1

T

T∑
t=1

E(Δr(u, t))

≤ lim
T→∞

pT+1

T

T∑
t=1

1
1 − p

= 0

The second one:

lim
T→∞

1
T

T∑
t=1

E(Δr(u, t))(1 − p(u))t ≤ lim
T→∞

∑T
t=1 pt

T (1 − p)
= lim

T→∞
p − pT+1

T (1 − p)2
= 0

The third one:

lim
T→∞

1
T

T∑
t=1

E(Δr(u, t))(1 − p(u))T−t+1 ≤ lim
T→∞

pT+1

T (1 − p)

T∑
t=1

p−t

= lim
T→∞

pT+1

T (1 − p)
p−T − 1
1 − p

≤ lim
T→∞

p

T (1 − p)2
= 0

It follows that Expression (5) is true. Now, if we define pr(v) =
limT→∞ 1

T E(r(v, T )), then Expression (5) can be written as personalized
PageRank in a steady state:

pr(v) = (1 − α)p(v) + α
∑
u∈V

p(v|u)pr(u) ��
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(a) Facebook (b) Twitter (c) Students

(d) Facebook (e) Twitter (f) Students

Fig. 2. Convergence of temporal PageRank to static PageRank. The first row (a, b, c)
corresponds to degree personalization, the second row (d, e, f) corresponds to random
personalization, given a priori.

4 Experimental Evaluation

To further support our theoretical analysis, we provide an empirical evaluation
of temporal PageRank. The implementation of all algorithms and scripts are
publicly available.1 We first describe our experimental setup.

Datasets. We consider semi-real temporal networks, constructed by using real-
world directed networks with edge weights equal to the frequency of corre-
sponding interaction. In particular, we consider the following networks: Face-
book, Twitter and Students. For each such network we extract static subgraphs
Gs = (V,Es, w) with n = 100 nodes, obtained by BFS from a random node. We
normalize edge weights w to sum to 1. Then we sample a sequence of temporal
edges E, such that each edge e ∈ Es is sampled with probability proportional
to its weight w(e); the distribution of sampled edges is denoted by SE(w). The
number of temporal edges E is set to m = 100K.

The Facebook dataset is a 3-month subset of Facebook activity in a New
Orleans regional community [23]. The dataset contains an anonymized list of
wall posts (interactions). The Twitter dataset tracks activity of Twitter users in
Helsinki during 08.2010–10.2010. As interactions we consider tweets that contain
mentions of other users. The Students dataset2 is an activity log of a student
online community at the University of California, Irvine. Nodes represent stu-
dents and edges represent messages.
1 https://github.com/polinapolina/temporal-pagerank.
2 https://toreopsahl.com/datasets/online social network.

https://github.com/polinapolina/temporal-pagerank
https://toreopsahl.com/datasets/online_social_network
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(a) Facebook (b) Twitter (c) Students

Fig. 3. Comparison of temporal PageRank ranking with static PageRank ranking,
degree personalization is used.

(a) Facebook (b) Twitter (c) Students

Fig. 4. Rank quality (Pearson corr. coeff.) and transition probability β.

Measures. To evaluate the settings in which temporal PageRank is expected to
converge to the static PageRank of a corresponding graph, we compare temporal
and static PageRank using three different measures: we use (i) Spearman’s ρ to
compare the induced rankings, we also use (ii) Pearson’s correlation coefficient r,
and (iii) Euclidean distance ε on the PageRank vectors.

All the reported experimental results are averaged over 100 runs. Damping
parameter is set of α = 0.85. Waiting probability β for temporal PageRank is
set to 0 unless specified otherwise.

4.1 Results

Convergence. In the first set of experiments we test how fast the temporal
PageRank algorithm converges to corresponding static PageRank. In this setting
we process datasets with m temporal edges and compare the temporal PageRank
ranking with the corresponding static PageRank ranking. In the plots of Fig. 2 we
report Pearson’s r, Spearman’s ρ and Euclidean error ε. The first column corre-
sponds to the calculation of temporal PageRank without any a priori knowledge
of personalization vector. Thus, the resulting temporal PageRank corresponds to
the static PageRank with out-degree personalization: h(u) =

∑
v∈Nout(u)

w(u, v),
where Nout(u) are out-link neighbors of u. The second column shows convergence
in the case when the personalization vector h∗ is given and appropriate renor-
malization of t-pr counts is taking place.
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(a) Facebook (b) Twitter (c) Students

Fig. 5. Adaptation for the change of sampling distribution.

(a) Facebook (b) Twitter (c) Students

Fig. 6. Convergence to static PageRank with increasing number of random scans of
edges.

The plots in Fig. 2 show that in both variants of personalization the behavior
is similar: in most cases the correlation of the PageRank counts reaches high
values already after 20K temporal edges. Pearson’s r is remarkably high, while
Spearman’s ρ is typically lower. This can be explained by the large number of
discordant pairs in the tail of ranking — due to producing a power-law distrib-
ution PageRank is known to give robust rankings only at the top of the ranking
list. The Euclidean error ε also decreases to near-zero values fast.

In Fig. 3 we show direct comparison between rankings, obtained by static
and temporal PageRanks after processing all temporal edges. We observe that
the rank correlation is high for top-ranked nodes and decreases towards the tail
of ranking.

Transition probability β. In this experiment we evaluate the dependence of
the resulting ranking and the speed of convergence on the transition probabil-
ity β. The plots in Fig. 4 show that lower transition probability β corresponds to
slower convergence rate. On the other hand, smaller values of β produce better
correlated rankings. This behavior is intuitive, as a lower value for β implies
accumulation of more information regarding the possible walks, which in turn
implies a slower convergence rate.

Adaptation to concept drifts. In this experiment we test whether tempo-
ral PageRank is adaptive to concept drifts. We start with a temporal network
sampled from some static network G1

s = (V,Es, w1). After sampling m tempo-
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ral edges E1, we change the weights of the static graph and sample another
m temporal edges E2 from G2

s = (V,Es, w2). A final sequence of m edges E3

is sampled from G3
s = (V,Es, w3). We run our algorithm on the concatenated

sequence E = 〈E1, E2, E3〉, without a priori personalization. On Figure 5 we
report correlation with the corresponding ground-truth static PageRank. The
transition probability β is set to 0.5. In all cases, temporal PageRank is able to
adapt to the changing distribution quite fast. Note however, that the previous
history is not completely eliminated and for each change of the distribution an
increasing number of edges is required to reach a certain correlation level.

Random scans. In the last experiment, given a static graph Gs = (V,Es, w)
we generate a sequence of temporal E by scanning the edges Es in random order
several times. Figure 6 shows that as the number of scans increasing, our estimate
for temporal PageRank converges to the static PageRank of the graph. We see
that the correlation obtains high values even after a few (around 10) scans. This
experiments suggests a very simple and efficient algorithm to compute the static
PageRank of a graph, by running our algorithm on a small number of linear
scans (randomly ordered) on the graph edges.

5 Related Work

PageRank is one of the most popular measures for ranking the nodes of a network
according to their importance. The original idea was introduced by Page and
Brin [20] for application to web search, and since then it is widely used as a
graph-mining tool. As the size of typical networks has increased significantly
over the last years, and as networks tend to grow and evolve fast, research on
designing scalable algorithms for computing PageRank is still active [16].

A different line of research is dedicated to efficient approaches for updat-
ing PageRank in dynamic and/or online scenarios [4,5,12,19,22]. The term
“dynamic” is typically used to refer to the model of edge additions and dele-
tions. However, we discussed in the introduction, even in these dynamic settings
PageRank is defined as a stationary distribution over a static graph (the cur-
rent graph). Another research direction uses temporal information to calculate
weights of edges of a static graph [10,17].

On the contrary, temporal PageRank intends to capture the continuous
interaction between individuals. Temporal PageRank is defined over temporal
networks [9,18], where each edge has an associated time-stamp recording an
interaction at that point. To our knowledge there is no published work, which
considers temporal generalization of PageRank. The closest work is dedicated
to Bonacich’s centrality [15]. It focuses on empirical study of a citation network
with coarse snapshots, aggregated over a year. In contrast, we are interested in
theoretical relation between temporal and static PageRanks and test our meth-
ods on several networks with fine granularity.

The static Pagerank definition has multiple interpretations, extensively dis-
cussed in a survey by Langville et al. [14]. Our definition of temporal PageRank
has a random walk-based interpretation inspired by the one given for static



688 P. Rozenshtein and A. Gionis

PageRank [3]. Methodologically, the closest papers to our work, are Monte-Carlo
simulation algorithms [2] and PageRank calculation by local updates [1,7].

6 Concluding Remarks

We proposed a generalization of static PageRank for the case of temporal net-
works. The novelty of our approach relies on the fact that we explicitly take into
account the exact time that nodes interact, which leads to more accurate rank-
ing. The main feature of the generalization is that it takes into account structural
network changes, and models the fact that the importance of nodes may change
during the lifetime of the network, according to changes in the distribution of
edges. Additionally, we showed that if the distribution of edges remains stable,
the temporal PageRank converges to the static PageRank. We provided an effi-
cient algorithm to calculate temporal PageRank and demonstrated its quality
and convergence rate through multiple experiments on diverse datasets.

Acknowledgements. This work is partially supported by the Academy of Finland
project “Nestor” (286211) and the EC H2020 RIA project “SoBigData” (654024).
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8. Gyöngyi, Z., Garcia-Molina, H., Pedersen, J.: Combating web spam with
TrustRank. In: VLDB (2004)
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Abstract. With the increasing use of online communication platforms,
such as email, Twitter, and messaging applications, we are faced with a
growing amount of data that combine content (what is said), time (when),
and user (by whom) information. Discovering meaningful patterns and
understand what is happening in this data is an important challenge. We
consider the problem of mining online communication data and finding
top-k temporal events. A temporal event is a coherent topic that is dis-
cussed frequently in a relatively short time span, while its information
flow respects the underlying network.

Our method consists of two steps. We first introduce the notion of
interaction meta-graph, which connects associated interactions. Using
this notion, we define a temporal event to be a subset of interactions that
(i) are topically and temporally close and (ii) correspond to a tree that
captures the information flow. Finding the best temporal event leads
to a budget version of the prize-collecting Steiner-tree (PCST) prob-
lem, which we solve using three different methods: a greedy approach,
a dynamic-programming algorithm, and an adaptation to an existing
approximation algorithm. Finding the top-k events maps to a maximum
set-cover problem, and thus, solved by greedy algorithm. We compare
and analyze our algorithms in both synthetic and real datasets, such as
Twitter and email communication. The results show that our methods
are able to detect meaningful temporal events. The software related to
this paper are available at https://github.com/xiaohan2012/lst.

Keywords: Social-network analysis · Temporal networks · Event detec-
tion

1 Introduction

Event detection is a fundamental data-mining problem in many different
domains, such as, time series and data streams [10], point clouds and vector
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spaces [4], and networks [3]. In this paper we focus on the problem of detecting
events in networks, in particular, networks that contain both content and time
information. An interaction (u, v, α, t) occurs whenever a piece of information α
is exchanged between two network entities u and v at time t. Examples of inter-
action networks include data communication networks, such as email, Twitter,
or online messaging systems.

Our goal is to summarize the network activity by finding the top-k events.
We consider an interaction network H = (N, I), where interactions I take place
among a set of network entities N . The interactions in I are directed, annotated
with content information, and time-stamped. We define an event in the interac-
tion graph H to be a subset of interactions, I ′ ⊆ I that are (i) temporally close,
(ii) topically similar, and (iii) correspond to a tree that captures the information
flow in the network. The intuition behind representing events as trees is similar
to the work by Yang [19].

We convert the interaction network H = (N, I) into a weighted interaction
meta-graph G = (I, E), that is, a graph whose vertices are the interactions I.
Two interactions i, j ∈ I are connected in G if it is possible to explain the infor-
mation flow between i and j. In particular, we consider three types of flow: broad-
cast, relay and reply. The edge weights of the interaction meta-graph G measure
the topic dissimilarity between connected interactions. Our transformation from
the interaction network to the interaction meta-graph has the interesting prop-
erty that an event in the interaction graph H corresponds to a tree T in the
interaction meta-graph G. The root of the tree T is interpreted as the source
of the event. Downstream interactions (interactions that are reachable from the
root) are due to information propagation.

Motivated by the previous discussion, we formalize the task of interaction-
network summarization as the problem of finding top-k trees in the transformed
interaction meta-graph G = (I, E). We decompose this task into two sub-
problems. First, we find a set of independent candidate events that are tem-
porally and topically coherent. Since our goal is to summarize the interaction
network we aim to find large events. We show that this problem is the budget
version of prize-collecting Steiner-tree problem in directed acyclic graphs. We
provide three algorithms, among which a greedy approach performs the best.

The second sub-problem is to select k events that maximize the overall node
coverage. This task maps to the maximum set-cover problem, and it can be
approximated using a standard greedy algorithm. To speed up further our algo-
rithm, we also propose a search strategy that avoids evaluating candidate events
at all possible tree roots, but heuristically selects the most promising ones.

Example 1. Consider the email communication network of a company, such as
the one shown in Fig. 1. The interaction network is shown in Fig. 1(a) and the cor-
responding interaction meta-graph in Fig. 1(b). The edges between interactions
(2, 4), (1, 2), (2, 3) in Fig. 1(b) are examples of edge types broadcast, relay, and
reply, respectively. In this toy example there are two main events. (i) progress:
The ceo asks a project manager (pm) about progress on a project, and the pm
forwards the request to team members 1 (tm1) and 2 (tm2). Later, tm1 reports
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CEO

Project manager (PM)

Team member 1 (TM1)

Team member 2 (TM2)

(1,‘progress’,Mon)

(4,‘progress’,Thu)

(6,‘suggestion’,Thu)

(2,‘progress’,Tue)

(2,‘progress’,Tue)

(3,‘progress’,Wed)

(5,‘suggestion’,Wed)

(7,‘football’,Fri)

(a)

1

2

3

4

5

6

7

relay

reply

broadcast

(b)

Fig. 1. A toy example showing the email communication network within a company.
(a) The interaction network. Each edge corresponds to one interaction/email, labeled
as (interaction id, message topic, timestamp). (b) The corresponding interaction
meta-graph. Topics in both graphs are depicted using different colors. Edges in the
interaction meta-graph are depicted by a different color according to their type (relay,
reply, or broadcast). Edges are solid if they have small weight (topic dissimilarity).
Otherwise, they are dashed.

back to pm, who in turn reports back to ceo. The information flow of this event
follows the interactions 1 → 2 → 3 → 4. (ii) suggestion: Motivated by the first
event, tm2 comes up with some suggestion, which she sends to pm. The pm
finds the suggestion useful and forwards it to ceo. The information flow of this
second event is 5 → 6. A third event, football, is smaller in size, and it is not
included in the top-2 events. Note that due to time ordering of the interactions,
the interaction meta-graph G is a directed acyclic graph.

The problem considered in this paper has many applications in different
domains. In our experimental evaluation, we focus on analyzing textual data in
social media. We experiment with one email dataset (Enron) and three Twitter
datasets. We provide a comparison of the different approaches, as well as many
examples in which our methods discover meaningful events.

The contributions of this paper are summarized as follows1:

– We propose a novel formulation for the problem of discovering events that
are temporally and topically coherent in interaction networks, such as, online
communication networks.

– We present a transformation of the interaction network to an interaction meta-
graph, which captures temporal and topical association of interactions as well
as the information flow in the network. This transformation helps to provide
a cleaner abstraction to the event-detection problem.

1 All scripts are available at https://github.com/xiaohan2012/lst.

https://github.com/xiaohan2012/lst
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– For the problem of finding high-volume events while satisfying constraints of
temporal and topical coherence we present and we evaluate three different
algorithms: a greedy approach, a dynamic-programming algorithm, and an
adaptation to an existing approximation algorithm.

– We address the problem of finding the top-k events that summarize the net-
work activity. The classic greedy algorithm is the standard way to approach
this problem, but here, to speed-up the computations, we also propose and
evaluate a search strategy that avoids construction of candidate events at all
possible tree roots, but adaptively selects the most promising ones.

– We compare and analyze our algorithms on both synthetic and real datasets,
such as Twitter and email communication. We show that our methods are
able to detect meaningful temporal events.

2 Related Work

Phrase-based event detection. The problem of detecting events in social
media has attracted significant attention. Leskovec et al. [14] and Yang et al. [20]
treat events as short, distinctive phrases that propagate relatively intact through
in a network. Their work offers a graph formulation for clustering variants of
phrases based on string edit distance. Although their objective is similar to ours,
there are significant differences. First, our methods focus on interaction networks,
aiming to capture information flows in communication networks, rather than
action networks. Second, we explicitly impose topic-coherence constraints, where
the edit distance is insufficient for this goal. Third, instead of representing events
by phrases, we derive higher-level representation using topic terms.

Text summarization. Text summarization techniques attempt to select a sub-
set of sentences [6] or tweets [11] to summarize textual content. Similarly, we
select a subset of interactions under a topic-coherence constraint. However, we
also impose temporal coherence constraint, whereas they take a static view.

Statistical methods. Statistical and machine learning approaches for event
detection are gaining increasing attention in recent years. Mathioudakis et al. [15]
develop an interactive system for identifying trends (events). The system first
identifies “bursty” keywords, then clusters them based on co-occurrence and later
performs trend analysis using dimension-reduction methods. Becker et al. [1]
focus on online event identification. Their approach relies on online clustering
techniques in order to discover topically-related tweets as an event and feature-
based modeling in order to distinguish events from non-events. The difference of
this approach with our work is that we offer a graph-theoretic formulation.

Graph-based methods. Other event-detection methods are based on con-
structing a word graph [5,16,18]. Weng et al. [18] combines wavelet analysis
and graph-partitioning techniques to cluster the words into events. Meladianos
et al. [16] construct a word graph to represent a sequence of tweets, however,
they focus on identifying key sub-events inside the sequence. Cataldi et al. [5]
detect events by locating strongly connected components. Compared to those
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approaches, in this paper we explicitly model interactions, and take into account
temporal constraints and topical-coherence constraints.

3 Model

An interaction network H = (N, I) consists of a set of n nodes N and a set of
m time-stamped interactions I between pairs of nodes. I is represented as:

I = {(ui, vi, αi, ti)} , with i = 1, . . . ,m, such that ui, vi ∈ N, ti ∈ R, αi ∈ R
L,

indicating that nodes ui and vi interacted at time ti. Each interaction is anno-
tated with textual content represented by αi. The representation is independent
to our main methodology. We can use various text modeling techniques such as
bag-of-words representation or latent Dirichlet allocation (LDA) [2].

For generality we consider that interactions are directed. More than one
interaction may take place between a pair of nodes, with different timestamps.
Conversely, more than one interaction may take place at the same time, between
different nodes. Online communication networks, such as email networks, are
examples of interaction networks.

Given an interaction network H we construct a directed weighted interaction
meta-graph G = (I, E, c). The vertices I in G correspond to the interactions
I in H. There is an edge from vertex i = (ui, vi, αi, ti) ∈ I to a vertex j =
(uj , vj , αj , tj) ∈ I if the following holds:

1. Interaction i takes place before interaction j (time comprehension): ti ≤ tj .
2. Information comprehension takes place in one of the following ways:

(a) interactions i and j share the same start node in N : ui = uj (broadcast);
(b) the end node of interaction i is the start node of interaction j and the

end node of j is not the start node of i: vi = uj and vj �= ui (relay);
(c) the end node of an interaction i is the start node of an interaction j and

the end node of j is the start node of i: vi = uj and vj = ui (reply).

Note, that due time comprehension the G is a directed acyclic graph (DAG).
For the edges of the interaction meta-graph G we use weights to measure

the topical (dis)similarity between interactions. Thus, given two interactions
(ui, vi, αi, ti) and (uj , vj , αj , tj) connected by an edge in G, our edge-weighting
function c : E → R is a distance function between topic vectors αi and αj .

Finally, given a meta-graph G = (I, E, c) and a time interval [s, f ] we define
the time-induced meta-graph G([s, f ]) = (I([s, f ]), E, c), where I([s, f ]) are the
interactions that occur in [s, f ]: I([s, f ]) = {(u, v, α, t) ∈ I | s ≤ t ≤ f} .

4 Problem Formulation

We aim at summarizing the top-k events in an interaction network. We define
an event to be a rooted subtree T of the interaction meta-graph G. An event
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naturally has a source vertex (or interaction) and is spread in the network. We
are interested in events of high volume, which translates into a large number
of iterations included into the tree T . We are also interested in events with
temporally close and topically coherent interactions.

These aspects can be incorporated into the optimization cost function in dif-
ferent ways. Our primary objective is to obtain k events that have high enough
coverage to represent the whole network, and thus, we aim to maximize the num-
ber of interactions that are included in the event. To incorporate temporal and
topical coherence we set constraints on the time interval spanned by the event
tree (temporal coherence), and on total weight of its edges (topical coherence).

To simplify the problem of finding the best k events, we decompose the main
task into two subproblems: (1) finding a set of independent candidate events that
satisfy the constraints and maximize volume of interactions, and (2) selecting the
top-k events to maximize total coverage. The first problem is defined as follows.

Problem 1. Time-constrained maximum tree (TMaxTree): Given an
interaction meta-graph G = (I, E, c), a root vertex r ∈ I, time budget I, and
dissimilarity budget B, find a directed subtree T = (Ve, Ee) ⊆ G, rooted at r,
which satisfies the constraints

∑
e∈Ee

c(e) ≤ B and (max
i∈Ve

ti − min
j∈Ve

tj) ≤ I,

while maximizing the number of vertices |Ve|.
Note that the time constraint can be omitted, if we restrict the input graph

to be induced by the time interval [tr, tr + I], where tr is the root timestamp.
By omitting the time constraint, our problem can be written as follows.

Problem 2. Maximum tree (MaxTree): Given a weighted directed acyclic
graph G([s, f ]) = (I([s, f ]), E, c), a root vertex r, and cost budget B, find a
subtree T = (Ve, Ee) ⊆ G([s, f ]), rooted at r, that satisfies

∑
e∈Ee

c(e) ≤ B
while maximizing the number of vertices |Ve|.

We observe that MaxTree is directly related to budget version of the prize-
collecting Steiner-tree problem (PCST) [12]. However, we are dealing with a
special case of the budget PCST, as vertex prize is uniform and our input graph
is a DAG. Despite so, this special case is still NP-hard.

Proposition 1. MaxTree is NP-hard.2

As the interaction network is likely to contain more than one event, we are
interested in finding k events that describe different aspects of the whole network
while covering as much activity as possible. This is captured in the following
problem formulation.

2 Proof can be found at appendix.
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Problem 3. Maximum k trees (k-MaxTrees): We are given an interaction
meta-graph G = (I, E, c) and k ∈ N. Find a set of k vertex-disjoint trees T =
{T1, . . . Tk}, with each event tree T = (Ve, Ee) ∈ T to be a subgraph of G
rooted in some ri ∈ I, such that the total number of spanned interactions
| ∪T=(Ve,Ee)∈T Ve| is maximized.

It is easy to observe that this problem is equivalent to maximum k-coverage
problem and thus is NP-hard. To solve k-MaxTrees efficiently, we consider the
question of sampling as few root vertices as possible so that the major events
can still be captured. Real-world networks consist of millions of interactions so
it is impractical to calculate candidate event trees rooted at each vertex.

5 Algorithms

5.1 Approximating MaxTree

For finding the best tree, as defined by MaxTree, we consider three algorithms.
Recall that for MaxTree we are working with the interaction meta-graph G,
and that a root vertex is fixed.

Greedy tree growing: The greedy algorithm starts from the root and builds
the event tree by adding one vertex (interaction) at a time. At each step the
algorithm selects the edge with the minimum cost (topic dissimilarity) from the
cutset of the current tree. This choice aims to maximize the topical coherent of
the event discovered. The running time is O(|I|2).
Directed Steiner tree algorithm (DST): Recall that MaxTree corresponds
to the budget PCST problem. Our second algorithm is inspired by an approach
proposed by Johnson et al. [12], where the the budget PCST problem can be
solved by the quota PCST problem using binary search. In our case, the prizes
of all vertices are uniform, thus the quota PCST problem is equivalent to k-
minimum spanning tree. The latter problem can be solved by an algorithm for
finding directed Steiner trees (DST), such as the algorithm proposed by Charikar
et al. [7]. Thus, our second algorithm uses the DST algorithm, within a binary
search to find an event that satisfies the budget constraint. The DST algorithm
takes four arguments, G, r, X, and �, where X is a set of terminal nodes and �
is a parameter that provides a quality-of-approximation vs. efficiency trade-off.
The running time of the algorithm is O(|I|�|X|2�). In our case, X = I, thus
the running time is O(|I|3�). We use � = 1 but still the algorithm is mainly of
theoretical interest and not practical for large datasets.

Dynamic programming algorithm (DP): The third algorithm we present
is inspired by the idea that when the input DAG is a tree, the problem can be
solved optimally using a simple dynamic programming approach. We investigate
two approaches to adapt this algorithm for general (non-tree) DAGs.

In the first approach, we slightly modify the dynamic programming algorithm
to make sure the result is a tree. Specifically, when attempting to connect the



Discovering Topically- and Temporally-Coherent Events 697

current node with the subtrees of its children, we enforce the condition that the
subtrees cannot have any common nodes. In the second approach, we transform
the input DAG into a tree and then apply the original dynamic programming
algorithm. Specifically, we first calculate single-source shortest paths from r to
all vertices of G using Dijkstra’s algorithm and then apply the dynamic pro-
gramming algorithm. For integer edge weights and a tree input, the running
time is O(|I|B2). In our case, edge weights are real numbers, so we discretize
the weights to some decimal digits.

5.2 Approximating k-MaxTrees

Once we have computed a set of candidate event trees using any algorithm for
MaxTree, we need to select k event trees from the candidate set so that vertex
coverage is maximized. This is essentially the maximum coverage problem. A
standard greedy algorithm gives approximation ratio (1− 1

e ) in time O(|I|2) [17].

5.3 Root Sampling Strategy

One issue with the greedy max-cover algorithm discussed above, is that all can-
didate root vertices need to be tested before selecting the one that greedily
optimizes the coverage. This is an expensive computational task. To speed up
the algorithm for finding top-k trees, we propose a simple root-sampling strategy
that ranks roots according to their potential of maximizing MaxTree.

For every sampled root r we construct a candidate tree D and evaluate event
size upper bound U(D,B) of DAG D with budget B, defined as:

U(D,B) = max
F ′∈F (D)

{
|F ′.I| such that

∑
e∈F ′.E

c(e) ≤ B

}

where F (D) is a set of all forests containing D.r (the root of DAG D).
It is easy to see the optimal tree T (D, r,B) cannot have size greater than

U(D,B), thus U(D,B) is indeed an upper bound.

Table 1. Network statistics on real datasets. Singleton interactions in the interaction
meta-graph are removed.

Datasets Interaction networks Interaction meta-graphs

#nodes #edges #nodes #edges Period

Enron 1144 2106 812 21297 1998-10-30 - 2002-02-13

#beefban 11895 33584 26317 75870 2015-03-03 - 2015-03-05

#ukraine 16218 59096 46540 142746 2015-02-27 - 2015-03-03

#baltimore 38541 102139 61501 132012 2015-04-26 - 2015-04-28
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Define the minimum in-edge of a vertex u as

e∗(G, u) = argmin
e′∈δ+(G,u)

c(e′),

where δ+(G, u) = {e ∈ G.E | e.i = u}. U can be computed efficiently as follows.
Consider only nodes, which belong to [tr, tr + I] time interval, where tr is the
root timestamp. Start constructing an event D by adding root r and its child
with the lightest edge. Now sort all other nodes by cost of their minimum in-edge
cost in increasing order; greedily add nodes with their minimum in-edge to the
event D and stop when budget constraint B is reached. U is a number of nodes
in the event D. Note that D is a forest, as we do not care about connectivity
during construction.

Our root sampling strategy first ranks all the vertices by U . Then it sequen-
tially selects vertices from the ranked list.

6 Experimental Evaluation

As no datasets with ground-truth events are available to us, we validate our
approach by using synthetic datasets and by case studies. For the experiments
with synthetic datasets: (1) we plant events (considered as ground truth) within
random interaction networks; (2) we then apply our algorithm to find events in
those synthetic data; (3) we measure the precision and recall of the discovered
events with respect to ground-truth. For the case studies we apply our algorithm
on Enron and on Twitter data, then examine the events we discover, and map
them on real known historical events based on textual content and time period.
As means of exploratory data analysis, we also visualize the event trees in order
to show the information flow within the event.

6.1 Datasets and Preprocessing

Synthetic data. We generate synthetic datasets in two steps: (1) we generate
ground-truth event trees; (2) we inject noise interactions. Each event is generated
independently using the model by Kumar et al. [13], which constructs a tree by
iteratively adding random edges. We sample a sender, recipients, timestamp and
a topic vector randomly for each node.

Real-world data. We use two real-world datasets: email (Enron) and Twitter.
Dataset statistics are given in Table 1. Enron: we use a preprocessed version
of the original Enron dataset [8]. Twitter: we use Twitter datasets extracted
for three hashtags, each one containing a specific hashtag. The hashtags are
#beefban, #baltimore and #ukraine. There is a interaction from a user u to a
user v, if the tweet of user v contains username of u. The Twitter datasets are
provided by Garimella et al. [9].

Preprocessing. We observe the phenomenon that the same person sends the
same (or very similar) messages multiple times, especially on Twitter. Our meth-
ods are easily misled by the sheer amount of redundant messages. To avoid this
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problem, we merge similar messages from the same sender into one. We consider
two messages similar if (1) they are sent by the same user, (2) their Levenshtein
edit distance ratio is below 10 %, (3) their time distance is relatively small (e.g.,
one day). In the newly-merged message, the text content, timestamps are copied
from the earliest message. Recipients are the union of all recipients.

We take different approaches for representing interaction content in Enron
and Twitter. For Enron, we train a topic model using gensim3. We assign each
interaction a topic vector and use cosine distance to compute edge weight.

Measuring tweet similarity is an open challenge due to its short length and
conciseness. We took an ensemble approach where vector representation comes
from several models. Besides topic vectors, we use also (i) bag-of-word (BoW)
with tf-idf re-weighting and (ii) hashtags included in each tweet. For BoW and
hashtag representations, we use cosine and Jarccard distance for weight assign-
ment, respectively. Last, we sum up the three distances. For topic modeling, for
both Enron and Twitter datasets, we use 10 topics, batch size 100 and run it
for 10 iterations.

6.2 Results on Synthetic Datasets

We evaluate five different algorithms for finding the best event: (1) greedy
tree growing (greedy), (2) binary search using Charikar’s DSP algorithm
(binary search), (3) dynamic programming without preprocessing (DP), (4)
dynamic programming with Dijkstra preprocessing (DP+dij ), and (5) random
tree growing (random) as a baseline. The random algorithm mimics the greedy ,
but it selects a random edge to grow at each step. We compare quality of solu-
tions obtained on datasets with various noise level. We define noise level as
a number of noise interactions divided by the total number of interactions of
all events. For the DSP algorithm we set level parameter � = 1, as we have
insufficient memory for experiments with larger values.

Different noise levels. To compare the capability of the algorithms to find one
best event, we generate a sequence of datasets with increasing noise levels and
only one event of size 20 (containing 20 nodes). We set ground-truth values of
I,B, r for parameters in MaxTree. We consider three types of measurements:
(1) precision, recall, and F1, (2) the value of objective function, and (3) the
running time. Log scale is applied in the case of running time as difference
between algorithms is of magnitudes order.

In Fig. 2(a), we see that all our algorithms outperform the trivial random
baseline. Although greedy is a simple heuristic, its performance is among the
top. Dijkstra preprocessing for DP improves both F1 and computational time.
In the contrary, binary search consumes much time, even though it is among the
best in other measurements. Notice that random achieves high precision because
it can select a wrong edge that violates the budget constraint at the first few
steps and terminate.

3 https://radimrehurek.com/gensim/models/ldamodel.html.

https://radimrehurek.com/gensim/models/ldamodel.html
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(a)

(b)

Fig. 2. (a) Performance of the algorithms under noise levels from 0 to 100 with step
size 0.5. Results are averaged over 50 repetitions. (b) Performance of the algorithms
on synthetic dataset with noise level 20 and varying event size from 10 to 100 at step
size 10. Measurement values are averaged from 50 rounds.

Different event sizes. We also study how the algorithms perform in extract-
ing events of different sizes. The experiment setting is similar to the above, but
the noise level is fixed to 20, while the event size varies. In Fig. 2(b), greedy ,
binary search are among the best in terms of precision, recall, F1 and set cover
objective, whereas DP+dij is slightly worse due to needed edge weight discretiza-
tion. Again, preprocessing for DP improves performance. Running time compar-
ison is consistent with the previous case.

6.3 Parameter Effects on Real Datasets

Effect of B. We evaluate the effect of topic dissimilarity budget B on the tree
size objective in MaxTree. We randomly sample 100 roots for each dataset. B
varies from 0 to 100 at a step size of 5.0. For Twitter and Enron dataset, I is
set to 1 day and 4 weeks respectively. We take the median of all trees returned
by each algorithm (Fig. 3).
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Fig. 3. Effect of B on the median of tree sizes for different datasets. Note that for
#ukraine and B > 25, the DP algorithm fails to complete the experiments as it con-
sumes excessive amount of memory.

Fig. 4. Performance of Different sampling schemes on real datasets: k = 10. For Twit-
ter, B = 15.0, I = 1 day. For Enron, B = 10.0, I = 4 weeks. 100 unique roots are
selected based on the sampling scheme.

In Enron, we observe a converging effect on both objectives as the dataset
is relatively small, while this is not the case in all Twitter datasets. In practice,
greedy is the best performing algorithm, as it is both competitive in maximizing
the objective function and it is computationally efficient.

Sampling scheme comparison. We compare two sampling schemes in real
data setting: (1) random root sampling (random) as the baseline, (2) ranking
roots by event size upperbound (upperbound) Sect. 5. For each scheme, the set
cover objective is recorded whenever a new candidate is added. As we can see
in Fig. 4, the event size upper-bound heuristic helps to discover better solutions,
especially for #baltimore and Enron.

Event trees by different algorithms. We compare the behaviours of the
algorithms for MaxTree in real-world datasets. In Fig. 5, the trees are produced
by greedy , and DP+dij are given the same root and budget. The greedy algorithm
avoids to select heavy edges with weights larger than 0.8 due to its local search
strategy whereas DP+dij achieves larger tree by selecting a few heavy edges.
Therefore we expect greedy to produce more topically-coherent events as the
pairwise dissimilarity between nodes tend to be smaller.

6.4 Case Study in Enron Dataset

We sample 50 nodes using upperbound scheme and applied greedy algorithm with
B = 10, I = 28 days. First, we observed that the events can be grouped into two
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(a) (b)

Fig. 5. Tree computed from #beefban given fixed root by greedy (a) and DP+dij (b),
which achieves tree size 46 and 57 respectively. Root, B = 30 and I = 1 day are the
same for both algorithms. Edges with weight ≥ 0.8 are wider. In the tree by greedy ,
no edges with weight ≥ 0.8 are selected. Nodes are colored by senders and edges are
colored by its type (broadcast: blue, relay: green, reply: orange) (Color figure online)

types: (1) California Energy Crisis,4 (2) investigation into Enron’s scandal.5 In
Fig. 6(a), we annotated the real world events about the crisis happening during
the timespan of the dataset. We found shortly after each major blackout, there
is at least one extracted events about it. And before Enron filed bankruptcy,
Federal Energy Regulatory Commission (FERC) investigated Enron. Second, in
Fig. 7(a), extracted events tend to occur at the peak of the volume plot.

6.5 Case Study in Twitter Datasets

We use the same parameters for all three datasets as they have similar size and
timespan. Events are extracted by selecting 100 roots using upperbound and
using greedy algorithm with B = 50 and I = 1 day.

#ukraine. Ukraine crisis arouses media war on Ukraine and Russia.6 We
observe some of the detected events align well topically and temporally with the
actual events in Fig. 6(b). However, topics are mixed inside some other events.
For example, topics on both #nemstsov and #freesavchenko are detected in
event 2. This is expected due to the local similarity measurement in MaxTree.

#beefban. For the controversial “beef ban”7 law in India, results demonstrate
clear separation of opinions among events. In Fig. 8, the 1st and 2nd event rep-
resents opinions opposing and supporting the law. However, we are not able to
interpret any temporal pattern in the events due to the short timespan (3 days).
We also observe the following. First, certain event (Fig. 8(a)) display evidence of

4 https://en.wikipedia.org/wiki/California electricity crisis.
5 https://en.wikipedia.org/wiki/Enron scandal.
6 https://en.wikipedia.org/wiki/Ukrainian crisis.
7 http://indianexpress.com/article/explained/explained-no-beef-nation/.

https://en.wikipedia.org/wiki/California_electricity_crisis
https://en.wikipedia.org/wiki/Enron_scandal
https://en.wikipedia.org/wiki/Ukrainian_crisis
http://indianexpress.com/article/explained/explained-no-beef-nation/
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Jun-00 Jul-00 Aug-00 Sep-00 Jan-01 Feb-01 Mar-01 Apr-01 May-01 Jun-01 Jul-01 Aug-01 Sep-01 Oct-01 Nov-01 Dec-01

Blackout in Bay area
SDGE files a complaint

Blackout Blackouts affect 1.5 million customers.
Enron filed for bankruptcy

3, ees ect power market state california iso energy ferc
2, power state california energy davis electricity utilities gas billion

1, ees ect confidential power state california information energy
10, confidential information ferc enronxgate market california

(a)

Feb-25 Feb-26 Feb-27 Feb-28 Mar-1 Mar-2 Mar-3 Mar-4 Mar-5

3, #russia #crimea #mariupol
1, #antifa #naf #rada

2, #freesavchenko #nemtsov #russia

4, #russia #nemtsov #putin

Continued detention of Savchenko
Savchenko awarded of Hero of Ukraine

Savchenko ends hunger strike

Thousands march in Moscow for Boris Nemtsov murder

Murder of Boris Nemtsov

(b)

Fig. 6. Timeline with extracted events (larger red circle) and publicly recognised events
(smaller black circle and italic text) for Enron (a) and #ukraine (b). (a) highlights
events on Enron’s energy scandal and bankruptcy. Event 3, 2, 1 and 10 are displayed.
The larger the circle, the larger the event size is. For each event, top topic terms are
displayed. In (b), top-4 events are displayed with the top hashtags. Event 2 and 4 maps
to the murder of Boris Nemstsov (#nemstsov), while event 4 also contains tweets on
freeing Savchenko (#freesavchenko). Event 1, 3 is about other related issues. (Color
figure online)

(a)

(b)

Fig. 7. Stacked area graph of interaction frequency against time. Enron (a) contains
top-10 events. #beefban (b) contains top-5 events.
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government is against all kinds of roasts.
why stop at beef? u should ban milk too.
those for #beefban should stop wearing leather

this is why bjp will never win in kerala

(a)

why beef and not rice? both are living organisms.
sir thanks 4 #beefban! u hv proven u can take tough step

good news: beef banned in maharashtra, 5 yrs jail

(b)

Fig. 8. Extracted events for #beefban. (a) 1st event demonstrates sign of opinion prop-
agation. (b) 2nd event containing mixed opinions. Nodes are colored by the senders.
The largest node is the root.

information propagation. For example, opposing opinions spreads along the user
network and affected users also express their objection. Second, for some event
(Fig. 8(b)), dominant user exists who sent more than half of the tweets. Third,
we observe events with mixed opinions (Fig. 8(b)). Last, our method tends to dis-
cover events at the “peak” as the set cover objective is better than the “bottom”
(Fig. 7(b)).

#baltimore. We discovered two types of events: (1) “emotional” events showing
anger towards the riot, (2) “descriptive” events reporting current situation.

7 Conclusions

We defined the problem of summarizing top-k events in an interaction network.
Our approach consists by first transforming the input data into an interaction
meta-graph and then defining two optimization problems: budgeted version of
PCST and maximum set cover. We offer three algorithms for the former problem.
Our experiments show that the greedy approach is more lightweight and performs
as good as or even better than other more sophisticated counterparts.

Our work opens many interesting directions for future research. For example,
it would be interesting to formulate the problem differently, for example, impos-
ing edge weight constraint for each edge, instead of their weight sum. Another
direction is to explore semi-structured interactions such as forums posts, where
nesting structures exist between post and comment. We leave scalability exper-
iment and better summarization techniques for future work.

Acknowledgements. This work is partially supported by the Academy of Finland
project “Nestor” (286211) and the EC H2020 RIA project “SoBigData” (654024).
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Abstract. We propose a framework for learning new target tasks by
leveraging existing heterogeneous knowledge sources. Unlike the tradi-
tional transfer learning, we do not require explicit relations between
source and target tasks, and instead let the learner actively mine trans-
ferable knowledge from a source dataset. To this end, we develop (1) a
transfer learning method for source datasets with heterogeneous feature
and label spaces, and (2) a proactive learning framework which pro-
gressively builds bridges between target and source domains in order to
improve transfer accuracy. Experiments on a challenging transfer learn-
ing scenario (learning from hetero-lingual datasets with non-overlapping
label spaces) show the efficacy of the proposed approach.

1 Introduction

The notion of enabling a machine to learn a new task by leveraging an auxiliary
source of knowledge has long been the focus of transfer learning. While many dif-
ferent flavors of transfer learning approaches have been developed, most of these
methods assume explicit relatedness between source and target tasks, such as the
availability of source-target correspondent instances (e.g. multi-view/multimodal
learning), or the class relations information for multiple datasets sharing the
same feature space (e.g. zero-shot learning, domain adaptation), etc. These
approaches have been effective in their respective scenarios, but very few limited
studies have investigated learning from heterogeneous knowledge sources that lie
in both different feature and label spaces. See Sect. 2 for the detailed literature
review.

Given an unforeseen target task with limited label information, we seek to
mine useful knowledge from a plethora of heterogeneous knowledge sources that
have already been curated, albeit in different feature and label spaces. To address
this challenging scenario we first need an algorithm to estimate how the source
and the target datasets may be related. One common aspect of any dataset for
a classification task is that each instance is eventually assigned to some abstract
concept(s) represented by its category membership, which often has its own
name. Inspired by the Deep Visual-Semantic Embedding (DeViSE) model [7]
which assigns the unsupervised word embeddings to label terms, we propose
to map heterogeneous source and target labels into the same word embedding
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 706–721, 2016.
DOI: 10.1007/978-3-319-46227-1 44
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space, from which we can obtain their semantic class relations. Using information
from the class relations as an anchor, we first attempt to uncover a shared latent
subspace where both source and target features can be mapped. Simultaneously,
we learn a shared projection from this intermediate layer into the final embedded
labels space, from which we can predict labels using the shared knowledge.

The quality of transfer essentially depends on how well we can uncover the
bridge in the projected space where the two datasets are semantically linked.
Intuitively, if the two datasets describe completely different concepts, very little
information can be transferred from one to the other. We therefore also propose
a proactive transfer learning framework which expands the labeled target data
to actively mine transferable knowledge and to progressively improve the target
task performance.

We evaluate the proposed combined approach on a unique learning problem
of a hetero-lingual text classification task, where the objective is to classify a
novel target text dataset given only a few labels along with a source dataset in a
different language, describing different classes from the target categories. While
this is a challenging task, the empirical results show that the proposed approach
improves over the baselines.

The rest of the paper is organized as follows: we position our approach in
relation to the previous work in Sect. 2, and formulate the heterogeneous transfer
learning problem in Sect. 3. Section 4 describes in detail the proposed proactive
transfer learning framework and presents the optimization problem. The empir-
ical results are reported and analyzed in Sect. 5, and we give our concluding
remarks and proposed future work in Sect. 6.

2 Related Work

Transfer Learning with Heterogeneous Feature Spaces: Multi-view repre-
sentation learning aims at aggregating multiple heterogeneous “views” (feature
sets) of an instance that describe the same concept to train a model. Most
notably, [30] proposes Deep Canonically Correlated Autoencoders (DCCAE)
which learn a representation that maximizes the mutual information between
different views under an autoencoder regularization. While DCCAE is reported
to be state of the art on multi-view representation learning using Canonical
Correlation Analysis (CCA) [4], their approach (as well as other CCA-based
methods) strictly require access to paired observations from two views belong-
ing to the same class. [3] proposes translated learning which aims to learn a tar-
get task in the same label space as the source task, using source-correspondent
instances such as image-text parallel captions as an anchor. [34] proposes Hybrid
Heterogeneous Transfer Learning (HHTL) which extends the previous trans-
lated learning work with an added objective of learning an unbiased feature
mapping through marginalized stacked denoising autoencoders (mSDA), given
correspondent instances. [29] develops a similar approach in bilingual content
classification tasks, and proposes to generate correspondent samples through an
available machine translation system. [22] proposes a Transfer Deep Learning
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(TDL) framework for fine-tuning intermediate layers of a target network with
transferred source data, where the mapping between source and target layers
is learned from corresponding instances. [5] propose the Heterogeneous Feature
Augmentation (HFA) method for a shared homogeneous binary classification
task, which relaxes the previous limitations that require correspondent instances,
and instead aims to discover a common subspace that can map two heteroge-
neous features. Our approach generalizes all the previous work by allowing for
heterogeneous label spaces between source and target, thus not requiring explicit
source-target correspondent instances or classes.

Transfer Learning with a Heterogeneous Label Space: Zero-shot learn-
ing aims at building a robust classifier for unseen novel classes in the target
task, often by relaxing categorical label space into a distributed vector space via
transferred knowledge. For instance, [19] uses image co-occurrence statistics to
describe a novel image class category, while [7,8,15,25,28,31,33] embed labels
into semantic word vector space according to their label terms, where textual
embeddings are learned from auxiliary text documents in an unsupervised man-
ner. More recently, [13] proposes to learn domain-adapted projections to the
embedded label space. While these approaches are reported to improve robust-
ness and generalization on novel target classes, they assume that source datasets
are in the same feature space as the target dataset (e.g. image). We extend the
previous research by adding the joint objective of uncovering relatedness among
datasets with heterogeneous feature spaces, via anchoring the semantic relations
between the source and the target label embeddings.

Domain Adaptation approaches aim to minimize the marginal distribution
difference between source and target datasets, assuming their class conditional
distribution remains the same for homogeneous feature and label spaces. This
is typically implemented via instance re-weighting [2,11,14], subspace mapping
[32], or via identification of transferable features [16]. [24] provide an exhaustive
survey on other traditional transfer learning approaches.

Active learning provides an alternative solution to the label scarcity prob-
lem, which aims at reducing sample complexity by iteratively querying the most
informative samples with the highest utility given the labeled sampled thus far
[21,26]. Transfer active learning approaches [2,6,12,27,36] aim to combine
transfer learning with the active learning framework by conditioning transferred
knowledge as priors for optimized selection of target instances. Specifically, [9]
overcomes the common cold-start problem at the beginning phase of active learn-
ing with zero-shot class-relation priors. However, many of the previously pro-
posed transfer active learning methods do not apply to our setting because they
require source and target data to be in either homogeneous feature space or the
same label space or both. Therefore, we propose a proactive transfer learning
approach for heterogeneous source and target datasets, where the objective is
to progressively find and query bridge instances that allow for more accurate
transfer, given a sampling budget.

Our contributions are three-fold: we propose (1) a novel transfer learning
method with both heterogeneous feature and label spaces, and (2) a proactive
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transfer learning approach for identifying and querying bridge instances between
target and source tasks to improve transfer accuracy effectively. (3) We evaluate
the proposed approach on a novel transfer learning problem, the hetero-lingual
text classification task.

3 Problem Formulation

We formulate the proposed framework for learning a target multiclass classifi-
cation task given a source dataset with heterogeneous feature and label spaces
as follows: We first define a dataset for the target task T = {XT,YT,ZT},
with the target task features XT = {x(i)

T }NT
i=1 for xT ∈ R

MT , where NT is the
target sample size and MT is the target feature dimension, the ground-truth
labels ZT = {z(i)T }NT

i=1, where zT ∈ ZT for a categorical target label space ZT ,
and the corresponding high-dimensional label descriptors YT = {y(i)

T }NT
i=1 for

yT ∈ R
ME , where ME is the dimension of the embedded labels, which can be

obtained from e.g. unsupervised word embeddings, etc. We also denote LT and
ULT as a set of indices of labeled and unlabeled target instances, respectively,
where |LT | + |ULT | = NT . For a novel target task, we assume that we are given
zero or a very few labeled instances, thus |LT | = 0 or |LT | � NT . Similarly, we
define a heterogeneous source dataset S = {XS,YS,ZS}, with XS = {x(i)

S }NS
i=1

for xS ∈ R
MS , ZS = {z(i)S }NS

i=1 for zS ∈ ZS , YS = {y(i)
S }NS

i=1 for yS ∈ R
ME ,

and LS , accordingly. For the source dataset we assume |LS | = NS . Note that
in general, we assume MT �= MS (heterogeneous feature space) and ZT �= ZS

(heterogeneous label space).
Our goal is then to build a robust classifier f : XT → ZT for the target

task, trained with {x(i)
T ,y(i)

T , z(i)T }i∈LT
as well as transferred knowledge from

{x(i)
S ,y(i)

S , z(i)S }i∈LS
.

4 Proposed Approach

Our approach aims to leverage a source data that lies in different feature and
label spaces from a target task. Transferring knowledge directly from hetero-
geneous spaces is intractable, and thus we begin by obtaining a unified vector
representation for different source and target categories. Specifically, we utilize
a skip-gram based language model that learns semantically meaningful vector
representations of words, and map our categorical source and target labels into
the word embedding space (Sect. 4.1). In parallel, we learn compact represen-
tations for the source and the target features that encode abstract information
of the raw features (Sect. 4.2), which allows for more tractable transfer through
affine projections. Once the label terms for the source and the target datasets
are anchored in the word embedding space, we first learn projections into a
new latent common feature space from the source and the target feature spaces
(WS and WT), respectively, from which Wf maps the joint features into the
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Fig. 1. An illustration of the proposed approach. Source (20 Newsgroups: English) and
target (Reuters Multilingual: French) datasets lie in different feature spaces (xS ∈ R

MS ,
xT ∈ R

MT ), and describe different categories (ZS �= ZT ). First, categorical labels are
embedded into the dense continuous vector space (e.g. via text embeddings learned
from unsupervised documents.) The objective is then to learn Wf , WS, and WT

jointly such that WS and WT map the source and target data to the latent common
feature space, from which Wf can project to the same space as the embedded label
space. Note that the shared projection Wf is learned from both the source and the
target datasets, thus we can more robustly predict a label for a projected instance by
finding its nearest label term projection.

embedded label space (Sect. 4.3). Lastly, we actively query and expand the
labeled set LT to jointly improve the joint classifier Wf and the transfer accuracy
(Sect. 4.4). Figure 1 shows the illustration of the proposed approach, visualized
with the real datasets (20 Newsgroups and Reuters Multilingual Datasets).

4.1 Language Model Label Embeddings

The skip-gram based language model [20] has proven effective in encoding seman-
tic information of words, which can be trained from unsupervised text. We use
the obtained label term embeddings as anchors for source and target datasets,
and drive the target model to learn indirectly from source instances that belong
to semantically similar categories. In this work, we use 300-D word embeddings
trained from the Google News dataset1 (about 100 billion words).

4.2 Unsupervised Representation Learning for Features

In order to project source and target feature spaces into the joint latent space
effectively, as a pre-processing step we first obtain abstract and compact rep-
resentations of raw features to allow for more tractable transformation. Unlike
the similar zero-shot learning approaches [7], we do not use the embeddings
obtained from a fully supervised network (e.g. the activation embeddings at the

1 word2vec: https://code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/
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top of the trained visual model), because we assume the target task is scarce
in labels. For our experiments with text features, we use the latent semantic
analysis (LSA) method [10] to transform the raw tf-idf features into a 200-D
low-rank approximation.

4.3 Transfer Learning for Heterogeneous Feature and Label Spaces

We define WS and WT to denote the sets of learnable parameters that project
source and target features into a latent joint space, where the mappings can
be learned with deep neural networks, kernel machines, etc. For simplicity, we
treat WS and WT as linear transformation layers, thus WS ∈ R

MS×MC and
WT ∈ R

MT ×MC for projection into the MC-dimension common space. Similarly,
we define Wf ∈ R

MC×ME which maps from the common feature space into the
embedded label space.

To learn these parameters simultaneously, we solve the following joint opti-
mization problem with hinge rank losses (similar to [7]) for both source and
target.

min
Wf ,WS,WT

1
|LS |

|LS |∑
i=1

l(S(i)) +
1

|LT |
|LT |∑
j=1

l(T(j)) (1)

where

l(S(i))=
∑

ỹ �=y
(i)
S

max[0, ε−x(i)
S WSWfy

T(i)
S +x(i)

S WSWf ỹT]

l(T(j))=
∑

ỹ �=y
(j)
T

max[0, ε−x(j)
T WTWf ỹ

T(j)
T +x(j)

T WTWf ỹT]

where l(·) is a per-instance hinge loss, ỹ refers to the embeddings of other label
terms in the source and the target label space except the ground truth label of
the instance, and ε is a fixed margin. We use ε = 0.1 for all of our experiments.

In essence, we train the weight parameters to produce a higher dot product
similarity between the projected source or target instance and the word embed-
ding representation of its correct label than between the projected instance and
other incorrect label term embeddings. The intuition of the model is that the
learned Wf is a shared and more generalized linear transformation capable of
mapping the joint intermediate subspace into the embedded label space.

We solve Eq. 1 efficiently with stochastic gradient descent (SGD), where the
gradient is estimated from a small minibatch of samples.

Once WS, WT, and Wf are learned, at test time we build a label-producing
nearest neighbor (NN) classifier for the target task as follows:

NN(xT) = argmax
z∈ZT

xTWTWfyT
z (2)

where yz maps a categorical label term z into its word embeddings space. Simi-
larly, we can build a NN classifier for the source task as well, using the projection
WSWf .
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4.4 Proactive Transfer Learning

The quality of the learned parameters for the target task WT and Wf depends
on the available labeled target training samples (LT ). As such, we propose to
expand LT by querying a near-optimal subset of the unlabeled pool ULT , which
once labeled will improve the performance of the transfer accuracy and ulti-
mately the target task, assuming the availability of unlabeled data and (limited)
annotators. In particular, we relax this problem with a greedy pool-based active
learning framework, where we iteratively select a small subset of unlabeled sam-
ples that maximizes the expected utility to the target model:

x̂T = argmax
xT∈{x(i)

T }i∈ULT

U(xT) (3)

where U(xT) is a utility function that measures the value of a sample xT defined
by a choice of the query sampling objective. In traditional active learning, the
uncertainty-based sampling [17,26] and the density-weighted sampling strategies
[23,35] are often used for the utility function U(xT) in the target domain only.
However, the previous approaches in active learning disregard the knowledge
that we have in the source domain, thus being prone to query samples of which
the information can be potentially redundant to the transferable knowledge. In
addition, these approaches only aim at improving the target classification per-
formance, whereas querying bridge instances to maximally improve the transfer
accuracy instead can be more effective by allowing more information to be trans-
ferred in bulk from the source domain. Therefore, we propose the following two
proactive transfer learning objectives for sampling in the target domain that
utilize the source knowledge in various ways:

Maximal Marginal Distribution Overlap (MD): We hypothesize that the
overlapping projected region is where the heterogeneous source and target data
are semantically related, thus a good candidate for a bridge that maximizes the
information transferable from the source data. We therefore propose to select
unlabeled target samples (xT) in regions where the marginal distributions of
projected source and target samples have the highest overlap:

UMD(xT) = min
(
P̂T(xT|WT,Wf ), P̂S(xT|WSWf )

)
(4)

where P̂T and P̂S are the estimated marginal probability of the projected target
and source instances, respectively. Specifically, we estimate each density with
the non-parametric kernel method:

P̂T(xT|WT,Wf ) =
1

NT

NT∑
i=1

Kh(xTWTWf − x(i)
T WTWf )

P̂S(xT|WS,Wf ) =
1

NS

NS∑
j=1

Kh(xTWTWf − x(j)
S WSWf ) (5)
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Algorithm 1. Proactive Transfer Learning
Input: source data S, target data T, active learning policy U(·), budget B, query
size per iteration Q
Randomly initialize Wf , WT, WS

for iter = 1 to B do
1. Learn Wf , WT, WS by solving

min
Wf ,WS,WT

1

|LS |
|LS |∑

i=1

l(S(i)) +
1

|LT |
|LT |∑

j=1

l(T(j))

2. Query Q new samples
for q = 1 to Q do

î = argmax
i∈ULT

U(x
(i)
T )

ULT : =ULT \{̂i}, LT : =LT ∪ {̂i}
end for

end for
Output: Wf , WT, WS

where Kh is a scaled Gaussian kernel with a smoothing bandwidth h. Solving
maxxT

min(P̂T (xT), P̂S(xT)) finds such instance xT whose projection lies in the
highest density overlap between source and target instances.

Maximum Projection Entropy (PE) aims at selecting an unlabeled tar-
get sample that has the maximum entropy of dot product similarities between a
projected instance and its possible label embeddings:

UPE(xT) = −
∑
z∈ZT

log(xTWTWfyT
z )xTWTWfyT

z (6)

The projection entropy utilizes the information transferred from the source
domain (via Wf ), thus avoiding information redundancy between source and
target. After samples are queried via the maximum projection entropy method
and added to the labeled target data pool, we re-train the weights such that
projections of the target samples have less uncertainty in label assignment.

To reduce the active learning training time at each iteration, we query a small
fixed number of samples (= Q) that have the highest utilities. Once the samples
are annotated, we re-train the model with Eq. 1, and select the next batch of
samples to query with Eq. 3. The overall process is summarized in Algorithm 1.

5 Empirical Evaluation

We evaluate the proposed approach on a hetero-lingual text classification task
(Sect. 5.2) with the baselines described in Sect. 5.1.

5.1 Baselines

In our experiments we use a source dataset within heterogeneous feature and
label spaces from a target dataset. Most of the previous transfer learning
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Fig. 2. The proposed method (a) and the baseline networks (b–e). At test time, the
nearest neighbor-based models (a, c) return the nearest label in the embedding space
(Y) to the projection of a test sample, whereas the n-way softmax layer (SM) classifiers
(b, d, e) are trained to produce categorical labels from their respective final projection.
We use the notation W to refer to Wt and Ws, as they share the same architecture.

approaches that allow only one of input or output spaces to be heterogeneous
thus cannot be used as baselines (see Sect. 2 for the detailed comparison). We
therefore compare the proposed heterogeneous transfer approach with the fol-
lowing baseline networks (illustrated in Fig. 2):

– W Wf:NN (proposed approach; heterogeneous transfer learning network):
We learn the projections WS, WT, and Wf by solving the joint optimization
problem in Eq. 1. At test time, we use the 1-nearest neighbor classifier (NN)
defined in Eq. 2 and look for a category embedding that is closest to the pro-
jected source (xSWSWf ) or target instance (xTWTWf ) at the final layer. We
use the notation W to denote a placeholder for a source model (WsWf:NN)
and a target model (WtWf:NN), as they share the same architecture.

– W Wf:SM: We train the weights in the same way (Eq. 1), and we add a
softmax layer (SM) at the top projection layer (word embedding space) in
replacement of the NN classifier.

– W :NN ([7]; zero-shot learning networks with distributed word embeddings):
We learn the projections WS ∈ R

MS×ME and WT ∈ R
MT ×ME by solving two

separate optimization problems for source and target networks respectively:

min
WS

1
|LS |

|LS |∑
i=1

l(S(i)), min
WT

1
|LT |

|LT |∑
j=1

l(T(j)) (7)

where the loss functions are defined in a similar way as in Eq. 1:

l(S(i))=
∑

ỹ �=y
(i)
S

max[0, ε−x(i)
S WSy

T(i)
S +x(i)

S WSỹT]

l(T(j))=
∑

ỹ �=y
(j)
T

max[0, ε−x(j)
T WTy

T(j)
T +x(j)

T WTỹT] (8)

At test time, we use the NN classifier with projected source (xSWS) and
target (xTWT) instances. The target task thus does not use the transferred
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information from the source task, but only uses the semantic word embeddings
transferred from a separate unannotated corpus. This baseline can be regarded
as an application of DeViSE [7] on non-image classification tasks.

– W :SM: We train the weights with Eq. 7, and we add a softmax layer.
– -:SM: We train two separate networks with logistic regression softmax layers

for source and target tasks with XS and XT, respectively.

5.2 Application: Hetero-Lingual Text Classification

We apply the proposed approach to learn a target text classification task given
a source text dataset with both a heterogeneous feature space (e.g. a different
language) and a label space (e.g. describing different categories).

The datasets we use are summarized in Table 1. Note that the 20 News-
groups2 (English: 18,846 documents), the Reuters Multilingual [1] (French:
26,648, Spanish: 12,342, German: 24,039, Italian:12,342 documents), the R8 of
RCV-13 (English: 7,674 documents) datasets describe different categories with
varying degrees of relatedness. The original categories of some of the datasets
were not in the format compatible to our word embeddings dictionary. We man-
ually replaced those label terms to the semantically close words that exist in the
dictionary (e.g. sci.med → ‘medicine’, etc.).

Task 1: Transfer Learning for Scarce Target

Setup: We assume a scenario where only a small fraction of the target samples
are labeled (%LT

= 0.1% or 1% depending on the size of the dataset) whereas
the source dataset is fully labeled, and create various heterogeneous source-
target pairs from the datasets summarized in Table 1. Table 2 reports the text
classification results for both source and target tasks in this experimental setting.
The results are averaged over 10-fold runs, and for each fold we randomly select
%LT

of the target train instances to be labeled as indicated in Table 2. Bold
denotes the best performing model for each test, and * denotes the statistically
significant improvement (p < 0.05) over other methods.

Main results: Table 2 shows that the proposed approach (WtWf:NN)
improves upon the baselines on several source-target pairs on the target clas-
sification task. Specifically, WtWf:NN shows statistically significant improve-
ment over the single-modal baseline (Wt:NN) on the source-target pairs
20NEWS→SP, 20NEWS→GR, R8→SP, R8→GR, and SP→R8. The perfor-
mance boost demonstrates that the transferred knowledge from a source dataset
(in the form of Wf ) does improve the projection pathway from the target
feature space to the embedded label space. Note that the transfer learning
(WtWf:NN) from Reuters Multilingual datasets (FR, SP, GR, IT) to 20 News-
groups (20NEWS) dataset specifically does not improve over the single-modal
baseline (Wt:NN). The 20 Newsgroups dataset is in general harder to discrimi-
nate and spans over a larger label space than the Reuters Multilingual datasets,
2 http://qwone.com/∼jason/20Newsgroups/.
3 http://csmining.org/index.php/r52-and-r8-of-reuters-21578.html.

http://qwone.com/~jason/20Newsgroups/
http://csmining.org/index.php/r52-and-r8-of-reuters-21578.html
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Table 1. Overview of datasets. |Z|: the number of categories

Dataset |Z| Label terms (e.g.)

20 Newsgroups
(20NEWS)

20 ‘politics’, ‘religion’, ‘electronics’,
‘motorcycles’, ‘baseball’, ‘sale’,
· · ·

Reuters Multilingual
(FR,SP,GR,IT)

6 ‘corporate’, ‘finance’, ‘economics’,
‘performance’, ‘government’,
‘equity’

Reuters R8 (R8) 8 ‘acquisition’, ‘interest’, ‘money’,
‘crude’, ‘trade’, ’grain’, · · ·

Table 2. Hetero-lingual text classification test accuracy (%) on (1) the target task
and (2) the source task, given a fully labeled source dataset and a partially labeled
target dataset, averaged over 10-fold runs (MC = 320). %LT : the percentage of target
samples labeled. The baselines are described in Fig. 2.

Datasets (1) Test: Target (%) (2) Test: Source (%)

Source Target %LT WTWf :NN WTWf :SM WT:NN WT:SM -:SM WSWf :NN WSWf :SM WS:NN WS:SM -:SM

20NEWS

FR

0.1

57.7 46.1 55.7 44.4 39.4 78.2 77.1

78.0 77.3 77.6
SP 52.1* 43.0 46.6 42.7 43.8 77.8 77.3
GR 56.2* 44.2 51.1 41.0 37.7 78.5 77.3
IT 47.3 39.8 46.2 35.2 31.8 77.2 77.4

R8

FR

0.1

56.5 42.1 55.6 44.4 39.4 97.0 96.9

97.2 96.6 96.7
SP 50.6* 43.5 46.6 42.7 43.8 97.2 96.8
GR 57.8* 45.1 51.1 41.0 37.7 97.0 96.8
IT 49.7 32.7 46.2 35.2 31.8 96.9 96.9

FR

20NEWS 1

44.7 35.2

44.4 35.7 27.5

86.1 86.0 85.9 86.0 86.0
SP 44.2 36.0 88.3 88.1 88.2 88.2 88.1
GR 43.3 35.5 83.4 83.3 83.5 83.2 83.5
IT 44.9 34.1 85.5 85.3 85.3 85.1 85.1

FR

R8 0.1

61.8 52.1

62.8 52.3 48.1

86.0 86.0 85.9 86.0 86.0
SP 67.3* 52.3 88.3 88.1 88.2 88.2 88.1
GR 64.1 50.9 83.3 83.1 83.5 83.2 83.5
IT 62.0 54.7 85.4 85.2 85.3 85.1 85.1

and thus this result indicates that the heterogeneous transfer is not as reliable
if the target label space is more densely distributed than the source label space.

We observe that the nearest neighbor (NN) classifiers outperform the soft-
max (SM) classifiers in general. This is because the objectives in Eq. 1 aim at
learning a mapping such that each instance is mapped close to its respective
label term embedding (in terms of dot product similarity), thus making the
nearest neighbor-finding approach a natural choice. The networks with a soft-
max layer perform poorly on our target classification task, possibly due to the
small number of categorical training labels, making the task very challenging.

We also present the summary of cosine similarities in the embedded label
space between the source and the target label terms in Table 3, which approxi-
mates the inherent distance between the source and the target tasks. While the
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Table 3. Label terms (word embeddings) cosine similarities summary for heteroge-
neous dataset pairs.

Datasets Cosine similarity

max min avg

20NEWS ↔ FR,SP,GR,IT 0.460 −0.085 0.090

R8 ↔ FR,SP,GR,IT 0.342 −0.039 0.114

R8 dataset tends to be more semantically related with the Reuters Multilingual
datasets than the 20 Newsgroups dataset on average, we only observe marginal
difference in their knowledge transfer performance, given the same respective
source or target dataset.

Note also that both WtWf:SM and Wt:SM significantly outperform -:SM,
a single softmax layer that does not use the auxiliary class relations information
learned from word embeddings. This result demonstrates that the projection of
samples into the embedded label space improves the discriminative quality of
feature representation.

We observe that for a small portion of the target dataset neither helps nor
hurts the source classification task, showing no statistically significant difference
between the proposed approach (WsWf:NN) and other baselines. The learned
Wf can thus be considered as a robust projection that maps the intermediate
common subspace instances into the embedded label space which can describe
both the source and the target categories.

Feature visualization: To visualize the projection quality of the proposed app-
roach, we plot the t-SNE embeddings [18] of the source and the target instances
(R8→GR; %LT

= 0.1), projected with W Wf:NN and W :NN, respectively
(Fig. 3). We make the following observations: (1) The target instances are gen-
erally better discriminated with the projection learned from WtWf:NN which
transfers knowledge from the source dataset, than the one learned from Wt:NN.

(a) Source, Ws (b) Target, Wt (c) Source, WsWf (d) Target, WtWf

Fig. 3. t-SNE visualization of the projected source (R8) and target (GR) instances,
where (a), (b) are learned without the transferred knowledge (W :NN), and (c), (d)
use the transferred knowledge (W Wf:NN).
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Table 4. Comparison of performance (WtWf:NN) with varying intermediate embed-
ding dimensions, averaged over 10-fold runs.

Datasets Test Accuracy (%) vs. MC

S T 20 40 80 160 320 640

20NEWS FR 54.6 56.8 55.3 56.4 57.7 57.1

R8 FR 55.9 54.3 55.1 57.0 56.5 56.7

(2) The projection quality of the source samples remains mostly the same. Both
of these observations accord with the results in Table 2.

Sensitivity to the embedding dimension: Table 4 compares the perfor-
mance of the proposed approach (WtWf:NN) with varying embedding dimen-
sions (MC) at the intermediate layer. We do not observe statistically significant
improvement for any particular dimension, and thus we simply choose the embed-
ding dimension that yields the highest average value on the two dataset pairs
(MC = 320) for all of the experiments.

(a) 20NEWS → FR (b) R8 → FR (c) FR → 20NEWS (d) FR → R8

Fig. 4. Proactive transfer learning results. X-axis: the number of queried samples,
Y -axis: error rate. (Color figure Online)

Task 2: Proactive Transfer Learning
We consider a proactive transfer learning scenario, where we expand the

labeled target set by querying an oracle given a fixed budget. We compare the
proposed proactive transfer learning strategies (Sect. 4.4) against the conven-
tional uncertainty-based sampling methods.

Setup: We choose 4 source-target dataset pairs to study: (a) 20NEWS→FR,
(b) R8→FR, (c) FR→20NEWS, and (d) FR→R8. The lines NN:MD (max-
imal marginal distribution overlap; solid black) and NN:PE (maximum pro-
jection entropy; dashed red) refer to the proposed proactive learning strategies
in Sect. 4.4, respectively, where the weights are learned with WtWf:NN. The
baseline active learning strategies NN:E (entropy; dashdot green) and SM:E
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(entropy; dotted blue) select target samples that have the maximum class-
posterior entropy given the original target input features only, which quantifies
the uncertainty of samples in multiclass classification. The uncertainty-based
sampling strategies are widely used in conventional active learning [17,26], how-
ever these strategies do not utilize any information from the source domain.
Once the samples are queried, NN:E learns the classifier WtWf:NN, whereas
SM:E learns a 1-layer softmax classifier.

Main results: Figure 4 shows the target task performance improvement over
iterations with various active learning strategies. We observe that both of the
proposed active learning strategies (NN:MD, NN:PE) outperform the base-
lines on all of the source-target dataset pairs. Specifically, NN:PE outper-
forms NN:E on most of the cases, which demonstrates that reducing entropy in
the projected space is significantly more effective than reducing class-posterior
entropy given the original features. Because we re-train the joint network after
each query batch, avoiding information redundancy between source and tar-
get while reducing target entropy is critical. Note that NN:MD outperforms
NN:PE generally at the beginning, while the performance of NN:PE improves
faster as it gets more samples annotated. This result indicates that selecting
samples with the maximal source and target density overlap (MD) helps in
building a bridge for transfer of knowledge initially, while this information may
eventually get redundant, thus the decreased efficacy. Note also that the all of
the projection-based methods (NN:MD, NN:PE, NN:E) significantly outper-
form SM:E, which measures the entropy and learns the classifier at the original
feature space. This result demonstrates that the learned projections WTWf

effectively encode input target features, from which we can build a robust clas-
sifier efficiently even with a small number of labeled instances.

6 Conclusions

We summarize our contributions as follows: We address a unique challenge of
mining and leveraging transferable knowledge in the heterogenous case, where
labeled source data differs from target data in both feature and label spaces. To
this end, (1) we propose a novel framework for heterogeneous transfer learning
to discover the latent subspace to map the source into the target space, from
which it simultaneously learns a shared final projection to the embedded label
space. (2) In addition, we propose a proactive transfer learning framework which
expands the labeled target data with the objective of actively improving transfer
accuracy and thus enhancing the target task performance. (3) An extensive
empirical evaluation on the hetero-lingual text classification task demonstrates
the efficacy of each part of the proposed approach.

Future Work: While the empirical evaluation was conducted on the text
domain, our formulation does not restrict the input domain to be textual. We
thus believe the approach can be applied broadly, and as future work, we plan to
investigate the transferability of knowledge with diverse heterogeneous settings,
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such as image-aided text classification tasks, etc., given suitable source and tar-
get data. In addition, extending the proposed approach for learning selectively
from multiple heterogeneous source datasets also remains as a challenge.
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Abstract. Graph algorithms have become an essential component in
many real-world applications. An essential property of graphs is that
they are often dynamic. Many applications must update the computation
result periodically on the new graph so as to keep it up-to-date. Incre-
mental computation is a promising technique for this purpose. Tradi-
tionally, incremental computation is typically performed synchronously,
since it is easy to implement. In this paper, we illustrate that incremen-
tal computation can be performed asynchronously as well. Asynchro-
nous incremental computation can bypass synchronization barriers and
always utilize the most recent values, and thus it is more efficient than its
synchronous counterpart. Furthermore, we develop a distributed frame-
work, GraphIn, to facilitate implementations of incremental computation
on massive evolving graphs. We evaluate our asynchronous incremental
computation approach via extensive experiments on a local cluster as
well as the Amazon EC2 cloud. The evaluation results show that it can
accelerate the convergence speed by as much as 14x when compared to
recomputation from scratch.

1 Introduction

A large class of data routinely produced and collected by large corporations
can be modeled as graphs, such as web pages crawled by Google (e.g., the web
graph) and tweets collected by Twitter (e.g., the mention graph for users). Since
graphs can capture complex dependencies and interactions, graph algorithms
have become an essential component in many real-world applications [2,8,24],
including business intelligence, social sciences, and data mining.

An essential property of graphs is that they are often dynamic. As new data
and/or updates are being collected (or produced), the graph will evolve. For
example, search engines will periodically crawl the web, and the web graph is
evolving as web pages and hyper-links are created and/or deleted. Many appli-
cations must utilize the up-to-date graph in order to produce results that can
reflect the current state. However, rerunning the computation over the entire
graph is not efficient (considering the huge size of the graph), since it discards
the work done in earlier runs no matter how little changes have been made.

The dynamic nature of graphs implies that performing incremental computa-
tion can improve efficiency dramatically. Incremental computation exploits the
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 722–738, 2016.
DOI: 10.1007/978-3-319-46227-1 45
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fact that only a small portion of the graph has changed. It reuses the result of
the prior computation and performs computation only on the part of the graph
that is affected by the change. Although a number of distributed frameworks
have been proposed to support incremental computation on massive graphs
[3,6,15–17,23], most of them apply synchronous updates, which require expen-
sive synchronization barriers. In order to avoid the high synchronization cost,
asynchronous updates have been proposed. In the asynchronous update model,
a vertex performs the update using the most recent values instead of the values
from the previous iteration (and there is no waiting time). Intuitively, we can
expect asynchronous updates outperform synchronous updates since more up-
to-date values are used and the synchronization barriers are bypassed. However,
asynchronous updates might require more communications and perform useless
computations (e.g., when no new value available to a vertex), and thus result in
limited performance gain over synchronous updates.

In this paper, we provide an approach to efficiently apply asynchronous
updates to incremental computation. We first describe a broad class of graph
algorithms targeted by this paper. We then present our incremental computation
approach through illustrating how to apply asynchronous updates to incremen-
tal computation. In order to address the challenge that asynchronous updates
might require more communication and computation, we present a scheduling
scheme to coordinate updates. Furthermore, we develop a distributed system
to support our proposed asynchronous incremental computation approach. We
evaluate our approach on a local cluster of machines as well as the Amazon EC2
cloud. More specifically, our main contributions are as follows:

– We propose an approach to efficiently apply asynchronous updates to incre-
mental computation on evolving graphs for a broad class of graph algorithms.
In order to improve efficiency, a scheduling scheme is presented to coordi-
nate asynchronous updates. The convergence of our proposed asynchronous
incremental computation approach is proved.

– We develop an asynchronous distributed framework, GraphIn, to support
incremental computation. GraphIn eases the process of implementing graph
algorithms with incremental computation in a distributed environment and
does not require users to have the distributed programming experience.

– We extensively evaluate our asynchronous incremental computation approach
with several real-world graphs. The evaluation results show that our app-
roach can accelerate the convergence speed by as much as 14x when compared
to recomputation from scratch. Moreover, a scalability test on a 50-machine
cluster demonstrates our approach works with massive graphs having tens of
millions of vertices and a billion of edges.

2 Problem Setting

In this section, we first define the problem of performing algorithms on evolving
graphs. We then describe a broad class of graph algorithms which we target.
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2.1 Problem Formulation

Many graph algorithms leverage iterative updates to compute states (e.g., scores
of importance, closenesses to a specified vertex) of the vertices until convergence
points are reached. For example, PageRank iteratively refines the rank scores of
the vertices (e.g., web pages) of a graph. Such a graph algorithm typically starts
with some initial state and then iteratively refines it until convergence. We refer
to this kind of graph algorithms as iterative graph algorithms.

We are interested in how to efficiently perform iterative graph algorithms on
evolving graphs. More formally, if we use G to denote the original graph and
G′ to represent the new graph, the question we ask is: for an iterative graph
algorithm, given G′ and the convergence point on G, how to efficiently reach the
convergence point on G′.

2.2 Iterative Graph Algorithms

We here describe the iterative graph algorithms targeted by this paper. Typically,
the update function of an iterative graph algorithm has the following form:

x(k) = f(x(k−1)), (1)

where the n-dimensional vector x(k) presents the state of the graph at iteration
k, each of its elements is the state for one vertex (e.g., x(k)[i] for vertex i),
and x(0) is the initial state. A convergence point is a fixed point of the update
function. That is, if x(∗) is a convergence point, we have x(∗) = f(x(∗)).

The update function usually can be decomposed into a series of individual
functions. In other words, we can update a vertex’s state (e.g., xj) as follows:

x
(k)
j = cj �

n∑
i=1

�f{i,j}(x
(k−1)
i ), (2)

where ‘�’ is an abstract operator (
∑n

i=1 � represents an operation sequence of
length n by ‘�’), cj is a constant, and f{i,j}(xk−1

i ) is an individual function
denoting the impact from vertex i to vertex j in the kth iteration. The operator
‘�’ typically has three candidates, ‘+’, ‘min’, and ‘max’. In this paper, we target
the iterative graph algorithm that can compute the state in the form of Eq. (2).

2.3 Example Graph Algorithms

We next illustrate a series of well-known iterative graph algorithms, the update
functions of which can be converted into the form of Eq. (2).

PageRank and Variants: PageRank is a well-known algorithm, which ranks
vertices in a graph based on the stationary distribution of a random walk on the
graph. Each element (e.g., rj) of the score vector r can be computed iteratively

as follows: r
(k)
j =

∑
{i|{i→j}∈E}

dr
(k−1)
i

|N(i)| + (1 − d)ej , where d (0 < d < 1) is the
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damping factor, {i → j} represents the edge from vertex i to vertex j, E is the set
of edges, |N(i)| is the number of outgoing edges of vertex i, and e is a size-n vector
with each entry being 1

n . We can convert the update function of PageRank into
the form of Eq. (2). If {i → j} ∈ E, f{i,j}(x

(k−1)
i ) = dx

(k−1)
i /|N(i)|, otherwise

f{i,j}(x
(k−1)
i ) = 0, cj = (1 − d)ej , and ‘�’ is ‘+’.

The update function of Personalized PageRank [9] differs from that of PageR-
ank only at vector e. Vector e of Personalized PageRank assigns non-zero values
only to the entries indicating the personally preferred pages. Rooted PageRank
[19] is a special case of Personalized PageRank. It captures the probability for
two vertices to run into each other and uses this probability as the similarity
score of those two vertices.

Shortest Paths: The shortest paths algorithm is a simple yet common graph
algorithm which computes the shortest distances from a source vertex to all
other vertices. Given a weighted graph, G = (V,E,W ), where V is the set of
vertices, E is the set of edges, and W is the weight matrix of the graph (if
there is no edge between i and j, W [i, j] = ∞). Then the shortest distance (i.e.,
dj) from the source vertex s to a vertex j can be calculated by performing the
iterative updates: d

(k)
j = min{d

(0)
j ,mini(d

(k−1)
i + W [i, j])}. For the initial state,

we usually set d
(0)
s = 0 and d

(0)
j = ∞ for any vertex j other than s. We can map

the update function of the shortest paths algorithm into the form of Eq. (2).
If there is an edge from vertex i to vertex j, f{i,j}(x

(k−1)
i ) = x

(k−1)
i + W [i, j],

otherwise f{i,j}(x
(k−1)
i ) = ∞, cj = d

(0)
j , and ‘�’ is ‘min’.

Connected Components: The connected components algorithm is an impor-
tant algorithm for understanding graphs. It aims to find the connected compo-
nents in a graph. The main idea of the algorithm is to label each vertex with
the maximum vertex id across all vertices in the component which it belongs
to. Initially, a vertex j sets its component id p

(0)
j as its own vertex id, i.e.,

p
(0)
j = j. Then the component id of vertex j can be iteratively updated by

p
(k)
j = max{p

(0)
j ,maxi∈N(j)(p

(k−1)
i )}, where N(j) denotes vertex j’s neighbors.

When no vertex in the graph changes its component id, the algorithm con-
verges. As a result, the vertices having the same component id belong to the
same component. We can map the update function of the connected compo-
nents algorithm into the form of Eq. (2). If there is an edge from vertex i to
vertex j, f{i,j}(x

(k−1)
i ) = x

(k−1)
i , otherwise f{i,j}(x

(k−1)
i ) = −∞, cj = j, and ‘�’

is ‘max’.

Other Algorithms: There are many more iterative graph algorithms, update
functions of which can be mapped into the form of Eq. (2). We name several
ones here. Hitting time is a measure based on a random walk on the graph.
Penalized hitting probability [8] and discounted hitting time [18] are variants of
hitting time. The adsorption algorithm [2] is a graph-based label propagation
algorithm proposed for personalized recommendation. HITS [10] utilizes a two-
phase iterative update approach to rank web pages of a web graph. SALSA [13]
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is another link-based ranking algorithm for web graphs. Effective Importance [4]
is a proximity measure to capture the local community structure of a vertex.

3 Asynchronous Incremental Computation

As the underlying graph evolves, the states of the vertices also change. Obviously,
rerunning the computation from scratch over the new graph is not efficient, since
it discards the work done in earlier runs. Intuitively, performing computations
incrementally can improve efficiency. In this section, we present our asynchronous
incremental computation approach. The convergence of our approach is proved.

3.1 Asynchronous Updates

In order to describe our asynchronous incremental computation approach, we
define a time sequence {t0, t1, . . . , t∞}. Let x̂(k) denote the state vector at time
tk. Also, we introduce the delta state vector Δx̂(k) to represent the difference
between x̂(k+1) and x̂(k) in the operator ‘�’ manner, i.e., x̂(k+1) = x̂(k) � Δx̂(k).
The goal of introducing Δx̂(k) is to perform accumulative computations. When
the operator ‘�’ has the commutative property and the associative property and
the function f{i,j}(xi) has the distributive property over ‘�’, the computation
can be performed accumulatively. All the graph algorithms discussed in Sect. 2.3
satisfy these properties. It is straightforward to verify that accumulative compu-
tations are equivalent to normal computations. The benefit of performing accu-
mulative computations is that only changes of the states (i.e., delta states) are
used to compute new changes. If there is no change for the state of a vertex, no
communication or computation is necessary. The general idea of separating fixed
parts from changes and leveraging changes to compute new changes also shows
efficiency in many other algorithms, such as Nonnegative Matrix Factorization
[21] and Expectation-Maximization [22].

In our asynchronous incremental computation approach, each vertex i

updates its Δx̂
(k)
i and x̂

(k)
i independently and asynchronously, starting from

Δx̂
(0)
i and x̂

(0)
i (we will illustrate how to construct them soon). In other words,

there are two separate operations for vertex j:

– Accumulate operation: whenever receiving a value (e.g., f{i,j}(Δx̂i)) from a
neighbor (e.g., i), perform Δx̂j = Δx̂j � f{i,j}(Δx̂i);

– Update operation: perform x̂j = x̂j �Δx̂j ; for any neighbor l, if f{j,l}(Δx
(1)
j ) �=

o, send f{j,l}(Δx̂j) to l; and then reset Δx̂j to o;

where o is the identity value of the operator ‘�’. That is, for ∀z ∈ R, z = z � o
(if ‘�’ is ‘+’, o = 0; if ‘�’ is ‘min’, o = ∞; if ‘�’ is ‘max’, o = −∞). Basically,
the accumulate operation accumulates received values between two consecutive
updates on x̂j . The update operation adjusts x̂j by absorbing Δx̂j , sends useful
values to other vertices, and resets Δx̂j .

We now illustrate how to construct x̂
(0)
i and Δx̂

(0)
i by leveraging the computa-

tion result on the previous graph, G. We need to make sure that the constructed



Asynchronous Distributed Incremental Computation on Evolving Graphs 727

x̂
(0)
i and Δx̂

(0)
i can guarantee the correctness of the result on the new graph. Let

x̄(∗) denote the convergence point on G. We next show how to construct x̂
(0)
i

and Δx̂
(0)
i when the operator ‘�’ is ‘+’ (for all the graph algorithms discussed

in Sect. 2.3 except shortest paths and connected components) and when ‘�’ is
‘min/max’ (shortest paths and connected components), respectively.

For an iterative graph algorithm with the operator ‘�’ as ‘+’, we first leverage
x̄(∗) to construct x̂(0) in the following way: for a kept vertex (e.g., i), we set x̂

(0)
i =

x̄
(∗)
i ; for a newly added vertex (e.g., j), we set x̂

(0)
j = 0. In contrast, recomputation

from scratch typically utilizes 0 as x̂(0) (where 0 is a vector with all its elements
being zero). In order to construct Δx̂(0), we compute x̂(1) using x̂(1) = f(x̂(0))
and then construct Δx̂(0) by making sure Δx̂(0) satisfying x̂(1) = x̂(0) � Δx̂(0).
Since ‘�’ is ‘+’, we can calculate Δx̂(0) by Δx̂(0) = x̂(1) − x̂(0). It is important
to note that here the deleted vertices and/or edges do not affect the way we
construct x̂

(0)
i and Δx̂

(0)
i . In other words, no matter whether there are deleted

vertices and/or edges, the way we construct x̂
(0)
i and Δx̂

(0)
i can guarantee the

correctness of the result on the new graph.
For an iterative graph algorithm with the operator ‘�’ as ‘min/max’, we

construct x̂
(0)
i and Δx̂

(0)
i as follows. When the operator ‘�’ is ‘min’ (e.g., shortest

paths), if any vertex’s initial state is not smaller than its final converged state,
the algorithm will converge. This is because of the following reason. When the
algorithm has not converged, in each iteration there must be at least one vertex
whose state is becoming smaller, and thus the overall state vector is becoming
closer to the final converged state vector. When there is no vertex changing its
state, the algorithm converges. Generally, it is hard to know the final converged
state vector. Therefore, for the shortest paths algorithm, recomputation from
scratch usually sets the initial state of a vertex (other than the source vertex) as
∞ to guarantee that it is not smaller than the final converged state. Fortunately,
when the graph grows (vertices and/or edges are added and no vertices or edges
are deleted), the previous converged state of a kept vertex must be not smaller
than its converged state on the new graph. Therefore, for the graph growing
scenario, we construct x̂

(0)
i in the following way: for a kept vertex (e.g., i), we

set x̂
(0)
i = x̄

(∗)
i ; for a newly added vertex (e.g., j), we set x̂

(0)
j = ∞. Similarly,

for the connected component algorithm, whose operator ‘�’ is ‘max’, we can
construct x̂

(0)
i (for the graph growing scenario) as follows: for a kept vertex (e.g.,

i), we set x̂
(0)
i = x̄

(∗)
i ; for a newly added vertex (e.g., j), we set x̂

(0)
j = j. To

construct Δx̂(0), we also compute x̂(1) using x̂(1) = f(x̂(0)) and then simply set
Δx̂

(0)
j = x̂

(1)
j . It can satisfy x̂(1) = x̂(0) � Δx̂(0), no matter ‘�’ is ‘min’ or ‘max’.

3.2 Selective Execution

One potential problem of basic asynchronous updates is that they might require
more computation and communication when compared to their synchronous
counterparts. This is because vertices are updated in a round-robin manner no
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matter how many new values available to a vertex. To solve this problem, instead
of updating vertices in a round-robin manner, we update vertices selectively by
identifying their importance. The motivation behind it is that not all vertices
contributes the same to the convergence. We refer to this scheduling scheme as
selective execution. The vertices are selected according to their importance (in
terms of contribution to the convergence).

Our selective execution scheduling scheme selects a block of m vertices
(instead of one) to update each round. The reason is that if one vertex is cho-
sen to update at a time, the scheduling overhead (e.g., maintaining a priority
queue to always choose the vertex with the highest importance) is high. Once
the block of the selected vertices are updated, it selects another block to update.
Every time our scheme selects the top-m vertices in terms of the importance
value. The size of the block (i.e., m) balances the tradeoff between the gain from
selective execution and the cost of selecting vertices. Setting m too small may
incur considerable overhead, while setting m too large may degrade the effect of
selective execution, e.g., if setting m as the number of total vertices, it degrades
to the round-robin scheduling. We will discuss how to determine m in Sect. 4.1.

We then illustrate how to quantify a vertex’s importance when ‘�’ is
‘min/max’ and when the operator ‘�’ is ‘+’, respectively. Ideally, the vertex
whose update decreases the distance to the fixed point (i.e., ||x(∗) − x̂(k)||1)
most should have the highest importance. For an iterative graph algorithm
with the operator ‘�’ as ‘min/max’, the iterative updates either monotonically
decrease (e.g., shortest paths) or monotonically increase (e.g., connected com-
ponents) any element of x̂(k). For ease of exposition, we assume the monoton-
ically decreasing case. In this case, x

(∗)
j ≤ x̂

(k)
j for any j, and thus we have

||x(∗) − x̂(k)||1 = ||x̂(k)||1 − ||x(∗)||1. An update on vertex j decrease ||x̂(k)||1
by |x̂(k)

j � Δx̂
(k)
j − x̂

(k)
j |. Therefore, we use |x̂(k)

j � Δx̂
(k)
j − x̂

(k)
j | to represent the

importance of the vertex j (denoted as ηj), i.e. ηj = |x̂(k)
j � Δx̂

(k)
j − x̂

(k)
j |.

For an iterative graph algorithm with the operator ‘�’ as ‘+’, it is difficult to
directly measure how the distance to the fixed point decreases. Update one single
vertex may even increase the distance to the fixed point. Fortunately, for such an
algorithm, its update function (f()) typically can be seen as a || · ||-contraction
mapping. That is, there exists an α (0 ≤ α < 1), such that ||f(x) − f(y)|| ≤
α||x−y||,∀x, y ∈ Rn. Therefore, we can provide an upper bound on the distance,
as stated in Theorem 1. The proof is omitted due to the space limitation. We
then analyze how the upper bound decreases.

Theorem 1. ||x(∗) − x̂(k+1)||1 ≤ ||Δx̂(k+1)||1
1−α .

Without loss of generality, assume that current time is tk and that during
interval [tk, tk+1] we only update vertex j. When updating vertex j, we accu-
mulate Δx̂

(k)
j to x̂j , send f(j,l)(Δx̂

(k)
j ) to a vertex l (and the total sending out

value is no larger than α|Δx̂
(k)
j |), and reset Δx̂

(k)
j to 0. Therefore, we have the

following theorem.
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Theorem 2. ||Δx̂(k+1)||1 ≤ ||Δx̂(k)||1 − (1 − α)|Δx̂
(k)
j |.

Theorem 2 implies that the upper bound monotonically decreases. When
updating vertex j, we have ||Δx̂(k+1)||1

1−α ≤ ||Δx̂(k)||1
1−α − |Δx̂

(k)
j |. It shows that

the reduction in the upper bound is at least |Δx̂
(k)
j |. Given a graph, α is a

constant. Hence, we define the importance of the vertex j to be |Δx̂
(k)
j |, i.e.,

ηj = arg maxj |Δx̂
(k)
j |.

3.3 Convergence

Our asynchronous incremental computation approach yields the same result as
recomputation from scratch. To prove it, we first show that if synchronous
updates (i.e., x(k) = f(x(k−1))) converge (and synchronous updates converge
for all the graph algorithms discussed in Sect. 2.3), any asynchronous update
scheme that can guarantee every vertex is updated infinitely often (until its
state is fixed) will yield the same result as synchronous updates, as stated in
Lemma 1.

Lemma 1. If updates x(k) = f(x(k−1)) converge to x(∗), any asynchronous
update scheme that guarantees every vertex is updated infinitely often will con-
verge to x(∗) as well, i.e., x̂(∞) = x(∗).

We then show that our asynchronous incremental computation approach ful-
fills this requirement, as stated in Lemma 2. The proofs of both Lemmas 1 and 2
are omitted.

Lemma 2. Our asynchronous incremental computation approach can guarantee
that every vertex is updated infinitely often (until its state is fixed).

We can also prove that recomputation from scratch converges to x(∗) (no
matter what type of updates it uses). As a result, we have the following theorem.

Theorem 3. Our asynchronous incremental computation approach converges
and yields the same result as recomputation from scratch.

4 Distributed Framework

Oftentimes, iterative graph algorithms in real-world applications need to process
massive graphs. Hence, it is desirable to leverage the parallelism of a cluster of
machines to run these algorithms. Furthermore, it is troublesome to implement
asynchronous incremental computation for each individual algorithm. Therefore,
we propose GraphIn, an in-memory asynchronous distributed framework, for
supporting iterative graph algorithms with incremental computation. GraphIn
provides several high-level APIs to users for implementing asynchronous incre-
mental computation and meanwhile hides the complexity of distributed compu-
tation. It leverages the proposed selective execution to accelerate convergence.
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GraphIn consists of a number of workers and one master. Workers perform
vertex updates, and the master controls the flow of computation. The new graph
and the previous computed result are taken as the input of GraphIn. The input
graph is split into partitions and each worker is responsible for one partition.
Each worker leverages an in-memory table to store the vertices assigned to it. A
worker has two main operations for its stored vertices: the accumulate operation
and the update operation, as illustrated in Sect. 3.1. The accumulate operation
utilizes a user-defined function to aggregate incoming messages for a vertex and
also triggers another user-defined function to calculate the vertex’s importance.
The update operation uses a user-defined function to update the states of sched-
uled vertices and compute outgoing messages.

The prototype of GraphIn is built upon Maiter [26]. Maiter is designed for
processing static graphs, and thus has inherent impediments to the execution of
graph algorithms with incremental computation. First, it relies on the specific
initial state to guarantee the convergence of a graph algorithm. However, incre-
mental computation leverages the previous result as the initial state, which can
be arbitrary. Second, although Maiter supports prioritized updates, its schedul-
ing scheme assumes that Δxi is always positive for any vertex i, which can be
not true under incremental computation. Last, the termination check mecha-
nism of Maiter assumes that ||x||1 varies monotonically, which can be not true
as well under incremental computation. GraphIn removes all these impediments
to efficiently support incremental computation.

4.1 Distributed Selective Execution

GraphIn leverages the proposed selective execution scheduling as its default
scheduling scheme. Since a centralized approach of finding the top-m elements
is inefficient in a distributed environment, GraphIn allows each worker to build
its own selective execution scheduling. Round by round (except the first round
in which all vertices are selected to derive x̂(0) and Δx̂(0)), each worker selects
its local top-m vertices in terms of the importance. The number m is crucial to
the effect of selective execution.

For the iterative graph algorithm with the operator ‘�’ as ‘+’, GraphIn learns
m online. We use μ·n to quantify the overhead of selecting such m vertices (where
μ represents the amortized overhead), which is proportional to the total number
(n) of vertices with an efficient selection algorithm (e.g., quick-select). Also, we
assume that the average cost of updating one vertex is ν, and then the cost of
updating those m vertices is ν · m. Let c(m) be the total cost of updating those
m vertices (including both selection and update), then c(m) = μ · n + ν · m. Let
g(m) =

∑
j∈S |Δx̂j | (recall that |Δx̂j | represents the importance of vertex i),

where S denotes the set of the m selected vertices. For each round, we aim to
find the m that can achieve the largest efficiency, i.e., m = arg maxm

g(m)
c(m) . It

is computationally impossible to try every value (from 1 to n) to figure out the
best m. Therefore, our practical approach chooses several values (0.05n, 0.1n,
0.25n, 0.5n, n), which cover the entire range of possible m, as the candidates.
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For each candidate m, we leverage quick-select to find the m-th |Δx̂j |, which is
used as a threshold, and all |Δx̂i| no less than the threshold are counted into
g(m). By testing each candidate (we set ν/μ as 4 by default), we can figure out
the best m and the set S. The practical approach leverages quick-select to avoid
the time-consuming sorting, and thus takes O(n) time on extracting the top-m
vertices instead of O(n log n) time. For the iterative graph algorithm with the
operator ‘�’ as ‘min/max’, the importance of a vertex might be close to ∞. If we
still use the above idea, g(m) might easily be overflown. Therefore, in this case,
we simply set m as 0.1n, which shows good performance in experiments. Note
that if there are only m′ (m′ < m) vertices with the importance being larger
than 0, we only select these m′ vertices to update.

4.2 Distributed Termination Check

We design termination check mechanisms for the iterative graph algorithm
with the operator ‘�’ as ‘min/max’ and for that with the operator ‘�’ as
‘+’, respectively. When ‘�’ is ‘min/max’, ||x̂(k)||1 monotonically decreases or
increases. Therefore, we can utilize ||x̂(k)||1 to perform the termination check. If
||x̂(k)||1−||x̂(k−1)||1 = 0, the algorithm has converged, and thus the computation
can be terminated. When ‘�’ is ‘+’, ||x(∗) − x̂(k)||1 is the choice for measuring
convergence. However, it is difficult to directly quantify ||x(∗) − x̂(k)||1, since
the fixed point x(∗) is always unknown during the computation. Fortunately,
we know ||x(∗) − x̂(k)||1 ≤ ||Δx̂(k)||1/(1 − α) from Theorem 1, and thus can
leverage ||Δx̂(k)||1 to measure convergence. We use the convergence criterion,
||Δx̂(k)||1 ≤ ε, where the convergence tolerance ε is a pre-defined constant.

GraphIn adopts a passively monitoring model to perform the termination
check, which works by periodically (and the period is configurable) measuring
||x̂(k)||1 if the operator ‘�’ is ‘min/max’ (or ||Δx̂(k)||1 if ‘�’ is ‘+’). To complete the
measure, each worker computes the sum of |x̂(k)

j | (or |Δx̂
(k)
j |) of its local vertices

and sends the local sum to the master. The master aggregates the local sums
into a global sum. The challenge of performing such a distributed termination is
to make sure that the local sum at each worker are calculated from the snapshot
of the values at the same time (especially for |Δx̂

(k)
j |). To address the challenge,

GraphIn asks all the workers to pause vertex updates before starting to calculate
the local sums. The procedure of the distributed termination check is as follows.

1. When it is the time to perform the termination check, the master broadcasts
a chkpre message to all the workers.

2. Upon receiving the chkpre message, every worker pauses vertex updates and
then replies a chkready message to the master.

3. The master gathers those chkready messages from all the workers, and then
broadcasts a chkbegin message to them.

4. Upon receiving the chkbegin message, every worker calculates the local sum,∑
j |x̂(k)

j | (or
∑

j |Δx̂
(k)
j |), and reports it to the master.
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5. The master aggregates the local sums to the global sum ||x̂(k)||1 (or
||Δx̂(k)||1). If ||x̂(k)||1 − ||x̂(k−1)||1 �= 0 (or ||Δx̂(k)||1 > ε), the master broad-
casts a chkfin message to all the workers. Otherwise, it broadcasts a term
message.

6. When a worker receives the chkfin message, it resumes vertex updates. When
a worker receives the term message, it dumps the result to a local disk and
then terminates the computation.

It is important to note that since calculating the local sums is inexpensive
and it is done periodically, the overhead of the termination check is ignorable.

5 Evaluation

In this section, we evaluate the performance of our asynchronous incremental
computation approach. We compare it with re-computation from scratch. Both
approaches are supported by GraphIn. To show the performance of the selective
execution scheduling, we compare it with the round-robin scheduling. The per-
formance of other distributed frameworks that can support synchronous incre-
mental computation are also evaluated.

5.1 Experiment Setup

The experiments are performed on both a local cluster and a large-scale cluster
on Amazon EC2. The local cluster consists of 4 machines. The large-scale cluster
consists of 50 EC2 medium instances.

Two graph algorithms are implemented on GraphIn, PageRank and the short-
est paths algorithm. For PageRank, the damping factor is set to 0.8, and if not
stated otherwise, the convergence tolerance ε (which is discussed in Sect. 4.2) is
set to 10−2/n (n is the number of vertices of the corresponding graph). The short-
est paths algorithm stops running only when the convergence point is reached
(i.e., all the vertices reach their shortest paths to the source vertex). The mea-
surement of each experiment is averaged over 10 runs. Real-world graphs of
various sizes are used in the experiments and are summarized in Table 1.

Table 1. Graph Dataset Summary

Dataset Vertices Edges

Amazon co-purchasing graph (Amz) [14] 403K 3.4M

Web graph from Google (Gog) [14] 876K 5.1M

LiveJournal social network (LJ) [14] 4.8M 69M

Web graph from UK (UK) [5] 39M 936M

Web graph from IT (IT) [5] 41M 1.2B
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5.2 Overall Performance

We first show the convergence time of PageRank on the local cluster. The con-
vergence time is measured as the wall-clock time that PageRank uses to reach
the convergence criterion (i.e., ||Δx̂(k)||1 ≤ ε). We consider both the edge change
case and the vertex change case. Under the edge change case, we randomly pick
a number of vertices to change their edges. In the graph evolving process, there
are usually more added edges than deleted edges. Therefore, for 80% of the
picked vertices, we add one outgoing edge to it with a randomly picked neigh-
bor. For the rest 20% vertices, we remove one randomly picked edge from it.
Under the vertex change case, we pick a number (e.g., p, some percentage of the
total number of vertices) for each experiment. We add 0.8p new vertices to the
graph and delete 0.2p vertices. For each added vertex, we put two edges (one
incoming edge and one outgoing edge) with randomly picked neighbors. For each
deleted vertex, we also delete all its edges.

Figure 1 shows the performance on the Amz graph under the edge change
case. We can see that incremental computation (denoted as “Incr”) is much
faster than re-computation from scratch (denoted as “Re”) for different percent-
ages of vertices with edge change. The selective execution scheduling (denoted as
“Sel”) is faster than the round-robin scheduling (denoted as “R-R”) with either
approach. The efficiency of incremental computation is more prominent when
the change is smaller. For example, when the percentage of vertices with edge
change is 0.01%, incremental computation with the selective execution schedul-
ing is about 10x faster than recomputation from scratch with the round-robin
scheduling and 7x faster than recomputation from scratch with the selective exe-
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cution scheduling. Not surprisingly, incremental computation takes longer time
as the percentage of vertices with edge change becomes larger, and the conver-
gence time of the re-computation is almost the same since the change to the
graph is relatively small. Similar trends are observed for the vertex change case.

We then present the result of the shortest paths algorithm, which runs on
weighted graphs. Here the convergence time is measured as the wall-clock time
that the shortest paths algorithm uses to reach the convergence point. All the
graphs summarized in Table 1 are unweighed. We generate a weighted graph by
assigning weights to the Amz graph. The weight of each edge is an integer, which
is randomly drawn from the rang [1, 100]. Figure 2 plots the performance com-
parison under the vertex adding case. The percentage means the ratio between
the number of added vertices to the number of original vertices. For each added
vertex, we put two weighted edges (one incoming edge and one outgoing edge)
with randomly picked neighbors. From the figure, we can see that incremental
computation with the selective execution scheduling is about 14x faster than
recomputation from scratch with the round-robin scheduling when the percent-
age of added vertices is 0.01% and still 9x faster even when the percentage is
10%. Similar results are observed for the edge adding case as well.

5.3 Comparison with Synchronous Incremental Computation

It is also possible to build a framework to support incremental computation
upon other systems, such as Hadoop and Spark. To demonstrate the efficiency of
GraphIn, we compare it with both Hadoop and Spark for the 1% of vertices with
edge change scenario. We restrict our performance comparison to PageRank,
since it is a representative graph algorithm. For fair comparison, we instruct
both systems to use the prior result as the starting point. For Hadoop, if there is
no change in the input of some Map/Reduce tasks, we proportionally discount
the running time. In this way, we can simulate task-level reusing, which is the key
of MapReduce-based incremental processing frameworks. For Spark, we choose
its Graphx [7] component to implement PageRank.

Figure 3 shows that GraphIn (especially with selective execution) is much
faster than Hadoop and Spark. Hadoop is a disk-based system and uses
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synchronous updates. Even though Spark is a memory-based system, it also
utilizes synchronous updates. Therefore, it is still slower than GraphIn.

5.4 Scaling Performance

We further evaluate incremental computation on the large-scale Amazon cluster
to test its scalability. We consider the 1% of vertices with edge change scenario,
and concentrate on PageRank (and set the convergence tolerance ε to 10−4). We
first use the three large real-world graphs, LJ, UK, and IT (both UK and IT
have tens of millions of vertices and a billion of edges), as input graphs when
all the 50 instances are used. As shown in Fig. 4a (note that the y-axis is in
log scale), on the large-scale cluster incremental computation is still much faster
than re-computation from scratch, and both approaches can benefit from the
selective execution scheduling.
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Fig. 4. Performance on Amazon cluster.

We then show the performance of incremental computation when different
numbers of instances are used. Figure 4b shows the convergence time on LJ as we
increase the number of instances from 10 to 50. It can be seen that by increasing
the number of instances, the convergence time is reduced, and that the selective
execution scheduling is always faster than the round-robin scheduling.

6 Related Work

Due to the dynamic nature of graphs in real-world applications, incremental
computation has been studied extensively. In terms of iterative graph algo-
rithms, most of the studies [1,11,12] focus on PageRank. The basic idea behind
approaches in [11,12] is that when a change happens in the graph, the effect of
the change on the PageRank scores is mostly local. These approaches start with
the exact PageRank scores of the original graph but provide approximate scores
for the graph after the change, and the estimations may drift away from the exact
scores. On the contrary, our approach can provide exact scores. The work in [1]
utilizes the Monte Carlo method to approximate PageRank scores on evolving
graphs. It precomputes a number of random walk segments for each vertex and
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stores them in distributed shared memory. Besides of the approximate result, it
also incurs high memory overhead.

In recent years, the growing scale and importance of graph data have driven
the development of a number of distributed graph systems. Graphx [7] is a graph
system built on top of Spark. It stores graphs as tabular data and implements
graph operations using distributed joins. PrIter [25], Maiter [26], and Prom [20],
introduce prioritized updates to accelerate convergence. PrIter is a MapReduce-
based framework, which requires synchronous iterations. Maiter and Prom utilize
asynchronous iterative computation. All these graph systems aim at supporting
graph computation on static graph structures.

There are several systems for supporting incremental parallel processing on
massive datasets. Incoop [3] extends the MapReduce programming model to sup-
port incremental processing. It saves and reuses states at the granularity of indi-
vidual Map or Reduce tasks. Continuous bulk processing (CBP) [15] provides
a groupwise processing operator to reuse prior state for incremental analysis.
Similarly, other systems like DryadInc [17] support incremental processing by
allowing their applications to reuse prior computation results. However, most
of the studies focus on one-pass applications rather than iterative applications.
Several recent studies address the need of incremental processing for iterative
applications. Kineograph [6] constructs incremental snapshots of the evolving
graph and supports reusing prior states in processing later snapshots. Naiad
[16] presents a timely dataflow computational mode, which allows stateful com-
putation and nested iterations. Spark Streaming [23] extends the cyclic batch
dataflow of original Spark to allow dynamic modification of the dataflow and thus
supports iteration and incremental processing. However, most of these systems
apply synchronous updates to incremental computation. Our work illustrates
how to efficiently apply asynchronous updates to incremental computation.

7 Conclusion

In this paper, we propose an approach to efficiently apply asynchronous updates
to incremental computation on evolving graphs. Our approach works for a family
of iterative graph algorithms. We also present a scheduling scheme, selective
execution, to coordinate asynchronous updates so as to accelerate convergence.
Furthermore, to facilitate the implementation of iterative graph algorithms with
incremental computation in a distributed environment, we design and implement
an asynchronous distributed framework, GraphIn. Our evaluation results show
that our asynchronous incremental computation approach can significantly boost
the performance.

Acknowledgments. We would like to thank anonymous reviewers for their insightful
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1018114.



Asynchronous Distributed Incremental Computation on Evolving Graphs 737

References

1. Bahmani, B., Chowdhury, A., Goel, A.: Fast incremental and personalized pager-
ank. Proc. VLDB Endow. 4(3), 173–184 (2010)

2. Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar, S., Ravichandran,
D., Aly, M.: Video suggestion and discovery for youtube: taking random walks
through the view graph. In: WWW 2008, pp. 895–904 (2008)

3. Bhatotia, P., Wieder, A., Rodrigues, R., Acar, U.A., Pasquin, R.: Incoop: Mapre-
duce for incremental computations. In: SoCC 2011, pp. 7:1–7:14 (2011)

4. Bogdanov, P., Singh, A.: Accurate and scalable nearest neighbors in large networks
based on effective importance. In: CIKM 2013. pp. 1009–1018 (2013)

5. Boldi, P., Vigna, S.: The WebGraph framework I: compression techniques. In:
WWW 2004, pp. 595–601 (2004)

6. Cheng, R., Hong, J., Kyrola, A., Miao, Y., Weng, X., Wu, M., Yang, F., Zhou, L.,
Zhao, F., Chen, E.: Kineograph: taking the pulse of a fast-changing and connected
world. In: EuroSys 2012, pp. 85–98 (2012)

7. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.:
Graphx: graph processing in a distributed dataflow framework. In: OSDI 2014, pp.
599–613 (2014)

8. Guan, Z., Wu, J., Zhang, Q., Singh, A., Yan, X.: Assessing and ranking structural
correlations in graphs. In: SIGMOD 2011, pp. 937–948 (2011)

9. Jeh, G., Widom, J.: Scaling personalized web search. In: WWW 2003, pp. 271–279
(2003)

10. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46,
604–632 (1999)

11. Langville, A.N., Meyer, C.D.: Updating PageRank with iterative aggregation. In:
WWW 2004, pp. 392–393 (2004)

12. Langville, A.N., Meyer, C.D.: Updating markov chains with an eye on Google’s
PageRank. SIAM J. Matrix Anal. Appl. 27(4), 968–987 (2006)

13. Lempel, R., Moran, S.: Salsa: the stochastic approach for link-structure analysis.
ACM Trans. Inf. Syst. 19(2), 131–160 (2001)

14. Leskovec, J., Krevl, A.: SNAP datasets: stanford large network dataset collection,
Jun 2014. http://snap.stanford.edu/data

15. Logothetis, D., Olston, C., Reed, B., Webb, K.C., Yocum, K.: Stateful bulk process-
ing for incremental analytics. In: SoCC 2010, pp. 51–62 (2010)

16. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad:
a timely dataflow system. In: SOSP 2013, pp. 439–455 (2013)

17. Popa, L., Budiu, M., Yu, Y., Isard, M.: Dryadinc: reusing work in large-scale com-
putations. In: HotCloud 2009 (2009)

18. Sarkar, P., Moore, A.W.: Fast nearest-neighbor search in disk-resident graphs. In:
KDD 2010, pp. 513–522 (2010)

19. Song, H.H., Cho, T.W., Dave, V., Zhang, Y., Qiu, L.: Scalable proximity estimation
and link prediction in online social networks. In: IMC 2009, pp. 322–335 (2009)

20. Yin, J., Gao, L.: Scalable distributed belief propagation with prioritized block
updates. In: CIKM 2014, pp. 1209–1218 (2014)

21. Yin, J., Gao, L., Zhang, Z.M.: Scalable nonnegative matrix factorization with
block-wise updates. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.)
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Abstract. Traditionally, in health surveillance, high risk zones are iden-
tified based only on the residence address or the working place of diseased
individuals. This provides little information about the places where peo-
ple are infected, the truly important information for disease control. The
recent availability of spatial data generated by geotagged social media
posts offers a unique opportunity: by identifying and following diseased
individuals, we obtain a collection of sequential geo-located events, each
sequence being issued by a social media user. The sequence of map posi-
tions implicitly provides an estimation of the users’ social trajectories as
they drift on the map. The existing data mining techniques for spatial
cluster detection fail to address this new setting as they require a single
location to each individual under analysis. In this paper we present two
stochastic models with their associated algorithms to mine this new type
of data. The Visit Model finds the most likely zones that a diseased per-
son visits, while the Infection Model finds the most likely zones where a
person gets infected while visiting. We demonstrate the applicability and
effectiveness of our proposed models by applying them to more than 100
million geotagged tweets from Brazil in 2015. In particular, we target the
identification of infection hot spots associated with dengue, a mosquito-
transmitted disease that affects millions of people in Brazil annually,
and billions worldwide. We applied our algorithms to data from 11 large
cities in Brazil and found infection hot spots, showing the usefulness of
our methods for disease surveillance.

Keywords: Hot spots · Spatial cluster detection · Trajectories · Disease
surveillance · Social media

1 Introduction

There is an increasing availability of geolocated data generated by mobile phones,
connected vehicles and geotagged social media, among other sources. This is
enabling a broad spectrum of applications and services that exploit such data
and demand the development of novel data mining models and algorithms that
support those tasks. Building such models and algorithms require that we are
c© Springer International Publishing AG 2016
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able to handle novel types of data, such as user’s movement record as well as
the noisy and the incomplete nature of the data. We may glance the problem
complexity by checking the right plot of Fig. 1, which depicts the movement of
Twitter users in 2015 in a Brazilian city, Rio de Janeiro (each line segment shows
a user’s movement – location change – between two consecutive messages).

Fig. 1. Left: Schematic drawing of a potential infection hot spot (shaded area) and the
individuals trajectories of cases (red) and controls (blue). Right: Individuals trajectories
of cases (red) and controls (blue) in the city of Rio de Janeiro during the year of 2015.
(Color figure online)

In this paper we tackle one of these disruptive application scenarios: deter-
mining infection hot spots, that is, the high risk zones where people got infected
by a disease. Our proposal adopts the case-control framework, where, by con-
trasting the case and control individuals’ characteristics, we learn about the
disease dissemination process. The input is composed of trajectories, which are
sequences of user locations that provide an estimate of the users’ movements
as they drift on the map. We depict this application scenario in the left plot
of Fig. 1, where each polygonal line is a trajectory that represents either a case
(red) or a control (blue) individual, and we want to determine whether there are
regions (represented by the shaded area in the left plot of Fig. 1) where infection
is more likely, manifested by a larger number of case trajectories than control
trajectories, among other evidences. Such information may be key to surveillance
and disease mitigation actions.

Although the main idea seems simple, there are a large number of challenging
data mining issues that require the development of novel models and algorithms
to the problem. At first, this task resembles spatial cluster detection, which aims
at detecting localized spatial regions or zones, called spatial clusters, where the
likelihood of some event occurrence is higher than in the rest of the map [8,11,17].
There have been several different proposals for detecting spatial clusters, but all
of them are based on the same premise: each entity is associated with one or at
most two locations. Thus, our proposal differs significantly from current spatial
cluster detection strategies in the sense that there is no limit on the number
of events, and then locations, associated with a person. Further, there are two
other characteristics that make our problem more challenging: (i) the number of
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events per trajectory may vary significantly, and (ii) we do not know in advance
which events represent the actual infection.

In this paper we propose two stochastic models with their associated algo-
rithms to mine this new type of data. The Visit Model finds the most likely zones
that a diseased person visits, while the Infection Model finds the most likely zones
where a person gets infected while visiting. To the best of our knowledge this
is the first work that goes beyond predicting disease incidence rate from social
media data. Our approach leverages the geo-tagged social media messages in
order to discover potentially high infection risk zones. Specifically our contribu-
tions are as follows:

– We describe the problem of detecting infection hot spots from trajectory data
in a case-control framework (Sect. 2).

– We propose two novel models, and the respective algorithms, the Visit Model
and the Infection Model, for the discovery of significant infection hot spots.
Our algorithms address all three aforementioned issues (Sect. 3).

– We propose an extraction and modeling strategy of Twitter data to the hot
spot detection problem in the context of dengue (Sect. 4).

– We present detailed experimental results to illustrate our approach in action
by applying our algorithms to a set of 11 Brazilian municipalities analyzing
more than 100 million tweets issued in 2015 (Sect. 5).

2 Problem Description

Social media data represent a rich and promising source of plenty, cheap, and
timely data that has been only tapped in its usefulness. The excitement involving
the use of social media as a social sensor could be felt by the countless number of
research works using this kind of data [6,16,18]. In our case, we are interested in
probing the usefulness of social data spontaneously generated by users as a way
to identify the location, shape, and size of high risk zones and to determine its
statistical significance. Depending on the application, we believe that these data
may be more precise in the detection of such hot spots than other more standard
data and, in many cases, they may be the only data available. Indeed, this latter
observation is exactly the case of dengue surveillance (see Sect. 4.1), since there
is scarce, if any, information about the place where people are being infected
with dengue by the transmitter mosquito. As dengue usually is a debilitating
disease that causes much pain, our assumption is that infected individuals will
report what they are experiencing in social media [6,19].

In this work we use dengue and Twitter to instantiate our proposal, but
it is obviously general and can be applied to a large range of other situations
(see Sect. 7). Each user in the database is classified either as a case or a con-
trol individual. The separation of cases and controls is based on the content of
tweets text: users mentioning personal experience with dengue are labelled as
cases, otherwise, they are labelled as controls. In the left plot of Fig. 1, we have
N = 6 cases and M = 4 controls identified by the red and blue polygonal lines,
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respectively. The vertices of the polygonal lines correspond to the locations of
tweets issued by each individual. The tweets of a single individual are connected
in chronological order and hence we refer to the polygonal lines as trajectories.
For the cases, the specific dengue-labelled messages are marked by a hatched
ground area. We also show in the same figure a candidate hot spot Z (shaded
area), a spatial zone potentially riskier than other regions in the map.

The mining task is to scan the map varying the position, shape, and size
of the candidate zones, looking for the zone Ẑ that most likely is a higher risk
area. After finding this most likely hot spot Ẑ, we calculate its probability of
occurrence to evaluate whether there is enough evidence to call it a real cluster.
The simple schematic illustration is put in due perspective when we look at
the right-hand map in Fig. 1. The large amount of data and the impossibility
to visually identify any meaningful pattern supports the demand for new data
mining models and algorithms.

Usual approaches [8,11,17] for spatial cluster detection can not be used here.
All spatial detection methods have a single location associated with each case or
control individual, usually their residential addresses or working places. In our
case, we have a completely different spatial data structure. First, each i-th indi-
vidual is not associated with a single location, but with a series of ni successive
positions xi in the map. There is no single unambiguous position to assign each
case or control but rather a sequence of positions. Usual methods are not able
to handle this scenario.

Second, the number ni of positions of each individual is quite variable. For
some individuals, ni is small, with less than 10 positions. Others may contribute
a large number of positions, reaching more than 100 tweets. Clearly, the locations
can not be put on the map ignoring the variable contribution of each individual.
To make this point clearer, imagine an extreme situation where 3 case individuals
contribute each one with two positions, one in a risky zone, and another one
outside. At the same time, an additional case individual has 200 tweets spread
all over the map. This extreme individual would dominate the analysis if we do
not take the sample size ni into account. Again, this is not considered in the
usual techniques, where each individual contributes with a single point.

Third, and more challenging, the positions of the dengue-labelled tweets are
not necessarily those where the infection risk is higher. Indeed, our assump-
tion is that the individual entire trajectory (and not a single position) will be
informative of the risk areas. Someone affected by dengue could tweet about his
condition days after recovery and at a location not associated with its infection
place. This challenge is addressed through sampling the controls. We expect that
contrasting between the spatial pattern of trajectories of the case and the control
individuals, riskier zones should be pinpointed by our algorithms.

3 Mining for Hot Spots from Trajectories

As mentioned, we adopted a case-control framework, where the data consist of
locations, within a specified geographical region, of all known cases of a particular
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disease, and of a random sample of controls drawn from the population at risk.
Each individual carries a set of features corresponding to known or hypothesized
risk-factors for the disease in question.

In our analysis, the key innovation is that the input is a series of locations
rather than a single location for each individual. As in a standard case-control
study, each sampled person is classified either as a dengue case or a non-dengue
(control) individual. We labelled the individuals such that the first N of them
are the cases and the last M are the controls. Let xi = (xi,1, . . . , xi,ni

) be
the point events associated with the ni tweets issued by the i-th individual,
i = 1, . . . , N + M . Each xi,k represents the geographical tweet location such as
a latitude-longitude coordinate pair. For the cases i = 1, . . . , N , at least one
tweet in xi refers to a personal dengue experience and their specific locations
will be denoted dengue-labelled tweets hereafter. Typically, there will be a small
percentage of dengue-labelled tweets for each individual. None of the control
individual tweets are dengue-labelled.

Let Z be a (large) set of geographical zones that are candidates to be infection
hot spots. The left plot of Fig. 1 helps us to describe how our algorithm works.
There are potentially infinite zones in Z and they cover the entire region under
analysis. By varying Z ∈ Z we scan the map looking for the zone Ẑ that most
likely is a higher risk area. After finding this most likely hot spot Ẑ, we calculate
its likelihood to evaluate whether there is enough evidence to identify it as a hot
spot. Secondary clusters are also searched, as we explain later.

Our approach is to contrast the number of cases and controls visiting the
potential zone. With a meaningful contrasting score, we should then scan the
map to find the most likely zone. We considered two different probability scores,
depending on how we calculate conditional probabilities of relevant events. In
the first, we use the probability that someone visits the candidate zone Z given
that she is either a case or a control individual. Intuitively, a risky zone Z should
have this visit probability higher for cases than for controls. This first approach
is called the Visit Model. In the second, we use the probability that someone
gets infected given that it visits the candidate zone Z. Intuitively, we anticipate
that cases visit Z more often than controls. This second approach is called the
Infection Model. We present them formally next.

3.1 Visit Model

Let Vi,z be the random number of tweets in Z among the ni total number of
tweets issued by the i-th individual. Use 1[A] to represent the indicator random
variable that the event A occurs. Hence 1[Vi,z ≥ 1] is the binary random variable
indicating whether the i-th individual ever tweeted inside the candidate zone Z.
These random variables can be assumed independent, but they are not identically
distributed as the success probability depends on the number ni of tweets issued
by each individual. Denote by p = p(Z) the probability that, giving that a
case individual is tweeting, she does it from within Z. Let p̄ = p̄(Z) be the
similar probability for a control individual. We are interested in zones where
p(Z) > p̄(Z).
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For a user who is a case, we have P (Vi,z ≥ 1) equals to 1 − (1 − p)ni and,
for a control user, it is equal to 1 − (1 − p̄)ni . Considering a fixed zone Z, the
visit model likelihood for the observed N + M binary indicators 1[Vi,z ≥ 1] is
given by

L1(Z, p, p̄) =
N∏
i=1

[
(1 − (1 − p)ni)�[Vi,z≥1] ((1 − p)ni)�[Vi,z=0]

]

N+M∏
i=N+1

[
(1 − (1 − p̄)ni)�[Vi,z≥1] ((1 − p̄)ni)�[Vi,z=0]

]

= (1 − p)
∑N

i=1 ni�[Vi,z=0] (1 − p̄)
∑N+M

i=N+1 ni�[Vi,z=0]

N∏
i=1

[
(1 − (1 − p)ni)�[Vi,z≥1]

] N+M∏
i=N+1

[
(1 − (1 − p̄)ni)�[Vi,z≥1]

]

Let N(Z̄) =
∑N

i=1 ni1[Vi,z = 0] and M(Z̄) =
∑N+M

i=N+1 ni1[Vi,z = 0] be the
total number of tweets from users (both cases and controls) who did not visit
zone Z, respectively. Hence, the log-likelihood �1(Z, p, p̄) = log(L1(Z, p, p̄)) for
this first model can be written as

�1(Z, p, p̄) = log(1 − p)N(Z̄) + log(1 − p̄)M(Z̄)

+
N∑
i=1

1[Vi,z ≥ 1] log(1 − (1 − p)ni) +
N+M∑
i=N+1

1[Vi,z ≥ 1] log(1 − (1 − p̄)ni) (1)

3.2 Infection Model

We will estimate the probability that someone issues a dengue-labelled tweet
(and becomes a case) given that she visited k times the region Z. Let r = r(Z)
be the infection risk inside the candidate cluster and r̄ = r(Z̄) the infection risk
in Z̄, the region outside Z. We are interested in zones Z where r(Z) > r(Z̄).

Let Ii be the binary indicator that the individual i is a case. We assume
that these binary random variables are independent. They are not identically
distributed since their probability of Ii = 1 depends on the number of visits Vi,z

by the i-th individual to the zone Z. We have

P(Ii = 1|Vi,z = ki) = 1 − P(Ii = 0|Vi,z = k) = 1 − (1 − r)ki (1 − r̄)ni−ki

= π (ki, r, r̄) (2)

Therefore, the likelihood of the pattern of cases and controls is given by

L2(Z, r, r̄) =
N+M∏
i=1

(π (ki, r, r̄))
Ii (1 − π (ki, r, r̄))

1−Ii



Infection Hot Spot Mining from Social Media Trajectories 745

and therefore the log-likelihood expression is given by

�2(Z, r, r̄) =
N+M∑
i=1

Ii log
(
1 − (1 − r)ki (1 − r̄)ni−ki

)

+ (1 − Ii) (ki log(1 − r) + (ni − ki) log(1 − r̄)) (3)

3.3 Evaluating the Data Evidence

Recall that Z is the set of candidate zones to be scanned. The test statistic we
adopt for the Visit Model is

T1 = �1(Ẑ, p̂, ˆ̄p) = sup
Z∈Z

p̂(Z)> ˆ̄p(Z)

�1(Ẑ, p̂(Z), ˆ̄p(Z)) (4)

and an analogous formula defines T2 for the Infection Model. In order to verify
its statistical significance, we must use Monte Carlo simulation to obtain the
null hypothesis distribution of T1 and T2 as the exact or asymptotic analytic
calculation is not feasible. The null hypothesis is given by either H0 : p = p̄
or H0 : r = r̄ for all Z ∈ Z for the Visit Model and the Infection Model,
respectively.

The Monte Carlo distribution is determined by randomly permuting the
labels of cases and controls among all individuals. Using this pseudo dataset,
we proceed the entire scan over all Z ∈ Z to obtain a pseudo value for T1 and
T2. As this will be replicated several times, we call these values T

(1)
1 and T

(1)
2 . We

then select another random permutation of the labels, scan the zones and find
T

(2)
1 and T

(2)
2 . Independently, we repeat this procedure a large number B − 1 of

times generating a set of pseudo values plus the values calculated with the actu-
ally observed dataset: T1, T

(1)
1 , T

(2)
1 , . . . , T

(B−1)
1 and T2, T

(1)
2 , T

(2)
2 , . . . , T

(B−1)
2 .

Under the null hypothesis, these values are independent and identically distrib-
uted. Therefore, the rank of the real observed statistics T1 and T2 are uniformly
distributed on the integers 1, . . . , B. This implies that an exact p-value for the
null hypothesis of each model is given by

p1 =
1
B

(1 + #{T
(k)
1 ≥ T1, k = 1, . . . , B − 1})

and
p2 =

1
B

(1 + #{T
(k)
2 ≥ T2, k = 1, . . . , B − 1})

The test is significant at the level α ∈ (0, 1) if pm < α. When either test is signif-
icant, the most likely zone is given by the corresponding maximizing argument
Ẑ in (4).

We also identify secondary clusters, zones with highly significant p-values,
which do not intersect with the most likely zone Ẑ. The non-intersecting restric-
tion is necessary because, if one zone Ẑ is the most anomalous in Z, many other
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sets in Z that are only slightly different from Ẑ will produce very similar likeli-
hood numbers. These zones should be ignored since the most anomalous among
them has already been pinpointed. Among the non-intersection zones, we look
for those whose p-value pm is smaller than α where the p-values are calculated
as described above.

3.4 Contrasting the Two Models

In this section, we discuss in more detail the two proposed models aiming at
providing an understanding of the differences between them. In particular, we
want to distinguish between the two approaches in an intuitive way and hence
explain when and how we can have one of the models detecting a certain hot
spot while the other model is insensitive to this same cluster presence.

Avoiding the rigorous mathematical notation, let us define two random
events. The first one is denoted by C and represents the random selection of
an individual from the database that is dengue-affected or simply a case. Its
complementary event is C̄ and represents the selection of a control individual.
Given that a tweet is posted by a user, we denote by WZ the event that it is
issued from Z while WZ̄ means that it is from outside Z.

The visit model considers two conditional probabilities, p = P(WZ |C) and
p̄ = P(WZ |C̄), while the infection model considers the corresponding inverse
conditional probabilities, r = P(C|WZ) and r̄ = P(C|WZ̄). Intuitively, the visit
model scans the map looking for a zone Z where p and p̄ are quite different. The
infection model searches for a zone where the difference between r and r̄ is large.
They can find distinct and separate zones in this process. The main reason is
the usual large difference we find between conditional probabilities P(A|B) and
P(B|A) of events A and B. The connection between the two is given by the
Bayes rule: P(A|B) = P(B|A)P(A)/P(B). Since the factor P(A)/P(B) is the
link between the two, when we have very different values for P(A) and P(B)
we can expect large differences on the two directions for the two conditional
probabilities, P(A|B) and P(B|A).

This is indeed what one can expect in our dengue application. The uncon-
ditional probabilities P(C) and P(WZ) are typically very different. As we take
about 3 times more controls than cases, we anticipate P(C) ≈ 1/4. For a local-
ized zone Z, even if it is highly infectious, we should not expect P(WZ) > 1/20.
Hence, zones detected by one of the models should not be predicted as the likely
output by the other model.

An additional enlightening way to contrast the two models is to consider the
extreme situation in which each user has issued a single tweet (that is, ni = 1).
As a consequence, ki is equal to 0 or 1 and the likelihood for the two models
may be considerably simplified. Remember that N(Z̄) is the number of tweets
from cases posted from outside Z (or Z̄) while M(Z̄) is the analogous count for
the controls. The notation N(Z) and M(Z) has the obvious definition: counts
of tweets from inside Z.
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For the visit and infection models, their respective log-likelihood functions
�

′
1 = �1(Z, p, p̄) and �

′
2 = �2(Z, r, r̄) are reduced to

�
′
1 = N(Z) log(p) + N(Z̄) log(1 − p) + M(Z) log(p̄) + M(Z̄) log(1 − p̄) (5)

�
′
2 = N(Z) log(r) + N(Z̄) log(r̄) + M(Z) log(1 − r) + M(Z̄) log(1 − r̄) (6)

These likelihood functions for this extreme situation show that the two models
use the data differently to search for suspicious zones Z. They both point out to
likely high infection risk areas but they use different approaches in the process
and may spot different potential candidates. The two approaches are logically
consistent and produce meaningful results. They are complementary to each
other and should not be seen as opposites.

3.5 Spatial Scan Statistics as a Particular Case

Expression (6) shows that the usual spatial scan statistic [8,11,17] is a partic-
ular case of our infection model. Assuming that each sampled individual has a
single spatial location (usually her residential address), the notation r represents
now the probability that she is a disease case given that she is within Z. The
probability r̄ is the same probability for someone living outside Z. Then, (6) is
the Bernoulli likelihood used by the original spatial scan statistic. That is, when
there is a single location for each individual, we obtain the classic spatial scan
statistic by applying our infection model.

4 Case Study: Dengue in Brazil

In this section we present the motivation behind our evaluation scenario, dengue
disease surveillance in Brazil. Also, we describe the Twitter data collection
process and how we properly filter the data in order to obtain the case-control
individuals’ trajectories.

4.1 Context

Despite all the progress achieved in the twenty-first century, diseases transmitted
by insects are still challenging our health services and policy makers. The recent
outbreak of Zika virus in Brazil and other Latin American countries, potentially
associated with thousands of microcephalic birth cases, prompted The World
Health Organization (WHO) to declare the Zika Infection a world health threat1.
Other disease that is transmitted by the same mosquito, Aedes aegypti, is dengue.

With an estimated 50–100 million infections globally per year [3], dengue is
currently regarded as the most important mosquito-borne viral disease. Dengue
affects over 100 endemic countries in tropical and sub-tropical regions of the

1 http://www.who.int/mediacentre/news/statements/2016/1st-emergency-committee
-zika/en/.

http://www.who.int/mediacentre/news/statements/2016/1st-emergency-committee-zika/en/
http://www.who.int/mediacentre/news/statements/2016/1st-emergency-committee-zika/en/
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world, mostly in Asia, the Pacific Region and the Americas. Presenting four dis-
tinct viral serotypes, dengue fever may range from severe flu-like illness up to a
potentially lethal complication known as severe (or hemorrhagic) dengue. The
World Health Organization estimates that 3.9 billion people are at risk of infec-
tion with dengue viruses. However, the true impact of the disease is, sometimes,
difficult to assess due to misdiagnosis and underreporting [2]. Global dengue
incidence still grows in number and severity of cases and also in the amount of
new affected areas. This is most due to modern climate changes and to socioe-
conomic, and viral evolution [12]. However, the potential drivers of dengue are
often difficult to detect and factor out. Since there is no current approved vaccine
to protect the population against the virus [12], epidemiological surveillance and
effective vector control are still the mainstay of dengue prevention.

Dengue is a serious concern in Brazil. In 2015, more than US$ 300 million
were spent in surveillance and prevention actions2. This is a significant figure for
Brazilian standards and, despite its magnitude, more than 1.6 million cases were
recorded in 2015. This number represents a rate of 813 cases per 100 thousand
inhabitants, well above the redline indicated by the WHO (300 cases).

Most studies for diseases such as dengue place the cases at individuals’ res-
idential addresses, which may quite often not be the infection location. The
relatively easy to obtain residential address may be a poor indicator of the zones
where humans and infected mosquitoes tend to meet each other. These zones are
hard to determine, since the necessary information about them is scarcely avail-
able. Indeed, such information comprises data on the mosquito prevalence, its
infection rate, and the human movement in each potential zone. Notwithstanding
the task difficulty, identifying the most risky places would be invaluable because
we could focus the expensive and diffuse preventive efforts undertaken until now.

4.2 Data Acquisition and Preprocessing

The data used in our experimental analysis were acquired through the Twitter
streaming application programming interface (API) [1], using a geographic
boundary box that covers the whole Brazilian territory. Consequently, all col-
lected tweets are geo-tagged with lat/long GPS coordinates. The collecting
period comprises from January 1st, 2015 to December 31th, 2015. During this
time we were able to collect 106,784,441 tweets comprising a multitude of sub-
jects. We want to use this data to search for zones that increase the likelihood
that an initially control individual becomes a case.

Since the majority of users usually moves within the same city, we decided to
perform our analysis at the city level. This granularity is also interesting because,
in Brazil, the decision process regarding dengue surveillance actions is under the
responsibility of each city hall. Thus, a fine geographic scale analysis would lead
to focused preventive efforts. Since the messages are geocoded, to obtain the data
from a specific city is straightforward. The Twitter API provides the location

2 http://www.brasil.gov.br/saude/2015/04/orcamento-2015-para-acoes-de-combate-
a-dengue-cresce-37.

http://www.brasil.gov.br/saude/2015/04/orcamento-2015-para-acoes-de-combate-a-dengue-cresce-37
http://www.brasil.gov.br/saude/2015/04/orcamento-2015-para-acoes-de-combate-a-dengue-cresce-37
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Table 1. Data summary: #msg is the total number of tweets from the city; #unq usr
is the number of unique users; #case usr and #ctrl usr are the number of case and
control individuals; #case usr and #ctrl msg are the number of tweets they issued.

City name #msg #unq usr #case msg #case usr #ctrl msg #ctrl usr

Belém 1,049,433 19,611 8,134 23 18,416 65

B. Horizonte 3,134,497 50,360 60,968 104 168,820 302

Curitiba 1,694,301 35,775 3,028 18 9,066 54

Goiânia 566,114 16,849 15,933 54 33,750 147

Natal 522,689 16,689 3,847 15 8,748 42

R. de Janeiro 9,875,435 167,567 71,115 163 213,168 490

São Paulo 6,965,165 174,544 167,772 413 486,264 1229

Campinas 574,226 20,335 37,313 90 64,442 226

Limeira 91,454 2,991 11,614 47 16,830 108

SJ. Campos 407,143 9,697 19,883 58 40,251 148

Sorocaba 230,224 7,471 32,734 91 39,352 206

based on the lat/long coordinates. We use the assigned location by filtering
the corresponding tweet field. We choose 11 municipalities (see Sect. 5 for the
explanation) to analyze. Table 1 summarizes the data for each selected city.

For each city analyzed, we filtered the data indicating whether the user is a
case individual. We defined the keywords dengue and aedes, and started a search
throughout the data. Previous works showed a high correlation between official
dengue reports and Twitter data collected with such keywords [6,19]. We also
check for misspelling and ignore letter case. Since the vocabulary in text-based
social media is very dynamic, the retrieved messages based on keywords may not
be actually associated with people reporting personal experience with the dis-
ease. Hence, we classified the messages according to the sentiment expressed in
the textual content. To classify the messages, we preprocessed texts by filtering
out accents marks and URL’s. Bi-grams were created by joining adjacent words
with a separator, and stop-words were removed as well as bi-grams composed of
two stop-words. The classification was performed in a supervised manner. We
manually labelled a set of tweets from a different Twitter collection specifically
about dengue disease. This collection is performed based on the same keywords.
Similar to [6,19], the tweets were classified into one out of five categories: Per-
sonal Experience, Information, Opinion, Campaign and Irony/Sarcasm, using
the the Lazy Associative Classification algorithm (LAC) [20]. Next, we sepa-
rated the messages assigned to the Personal Experience category, since they may
indicate a closer relationship between the user and the disease. These messages
represent the dengue-labelled tweets for the case individuals.



750 R.C.S.N.P. Souza et al.

4.3 Case-Control Trajectories

Recall that, each user in the database is classified as either a case or a control
individual, and the separation of cases and controls is based on the content of
tweets text, as described above. Then, for each city we build the case-control
trajectories as follows.

Case-trajectories. In order to build the case individuals trajectories we started
by separating all unique users who posted a dengue-labelled message. Then, we
retrieved all other tweets sent by these users. For each case individual, her list
of messages composes the trajectory. Such strategy is interesting because we
are implicitly considering that the users must have been infected at some point
in their daily movements and not exactly where the dengue-labelled messages
were sent. After that, we excluded highly active users to avoid, for instance,
bots. We adopted a 5-message-per-day threshold, which represents a maximum
of 1825 messages per year. The users with total number of messages above this
threshold are excluded from the dataset.

Control-trajectories. The control individuals group comprises all users who never
posted a message containing any of the keywords used to define the case individ-
uals group. Therefore, none of the control individuals tweets are dengue-labelled.
We defined the same threshold to exclude highly active users. The number of
control individuals is much larger than the number of case individuals. Thus, we
sampled the control individuals. We stratified the case individuals according to
the total number of messages in ranges of 10. Then, for each range we sampled
the number of control users as 3 times the number of case users in that same
range. When the number of control users in a given range was not enough to
reach the amount required, we used the total available.

5 Experimental Analysis

After generating the dataset for each selected city as described in the previ-
ous section, we proceeded to the experimental analysis. For each one of the 11
selected cities (see Table 1) we applied the Visit Model and the Infection Model
to search for infection hot spots. Among the selected cities we included 7 state
capitals (Belém, Belo Horizonte, Curitiba, Goiânia, Natal, Rio de Janeiro and
São Paulo) with at least one capital from a major Brazilian region. We also
decided to assess our models using data from municipalities facing high epi-
demics bursts. Therefore, we included 4 other cities: Campinas, Limeira, São
José dos Campos and Sorocaba. For instance, while in 2014 Sorocaba reported
less than 400 dengue cases, in 2015 the same city reported more than 50 thousand
cases.

In order to run the algorithms, the zones Z are defined by overlaying different
grids on the map and each grid cell corresponds to a zone to be scanned. The size
of the grid cells vary in order to accommodate risk zones that present different
characteristics. We set the number of Monte Carlo replicas to B − 1 = 999 and
define the significance level as α = 0.05. Among the 11 selected cities, in 4 of
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Table 2. Results obtained by the Visit and Infection models in the respective cities.
We present the log-likelihood value of the zone (Log-Lik); the respective probabilities
considered by the models (r | p and r̄ | p̄); the obtained p-value based on the Monte
Carlo reference distribution; the number of case and control individuals inside the zone
(#cases and #ctrl); and the amount of messages issued inside the zone by case and
control individuals (#case ki and #ctrl ki).

City Log-Lik r | p r̄ | p̄ p-value #cases #case ki #ctrl #ctrl ki

Visit Model

Goiânia −135.32151 0.04379 0.01 0.01 48 6352 115 14600

Limeira −89.51999 0.04379 0.01 0.019 43 5655 80 7940

Infection Model

Limeira −198.51340 0.48310 0.01 0.014 5 11 1 1

−200.16361 0.07759 0.01 0.02 4 8 3 10

−200.35639 0.07759 0.01 0.02 3 97 7 9

SJ. Campos −427.44342 0.14517 0.01 0.055 5 28 2 4

Sorocaba −446.94606 0.04379 0.01 0.002 3 150 8 16

them at least one of the models was able to find one or more significant hot
spots. Table 2 summarizes the results.

First of all, we point out that our models were able to find infection hot spots
in 3 cities that faced the aforementioned strong surges. Despite the significance
level being α = 0.05, we considered the borderline region found in SJ. Campos as
significant. In the context of disease surveillance, it would be also important to
check such zones. We observe that, in Goiânia and Limeira, the zones pinpointed
by the Visit Model were visited by most of the case individuals, since the Visit
Model searches for the most likely zones where case individuals visit. On the
other hand, the zones identified by the Infection Model comprise a lower number
of case individuals seeking for more restricted areas. In fact, the size of the
zones found by the models differ. The Visit Model usually finds larger regions
whilst the Infection Model finds smaller regions. Figure 2 depicts the zones found
by each model in the corresponding cities. Notice that in Limeira the models
identified different regions within the same city. These results also point out
the complementarity of the models, so that they may be used together towards
establishing two different levels of surveillance.

After we find the significant zones, we may analyze them in detail to observe
their characteristics. We show this more detailed analysis for Goiânia. Figure 3
displays a zoom in the zone identified by the Visit Model and the respective case-
control trajectories. We point out that there are many places, such as, college
campi, hospitals and parks inside the zone. Since those places are non-residential,
current techniques would never consider them as potential infection hotspots, in
the face of a rise in the number of cases. This is another interesting feature of our
algorithms, they can point out places which represent a better approximation of
where people might have been infected, being worthy to investigate those areas.
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Fig. 2. Maps of the cities with the hot spots found by both models. The cities are
Goiânia, Limeira, São José dos Campos and Sorocaba. The green and black squares
depict the zones found by the Visit and Infection models respectively. We also display
the case and control individuals trajectories as red and blue points, respectively. (Color
figure online)

Fig. 3. Zoom in to the zone found by the Visit Model in Goiânia. Red and blue points
represent the case-control trajectories respectively. (Color figure online)

6 Related Work

Spatial cluster detection is a special class of data mining problem within the
more general anomalous pattern detection problem. The assumed structure of
the input data is a spatial point location, such as latitude-longitude pair, besides
the usual features associated with each of them. The seminal paper [7] originated
a flow of work and its large impact may be explained by a breakthrough contri-
bution. They developed a practical way, the spatial scan statistics, to take into
account the multiple testing involved in the search of anomalous regions. They
showed how a simple Monte Carlo reference distribution could be obtained from
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the data and how it controls the false positive level of the potentially infinite
statistical tests involved. This idea opened the door to many additional develop-
ments [4,5,9,13–15,17,21,24]. While the recent availability of spatial data offers
a unique opportunity, the existing data mining techniques for spatial cluster
detection fail to address this new setting as they require a single location to
each individual under analysis.

On the other hand, there has been fruitful research exploiting spatial data for
a variety of purposes, such as, discovering the spatial dependency of objects [22],
understanding mobility patterns [10] and clustering similar trajectories [23], to
name a few. However, none of the strategies proposed so far focused on searching
for hot spots by contrasting trajectory data of targeted populations with those
from control populations as we have done here. In this sense, this paper has a two-
fold contribution. First, it generalizes the spatial cluster detection approaches
by considering the individual trajectory data instead of a single point. Second,
it describes the aforementioned problem in the context of disease surveillance
and proposes two algorithms to mine the data.

7 Concluding Remarks

Exploiting the large amount of available data for addressing relevant social prob-
lems has been one of the key challenges in data mining. In this paper we attempt
to help on this task by proposing two stochastic models to search for infection
hot spots using social media trajectories. Our application scenario is a major
infectious disease in Brazil and other tropical countries, dengue. We applied our
models to data from 11 Brazilian cities and were able to detect infection hot
spots in 4 of them. This result shows the usefulness of our methods to disease
surveillance. To identify the high risk regions would be invaluable to direct pre-
ventive efforts and mitigation actions. Currently, we are carrying out a validation
procedure of our results with local health officials.

We see our proposal as a first step on the direction of a more general and
comprehensive framework. In fact, future research directions abound, both from
theoretical and practical perspectives. One direction is to incorporate a richer
data structure allowing features to be included at the individual level. In this
paper, we only considered a binary indicator (case or control). However, we could
add other features such as age and sex of the individuals. Another possibility is
to associate features to the events that constitute the trajectories. For instance,
distinguishing whether the event occurred in the summer or winter is poten-
tially useful. A third possible direction is to consider the social links between
the individuals as a means to create a social network between the trajectories.
Notwithstanding these further developments, our models are useful for the dif-
ficult task of infection hot spots detection.
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Abstract. In this paper, we propose a framework for a class of learning
problems that we refer to as “learning to aggregate”. Roughly, learning-
to-aggregate problems are supervised machine learning problems, in
which instances are represented in the form of a composition of a (vari-
able) number on constituents; such compositions are associated with an
evaluation, score, or label, which is the target of the prediction task,
and which can presumably be modeled in the form of a suitable aggre-
gation of the properties of its constituents. Our learning-to-aggregate
framework establishes a close connection between machine learning and
a branch of mathematics devoted to the systematic study of aggregation
functions. We specifically focus on a class of functions called uninorms,
which combine conjunctive and disjunctive modes of aggregation. Experi-
mental results for a corresponding model are presented for a review data
set, for which the aggregation problem consists of combining different
reviewer opinions about a paper into an overall decision of acceptance or
rejection.

1 Introduction

In spite of certain generalizations that have been proposed in the recent past,
the bulk of methods for supervised machine learning still proceeds from a formal
setting in which data objects (instances) are represented in the form of feature
vectors. Thus, an instance x is described in terms of a vector (x1, . . . , xd) ∈
X = X1 × · · · × Xd, where Xi is the domain of the ith attribute or feature. The
corresponding view of instances as points in a space of fixed dimension d has
largely influenced the way in which learning problems are studied and methods
developed: Supervised learning is considered as embedding objects as data points
in the space X , and then separating these points (in the case of classification) or
fitting them (in the case of regression) using models that have a natural geometric
interpretation, such as hyperplanes or any other type of decision boundary or
manifold in the space X ; a prediction ŷ of the output y ∈ Y associated with an
instance x is then obtained by means of a corresponding function f : X −→ Y.
Alternatively, instead of modeling dependencies with a deterministic function, a
model may correspond to a probability distribution on X × Y.

While this approach to formalizing and tackling learning problems proved
to be highly successful, there are problems for which the production of predic-
tions ŷ by means of a (single) function f defined on the space X is arguably
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less appropriate. This paper is devoted to one such class of problems that we
refer to as aggregation problems. The view we promote is to consider data objects
as compositions of individual constituents; moreover, we assume that the output
associated with such a composition is obtained as an aggregation of the proper-
ties of the individual constituents, using a suitable type of aggregation function.
Thus, the learning-to-aggregate framework we envision establishes a close con-
nection between machine learning and a branch of mathematics devoted to the
systematic study of aggregation functions [10].

Needless to say, the idea of aggregation is not new to machine learning. On
the contrary, aggregation problems seem to abound in this field and appear in
various guises; for example, combining the information of the neighbors in nearest
neighbor estimation, the predictions of base learners in stacking, etc., can all be
seen as specific types of aggregation problems. Yet, to the best of our knowledge,
a common framework of learning-to-aggregate has not been proposed so far.
We believe that such a framework, and the specific view on learning problems
it comes along with, is useful for different reasons. In particular, it allows for
looking at different learning problems as specific instances of the same problem
class, thereby connecting and cross-fertilizing subfields that would otherwise
remain separated. Moreover, it may of course motivate new learning problems
and trigger the development of novel methods.

The remainder of the paper is organized as follows. In the next section, we
outline our learning-to-aggregate framework. The description of this framework
is completed in Sect. 3, which is devoted to a discussion of aggregation functions.
In Sect. 4, we propose a specific instance of the framework, namely a model
for learning to aggregate based on so-called uninorms. Related work is briefly
reviewed in Sect. 5. Finally, to illustrate our approach, some experiments on a
data set consisting of reviews on papers submitted the the ECML/PKDD 2014
conference are presented in Sect. 6, prior to concluding the paper in Sect. 7.

2 Learning to Aggregate

In this section, we introduce a formal framework of learning-to-aggregate and
elaborate on some of its properties. Prior to doing so, we give a simple example
that already highlights important aspects of aggregation problems as well as
limitations of standard vectorial (feature-based) representations in this context.

2.1 A Simple Example

Suppose compositions c are multisets (bags) of real numbers from the unit inter-
val, such as {0.8, 0.7} or {0.2, 0.6, 0.3}. Moreover, suppose the output y asso-
ciated with a composition c ⊂ [0, 1] is an aggregation of the constituents; to
be concrete, consider the product as an example. The goal of the learner is to
induce the dependency between inputs c and outputs y based on corresponding
training examples, such as (c, y) = ({0.8, 0.7}, 0.56).



758 V. Melnikov and E. Hüllermeier

Although this toy example is actually very simple, tackling it with standard
machine learning methods is non-trivial. As one important reason, note that,
in contrast to a feature vector of fixed dimension, compositions are of variable
length. In fact, the sought dependency is a mapping of the form X −→ Y, with
the instance space

X =
⋃
n∈N

Yn (1)

and Y = [0, 1] in our case. This instance space is a union of spaces of finite
dimension but does not have a finite dimension itself; indeed, in our example,
we allow compositions c of any size. It is thus neither clear how to define a
suitable hypothesis space on X , i.e., a set of functions with domain X , nor how
to learn in this space.

To make the problem amenable to standard methods, it is of course possible
to map compositions c to feature vectors x = (x1, . . . , xd) = (f1(c), . . . , fd(c))
of finite length, on which a model of the form y = f(x) could then be learned; in
fact, this is a common approach to dealing with structured data objects, which
are given as bags in our case but could also be sequences or graphs, for example.
Like in learning on structured objects in general, the success of this approach
strongly hinges on the definition of the right features. In our example, features
would be needed that allow for reconstructing, for any bag of numbers, the
product of these numbers. Making sure that such features are available arguably
presumes that the dependency between c and y is already known.

2.2 Formal Setting and Notation

We proceed from a set of training data

D =
{
(c1, y1), . . . , (cN , yN )

} ⊂ C × Y, (2)

where C is the space of compositions and Y a set of possible (output) values
associated with a composition; since aggregation is often used for the purpose of
evaluating a composition, we also refer to the values yi as scores. A composition
ci ∈ C is a multiset (bag) of constituents

ci = {ci,1, . . . , ci,ni
},

where ni = |ci| is the size of the composition; scores yi are typically scalar values
(real numbers or values from an ordinal scale, such as 1 to 5 star ratings in rec-
ommender systems). Constituents ci,j can be of different type. In particular, the
description of a constituent may or may not contain the following information:

– A label specifying the role of the constituent in the composition. For example,
suppose a composition is a menu consisting of constituents in the form of
dishes; each dish could then be labeled with appetizer, main dish, or dessert,
thereby providing information about the part of the menu it belongs to (and
hence adding additional structure to the composition).
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– A description of properties of the constituent. For example, each dish could
be described in terms of certain nutritional values. Formally, we assume prop-
erties to be given in the form of a feature vector vi,j ∈ V, where V is a cor-
responding feature space. We note, however, that more complex descriptions
are conceivable; for example, the description could itself be a composition.

– A quantity qi,j ∈ R+ representing the amount of the constituent in the com-
position (instead of simply informing about the presence or absence of the
constituent).

– A local evaluation in the form of a score yi,j ∈ R+.

Finally, a composition can also be equipped with an additional structure in the
form of a (binary) relation on its constituents. In this case, a composition is not
simply an unordered set (or bag) of constituents but a more structured object,
such as a sequence or a graph.

Like in standard supervised learning, the goal in learning-to-aggregate is
to induce a model h : C −→ Y that predicts scores for compositions. More
specifically, given a hypothesis space H and a loss function L : Y2 −→ R+, the
goal is to find a risk-minimizing hypothesis

h∗ ∈ argmin
h∈H

∫

C×Y
L

(
y, h(c)

)
dP(c, y)

on the basis of the training data D (but without knowledge of the data-generating
process, i.e., the joint probability distribution P generating composition/score
tuples (c, y)).

2.3 Learning Aggregation Functions

Our simple example in Sect. 2.1 already illustrates one of the key problems in
learning-to-aggregate, namely the combination of a variable number of scores
yi,j , pertaining to evaluations of the constituents ci,j in a composition c, into
a single score yi. In Fig. 1, which provides an overview of our setting, this step
corresponds to the part marked by the dashed rectangle.

Now, suppose that we know, or can at least reasonably assume, that yi is
obtained from yi,1, . . . , yi,ni

through an aggregation process defined by a binary
aggregation function A : Y2 −→ Y:

yi = A
(

. . . A
(
A(yi,1, yi,2), yi,3

)
, . . . , yi,ni

)

In the simplest case, where the constituents do not have labels and hence cannot
be distinguished, the aggregation should be invariant against permutation of the
constituents in the bag. Thus, it is reasonable to assume A to be associative and
symmetric. Besides, one may of course restrict an underlying class of candidate
functions A by additional assumptions. In our example, for instance, we may
know that the aggregation is monotone decreasing.

Starting from a class A of aggregation functions, instead of a hypothesis space
H on the instance space (1) directly, has at least two important advantages.
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Fig. 1. Illustration of a basic version of the learning-to-aggregate model.

First, as just said, it allows for incorporating prior knowledge about the aggre-
gation, which may serve as a suitable inductive bias of the learning process.
Second, it naturally solves the problem that hypotheses h ∈ H must accept
inputs of any size. Indeed, under the assumption of associativity and symme-
try, a binary aggregation function A is naturally extended to any arity, and can
hence be used as a “generator” of a hypothesis h = hA:

h(y1, . . . , yn) = A(n)(y1, . . . , yn) = A
(
A(n−1)(y1, . . . , yn−1), yn

)

for all n ≥ 1, where h(y1) = A(1)(y1) = y1 by definition.
For these reasons, we consider the learning of (binary) aggregation functions,

and related to this the specification of a suitable class A of candidates, as an
integral part of learning-to-aggregate. In Sect. 3, such classes and different types
of aggregation functions will be discussed in more detail. Before doing so, we
elaborate on some extensions of our learning-to-aggregate setting.

2.4 Disaggregation

The aggregation we have been speaking about so far is an aggregation on the level
of scores. Thus, we actually assume that local scores yi,j of the constituents ci,j

are already given, and that we are interested in aggregating them into an overall
score yi of the composition ci. This is indeed the genuine purpose of aggregation
functions, which typically assume that all scores are elements of the same scale
Y. For example, we might be interested in how the scores on a conference paper
(strong reject, reject, ..., strong accept) coming from a (variable) number of
reviewers are aggregated into an overall rating by the program chairs.

Now, suppose that local scores yi,j are not part of the training data. Instead,
the constituents ci,j are only described in terms of properties in the form of
feature vectors vi,j ∈ V (and perhaps quantities qi,j , which we subsequently
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ignore for simplicity). A natural way to tackle the learning problem, then, is to
consider the local scores as latent variables, and to induce them as functions
f : V −→ Y of the properties.

In the following, we assume these functions to be parameterized by a para-
meter vector θ, and the aggregation function A by a parameter λ. The model is
then of the form

yi = Aλ(yi,1, . . . , yi,ni
) = Aλ

(
fθ(vi,1), . . . , fθ(vi,ni

)
)
,

and the problem consists of learning both the aggregation function A, i.e., the
parameter λ, and the mapping from features to local scores, i.e., the parameter
θ, simultaneously. Here, supervision only takes place on the level of the entire
composition, namely in the form of scores yi, whereas the “explanation” of these
scores via induction of local scores is part of the learning problem.

The decomposition of global scores into several local scores is sometimes
referred to as disaggregation (because it inverts the direction of aggregation,
which is from local scores to global ones). For example, suppose we observe a
user’s ratings of different playlists, each one considered as a collections of songs,
but not of the individual songs themselves. In order to predict the user’s rating
of new playlists, we could then try to learn how she rates individual songs and,
simultaneously, how she aggregates several (local) ratings into a global rating.

Obviously, there is a strong interaction between the local ratings and their
aggregation into a global score. For example, if we consistently observe low scores
for different playlists, this could be either because the user dislikes (almost) all
songs, or because she dislikes only a few but aggregates very strictly (i.e., a
playlist gets a low score as soon as is contains a single or a few poor songs). An
important question, therefore, concerns the identifiability of the model, i.e., the
question whether different parameterizations imply different models (or, more
formally, whether (λ, θ) �= (λ′, θ′) implies that the corresponding models assign
different scores yi �= y′

i for at least one composition).

2.5 Further Extensions

Sometimes, not even the (aggregate) scores yi can be observed directly, but only
certain response values ri ∈ R related to these scores, i.e., training data is of the
form

D =
{
(c1, r1), . . . , (cN , rN )

} ⊂ C × R, (3)

For example, in the case of the playlist, direct feedback of the user might not be
available. Instead, it might only be possible to observe a user’s behavior, e.g.,
how long she listens to the playlist, or whether or not she decides to buy it.
The response must then be modeled by another link function g (parameterized
by γ), for example a discrete choice model like logit, which assumes R = {0, 1}
and models the probability of a positive response according to P(ri = 1) =
(1+exp(−γ1(yi−γ2)))−1. The model discussed so far, including indirect feedback
in the form of a response, is summarized and illustrated graphically in Fig. 1.
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Instead of absolute feedback in the form of a (binary) response, one may also
assume relative feedback in the form of pairwise comparisons ci � cj between
compositions, suggesting that ci is preferred to cj (and hence that yi is larger
than yj). This type of feedback and corresponding training data

D =
{
ci(1) � cj(1), . . . , ci(N) � cj(N)

} ⊂ C × C, (4)

is especially interesting from the point of view of preference learning [9]. Model
induction could then be based, for example, on discrete choice models like
Bradley-Terrey [1].

Further extensions of the model are possible thanks to additional information
provided about the constituents or structural information about the composition
(cf. Sect. 2.2). In particular, the aggregation step can be generalized in the case
where a label is assigned to the constituents. For example, we may assume that a
user first rates the appetizer, main dish, and dessert (each of which may consist
of several dishes) separately, and then aggregates the corresponding scores into
an overall rating. Note that, since the intermediate scores are now associated
with roles, the last aggregation step does not necessarily need to be invariant
against permutation (for example, the user may give a higher weight to the
main dish and a lower one to the starter), so that a larger class of aggregation
functions could be used.

2.6 Learning Problems

Even in its basic form shown in Fig. 1, our learning-to-aggregate framework can
be instantiated in various ways and gives rise to a number of different learning
problems, in particular depending on the type of data that is observed and can be
used for training. In the most general case, compositions are of different size, and
training data consists of properties of constituents together with a corresponding
response. Then, the learning problem essentially comes down to estimating the
full set of parameters (γ, λ, θ).

Learning becomes simpler for various special cases. For example, if scores are
observed directly (i.e., ri = yi), the link from scores to responses, specified by gγ ,
does not need to be learned (or, stated differently, g can be taken as the identity).
The case where individual scores yi,j are observed, too, is often considered in
decision analysis and related fields [12,26], typically even with the assumption
that each individual score corresponds to a criterion (which, in our terminology,
means that it has a unique label, and that ni is given by the number of criteria
and hence the same for each composition). The main question, then, is how the
rating of an alternative on different criteria is aggregated into an overall rating.
For example, one might be interested in how reviewers combine their ratings on
criteria such as readability, novelty, etc. into an overall rating of a paper.

3 Aggregation Functions

Aggregation functions have been studied intensively as a branch of applied
mathematics; we refer to the monograph [10] for a comprehensive treatment
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conjuntive average disjuntive

min max

Fig. 2. Aggregation functions: conjunctive, disjunctive, and generalized averages.

of the topic. Roughly speaking, the purpose of an aggregation function operat-
ing on a scale Y is to combine values y1, . . . , yn ∈ Y into another value y on
the same scale. Typically, Y is taken as the unit interval [0, 1]; this is not a
strong restriction, since aggregation functions on other domains can be studied
via suitable transformations in the form of monotone bijections [11].

The study of aggregation functions is of axiomatic nature and proceeds from
specific properties such functions should obey. Natural requirements, for exam-
ple, include properties like symmetry (the result of the aggregation should not
depend on the order of the values) and monotonicity. Especially interesting
are binary aggregation functions A in the form of associative and commuta-
tive [0, 1]2 −→ [0, 1] mappings, because, as already said, these can be extended
to n-ary aggregation functions in a canonical way:

A(n)(y1, . . . , yn) = A
(
A(n−1)(y1, . . . , yn−1), yn

)
,

where A(1)(y1) = y1. One can then simply identify A with the family of functions
thus defined, and write A(y1, . . . , yn) for any number n of arguments.

A natural order on (binary) aggregation functions is defined as follows: A ≤ B
if A(y1, y2) ≤ B(y1, y2) for all y1, y2 ∈ [0, 1]. Based on this order relation, three
important classes of aggregation functions are often distinguished: conjunctive,
disjunctive, and generalized averaging operators. An aggregation A is called
conjunctive if A ≤ min and disjunctive if A ≥ max; all aggregations in-between
min and max are called (generalized) averaging operators (see Fig. 2).

3.1 Conjunctive and Disjunctive Aggregation

In this paper, we are specifically interested in conjunctive and disjunctive aggre-
gation, that is, aggregation functions that can be seen, respectively, as general-
izations of the classical logical conjunction and disjunction. Important classes of
such functions are given by the so-called t-norms and t-conorms [16].

Triangular norms (t-norms), which emerged in the context of probabilistic
metric spaces [21], play a central role is many-valued and fuzzy logic, where they
are used to generalize the logical conjunction [13]. A t-norm T is a monotone
increasing, associative and commutative [0, 1]2 −→ [0, 1] mapping with neu-
tral element 1 and absorbing element 0. Important examples include the mini-
mum, which is the largest among all t-norms, the product T (a, b) = ab, and the
Lukasiewicz t-norm T (a, b) = min(a + b, 1).

A t-conorm S is a monotone increasing, associative and commutative map-
ping [0, 1]2 −→ [0, 1] with neutral element 0 and absorbing element 1. These oper-
ators are dual to t-norms in the sense that, if T is a t-norm, then S defined
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by S(a, b) = 1 − T (1 − a, 1 − b) is a t-conorm. Important examples include
the maximum, which is the smallest among all t-conorms, the algebraic sum
S(a, b) = a + b − ab, and the Lukasiewicz t-conorm S(a, b) = max(a + b − 1, 0).

3.2 Uninorms

Generalized conjunctions and disjunctions share the properties of being
monotone, associative and commutative, and actually only differ in their neutral
element, which is 1 for the former and 0 for the latter. The location of the neu-
tral element in the unit interval is also reflected by the characteristics of these
two types of operators: For t-norms, the overall aggregation remains unchanged
only when adding the highest value 1, i.e., T (y1, . . . , yn) = T (y1, . . . , yn, yn+1)
only if yn+1 = 1; otherwise, the overall aggregation can only decrease. Thus,
t-norms aggregate very strictly and are fully non-compensatory: it is not pos-
sible to compensate for low evaluations by adding high ones. The dual class
of t-conorms behaves in exactly the opposite way: aggregation via t-conorms is
fully compensatory.

One may wonder whether a neutral behavior is only possible with respect to 0
and 1, or perhaps also some other value e ∈ (0, 1). Is there is a class of aggregation
functions that shares the properties of t-norms and t-conorms, except for having
an arbitrary value e as neutral element? This question is answered affirmatively
by the class of so-called uninorms [27]. A uninorm U is a monotone increasing,
associative and commutative [0, 1]2 −→ [0, 1] mapping with neutral element
e ∈ (0, 1), i.e., such that U(a, e) = U(e, a) = a for all a ∈ [0, 1].

1

e

0
0 e 1

Fig. 3. Structure of a uninorm.

Uninorms U can be shown to have a specific structure: For arguments
exceeding e, they behave like a t-conorm, i.e., there is a t-conorm S such
that U(a, b) = S(a, b) for all a, b ∈ [e, 1]2. Likewise, for arguments below e,
they behave like a t-norm: U(a, b) = T (a, b) for all (a, b) ∈ [0, e]. On the
remaining part of the unit square [0, 1]2, U can be completed in different ways,
though always remaining between the minimum and the maximum; see Fig. 3 for
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an illustration. A concrete family of uninorms called min-uninorms is constructed
from a t-norm T and a t-conorm S as follows:

Ue(a, b) =

⎧
⎪⎨
⎪⎩

e T
(

a
e , b

e

)
if a, b ∈ [0, e]

e + (1 − e)S
(

a−e
1−e , b−e

1−e

)
if a, b ∈ [e, 1]

min(a, b) otherwise
(5)

3.3 Complex Aggregation

Basic aggregation functions like those discussed above can be combined into
more complex ones, for example in a hierarchical way [22,23]. An example is
shown graphically in Fig. 4: The output produced by one aggregation serves as
an input of another one on a higher level. In the particular example shown, the
aggregation function is of the form

Aλt,λs
: [0, 1]4 −→ [0, 1], (y1, y2, y3, y4) 	→ Tλt

(
Sλs

(y1, y2), Sλs
(y3, y4)

)
, (6)

and thanks to the logical interpretation of t-norms and t-conorms, A itself can be
interpreted as a degree of truth of a generalized logical expression. For example,
if y1, y2, y3, y4 correspond, respectively, to the evaluation of a job candidate on
skills in math (M), programming (P ), French (F ), and Spanish (S), then A
evaluates the expression (M ∧ P ) ∨ (F ∧ S). In other words, a good candidate
needs to be strong in math or programming, and also have good language skills,
either in French or Spanish. Thus, there is no compensation between language
and analytical skills, but full compensation within each of the two categories.

y

Tλt

SλsSλs

y1 y2 y3 y4

Fig. 4. Example of a complex (hierarchical) aggregation functions.

As shown by (6), complex aggregation functions typically assign different
roles to different inputs. In our framework, this means that constituents must be
identified by a label (such as M or P above). In principle, of course, structures
more general than hierarchies (trees) could be used to design complex aggrega-
tion functions, for example directed acyclic graphs. Such structures appear to be
especially useful in the case where the constituents ci,j in a composition ci are
equipped with a structure (i.e., ci is not simply a bag). However, as extensions of
this kind are beyond the scope of this paper, we refrain from a deeper discussion.
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4 A Model Based on Uninorms

Suppose a component ci is a multiset of constituents ci,j described in terms of
feature vectors vi,j . We assume scores yi,j ∈ [0, 1] to be of the form

yi,j = fθ(vi,j) =
(
1 + exp

(−θ�vi,j

))−1
,

i.e., θ is a vector that assigns weights for the different entries in vi,j . The local
scores yi,j are then aggregated using a uninorm Uλ parameterized by λ:

yi = Uλ

({yi,j}ni
j=1

)
= Uλ

(
yi,1, . . . , yi,ni

)

Finally, the response ri is a binary decision, for which

P(ri = 1) =
(
1 + exp

( − γ1(yi − γ2)
))−1

.

Thus, the higher the score, the higher is the probability of a positive decision.
More specifically, the probability of a positive decision is controlled by two para-
meters γ = (γ1, γ2). The second parameter, γ2 ∈ [0, 1], is a kind of aspiration level
or ambition threshold, since P(ri = 1) > 1/2 for yi > γ2 and P(ri = 1) < 1/2
for yi < γ2. Moreover, γ1 ≥ 0 is a scaling parameter that models the precision
with which decisions are made: For γ1 → ∞, decisions become deterministic,
whereas for γ1 = 0, decisions are made completely at random (i.e., without
actually taking the score yi into account).

Overall, we thus end up with a probabilistic model of the following form:

P(ri = 1)=
(
1 + exp

(
−γ1

(
Uλ

({(
1 + exp

(−θ�vi,j

))−1
}ni

j=1

)
− γ2

)))−1

(7)

Learning this model can be done using maximum likelihood estimation. Thus,
given training data (4), the problem is to maximize the (regularized) log-
likelihood function

L(γ, λ, θ) =
N∑

i=1

log
(
P(ri | γ, λ, θ, ci)

) − αR(γ, λ, θ), (8)

where P(ri | γ, λ, θ, ci) is given by the expression on the right-hand side of (7) if
ri = 1 and by 1 minus this expression if ri = 0, and R(γ, λ, θ) is a regularization
term that is used to penalize large feature weights.

The above model simplifies in the case where the local scores yi,j are already
given, i.e., training data is of the form (4):

P(ri = 1) =
(
1 + exp

(
γ1

(
Uλ

(
{yi,j}ni

j=1

)
− γ2

)))−1

(9)



Learning to Aggregate Using Uninorms 767

5 Related Work

As our framework is quite general, it has connections to various other branches
of machine learning. These are either established by the non-standard represen-
tation of instances, or by the idea of using aggregation functions in one way or
the other. This section is meant to point to some of the related fields, although
space restrictions obviously prevent from a comprehensive discussion.

Compositions ci can of course be seen as a specific types of structured objects,
on which kernel functions can be defined; for example, kernel functions for “bags
of feature vectors” have been studied in image processing and other fields [5].
Then, given such a kernel function, the large arsenal of kernel-based machine
learning methods can be applied. Yet, an approach of that kind is not fully
in line with our idea of learning to aggregate. First, kernel methods eventually
produce a vectorial representation (in some feature space), which, for the reasons
already mentioned, might not be fully appropriate. More importantly, they do
not easily allow for incorporating knowledge about the process of aggregation,
which is a key idea of our approach, nor do they lead to well interpretable models.

In the special case where compositions ci are bags (i.e., multisets without
additional structure) of feature vectors vi,j , our framework is similar to multi-
instance learning (MIL) [2], especially with regard to the representation of data
objects. Yet, there are also some notable differences. In MIL, for example, a bag
is normally not viewed as a composition of constituents that belong together
and form a whole; in the simplest case, one proceeds from a binary setting with
positive and negative instances, and assumes a bag to be labeled positive as soon
as it contains at least one positive instance. Correspondingly, aggregation over
predictions for individual instances is done, either explicitly or implicitly, via the
maximum (or generalizations like the noisy OR [14]), whereas less attention has
been payed to a systematic study of the aggregation process.

Specific types of aggregation functions have attracted attention in machine
learning in recent years. For example, copulas can be seen as a specific type of
conjunctive aggregation that allows for combining marginal into joint probabil-
ity distributions [6]. In preference learning, the so-called Choquet integral has
been used as a generalization of the weighted average that is able to capture
interactions between different variables [24]. Yet, these approaches still proceed
from a feature representation of data objects.

There are other generalizations of supervised learning in which aggregation
plays an important role. For example, in learning from aggregate outputs [18], the
assumption is that output values cannot be observed for each training instance
individually; instead, only an aggregation of these values is observed for sets of
instances. Here, however, the aggregation function is supposed to be known.

As already mentioned, the scores assigned to a composition can often be
interpreted as a kind of evaluation. Thus, there is also an obvious connection to
the field of preference learning [9]. From the point of view of preference learning,
a composition can be seen as a bundle of goods, to which a user assigns a degree of
utility [25]. In comparison to learning preferences on items represented in terms
of feature vectors, work on preference learning on bundles is still very scarce.
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6 Illustration

As an illustration of our framework, we consider the problem of aggregating
reviewer recommendations into an overall decision about the acceptance or rejec-
tion of a conference submission. Or, stated differently, we adopt a data-driven
approach to modeling the way in which the program chairs of a conference aggre-
gate different reviews of a paper into an overall decision.

To this end, we collected data about the reviewing process of ECML/PKDD
2014. More concretely, our data set consists of 481 submitted papers with corre-
sponding reviews. While most papers have three reviews, there are also papers
with two or four reviews. Each review consists of a rating of the originality and
quality of the paper, an overall recommendation, and a level of confidence of
the reviewer. The underlying scale comprises five categories (strong reject, weak
reject, weak accept, accept, strong accept), which we embedded in the unit inter-
val by mapping them to {0, 0.25, 0.5, 0.75, 1}. Finally, the decision of acceptance
or rejection is known for each paper (with an acceptance rate of 23,9 %).

As already said, the problem we consider consists of learning to aggregate
reviewer recommendations into a final decision. Here, a paper is modeled as a
composition ci, the constituents of which consist of feature vectors vi,j with
values for originality, quality, and overall recommendation given by a reviewer,
as well as his or her confidence (and an intercept). Moreover, the final decision
is treated as a response (0 for rejection and 1 for acceptance).

We applied the model (7) introduced in Sect. 4 with two uninorms: The so-
called 3-Π uninorm [3], and the uninorm (5) with the product t-norm T (a, b) =
ab and the dual t-conorm S(a, b) = a + b − ab; in the latter case, the parameter
λ of Uλ is thus given by the neutral element e in (5). Note that a uninorm is a
quite plausible aggregation function for this application: The neutral element e
can be seen as kind of “borderline” recommendation. A recommendation better
than e expresses a positive reviewer option and can only increase the probability
of acceptance, whereas a recommendation worse than e has the opposite effect.
For comparison, we also present results for purely conjunctive (Uλ = min) and
purely disjunctive aggregation (Uλ = max).

To learn the parameters, we maximize the likelihood function (8) with L2

regularization (α = 0.01) using the L-BFGS-B algorithm [4]. To avoid local
optima, we did 10 random restarts, choosing initial parameters according to
Latin hypercube sampling [17] with 10 samples.

The problem considered in this study can in principle also be formalized in
the setting of multi-instance (MI) learning: papers are considered as bags and
the reviews as instances, represented in the form of feature vectors. Therefore,
we also compare our method with several state-of-the-art MI algorithms [2].

A standard approach based on a feature representation of submissions does
not appear meaningful. In fact, even if the number of reviewers would be the same
for each paper, the order of reviewers should not play any role, i.e., the aggre-
gation should be invariant against permutation (renumbering of the reviewers).
For example, it does not make sense to give a higher weight to the first reviewer
and a lower weight to the second one. Since all features are discrete, it is still
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Table 1. Mean ± standard deviation for classification rate, AUC and F-measure.

Approach Algorithm/Aggregation Accuracy AUC F1

Aggregation 3-Π uninorm .921 ± .035 .974 ± .025 .823 ± .091

min-uninorm .890 ± .029 .949 ± .021 .767 ± .059

minimum .885 ± .045 .923 ± .034 .756 ± .100

maximum .831 ± .064 .903 ± .064 .568 ± .179

MIL MILR [20] .916 ± .038 .973 ± .017 .811 ± .097

MIBoost [8] .911 ± .037 .960 ± .027 .807 ± .087

MISMO-PolyKernel [19] .906 ± .041 .858 ± .070 .791 ± .099

MISMO-RBFKernel [19] .909 ± .041 .870 ± .067 .804 ± .095

MIWrapper [7] .880 ± .040 .955 ± .031 .664 ± .146

Feature AdaBoostM1-Dec.Table .858 ± .045 .892 ± .052 .683 ± .112

Vector AdaBoostM1-Dec.Stumps .873 ± .043 .906 ± .048 .742 ± .091

Decision Table .855 ± .045 .900 ± .049 .687 ± .123

C4.5 (J48) .856 ± .038 .860 ± .073 .671 ± .101

KNN .862 ± .038 .904 ± .045 .667 ± .109

LBR .857 ± .041 .924 ± .038 .731 ± .079

RandomForest .838 ± .043 .891 ± .048 .633 ± .109

Logistic Regression .872 ± .042 .911 ± .046 .738 ± .097

SVM (SMO) .868 ± .042 .773 ± .073 .675 ± .122

possible to create a vector representation, simply by counting, for each feature
value, its total number of occurrences in all reviews. Obviously, this transforma-
tion comes with a loss of information, since the reviews are merged and cannot
be distinguished anymore. Nevertheless, we used it as another baseline (with
several standard learning methods implemented in WEKA [15]).

All performance measures were estimated using 10-fold cross validation
repeated 10 times. The mean values and standard deviations of classification
rate, AUC, and F-measure are reported in Table 1. As can be seen, our approach
compares quite favorably with the baselines. Moreover, the estimated model
appears to be quite plausible. For example, the parameter γ2, which plays the
role of an acceptance threshold, equals (on average) 0.687; moreover, γ1 ≈ 8,
which means that the reviewer recommendations determine decisions quite pre-
cisely. The vector θ has a plausible interpretation too: the overall recommenda-
tion has the highest influence, with a relative importance of about 0.78, followed
by originality and quality with around 0.11 and 0.09, respectively.

7 Summary and Conclusion

The learning-to-aggregate framework introduced in this paper is meant to pro-
vide a basis for learning (predictive) models in which aggregation plays an
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integral role. We believe that, first, there are many applications of this kind
of modeling, and second, that machine learning can strongly benefit from the
large repertoire of existing work on aggregation functions in the mathematical
literature. More specifically, we argue that this field offers interesting mathemat-
ical tools for constructing model classes, thereby helping to learn models that
are not only accurate but also interpretable, as well as important theoretical
insights about aggregation functions and their properties, thereby supporting
the design of efficient learning algorithms.

We illustrated our framework by looking at one of its particular instances
and applying that instance on a review data set, where the aggregation problem
consists of combining a (variable) number of reviews of a paper submission into
a final decision of acceptance or rejection. While this is only a specific example,
we look forward to developing the learning-to-aggregate framework both more
broadly and more deeply in future work. As explained in Sect. 2, various learning
problems can be defined based on the representation of compositions, assump-
tions about the aggregation process, and the type of training data to learn from.
Developing and analyzing learning-to-rank methods for concrete, practically rel-
evant settings is a major goal of our future work.

Acknowledgments. We thank Pritha Gupta and Karlson Pfannschmidt for their
helpful suggestions. This work is part of the Collaborative Research Center “On-the-
Fly Computing”, which is supported by the German Research Foundation (DFG).

References

1. Alvo, M., Yu, P.: Statistical Methods for Ranking Data. Springer, New York (2014)
2. Amores, J.: Multiple instance classification: review, taxonomy and comparative

study. Artif. Intell. 201, 81–105 (2013)
3. Beliakov, G., Calvo, T., James, S.: Aggregation of preferences in recommender

systems. In: Recommender Systems Handbook, pp. 705–734. Springer, US (2011)
4. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound

constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)
5. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization

with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision,
ECCV (2004)

6. Elidan, G.: Copula bayesian networks. In: Proceedings of the NIPS, Advances in
Neural Information Processing Systems 23, pp. 559–567 (2010)

7. Frank, E.T., Xu, X.: Applying propositional learning algorithms to multi-instance
data. Technical report, University of Waikato, Department of Computer Science,
University of Waikato, Hamilton, NZ, June 2003

8. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In:
Thirteenth International Conference on Machine Learning, pp. 148–156. Morgan
Kaufmann, San Francisco (1996)
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23. Senge, R., Hüllermeier, E.: Fast fuzzy pattern tree learning for classification. IEEE

Trans. Fuzzy Syst. 23(6), 2024–2033 (2015)
24. Tehrani, A.F., Cheng, W., Dembczynski, K., Hüllermeier, E.: Learning monotone
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Abstract. In this paper, we leverage both deep learning and condi-
tional random fields (CRFs) for sequential labeling. More specifically,
we explore parameter initialization and randomization in deep CRFs
and train the whole model in a simple but effective way. In partic-
ular, we pretrain the deep structure with greedy layer-wise restricted
Boltzmann machines (RBMs), followed with an independent label learn-
ing step. Finally, we re-randomize the top layer weight and update the
whole model with an online learning algorithm – a mixture of perceptron
training and stochastic gradient descent to estimate model parameters.
We test our model on different challenge tasks, and show that this simple
learning algorithm yields the state of the art results. The data and soft-
ware related to this paper are available at https://github.com/ganggit/
deepCRFs.

Keywords: Sequential labeling · Deep learning · Online learning ·
Parameter initialization

1 Introduction

Recent advances in deep learning [1,16,43] have sparked great interest in dimen-
sion reduction [15,44] and classification [16,26]. In a sense, the success of deep
learning lies on learned features, which are useful for supervised/unsupervised
tasks [1,4,11]. For example, the binary hidden units in the discriminative
Restricted Boltzmann Machines (RBMs) [12,25] and deep belief networks (DBN)
[16] can model latent features of raw data to improve classification. Unfortu-
nately, one major difficulty in deep learning [16] is structured output prediction
[31], where output space typically may have an exponential number of possible
configurations. As for sequential labeling, the joint classification of all the items
is also difficult because observations are of an indeterminated dimensionality
and the number of possible classes is exponentially growing in the length of the
sequences.

To address the sequential prediction, the architecture of recurrent neural
networks (RNNs) have cycles incorporating the activations from previous time
steps as input to the network to make a decision for the current input, which
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 772–788, 2016.
DOI: 10.1007/978-3-319-46227-1 48
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Fig. 1. (a) linear chain CRFs; (b) deep neural networks (for classification with 1 of K
(encoding) vector representation); (c) our deep neural networks for sequential labeling.
The two main differences between (b) and (c) are: (1) yi in (c) is a label sequence,
which has links between labels, while yi in (b) is a single label without correlation; (2)
the input of (c) is a sequence with multiple instances (or frames), while the input of
(b) is an independent instance (or vector).

makes RNNs better suited for sequence labeling tasks. Long short term memory
(LSTM), as an improved version of RNNs, shows good results on handwritten
recognition [13]. And bi-directional LSTM trained on unsegmented sequence
data has also outperformed the state of the art HMM-based system.

Another direction is to combine deep learning with CRFs for sequential label-
ing [9,28,33]. One of key advantages of linear CRFs can be attributed to its
exploitation on context information and its structured output prediction. How-
ever, linear CRFs with the raw data as input strongly restricts its representation
power for classification tasks. More recently, one trend is to generalize CRFs to
learn discriminative and non-linear representations, such as kernel CRFs [23],
hidden-unit CRFs [28,33] and CRFs with multilayer perceptrons [27,35]. As an
alternative, some studies have trained CRFs on features learned by unsupervised
deep learning [32]. Also the work in [9,33] has exploited to learn non-linear map-
pings by combing CRFs and neural networks. However, how to learn a better
deep CRFs model is still a challenge, considering the overfitting issue with large
parameter space and the non-convex objective function.

In this paper, we propose a deep model for sequential labeling, which inherits
both advantages of linear chain CRFs and deep learning. Hence, our model can
learn non-linear features and also handle structured output, refer to Fig. 1 for
visual understanding about the model. Because the deep CRFs model is non-
convex, it can be easily trapped into local minimum. Thus, how to learn a good
model and generalize well in unseen dataset is still an challenge. Compared to the
traditional deep CRFs [9,29,33], we take a different learning approach. We pre-
train our model with stacked RBMs, followed with an independent learning step
with backpropagation. Then, we re-randomize the top layer weight and optimize
the whole deep model using an online learning algorithm, which is a mixture
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of perceptron training and stochastic gradient descent (SGD). In particular, we
train the top layer with perceptron algorithm, while learning the weights of the
lower layers in the deep structure with SGD. Thus, our model is more powerful
than linear CRFs because the objective function learns latent non-linear features
so that target labeling can be better predicted.

Our contributions: (1) an unified objective function to handle sequential data
with or without patterns; (2) the independent learning step for parameter ini-
tialization and the re-randomization of the top layer weight, which we think is
vital to handle overfitting and find a better local minimum in training the deep
neural network; (3) the online learning approach to update model parameters,
where the context parameters of CRFs in the top layer are trained with per-
ceptron algorithm and the lower level weights of the deep neural network are
updated with SGD. Lastly, we also introduce the regularization terms to handle
overfitting in the deep neural network. We test our model over a range of tasks
and show that it yields accuracy significantly better than the state of the art.

2 Sequential Labeling with Deep Learning

Let D = {〈xi,yi〉}Ni=1 be a set of N training examples. Each example is a pair of
a time series 〈xi,yi〉, with xi = {xi,1,xi,2, ...,xi,Ti

} and yi = {yi,1, yi,2, ..., yi,Ti
},

where xi,t ∈ R
d is the i-th observation at time t and yi,t is the corresponding label

(we indicate its encoded vector as yi,t that uses a so-called 1-of-K encoding).
Linear first-order CRFs [24] is a conditional discriminative model over the label
sequence given the data

p(yi|xi) =
exp{−E(xi,yi)}

Z(xi)
(1)

where Z(xi) is the partition function and E(xi,yi) is the energy function given by

−E(xi,yi) =yT
i,1π + yT

i,Ti
τ

+
Ti∑
t=1

(xT
i,tWyi,t + bTyi,t) +

Ti∑
t=2

yT
i,t−1Ayi,t (2)

where yT
i,1π and yT

i,Ti
τ are the initial-state and final-state factors respectively,

bTyi,t is the bias term for labels, A ∈ R
K×K represents the state transition para-

meters and W ∈ R
d×K represents the parameters of the data-dependent term.

Compared to linear SVMs, the linear CRFs has an additional item yT
i,t−1Ayi,t

to model the label correlation. However, one of the main disadvantages of linear
CRFs is the linear dependence on the raw input data. Thus, we introduce our
sequential labeling model with deep feature learning, which leverages both con-
text information, as well as the nonlinear representations from deep learning [15].
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2.1 Objective Function

Although it is possible to leverage the deep neural networks for structured predic-
tion, its output space is explosively growing because of non-determined length of
sequential data. Thus, we consider a compromised model, which combine CRFs
and deep learning in an unified framework, refer Fig. (1). On the one hand, we
hope the independent label prediction is as accuracy as possible via the represen-
tation learning. On the other hand, we need to handle overfitting problem in the
deep network. We propose an objective function with L layers neural network
structure,

L(D;θ,ω) = −
N∑
i=1

logp(yi,1, . . . ,yi,Ti
|hi,1, . . . ,hi,Ti

)

+
λ1

2

N∑
i=1

Ti∑
t=1

|| fL ◦ fL−1 ◦ · · · ◦ f1︸ ︷︷ ︸
L times

(xi,t) − yi,t||2

+ λ2||θ||2 + λ3||ω|| (3)

where θ and ω are the top layer parameters and lower layer (l = {1, ..., L − 1})
parameters respectively, which will be explained later. The first row on the right
side of the equation is from the linear CRFs in Eq. (1), but with latent features.
The conditional likelihood depends respectively on θ and the latent non-linear
features hi = {hi,1, ..,hi,Ti

} in the coding space, with

logp(yi,1, . . . ,yi,Ti
|hi,1, . . . ,hi,Ti

)

=
Ti∑
t=2

yT
i,t−1Ayi,t +

Ti∑
t=1

(
hT
i,tWyi,t + bTyi,t

)

+yT
i,1π + yT

i,Ti
τ − log(Z(hi)) (4)

and non-linear mappings hi is the output with L − 1 layers neural network, s.t.

hi = fL−1 ◦ fL−2 ◦ · · · ◦ f1︸ ︷︷ ︸
L−1 times

(xi) (5)

where ◦ indicates function composition, and fi is logistic function with the weight
parameter Wl respectively for l = {1, .., L − 1}, refer more details in Sect. 2.2.
With a bit abuse of notation, we denote hi,t = f1→(L−1)(xi,t).

The least square (the second term) in the right hand side of Eq. (3) is for
deep feature learning, with the top layer defined as

fL ◦ fL−1 ◦ · · · ◦ f1︸ ︷︷ ︸
L times

(xi,t)

=f1→L(xi,t) = fL(hi,t) = hT
i,tW + cT (6)

where W has been defined in Eq. (4), and c is the bias term. Note that W is the
same in both Eqs. 4 and 6. Hence, the second term in Eq. (3) can be thought as
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the independent label prediction without considering context information. Note
that other objective functions such as softmax (which has the same gradient
as least square, in other words, the model updating with SGD is the same as
here) can be applied here too. The weighing variable λ1 can control the balance
between the first term and the second one on the RHS in Eq. (3). If λ1 → +∞,
then Eq. (3) can be thought as deep learning [15] for classification without con-
text information, and it can handle the cases where outputs are independent (no
significant patterns in the label sequences). If λ1 → 0, then Eq. (3) is the CRFs
with non-linear deep feature learning, which generalizes the linear CRFs to learn
non-linear deep mappings. The main purpose we incorporate the second term in
our model is to introduce this parameter initialization step via the independent
learning (see further). Note that we can vary λ1 to achieve this purpose.

The last two terms in Eq. (3) are for regularization on all parameters with θ =
{A,W,π, τ , b, c}, and ω = {Wl|l ∈ [1, .., L − 1]}. We add the �2 regularization
to θ as most linear CRFs does, while we have the �1-regularized term on weight
parameters ω in the deep neural network to avoid overfitting in the learning
process.

The aim of our objective function in Eq. (3) is for sequential labeling, which
explores both the advantages of Markov properties in CRFs and latent represen-
tations in deep learning. Our model is different from the common deep learning
structure in Fig. 1(b). Firstly, the input to our model in Fig. 1(c) is the sequential
data, such as sequences with non-determined length, while the input to Fig. 1(b)
is generally an instance with fixed length. Secondly, our model can predict struc-
tured outputs or label sequences, while the output in Fig. 1(b) is just one label
for each instance, which is independent from each other. Note that we use the
first-order CRFs for clarity in Eq. 4, which can be easily extended to the second
or high-order cases. Moreover, our model is also different from other deep CRFs
[9,34]. Our mixture objective function can handle sequential data with or with-
out patterns. And we have the independent label learning (a pretraining step in
our model) to learn better representations. Lastly, we use an online algorithm
in our deep learning model for parameter updating, which has the potential to
handle large scale dataset.

2.2 Parameter Learning

We use RBMs to initialize the weights layer by layer greedily, with Contrastive
Divergence [16] (we used CD-1 in our experiments). Then we compute the sub-
gradients w.r.t. θ and ω in the objective function, and initialize the whole deep
CRFs with independent learning. Finally, we re-randomize the top layer weight
and update the whole framework with online learning.

Initialization: The second term on the right hand side of Eq. (3) is from the
deep belief network (DBN) for classification [16]. In our deep model, the weights
from the layer 1 to L − 1 are Wl respectively, for l = {1, .., L − 1}, and the
top layer L has weight W. We first pre-train the L-layer deep structure with
RBMs layer by layer greedily. Specifically, we think RBM is a 1-layer DBN, with
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weight W1. Thus, DBN can learn a parametric nonlinear mapping from input
x to output h, f : x → h. For example, for 1-layer DBN, we have h = f1(x) =
logistic(W1

T [x, 1]), where we extend x ∈ R
d into [x, 1] ∈ R

(d+1) in order to
handle bias in the non-linear mapping. Note that we use the logistic function
from layer 1 to L − 1, and the top layer is a linear mapping with weight W in
our deep neural network.

After initializing all weights in the deep neural network, we use the indepen-
dent label learning by minimizing λ1

∑N
i=1

∑Ti

t=1 || fL ◦ fL−1 ◦ · · · ◦ f1︸ ︷︷ ︸
L times

(xi,t)−yi,t||

with L-BFGS (backpropagation is used to compute sub-gradient w.r.t. weight in
each layer) to fine-tune all the weights in the deep neural network. More specif-
ically, to learn the initial weights in the deep network, we think each instance
xi,t ∈ xi has its corresponding label yi,t ∈ yi independently. Then, the parame-
ters can be finetuned with backpropagation [15]. Note that it does not leverage the
context information in this stage, and we will show the independent label learning
step is helpful to boost the recognition accuracy in the experiments. Finally, we
will update the parameters θ and ω in an online fashion simultaneously, which
will be introduced in the following parts.

Learning: After we initialize the deep CRFs with independent learning and re-
randomization, we need to minimize the final objective function L(D;θ,ω) in
Eq. (3). Because we introduce the deep neural network here for feature learning,
the objective is not convex anymore. However, we can find a local minimum in
Eq. (3). In our learning framework, we optimize the objective function with an
online learning algorithm, by mixing perceptron training and stochastic gradient
descent.

Firstly, we can calculate the (sub)gradients w.r.t. all parameters. Considering
different regularization methods for θ and ω respectively, we can calculate gradi-
ents w.r.t. them separately. As for the parameters in the negative log likelihood
in Eq. 3, we can compute the gradients w.r.t. θ as follows

∂L
∂A

=
N∑
i=1

Ti∑
t=2

yi,t−1(yi,t)T − γi,t−1(γi,t)
T ; (7a)

∂L
∂π

=
N∑
i=1

(yi,1 − γi,1); (7b)

∂L
∂τ

=
N∑
i=1

(yi,Ti
− γi,Ti

); (7c)

∂L
∂b

=
N∑
i=1

( Ti∑
t=1

(yi,t − γi,t)
)
; (7d)

∂L
∂W

=
N∑
i=1

Ti∑
t=1

(
hi,t(yi,t − γi,t)

T

+ λ1f1→(L−1)(xi,t)(yi,t − ŷi,t)T
)

(7e)
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where γi,t ∈ R
K is the vector of K dimensions, which can be thought as the

posterior probability for labels in the sequence and will be introduced in Sect. 2.3,
and ŷi,t = f1→L(xi,t) is the output from Eq. (6). Note that it is easy to derive
the gradients of the �2 regularization term w.r.t. θ in the objective in Eq. (3),
which can be added to the gradients in Eq. (7).

As for the gradients of weights ω = {Wl|l ∈ [1, .., L − 1]}, we first use
backpropagation to get the partial gradient in the neural network, refer to [15]
for more details. Then the gradient of the �1 term in Eq. (3) can be attached to
get the final gradients w.r.t. Wl for l = {1, .., L − 1}.

Finally, we use a mixture of perceptron learning and stochastic gradient
descent to optimize the objective function. There are various optimization meth-
ods, such as L-BFGS [3,37], stochastic gradient descent (SGD) and perceptron-
based learning [28]. L-BFGS as a gradient descent method, has been widely used
to optimize weights in the deep structure [16]. However, it can be slow, and there
are no guarantees if there are multiple local minima in the error surface. SGD
and perceptron training both are the online learning algorithms by updating the
parameters using the gradient induced by a single time series, so they have sig-
nificant computational advantages over L-BFGS. Furthermore, perceptron-based
online learning can be viewed as a special case of SGD, but it is more flexible
than SGD on parameter updating (i.e. parallelization). In our experiments, we
tried L-BFGS, but it can be easily trapped into the bad local minimum, and per-
forms worse than other optimization methods in almost all experiments. Thus,
in this work, we use perceptron-based learning for the CRF related parameters
and stochastic gradient descent for the weights in the deep neural structure.

If the perceptron incorrectly classifies a training example, each of the input
weights is nudged a little bit in the right direction for that training example.
In other words, we only need to update the CRF model only for frames that
are misclassified in each training example. To update the CRF’s parameters,
we need to find the most violated constraints for each example. Basically, given
a training example 〈xi,yi〉, we infer its most violated label y∗

i . If the frame
is misclassified, then it directly performs a type of stochastic gradient descent
on the energy gap between the observed label sequence and the predicted label
sequence. Otherwise, we do not need to update the model parameters. Thus, for
the parameters θ from the negative log likelihood in Eq. (3), we first project xi

into the code hi according to Eq. (5). Then, the updating rule takes the form
below

θ ← θ + ηθ
∂

∂θ

(
E(hi,yi) − E(hi,y∗

i )
)

(8)

where y∗
i is the most violated constraint in the misclassificated case, and ηθ is

the step size. Note that the posterior probability γi,t ∈ R
K in Eq. (7) should be

changed into the hard label assignment y∗
i,t in the inference stage. Note that this

is the key difference between perceptron training (using hard label) and SGD
(using label likelihood) while updating parameters.

While for the weights ω = {Wl|l ∈ [1, .., L − 1]} in the deep neural network,
we first use backpropagation to compute the gradients, and then update it as
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follows
ω ← ω − ηω

∂L
∂ω

(9)

where ηω is the learning rate to update the parameters. Note that one vital step
before our online learning over the parameters is that we re-randomize the top
layer weight in the deep neural network. We note that this randomization step
is very important for the model to generalize well in the testing data. Note that
in the independent learning step, we already have trained a very good model.
However, it may overfit to the data and trap into a bad local minimum. For
example, the parameters in all layers have fitted the data well. Thus, if we only
introduce additional CRF parameters (i.e. the transition matrix) into our whole
framework, it may have no chance to update the low lever weights in the neural
network (because of overfitting). On the contrary, if we re-randomize the top
layer weight, we can update all parameters effectively.

2.3 Inference

Given the observation xi = {xi,1, ...,xi,Ti
}, we first use Eq. (5) to compute the

non-linear code hi = {hi,1, ...,hi,Ti
}, and then we use Viterbi algorithm [36] to

infer labels. To simplify the problem, we assume the first-order CRFs here. To
estimate the parameters θ, there are two main inferential problems that need
to be solved during learning: (1) the posterior probability (or the marginal dis-
tribution of a label given the codes) γi,t(k) = p(yi,t = k|hi,1, ...,hi,Ti

); (2) the
distribution over a label edge ξi,t(j, k) = p(yi,t = j, yi,t+1 = k|hi,1, ...,hi,Ti

).
Apparently, the inference problem can be solved efficiently with Viterbi algo-
rithm [2,36].

For the given hidden sequence hi = {hi,1, ...,hi,Ti
}, we assume the corre-

sponding states {qi,1, ..., qi,Ti
}. Furthermore, we define the forward messages

αi,t(k) ∝ p(yi,1, .., yi,t, qi,t = k|hi,1, ...,hi,Ti
), and the backward messages βi,t(k)

∝ p(yi,t+1, .., yi,Ti
|qi,t = k,hi,1, ...,hi,Ti

)

αi,t+1(j) =
[ K∑
k=1

αi,t(k)Akj

]
B(j, yi,t+1); (10)

βi,t(j) =
K∑

k=1

AjkB(k, yi,t+1)βi,t+1(k); (11)

where B(k, yi,t) is the probability to emit yi,t at the state k. We can compute it
as follows

B(:, yi,t) = exp{hT
i,tW + bT + λ1fL(hi,t)} (12)

After calculating αi,t+1(j) and βi,t(j), we can compute the marginal probability
for γi,t and ξi,t respectively

γi,t(k) ∝ αi,t(k)βi,t(k), (13)
ξi,t(k, j) ∝ αi,t(k)AkjB(j, yi,t+1)βi,t+1(j); (14)
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Then, we can compute γi,t in Eq. (7), which is the concatenation: [γi,t(1), ...,
γi,t(K)].

In the testing stage, the main inferential problem is to compute the most likely
label sequence y∗

1,...,T given the data x1,...,T by argmaxy′1,...,T p(y′1,...,T |x1,...,T ),
which can be addressed similarly using the Viterbi algorithm mentioned above.

The learning algorithm is shown in Algorithm 1. The steps 2 and 3 are the
pretraining processes (independent training and re-randomization) in our model,
which is different from traditional deep CRFs [9,28,33]. There two steps initialize
the model parameters, which offers the advantages over traditional deep CRFs
approaches and makes our model to yield significantly better results, see further
in the experimental parts. Also our online mixture learning strategy is different
from traditional approaches.

Algorithm 1. Deep CRFs with online learning
Input: sequential training data D = {〈xi,yi〉}N

i=1, C, λ1 and λ2, ηω , ηθ , iterations T
Output: ω and θ

1: Initialize the deep neural networks layer by layer with RBMs ω = {Wl|l ∈ [1, .., L−
1]} and the top layer weight W;

2: Fine-tune the deep neural network parameters (ω and W) without context infor-
mation, just like to learn a deep SVM classifier;

3: Re-randomize the top layer weight W;
4: Learn all parameters of our deep CRFs online, including ω, W and correlation

matrix A;
5: Return ω, W and A;

3 Experiments

To test our method, we compared our method to the state of the art approaches
and performed experiments on four sequential labeling tasks: (1) optical charac-
ter recognition, (2) labeling questions and answers, (3) protein secondary struc-
ture prediction, and (4) part-of-speech tagging. Below, we described the datasets
we used and also the parameter setting in the experiments.

3.1 Data Sets

1. The OCR dataset [42] contains data with 6, 877 handwritten words, in which
there are total 55 unique words, and each word xi is represented as a series
of handwritten characters {xi1, ...,xi,Ti

}. The data consists of a total of 52, 152
characters (i.e., frames), with 26 unique classes. Each character is a binary image
of size 16 × 8 pixels, leading to a 128-dimensional binary feature vector.
2. The FAQ data set [30] contains data of 48 files on questions and answers,
with a total of 55,480 sentences (i.e., frames). Each sentence is a 24- dimensional
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binary feature that describes lexical characteristics of the sentence. Each sentence
in the FAQ data set belongs to one of four labels: (1) question, (2) answer,
(3) header, or (4) footer.
3. The CB513 contains amino acid structures of 513 proteins [6], and has been
widely used for protein secondary structure prediction. For each of the proteins, it
has 20-dimensional position-specific score matrix features. In the experiment, we
concatenate the features from the surrounding 13 frames into the 260 dimensional
vector [28]. As common in protein secondary structure prediction, we convert
the eight-class labeling into a three-class labeling. The resulting data set has 513
sequences with total 74, 874 frames (260 dimensions), belonging to 3 classes.
4. The Penn Treebank corpus1 has 74, 029 sentences with a total of 1, 637, 267
words. The whole data set contains 49, 115 unique words, and each word in each
sentence is labeled according to its part of speech with total 43 different tags. To
represent each word, all features are measured in a window with width 3 around
the current word, which leads to a total of 212, 610 features. If we use 1000
hidden nodes, then we need to store 2 × 108 parameters in the one-layer neural
network. Considering the high storage demanding for the personal computer, we
calculated the frequency for each dimension in the total 212, 610 features, and
selected the most frequent 5000 features as our codebook. Then we can represent
each word with 5000 dimensions in our experiment. All the four data sets in [28]
are available on the author’s website2.

3.2 Experimental Setup

In our experiments, we randomly initialized the weight W by sampling from
the normal Gaussian distribution, and all other parameters in θ to be zero
(i.e. biases b and c, and the transition matrix A all to be zero). As for ω =
{Wl|l ∈ [1, .., L−1]}, we initialized them with DBN, which had been mentioned
before. As for the number of layers and the number of hidden units in each layer,
we set differently according to the dimensionality for different datasets. In all
the experiments, we use the 3-layer deep neural networks on the four datasets.
Considering the OCR dataset has 128 dimensional binary feature, while FAQ is
the dataset with 24 dimensional vector, we set the number of hidden nodes [100
100 64] in each layer respectively on both the OCR dataset and FAQ dataset.
For the CB513 dataset, we set the number of hidden units to be [400 200 100].
For the treebank dataset, the hidden units [1000 400 200] are used in the 3-layer
network. We did not try other deep structure in the experiments.

After weight initialization with independent learning, we set λ1 = 0 and then
used perceptron training [12] to estimate the CRF related parameters and SGD
to learn the weights in the deep neural network. We did not use regularization
by setting λ2 = 0 in perceptron learning, and set λ3 = 2 × 10−4 for SGD
weights in the deep network. From the base step size, we computed parameter-
specific step sizes ηθ and ηω as suggested by [12]. For each dataset, we divided

1 www.cis.upenn.edu/∼treebank.
2 https://github.com/ganggit/deepCRFs.

www.cis.upenn.edu/~treebank
https://github.com/ganggit/deepCRFs
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it into 10 folds (9 folds as the training set, and the rest as the testing/validation
set), and performed 100 full sweeps through the training data, to update the
model parameters. We tuned the base step size based on the error on a small held-
out validation set. Unless otherwise indicated, we use the average generalization
error to measure all methods in 10-fold cross-validation experiments.

3.3 Results

We test our method on the four data sets mentioned above with the second-
order CRFs with deep learning, and compare our method with linear CRFs,
deep neural networks, traditional deep CRFs and LSTM. We also test whether
the pretraining step: independent learning and re-randomization of the top layer
weight is helpful or not in the sequential labeling tasks.

Table 1. The experimental comparisons on the OCR dataset. Our method (without
pretraining) is from the result without steps 2 and 3 in Algorithm 1. The results reveal
the merits of our method over other methods.

Hand-written recognition (Error rate %)

Linear-chain CRF [9] 14.2

Max-margin Markov net [9] 13.4

Searn [8] 9.09

SVM + CRF [17] 5.76

Deep learning (DBN+Labeling) [16] 4.0

NeuroCRFs (Deep learning + CRFs)[9] 4.44

Cond. graphical models [34] 2.7

LSTM [19] 0.40

Bidirectional LSTM [19] 0.36

Hidden-unit CRF [28] 1.9

Our method (without pretraining) 1.56

Our method 0.2

In Table 1, we compared the performance of our method with the performance
of competing models on the handwriting recognition task. It shows that the
pretraining stage (independent learning and re-randomization) in our model is
helpful to improve the recognition accuracy (boosting error rate from 1.56 %
to 0.2 %). It also shows that the label correlation is helpful in this case. For
example, the deep learning without label correlation yields accuracy 4.0 %, while
is significantly lower than our model. Compared to previous deep CRFs and
RNNs, our method with all steps in Algorithm 1 yields a generalization error
of 0.2%, while the best performance of other methods is 0.36%. Note that we
change the LSTM code a little bit in [19] to handle the handwritten images.
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Table 2. The comparison (generalization errors) on the FAQ dataset using different
methods. It shows that our method is significantly better than the Hidden-unit CRF.

Model Error rate (%)

Linear SVM 9.87

Linear CRF [28] 6.54

NeuroCRFs (Deep learning + CRFs)[9] 6.05

Hidden-unit CRF [28] 4.43

Deep learning (DBN + Labeling) [16] 7.75

Our method (without pretraining) 7.44

Our method 3.34

It demonstrates that our learning approach is significantly better than other
methods, and the deep structure is definitely helpful than the shallow models.

On the FAQ data set, the lowest generalization error of hidden-unit CRFs is
4.43%, compared to 3.34 % for our method in Table 2. And again, our method
outperforms other competitive baselines. It also shows that the CRF with deep
feature learning (3 layers) in this case, is better than the one hidden layer CRF.
Note that we just used the original 24 dimension features in the experiment,
instead of extending the feature set into a 24 + 242 = 600-dimensional feature
representation in [28].

We also test our method on the protein secondary structure prediction task.
The results of these experiments are presented in Table 3. In particular, our
method achieves a generalization error of only 3.16%, compared to 19.5% error
with the conditional neural field on the CB513 data set. The results presented

Table 3. The comparison on the CB513 dataset for protein secondary structure predic-
tion task. It demonstrates that our method significantly outperforms other approaches.
And the pretraining step with the independent label learning is very helpful to boost
the performance.

Model Error rate (%)

PSIRED [18] 24.0

SVM [14] 23.4

SPINE [10] 23.2

YASSP [20] 22.2

Cond. neural field (Deep learning + CRFs)[33] 19.5

NeuroCRFs (Deep learning + CRFs)[9] 28.4

Hidden-unit CRF [28] 20.2

Deep learning (DBN+Labeling) [16] 8.57

Our method (without pretraining) 27.1

Our method 3.16
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Table 4. The experimental comparison on the treebank data set by varying the number
of training data. It demonstrates that given few training data, our method is generalized
well and more robust in the recognition task.

Model generalization error rate (%)

1000 2000 4000 5000 8000 10000 20000

Linear SVM 12.22 12.0 10.6 9.33 8.96 8.71 8.27

Deep learning [15] 58.73 11.4 9.44 9.28 8.36 8.17 7.60

Hidden-unit CRF [28] 10.2 8.74 7.59 7.45 7.02 6.79 6.29

Our method 9.79 7.97 6.66 6.5 6.26 6.24 6.01

in the figure indicate that the CRFs with deep feature learning can significantly
improve the performance, compared to hidden-unit CRFs.

Lastly, we also tested our method on part-of-speech tagging task. Note that
we already take context information into consideration by using a window width
3 for feature representations. And the final representation is based on only 5,000
codebooks because of storage problem for model parameters. To test whether
our method can tackle overfitting problem effectively, we randomly sampled a
subset from the Penn Treebank corpus, and did the 10 fold cross validation. We
show the experimental results in Table 4. It demonstrates that when there’s a
few data set available for training, deep learning with L-BFGS has overfitting
problems. As the number of training data increasing, the performance of the
deep learning also is increasing. While our method outperforms other baselines
remarkably, and show stable and better performance with increasing training
data. It also shows that our method can generalize well effectively, and it is
more robust with few training data in the recognition task.

4 Related Work

Deep learning has significantly improvement on classification, such as object
recognition, handwriting and natural language processing [5,19,22]. However,
to predict structured output with deep learning is still a challenge in machine
learning [31]. The difficulty of this problem is that the input and output data have
non-determinated length, which may lead to an exponential number of possible
configurations. Recently, a conditional RMBs is proposed for structured output
prediction [31]. Unfortunately, the model is shallow with only one hidden layer,
and also cannot deal with large output configurations well. Typically, it either
considers a small output space or uses semantic hashing in order to efficiently
compute a small set of possible outputs to predict. LSTM has attracted great
attention for sequential labeling. For example, a 2-branch LSTM model has been
proposed for machine translation [40]. Also LSTM is combined with CNN for
image to text task [19].

On the other hand, graphic models, such as hidden Markov model (HMM)
and CRFs have been an popular method for segmentation and labeling time
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series data [24]. And CRFs, as a discriminative probabilistic model for struc-
tured prediction [24], has been widely used in natural language processing [38],
handwriting recognition [28,42] and scene parsing [39]. Over the last decade,
many different approaches have been proposed to improve its performance on
the sequential labeling problems. One trend is to extend the linear CRFs into
the high-order graphical model, by exploiting more context information [7,21].
However, the main weakness of those approaches is the time-consuming infer-
ence in the high-order graphical model. Another trend in the CRFs is to discover
discriminative features to improve classification performance. One related work
is a multilayer CRF (ML-CRF) [35]. The system uses a multilayer perceptron
(MLP), with one layer of hidden units, with a linear activation function for the
output layer units and a sigmoid activation function for the hidden layer units.
Similarly, hidden-unit CRFs [28,33] also assumes one-hidden layer for feature
representation. The main idea of these two methods is similar to our approach
here, in that we also transform the input to construct hidden features from the
data so that these hidden units are discriminative in classification. But, unlike
those systems, our model inherits the advantages of deep learning, and feature
functions do not have any direct interpretation and are learned implicitly. More-
over, the deep features learned with large hidden units are powerful enough to
represent the data, and generalize well in the classification tasks. As demon-
strated by previous work, the performance of linear CRFs on a given task is
strongly dependent on the feature representations [41]; while deep learning [16]
can learn representations that are helpful for classification. Thus, it is possible
to unify these two methods into one framework.

Our sequential labeling model with deep learning also bears some resem-
blance to approaches that train a deep network, and then train a linear CRF or
Viterbi decoder on the output of the resulting network [9,29,32]. However, these
methods differ from our approach in that (1) The initialization step in our app-
roach with independent learning and weight re-randomization can significantly
boost performance; (2) they do not learn all state-transition, data-dependent
parameters and weights in the deep networks jointly. As a result, the top hidden
units in these models may not discover latent distributed representations that are
discriminative for classification. (3) Previous approaches [27,35] does not take
an online learning strategy to estimate model parameters. But we consider to
update the weights with an online algorithm in our deep learning model, which
can learn more useful representations [1] to handle large scale dataset. Our work
here inherits both advantages of CRFs and deep learning. Thus, our model can
effectively handle structured prediction, and also learn discriminative features
automatically for better sequential labeling under an unified framework.

5 Conclusions

In this paper, we introduce a model for sequential labeling with online deep
CRFs. More specifically, we propose a mixture objective function, which learns
the non-linear features with deep learning and predict labels with CRFs in the
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sequential data. Hence, our approach leverage both feature learning and context
information for the classification and segmentation of time series. One vital issue
arising while training the deep model is how to handle overfitting and local bad
minimum. We take an effective initialization step (with dependent label learning
and re-randomization) to address this problem. Finally, we use a simple but
efficiently online learning method to update the whole model (end-to-end), which
has the potential to handle large-scale learning problem. In the experiments, we
show that our model outperforms the current state of the art remarkably on a
wide range of tasks.
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Abstract. Matrix factorisation is a widely used tool with applications
in collaborative filtering, image analysis and in genomics. Several exten-
sions of the classical model have been proposed, such as modelling of
multiple related “data views” or accounting for side information on the
latent factors. However, as the complexity of these models increases even
subtle mismatches of the distributional assumptions on the input data
can severely affect model performance. Here, we propose a simple yet
effective solution to address this problem by modelling the observed data
in a transformed or warped space. We derive a joint model of a multi-
view matrix factorisation model that infers view-specific data transfor-
mations and provide a computationally efficient variational approxima-
tion for parameter inference. We first validate the model on synthetic
data before applying it to a matrix completion problem in genomics. We
show that our model improves the imputation of missing values in gene-
disease association analysis and allows for discovering enhanced consen-
sus structures across multiple data views The data and software related
to this paper are available at https://github.com/PMBio/WarpedMF.

Keywords: Multi-view learning · Matrix factorisation · Data transfor-
mation · Side information

1 Introduction

Probabilistic matrix factorisation is a widely used tool to impute missing values
in dyadic data [16,19,26]. Using these models, the unobserved entries in the data
matrix can be recovered by the inner product of a (typically low-rank) represen-
tation of factors and loadings, which can be inferred from the observed entries
in the data matrix. Several extensions of the classical matrix factorisation model
(MF) have been considered, including multi-view approaches to combine multi-
ple related matrix factorisation tasks as well as methods to integrate prior (side)
information. Intuitively, multi-view models use a set of common latent variables
to explain shared structure in multiple complementary views, thereby borrowing
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 789–804, 2016.
DOI: 10.1007/978-3-319-46227-1 49
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statistical strength across datasets. A number of alternative implementations of
multi-view models have been proposed, assuming different extents of sharing
using a common loading matrix [3,7], or using a shared subset of the latent
factors [27]. A second widely considered extension is modelling additional side
information, either on the inferred factors and/or the loadings. The inclusion of
such additional data can improve the recovery of the latent variables, in partic-
ular if the input matrices are spares or if the number of latent factors is large
compared to the dimensionality of the observed data matrix. Existing meth-
ods use linear regression on the latent factors [12,15,21] or employ multivariate
normal priors on the latent factors [1,28].

However, while in principle powerful, multi-view methods are challenging to
apply in practice. This is because the underlying representation of the raw data
frequently differs between views and in particular the assumption of marginal
Gaussian residuals is hardly met.

To address this limitation, we here show that a simple parametric trans-
formation of the observed data can substantially improve the performance of
matrix factorisation models that span multiple views. We fit one parametric
transformation for each view, assuming a common latent space representation,
such that a common set of factors and loadings explain the observed data across
all views. We derive an efficient variational inference scheme that scales to tens
of views, each consisting of thousands of rows and columns, where view-specific
transformations are estimated as part of the inference. Additionally, our model
allows incorporating side information in the form of a covariance prior on either
factors and/or loadings.

We first validate our model using synthetic data before applying it to a
biomedical problem. We use our model to impute gene-disease associations that
have been acquired from multiple complementary data sources. Our results show
that learning warping functions within the matrix factorisation framework in
conjunction with low-rank side information substantially outperforms previous
methods.

2 Related Work

Multi-view formulations differ in the assumptions how specific latent variables
are coupled between views [3,7,9,23]. In this work, we assume that all views
are consistent and related to the same entities (e.g. diseases and genes), how-
ever reflect complementary sources of evidence. We require both latent factor
matrices from MF to be shared, of which the inner product represents the con-
sensus across all data sets. The ability to require such consensus structures is
strongly dependent on appropriate data pre-processing steps. Several paramet-
ric and non-parametric transformations have been considered for this purpose.
One objective is to decouple mean and variance relationships [8,13], for exam-
ple using the BoxCox transformation [5]. Within the class of transformations,
the BoxCox transformation can recover natural logarithmic, square root, and
reciprocal functions. In the context of Gaussian processes (GP) regression, more
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general parametric transformations have been considered, for example a sum of
(a small number of) step functions [25]. The parameters of these transformations
can be learned jointly with the remaining GP hyper-parameters. Similar princi-
ples have also been considered for linear mixed models in statistical genetics [11],
as well as for collective link prediction [6]. Moreover, there is some albeit limited
work on using warping transformations in conjunction with GP-based function
factorisation [22]. However, to the best of our knowledge, there are no methods
that consider warping for multi-view matrix factorisation.

There are also a number of existing methods to incorporate side informa-
tion within the matrix factorisation, where it is available. One approach is to
place a regression-based prior that relates the side information in the form of
covariates for rows and columns of the data matrix [2,12,15,21]. Scalable infer-
ence within the regression-based matrix factorisation models (RBMF-SI) can
be achieved through variational approximations that assume a fully-factorised
form [15]. Alternatively, side information can also be encoded as row and column
covariance priors on the latent factors and loadings [28]. Inference in such models
can be prohibitively expensive, mainly since naive implementations require the
inversion of matrices with the same dimension as the number of rows or columns
of the observed data matrix. We here show how this bottleneck can be addressed
using low-rank approximations, which is similar to approaches that have been
used for parameter inference in linear mixed models [17].

3 RBMF-SI

We start by briefly reviewing the standard matrix factorisation model that incor-
porates side information via linear regression [2,15]. In the RBMF-SI model,
each entry (i, j) of the observed data matrix Y ∈ IRI×J is modelled as the
inner product of two factor matrices of rank K � I, J which are U ∈ IRI×K

and V ∈ IRJ×K , with Gaussian distributed residuals with variance τ−1. The
corresponding likelihood is then:

p(Y |U ,V , τ−1) =
∏

(i,j)∈O
N (Yij |Ui:Vj:

�, τ−1), (1)

where O denotes the set of observed indices in Y and N (·) denotes a normal
distribution.

Side information F ∈ IRI×NF and G ∈ IRJ×NG for the factors U and the
loadings V respectively is incorporated as a multivariate normal prior on factors
and loadings using a regression model in the prior mean:

p(U |F ,A, σ2
uk) =

K∏
k=1

N (U:k|FA:k, σ
2
ukI),

p(V |G,B, σ2
vk) =

K∏
k=1

N (V:k|GB:k, σ
2
vkI), (2)
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where I denotes the identity matrix. Here, the regression coefficient matrices
A ∈ IRNF ×K and B ∈ IRNG×K are shrunk using an L2 prior with variances
specific for each factor k:

p(A|σ2
A) =

NF∏
f=1

K∏
k=1

N (Afk|0, σ2
Ak), p(B|σ2

B) =
NG∏
g=1

K∏
k=1

N (Bgk|0, σ2
Bk). (3)

We will show later that by marginalising out the weights A and B, these
regression-priors can be cast as linear covariance matrices derived from the side
information F and G, which results in low rank covariances in case of NF < I
and NG < J (see Sect. 4.1).

4 MV-WarpedMF-SI

In this section, we derive MV-WarpedMF-SI, a multi-view warped matrix fac-
torisation model that accounts for side information (MV-WarpedMF-SI). The
model unifies the inference of data transformations and matrix factorisation,
performing joint inference for the model parameters of both components.

4.1 Model Description

Let Y n ∈ IRI×J be an observed data matrix for a data view n where n =
1, . . . , N . An entry (i, j) from each view could for example represent an asso-
ciation score between a row i and a column j (e.g. gene-disease associations).
Rather than modelling the observed data directly, we introduce a determinis-
tic function that maps (warps) the observation space Y n into a latent space
Zn ∈ IRI×J . In principle, any monotonic function could be used. Here, we fol-
low [25] and consider a superposition of a (typically small) set of tanh functions
(we used T = 3 in the experiments):

Zn
ij =φn(Y n

ij ) = Y n
ij +

T∑
t=1

αn
t tanh(βn

t (Y n
ij + γn

t )). (4)

In this parametrization, αn
t , βn

t ≥ 0 adjust the step size and the steepness respec-
tively, and γn

t adjusts the relative position of each tanh factor. We use distinct
warping functions for each data view.

In the transformed data space, we assume that the data in all views can
be explained by the same lower dimensional factor representation U ∈ IRI×K

and V ∈ IRJ×K , where K � I, J denotes the number of latent factors. Conse-
quently, the latent variables capture common structure across views. Addition-
ally, we incorporate individual row brn and column bcn bias vectors for each
view. Finally, residual variation in the latent space is modelled as multivariate
normal εnij ∼ N (0, 1/τn), assuming view-specific residual variances 1/τn. The
conditional likelihood of the transformed data Z follows as:

p(Z|μ, τ ) =
N∏

n=1

∏
(i,j)∈On

N (Zn
ij |μn

ij , 1/τn), (5)
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where μn
ij = Ui:Vj:

� + br
n

i + bc
n

j and On denotes the set of the observed indices
(i, j) in view n.

Suppose that side information is available in the form of similarity matrices,
Σu ∈ IRI×I and Σv ∈ IRJ×J , that indicate the relatedness over rows and
columns of Y respectively. If the side information is given as a feature matrix,
the similarity matrix can also be computed from these features using a suitable
kernel function e.g. a linear kernel or a Gaussian kernel for real-valued features,
or a Jaccard kernel for binary features.

We assume that the factor matrix and the loadings have multivariate normal
priors whose covariance matrices correspond to Σu and Σv respectively:

p(U |Σu,σ2
u) =

K∏
k=1

N (U:k|0,Σu + σ2
ukI), (6)

p(V |Σv,σ2
v) =

K∏
k=1

N (V:k|0,Σv + σ2
vkI). (7)

The additional variance parameters σ2
uk and σ2

vk control the prior strength for
each factor k of U and V respectively.

We note that there is a close relationship between employing a covariance
matrix to encode side information and the use of a regression-based model on
factors and their coefficients. In fact, the marginal likelihood of a regression
model is a special case of our approach with a linear kernel:

p(U |F ,σ2
A,σ2

u) =
K∏

k=1

∫
p(U:k|FA:k, σ

2
ukI)p(A:k|0, σ2

AkI) dA:k

=
K∏

k=1

N (U:k|0,σ2
AkFF � + σ2

ukI), (8)

p(V |G,σ2
B ,σ2

v) =
K∏

k=1

∫
p(V:k|GB:k, σ

2
vkI)p(B:k|0, σ2

BkI) dB:k

=
K∏

k=1

N (V:k|0, σ2
BkGG� + σ2

vkI). (9)

Finally, in order to avoid overfitting, we regularise the bias parameters for row
and column bias terms by a zero mean and a variance prior over each element:

p(br) =
N∏

n=1

I∏
i=1

N (br
n

i |0, 1/τ rn), p(bc) =
N∏

n=1

J∏
j=1

N (bc
n

j |0, 1/τ cn) (10)

Figure 1 shows a graphical model of MV-WarpedMF-SI, representing the rela-
tionships of all variables in the model.
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Y n
ijαn, βn, γn

τn

Zn
ijbr

n

i bc
n

j τ cn

jτrn

i

Ui Vjσ2
u, Σu σ2

v, Σv

View n = 1, . . . , N

φn

Fig. 1. Graphical model representation of MV-WarpedMF-SI. Nodes inside the rec-
tangular plate correspond to view-specific variables. All remaining variables are shared
across views. Observed variables are shaded in grey.

4.2 Training the MV-WarpedMF-SI

We need to make inference of the joint posterior distribution p(U ,V , br, bc|Y , θ),
where θ denotes the set of all model parameters (α, β, γ, τ , τ r, τ c,σ2

u,σ2
v).

Closed-form inference in this matrix factorization model is not tractable. For
efficient parameter inference, we here revert to a variational approach to approx-
imate the true posterior over the latent variables with a factorised form. An iter-
ative inference scheme can then be derived by minimising the Kullback-Leibler
(KL) divergence between the true posterior and the factorised approximation;
see for example [4] for a comprehensive overview. The parameters of the warping
functions (α, β, γ) and the variances (1/τ , 1/τ r, 1/τ c,σ2

u,σ2
v) are inferred using

maximum likelihood type II, i.e. by maximising the variational lower bound.
Using a standard change of variable, we first derive the marginal log-

likelihood in the observation space. This results in an additional Jacobian term
evaluated at each observed data point which appears additively in the marginal
log-likelihood of the latent space, leading to:

log p(Y |θ) = log p(Z|θ) +
N∑

n=1

∑
(i,j)∈On

log φ′
n(Y n

ij ) (11)

where φ′
n(Y n

ij ) =
∂φn(y)

∂y

∣∣∣
Y n
ij

is a Jacobian term.

Equivalent to minimising the KL divergence, we maximise the variational
lower bound of the marginal log-likelihood conditioned on the model parameters,
which is:

log p(Z|θ) ≥Eq[log p(Z|U ,V , br, bc, τ )] + Eq[log p(U |Σu,σ2
u)]

+ Eq[log p(V |Σv,σ2
v)] + Eq[log p(br|τ r)]

+ Eq[log p(bc|τ c)] − Eq[log q(U ,V , br, bc)], (12)

where Eq[·] denotes the statistical expectation with respect to q(U ,V , br, bc) as
defined below.
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To achieve scalable inference, we assume a fully factorise variational dis-
tribution q for all latent variables except the factors U and the loadings V ,
for which the prior factorisation is maintained. Thus, we choose a multivariate
normal distribution parameterised by a mean and a covariance matrix for each
latent factor, which enables automatic relevance determination, i.e. the number
of effective factors within the model can be pruned by shrinking unused factors
to zero [20]. The resulting variational distribution is:

q(U, V, br, bc) = q(U)q(V )q(br)q(bc) (13)

where q(U) =
K∏
k

N (U:k|Ũ:k,C
u
k ), q(V ) =

K∏
k

N (V:k|Ṽ:k,C
v
k )

q(br) =
N∏
n

I∏
i

N (br
n

i |b̃rni , sr
n

i ), q(bc) =
N∏
n

J∏
j

N (bc
n

j |b̃cnj , sc
n

j )

Training of the model is done by optimising the variation lower bound and
the Jacobian term with respect to each of the unknown variables including the
warping parameters in turn until convergence.

4.3 Efficient Inference of Low-Rank Side Information

The computational limitation for imposing a Gaussian process prior on each latent
factor is inverting the covariance matrix. The naive update equations for the
covariance matrices of the variational distributions q(U) and q(V ) are given by:

Cu
k =

( N∑
n=1

J∑
j=1

diag
{

τn
(
Ṽ 2
jk + Cv

k jj

)
On

:j

}
+ (Σu + σ2

ukI)−1
)−1

(14)

Cv
k =

( N∑
n=1

I∑
i=1

diag
{

τn
(
Ũ2
ik + Cu

k ii

)
On

i:

}
+ (Σv + σ2

vkI)−1
)−1

(15)

The matrix inversions entail cubic time complexity per iteration in the vari-
ational EM algorithm, which renders applications to larger datasets intractable.
If the side information is low rank, the matrix inversion lemma can be exploited
to invert the matrix efficiently, reducing the complexity to cubical scaling in the
rank of the prior matrix.

We start by exploiting a standard spectral decomposition of the full covari-
ance matrix:

(Σ + σ2I)−1 � (PXP � + σ2I)−1 = P (X + σ2I)−1P �, (16)

where X =
[
x 0
0 0

]
and PP � = P �P = I.

More specifically, we apply single value decomposition (SVD) on the covari-
ance to obtain a rank H approximation by forcing all remaining eigenvalues
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to zero, resulting in PXP �. Using the matrix inversion lemma, the updating
rule is reformed to:

{
D + P (X + σ2I)−1P �}−1

= D−1 − D−1PW −1P �D−1, (17)

where W = X + P �(D−1 + σ2I)P and D is the diagonal matrix from the first
part of the updating rule in Eqs. (14) and (15).

Since the eigen decomposition needs only to be performed once at initiali-
sation, the effective computational cost per iteration is therefore dominated by
calculating the inverse W ∈ IRH×H , which is cubic in H � I, J .

4.4 Missing-Value Imputation with the MV-WarpedMF-SI

The trained model can be used to make predictions of missing values in the
transformed space. A consensus prediction using evidence across views can be
obtained by calculating Ũ Ṽ �, where Ũ and Ṽ correspond to the expected latent
factors and loadings under the variational posterior respectively. For each data
view, the predictive distribution for any entry in the transformed space Zn

ij is a
univariate normal distribution with the learned mean and variance:

p(Zn
ij |M) =N (Zn

ij |μ̃n
ij , ξ̃

n
ij), (18)

where M is the set of learned variables, μ̃n
ij = Ũi:Ṽ

�
j: + b̃r

n

i + b̃c
n

j , and ξ̃nij =
K∑
k

(Ũ2
ikC

v
k jj + Ṽ 2

jkC
u
k ii + Cu

k iiC
v
k jj) + sr

n

i + sc
n

j + 1/τ̃n.

The predictive distribution in the observation space can then be obtained by
reversing the warping transformation. This is done by squashing the predictive
normal distribution in the latent space through the learned warping function,
parameterised by α̃, β̃, γ̃, leading to:

p(Y n
ij |M) = φ′

n(φ−1
n (Zn

ij)) · N (Zn
ij |μ̃n

ij , ξ̃
n
ij). (19)

To compute a point estimate of a missing value, we use the predictive expecta-
tion of the warped Gaussian distribution in Eq. (19). Effectively, this operation
marginalises over the latent space, integrating over all possible values through
the inverse warping function φ−1 under its predictive distribution:

Y n
ij =

∫
φ−1
n (Zn

ij) · N (Zn
ij |μ̃n

ij , ξ̃
n
ij) dZn

ij . (20)

Since we parameterise the function in the observation space, its inverse φ−1
n (Zn

ij)
cannot be analytically computed in a closed form. However, computing the
inverse function φ−1

n (Zn
ij) is similar to finding the root of φn(Y n

ij ) − Zn
ij = 0.

This problem can be solved using the Newton-Raphson method, which typi-
cally converges within a few iterations. Although convergence of this method in
principle depends on the initialisation, we observed that a random initialisation
yields robust results in practice. Finally, we estimate the integral in Eq. (20)
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by reformulating the one dimensional Gaussian distribution into the form of a
Hermite polynomial. This approach allows to approximate the integral using a
Gauss-Hermite quadrature, estimating the integral with a weighted sum of a
relatively small number of the function evaluated at appropriate points (we used
ten evaluations in the experiments).

The implementation of MV-WarpedMF-SI is available at https://github.
com/PMBio/WarpedMF.

5 Results

We first applied the MV-WarpedMF-SI model on synthetic datasets to investi-
gate its transformation capability in a multi-view setting. Subsequently we used
the model for a genomic imputation task to fill in missing values and recover the
consensus structure in a gene-disease prioritisation study.

5.1 Simulation Studies

We simulated synthetic data drawn from the generative model of MV-
WarpedMF-SI. Firstly, we simulated covariance matrices from an inverse
Wishart distribution and used them to generate latent factors U and loadings
V by assuming K = 5 hidden factors. We then created two 1,000 × 1,000 data
matrices with 90% missing values from the inner product of the same latent
factors, UV �, corrupted with Gaussian noise, resulting in Z1 and Z2. To inves-
tigate to what extent the model is able to recover a data transformation, we
finally created Y 1 and Y 2 by using a linear superposition of the untransformed
data and a non-linear transformation, Y n = (1 − λ) · Zn + λ · φn(Zn), where
the parameter λ determines the intensity of the transformation and φ denotes
an exponential and a logarithmic data transformation for the view n = 1 and 2
respectively. In total, we generated six datasets with a variable degree of non-
linear warping. We also simulated side information regarding row and column
similarities using rank H = 10 approximations to the true simulated covariances
of U and V .

The proposed models, MV-WarpedMF and MV-WarpedMF-SI were trained
on each dataset. For comparison, we also considered a standard (non-warping)
multi-view matrix factorisation model (MV-MF) applied to the same data. Both
Y 1 and Y 2 were modelled simultaneously by each model. For each simulated
dataset, we evaluated the model performance using five-fold cross validation, cal-
culating the correlation coefficient (R2) between observed and predicted matrix
values on the hold-out test set.

The prediction results in Fig. 2(a) show that the warped models performed
markedly better than the un-warped MV-MF, where the differences were largest
for strong non-linearities and the best model was the combination of learn-
ing warping function and incorporating side information (MV-WarpedMF-SI).
Figure 2(b) shows a comparison of the true transformations and the warping

https://github.com/PMBio/WarpedMF
https://github.com/PMBio/WarpedMF
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(a) Model evaluation on R2:
2weiV1weiV

(b) Warping functions:
2weiV1weiV

Learned function True function Learned function True function

(c) Predictive distributions:
2weiV1weiV

Fig. 2. Impact of the inference of warping functions in multi-view learning. Considered
are the proposed MV-WarpedMF and MV-WarpedMF-SI as well as a standard multi-
view matrix factorisation model (MV-MF) applied to the raw untransformed data. Box
plots show the out of sample prediction accuracy (shown is variation in R2 across the
five folds in each of six datasets) for increasing degrees of non-linear distortion (a).
The true generative warping functions and the parametric fits recovered by the model
are shown in (b). The predictive distributions in the observed space for each view are
depicted in (c).

functions inferred using MV-WarpedMF-SI. Representative examples of the pre-
dictive density for one entry of the data matrix are shown in Fig. 2(c). The
warping model employed in MV-WarpedMF-SI can capture complex and asym-
metric distributions, providing a substantially better approximation to the true
density than a normal distribution as used in a standard MV-MF.

5.2 Analysis of Therapeutic Gene-Disease Associations

Data. Next, we applied the MV-WarpedMF-SI to a gene-disease association
task. The dataset consisted of disease × gene matrices. We considered six evi-
dence sources of therapeutic gene-disease relationships as well as the additional
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validation set of gene-disease associations derived from drugs in clinical trials.
These data are freely available via the Open Targets platform1:

– ANIM, Y 1: drug effects on animal models where scores were calculated using
the phenodigm similarity to human diseases [24].

– EXPR, Y 2: differential gene expression profiles of control-disease experiments
from Expression Atlas2 where scores were calculated from the p-value and log2
fold change.

– GEAS, Y 3: gene association studies in GWAS Catalog3 which were scored by
the p-value, sample size, and severity effect.

– LITR, Y 4: literature mining of scientific articles on Pubmed database4, scoring
gene-disease associations by the co-occurrence of the gene and disease terms
in the same sentence.

– PATH, Y 5: evidences of pathway analysis from REACTOME5.
– SOMU, Y 6: evidences of somatic mutation studies from COSMIC6.
– An independent validation set of 22,138 known associations covering 372 dis-

eases and 614 therapeutic genes, derived from ChEMBL7, scored by drug
development pipeline progression. This dataset was not included for training
the models.

We also considered side information of a disease similarity matrix (Σu)
derived from disease ontology trees [18] and a gene similarity matrix (Σv), which
was estimated from gene expression networks [10]. To define the disease similar-
ity covariance, we considered the inverse of the shortest path distance between
diseases through the lowest common ancestor. For the gene similarity network
we used the pre-computed 1,000 eigenvectors and eigenvalues of the gene-gene
correlation matrix derived from 33,427 gene expression profiles [10].

In total, we constructed six matrices of 426 diseases and 10,721 gene targets,
with an average of 95% missing values. These datasets represent typical examples
of evidences that differ in scale and distributional properties.

Considered Methods. We compared the following models in single-view learn-
ing, where each data view was trained and validated independently, as well as
multi-view learning, where all the data views were considered simultaneously.
We applied a standard matrix factorisation (MF) [14] and a regression-based
MF model with side information (RBMF-SI) [15] to each view separately, both
of which were trained on the raw (un-warped) data as baselines. As an addi-
tional comparison partner, we also considered preprocessing the raw data using
the Box-Cox transformation before applying an MF and an RBMF-SI. We denote
1 https://www.targetvalidation.org/
2 https://www.ebi.ac.uk/arrayexpress.
3 https://www.ebi.ac.uk/gwas.
4 https://europepmc.org.
5 https://www.reactome.org.
6 https://cancer.sanger.ac.uk/cosmic.
7 https://www.ebi.ac.uk/chembl.

https://www.targetvalidation.org/
https://www.ebi.ac.uk/arrayexpress
https://www.ebi.ac.uk/gwas
https://europepmc.org
https://www.reactome.org
https://cancer.sanger.ac.uk/cosmic
https://www.ebi.ac.uk/chembl
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Table 1. Summary of the considered methods in this work.

Model Data transformation Side information

Single-view learning

MFb [14] None None

RBMF-SIb [15] None Regression-based

BoxCoxMF Box-Cox preprocessing None

BoxCoxRBMF-SI Box-Cox preprocessing Regression-based

WarpedMFa Built-in warping functions None

WarpedMF-SIa Built-in warping functions Covariance priors

Multi-view learning

MV-MF None None

MV-RBMF-SI None Regression-based

MV-BoxCoxMF Box-Cox preprocessing None

MV-BoxCoxRBMF-SI Box-Cox preprocessing Regression-based

MV-WarpedMFa Built-in warping functions None

MV-WarpedMF-SIa Built-in warping functions Covariance priors
a Our proposed model variants
b We modified the original model by adding bias terms.

these methods as BoxCoxMF and BoxCoxRBMF-SI respectively. The Box-Cox
transformation was fit for each data view independently.8 Moreover, we applied
all the models in multi-view learning, denoting them with the prefix ‘MV’.
Finally, the proposed model of learning warping functions during matrix fac-
torisation was used either without (WarpedMF) or with the inclusion of side
information (WarpedMF-SI), and in its multi-view form either without (MV-
WarpedMF) or with side information (MV-WarpedMF-SI). Table 1 summarises
the methods considered in this analysis.

Evaluation of Prediction Accuracy Using Cross Validations. We first
assessed the predictive accuracy of the considered methods in terms of their
ability to impute held-out values. We trained each model using a five-fold cross
validation experiment, and compared the predicted scores to the true values in
the hold-out test predictions using the Spearman rank correlation coefficients
(Rs). Predictions from all models were assessed on the raw data scale.

While we assessed each method in terms of the imputation task by using
both the latent factors and the bias terms (Ũ Ṽ � + b̃r + b̃c), we also explored
the alternative ability to impute gene-disease scores when considering only the
inferred latent factors (Ũ Ṽ �) without the learned bias terms. Table 2 shows the
average test Rs under these two prediction schemes.

8 This was done by using a SciPy library.
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Table 2. Average test Rs from the five-fold cross validations using all learned variables
(Ũ Ṽ � + b̃r + b̃c) are presented. In the parentheses are the average test Rs of the
imputing gene-disease relationships using only the inner product of the shared latent
factors (Ũ Ṽ �), which is considered the inferred consensus in multi-view learning.

Model 5-fold cross validation

ANIM EXPR GEAS LITR PATH SOMU

Single-view learning

MF .76 (.28) .71 (.22) .89 (.27) .60 (.26) .94 (.26) .84 (.51)

RBMF-SI .60 (.08) .59 (.20) .84 (.26) .39 (.02) .76 (.22) .81 (.20)

BoxCoxMF .76 (.27) .74 (.29) .92 (.38) .62 (.23) .94 (.04) .84 (.25)

BoxCoxRBMF-SI .77 (.38) .75 (.46) .87 (.37) .69 (.45) .95 (.02) .78 (.22)

WarpedMFa .77 (.32) .75 (.49) .92 (.55) .62 (.30) .95 (.38) .84 (.60)

WarpedMF-SIa .81 (.47) .77 (.67) .92 (.55) .69 (.52) .95 (.44) .87 (.76)

Multi-view learning

MV-MF .68 (-.11) .64 (.03) .85 (.25) .59 (.26) .91 (-.13) .80 (.18)

MV-RBMF-SI .64 (.01) .62 (.02) .85 (.05) .46 (.01) .59 (-.06) .79 (.08)

MV-BoxCoxMF .72 (-.02) .70 (.05) .89 (.22) .57 (.07) .91 (.13) .82 (.04)

MV-BoxCoxRBMF-SI .70 (-.16) .83 (.42) .84 (.05) .59 (.44) .09 (.03) .66 (.01)

MV-WarpedMFa .60 (.68) .69 (.65) .37 (.53) .52 (.52) .19 (.08) .71 (.59)

MV-WarpedMF-SIa .75 (.36) .72 (.43) .89 (.22) .61 (.50) .90 (.09) .81 (.38)
a Our proposed model variants.

For imputation performance, it is not surprising that modelling each view
independently can yield better results, where the best performing model com-
bined learning warping function within matrix factorisation with low-rank side
information (WarpedMF-SI). The inclusion of side information via low-rank
covariance priors (WarpedMF-SI) consistently increased prediction accuracy for
all data views, whereas other methods, i.e. the linear regression based MF models
(RBMF-SI and BoxCoxRBMF-SI) yielded variable performance.

When considering the inferred latent representations without the bias terms,
the WarpedMF-SI model had the highest predictive performance. The proposed
warped matrix factorisation models without side information (WarpedMF) was
substantially more accurate than un-wapred factorisation models (MF) or the
Box-Cox preprocessing models (BoxCoxMF). This is more evident in multi-view
learning where the un-warped factorisation (MV-MF) and the Box-Cox pre-
processing (MV-BoxCoxMF) failed to capture the consensus across views; very
little structure was remained for the shared latent factors to discover. In con-
trast, learning warping functions in multi-view learning of the MV-WarpedMF
model as well as the MV-WarpedMF-SI model maximised the mutual latent
structures across views, promoting our confidence in true associations (see the
next section).
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SAEGRPXEMINA
Single-view model Rs

min avg max
10.10.-30.-FM

RBMF-SI -.01 -.00 .01
BoxCoxMF -.06 -.00 .06
BoxCoxRBMF-SI -.03 .01 .05
WarpedMF -.02 .02 .06
WarpedMF-SI .00 .03 .06

Multi-view model Rs

70.FM-VM
MV-RBMF-SI .03
MV-BoxCoxMF .03
MV-BoxCoxRBMF-SI .03
MV-WarpedMF .19
MV-WarpedMF-SI .19

UMOSHTAPRTIL

Fig. 3. Test Rs are shown when validating with known association scores (left). Learned
transformation functions inferred by MV-WarpedMF on each data set (right).

Evaluation of Consensus Discovery Using Known Associations. To fur-
ther explore the benefit of the consensus discovery captured by the shared latent
factors, we assessed each model using the independent out-of-sample associa-
tion scores of 22,138 known gene-disease associations. Figure 3(left) shows the
test correlation coefficient (Rs) obtained from each model, where the minimum,
average and maximum of Rs across views are shown for single-view models.
These results show that single-view learning did fail to identify true gene-disease
associations, despite the strong predictive performance. Multi-view learning con-
sistently resulted in improved performance, where the best models were the com-
bination of warping and multi-view modelling with or without side information
(MV-WarpedMF and MV-WarpedMF-SI), followed by the un-warped factorisa-
tion (MV-MF). This confirms that learning warping functions in conjunction
with the parameters of matrix factorisation modelling rather than the Box-
Cox preprocessing or the un-warped factorisation can capture complex trans-
formations and in particular is an effective approach to adjust for differences
in scale between views, leading to significantly improved imputation accuracies.
Figure 3(right) depicts the six warping functions inferred by MV-WarpedMF-SI.

6 Conclusion

We have proposed a method to jointly infer a parametric data transformation
function while performing inference in matrix factorisation models. Our approach
unifies previous efforts, including models that combine data across views and the
incorporation of side information. In experiments on real data, we demonstrate
that learning warping functions within the matrix factorisation framework and
incorporating low-rank side information yield increased accuracy for imputing
missing values in single-view learning, and in multi-view learning where joint
inference was made across all views. Flexible data transformations will be par-
ticularly useful if distant data types are integrated. Our experiments illustrate
an example application of such a setting, where we consider gene-disease associa-
tions obtained using complementary sources of evidence. We show that learning
warping functions in multi-view matrix factorisation can enhance the discovery
of the shared latent structures (consensus) underlying across views.
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The proposed variational inference scheme is computationally efficient and
allows to incorporate side information in the form of multivariate normal (covari-
ance) priors. Combined with suitable low-rank approximations, the proposed
strategy is directly applicable to thousands of rows and columns with robust
performance.
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Abstract. We propose an efficient distributed online learning proto-
col for low-latency real-time services. It extends a previously presented
protocol to kernelized online learners that represent their models by a
support vector expansion. While such learners often achieve higher pre-
dictive performance than their linear counterparts, communicating the
support vector expansions becomes inefficient for large numbers of sup-
port vectors. The proposed extension allows for a larger class of online
learning algorithms—including those alleviating the problem above
through model compression. In addition, we characterize the quality of
the proposed protocol by introducing a novel criterion that requires the
communication to be bounded by the loss suffered.

1 Introduction

We consider the problem of distributed online learning for low-latency real-time
services [4,10]. In this scenario, a learning system of m ∈ N connected local learn-
ers provides a real-time prediction service on multiple dynamic data streams. In
particular, we are interested in generic distributed online learning protocols that
treat concrete learning algorithms as a black-box. The goal of such a protocol
is to provide, in a communication efficient way, a service quality similar to a
serial setting in which all examples are processed at a central location. While
such an optimal predictive performance can be trivially achieved by centralizing
all data, the required continuous communication usually exceeds practical limits
(e.g., bandwidth constraints [1], latency [8,21], or battery power [5,16]). Simi-
larly, communication limits can be satisfied trivially by letting all local learners
work in isolation. However, this usually comes with a loss of service quality that
increases with the number of local learners.

In previous work, we presented a protocol that effectively reduces communi-
cation while providing strict loss bounds for a class of algorithms that perform
loss-proportional convex updates of linear models [10]. That is, algorithms that
update linear models in the direction of a convex set with a magnitude propor-
tional to the instantaneous loss (e.g., Stochastic Gradient Descent [2], or Passive
Aggressive [3]). The protocol is able to cease communication as soon as no loss is
suffered anymore. However, for most realistic problems this cannot be achieved

c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 805–819, 2016.
DOI: 10.1007/978-3-319-46227-1 50
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(a) (b)

Fig. 1. (a) Trade-off between cumulative error and cumulative communication, and (b)
cumulative communication over time of a distributed learning system using the pro-
posed protocol. The learning task is classifying instances from the UCI SUSY dataset
with 4 learners, each processing 1000 instances. Parameters of the learners are opti-
mized on a separate set of 200 instances per learner.

by linear models. Thus, a more complex hypothesis class is desirable that enables
the learners to achieve zero loss and thus reach quiescence.

Kernelized online learning algorithms can provide such an extended hypoth-
esis class, but practical versions of these algorithms do not perform loss-
proportional convex updates (e.g., [12,15,20]). Therefore, in this paper we
extend the class of algorithms to approximately loss-proportional convex updates
(Sect. 2). This relaxation is particularly crucial for kernelized online learners for
streams that represent the model by its support vector expansion. These learn-
ers use this relaxation in order to reduce the number of support vectors, since
otherwise a monotonically increasing model size would render them infeasible in
streaming settings.

Also, for the first time we characterize the quality of the proposed protocol
by introducing a novel criterion for efficient protocols that requires a strict loss
bound and ties the loss to the allowed amount of communication. In partic-
ular, the criterion implies that the communication vanishes whenever the loss
approaches zero. We bound the loss and communication of the proposed pro-
tocol and show for which class of learning algorithms it fulfills the efficiency
criterion (Sect. 3). While the strict loss bound required in our criterion can be
achieved by periodically communicating protocols [4,14], their communication
never vanishes, independent of their loss, which is also required for efficiency. By
communicating only when it significantly improves the service quality, our pro-
tocol achieves similar service quality as any periodically communicating protocol
while communicating less by a factor depending on its in-place loss.

To further amplify this advantage, we apply methods from serial kernelized
in-stream learning approaches. These approaches reduce the number of support
vectors, e.g., by truncating individual support vectors with small weights [12], or
by projecting a single support vector on the span of the remaining ones [15,20].
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We illustrate the impact of the choice of the hypothesis class on the predictive
performance and communication as well as the impact of model compression on
an example dataset in Fig. 1. In this example, we predicted the class of instances
drawn from the SUSY dataset from the UCI machine learning repository [13].
The learning systems using linear models continuously suffer loss resulting in a
large cumulative error, but since the linear models are small compared to support
vector expansions, the cumulative communication is small. A continuously syn-
chronizing protocol using support vector expansions has a significantly smaller
loss at the cost of very high communication, since each synchronization requires
to send models with a growing number of support vectors. Using the proposed
dynamic protocol, this amount of communication can be reduced without losing
in prediction quality. In addition, when using model compression the communi-
cation can be further reduced to an amount similar to the linear model, but at
the cost of prediction quality.

We further discuss the behavior of our protocol with respect to the trade-off
between predictive performance and communication, and point out the strengths
and weaknesses of the protocol in Sect. 4.

2 Distributed Online Learning with Kernels

In this section, we provide preliminaries and describe the protocol, extend it
from linear function spaces to kernel Hilbert spaces, and provide an effective-
ness criterion for distributed online learning. For that, we consider distributed
online learning protocols Π = (A, σ) that run an online learning algorithm
A on a distributed system of m ∈ N local learners and exchange information
between these learners using a synchronization operator σ.

Preliminaries: The online learning algorithm A = (H, ϕ, �) run at each local
learner i ∈ [m] maintains a local model f i ∈ H from a function space H using
an update rule ϕ and a loss function �. That is, at each time point t ∈ N,
each learner i observes an individual input

(
xi

t, y
i
t

)
drawn independently from a

time-variant distribution Pt : X × Y → [0, 1] over an input space X × Y . Based
on this input and the local model, the local learner provides a service whose
quality is measured by the loss function � : H × X × Y → R+. After providing
the service, the local learner updates its local model using the update rule
ϕ : H × X × Y → H in order to minimize the cumulative loss. The synchro-
nization operator σ : Hm → Hm transfers the current model configuration
f =

(
f1, . . . , fm

)
of m local models to the synchronized configuration σ(f). In

the following, we recapitulate the dynamic protocol presented in [10] as well as
two baseline protocols, i.e., a continuously and a periodic protocol.

Given an online learning algorithm A, the periodic protocol P = (A, σb)
synchronizes every b ∈ N time steps the current model configuration f by replac-
ing all local models by their joint average f = 1/m

∑m
i=1 f i. That is, the syn-

chronization operator is given by



808 M. Kamp et al.

σb(ft) =

{(
f t, . . . , f t

)
, if b | t

ft = (f1
t , . . . , fm

t ), otherwise
.

A special case of this is the continuous protocol C = (A, σ1) that continuously
synchronizes every round, i.e., σ1 (f) =

(
f , . . . , f

)
.

The dynamic protocol D = (A, σΔ) synchronizes the local learners using a
dynamic operator σΔ [10]. This operator only communicates when the model
divergence

δ(f) =
1
m

m∑
i=1

∥∥f i − f
∥∥2

(1)

exceeds a divergence threshold Δ. That is, the dynamic averaging operator
is defined as

σΔ(ft) =

{
(f t, . . . , f t), if δ(ft) > Δ

ft, otherwise
.

In order to decide when to communicate, each local learner i ∈ [m] monitors the
local condition ‖f i

t −rt‖2 ≤ Δ for a reference model rt ∈ H that is common
among all learners (see [6,7,11,19] for a more general description of this method).
The local conditions guarantee that if none of them is violated, the divergence
does not exceed the threshold Δ. The closer the reference model is to the true
average of local models, the tighter are the local conditions. Generally, the first
choice for the reference model is the average model from the last synchronization
step. Note, however, that there are several refinements of this choice that can be
used in practice to further reduce communication.

Efficiency Criterion: In the following, we introduce performance measures in
order to analyze the dynamic protocol and compare it to the continuous and
periodic protocols. We measure the predictive performance of a distributed online
learning system until time T ∈ N by its cumulative loss

L(T,m) =
T∑

t=1

m∑
i=1

�(f i
t ,

(
xi

t, y
i
t

)
).

Performance guarantees are typically given by a loss bound L(T,m), i.e., for
all possible input sequences it holds that L(T,m) ≤ L(T,m). These bounds can
be defined with respect to a sequence of reference models, in which case they are
referred to as (shifting) regret bounds.

We measure its performance in terms of communication by its cumulative
communication

C(T,m) =
T∑

t=1

c(ft),

where c : Hm → N measures the number of bytes required by the learning
protocol to synchronize models ft =

(
f1

t , . . . , fm
t

)
at time t.
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There is a natural trade-off between communication and loss of a distributed
online learning system. On the one hand, a loss similar to a serial setting can be
trivially achieved by continuous synchronization. On the other hand, communi-
cation can be entirely omitted. The trade-off for these two extreme protocols can
be easily determined: if the cumulative loss of an online learning algorithm A is
bounded by LA(T ), the loss of a permanently centralizing system with m local
learners running A is bounded by LC(T,m) = LA(mT ), i.e., the loss bound of
a serial online learning algorithm processing mT inputs. The protocol transmits
O (m) messages of size up to O (T ) in every of the T points in time. At the same
time, the loss of a distributed system without any synchronization is bounded
by L(T,m) = mLA(T ), whereas the communication is C(T ) = 0.

The communication bound of an adaptive protocol should only depend on
LA(T ) and not on T , while at the same time retaining the loss bound of the
serial setting. In the following definition we formalize this in order to provide a
strong criterion for effectiveness of distributed online learning protocols.

Definition 1. A distributed online learning protocol Π = (A, σ) processing mT
inputs is consistent if it retains the loss bound of the serial online learning
algorithm A, i.e.,

LΠ(T,m) ∈ O (LA(mT )) .

The protocol is adaptive if its communication bound is linear in the number
of local learners m and the loss bound LA(mT ) of the serial online learning
algorithm, i.e.,

CΠ(T,m) ∈ O (mLA(mT )) .

An efficient protocol is adaptive and consistent at the same time. In the fol-
lowing section we theoretically analyze the performance of the dynamic protocol
with respect to this efficiency criterion.

Extension to Kernel Methods: The protocols presented above are defined for
models from a Euclidean vector space. In this paper, we generalize H to be a
reproducing kernel Hilbert space H = {f : X → R|f(·) =

∑dimF
j=1 wjΦj(·)}

with kernel function k : X × X → R, feature space F , and a map-
ping Φ : X → F into the feature space [18]. The kernel function corresponds
to an inner product of input points mapped into feature space, i.e., k(x, x′) =∑dimF

j=1 ξjΦj(x)Φj(x′) for constants ξ1, ξ2, · · · ∈ R. Thus, we can express the
model in its support vector expansion, or dual representation, i.e., f(·) =∑

x∈S αxk(x, ·) with a set of support vectors S = {x1, . . . , x|S|} ⊂ X and cor-
responding coefficients αx ∈ R for all x ∈ S. This implies that the linear weights
w = (w1, w2, . . . ) ∈ F defining f are given implicitly by wi =

∑
x∈S ξiαxΦi(x). In

order to apply the previously defined synchronization protocols to models from
a reproducing kernel Hilbert space, we determine how to calculate the average
of a model configuration and its divergence. For that, let f =

(
f1, . . . , fm

) ⊂ H
be a model configuration with corresponding weight vectors

(
w1, . . . , wm

) ⊂ F ,
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where each model i ∈ [m] has support vectors Si = {xi
1, . . . , x

i
|Si|} ⊂ X and

coefficients αi
x for all x ∈ Si. The average is given by

f(·) =
1
m

m∑
i=1

f i(·) =
1
m

m∑
i=1

dimF∑
j=1

wi
jΦj(·) =

1
m

m∑
i=1

dimF∑
j=1

∑
x∈Si

ξjα
i
xΦj(x)Φj(·).

We can simplify the above equation to f(·) = 1
m

∑m
i=1

∑
x∈Si αi

xk(x, ·). By defin-
ing the union of support vectors S =

⋃
i∈[m] S

i = {s1, . . . , s|S|} and augmented
coefficients αi

s ∈ R, which are given by

αi
s =

{
αi

x, if x = s

0, otherwise
,

the dual representation of the average directly follows.

Proposition 2. For a model configuration f =
(
f1, . . . , fm

) ⊂ H, where each
model i ∈ [m] has augmented coefficients αi

s for s ∈ S, the average f ∈ H is
given by

f(·) =
∑

s∈S

(
1
m

m∑
i=1

αi
s

)
k(s, ·),

with support vectors S and coefficients αs = 1/m
∑m

i=1 αi
s for all s ∈ S.

Using this definition of the average, we now define the distance between models
in H and the divergence δ of a model configuration f ⊂ H. For an individual
model f i and the average f , the distance induced by the inner product of H is
defined by

∥∥f i − f
∥∥ = 〈f i, f i〉 + 〈f , f〉 − 2〈f i, f〉, i.e.,

∥∥f i − f
∥∥ =

∑
x∈Si

(
αi

x

)2
k(x, x) +

∑

s∈S

(αs)
2
k(s, s) − 2

∑
x∈Si

∑

s∈S

αi
xαsk(x, s).

Using this distance, we can compute the divergence (Eq. 1) for models from a
reproducing kernel Hilbert space.

3 Performance Guarantees

In order to determine the performance of the dynamic protocol, we start by
extending the definition of loss-proportional convex update rules. This allows
us to bound the loss for kernelized online learning algorithms that reduce their
model size using a compression step.

Let ϕ : H × X × Y → H be a loss-proportional convex update rule, then ϕ̃ is
an approximately loss-proportional convex update rule if for all f ∈ H,
x ∈ X, and y ∈ Y it holds that ‖ϕ̃(f, x, y) − ϕ(f, x, y)‖ ≤ ε. With this, we can
bound the distance between two models after the approximate update step.
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Lemma 3. For two models f, g ∈ H and an approximately loss-proportional
convex update rule ϕ̃, with ‖ϕ̃(f, x, y) − ϕ(f, x, y)‖ ≤ ε for the corresponding
loss-proportional convex update rule ϕ, it holds that

‖ϕ̃(f, x, y) − ϕ̃(g, x, y)‖2 ≤ ‖f − g‖2 − γ2 (�(f, x, y) − �(g, x, y))2 + 2ε2.

Proof. We abbreviate ϕ(f, x, y) as ϕ(f). Then ‖ϕ̃(f) − ϕ(f)‖ ≤ ε implies for
f, g ∈ H that ‖ϕ̃(f) − ϕ̃(g)‖2 ≤ ‖ϕ(f) − ϕ(g)‖2 + 2ε2. Together with the result
from Lemma 4 in [10], i.e., ‖ϕ(f) − ϕ(g)‖2 ≤ ‖f − g‖2 − γ2 (�(f) − �(g))2, fol-
lows the result. 	

Using Lemma 3, we can bound the loss of our protocol.

Theorem 4. Let A be an online learning algorithm with γ-loss-proportional
convex update rule ϕ. Let d1, . . .dT and p1, . . . ,pT be two sequences of model
configurations such that d1 = p1 and the first sequence is maintained by the
dynamic protocol D = (A, σΔ) and the second by the periodic protocol P =
(A, σb). That is, for t = 1, . . . , T the sequence is defined by dt+1 = σΔ (ϕ(dt)),
and pt+1 = σb (ϕ(pt)) respectively. Then it holds that

LD(T,m) ≤ LP(T,m) +
T

γ2
(Δ + 2ε2).

Proof. First note that for simplicity we abbreviate �(ft, xt, yt) by �(ft). We com-
bine our Lemma 3 with Lemma 3 from [10] which states that

1
m

m∑
i=1

‖σΔ(d)i − σb(p)i‖2 ≤ 1
m

m∑
i=1

‖di − pi‖2 + Δ.

This yields for all t ∈ [T ] that

m∑
i=1

∥∥di
t+1 − pi

t+1

∥∥2 ≤
m∑

i=1

∥∥di
t − pi

t

∥∥2 − γ2
m∑

i=1

(
�(di

t) − �(pi
t)

)2
+ Δ + 2ε2.

By applying this inequality recursively for t = 1, . . . , T it follows that

m∑
i=1

∥∥di
t+1 − pi

t+1

∥∥2 ≤
m∑

i=1

∥∥di
1 − pi

1

∥∥2
+ T (Δ + 2ε2) − γ2

T∑
t=1

m∑
i=1

(
�(di

t) − �(pi
t)

)2
.

Using d1 = p1, we conclude that

T∑
t=1

m∑
i=1

(
�(di

t) − �(pi
t)

)2 ≤ 1
γ2

(
T (Δ + 2ε2) −

m∑
i=1

∥∥di
t+1 − pi

t+1

∥∥2

)
≤ 1

γ2
TΔ

⇔ LD(T )m − LP(T )m ≤ 1
γ2

T (Δ + 2ε2) 	

By setting the communication period b = 1, this result also holds for the con-
tinuous protocol C.
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The result of Theorem 4 is similar to the original loss bound of the dynamic
protocol but also accounts for the inaccuracy of the update rule, e.g., because
of model compression. We can apply the original consistency result: if the con-
tinuous protocol is consistent, then the dynamic protocol is consistent as well.
For Stochastic Gradient Descent it has been shown that the dynamic protocol is
consistent for linear models [10]. From Theorem 4 follows that the dynamic pro-
tocol remains consistent for approximately loss-proportional update rules. Note
that for static target distributions, consistency can be achieved by a decreasing
divergence threshold and compression error, i.e., Δt = t−1/2 and ε = t−1/4.

We now provide communication bounds for the dynamic protocol. For that,
assume that the m learners maintain models in their support vector expansion.
Let Si

t ⊂ R
d denote the set of support vectors of learner i ∈ [m] at time t and αi

t

the corresponding coefficients. Let Bx ∈ O (d) be the number of bytes required to
transmit one support vector and Bα ∈ O (1) be the number of bytes required for
the corresponding weight. Furthermore, let I : N× [m] → {0, 1} be an indicator
function that is 1 if for learner i at time t a new support vector has been added
during the update.

We assume that a designated coordinator node performs the synchroniza-
tions, i.e., all local learners transmit their models to the coordinator which in
turn sends the synchronized model back to each learner. Furthermore, we assume
that all protocols apply the following trivial communication reduction strategy.
Let t′ be the time of last synchronization. Assume the coordinator stored the
support vectors of the last average model St′ . Whenever a learner i has to send
its model to the coordinator, it sends all support vector coefficients α but only
the new support vectors, i.e., only Si

t \Si
t′ . This avoids redundant communication

at the cost of higher memory usage at the coordinator side. In turn, after averag-
ing the models, the coordinator sends to learner i all support vector coefficients,
but only the support vectors St \ Si

t .
We start by bounding the communication of a continuous protocol C, i.e.,

one that transmits all models from each learner in each round. The trivial com-
munication reduction technique discussed above implies that in each round, a
learner transmits its full set of support vector coefficients and potentially one
support vector—depending on whether a new support vector was added in this
round. Thus, at time t learner i submits

|Si
t |Bα + I(t, i)Bx (2)

bytes to the coordinator. The coordinator transmits to learner i ∈ m all support
vector coefficients of the average model and all its support vectors, except the
support vectors Si

t of the local model at learner i. Thus, it transmits the following
amount of bytes.

∣∣St

∣∣ Bα +
∣∣St \ Si

t

∣∣ Bx =

∣∣∣∣∣∣
m⋃

j=1

Sj
t

∣∣∣∣∣∣
Bα +

∣∣∣∣∣∣
m⋃

j=1

Sj
t \ Si

t

∣∣∣∣∣∣
Bx. (3)

With this we can derive the following communication bound.
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Proposition 5. The communication of the continuous protocol C on m ∈ N

learners until time T ∈ N is bound by

CC(T,m) ≤ Tm2|ST |Bα + m|ST |Bx ≤ m2T 2Bα + m2TBx ∈ O (
m2T 2

)
.

Proof. The constantly synchronizing protocol transmits at each time step from
each learner a set of support vector coefficients and potentially one support
vector to the coordinator. The amount of bytes is given in Eq. 2. The coordinator
transmits the averaged model back to each learner with an amount of bytes as
given in Eq. 3. Summing up the communication over T ∈ N time points and m
learners yields

CC(T,m) =
T∑

t=1

m∑
i=1

⎛
⎝|Si

t |Bα + I(t, i)Bx +

∣∣∣∣∣∣
m⋃

j=1

Sj
t

∣∣∣∣∣∣
Bα +

∣∣∣∣∣∣
m⋃

j=1

Sj
t \ Si

t

∣∣∣∣∣∣
Bx

⎞
⎠

=
T∑

t=1

m∑
i=1

(|Si
t |Bα +

∣∣St

∣∣ Bα + I(t, i)Bx +
∣∣St \ Si

t

∣∣ Bx

)
.

We analyze this sum separately in terms of bytes required for sending the support
vectors and bytes for sending the coefficients. The amount of bytes for sending
the support vectors is bounded by m|Si

T |Bx, as we show in the following.

T∑
t=1

m∑
i=1

I(t, i)Bx +
∣∣St \ Si

t

∣∣ Bx =
T∑

t=1

m∑
i=1

I(t, i)Bx

︸ ︷︷ ︸
=|ST |Bx

+
T∑

t=1

m∑
i=1

∣∣St \ Si
t

∣∣ Bx

=|ST |Bx +
T∑

t=1

m∑
i=1

∣∣∣∣∣∣

⎛
⎝

m⋃
j=1

Sj
t \

m⋃
j=1

Sj
t−1

⎞
⎠ \ (

Si
t \ St−1

)
∣∣∣∣∣∣
Bx

≤|ST |Bx +
T∑

t=1

m∑
i=1

m∑
j=1
j �=i

I(t, i)Bx ≤ |ST |Bx +
T∑

t=1

m∑
i=1

(m − 1)I(t, i)Bx

≤|ST |Bx + (m − 1)|ST |Bx = m|ST |Bx.

We now bound the amount of bytes required for sending the support vector
coefficients.

T∑
t=1

m∑
i=1

|Si
t |︸︷︷︸

≤|ST |

Bα + |St|︸︷︷︸
≤|ST |

Bα ≤
T∑

t=1

m∑
i=1

2|ST |Bα = Tm2|ST |Bα.

From
∣∣ST

∣∣ ≤ mT and the fact that we regard Bα ∈ O (1) and Bx ∈ O (d) as
constants we can follow that

CC(T,m) ≤ 2Tm|ST |Bα + m|ST |Bx ≤ m2T 2Bα + m2TBx ∈ O (
m2T 2

)
. 	
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Note that this communication bound implies that—unlike for linear models—
synchronizing models in their support vector expansion requires even more com-
munication than centralizing the input data. However, in real-time prediction
applications, the latency induced by central computation can exceed the time
constraints, rendering continuous synchronization a viable approach nonetheless.

Similarly, the communication of a periodic protocol P that communicates
every b ∈ N steps (b is often referred to as mini-batch size) can be bounded by

CP(T,m) ≤ T

b
2m|ST |Bα + m|ST |Bx ≤ T

b
m2TBα + m2TBx ∈ O

(
1
b
m2T 2

)
.

We now for the first time provide a communication bound for the dynamic
protocol D. For that, we first bound the number of synchronization steps and
then analyze the amount of communication per synchronization.

Proposition 6. Let A = (H, ϕ̃, �) be an online learning algorithm with an
approximately loss-proportional convex update rule ϕ̃ for which holds that
‖f − ϕ̃(f, x, y)‖ ≤ η�(f, x, y). The number of synchronizations VD(T ) of the
dynamic protocol D running A in parallel on m nodes until time T ∈ N with
divergence threshold Δ is bounded by

VD(T ) ≤ η√
Δ

LD(T,m).

where LD(T,m) denotes the cumulative loss of D.

Proof. For this proof, we abbreviate �(f i
t , x

i
t, y

i
t) as �(f i

t ) and ϕ̃(f i
t , x

i
t, y

i
t) as

ϕ̃(f i
t ). The dynamic protocol synchronizes if a local condition ‖f i

t − rt‖2 ≤ Δ is
violated. Now assume that at t = 1 all models are initialized with f1

1 = · · · = fm
1

and r1 = f1, i.e., for all local learners i it holds that ‖f i
1 − r1‖ = 0. A violation,

i.e., ‖f i
t − rt‖ >

√
Δ, occurs if one local model drifts away from rt by more

than
√

Δ. After a violation, a synchronization is performed and rt = f t, hence
‖f i

t −rt‖ = 0 and the situation is again similar to the initial setup for t = 1. In the
worst case, a local learner drifts continuously in one direction until a violation
occurs. Hence, we can bound the number of violations Vi(T ) at a single learner
i by the sum of its drifts divided by

√
Δ:

Vl(T ) ≤ 1√
Δ

T∑
t=1

‖f i
t − f i

t+1‖ =
1√
Δ

T∑
t=1

‖f i
t − ϕ̃(f i

t )‖︸ ︷︷ ︸
≤η�(fi

t )

≤ 1√
Δ

T∑
t=1

η�(f i
t ).

With this, we can bound the amount of points in time t ∈ [T ] where at least one
learner l has a violation, i.e., V (T ). In the worst case, all violations at all local
learners occur at different time points, so that we can upper bound V (T ) by the
sum of local violations Vi(T ) which is again upper bounded by the cumulative
sum of drifts of all local models:

V (T ) ≤
m∑

i=1

Vi(T ) ≤ 1√
Δ

T∑
t=1

m∑
i=1

η�(f i
t ) =

η√
Δ

LD(T,m).
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In the following theorem we bound the overall communication by combining
this bound on the number of synchronizations with an analysis of the amount
of bytes transfered per synchronization.

Theorem 7. Let A = (H, ϕ̃, �) be an online learning algorithm with approxi-
mately loss-proportional update rule ϕ̃ and ‖f − ϕ̃(f, x, y)‖ ≤ η�(f, x, y). The
amount of communication CD(T,m) of the dynamic protocol D running A in
parallel on m nodes until time T ∈ N with divergence threshold Δ is bounded by

CD(T,m) ≤ η√
Δ

LD(T,m)
(
2m

∣∣ST

∣∣ Bα

)
+ m

∣∣ST

∣∣ Bx

Proof. Assume that at time T , the dynamic protocol performs a synchroniza-
tion. Then, similar to the argument for the continuous protocol, the support
vector set at time T is similar for all learners and independent of the number
of synchronization steps before. In particular, it is the same if a synchronization
was performed in every time step. Thus, again the amount of bytes required for
sending the support vectors is bounded by m

∣∣ST

∣∣ Bx. Let θ : N → {0, 1} be an
indicator function such that θ(t) = 1 if at time t the dynamic protocol performed
a synchronization and θ(t) = 0 otherwise. Then, the amount of bytes required
to send all the support vector coefficients until time T is

T∑

t=1

θ(t)
m∑

i=1

(∣∣∣Si
t

∣∣∣+
∣∣St

∣∣
)

Bα ≤
T∑

t=1

θ(t)

︸ ︷︷ ︸
=VD(T )

m∑

l=1

2|ST |Bα ≤ η√
Δ

LD(T, m)

︸ ︷︷ ︸
Proposition 6

(
2m|ST |Bα

)

Together with the amount of bytes required for exchanging all support vectors
this yields CD(T,m) ≤ η√

Δ
LD(T,m)

(
2m|ST |Bα

)
+ m

∣∣ST

∣∣ Bx. 	

Note that the loss bounds for online learning algorithms are typically sub-
linear in T , e.g., optimal regret bounds for static target distributions are in
O(

√
T ). In these cases, the dynamic protocol has an amount of communication

in O(m2T
√

T ) which is smaller than O(m2T 2) of the continuously and periodic
protocols by a factor of

√
T .

In the original case of linear models instead, the dynamic protocol only trans-
mits m weight vectors of fixed size per synchronization. In this case the amount
of communication per synchronization is bounded by a constant. If for an online
learning algorithm A and the periodic protocol P it holds that LP(T,m) ≤
LA(mT ), then by Theorem4 it also holds that LD(T,m) ≤ LA(mT ). This
implies that the dynamic protocol is adaptive. In the following corollary, we
show that for linear models, the dynamic protocol is adaptive when using the
Stochastic Gradient Descent algorithm.

Corollary 8. The dynamic protocol D = (SGD, σΔ) using Stochastic Gradient
Descent SGD with linear models is adaptive, i.e.,

CD(T,m) ∈ O (mLSGD(mT ))
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Proof. The amount of synchronizations of the dynamic protocol is bounded by
V (T ) (see Proposition 6). In each synchronization, each learner transmits one lin-
ear model, i.e., one weight vector of fixed size to the coordinator. The coordinator
submits one averaged weight vector back to each learner. Thus, the amount of
communication per synchronization is bounded by cm ∈ N, where cm ∈ O (m).
Then, the total communication is bounded by

CD(T,m) ≤ cm
η√
Δ

LD(T,m) ∈ O (mLD(T,m)) .

The dynamic protocol retains the loss bound of Stochastic Gradient Descent [10],
i.e., LD(T,m) ≤ LSGD(mT ). 	

Unfortunately, from Theorem4 also follows that the dynamic protocol applied to
kernelized online learning algorithms that do not bound the size of their models
does not comply to the strict notion of adaptivity as given in Definition 1. That
is, because the model size and thus the size of each message to and from the
coordinator can grow with T . Nonetheless, the theorem guarantees that if the
learners do not suffer loss anymore, the dynamic protocol reaches quiescence.

In order to make the dynamic protocol adaptive in the strict sense of
Definition 1, the model size has to be bounded. For kernelized online learning in
streams, several model compression techniques have been proposed [12,15,20].
These techniques typically guarantee that the compression error is bounded, i.e.,
for the compressed model f̃ it holds that

∥∥∥f − f̃
∥∥∥ ≤ ε. From this directly fol-

lows that if the base algorithm uses a loss-proportional convex update rule ϕ, the
compressed version is an approximately loss-proportional convex update rule ϕ̃.

One approach to compressing the support vector expansion is to project a
new support vector on the span of the remaining ones and thus avoid adding
it to the support set. Another one is to truncate support vectors with small
coefficients. For the projection approach (e.g., described in [15]) the error bound
is independent of the learning algorithm. However, there is no bound on the
number of support vectors. Thus, even though the model size is reduced in
practice, there is no formal bound on the model size. For the truncation approach,
however, [12] have shown that an error bound as well as a bound on the number
of support vectors can be achieved when using Stochastic Gradient Descent.
Specifically, for a fixed model size of τ support vectors, they have shown that the
compression error is bound by

∥∥∥f − f̃
∥∥∥ ≤ ε ∈ O (

1
λ (1 − λ)τ

)
, where λ ∈ R is the

learning rate of the Stochastic Gradient Descent algorithm (SGD). Therefore, we
can follow that the dynamic protocol with SGD using kernel models compressed
by truncation is adaptive. Specifically for SGD, [4] have shown that periodic
synchronizations retain the serial loss bound of SGD. It is consistent in this
setting, because the dynamic protocol in turn retains the loss bounds of any
periodic protocol. Since it is both consistent and adaptive, the dynamic protocol
is efficient.
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(a) (b)

Fig. 2. (a) Trade-off between cumulative error and cumulative communication and
(b) cumulative communication over time of the dynamic protocol versus a periodic
protocol. 32 learners perform a stock price prediction task using SGD (learning rate η
and regularization parameter λ optimized over 200 instances, with η = 10−10, λ = 1.0
for the periodic protocol, and η = 1.0, λ = 0.01 for the dynamic protocol) updates,
either with linear models or with non-linear models (Gaussian kernel with number of
support vectors limited to 50 using the truncation approach of [12]).

4 Discussion

The dynamic protocol, extended to kernel methods, yields for the first time a
theoretically efficient tool to learn non-linear models for distributed real-time
services, in settings where communication is a major bottleneck. For that, it
can employ online kernel methods together with model compression techniques,
which reduce, or bound the number of support vectors. The efficiency of the
protocol is characterized by a novel criterion that ties a tight loss bound to the
required amount of communication—a criterion which is not satisfied by the
state of the art of periodically communicating protocols.

While we provided a theoretical analysis, the advantage of the dynamic pro-
tocol in combination with kernel methods can also be shown in practice: Fig. 2
shows the results of an experiment on financial data [9], where 32 learners pre-
dicted the stock price of a target stock. We can see that for this difficult learn-
ing task linear models perform poorly compared to non-linear models using a
Gaussian kernel function. Simultaneously, the communication required to peri-
odically synchronize these non-linear models is larger than for linear models by
more than two orders of magnitude. Using the dynamic protocol with kernel
models we could reduce the error by an order of magnitude compared to using
linear models (a reduction by a factor of 18). At the same time, the commu-
nication is reduced by more than three orders of magnitude compared to the
static protocol (by a factor of 2433), which is yet an order of magnitude smaller
than the communication when using linear models (by a factor of 10). Moreover,
within less than 2000 rounds, the dynamic protocol reaches quiescence, as it is
implied by the efficiency criterion.
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A limit of the employed notion of efficiency is that it only takes into account
the sum of messages but not the peak communication. In large data centers,
where the distributed learning system is run next to other processes, the main
bottleneck is the overall amount of transmitted bytes and a high peak in com-
munication can often be handled by the communication infrastructure or evened
out by a load balancer. In smaller systems, however, high peak communication
can become a serious problem for the infrastructure and it remains an open
problem how it can be reduced. Note that the frequency of synchronizations in
a short time interval can actually be bounded by a trivial modification of the
dynamic protocol: local conditions are only checked after a mini-batch of exam-
ples have been observed. Thus, the peak communication is upper bounded in
the same way as with a periodic protocol, while still dynamically reducing the
overall amount of communication.

When analyzing the reason for practical efficiency, model compression has
proven to be a crucial factor, since storing and evaluating models with large
numbers of support vectors can become infeasible—even in serial settings. In
a distributed setting, transmitting large models furthermore induce high com-
munication costs, which is aggravated by averaging local models, because the
synchronized model consists of the union of all local support vectors. For the
model truncation approach of [12], we have shown that the efficiency criterion
is satisfied, but other model compression approaches might be favorable in cer-
tain scenarios. Thus, an interesting direction for future research is to study the
relationship between loss and model size of those model compression techniques
in order to extend the results on efficiency.

Also, alternative approaches to ensuring constant model size could be investi-
gated, e.g., a finite dimensional approximation of the feature map Φ : X → H of
a reproducing kernel Hilbert space H, such as Random Fourier Features [17]. It
remains an open problem how tight loss bounds combined with communication
bounds can be derived in these settings.

Finding the right divergence threshold for the dynamic protocol, i.e., one
that suits the desired trade-off between service quality and communication, is in
practice a neither intuitive nor trivial task. The threshold can be selected using
a small data sample, but the communication for a given threshold can vary over
time and is also influenced by other parameters of the learner. Thus, another
direction for future research is to investigate an adaptive divergence threshold.
This could allow for a more direct selection of the desired trade-off between
service quality (i.e., predictive performance) and communication.
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