Regression Analysis Model Based
on Normal Fuzzy Numbers

Cui-Ling Gu, Wei Wang and Han-Yu Wei

Abstract Fuzzy regression analysis plays an important role in analyzing the
correlation between the dependent and explanatory variables in the fuzzy system.
This paper put forward the FLS (Fuzzy Least Squares) method for parameter esti-
mating of the fuzzy linear regression model with input, output variables and regres-
sion coefficients that are normal fuzzy numbers. Our improved method proves the
statistical properties, i.e., linearity and unbiasedness of the fuzzy least square estima-
tors. Residuals, residual sum of squares and coefficient of determination are given to
illustrate the fitting degree of the regression model. Finally, the method is validated
in both rationality and validity by solving a practical parameter estimation problem.

Keywords Normal fuzzy numbers - Fuzzy regression analysis * Fuzzy least squares *
Coefficient of determination

1 Introduction

The term regression was introduced by Francis Galton. Now, regression analysis
is a fundamental analytic tool in many research fields. The method gives a crisp
relationship between the dependent and explanatory variables with an estimated
variance of measurement errors. Fuzzy regression [1] techniques provide a useful
means to model the functional relationships between the dependent variable and
independent variables in a fuzzy environment. After the introduction of fuzzy linear
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regression by Tanaka et al. [2], there has been a great deal of literatures on this
topic [3—13]. Diamond [3] defined the distance between two fuzzy numbers and
the estimated fuzzy regression parameters by minimizing the sum of the squares of
the deviation. Chang [4] summarized three kinds of fuzzy regression methods from
existing regression models: minimum fuzzy rule, the rule of least squares fitting
and interval regression analysis method. For the purpose of integration of fuzziness
and randomness, mixed regression model is put forward in [5]. Chang proposed
the triangular fuzzy regression parameters least squares estimation by using the
weighted fuzzy arithmetic and least-square fitting criterion. Sakawa and Yano [6]
studied the fuzzy linear regression relation between the dependent variable and the
fuzzy explanatory variable based on three given linear programming methods. In
order to estimate the parameters of fuzzy linear regression model with input, output
variables and regression coefficients are LR typed fuzzy numbers, Zhang [7] first
represented the observed fuzzy data by using intervals, and then used the left, right
point and the midpoint data sets of intervals to derive the corresponding regression
coefficients of conventional linear regression models. Zhang [8] discussed the least
squares estimation and the error estimate of the fuzzy regression analysis when the
coefficient is described by trapezoidal fuzzy numbers depicting the fuzzy concept
by using the gaussian membership function corresponding to human mind. To our
knowledge, few researches are conducted on fuzzy regression analysis based on
normal fuzzy numbers. Therefore, in this paper, we first calculate the least squares
estimator of the fuzzy linear regression model, and then discuss statistical properties
of the fuzzy least squares (FLS) estimator. Then, we give residuals, residual sum
of squares and coefficient of determination and illustrate the fitting degree of the
regression model. Last, we also verify the rationality and validity of the parameter
estimation method by a numerical example (Fig. 1).

Fig.1 The schematic ) ) i
diagram of fuzzy normal
numbers
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2 Preliminaries

Definition 1 ([14]) If fuzzy number A has the following membership function

(x—a)?
)

A(x):exp[— ],x,aeR,U>0

where R is a set of real numbers, th~en A is called a normal fuzzy number determined
by a and ¢, and thus denoted by A = (a, 0?).

Let A = (a, 02) and B = (b, 07), then three operations of the normal fuzzy num-
bers are deﬁned as follows: (1) A+ B = (a+b, 03 + ai); (2) M = (\a, )\03);
(3)% = (5 02) where a # 0.

Definition 2 ([15]) The expectation of fuzzy number Ais

a f XA (x)dx

EA
W= S Ady

(D

where fj;o A(x)dx > (. The average of A is denoted by the expectation E (A) of
fuzzy number A. In particular, when A = (a, o2),E A) = a.

Definition 3 ([15]) The variance of fuzzy number A is

o T2 AR (x — E(A))%dx

D(A
@ = [ A(x)dx

2

where fj;oA(x)dx > 0. The spread of A is denoted by the variance D(A) of fuzzy
number A. In particular, when A = (a, a2y, D(A) = 5

Definition 4 ([15]) Multiplication between fuzzy numbers A and B is defined as:

~ ~ +OO ~ +OO ~
A®Bé/ A(x)dx/ B()dy 3)

[e.¢] o0

WhenA:B’, and AQB=A®
module of A.

A=[[ZA@dx], A®A = ||A|]* is called the
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Let A and B denote the fuzzy numbers A= (a, ai), and B = (b, Ug) respectively,
then

~ ~ > o 00 @-a? 0o _ o=h?
A@Bé/ A(x)dx/ B(y)dy:/ e dx/ e % dy=mo.0p,

[e.¢] o] oo o]

Specifically, when A=B,A®A = ||A|>

Definition 5 ([16]) Let A = (a, 02), B = (b, 02), then the distance between A and
B is defined as:

LA, B) = (a—b7 + %wg o2y @)

3 The Least Squares Estimator of Fuzzy Linear
Regression Model

The classical linear regression model is as follows:

Y = Bo+ BiX1 + BaXo + -+ + BiXi (%)
where Y is explained as variable and X;, X5, ..., X; are explanatory variables, (3,
0B1, ..., Py are regression coefficients. Let{(X;, ¥;) : i = 1, 2, ..., n} be a set of sam-

ple observations, ordinary least squares estimation is frequently based on the fact
that the overall error between the estimated Y, » and the observations Y; should be as
small as possible. That is, the corresponding Q residual between the estimated Y; and
the observations Y; should be as small as possible. Symbolically,

Q=> (Vi—1)* =D (Yi— (fo+ SiXii+ - + BiXu) 6)
i=1

i=1

According to the principle of differential and integral calculus, Q will be the minimum

value when the first order partial derivative of Q about 3y, 31, ..., O is equal to zero.
However, in many cases, the fuzzy relations in formula (5) must be considered.

In general, there are the following three conditions [9]: ~ o

@) Y =B+ BiX1i + BoXoi + -+ BiXiin Bo, Brs - B €R Xy, X, Y €F

R),i=1,2,....n o o

®Y; = fo + BiX1i + BoXoi + -+ + BiXuis Bos Bis - B, Yi € F(R), Xy, ..., Xy €

R,i~=1,~2,...~,r~z; o L o o

©)Yi = Bo+ BiXu + BoXoi + - - - BiXuir Bo, Brs -y B X1, oo, Xi, Yi € F(R), i =

1,2,...,n.



Regression Analysis Model Based on Normal Fuzzy Numbers 491

In fact, (b) is the most common conditions. For (b), we focus on the fuzzy linear
regression model in which dependent variables are the form of real numbers and
explanatory variables and the regression coefficients are the form of normal fuzzy
numbers.

Theorem 1 Assume the fuzzy multiple linear regression model is as follows:

Yi = Go + BiXyi + BoXoi 4 - - + BiX

then

Vi = (a1, 07) = (a5, 03) + (a3, 03 )X1i + (a3, 05)Xoi + - + (a5, 03 )X

2 2 2 2 y2
= (aBO + angli + -4 afika") + (O‘EO + UB]X“ + -+ ngin)

Leta = X1, b = X, where

T 2 2 24T 2 2 29T
Y =lag,az,...,az5] ,C=[a“@0,oﬁl,...,oak] b =loy,05,...,0;]

— T R ~ 9T _ (A2 a2 ~2 T
a=/la,a,...,a,l ,A—[aﬁo,am,...,aﬁk] ,U—[JBO,O'a],...,O'ak]

1 X11 Xo1 -+ Xia
1 X0 Xp -+ Xi2

X =
IXInXZn"'an
1X121X221"'Xk21
1X2 X2, - X2
Xy=|. " -
1 X12n X22n e Xlgn
wherei =1,2,...,n; Bo, B1, ..., B, Y € F(R); X1, Xa, ..., X¢ € R. Then, the FLS

Ofﬁoy Bl, cees Bk are defined as:

A=XX)""'Xa
o = (Xl/X])_IX]/b
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Proof Assuming that {(X, Y)),i=1,2,...,n} are the set of known samples, and

f/i = (a;, aiz), the sum Q of the squares of the dispersion between the estimated 17,
and the observations Y; should be minimized. That is,

- o 2u_ X 2 A A2 A A2
0= (Vi=Y)* =D {(@, o)) = (@3, 6%) + (@3, 63 )X +
i=1 i=1
A AD
+ (@3, 63 )Xul)
= 2 M@, o) = (a5, + a5, Xui + -+ a5, Xu,

i=1
O’ +U Xlzl—l— ~|—cr Xkl)]

=me%;%&r~—%mf
1 2 ~2 X2 A2X2 2
+§(‘7i—03_0' 1= =05 X)) ]

should be minimized. Q W111 be the minimum value when the first order partial

derivatives of Q about ,60, /6’], A ﬂk are equal to zero. In this case, fuzzy ordinary
least squares estimator can be calculated.

a" N N A

2= 2By X0 =0
Bo i=1 ‘ ‘

aQ n

e = =22 (a; — aj ap X —ap Xii)X1; =0
o i=1 ‘

OQ n
~ n

20 _ 2 A2 2
~ n

20 2 A2 N ) 52 x2

gL — o —02 —0:Xr — o — X X =0

8(75[ I:ZI( t o Bl )

20 < 2 2 v2\y2

a&gk Z: Xn - ngin)in =0
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Then, the above equations can be simplified as

n
2. ai
i=1

n
> aiXyi
i=1

n
= naﬁo +a’Bl ZIX]l+
i=

n n

— - ) A 2

- aﬂo ;XI’ + aﬁ] lei +
= =

n n
= ag, l; Xii + ag, l; XiiXii

n
A2 A2 2
= nos +o: > Xi+ -
Bo Brim li

n n
=61 3N 8 X
i=1 i=1

n n
2 4 52 2 32
2. X + 95 _Z%inxli
=

n
ctag > X
i=1

n
cedag > XX
i=1

n

A 2

ol XX
2 Lo
A2 X2
+0-[3k§ ki

n
A2 22
+oy ZiinXn
=

n
22 4
ot X
=

The matrix expression of the normal equations is as follows

X'X)A = Xa
X1'’X)o =Xi'b

And least squares estimator of parameters are as follows

Corollary 1 Assume that the fuzzy simple linear regression model is as follows

?i:BO—i_BIXivi: 1,2,...,7[,50,5],?,‘EIE‘(R),XI‘GR,?I‘Z(CH,UI-Z),

that is

A=XX)"'Xa
o= (XI’XI)*le’b

493

Yi = (@, 07) = (a5, 03) + (a5 03 )X i=1.2,....n, fo. 1¥; € F(R). Xi € R

where [y = (&30, 6% ) and By = (az (}% ) are respectively the FLS of By and (3.
o f B

then
n n n n n
2 a3 X=X Y aiXi X
afo — i=1 l:”l l:l” i=1 , O_B — i=1
‘ n Y X (3 X)? 0
! s
nZa,X,-— X,‘ Za; 2
” i=1 i=1__i=1 S
afﬁ = ﬁ! Ué -
ny XP—(3 Xi)? -
i=1 i=1

23 X33 e

i

i=1 i=1 i=1

—n ﬁ X;‘+(Z": X?)?

1 i=1

2

. L

13 X33 o}
2 2

i=1 i=1

n n
—n Y X+ X7
i= i=1
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Proof Let X;, ﬁ, i=1,2,...,n be aset of sample observations and 17, = (a;, aiz),
according to Theorem 1, is revised as follows:

n
0 = Z(f/z - 1)?
i1

= D @ 0]) = [(a5,, 33) + @5, 62)X1Y

i=1
n

2 ~ ~ ~2 A2 2\12

= D @i, 07) = (a5, + a5 Xi, 6% + 6% XD)]

n

1
=> [(a —ay — a3 X)) + E(a,? - a—  + 0 52 X2) }

i=1

Obviously, Q will be minimized when the first order partial derivatives of Q about

Bo, 31 and are equal to zero. That is, we can solve the question by making the first
order partial derivatives of Q about a B &5], 62, 62 respectively equal to zero.

Bo' B
20 : A A
day = -2 Ef(ai —az —azX) =0
) z A n
Ba, = -2 Z%(ai —az —az X)X; =0
~ n
00 _ _ 2_52 152X =
= TR+ XD =0
~ n
90 _ _ 2 A2 A2 W2 \y2
8&51 B é(gi 0'30 + O-lei )Xi =0

The above equations may be written as

na3 +%12X Za,
i= 1

Elao ZX, + &31 le2 = Za,-X,-
i=1 i=1

n Vl
ng: — 62 Zsz > o7
k i=1
n n
U%U ;Xf i ZX“ - > oX?
=

i=1

Then, in terms of Cramer’s rule, we can obtain the linear fuzzy least squares
estimator of the simple linear regression model by solving the above equations. [
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4 The Statistical Properties of Fuzzy Least Squares
Estimator

Theorem 2 Fuzzy least squares estimator

A=XX)"'Xa
o= (Xl/Xl)ile/b

is a linear estimator.
Proof Since

A=XX)"'Xa=Ca
o= (Xl/Xl)_IXI/b = Db

where C = (X'X)~'X’,D = (X'X)~'X’, the parameter estimator is a linear combi-
nation of explanatory variables. (]

In order to know statistic properties of the parameter estimator in simple

fuzzy regression model, letx; = X; — X, where X = ZX When ¥ = (a o )y, =

5% = ¥i = ¥ = (@, 0) — @5 = (@ — 0% — &), where a=E(L 3 T
. n - . n _ 1 n . n - . n ) =
ZEEE(Y,'):EE(L',OQ:VHF ;Z n—ZZVar(Y,-)zn—zz;ai,then
i= i= i=1 = i=
2 n 1 n 2
3, 2
ZX _Z i X) ZZXl_;( Xl)
i=1 i=1 i=1
that is
n n n n 2
DIEEDICELUED W (ZX)
i=1 i=1 i=1 i=1
SO . o
ag =a T aEIX
> arx;
ay =5
1 lez

Corollary 2 Expectations 21[30 and &51 of fuzzy least squares estimator B():

(&@ 62 ) and By = (az , 62 ) are linear estimators.
0" Bo PL By
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Proof
n n _ n n
Saxi  D(ai—a)x D aix; Y. ax
A i=1 =1 i=1 i=1
61/31 - n - n n T T

Z a;x; a Z Xi n

n

;xiz i=1
1 n n n 1 n
iy =i k=1 al—Zk,a,X_Z(; ~ %) = > wa
i=1 i=1 i=1 i=1
where w; = % — Xk;. O

Theorem 3 Fuzzy least squares estimator

A=XX)""'Xa
o= (XI/XI)_IXl/b

are unbiased estimators.

Proof
E@) = E[X'X)"'X'0)] = E[X'X) "' X'X¢] = E(¥) = 4
E(0) = E[(X1'X0) ™' X1'b] = EIX/X) ™' Xy (X1 O] = ¢
So fuzzy least squares estimators are unbiased. (]

Corollary 3 Expectations ay and ay, of fuzzy least squares estimator Bo= (&%, &g )
£ K o

and Bl = (&Bl, &% ) are unbiased estimators of the parameters ﬁo, ﬁl.
1

Proof

n n n n
i, = Sk = S ko X0 =4y Sk, Dk
i=1 i=1 i=1

i=1
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where k; = 7, > ki = &— = 2
> =l
i=1

n n _ _n n
n inXi in(xi +X) XZ)C,‘ szz
i=1 i=1 i=1 i=1
Zkixi = = . = +=—=1
i=1 : ‘

SO E(&ﬁl) =ay;

n n n n
ag = Z wia; = E [wilag +az Xi)] = ag, E w; +ag Z w;X;
i=1 i=1 i=1

i=1

i=1 i=1

where, w; = 1 — Xk, E (Z wi) =E (Z (; _)_(ki)) =1

iwiXi = i(% —)_(k,)X, = %iX, —)_(ikiXi 2)_(—)_(:0
i=1 i=1 i=1 i=1

SO E(fl/;o) :af’o' O

5 Assessment on Fuzzy Multiple Linear Regression Model

Regression analysis is a useful statistical method for analyzing quantitative relation-
ships between two or more variables. It is important for the regression analysis to
assess the performance of fitting regression model. That is to say, after estimating
parameter of fuzzy liner regression model, how far is it from the parameter estimation
to the true value? In fuzzy regression analysis, the simplest method evaluating the
fuzzy regression model is to take the residual and the Coefficient of Determination as
metrics. According to Classical Regression Mode [17], we can calculate the residual
and the Coefficient of Determination about Fuzzy Regression Model by using fuzzy
calculation rule which listed previously.

Theorem 4 give the module formula of residual |¢;| and require that it is as small
as possible. The fuzzy total sum of squares(FTSS) and the fuzzy explained sum of
squares(FESS) are given in Theorem 5, and we obtain fuzzy coefficient of determi-
nation R? in Theorem 6, R is bigger, and more better.
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Theorem 4 The residual produced by the fuzzy multiple linear regression model
based on normal fuzzy numbers is defined as

|5i|=ﬁ,/&%0+0?+ﬁ03,|xli|+ﬁ032|X2i|+"'+ﬁ0/§k|xki|
Proof
|éil = 1Y; — Y|
(A, A2 ALA2 . A A2 ) A A2 L . 2
= |(ag,, 03) + (a5, 03 )X + (a5, 05 )Xo 4 - - + (4, 05 )X — (@i, 7))
=|(a30—ai,&% +07) + (@5, 63)X1i + (@5, 63 )Xo + - + (a5, 62 )Xl
= (@5, — ai, 6% + 07|+ @5, &)Xl + - + @5, 65) 11Xl
=ﬁm + 0, Xl + VT, Xl + -+ /T, X 0

Corollary 4 The residual produced by the fuzzy simple linear regression model
based on normal fuzzy numbers is expressed as

éi = ﬁ /&%0 +0'12 +«/E5'E1|Xl|

Proof

=m—m=|(ag,&%>+(ag,,&gl)xi—(a,-,o%)|
= (@5, — ai. &% +0}) + (a5, 63 )Xl

— (0~ — a: 2 . 62 .

= (@, — i, 3% + o)) + @3, 53)IIXi]

=.J7 /&g0 + 07 + /765 X 0

Theorem 5 The residual sum of squares produced by the fuzzy multiple linear
regression model based on normal fuzzy numbers is defined as

FTSS—WZ(O’ +02)+7TZZ&ZX2

i=1 j=1

n n k
+ 27 Z Z &5Xii /(&é0 +o))+m Z Z 05,075 X1iXji

i=1 j=1 i=1 jsr
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The explained sum of squares produced by the fuzzy multiple linear regression
model based on normal fuzzy numbers is defined as

FESS:mr( t+a )+WZZA§XJZ,

i=1 j=1
n k n k
+2m, /63 +52D D G5Xit YD 6505 XaX;
i=1 j=1 i=1 j#r
Proof
FTSS = 3L, (T - ¥
= S0l 62) + @5, 62)X1i + -+ + (@5, 62X — (@i, oD
= 2Lil@, — a1, 6% +0]) + (a5, 33 )Xui + - + (a5, 52 )Xu T
= S0 (5, — a2 + 0D + X @y %)
+2 3 @5, — ai, %+ 07) (@, 52 )X;
+ 3 Gy 52y 62)XiXo
=>", [(&ﬁ a;, 0 + o+ >0 121 1(‘19’ A?I)zXz
+2>°0, Z].:] (af,/, Ugi)(aau —a;, JBO + oD X;i
+2 erc;éj(&@.’ (}g )(ag,, &g_)inXn‘]
:WZ?:l( +02)+7Tz, 12, 1 3 jl
+230, Zj=1[(af30le’ Aé ijt)(&éo - di, ‘7/%30 + Uiz)]
+ 2 Zr;eJ (@ Xji, A?,XJZI)(‘ZB,Xri’ &2 szi)

=Ty 1(0 +02)+7TZ, 121 1A2X2

B It

+2m >0 Zj:l &Bf)(ji\/ (&éo + ‘71'2) +m 2 Z]]‘;ér &@&,BTX”'XI'I'
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FESS = l(f/. — 1)
=2 (aﬂo J ) + (aﬁl ngl)X“ 4t (&Bk’ &%k)xki — (@ )P
=2l —a, 63 +5+ (&@,, 62 )X1i+ - + (@5, 62 )X’
+2(&B° —a &Bo + 62) Zj=1 (a/}/” &ﬁj)in
+ 3 Gy 525 52)XiXo
=l - 2 +6°)7 + 0L 2@, A,ZI)ZX2
+2(a5, —a,67 +3) XL, X5, 52)X;
+ Z?:] Zf;&j (&[}. , 6’%)(&3}_, 5‘% )inX”.

= nn(62 +02)+7TZ D IA?;XJZI

N — 7 k A~
+2ﬁ\/ 05+ CED Y Zj:l ﬁa,@-Xﬁ
+ 3 X0 X, 67 X3 (@ X, 63 X7)

—I’ZTI'(O' +‘72)+7th IZJ l"é}(ﬁ

+27T\/U +0221 IZ IU/)’ +7TZ[ IZ/;&rGJU?XX

Corollary 5 The residual produced by the fuzzy simple linear regression model
based on normal fuzzy numbers is expressed as

FTSS—nZ(a + 0 )+27r G +02)X2+7m% sz
‘—1

The explained sum of squares produced by fuzzy simple linear regression model based
on normal fuzzy numbers is defined as

FESS—mT(o +02)—|—2ﬁ /O‘ +022X + 7o ZXZ
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Proof

FTSS = > (¥, — ¥))?
i=1

= > [@3,.6%) + (@5, 3)X; — (@i, o))V
ljl
= D (a5, —a, 8% +07) + (a5, 63 )X

i=1
n

N A 2 - ~2 2\(n. A2
= Z[(a[}o —aj, 0%0 + al-z) +2(ap, — a;, 03, 10 )ag,, a3, )Xi
i=1
Ao A2 \2y2
+(af31 ’ O—’;l) X[ ]

n n
= > (@, —ai. &go +07) + 2@, &gl) > (ag, —ai. &go + o)X,
i=1 i=1
n
+(@ag,. 63 ) Zxﬁ
n
— WZ(U +07) + 24765 > (@ — a)Xs, (a +02)X2]

i=1
+7TU~ ZXZ

=7 Z((}éo + 01»2) + 271’5?3] (&%0 + U?)X2 + 7ro~ ZX2
= i=1

FESS = Z(Y — ¥
i=1

= D (@3, 6%) + @3, 55)X — @ 3T
i=1

_ ) -2 A A2 Ny 2

= Z[(aﬂo a,5% + %) + (az,, 63 )Xi]

= Z[(Qﬁo a, ¢ + o ) + 2(aﬁo a, U@o

+o— *)(@5,, 63)Xi + (@,. 62 )’X7]
=n(&3 a, 0 +02)2

+2(ay, —a. &g )z, 6 )Zx +(a;.6 )22)(2

—nﬂ'(a —|—U)+2ﬁ/a +022X+7TU~IZX2 .
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The greater the regression sum of squares, the smaller the sum of squared residuals,
and the better the fitting between regression line and the sample points.

Theorem 6 The coefficient of determination of the fuzzy multiple linear regression
model based on normal fuzzy numbers is defined as

2 FESS
~ FTSS

n7r(a +0’2)+ﬂ'zz X2+27r/ + 02 ZZJJIX,,—FﬂZZUJUJX”X,,

_ i=1j= i=1j= i= lj;ér
T (0’ +02)+7r +27r 0, X (32 +02)+7r 07 0’  XriXii
EoL v B o e
Proof 1t is easy to prove Theorem 6 by using Theorem 5. (]

Corollary 6 The coefficient of the determination of fuzzy simple linear regression
model based on normal fuzzy numbers is expressed as

FTSS

nm(63 +5%) +27 |67 + 57 ZX,-+7ra—% fo
20 20 i=1 1 i

772(0 +0?) + 276 ﬂz /O’ +02)X2+7r02 ZXZ
=1

13

o _ FESS

6 Numerical Example

Assume that the fuzzy linear regression model is as follows:
Yi = Bo+ BiXui + o Xai

where, Y is the dependent variable, X; and X, the explanatory variables, and

(X1i, X, fi), i=1,2,...,n,X;,X> €R, Y € F(R). Now, our goal is to solve the

fuzzy regression and evaluate the model with the observed data shown in Table 1.
Then, the fuzzy regression mode can be obtained by our proposed method.

Y: = (20.5371, 0.0542%) + (41.5827, 0.0087%)X,; + (14.5884, 0.0035%)X»;

Residual series of the regression model are shown in Table2. According to the
formulas in Theorem 5, we can calculate the evaluation indexes of the fuzzy model
i.e., FTSS = 7.2531, FESS = 6.9836, and R? = 0.9628. Clearly, the uncertainty of
the practical problem is better considered by the fuzzy linear regression analysis.
Using fuzzy numbers to represent the observation data makes it more effective to
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Table 1 The observed data

Order | X, X Y Order | X, X5 Y

1 0.16 0.86 (40.0,0.31%) | 7 0.28 1.15 (48.6,0.182)
2 0.18 0.89 (41.0,022%) | 8 0.29 1.18 (49.4,0.19?)
3 0.23 0.94 (42.0,0.25%) | 9 0.32 1.25 (50.8, 0.232)
4 0.24 0.96 (43.0,0.16%) |10 0.35 1.29 (54.3,0.242)
5 0.22 0.98 (46.5,0.17%) |11 0.39 1.33 (57.0,0.25%)
6 0.26 0.99 (47.2,0.20%) |12 0.45 1.37 (59.2,0.212)

Table 2 Residual series of the regression model

Order Fuzzy residual | Order Fuzzy residual | Order Fuzzy residual
1 0.1833 5 0.0659 9 0.1160
2 0.0993 6 0.0862 10 0.1207
3 0.1253 7 0.0741 11 0.1302
4 0.0602 8 0.0810 12 0.0988

resolve the problem. In this example, the residual sequence of the regression model
and the coefficient of determination help to understand how well the regression
model can fit the sample points. The coefficient of determination 96.28 % implies
that the change 96.28 % of the explained variable can be explained by the change of
explanatory variables.

7 Conclusions

The paper proposes an improved FLS method for parameter estimating of the fuzzy
linear regression model when the explanatory variables are precise and the explained
variables and regression parameters are normal fuzzy numbers. Specifically, the
paper figures out the fuzzy least squares estimation of multivariate linear regression
analysis and gets some statistical properties, i.e., linearity and unbiasedness, of the
fuzzy least square estimators. Finally, it illustrates the feasibility and effectiveness
of the proposed method by the numerical example.
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