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Preface

The Fourth International Conference on Quantitative Logic and Soft Computing
(QLSC2016) was held on October 14–17, 2016, in Zhejiang Sci-Tech University,
Hangzhou, China. QLSC2016 was the fourth in a series of conferences on quan-
titative logic and soft computing. It follows the successful QLSC2012 in Xi’an,
China, QLSC2010 in Xiamen, China, and QLSC2009 in Shanghai, China. It was a
major symposium for scientists, engineers, and practitioners to present their updated
results, ideas, developments, and applications in all areas of quantitative logic and
soft computing. It aimed to strengthen relations between industry research labo-
ratories and universities, and to create a primary symposium for scientists in fields
related to quantitative logic and soft computing worldwide as follows:

1. Quantitative logic and uncertainty logic;
2. Automata and quantification of software;
3. Fuzzy connectives and fuzzy reasoning;
4. Fuzzy logical algebras;
5. Artificial intelligence and soft computing; and
6. Fuzzy sets theory and applications.

Early in 2009, at the closing ceremony of the first QLSC conference in Shanghai,
when congratulating the success of the conference our beloved Prof. Guo-Jun Wang
said that QLSC is a vey good and helpful opportunity for researchers in the related
fields and hope that QLSC should go on continuously. It was very sad that
Prof. Guo-Jun Wang left us forever in the winter of 2013; this conference was a
memorial to him.

Over viewing the QLSC2016 proceedings, we have put a step forward but still
have a long way to go. QLSC2016 received more than 70 submissions. Each paper
has undergone a rigorous review process. Only high-quality papers are included.
The proceeding contains 61 papers, including 5 invited papers or abstracts from
keynote speakers. It consists of 7 parts: (1) keynote speakers; (2) quantitative logic
and uncertainty logic; (3) automata and quantification of software; (4) fuzzy con-
nectives and fuzzy reasoning; (5) fuzzy logical algebras; (6) artificial intelligence
and soft computing; and (7) fuzzy sets theory and applications.
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Putting together the conference proceedings was a team effort. Special thanks
were due to the authors for providing all materials; to all keynote speakers for their
kindness to present excellent speeches to the conference; to the program committee
and external reviewers for peer-reviewing papers and providing valuable sugges-
tions; to the organizing committee and all the local volunteers, especially for their
excellent management work for QLSC2016; to Prof. Janusz Kacprzyk for his
warmheartedness to suggest that the proceedings to be included in the “Advances in
Intelligent Systems and Computing” series; to Dr. Thomas Ditzinger (Editor at
Springer Publishing Co.) for his excellent work on the final version of this volume;
to three graduate students Wen-Wen Zhang, Hong-Mei Wang, and Hao-Yue Liu for
compiling work on the papers before submitted to the publisher; and to our main
organizer—Zhejiang Sci-Tech University in China for the great support.

Hangzhou, China Tai-He Fan
October 2016 Shui-Li Chen

San-Min Wang
Yong-Ming Li
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Information Processing with Information
Granules of Higher Type
and Higher Order

Witold Pedrycz

Abstract The apparent challenges in data analytics calls for new advanced
technologies. Granular Computing along with a diversity of its formal settings offers
a badly needed conceptual and algorithmic environment that becomes instrumental
in this setting. In virtue of the key facets of data analytics, there is a genuine quest
to foster new development avenues of Granular Computing by bringing concepts of
information granules of higher type and higher order.

In essence, information granules of higher type, say type-2 are information granules
whose description is provided in terms of information granules rather than in a
numeric fashion. Commonly encountered examples of type-2 information granules
are fuzzy sets of type-2. Information granules of higher order, especially information
granules of order-2 are those construct defined over a collection of information
granules forming a universe of discourse. We elaborate on selected ways in which
information granules of higher type and higher order are constructed, especiallywhen
using a principle of justifiable granularity.

Discussed are fundamental constructs in which such information granules of
higher types play a pivotal role. Those are the architectures realizing data and knowl-
edge fusion (aggregation). Here we demonstrate that a sound aggregation of pieces of
data (knowledge) leads to information granules of higher type whereas the elevated
type of information granularity is inherently reflective of the diversity of sources of
knowledge being encountered in this aggregation process. It is also shown that the
development of information granules of higher type is advocated in the realization
of a hierarchy of processing and coping with a distributed nature of data. The emer-
gence of information granules of higher order is demonstrated in the characterization
of evolution of concepts (so-called generic information granules) when coping with
the dynamics of data streams.

W. Pedrycz (B)
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4 Witold Pedrycz

The talk is made self-contained and covers all required prerequisites about fun-
damentals of Granular Computing.



Similarity-Based Logics for Approximate
Entailments

Lluís Godo

Abstract Reasoning under practical circumstances is often inexact. Assumptions
might be fulfilled only in an approximate way but conclusions are drawn anyway.
Different epistemic aspects may be involved, like uncertainty, preference or simi-
larity. In order to formalise such kind of reasoning we need to go beyond classical
propositional logic. In this presentation we will deal with logics for similarity-based
reasoning. This kind of reasoning can be cast in the more general framework of rea-
soning by analogy and has applications, for example, in classification, case-based
reasoning, or interpolation.

In his seminal work on similarity-based reasoning, Ruspini proposes [5] the interpre-
tation of fuzzy sets in terms of (crisp) sets and fuzzy similarity relations. To this end,
he builds up a framework for approximate inference that is based on the mutual sim-
ilarity of the propositions involved. Following these lines, a number of approaches
have dealt with fuzzy similarity-based reasoning from a logical perspective. In par-
ticular, the so-called logic of Approximate Entailment (LAE), and the logic of a dual
notion of Strong Entailment (LSE) have been studied [2, 7]. These logics formalise
the effect of small changes on the validity of logical relationships. For instance, con-
sider a pair of propositions such that none is implied by the other one; we may then
still ask if one proposition is a consequence of the other one by means of a slight
change. Conversely, for a pair of propositions one of which is a consequence of the
other one, we may ask if this consequence relation is stable under small changes.

To formalise these kind of inferences, one needs to specify what is meant by
“approximate”. Several approaches dealing with statements interpreted in metric
spaces or logics on comparative similarity have also been considered in the literature,
see e.g. [1, 4, 6]. Here wewill follow a quantitative approach and use fuzzy similarity
relations to model the notion of approximate entailment [3]. In this talk we will
present the main notions and properties of LAE, a propositional graded modal logic
where propositions are interpreted, as in classical logic, by subsets of a fixed set,

L. Godo (B)
Artificial Intelligence Research Institute, IIIA - CSIC, 08913 Bellaterra, Spain
e-mail: godo@iiia.csic.es
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6 L. Godo

called the set of worlds, that in addition it is assumed to be endowed with a fuzzy
similarity relation, which associates with each pair of two worlds their degree of
resemblance. The basic semantic structures are hence fuzzy similarity spaces, which
consist of a set of worlds and a fuzzy similarity relation, and the core syntactic objects
of LAE are implications between propositions endowed with a degree. The intended
meaning of a statement of the form A >c B is that B is an approximate consequence
of A to the degree c, where c is a real number between 0 and 1. We will present
a complete axiomatization, and moreover we will show some extensions as well as
how the framework can be enhanced in case of dealing with similarities on linearly
ordered scales [8].

Acknowledgments The author acknowledges partial support by the Spanish MINECO/FEDER
project RASO (TIN2015-71799-C2-1-P)
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Theoretical and Applicational Aspects
of Fuzzy Implication Functions

Michał Baczyński

Abstract Fuzzy implication functions are one of the main mathematical operations
in fuzzy logic. They generalize the classical two-valued implication, which takes
values in {0, 1}, to fuzzy logic, where the truth values belong to the unit interval [0, 1].
This family of functions plays a significant role in the development of fuzzy systems.
The study of this class of operations has been extensively developed in the last
40years from both theoretical and applicational points of view. In our presentation
we will concentrate on both streams. Firstly, we present the mathematical aspects of
fuzzy implications, namely, analytical and algebraic.

We show basic facts and we try to find concise answers for the following questions:

(i) How can we get the implications from fuzzy logic connectives?
(ii) How can we get the implications from unary functions?
(iii) What are the properties, characterizations and representations for different fam-

ilies of fuzzy implications?
(iv) Which functional equations are investigated for fuzzy implications?

Secondary, we present different applications of fuzzy implication functions. We
mainly discuss their role in approximate reasoning, fuzzy control, mathematical
morphology and image processing.
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A Novel Description of Factor Logic

Hai-Tao Liu, Yi-Xiang Chen, Pei-Zhuang Wang and Hua-Can He

Abstract This paper presents a novel description for factor logic, which puts state
description into a factor space, and sets up truth sets for formulae. Along this way,
factor space may provide a suitable platform for the development of quantitative
logic. Factor logic can be also described as a derivative system of Boolean logic
with added hypotheses Γ , which can be used in data mining and function-structure
analysis in switch systems.

Keywords Factor logic · Quantitative logic · Factor space · Decision tree · Fault
analysis

1 Introduction

Quantitative logic [1–3] was initiated by Professor G.J. Wang, a great mathemati-
cian in China. Recently, Dr. Zhou uses probability quantitative logic [4] as a state
description space for a platform to set up the truth degree for formulae. Factor space
was originally developed by Professor P.Z. Wang in [5–9]. This paper merges those
two areas: quantitative logic and factor space into a new framework and develop a
novel description of factor logic following ProfessorWang’s approach in quantitative
logic. This paper puts state description on factor space and presents a new method
about factor logic without strict logical statements and proofs. It is developed as
a kind of qualified quantitative logic. Factor logic can be also built as a derivative
system of Boolean logic with added hypotheses, which can be used in data mining
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10 H.-T. Liu et al.

and function-structure analysis, some examples in its applications can be found in
the paper. The authors of this paper express the feeling of commemorating Professor
G.J. Wang.

Theorganization of this paper is as follows: Preliminary is stated inSect. 2,Anovel
description on factor space is given in Sect. 3, Sect. 4 introduces some applications
of factor logic. Section5 is a brief conclusion.

2 Preliminary

Factor space [5] was initiated by Professor P.Z. Wang in 1982. We simply restate
some of its basic results here.

Definition 1 (Factor Space) A factor space [6, 7], defined on universe of discussion
U, is a family of sets ψ = ({X(f )}f∈F;U) satisfying:

1 F = (F,∨,∧, c, 1, 0) is a complete Boolean algebra;
2 X(0) = {∅};
3 For any T ⊆ F, if {f | f ∈ T} is irreducible (i.e., s �= t ⇒ s ∧ t = 0(s, t ∈ T)),

then X({f | f ∈ T}) = ∏
f∈T X(f ), where

∏
stands for Cartesian product;

4 ∀f ∈ T , there is a mapping with the same symbol f : f ∈ X(f ).

F is called the set of factors, f ∈ F a factor on U and X(f ) the phase space of factor
f .

A factor f is said to be simpler than a factor g or g is said to be more complex than
f if f ≤ g. For any F ′ ⊆ F, let F ′ = ∨{f | f ∈ F ′}. F ′ is joint mapping of mappings:
F ′(u) = {f (u) | f ∈ F ′}.
Definition 2 (Background Relation [8]) For given n factors f1, f2, . . . , fn, we call

R = RF = X(F) = {a = (a1, . . . , an) ∈ X(f1) × · · · × X(fn)

| ∃u ∈ U; f1(u) = a1, . . . , fn(u) = an} (1)

to be the background relation between f1, . . . , fn, or the background set of F.

Denote X = X(f1) × · · · × X(fn). Then X(F) = X if f1, . . . , fn are independent; if
X(F) �= X, then the phase configuration could not be generated freely, the Cartesian
product space includes some virtual configurations. The real configurations consists
the background set R, in which R is the real product phase space of f1 . . . fn.

Background set R is a very important terminology in factor space.

1. R generates all concepts on factor space ψ: For any a = (a1, . . . , an) ∈ R, denote
[a] = F−1(a) = {u ∈ U|f1(u) = a1, . . . ,
fn(u) = an}. Denote U∗ = {[a] | a ∈ R}, which is the quotient space of U with
respect to F. It is obvious that F is an isomorphism between U∗ and R. Denote
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A = {α = (a, [a]) | a ∈ R}, which is called the atom concept set on ψ, α is called
an atom concept and a, [a] are called intension and extension of α respectively.
The Boolean algebra C generated by A is called the concept algebra on ψ.

2. R determines all tautologies on factor space ψ:
For simplicity, suppose that F = {f , g}. For any A ⊆ X(f ),

A∗ = {y ∈ X(g) | ∃x ∈ X(f ); (x, y) ∈ R}. (2)

Theorem 1 A → B is a tautology if and only if A∗ ⊆ B.

3 Description on Factor Logic

A factor space ψ = ({x(f )}f∈F;U) with background set R = F(U) ⊆ X(F) =
X(f1) × · · · × X(fn) determines a logic system Lfactor as follows:

1. A symbol set S = X(f1) + · · · + X(fn) (plus bracket pair and 1, 0), where X(fj) =
{x1j, . . . , xn(j)j} is the phase space of factor fj and xij is the i-th phase of factor fj.
Each element in S is called a letter.

2. Formulae set F(S), which is the Boolean algebra (F(S),∨,∧,¬) generated
from S.
All letters are called atom formulae; each conjunction of letters xi(1)j(1) ∧ · · · ∧
xi(k)j(k) (abridged xi(1)j(1) . . . xi(k)j(k)) is called a (k-length) block; each disjunction
of blocks b1 ∨ · · · ∨ bt (abridged b1 + · · · + bt) is called a disjunction normal
form. A formula p is called a tautology if p = 1 (i.e., p → 1 and 1 → p); p is
called a contradiction if p = 0.

3. Axioms: Boolean logic axioms added Assumptions:

Γ1 Family axiom: X(fi) = {x1j, . . . , xm(i)j} is called j-th family, letter of same
family must obey that

x1j ∨ · · · ∨ xm(i)j = 1; xij ∧ xkj = 0(i �= k); xij = ∨{xij | i �= k}; (3)

Γ2 Background axiom: Background set R can be represented as a disjunction
normal form r ∈ F(S) (r = 1, without indicate r). For any formula p ∈ F(S),
we have that

p → p ∧ r; p ∧ r → p(p ∈ F(S)). (4)

4. Valuation field W2 = {0, 1} = {{0, 1},∨,∧,¬}.
5. Modus Ponens: {p, p → q} � q.

which is a derivative system of Boolean logic by adding hypothesis Γ = Γ1 + Γ2.
This paper has not given the proof of the strongly complete theorem: Γ � p iff
Γ |= p.
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Family axiom Γ1 emphasizes that one family has only one letter appears in a
disjunction: xij ∧ xkj = 0(i �= k). For example, High and Short are two letters in a
same family, then High′ ∧ Short′ is a contradiction. A letter is not a minimal phase,
but an n-length block x = x1(1)1 . . . xi(n)n is a minimal phase in phase space.

Background axiom emphasizes that the truth-degree of a formula is independent
to those phases outside the background set R. In other words, the meaningful set of
formulae is Fr(S) = {p ∧ r | p ∈ F(S)}.

Denote F+(S) = {(p, x) | p ∈ (S), x ∈ R}. A proposition is a pair (p, x) ∈ F+(S)
and a predicate is a function p(x) = (p, x).

Suppose that x = (x1(1)1, . . . , xi(n)n) is a phase of R, letter xij appears in block x if
and only if the name of x in family j is the very xij, i.e., xi(j)j = xij or i(j) = i. Denote
mapping t : S ∈ 2R : t(xij) = {x = (xi(1)1 · · · xi(n)n) | i(j) = i} = bij, which transfers
xij to a subset xij in R. Extending the mapping on to FR(S), we have that

t(p ∨ q) = t(p) ∪ t(q), t(p ∧ q) = t(p) ∩ t(q), t(¬p) = (t(p))c.

Definition 3 (Truth Set) For any p ∈ F(S), we call P = t(p) to be the truth set of
formula p.

Without declaring, formula and its truth set are written by lower-case and capital
letters respectively.

Definition 4 (Domain of Interpretation) R is called the domain of interpreta-
tion of Lfactor . Mapping v: F+(S) ∈ W2 is called a assignment, if v(p, x) = 1
(x ∈ P), v(p, x) = 0(x /∈ P).

Proposition 1 Formula p → q is a tautology if and only if P ⊆ Q.

Proof p → q is a tautology if and only if p → q = 1, i.e., ¬p ∨ q = 1, if and only
if t(¬p ∨ q) = R, i.e., Pc ∪ Q = R. Since p = p ∧ r, q = q ∧ r, since both P and Q
are subsets of R, so we have p → q is a tautology if and only if P ⊆ Q. �

Factor logic has its own characteristics: A formula p in F(S) is not a proposition
but a concept; While the pair (p, x) ∈ F+(S) is a proposition and p(x) is a predicate.
An assignment v does not evaluate concepts but propositions.

Proposition 2 The length of blocks must not be greater than n.

Proof Each non-zero block includes at most one letter from a family, and there are
n families, thus the Proposition holds. �

It is not difficult to prove that the truth set of letter xij is the cylinder extension of
{xij} within R:

x
¯ ij

= [{xij}X(f1) × · · · × X(fi−1) × X(fi+1) × · · · × X(fn)] ∩ R. (5)

Similarly, the truth set of block with 2-letter xij ∧ xkl is the cylinder extension of
xi(1)1 × · · · × xi(n) within R:
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x
¯ ij

∧ x
¯kl

= [{xij} × {xkl} × {X(fj) | j �= i, k}] ∩ R. (6)

The longer block, the smaller truth set, for n-length block xi(1)1 × · · · × xi(n), its
truth set becomes a point in R or empty:

xi(1)1 × · · · × xi(n) = xi(1)1×···×i(n)n ∩ R.

Definition 5 (Prime Implicants) If p implicates q and there is no p′ �= p such that
p implicates p′ and p′ implicates q, then p is called the prime implicant of q. A
disjunction normal form is called a minimal disjunction normal form if all blocks
are prime implicants.

Proposition 3 If letter xij does not appear in any block of disjunction normal form
(¬q) ∧ r, then xij is a prime implicant of q.

Proof Let Q and Qc be the truth sets of q and ¬q respectively. We have that
Q ∪ Qc = U∗. The truth set of (¬q) ∧ r is Qc ∩ R, and the truth set of letter xij
is x
¯ ij
. If letter xij does not appear in any block of disjunction normal form (¬q) ∧ r,

then x
¯ ijj

∩ (Qc ∩ R) = ∅. Since truth sets can be freely changed outside the back-
ground set R (See Hypothesis Γ2), we can write that x

¯ ijj
∩ (Qc) = φ. It means that

x
¯ ijj

⊆ Q. Therefore the letter xij implicate q. Since a letter has the maximal truth set
with respect to a block, it must be prime. �

4 Application of Factor Logic in Data Analysis

Could quantitative logic be applied in data analysis directly? Yes, it is. There is an
example cited from online representation of decision tree. Decision tree is a public
method in data mining. For easy statement, we use factor spaces language to explain
the table, which has a little change and inverted table axis.

Example 1 There is a universe U = {u1, . . . , u14}, consisting of 14 groups of per-
sons, the number of persons in each group is shown as frequent in the lowest row.
There are four conditional factors and a resulted factor. They are:

1. f1 = Age, X(f1) = {Old,Middle,Young} = {O,M,Y};
2. f2 = Income, X(f2) = {High,Average,Low} = {H,A,L};
3. f3 = Student?, X(f3) = {Student,Non − student} = {S,N};
4. f4 = Reputation, X(f4) = {Good,Fair} = {G,F}.

The resulted factor is g = Purchase, X(g) = {Buy,Empty} = {B,E} (Table1).
Table1 shows peoples phases under different factors. Each row stands of a factor,

each column stands for a group of persons. The task of decision tree is rule-extracting
by means of learning from the table.
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Table 1 Customers purchase statistics

U u01 u02 u03 u04 u05 u06 u07 u08 u09 u10 u11 u12 u13 u14

Age M O O M Y O Y M M Y Y O Y O

Income H A L L L A A A H H H L A A

Student? N N S S S S S N S N N S N N

Reputation F F F G F F G G F F G G F G

Purchase B B B B B B B B B E E E E E

Frequent 128 80 64 64 64 132 64 32 32 64 64 64 128 64

From the view of the factor logic, each column is a rule. For example, the first
column shows that: If somebody’s age is middle and income is high and is not a
student and reputation is fair, then he/she is a buyer.

There are 14 columns, we can extract 14 rules and the rule-extraction can be
written as two disjunction normal forms:

MHNF + OANF + OLSF + MLSG + YLSF

+ OASF + YASG + MANG + MHSF = B; (7)

YHNF + YHNG + OLSG + YANF + OANG = E. (8)

where MHNF = M ∧ H ∧ N ∧ F and ∧ is written as +.
Without any algorithm, the task of decision tree can be resolved by logic immedi-

ately! But when the number of blocks is enough large, the extraction is difficult to be
understood in use. In logic, there needs to find out the minimal disjunction normal
form.

The symbol set S consists of ten letters belonging to four conditional factors:

S = X(f1) + X(f2) + X(f3) + X(f4) = {O,M,Y;H,A,L; S,N;G,F}.

According to Axiom Γ1, there are 36 4-length blocks, they indeed forms the
Cartesian product space X:

X = X(f1) × X(f2) × X(f3) × X(f4)

= {OHSG,OHSF,OHNG,OHNF,OASG,OASF,OANG,OANF,OLSG,

OLSF,OLNG,OLNF,MHSG,MHSF,MHNG,MHNF,MASG,

MASF,MANG,MANF,MLSG,MLSF,MLNG,MLNF,YHSG,

YHSF,YHNG,YHNF,YASG,YASF,YANG,YANF,YLSG,YLSF,

YLNG,YLNF}

Having 1024 persons take part in the statistics to form the table, the table does
completely reflect the populations information. According to Axiom Γ2, there are
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only 14 real phase-configurations from the 4 conditional factors. Deleting all virtual
configurations from X, we get the background set R:

R ={MHNF,OANF,OLSF,MLSG,YLSF,OASF,YASG,

MANG,MHSF,YHNF,YHNG,OLSG,YANF,OANG}

From (7), we get that

B = MHNF + OANF + OLSF + MLSG + YLSF

+ OASF + YASG + MANG + MHSF

= (MHNF + MLSG + MANG + MHSF)

+ (OANF + OLSF + OASF) + (YASG + YLSF)

= M(HNF + LSG + ANG + HSF)

+ OF(AN + LS + AS) + YS(AG + LF).

According to Proposition3, M is a prime implicant form of B if M does not
occur in E. Let E be the set of letters occurring in one of blocks in E. We have that
E = {O,Y;H,A,L; S,N;G,F}, then R − E

¯
= {M}. It means thatM does not occur

in E. So that M is a prime implicant form of B. Delete all implicants of M, we have
that

B = M + OF(AN + LS + AS) + YS(AG + LF).

Similarly, since OF does not occur in E (See (2)), OF is a prime implicant form
of B. Delete all implicants of OF, we have that

B = M + OF + YS(AG + LF).

Similarly, since YS does not occur in E (See (8)), YS is a prime implicant form of
B. Delete all implicants of YS, we have one minimal disjunction normal form of B:

B = M + OF + YS

From (8), we get that

E = YHNF + YHNG + OLSG + YANF + OANG

= (YHNF + YHNG + YANF) + (OANG + OLSG)

= YN(HF + HG + AF) + OG(AN + LS).

Since YN does not occur in any block of B, according to Proposition3, YN is a
prime implicant form of E. Delete all implicants of YN , we have that

E = YN + OG(AN + LS).
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Fig. 1 Purchase decision
tree

/Good −→ No
/Old-(Reputation)-Fair −→ Buyer

(Age)-Middle −→ Buyer
\ Young -(Student?)-Student −→ Buyer

\ Non-student −→ No

Similarly, since OG does not occur in B, OG is a prime implicant form of E.
Delete all implicants of OF, we have one minimal disjunction normal form of E.

E = YS + OG.

Now, we can get the decision tree shown in Fig. 1.
WangHDhas gottenmore simplemethodondecision tree bymeans of factor space

theory [8]. Now, factor logic presents another simple method. The open problem is:
How to select prime implicants with 1-length, 2-length or short length blocks?

Factor logic has also been applied in the structure-function analysis [9], shown in
following two examples.

Example 2 Given a electronic system having five switches x1, . . . , x5, they can be
described by five factors F = (f1, f2, f3, f4, f5) respectively. Each one has its own
phase space X(fj) = {x1j, x0j} = {xj, x

¯ j
} (x1j stands for that the switch xj is connected

and x0j stands for that xj is disconnected). The resulted factor g has phase space
X(g) = {T ,F} (T stand for the system being transformation, and F stands for fault).
The table is given in the next paper.

There are 32 objects in the universe U = {u1, . . . , u32}, and X = X(f1) × · · · ×
X(f5) contains 25 = 32 objects, so that the background set is the same as theCartesian
product space: R = T + F;

S = {x1, x1; x2, x2; x3, x3; x4, x4; x5, x5}
T
¯

= {x1x
¯2
x
¯3
x4x
¯5

, x
¯1
x
¯2
x3x
¯4
x5, x

¯1
x
¯2
x3x
¯4
x5, x1x2x3x

¯4
x
¯5

, x1x
¯2
x3x4x

¯5
,

x1x
¯2
x
¯3
x4x5, x

¯1
x2x3x4x5, x1x2x

¯3
x4x
¯5

, x1x
¯2
x3x
¯4
x5, x

¯1
x2x3x

¯4
x5,

x1x2x3x4x
¯5

, x1x
¯2
x3x4x5, x

¯1
x2x3x4x5, x1x2x

¯3
x4x5, x1x2x3x

¯4
x5,

x1x2x3x4x5}
F = {x

¯1
x
¯2
x
¯3
x
¯4
x
¯5

, x1x
¯2
x
¯3
x
¯4
x
¯5

, x
¯1
x2x
¯3
x
¯4
x
¯5

, x
¯1
x
¯2
x3x
¯4
x
¯5

, x
¯1
x
¯2
x
¯3
x4x
¯5

, x
¯1
x
¯2
x
¯3
x
¯4
x5,

x1x2x
¯3
x
¯4
x
¯5

, x1x
¯2
x3x
¯4
x
¯5

, x1x
¯2
x
¯3
x
¯4
x5, x

¯1
x2x3x

¯4
x
¯5

, x
¯1
x2x
¯3
x4x
¯5

, x
¯1
x2x
¯3
x
¯4
x5,

x
¯1
x
¯2
x3x4x

¯5
, x
¯1
x2x3x4x

¯5
, x
¯1
x2x
¯3
x4x5, x1x2x

¯3
x
¯4
x5}

T = x1x
¯2
x
¯3
x4x
¯5

+ x
¯1
x
¯2
x3x
¯4
x5 + x

¯1
x
¯2
x3x
¯4
x5 + x1x2x3x

¯4
x
¯5

+ x1x
¯2
x3x4x

¯5
+

x1x
¯2
x
¯3
x4x5 + x

¯1
x2x3x4x5 + x1x2x

¯3
x4x
¯5

+ x1x
¯2
x3x
¯4
x5 + x

¯1
x2x3x

¯4
x5 +

x1x2x3x4x
¯5

+ x1x
¯2
x3x4x5 + x

¯1
x2x3x4x5 + x1x2x

¯3
x4x5 + x1x2x3x

¯4
x5 +

x1x2x3x4x5
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= x1(x
¯2
x
¯3
x4x
¯5

+ x2x3x
¯4
x
¯5

+ x
¯2
x3x4x

¯5
+ x

¯2
x
¯3
x4x5 + x2x

¯3
x4x
¯5

+ x
¯2
x3x
¯4
x5 +

x2x3x4x
¯5

+ x
¯2
x3x4x5 + x2x

¯3
x4x5 + x2x3x

¯4
x5 + x2x3x4x5) + x

¯1
x
¯2
x3x
¯4
x5 +

x
¯1
x
¯2
x3x
¯4
x5 + x

¯1
x2x3x4x5 + x

¯1
x2x3x

¯4
x5 + x

¯1
x2x3x4x5.

Unfortunately, letter x1 can be found in F, so that x1 is not a prime implicant of
T . In this case, do not be disappointed, continue search two letter pairs:

T = x1x4(x
¯2
x
¯3
x
¯5

+ x
¯2
x3x
¯5

+ x
¯2
x
¯3
x5 + x2x

¯3
x
¯5

+ x2x3x
¯5

+ x
¯2
x3x5 + x2x

¯3
x5 +

x2x3x5) + x3x5(x
¯1
x
¯2
x
¯4

+ x
¯1
x2x4 + x

¯1
x
¯2
x4 + x1x

¯2
x
¯4

+ x
¯1
x2x
¯4

+ x
¯1
x2x4 +

x1x2x
¯4

) + x1x2x3x
¯4
x
¯5

.

Since x1 and x4 are not in anyblockofF simultaneously, according toProposition3,
x1x4 is a prime disjunction normal form of T . Deleting all implicants of x1x4, we have
that

T = x1x4 + x3x5(x
¯1
x
¯2
x
¯4

+ x
¯1
x2x4 + x

¯1
x
¯2
x4 + x1x

¯2
x
¯4

+ x
¯1
x2x
¯4

+ x
¯1
x2x4 +

x1x2x
¯4

) + x1x2x3x
¯4
x
¯5

.

Since x3 and x5 are not in any block of F simultaneously, according to Proposi-
tion3, x3x5 is a prime disjunction normal form of T . Deleting all implicants of x3x5,
we have that

T = x1x4 + x3x5 + x1x2x3x
¯4
x
¯5

.

Since x1, x2 and x3 are not in any block of F simultaneously, according to Propo-
sition3, x1x2x3 is a prime disjunction normal form of T . Deleting all implicants of
x1x2x3, we have that

T = x1x4 + x3x5 + x1x2x3. (9)

The target of a switch system is not a decision making or a classification, which
is a function-structure analysis. The table tells us the systems’ function, we need to
find out what is the structure of the switches. The formula (9) is the structure, and it
is easily to draw a picture in Fig. 2.

In this example the background set R = X, the Hypothesis Γ is redundant, and
the Proposition3 is the same as classical method of prime implication extraction in
Boolean logic. Factor logic can extend the method to constrained switch systems. If
we set a constraint, x3 = x1 + x2 for example, then the configuration of switch is not
free, 16 columns in Table2 are violates the constraint. Table2 becomes to Table3 in
the following example, How to extract prime implication?

Example 3 Based on the Table3, we define these two formulae T and F as follows.

T = x1x4(x
¯2
x3x
¯5

+ x2x3x
¯5

+ x
¯2

+ x3x5 + x2x3x5) + x
¯1
x
¯2
x
¯3
x4x5 + x1x

¯2
x3x
¯4
x5

+ x
¯1
x2x3x

¯4
x5 + x

¯1
x2x3x4x5 + x1x2x3x

¯4
x5 + x1x2x3x

¯4
x
¯5

.
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Fig. 2 Structure of five switches

Table 2 Function of a switch system

U 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f ∗
1 x

¯1
x1 x

¯1
x
¯1

x
¯1

x
¯1

x1 x1 x1 x1 x
¯1

x
¯1

x
¯1

x
¯1

x
¯1

x
¯1

f2 x
¯2

x
¯2

x2 x
¯2

x
¯2

x
¯2

x2 x
¯2

x
¯2

x
¯2

x2 x2 x2 x
¯2

x
¯2

x
¯2

f3 x
¯3

x
¯3

x
¯3

x3 x
¯3

x
¯3

x
¯3

x3 x
¯3

x
¯3

x3 x
¯3

x
¯3

x3 x3 x
¯3

f4 x
¯4

x
¯4

x
¯4

x
¯4

x4 x
¯4

x
¯4

x
¯4

x4 x
¯4

x
¯4

x4 x
¯4

x4 x
¯4

x4
f5 x

¯5
x
¯5

x
¯5

x
¯5

x
¯5

x5 x
¯5

x
¯5

x
¯5

x5 x
¯5

x
¯5

x5 x
¯5

x5 x5
g F F F F F F F F T F F F F F T T

U 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

f ∗
1 x1 x1 x1 x

¯1
x
¯1

x1 x
¯1

x1 x1 x
¯1

x1 x1 x
¯1

x1 x1 x1
f2 x2 x

¯2
x
¯2

x2 x2 x2 x
¯2

x
¯2

x2 x2 x2 x
¯2

x2 x2 x2 x2
f3 x3 x

¯3
x3 x3 x

¯3
x
¯3

x3 x3 x
¯3

x3 x3 x3 x3 x
¯3

x3 x3
f4 x

¯4
x4 x4 x4 x4 x

¯4
x4 x

¯4
x4 x

¯4
x4 x4 x4 x4 x4 x4

f5 x
¯5

x
¯5

x5 x
¯5

x5 x5 x5 x5 x
¯5

x5 x
¯5

x5 x5 x5 x5 x5
g T T T F F F T T T T T T T T T T

F = x
¯1
x
¯2
x
¯3
x
¯4
x
¯5

+ x
¯1
x
¯2
x
¯3
x4x
¯5

+ x
¯1
x
¯2
x
¯3
x
¯4
x5 + x1x

¯2
x3x
¯4
x
¯5

+ x
¯1
x2x3x

¯4
x
¯5

+
x
¯1
x
¯2
x
¯3
x4x5.

Since x1 and x4 are not in any block of F simultaneously, according to Proposi-
tion3, x1x4 is a prime disjunction normal form of T . Deleting all implicants of x1x4,
we have that

T = x1x4 + x3x5(x1x
¯2
x
¯4

+ x
¯1
x2x
¯4

+ x
¯1
x2x4 + x1x2x

¯4
) + x1x2x3x

¯4
x
¯5

+ x
¯1
x
¯2
x
¯3
x4x5.
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Table 3 Function of constrained switch system

U 1 5 6 8 11 16 17 18 20 24 26 27 28 29 31 32

f1 x
¯1

x
¯1

x
¯1

x1 x
¯1

x
¯1

x1 x1 x
¯1

x1 x
¯1

x1 x1 x
¯1

x1 x1
f2 x

¯2
x
¯2

x
¯2

x
¯2

x2 x
¯2

x2 x
¯2

x2 x
¯2

x2 x2 x
¯2

x2 x2 x2
f3 x

¯3
x
¯3

x
¯3

x3 x3 x
¯3

x3 x3 x3 x3 x3 x3 x3 x3 x3 x3
f4 x

¯4
x4 x

¯4
x
¯4

x
¯4

x4 x
¯4

x4 x4 x
¯4

x
¯4

x4 x4 x4 x
¯4

x4
f5 x

¯5
x
¯5

x5 x
¯5

x
¯5

x5 x
¯5

x
¯5

x
¯5

x5 x5 x
¯5

x5 x5 x5 x5
g F F F F F T T T F T T T T T T T

Since x3 and x5 are not in any block of F simultaneously, according to Proposi-
tion3, x3x5 is a prime disjunction normal form of T . Deleting all implicants of x3x5,
we have that

T = x1x4 + x3x5 + x1x2x3x
¯4
x
¯5

+ x
¯1
x
¯2
x
¯3
x4x5.

Since x4 and x5 are not in any block of F simultaneously, according to Proposi-
tion3, x4x5 is a prime disjunction normal form of T . Deleting all implicants of x4x5,
we have that

T = x1x4 + x3x5 + x1x2x3x
¯4
x
¯5

+ x4x5.

Since x1, x2 and x3 are not in any block of F simultaneously, according to Propo-
sition3, x1x2x3 is a prime disjunction normal form of T . Deleting all implicants of
x1x2x3, we have that

T = x1x4 + x3x5 + x1x2x3 + x4x5.

It is the structure of the switch system, which is the same structure of Fig. 2, but
each switch x3 is binding as the parallel connection of x1 and x2. The 5 switch system
indeed degenerated into a 4 switch system. We omit the structure graph here.

5 Conclusions

Factor logic is a derivative system of Boolean logic with added hypothesis. Even
though it is not a strict theory, the examples in application show that it is worthy
to be developed in the future. The motive of this paper is to commemorate Prof.
Wang GJ. Factor logic takes state description into factor space and set up truth set
for formulae, it may provide a suitable platform for the development of quantitative
logic.
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A Brief Introduction to Probabilistically
Quantitative Logic with Its Applications

Hong-Jun Zhou

Abstract Uncertainty is a fundamental and unavoidable feature of our real life,
which has many distinct representation forms such as randomness, fuzziness, ambi-
guity, inaccuracy, incompleteness and roughness. Accordingly, many different math-
ematical models for dealing with these uncertainties, like probability, fuzzy set the-
ory, Dempster-Shafer theory of evidence and rough set theory, have been introduced
and also applied with great success in many fields. In order to construct uncertainty
models with more powerful abilities of linguistic expression and logical inference,
researchers have been devoting to intersections of different branches of mathematics
of uncertainty, among which the resulting interdiscipline by combining probability
and many-valued propositional logics is called probabilistically quantitative logic.
This paper presents a brief introduction to probabilistically quantitative logic from
four viewpoints of its research approaches and applications. Main contents include
probabilistic truth degrees of propositions, logic systems for reasoning about proba-
bilities of many-valued events, generalized state theory on residuated lattices, consis-
tency degrees of formal theories, characterizations of maximally consistent theories,
Stone representations of R0-algebras, and generalized state based similarity conver-
gence in residuated lattices with its Cauchy completion.

Keywords Probabilistically quantitative logic · Truth degree · Bosbach state ·
Riečan state · Consistency degree

1 Introduction

Nowhere in our real life there does not exist uncertainty, which has many distinct
representation forms such as randomness, fuzziness, ambiguity, inaccuracy, incom-
pleteness and roughness [1–4].On the other hand,modernmathematics based on two-
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valued logic and modern techniques developed thereafter have made great achieve-
ments, but classical mathematics, after all, is an idealized model of the complicated
real world, and hence, modern mathematics cannot, or at least only with low effi-
ciency, deal with uncertainties existing in our real life [5, 6]. Indeed, it can be traced
back to the 17th century that people began to study random phenomena, and estab-
lished probability theory [7] in the 1930s. Meanwhile, other mathematical theories
modelling respective forms of uncertainty, e.g., many-valued logics [8] born in the
1920s; fuzzy set theory [9] born in the 1960s and diverse branches of fuzzy math-
ematics [10] developed soon after; Demspter-Shafer theory of evidence [11] built
in the 1970s; rough set theory [12] introduced in the 1980s; and credibility mea-
sure [4] in recent decades, have also emerged in succession and grown gradually in
strength. These mathematical models of uncertainty have also obtained remarkable
achievements in such fields as information processing, computational intelligence,
automated control, multi-criteria decision-making and data mining. However, the
mathematics of uncertainty has not been constructed as perfect as the magnificent
building ofmodernmathematics, because distinct forms of uncertainty in our real life
interweave with each other, and are so complicated that each mathematical theory of
uncertainty asmentioned above is insufficient to represent other forms of uncertainty.
For example, probability theory is good at representing and reasoning about random-
ness of events but not at fuzziness of the events, and fuzzy logic is just to the contrary
[13, 14]. In order to make up their limitations and build a connecting bridge so as to
improve their power of linguistic expression and logical inference, researchers tend
to combining two or more related disciplines into a new interdiscipline. In fact, inter-
disciplinarity has become an inevitable trend in the development of science today.
Mathematics of uncertainty, information science and computational intelligence all
belong to such category. The purpose of the interdisciplinarity is to further simulate
human intelligence, while human brain is the intelligent source of all modern civiliza-
tion, and hence simulation of human intelligence is and will forever be a challenging
task and is, of course, very difficult because there are no mature patterns to follow.

The present paper concerns combination of probability and many-valued propo-
sitional logics. Such an idea can be traced back to Ramsey [15] from Cambridge
University in the 1930s. Main approaches appearing in this community can be clas-
sified into three categories: semantic quantification, algebraic axiomatization and
modal formalization. Firstly, in the 1980s, Adam [16] from Stanford University and
Hailperin [17] from Lehigh University introduced probability logic by using prob-
ability distributions on the set of state descriptions of propositions in two-valued
propositional logic, and in recent two decades, Wang et. al. [18–26] proposed quan-
titative logic by integral of truth-functions with respect to countably infinite product
measures of uniform probability on the truth value sets of many-valued propositional
logics. The above approaches to measure the extent to which propositions are true by
virtue of probability measures on valuation domains outside the underlying propo-
sitional logic systems are called semantic quantifications. Secondly, with almost the
same intent of semantic quantification but using algebraic axiomatization approach,
Mundici [27] introduced in 1995 the notion of state onMV-algebras by extending the
Kolmogorov axioms of probability measures on Boolean algebras. Since its birth,
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state has attracted great interests of researchers and has been generalized to other
logical algebras such as BL-algebras, MTL-algebras, residuated lattices and Hilbert
algebras [28–38]. Considering that the underlying logical algebraswith a state are not
universal algebras and hence they do not provide an algebraizable logic in the sense
of Blok and Pigozzi [39] for reasoning about probabilities of many-valued events,
Flaminio and Montagna [40] enlarged the language of MV-algebras by adding a
unary internal operator equationally described so as to preserve the basic properties
of a state in its original meaning. The resulting algebras are called MV-algebras with
internal states or state MV-algebras. This topic has aroused considerable interests of
researchers in the fields of non-classical logics and many-valued probability theory.
Internal states have also been extended to more general logical algebras [41–46].
Recently, a common generalization of the approaches for states and internal states
was introduced by Georgescu and Mureşan [47] by replacing the codomain [0, 1] of
Bosbach and Riečan states on residuated lattices with an arbitrary residuated lattice.
The resulting notions are called generalizedBosbach state (of type I, or of type II) and
generalized Riečan state, respectively. So far the whole framework of generalized
states has been established [48–51]. Lastly, completely independent of the abovemen-
tioned two main directions of semantic quantification and algebraic axiomatization,
and particularly for providing a logical foundation for reasoning about probabilities
of many-valued events inside Łukasiewicz infinite-valued propositional logic, Hájek
et. al. [52, 53] proposed a modal-like logic system by adding a modality interpreted
as the probability of the underlying proposition and by adding additional axioms for
modal formulas which are copies of axioms of states on MV-algebras, and finally
proved its Kripke type completeness with respect to states on MV-algebras.

The purpose of the present paper is to provide a brief state of the art survey
of main achievements about combinations of probability measures and many-valued
propositional logics from the abovementioned three viewpoints of semantic quantifi-
cation, modal formalization and algebraic axiomatization, and also their applications
in related fields. These results create a new branch of mathematics of uncertainty
which we call probabilistically quantitative logic. The rest of the paper is structured
as follows: Sect. 2 reviews semantic quantification approach to many-valued propo-
sitional logics by integrals of truth functions with respect to uncertainty measures on
the space of valuations. In this section we will focus on the theory of probabilistic
truth degrees of propositions in Łukasiewicz finite or infinite-valued propositional
logic and in the formal deductive systemL ∗ (equivalently, NM-logic), and the theory
of truth degree of Choquet integral type in Łukasiewicz infinite-valued propositional
logic. Section3 deals with Hájek’s modal formalization towards the probabilistic
truth degree functions studied in Sect. 2 and provides one modal logic system for
reasoning about probabilities of many-valued events. Section4 reviews main results
about generalized states on residuated lattices. Section5 recalls some applications
of probabilistic truth degrees of propositions in consistency degrees of logic theo-
ries, characterizations of maximally consistent theories, three-valued Stone repre-
sentations of R0-algebras and generalized-state-based similarity convergence with
its Cauchy completion. Section6 concerns concluding remarks and possible further
studies.
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2 Semantic Quantification

2.1 Probabilistic Truth Degrees of Propositions

In probability logic, the probability of a proposition in two-valued propositional logic
is defined as the probability of the set of state-descriptions at which the underlying
proposition is true given a probability distribution on the set of all state-descriptions
of the proposition. Note that probability logic was established only inside the frame-
work of two-valued propositional logic. Moreover, such a way is suitable to define
probabilities of finitely many propositions under one probability distribution while
we have countably infinite many propositions. Quantitative logic defined the notion
of truth degree for all propositions in diverse infinite or finite-valued propositional
logics by using the countably infinite product of uniform probability measures on
the set of truth values, but the usage of product measures determines the indepen-
dence of atomic propositions. Considering the problems existing as abovewe [54–57]
introduced the notion of probabilistic truth degree for propositions by means of the
integral of truth functions with respect to Borel probability measures on the space of
valuations.

In this section we review the notion of probabilistic truth degree of propositions
in, as examples, many-valued Łukasiewicz propositional logics Łn and Ł, and many-
valued R0-type propositional logicsL ∗

n andL ∗. Note that, in n-valued propositional
logics Łn andL ∗

n , the set of truth values is Wn = {
0, 1

n−1 , . . . ,
n−2
n−1 , 1

}
, and in Ł and

L ∗, the set of truth values is W = [0, 1]. Of course, the logical operations in different
truth value sets are determined by the underlying logic systems. Accordingly, denote
the set of valuations Ωn by W ω

n , and denote Ω by W ω . Let F(S) be the set of all
well-formed formulae generated by the set S = {p1, p2, . . .} of atomic propositions
and the logic connectives ¬,∨ and →. For more details on Łn , Ł, L ∗

n and L ∗, we
refer to [58, 59].

We first review the notion of probabilistic truth degree of propositions in n-valued
propositional logics. To do so, view Xk = Wn as a discrete topological space (k =
1, 2, . . .), and Ωn = X =

∞∏

k=1
Xk as a product space, called valuation space. Let

B(Xk) and B(Ω) be the set of all Borel subsets of Xk and of Ω , respectively, μ a
Borel probability measure defined on B(Ω).

Definition 1 In Łn and L ∗
n , let ϕ ∈ F(S), and define

τn,μ(ϕ) =
n−1∑

i=0

i

n − 1
μ

(
ϕ−1

(
i

n − 1

))
. (1)

Then τn,μ(ϕ) is calledμ-truth degree ofϕ, whereϕ, at the right hand of (1), is viewed
as a function ϕ : Ω → Wn,ϕ(v) = v(ϕ), v ∈ Ω . Unless confusion arises, we shall
drop the subscript n from τn,μ(ϕ).
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Remark 1 (i) Take proposition ϕ = ϕ(p1, . . . , pm) ∈ F(S), then ∀i = 0, . . . , n −
1, ϕ−1( i

n−1 ) = ϕ−1( i
n−1 ) ×

∞∏

k=m+1
Xk , where ϕ is the truth-function induced by ϕ.

Recall that inŁn ,ϕ is just aMcNaughton function. Since∀E ⊆ W m
n , E ×

∞∏

k=m+1
Xk ∈

B(Ω), we have that in Łn or inL ∗
n , ϕ is continuous from the product space Ω into

the discrete space Wn , and so Borel measurable. Therefore, ϕ can be viewed as a
random variable function on (Ω,B(Ω),μ), and in this case

τμ(ϕ) =
n−1∑

i=0

i

n − 1
μ

(
ϕ−1

(
i

n − 1

))
=

∫

B(Ω)

ϕ(v)dμ

is the mathematical expectation of ϕ.
(ii) Let μ be a Borel probability measure on Ω , m ∈ N, and define μ(m) :

B(W m
n ) → [0, 1]:

μ(m)(E) = μ

(

E ×
∞∏

k=m+1

Xk

)

, E ∈ B(W m
n ).

Then μ(m) is a Borel probability measure on W m
n . For ϕ = ϕ(p1, . . . , pm) ∈ F(S),

we have

τμ(ϕ) =
n−1∑

i=0

i
n−1μ

(
ϕ−1

(
i

n−1

))

=
n−1∑

i=0

i
n−1μ

(
ϕ−1

(
i

n−1

) ×
∞∏

k=m+1
Xk

)

=
n−1∑

i=0

i
n−1μ(m)

(
ϕ−1

(
i

n−1

))
.

(2)

(iii) τμ(ϕ) can be further written as

τμ(ϕ) =
n−1∑

i=0

i
n−1μ(m)

(
ϕ−1

(
i

n−1

))

=
n−1∑

i=0

i
n−1

(∑{
μ(m)({(x1, . . . , xm)}) | (x1, . . . , xm) ∈ ϕ−1

(
i

n−1

)})

=
n−1∑

i=0

(∑{
i

n−1μ(m)({(x1, . . . , xm)}) | (x1, . . . , xm) ∈ ϕ−1
(

i
n−1

)})

=
n−1∑

i=0

(∑{
ϕ(x1, . . . , xm)μ(m)({(x1, . . . , xm)}) | (x1, . . . , xm) ∈ ϕ−1

(
i

n−1

)})

= ∑{ϕ(x1, . . . , xm)μ(m)({(x1, . . . , xm)}) | (x1, . . . , xm) ∈ W m
n }.

(3)

(iv) Let n = 2 and ϕ = ϕ(p1, . . . , pm) ∈ F(S). Then ϕ is a Boolean function,
and (3) reduces to
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τ2,μ(ϕ) =
∑

{μ(m)(x1, . . . , xm) | (x1, . . . , xm) ∈ ϕ−1(1)}. (4)

Recall that each disjunctive component of the disjunctive normal form of ϕ is
called a state-description of ϕ, which is one-to-one corresponding to a vector in
ϕ−1(1). Thus μ(m) can be viewed as a probability distribution on the set of all state-
descriptions of ϕ and τ2,μ(ϕ) in (4) is the probability of ϕ as defined in [16, 17].
What is important here is that, by virtue of μ, one can define the probabilities of all
propositions in F(S).

(v) Let μ be the product probability measure on Ω generated by the uniform
probability measures on Wn , then μ(m) is the uniform probability measure on W m

n ,
and hence,

τμ(ϕ) =
n−1∑

i=0

i
n−1μ(m)

(
ϕ−1

(
i

n−1

))

=
n−1∑

i=0

i
n−1 · |ϕ−1( i

n−1 )|
nm

= 1
nm

n−1∑

i=0

i
n−1 |ϕ−1

(
i

n−1

) |.

(5)

This is just the computation formula for truth degrees of propositions given in [18,
19]. Different from [18, 19, 21, 23, 25], μ in Definition 1 is not necessarily a product
probability measure.

(vi) For each valuation v = (v1, v2, . . .) ∈ Ω = W ω
n , take the Borel probability

measure μk on Xk = Wn satisfying μk(∅) = 0,μk(Xk) = 1, and

μk({xk}) =
{
1, xk = vk,

0, xk 
= vk,
k = 1, 2, . . . .

Let μ be the product measure generated by μ1,μ2, . . ., then it is routine to verify that
τμ = v. This shows that each valuation v ∈ Ω is a truth degree function in the sense
of Definition 1.

Example 1 Let ϕ1 = p1,ϕ2 = p2 → p3,ϕ3 = p1 ∨ p2 ∨ p3,ϕ4 = p1 ∧ p2 ∧ p3.
Compute τμ(ϕi ) (i = 1, . . . , 4) in Ł3 and L ∗

3 , respectively.
Solution Since ϕi (i = 1, . . . , 4) involves just p1, p2 and p3, it is enough to con-

sider Borel probability measures μ(3) on W 3
3 = {0, 1

2 , 1}3. Note that,L ∗
3 is equiva-

lent to Ł3, i.e., they have the same provable theorems, hence each proposition above
has the same truth degrees in these two logic systems.

(i) Suppose that μ(3){(1, 1, 1)} = 0.3, μ(3)({( 12 , 1
2 ,

1
2 )}) = 0.2,

μ(3)({(x1, x2, x3)}) = 0.02 iff (x1, x2, x3) ∈ W 3
3 − {(1, 1, 1), ( 12 , 1

2 ,
1
2 )}, then:

p1
−1(1) = {(1, x2, x3) | x2, x3 ∈ W3}, p1

−1( 12 ) = {( 12 , x2, x3) | x2, x3 ∈ W3}, so
one has

τμ(p1) = μ(3)(p1
−1(1)) + 1

2μ(3)
(

p1
−1 (

1
2

))

= 0.3 + 0.02 × 8 + 1
2 × (0.2 + 0.02 × 8)

= 0.64;



A Brief Introduction to Probabilistically Quantitative Logic with Its Applications 27

ϕ−1
2 (1) = {(x1, x2, x3) | x1, x2, x3 ∈ W3, x2 ≤ x3}, ϕ2

−1( 12 ) = {(x1, x2, x3) |
x2 = x3 + 1

2 }, thus

τμ(ϕ2) = μ(3)(ϕ2
−1(1)) + 1

2μ(3)
(
ϕ2

−1
(
1
2

))

= (0.3 + 0.2 + 0.02 × 16) + 1
2 × (0.02 × 6)

= 0.88;

ϕ3(1) = {(x1, x2, x3) | max{x1, x2, x3} = 1},ϕ3
−1( 12 ) = {(x1, x2, x3) | max{x1,

x2, x3} = 1
2 } = {0, 1

2 }3 − {(0, 0, 0)}, then
τμ(ϕ3) = μ(3)(ϕ3

−1(1)) + 1
2μ(3)

(
ϕ3

−1
(
1
2

))

= (0.3 + 0.02 × 18) + 1
2 × (0.2 + 0.02 × 6)

= 0.82;

ϕ4
−1(1) = {(1, 1, 1)}, ϕ4

−1( 12 ) = { 12 , 1}3 − {(1, 1, 1)}, and thus

τμ(ϕ4) = μ(3)(ϕ4
−1(1)) + 1

2μ(3)
(
ϕ4

−1
(
1
2

))

= 0.3 + 1
2 × (0.2 + 0.02 × 6)

= 0.46.

(ii) Letμ(3) be the uniformprobability distribution on {0, 1
2 , 1}3, then τμ(ϕ1) = 1

2 ,

τμ(ϕ2) = 7
9 , τμ(ϕ3) = 5

6 , τμ(ϕ4) = 1
6 .

Example 2 Let μ be the product probability measure on Ω generated by the uni-
form probability measures on Wn , see (5), calculate the μ-truth degrees of p1, p2 →
p3, p1 ∨ p2 and p1 ∧ · · · ∧ pm in Łn and inL ∗

n , respectively.
(i) In Łn ,

τμ(p1) = 1
n1

n−1∑

i=0

i
n−1 |p1

−1 (
i

n−1

) |

= 1
n

n−1∑

i=1

i
n−1

= 1
n(n−1)

n−1∑

i=1
i

= 1
n(n−1) · n(n−1)

2 = 1
2 ;

τμ(p2 → p3) = 1
n2

n−1∑

i=0

i
n−1 | p2 → p3

−1 (
i

n−1

) |

= 1
n2(n−1)

(
n(n+1)(n−1)

2 +
n−2∑

i=1
i(i + 1)

)

= 1
6n2(n−1) (5n2 − n)(n − 1)

= 5n−1
6n ;
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τμ(p1 ∨ p2) = 1
n2

n−1∑

i=0

i
n−1 (2i + 1)

= 4n+1
6n ;

τμ(p1 ∧ · · · ∧ pm) = 1
nm

n−1∑

i=0

i
n−1 | p1 ∧ · · · ∧ pm

−1
( i

n−1 ) |

= 1
nm

n−1∑

i=1

i
n−1 [(n − i)m − (n − i − 1)m]

= 1
nm (n−1) [(n − 1)m + (n − 2)m + · · · + 1m]

= 1
nm (n−1)

n−1∑

k=1
km .

(ii) In L ∗
n , since p1, p1 ∨ p2, p1 ∧ · · · ∧ pm contains no implications, they

each have the same μ-truth degrees as in Łn , i.e., τμ(p1) = 1
2 , τμ(p1 ∨ p2) = 4n+1

6n ,

τμ(p1 ∧ · · · ∧ pm) = 1
nm (n−1)

n−1∑

k=1
km . It now remains to find τμ(p2 → p3). Since

p2 → p3(x2, x3) = 1 iff x2 ≤ x3, we have |p2 → p3
−1(1)| = n + (n − 1) + · · · +

1 = n(n+1)
2 . Let p2 → p3(x2, x3) = i

n−1 (1 ≤ i ≤ n − 2). It is not difficult to verify
that

|p2 → p3
−1

(
i

n − 1

)
| =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n − 1, i = n−1
2 and n is odd,

2i + 1, i < n−1
2 and n is odd,

2(n − 1 − i), i > n−1
2 and n is odd,

2i + 1, i ≤ n−1
2 and n is even,

2(n − 1 − i), i > n−1
2 and n is even.

Thus, in the case when n is odd,

τμ(p2 → p3) = 1
n2 × n(n+1)

2 + 1
2 × n−1

n2 +
n−1
2 −1∑

i=1

i
n−1 · 2i+1

n2

+
n−2∑

i= n−1
2 +1

i
n−1 · 2(n−1−i)

n2

= 6n2+n−1
8n2 ;

and in the case when n is even,

τμ(p2 → p3) = 1
n2 × n(n+1)

2 +
n
2 −1∑

i=1

i
n−1 · 2i+1

n2

+
n−2∑

i= n
2

i
n−1 · 2(n−1−i)

n2

= 6n2−5n−2
8n(n−1) .
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Therefore

τμ(p2 → p3) =
{

6n2+n−1
8n2 , n is odd,

6n2−5n−2
8n(n−1) , n is even.

τn,μ has the following basic properties.

Proposition 1 Let μ be a Borel probability measure on Ωn = W ω
n , then in Łn and

L ∗
n :

(i) 0 ≤ τμ(ϕ) ≤ 1;
(ii) If ϕ is a tautology (contradiction), then τμ(ϕ) = 1(τμ(ϕ) = 0);
(iii) If ϕ and ψ are logically equivalent, then τμ(ϕ) = τμ(ψ);
(iv) τμ(ϕ) + τμ(¬ϕ) = 1;
(v) τμ(ϕ) + τμ(ψ) = τμ(ϕ ∨ ψ) + τμ(ϕ ∧ ψ)

(vi) If  ϕ → ψ, then τμ(ϕ) ≤ τμ(ψ)

(vii) τμ(ϕ ∧ ψ) ≥ τμ(ϕ) + τ (ψ) − 1;
(viii) τμ(ψ) ≤ τμ(ϕ → ψ).

Proposition 2 Let μ be a Borel probability measure on Ω , then in Łn:
(i) τμ(ϕ) + τμ(ϕ → ψ) = τμ(ψ) + τμ(ψ → ϕ);
(ii) τμ(ϕ) + τμ(ψ) = τμ(ϕ ⊕ ψ) + τμ(ϕ&ψ).

Proposition 3 ([55, 57]) In Łn, we have
(i) There is a one-to-one correspondence between deductively closed logic theories
and topologically closed subsets of the valuation space Ω;
(ii)Deductively closed logic theories each have the form of Ker(τμ), where Ker(τμ) =
{ϕ ∈ F(S) | τμ(ϕ) = 1}, for some Borel probability measure μ on Ω .

Proposition 4 Let μ be a non-atomic (i.e., ∀v ∈ Ω,μ({v}) = 0) Borel probability
measure on Ωn, then:
(i) Hμ = {τμ(ϕ) | ϕ ∈ F(S)} is a countable subset of [0, 1]; (ii) for μ the prod-
uct measure generated by uniform probability measures, { k

nm | k = 0, . . . , nm; m ∈
N} ⊆ Hμ;
(iii) the μ-logic metric space (F(S), ρμ) has no isolated points, where ρμ(ϕ,ψ) =
τμ((ϕ → ψ) ∧ (ψ → ϕ)).

In the following we review the integrated truth degree functions τ∞,μ in Ł and in
L ∗, which are connected to τn,μ in Definition1 by a limit theorem.

Definition 2 Let ϕ = ϕ(p1, . . . , pm) ∈ F(S), μ a Borel probability measure on
Ω = [0, 1]ω , and define

τ∞,μ(ϕ) = ∫
[0,1]ω ϕ(v)dμ

= ∫
[0,1]m ϕ∞(x1, . . . , xm)dμ(m),

(6)

where ϕ∞ : [0, 1]m → [0, 1] is the truth-function induced by ϕ in Ł (or in L ∗).
τ∞,μ(ϕ) is called the μ-integrated truth degree of ϕ.
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Theorem 1 Let ϕ = ϕ(p1, . . . , pm) ∈ F(S), μ a Borel probability measure on
Ωn = W ω

n , then μ can be extended, in a certain way [55, 57], to a Borel proba-
bility measure (still denoted by μ) on Ω = [0, 1]ω such that
(i) in Łukasiewicz many-valued propositional logics, lim

n→∞ τn,μ(ϕ) = τ∞,μ(ϕ);

(ii) in R0-type propositional logics, lim
n→∞ τn,μ(ϕ) = τ∞,μ(ϕ)

whenever μ({(x1, . . . , xm) | (x1, . . . , xm) is a discontinuity point of ϕ∞}) = 0.

2.2 Axiomatic Definition of Probabilistic Truth Degree
Function and Its Representation

In this subsection we recall the axiomatic definition of the probabilistic truth degree
functions in Łn and in Ł and their representation by using (1). For the axiomatic
definition of the probabilistic truth degree function in L ∗ we refer to [60].

Definition 3 In Łn and Ł, a function τ : F(S) → [0, 1] is called a probabilistic truth
degree function if τ satisfies:
(ŁK1) 0 ≤ τ (ϕ) ≤ 1;
(ŁK2) If ϕ is an axiom, then τ (ϕ) = 1;
(ŁK3) If  ϕ → ψ, then τ (ϕ) ≤ τ (ψ);
(ŁK4) If ϕ&ψ is a refutable formula, then τ (ϕ ⊕ ψ) = τ (ϕ) + τ (ψ).

We will add the subscript n or ∞ to τ to indicate precisely the underlying logic Łn

or Ł when necessary.

For properties of τ and its characterizations by other axioms, please see [57]. By
Kroupa-Panti’s integral representations of states on MV-algebras [29, 30] one can
get the representation for probabilistic truth degree function.

Theorem 2 (i)For a probabilistic truth degree function τ inŁn, there exists a unique
Borel probability measure μ on Ω = W ω

n such that τ can be represented by (1), i.e.,

∀ϕ ∈ F(S), τ (ϕ) =
n−1∑

i=0

i
n−1μ(ϕ−1( i

n−1 ));

(ii) For a probabilistic truth degree function τ in Ł, there exists a unique Borel
probability measure on Ω = [0, 1]ω such that τ can be represented by (6), i.e.,

τ (ϕ) = ∫
Ω

ϕ(v)dμ
= ∫

[0,1]m ϕ(x1, . . . , xm)dμ(m),

ϕ = ϕ(p1, . . . , pm) ∈ F(S).
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2.3 Choquet Type Truth Degree of Propositions

Logic propositions are all proper symbol strings of finite length, and any logic infer-
ence does not involve infinitely many propositions, hence the requirement on the
countable additivity of probability measures on the valuation space seems too strong
to be widely accepted by logicians. Finite additivity of measures can even be released
because the dependence between information in our real life is not linear. We intro-
duced in [56] the notion of Choquet type truth degrees of propositions in Ł by
using the Choquet integral of McNaughton functions with respect to general fuzzy
measures on the valuation space and proved that a truth degree function has good
properties when the fuzzy measure has just finite additivity and particularly, the truth
degree function will reduce to the probabilistic truth degree function in (6) when the
fuzzy measure is a Borel probability measure.

Definition 4 Let Ω = [0, 1]ω, B the set of all Borel subsets of Ω , and μ a fuzzy
measure on (Ω,B). Then, ∀ϕ ∈ F(S), define

τμ,C(ϕ) = (C)

∫

Ω

ϕdμ =
∫ 1

0
μ(ϕ−1([α, 1]))dα (7)

as the μ-Choquet type truth degree of ϕ. For simplicity, denote τμ,C by τ if no
confusion arises.

Remark 2 (i) Let μ be a fuzzy measure on (Ω,B), ϕ ∈ F(S), α ∈ [0, 1]. Then, by
the continuity of ϕ : Ω → [0, 1], we have ϕ−1([α, 1]) ∈ B, hence μ(ϕ−1([α, 1]))
is well-defined and is non-increasing with respect to α, so μ(ϕ−1([α, 1])) is Rieman
integrable on [0, 1]. This shows that τ in (7) is well defined.

(ii) Letϕ = ϕ(p1, . . . , pm) ∈ F(S),α ∈ [0, 1], thenϕ−1([α, 1]) = ϕ−1([α, 1]) ×
∞∏

k=m+1
Xk . Hence

μ(ϕ−1([α, 1])) = μ

(
ϕ−1([α, 1]) ×

∞∏

k=m+1
Xk

)

= μ(m)(ϕ−1([α, 1])),

So τ (ϕ) = (C)
∫
[0,1]m ϕdμ(m) = ∫ 1

0 μ(m)(ϕ−1([α, 1]))dα. This shows that given a
proposition, its μ-Choquet type truth degree is determined by the fuzzy measure
μ(m) on [0, 1]m . Thus it suffices to consider fuzzy measures on [0, 1]m , μ(m) is
sometimes denoted by μ too.

(iii) By Theorem 11.1 in [61], τ (ϕ) = (C)
∫
Ω

ϕdμ = ∫ 1
0 μ(ϕ−1((α, 1]))dα.

Example 3 Let λ be the Lebesgue measure on [0, 1]2, then μ(2) = λ2 is a fuzzy
measure on [0, 1]2, which has no additivity. Calculate τ (p1), τ (p1 ∧ p2), τ (p1 →
p2) and τ ((p1 → p2) → ¬p1 ∨ p2).



32 H.-J. Zhou

Solution Note that p1 can be extended to a binary function p1(x1, x2) = p1(x1),
(x1, x2) ∈ [0, 1]2.

τ (p1) = (C)
∫
[0,1]2 p1dμ = ∫ 1

0 μ({(x1, x2) | x1 ≥ α})dα
= ∫ 1

0 (λ({(x1, x2) | x1 ≥ α}))2dα
= ∫ 1

0 (1 − α)2dα

= 1
3 .

τ (p1 ∨ p2) = (C)
∫
[0,1]2 p1 ∨ p2dα

= ∫ 1
0 μ({(x1, x2) | x1 ≥ αx2 ≥ α})dα

= ∫ 1
0 (λ({(x1, x2) | x2 ≥ x1, x2 ≥ α}

∪{(x1, x2) | x1 > x2, x1 ≥ α}))2dα
= ∫ 1

0 (λ({(x1, x2) | x2 ≥ x1, x2 ≥ α})
+λ({(x1, x2) | x1 > x2, x1 ≥ α}))2dα

= ∫ 1
0 (1 − α2)2dα

= 8
15 .

The remaining calculations are left to the readers: τ (p1 ∧ p2) = 1
5 , τ ((p1 →

p2) → ¬p2 ∨ p2) = 4
15 , τ (p1 → p2) = 43

60 .

For the properties of τ corresponding to that of μ we refer to [56].

Theorem 3 Let μ be a Borel probability measure on Ω , then τ (ϕ) = ∫ 1
0 μ(ϕ−1

([α, 1]))dα = ∫
Ω

ϕdμ.

3 Modal Formalization

Following Hájek’s modal formalization approach [52, 53], one can construct modal-
like logic systems for reasoning about truth degrees of propositions, by abstracting
as a modality P the probabilistic truth degree function τ in Łn defined by (1) (equiv-
alently by Definition 3), and as axioms of modal formulas some basic identities of
τ , like τ (¬ϕ) = 1 − τ (ϕ), which provide a logic foundation for semantic quantifi-
cation. We discussed in [57] three modal-like logic systems, but due to limit of the
length of the paper we review only the simplest one, denoted PQ(Łn,Ł).

Definition 5 The alphabet of PQ(Łn,Ł) consists of: propositional variables p1, p2,

. . . , denote by S is the set of all propositional variables, i.e., S = {p1, p2, . . .}; the
primitive logic connectives ¬ and → of Łukasiewicz propositional logic; a modality
P and necessary punctuations , ,(,). The set of well-formed formulas of PQ(Łn,Ł)

is divided into two parts: F(S) and M F(S), where
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(i) F(S) is just the set of all well-formed propositions of Łn generated by S by using
the logic connectives (¬,→). Members of F(S) are denoted by ϕ,ψ, . . ..
(ii) M F(S) is generated by {P(ϕ) | ϕ ∈ F(S)} by using the logic connectives
(¬,→), more precisely, P(ϕ) ∈ M F(S) (ϕ ∈ F(S)); if P(ϕ), P(ψ) ∈ M F(S),

then ¬P(ϕ), P(ϕ) → P(ψ) ∈ M F(S). P(ϕ) is called an atomic modal formula,
and members of M F(S) are called modal formulas, denoted by Φ,Ψ, . . ..

Definition 6 The axiom schemes and inference rules of PQ(Łn,Ł) are:
(i) substitution instances of axioms (Ł1)–(Ł4) of Ł by modal formulas;
(ii) axioms (Ł5) and (Ł6) of Łn;
(iii) three axiom schemes about P:
(PQ1) P(¬ϕ) ≡ ¬P(ϕ);
(PQ2) P(ϕ → ψ) → (P(ϕ) → P(ψ));
(PQ3) P(ϕ ⊕ ψ) ≡ (P(ϕ) → P(ϕ&ψ)) → P(ψ).
Inference rules are modus ponens for modal and non-modal formulas, and general-
ization: from ϕ infer P(ϕ).

Definition 7 A semantic model of PQ(Łn,Ł) is a quadruple (Ω, v, τ , ‖ · ‖τ ,v),
where
(i) Ω is the set of all valuations of Łn , and v ∈ Ω is a valuation;
(ii) τ is a truth degree function as defined in Definitions 1, 3,
(iii) ‖ · ‖τ ,v is a mapping ‖ · ‖τ ,v : F(S) ∪ M F(S) → [0, 1] such that

• ‖ϕ‖τ ,v = v(ϕ),
• ‖P(ϕ)‖τ ,v = τ (ϕ),
• ‖¬Φ‖τ ,v = 1 − ‖Φ‖τ ,v ,
• ‖Φ → Ψ ‖τ ,v = ‖Φ‖τ ,v → ‖Ψ ‖τ ,v = (1 − ‖Φ‖τ ,v + ‖Ψ ‖τ ,v) ∧ 1.

Theorem 4 ([53]) Let Γ be a finite modal theory of PQ(Łn,Ł), Φ ∈ M F(S), then

Γ  Φ iff Γ |= Φ.

4 Algebraic Axiomatization

Mundici [27] introduced the notion of state on MV-algebras by extending the Kol-
mogorov axioms of probability theory. The state theory is closely related to the theory
of probabilistic truth degree of propositions, and it shows that there is a one-to-one
correspondence between state operators on the Łukasiewicz Lindenbaum algebra
and the probabilistic truth degree functions in Łukasiewicz propositional logic. In
short, the former is a generalized and axiomatized version of the latter, while the
latter is a semantically analyzed version. In general, they are different from each
other, because, for example, the above correspondence does not hold in L ∗. The
state theory has received rapid development in recent decades, and many profound
results were obtained [28–30, 33, 51]. From the side of generalizing domains, states
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have been extended to different logical algebras like BL-algebras,MTL-algebras and
residuated lattices [31–38]; from the side of generalizing codmains, internal states
[40–46] and generalized states [47–51] have also been established. Limited to the
length of the paper, this section reviews only the theory of generalized states which
has the most general framework.

Throughout this section, let M and L be (bounded, integral and commutative)
residuated lattices, and s : M → L a mapping. Different generalizing approaches
produced in all three kinds of generalized states are as follows.

Definition 8 Suppose that s(0) = 0, s(1) = 1, then the following statements are
equivalent:
(i) ∀x, y ∈ M , s(dM(x, y)) = s(x ∨ y) → s(x ∧ y);
(ii) ∀x, y ∈ M with y ≤ x , s(x → y) = s(x) → s(y);
(iii) ∀x, y ∈ M , s(x → y) = s(x) → s(x ∧ y);
(iv) ∀x, y ∈ M , s(x → y) = s(x ∨ y) → s(y).
Such s is called a generalized Bosbach state of type I, or type I state for short.

Definition 9 Suppose that s(0) = 0, s(1) = 1, then the following statements are
equivalent:
(i) ∀x, y ∈ M , s(x ∨ y) = s(dM(x, y)) → s(x ∧ y);
(ii) ∀x, y ∈ M , s(x) = s(x → y) → s(x ∧ y);
(iii) ∀x, y ∈ M with y ≤ x , s(x) = s(x → y) → s(y);
(iv) ∀x, y ∈ M , s(x ∨ y) = s(x → y) → s(y);
(v) ∀x, y ∈ M , s(x → y) → s(y) = s(y → x) → s(x).

Such s is called a generalized Bosbach state of type II, or type II state for short.

Definition 10 A mapping m : M → L is called a generalized Riečan state, if
∀x, y ∈ M
(i) m(1) = 1;
(ii) if x⊥y, then m(x)⊥m(y), and m(x ⊕ y) = m(x) ⊕ m(y).

Example 4 (i) Each residuated lattice homomorphism s : M → L is a type I state.
The identity mapping idM : M → M is a type II state iff M is an MV-algebra.
(ii) Let L = [0, 1]MV, then each Bosbach state on M is both a type I state and a type
II state. Conversely all order-preserving type I states and type II states on M reduce
to Bosbach states in sense of [32, 35].
(iii) Let M be a Heyting algebra, a ∈ M . Then sa : M → M , defined by sa(x) =
a → x for x ∈ M , is an order-preserving type I state on M .
(iv) Let M = {0, a, b, c, d, 1}, where 0 < b < 1; 0 < d < c < a < 1, and binary
operations ⊗, → are given by the following tables:

→ 0 a b c d 1 � 0 a b c d 1
0 1 1 1 1 1 1 0 0 0 0 0 0 0
a 0 1 b c c 1 a 0 a b d d a
b c 1 1 c c 1 b 0 b b 0 0 b
c b 1 b 1 a 1 c 0 d 0 d d c
d b 1 b 1 1 1 d 0 d 0 d d d
1 0 a b c d 1 1 0 a b c d 1
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Then (M,∧,∨,⊗,→, 0, 1) is a residuated lattice. The endofunctions of M given
in the next table are all generalized Riečan states, in which s1 to s6 are type I states,
and s3 to s6 are type II states:

x 0 a b c d 1
s1(x) 0 a 0 1 a 1
m1(x) 0 a 0 1 1 1
m2(x) 0 a b c c 1
s2(x) 0 a b c d 1
m3(x) 0 a c b b 1
m4(x) 0 a 1 0 0 1
m5(x) 0 1 0 1 a 1
s3(x) 0 1 0 1 1 1
s4(x) 0 1 b c c 1
m6(x) 0 1 b c d 1
s5(x) 0 1 c b b 1
s6(x) 0 1 1 0 0 1

In the following propositions we list some basic properties of each type of gener-
alized states.

Proposition 5 For a type I state s : M → L, we have for all x, y ∈ M,
(i) s(¬x) = ¬s(x);
(ii) s(x ∨ y) → s(x) = s(y) → s(x ∧ y);
(iii) s((x → y) → y) = s(x → y) → s(y);
(iv) s((x → y) → y) = (s(x ∨ y) → s(y)) → s(y);
(v) s(x ∨ y) → s(x) ∧ s(y) = s(x) ∨ s(y) → s(x ∧ y);
(vi) s(x) ⊗ s(x → x ⊗ y) ≤ s(x ⊗ y).

Proposition 6 For an order-preserving type I state s : M → L, we have for all
x, y, a, b ∈ M,
(i) s(x) ⊗ s(y) ≤ s(x ⊗ y);
(ii) s(x) � s(y) ≤ s(x � y);
(iii) s(x → y) ≤ s(x) → s(y);
(iv) s(x → y) ⊗ s(y → x) ≤ dL(s(x), s(y));
(v) s(dM(x, y)) ≤ dL(s(x), s(y));
(vi) s(dM(a, x)) ⊗ s(dM(b, y)) ≤ dL(s(dM(a, b)), s(dM (x, y))).

Proposition 7 For a type II state s : M → L, we have for all x, y ∈ M,
(i) s(¬¬x) = s(x);
(ii) s(¬¬x → x) = 1;
(iii) s((x → y) → y) = s((y → x) → x) = s(x ∨ y);
(iv) s(x → ¬¬y) = s(x → y) = s(¬¬x → y);
(v) s(x → y) = s(¬y → ¬x) = s(¬¬x → ¬¬y);
(vi) s(x → x ⊗ y) = s(¬x ∨ y);
(vii) s(¬¬x ∧ y → z) = s(x ∧ y → z);
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(viii) s((x → y) ∨ (y → x)) = 1;
(ix) s(x → y ∨ z) = s((x → y) ∨ (x → z));
(x) s(x ∧ y → z) = s((y → z) ∨ (x → z)).

Proposition 8 For a generalized Riečan state m : M → L, we have for all x ∈ M,
(i) m(¬¬x) = ¬¬m(x);
(ii) ¬¬m(¬x) = ¬m(x);
(iii) m(¬x) = ¬m(x).

Proposition 9 Let M be an MV-algebra, L a residuated lattice, s : M → L a map-
ping satisfying s(0) = 1 and s(1) = 1. Then the following two statements are equiv-
alent:
(i) s is an order-preserving type I state;
(ii) For all x, y ∈ M;
(a) s(¬x) = ¬s(x);
(b) s(x → y) → (s(x) → s(y)) = 1;
(c) s(x ⊕ y) = (s(x) → s(x ⊗ y)) → s(y).

A mapping s : M → L satisfying s(0) = 0 and s(1) = 1 is called a state-
morphism if it is a residuated lattice homomorphism.

Proposition 10 (i) Every state morphism is an order-preserving type I state.
(ii) For an order-preserving type I state s : M → L, if the quotient M/Ker(s) is a
linearly ordered residuated lattice, then s is a state-morphism.
(iii) Let L be a linearly ordered residuated lattice, and s : M → L an order-
preserving type I state, then s is a state-morphism iff the quotient M/Ker(s) is
linearly ordered.
(iv) Let M be an MTL-algebra, L a linearly ordered residuated lattice, and s : M →
L an order-preserving type I state, then s is a state-morphism iff Ker(s) is a prime
filter.

We use the following two theorems to summarize the main results.

Theorem 5 (i) For a type II state s : M → L , Ker(s) is an MV-filter of M.
(ii) Let M be a residuated lattice and L an MV-algebra, then s : M → L is an order-
preserving type I state iff s is a type II state.
(iii) Let L be an involutive residuated lattice, and s : M → L an order-preserving
type I state, then the quotient M/Ker(s) is an involutive residuated lattice.
(iv) Let M be a divisible residuated lattice, L an involutive residuated lattice, and
s : M → L an order-preserving type I state, then M/Ker(s) is an MV-algebra.
(v)Let M be an MTL-algebra, L an MV-algebra, and s : M → L an order-preserving
type I state, then the quotient M/Ker(s) is an MV-algebra.
(vi) For an order-preserving type I state s : M → L, s preserves the implication
operation whenever it preserves either join or meet operation.
(vii) Let M be a divisible residuated lattice, L an MV-algebra, and s : M → L an
order-preserving type I state, then the properties of join-preserving, meet-preserving
and implication-preserving of s are mutually equivalent.
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Theorem 6 (i) Every type II state s : M → L is an order-preserving type I state,
but not vice versa.
(ii) Every order-preserving type I state s : M → L is a generalized Riečan state, but
not vice versa.
(iii) Let M be a Glivenko residuated lattice, and L an involutive residuated lattice,
then each generalized Riečan state m : M → L is an order-preserving type I state.
(iv) If M is an involutive residuated lattice, then each generalized Riečan state
s : M → L is an order-preserving type I state.

5 Applications and Extensions

In this section we will briefly review the applications of probabilistically quantitative
logic in the following five aspects. For more details we refer to [48, 57, 62–69].

5.1 Consistency Degrees of Logic Theories

A logic theory is said to be inconsistent if a contradiction is a consequence of it.
Inconsistency theories have the same deductive closure F(S), while consistent the-
ories have different structures and also different deductive closures. Hence it is an
interesting topic to study the extent to which a theory is consistent.

We discuss the theory of consistency degree of theories in the logicL ∗ as exam-
ples.

Definition 11 Let Γ be a theory, 2(Γ ) the set of all finite subtheories of Γ ,
Σ = {ϕ1, . . . ,ϕm} ∈ 2(Γ ), |Σ | = m, ω(m) = (k1, . . . , km) ∈ N

m with assumption
that ω(0) = ∅, and 0 a contradiction. Denote

Σ(ω(m)) → 0 =
{

ϕk1
1 & · · ·&ϕkm

m → 0, m > 0,
0, m = 0,

(8)

and define

Entail(Γ ) = sup{τ (Σ(ω(m)) → 0) | Σ ∈ 2(Γ ), |Σ | = m,ω(m) ∈ N
m, m ∈ N},

(9)

where τ is as defined by (6) and μ is the Lebesgue measure. Then Entail(Γ ) is called
the entailment degree of Γ .

Example 5 Find Entail(Γ ) in L ∗, where (i) Γ = ∅, (ii) Γ = {p}, (iii) Γ = {p ∧
¬p}, (iv) Γ = {p → ¬p}.
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Solution
(i) Let Γ = ∅, then ∀Σ ∈ 2(Γ ), Σ = ∅, and thus Σ(ω(m)) → 0 = 0. Therefore,
τ (Σ(ω(m)) → 0) = 0,Entail(Γ ) = 0.
(ii) τ (p2 → 0) = 1 − τ (p2) = 1 − ∫ 1

0 x2dx = 1 − ∫ 1
1
2

xdx = 5
8 , and hence

Entail(Γ ) = 5
8 .

(iii) τ ((p ∧ ¬p)2 → 0) = 1 − ∫ 1
0 (x ∧ (1 − x))2dx = 1, and so Entail(Γ ) = 1.

(iv) τ ((p → ¬p)2 → 0) = 1 − ∫ 1
0 (x → 1 − x)2dx = 1 − ∫ 1

2
0 dx − ∫ 1

1
2
(1 − x)2

dx = 1 − 1
2 − 0 = 1

2 , we have Entail(Γ ) = 1
2 .

Definition 12 For a theory Γ , define

Consist(Γ ) = 1 − 1

2
Entail(Γ )(1 + i(Γ )), (10)

where i(Γ ) = max{[1 − sup
v∈Ω

v(ϕ)] | ϕ ∈ D(Γ )}. ThenConsist(Γ ) is called the con-

sistency degree of Γ .

Theorem 7 For a theory Γ , we have:
(i) Γ is inconsistent iff Consist(Γ ) = 0;
(ii) Γ is consistent iff 1

2 ≤ Consist(Γ ) ≤ 1;
(iii) Γ is consistent and Entail(Γ ) = 1 iff Consist(Γ ) = 1

2 ;
(iv) Γ is quasi-consistent iff Consist(Γ ) = 1.

5.2 Three Methods of Graded Reasoning

The idea behind Eqs. (8) and (9) suggests amethod for graded reasoning by replacing
contradiction with a general proposition.

Definition 13 Let Γ be a theory, 2(Γ ) the set of all finite subtheories of Γ , Σ =
{ϕ1, . . . ,ϕm} ∈ 2(Γ ), |Σ | = m, ω(m) = (k1, . . . , km) ∈ N

m, m ∈ N with assump-
tion that ω(0) = ∅, and ϕ ∈ F(S). Put

Σ(ω(m)) → ϕ =
{

ϕk1
1 & · · ·&ϕkm

m → ϕ, m > 0,
ϕ, m = 0,

and define

Entail(Γ,ϕ) = sup{τ (Σ(ω(m)) → ϕ) | Σ ∈ 2(Γ ), |Σ | = m,ω(m) ∈ N
m, m ∈ N}.

Then Entail(Γ,ϕ) is called the entailment degree of Γ w.r.t. ϕ.

Using the notion of Hausdorff metric one can construct the second method of graded
reasoning.
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Definition 14 Let Γ be a theory, ϕ ∈ F(S), and define

H(Γ,ϕ) = 1 − inf{H(D(Γ ), D(Σ)) | Σ ⊆ F(S),Σ  ϕ},

where H is the Hausdorff metric [6] on P(F(S)) − {∅}. Then ϕ is called a conse-
quence of Γ in the degree H(Γ,ϕ).

Thirdly, the pseudo metric on F(S) defined by ρ(ϕ,ψ) = 1 − τ ((ϕ → ψ) ∧
(ψ → ϕ)) provides us one more method for graded reasoning. Let Γ be a theory,
ϕ ∈ F(S), then ρ(ϕ, D(Γ )) = inf{ρ(ϕ,ψ) | ψ ∈ D(Γ )} represents the distance of
ϕ to D(Γ ), and so 1 − ρ(ϕ, D(Γ ))measures the extent to which ϕ is a consequence
of Γ .

Theorem 8 Let Γ be a theory, ϕ ∈ F(S), then

H(Γ,ϕ) ≤ Entail(Γ,ϕ) = 1 − ρ(ϕ, D(Γ )).

5.3 Characterizations of Maximally Consistent Theories

The indices introduced in Sect. 5.1 as well as those in the literature cannot distinguish
different maximally consistent theories, so we need to find other ways to study
maximally consistent theories. Luckily, we can get clear descriptions of the structures
of maximally consistent theories in several logic systems such as Łn , Ł, L ∗ and
NMG-logic [57]. Here we review only the characterizations of maximally consistent
theories inL ∗.

Theorem 9 Let Q = {(α1,α2, . . .) | αm ∈ {0, 1
2 , 1}, m ∈ N}. ∀α = (α1,α2, . . .) ∈

Q, define S(α) = {ϕ1,ϕ2, . . .}, where ϕm satisfies:

ϕm =
⎧
⎨

⎩

pm, αm = 1,
(¬p2

m)&(¬(¬pm)2), αm = 1
2 ,¬pm, αm = 0,

m = 1, 2, . . . . Then M = {D(S(α)) | α ∈ Q} is the set of all maximally consistent
theories in L ∗.

We can further introduce Stone topology T on M , and prove that (M,T ) is a
Cantor space, of which topologically closed subsets are one-to-one corresponding
to Łukasiewicz theories [67, 68]. These results are also special cases of the results
in R0-algebras we will review in the following subsection.
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5.4 Three-Valued Stone Representations in R0-Algebras

The results about structural and topological characterizations ofmaximally consistent
theories in L ∗ can be further extended to R0-algebras. Throughout this subsection,
let M be an R0-algebra.

Theorem 10 For a filter F of M, the following are equivalent:
(i) F is maximal;
(ii) ∀x ∈ M, exactly one of x ∈ F and ¬x2 ∈ F holds;
(iii) ∀x ∈ M, exactly one of x ∈ F, ¬x ∈ F and (¬x2) ⊗ (¬(¬x)2) ∈ F holds.

Theorem 11 The mapping F �→ h is a one-to-one correspondence between maxi-
mal filters F and R0-homomorphisms h : M → W3, where

h(x) =
⎧
⎨

⎩

1, x ∈ F,
1
2 , (¬x2) ⊗ (¬(¬x)2) ∈ F,

0, ¬x ∈ F.

Denote
Max(M) = {F | F is a maximal filter of M}.

Theorem 12 Define s : M → {0, 1
2 , 1}Max(M) as follows:

s(x)(F) = F(x), x ∈ M.

and let
S = {s(x) | x ∈ M}.

Then
(i)S forms a subbasis for some three-valued topology, denoted by δ, on Max(M);
(ii) (Max(M), δ) is zero-dimensional and covering compact, and (M, ι0.5(δ)) is a
Stone space.

Theorem 13 Let MV(M) be the MV-skeleton of M, B(M) the Boolean skeleton of
M, (Max(M), δ) the three-valued Stone space of M, and (Max(M), ι0.5(δ)) the Stone
space of M. Then
(i) The set Clop(M, δ) of all clopen subsets of (Max(M), δ) forms an MV-algebra
under pointwise operations, and is isomorphic to MV(M);
(ii) The set Clop(M,T ) of all clopen subsets of (Max(M), ι0.5(δ)) forms a Boolean
algebra under the inclusion order, and is isomorphic to B(M);
(iii) The mapping F �→ C(F) = {F∗ ∈ Max(M) | F∗ ⊇ F} is a one-to-one corre-
spondence between MV-filters F of M and topologically closed subsets C(F) of
(Max(M), ι0.5(δ)).
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5.5 Similarity Cauchy Completion of Residuated Lattices
W.r.t. Order-Preserving Type I States

Let M and L be residuated lattices as in Sect. 4. An order-preserving type I state s :
M → L induces a similarity relation ρs(x, y) = s(dM(x, y)) on M , which together
with the biresiduation dL of L can define ρs-similarity convergence on M , and then
the problem of corresponding Cauchy completion will arise.

Definition 15 (i) We say that a sequence {xn} ⊆ L d-converges at x ∈ L , denoted

by xn
d→ x or lim

n→∞ xn = x , if there exists a sequence {zn} ⊆ L such that {zn} ↑ 1,

and ∀n ∈ N, zn ≤ dL(xn, x). In this case x is called a limit of {xn}.
(ii) We say that a sequence {xn} of M ρs -converges at x , denoted by xn

ρs→ x , if
lim

n→∞ ρs(xn, x) = 1.

Theorem 14 Every order-preserving type I state s : M → L is ρs -continuous, i.e.,

lim
n→∞ s(xn) = s(x) whenever xn

ρs→ x.

Let M and L be residuated lattices such that L is d-Cauchy complete, s : M → L
an order-preserving type I state, and ρs = s ◦ dM . In the following we construct the
s-Cauchy completion of M .

Denote by Cs(M) the set of all ρs-Cauchy sequences of M , and define on Cs(M)

the operations ◦ ∈ {∧,∨,⊗,→,↔} as follows:

x ◦ y = {xn ◦ yn},

where x = {xn}, y = {yn} ∈ Cs(M), then (Cs(M),∧,∨,⊗,→, 0, 1) forms a resid-
uated lattice, where 0 = {0}n∈N, 1 = {1}n∈N are constant sequences.

Define on Cs(M) a binary relation ∼ by

x ∼ y iff lim
n,m→∞ ρs(xn, yn) = 1,

where x = {xn}, y = {yn} ∈ Cs(M), then ∼ is a congruence relation. Let M̃s =
Cs(M)/ ∼, denote by x̃ the class of x = {xn} under ∼, and define

x̃ ◦ ỹ = x̃ ◦ y

x = {xn}, y = {yn} ∈ Cs(M), ◦ ∈ {∧,∨,⊗,→,↔}, then (M̃s,∧,∨,⊗,→, 0̃, 1̃) is
also a residuated lattice.

∀x ∈ M , denote x = {x}n∈N being a constant consequence, then x ∈ Cs(M).
Define ϕs : M → M̃s by

ϕs(x) = x̃, x ∈ M.

Then ϕs is a residuated lattice homomorphism.
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Theorem 15 Let M and L be residuated lattices with L d-Cauchy complete, and
s : M → L an order-preserving type I state, then:
(i) M̃s is a residuated lattice, and is involutive if L is;
(ii) s̃ is a faithful order-preserving type I state;
(iii) ϕs is a residuated lattice homomorphism, and s̃ ◦ ϕs = s;
(iv) ϕs is injective iff s is faithful;
(v) ρ̃s = ρ̃s ;

(vi) given {xn} ⊆ M and x ∈ M, ϕs(xn)
ρ̃s→ ϕs(x) whenever xn

ρs→ x;
(vii) for any residuated lattice C, any faithful order-preserving type I state m : C →
L such that C is ρm-Cauchy complete, and any residuated lattice homomorphism
f : M → C such that m ◦ f = s, then there exists a unique residuated lattice homo-
morphism f̃ : M̃s → C such that m ◦ f̃ = s̃ and f̃ ◦ ϕs = f .

M̃s is called the s-Cauchy similarity completion of M .
Lastly let us consider the case when L = [0, 1]MV. Then each order-preserving

type I state s : M → L reduces to a Bosbach state on M [32, 33, 35]. Put δs : M2 →
[0, 1] by δs(x, y) = 1 − ρs(x, y), then δs is a pseudo-metric on M , and δs is a metric
iff s is faithful, hence (M, δs) is a pseudo-metric space. Following the standard
construction procedure of metric completion of a metric space one can construct the
metric completion of (M, δs). Here we are interested in the relationship between
M̃s and the metric completion of M constructed in the standard way. A routine
verification shows that the M̃s is actually the metric completion of (M, δs), where
themetric δ̃s on M̃s is defined by δ̃s (̃x, ỹ) = lim

n→∞ δs(xn, yn) = 1 − lim
n→∞ ρs(xn, yn) =

1 − ρ̃s (̃x, ỹ).

6 Further Studies

(i) Further improvements of probabilistically quantitative logic, such as topological
structures of logic metric spaces, syntactic version of semantic quantification
and its completeness.

(ii) Further studies on states, internal states and generalized states on general resid-
uated lattices (not necessarily bounded, or not integral, or not commutative).

(iii) Study on logic foundation of generalized states byHájek’s modal formalization,
in which semantic theory and its completeness are challenging work.

(iv) Structural characterizations of nuclei on Glivenko logical algebras, like MV-
algebras, Heyting algebras, BL-algebras, MTL-algebras.

(v) This paper does not refer to quantification of first-order predicate logic and of
its fragments [70–74]. There are wide research spaces waiting in this line.

(vi) ...
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33. Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded commutative residuated

�-monoids. Discret. Math. 306(13), 1317–1326 (2006)
34. Liu, L.Z.: States on finite monoidal t-norm based algebras. Inf. Sci. 181(7), 1369–1383 (2011)
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A Quantitative Approach for Linear
Temporal Logic
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Abstract The present paper aims to construct a quantitative approach for Linear
Temporal Logic. Based on a certain kind of probabilistic measure with respect to the
Kripke structure DTMC, we define the satisfaction degrees for LTL formulae, as a
quantitative notion extending the classical case in model checking. Meanwhile, the
concept of similarity degree between LTL formulae is presented, and a corresponding
pseudo-metric on the set of all LTL formulae is induced, which enables the LTL logic
metric space constructible.

Keywords Linear temporal logic · DTMC · Satisfaction degree · Quantitative
logic · Logic metric space

1 Introduction

Quantitative Logic [1, 2] focuses on the combination of formal inference and numer-
ical calculation methods in the area of mathematical logic theory. It was initially
formedmainly in propositional logics by grading basic logical notions and construct-
ing truth degree theory for formulae. Later on, such research rapidly developed, not
only limited within the scope of propositional logics, but also covering more kinds of
expressive logics, such as predicate logics, modal logics as well as temporal logics
[3–5].

Temporal logics have been studied in ancient times in different areas such as
philosophy. Their application to verifying complex computer systems was proposed
by Pnueli and greatly developed recently [6–8]. As an expansion of propositional
logics, temporal logics possess stronger expression ability resulting from various
possible combination of distinguished types of modalities.
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In this paper,wewill focus our attention onLinearTemporal Logic (LTL for short),
a temporal logic that is based on a linear-time perspective [9–11], and aim to construct
a quantitative approach for LTL.Based on a certain kind of probabilisticmeasurewith
respect to the Kripke structure DTMC, we define the satisfaction degrees for LTL
formulae, as a quantitative notion extending the classical case in model checking.
Meanwhile, the concept of similarity degree between LTL formulae is presented,
and a corresponding pseudo-metric on the set of all LTL formulae is induced, which
enables the LTL logic metric space constructible.

2 Preliminaries

In this section,we briefly overview somepreliminaries thatwe need. Formore details,
please see [9–11].

Definition 1 A DTMC is a tupleD= (S,P, �init,AP,L), where S is a nonempty set
of states; P : S × S −→ [0, 1] is a transition mapping satisfying

∑

s′∈S
P(s, s′) = 1 (1)

for every s ∈ S; �init : S −→ [0, 1] is an initial mapping satisfying

∑

s∈S
�init(s) = 1; (2)

AP is a set of atomic propositions; and L : S → 2AP is a labeling function. We call
D a finite DTMC whenever S and AP are finite sets.

For a finite DTMC D with S = {s1, s2, . . . , sn}, the transition mapping P : S ×
S −→ [0, 1] can be viewed as a matrix (Pij)n×n where Pij=P(si, sj). In this case, we
also call P a transition matrix. Similarly, the initial mapping �init : S −→ [0, 1] can
be viewed as an n-dimensional vector (�init(s))s∈S .

In the following, we only consider finite DTMCs.

Definition 2 Let D= (S,P, �init,AP,L) be a DTMC, and π = s0s1s2 . . . be a non-
empty sequence of states in D, where P(si, si+1) > 0 holds for every i ∈ N. We call
π a path in D, and denote π[i] = si, π[i...] = sisi+1si+2 . . . (i ∈ N).

For convenience, we write πfin when π is a finite path, and we denote the set of all
infinite paths initialed at s as PathsD(s), also PathsDfin (s) in the finite case. Similarly,
Paths(D) represents the set of all infinite paths initialed at some state in I , where

I = {s ∈ S | �init(s) > 0}. (3)
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Definition 3 Let π = s0s1s2 . . . be a path in the DTMC D. Then trace (π) =
L(s0)L(s1)L(s2) . . . ∈ (2AP)ω is called the trace of π, and

Traces (D) = {trace (π)|π ∈ Paths(D)}. (4)

For a sequence σ = A0A1A2 . . . ∈ (2AP)ω , we can similarly define σ[i], σ[i...]
(i ∈ N) as in Definition2.

Definition 4 LTL formulae can be constructed in BNF as follows:

Φ := true | a | ¬ϕ | ϕ1 ∧ ϕ2 | © ϕ | ϕ1 � ϕ2, a ∈ AP.

In addition, false = ¬true , ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2,
♦ϕ = true � ϕ, �ϕ = ¬♦¬ϕ, ©kϕ = ©k−1(©ϕ) (k ≥ 1), and ©0ϕ = ϕ.

Definition 5 Let ϕ be an LTL formula. Then

Words (ϕ) = {σ ∈ (2AP)ω|σ |= ϕ} (5)

is called the satisfaction set of ϕ, where σ |= ϕ is defined by induction as follows:

(i) σ |= true always holds;
(ii) σ |= a if and only if a ∈ σ[0], where a ∈ AP;
(iii) σ |= ¬ϕ if and only if σ |= ϕ does not hold;
(iv) σ |= ϕ1 ∧ ϕ2 if and only if σ |= ϕ1 and σ |= ϕ2;
(v) σ |= ©ϕ if and only if σ[1...] |= ϕ; and
(vi) σ |= ϕ1 � ϕ2 if and only if ∃j ∈ N such that σ[j...] |= ϕ2 and σ[i...] |= ϕ1 holds

for every i with 0 ≤ i < j.

Definition 6 Let π = s0s1s2 . . . be a path in the DTMC D. Define

π |= ϕ if and only if trace (π) |= ϕ, (6)

D |= ϕ if and only if Traces (D) ⊆ Words (ϕ). (7)

Corollary 1 Let π = s0s1s2 . . . be a path in the DTMC D, and ϕ,ϕ1,ϕ2 be LTL
formulae. Then

(i) π |= true always holds, whereas π |= false never;
(ii) π |= a if and only if a ∈ L(s0), where a ∈ AP;
(iii) π |= ¬ϕ if and only if π |= ϕ does not hold;
(iv) π |= ϕ1 ∧ ϕ2 if and only if π |= ϕ1 and π |= ϕ2; π |= ϕ1 ∨ ϕ2 if and only if

π |= ϕ1 or π |= ϕ2; π |= ϕ1 → ϕ2 if and only if π |= ϕ1 does not hold or
π |= ϕ2;

(v) π |= ©ϕ if and only if π[1...] |= ϕ;
(vi) π |= ϕ1 � ϕ2 if and only if ∃j ∈ N such thatπ[j...] |= ϕ2 andπ[i...] |= ϕ1 holds

for every i with 0 ≤ i < j; and
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(vii) π |= ♦ϕ if and only if ∃j ∈ N such that π[j...] |= ϕ; π |= �ϕ if and only if
π[i...] |= ϕ holds for every i ∈ N.

Definition 7 Let ϕ,ψ be LTL formulae. If for every DTMC D, D |= ϕ if and only
if D |= ψ, then we say that ϕ and ψ are equivalent, denoted as ϕ ≡ ψ.

An LTL formula ϕ is called a tautology if D |= ϕ holds for every DTMC D,
whereas ϕ is called a contradiction whenever ¬ϕ is a tautology.

Corollary 2 Let ϕ be an LTL formulae. Then

(i) ϕ is a tautology if and only if ¬ϕ is a contradiction;
(ii) ϕ is a tautology if and only if ϕ ≡ true; and
(iii) ϕ is a contradiction if and only if ϕ ≡ flase.

3 Satisfaction Degrees for LTL Formulae

LetD be a DTMC and ϕ an LTL formula. IfD |= ϕ holds, then every infinite initial
path definitely satisfies ϕ. In this case, we can quantitatively consider the notion
D |= ϕ with degree 1, as the maximum value in [0, 1]. Similarly, if D |= ¬ϕ holds,
then none of the infinite initial paths satisfy ϕ, and we can quantitatively consider
the notionD |= ϕwith degree 0, as the minimum value in [0, 1]. However in general
case, neither D |= ϕ nor D |= ¬ϕ would hold even for the same formula ϕ. Under
this circumstance, how shouldwe quantitatively consider the notionD |= ϕ? In order
to solve this issue, we firstly need to find some probabilistic measure for D.

3.1 Probabilistic Measure in DTMC

LetD= (S,P, �init,AP,L) be a DTMC, and s ∈ S, πfin = s0s1s2 . . . sn ∈ Pathsfin (s),
where s0 = s. Define

C(πfin) = {π ∈ Paths(s) | πfin � π}, (8)

where πfin � π states that πfin is a prefix of π. Also, define the mapping PrD :
{C(πfin) | πfin ∈ Pathsfin (s), s ∈ S} −→ [0, 1] as

PrD(C(πfin)) = �init(s) × P(πfin), (9)

where

P(πfin) = P(s0s1 . . . sn) =
⎧
⎨

⎩

1, n = 0,
n−1∏

i=0
P(si, si+1), n > 0.

(10)
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In the following, we will prove that PrD is actually a probabilistic measure on
Paths(D) that we need.

Definition 8 ([12]) Let X be a nonempty set, and F ⊆ 2X . Then F is called a semi-
ring on X, if

(i) ∅ ∈ F ;
(ii) A,B ∈ F implies A ∩ B ∈ F ; and
(iii) If A,B ∈ F and A ⊆ B, then there exists a finite family of pairwise disjoint sets

C1, . . . ,Ck ∈ F such that B − A = ∪k
i=1Ci.

Lemma 1 ([12]) Let F be a semi-ring on X, and μ : F −→ [0, 1] satisfy
(i) μ(∅) = 0;
(ii) For every finite family of pairwise disjoint sets A1, . . . ,Ak ∈ F , ∪k

i=1Ai ∈ F
implies μ(∪k

i=1Ai) = ∑k
i=1 μ(Ai); and

(iii) For every countably infinite family of sets A1,A2, . . . ∈ F , ∪iAi ∈ F implies
μ(∪iAi) ≤ ∑

i μ(Ai).
Then the mapping μ can be uniquely extended as a measure on σ(F), where
σ(F) is the σ-algebra on X generated by F .

Remark 1 For a given finite DTMCD= (S,P, �init,AP,L), let X = Paths(D), F =
{C(πfin) | πfin ∈ Pathsfin (s), s ∈ I} ∪ {∅}. ThenF ⊆ 2X together with the three con-
ditions in Definition 8 hold forF (see [5] for details), andF becomes a semi-ring on
X as a result. In this case, considering the mapping PrD defined by Eq. (9), its restric-
tion on F (still written as PrD for convenience) actually satisfy the three conditions
in Lemma 1 (see [5] for details). Thus PrD can be uniquely extended as a measure,
even a probabilistic measure, on ΣPaths(D), the σ-algebra on Paths(D) generated by
F , which makes (Paths(D), ΣPaths(D), PrD) a probabilistic measure space.

3.2 Satisfaction Degrees for LTL Formulae

Definition 9 Let D= (S,P, �init,AP,L) be a finite DTMC, and ϕ an LTL formula.
Define

τD(ϕ) = PrD({π ∈ Paths(D) | π |= ϕ}). (11)

We call τD(ϕ) the satisfaction degree of ϕ with respect to D.

Remark 2 In Definition9, measurability of the set {π ∈ Paths(D) | π |= ϕ} should
be guaranteed first. In fact, for every ω-regular property L ⊆ (2AP)ω , Ref. [10]
has proved that {π ∈ Paths(D) | trace (π) ∈ L} is measurable with respect to PrD.
Thus {π ∈ Paths(D) | π |= ϕ} ={π ∈ Paths(D) | trace (π) |= ϕ} ={π ∈ Paths(D) |
trace (π) ∈ Words (ϕ)} is also measurable with respect to PrD, since Words (ϕ) ⊆
(2AP)ω is an ω-regular property. As a result, Eq. (11) is well-defined.
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Remark 3 The satisfaction degree τD(ϕ) defined in Eq. (11) compares the set of
paths satisfying ϕ with Paths(D), and quantitatively considers the measure as their
ratio. Under this circumstance, the notion of τD(ϕ) can be seen as a quantitative
extension of the classical case of satisfaction, with D |= ϕ and D |= ¬ϕ being two
extreme cases when τD(ϕ) equals 1 or 0, respectively.

Example 1 Let D= (S,P, �init,AP,L) be a finite DTMC with S = {s0, s1, s2, s3}
AP = {a, b, c}, L(s0) = {b}, L(s1) = {a, b}, L(s2) = {c}, L(s3) = {a, c}, and

P =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 0.01 0.99
1 0 0 0
0 0 0 1

⎞

⎟
⎟
⎠ �init =

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠

Compute the satisfaction degrees of ϕ1 = ¬a → b ∧ c, ϕ2 = ©a ∧ ©2a and ϕ3 =
b � (♦c), respectively.

Solution 1 (i) For every π ∈ Paths(D), π |= ϕ1 holds if and only if π |= a or π |=
b ∧ c, if and only if a ∈ L(s0) or b, c ∈ L(s0). Thus τD(ϕ1) =PrD({π ∈ Paths(D) |
π |= ϕ1}) =PrD(∅) = 0.

(ii) For every π ∈ Paths(D), π |= ϕ2 holds if and only if π |= ©a and π |= ©2a,
if and only if a ∈ L(π[1]) and a ∈ L(π[2]). Thus τD(ϕ2) =PrD({π ∈ Paths(D) |
π |= ϕ2}) =PrD(C(s0s1s3)) =�init(s0) × P(s0s1s3) =1 × 1 × 0.99 = 0.99.

(iii) For everyπ ∈ Paths(D),π |= ϕ3 holds if and only if∃j ∈ N such thatπ[j...] |=
♦c and π[i...] |= b holds for every i with 0 ≤ i < j, if and only if ∃j, k ∈ N, k ≥ j
such that c ∈ L(π[k]) and b ∈ L(π[i]) holds for every i with 0 ≤ i < j. Thus τD

(ϕ3) =PrD({π ∈ Paths(D) | π |= ϕ3}) =PrD(Paths(D)) =PrD(C(s0)) =�init(s0) ×
P(s0) =1 × 1 = 1.

Lemma 2 Let ϕ,ψ be LTL formulae. If ϕ ≡ ψ, then Words (ϕ) = Words (ψ).

Proposition 1 Let D= (S,P, �init,AP,L) be a finite DTMC, and ϕ,ψ be LTL for-
mulae.

(i) If ϕ is a tautology, then τD(ϕ) = 1; Especially, τD(true) = 1.
(ii) If ϕ is a contradiction, then τD(ϕ) = 0; Especially, τD(false) = 0.
(iii) τD(ϕ) + τD(¬ϕ) = 1.
(iv) τD(ϕ ∨ ψ) + τD(ϕ ∧ ψ) = τD(ϕ) + τD(ψ).
(v) If ϕ ≡ ψ, then τD(ϕ) = τD(ψ).

Proof (i) If ϕ is a tautology, then D |= ϕ, and τD(ϕ) = PrD({π ∈ Paths(D) | π |=
ϕ}) = PrD(Paths(D)) = PrD(∪s∈IPaths(s)) =

∑

s∈I
PrD(Paths(s)) =

∑

s∈I
PrD(C(s)) =

∑

s∈I
�init(s) × P(s) =

∑

s∈I
�init(s) =

∑

s∈S
�init(s) = 1.

(ii) Ifϕ is a contradiction, thenD |= ¬ϕ, and τD(ϕ) = PrD({π ∈ Paths(D) | π |=
ϕ}) = PrD(∅)=0.



A Quantitative Approach for Linear Temporal Logic 55

(iii) τD(ϕ) + τD(¬ϕ) = PrD({π ∈ Paths(D) | π |= ϕ}) + PrD({π ∈ Paths(D) |
π |= ¬ϕ}) = PrD({π ∈ Paths(D) | π |= ϕ}) + PrD(Paths(D) − {π ∈ Paths(D) |
π |= ϕ}) = 1.

(iv) τD(ϕ ∨ ψ) + τD(ϕ ∧ ψ) = PrD({π ∈ Paths(D) | π |= ϕ ∨ ψ}) + PrD({π ∈
Paths(D) | π |= ϕ ∧ ψ}) = PrD({π ∈ Paths(D) | π |= ϕ} ∪ {π ∈ Paths(D) | π |=
ψ}) + PrD({π ∈ Paths(D) | π |= ϕ} ∩ {π ∈ Paths(D) | π |= ψ}) = PrD({π ∈ Paths
(D) | π |= ϕ}) + PrD({π ∈ Paths(D) | π |= ψ}) = τD(ϕ) + τD(ψ).

(v) Ifϕ ≡ ψ, then τD(ϕ)=PrD({π ∈ Paths(D) | π |= ϕ})=PrD({π ∈ Paths(D) |
trace (π) |= ϕ}) = PrD({π ∈ Paths(D) | trace (π) |= ψ}) = PrD({π ∈ Paths(D) |
π |= ψ}) = τD(ψ). �

Proposition 2 LetD = (S,P, �init,AP,L) be a finite DTMC, ϕ,ψ be LTL formulae,
and α,β ∈ [0, 1].
(i) If τD(ϕ) ≥ α, τD(ϕ → ψ) ≥ β, then τD(ψ) ≥ α + β − 1.
(ii) If τD(ϕ → ψ) ≥ α, τD(ψ → γ) ≥ β, then τD(ϕ → γ) ≥ α + β − 1.
(iii) If ϕ → ψ is a tautology, then τD(ϕ) ≤ τD(ψ).

Proof (i) ByProposition 1, τD(ϕ → ψ) = τD(¬ϕ ∨ ψ) = (1 − τD(ϕ)) + τD(ψ) −
τD(¬ϕ ∧ ψ)≥ β. Thus 1 + τD(ψ) − τD(¬ϕ ∧ ψ) ≥ β + τD(ϕ) ≥ α + β, and τD

(ψ) ≥ α + β − 1 + τD(¬ϕ ∧ ψ) ≥ α + β − 1.
(ii) Since (ψ → γ) → ((ϕ → ψ) → (ϕ → γ)) is a tautology in LTL, we have

τD((ψ → γ) → ((ϕ → ψ) → (ϕ → γ))) = 1. By (i) and τD(ψ → γ) ≥ β, we
also have τD((ϕ → ψ) → (ϕ → γ)) ≥ β + 1 − 1 = β. Again by (i) and τD(ϕ →
ψ) ≥ α, we obtain τD(ϕ → γ) ≥ α + β − 1.

(iii) Sinceϕ → ψ is a tautology in LTL,we have τD(ϕ → ψ) = 1. Thus τD(ψ) ≥
τD(ϕ) + 1 − 1 = τD(ϕ) by (i). �

Proposition 3 Let D = (S,P, �init,AP,L) be a finite DTMC, and ϕ,ψ be LTL for-
mulae. Then

(i) τD(ϕ � ψ) ≥ τD(ψ), τD(ϕ � ψ) ≥ τD(ϕ ∧ ©ψ),
(ii) τD(�ϕ) ≤ τD(ϕ) ≤ τD(♦ϕ),
(iii) τD(�ϕ) ≤ τD(©kϕ) ≤ τD(♦ϕ), k ∈ N.

4 LTL Logic Metric Space

Definition 10 Let D = (S,P, �init,AP,L) be a finite DTMC, and ϕ,ψ be LTL for-
mulae. Define

ξD(ϕ,ψ) = τD((ϕ → ψ) ∧ (ψ → ϕ)). (12)

We call ξD(ϕ,ψ) the similarity degree between ϕ and ψ with respect to D.

Definition 11 Let D = (S,P, �init,AP,L) be a finite DTMC, and ϕ,ψ, γ be LTL
formulae. Then
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(i) ξD(ϕ,ϕ) = 1,
(ii) ξD(ϕ,ψ) = ξD(ψ,ϕ),
(iii) ξD(ϕ,ψ) = 1 + τD(ϕ ∧ ψ) − τD(ϕ ∨ ψ),
(iv) ξD(ϕ,ψ) + ξD(ϕ,¬ψ) = 1,
(v) ξD(ϕ,ψ) + ξD(ψ, γ) ≤ 1 + ξD(ϕ, γ),
(vi) ϕ ≡ ψ implies ξD(ϕ,ψ) = 1.

Proof (i) and (ii) are trivial.
(iii) By Proposition1 and Eq. (9), ξD(ϕ,ψ) = τD((ϕ → ψ) ∧ (ψ → ϕ)) =

τD((¬ϕ ∨ ψ) ∧ (¬ψ ∨ ϕ)) = τD((¬ϕ ∧ ¬ψ) ∨ (ϕ ∧ ψ)) = τD(¬ϕ ∧ ¬ψ) + τD

(ϕ ∧ ψ) −τD((¬ϕ ∧ ¬ψ) ∧ (ϕ ∧ ψ)) = τD(¬ϕ ∧ ¬ψ) + τD(ϕ ∧ ψ) = 1 − τD

(ϕ ∨ ψ) + τD(ϕ ∧ ψ).
(iv) By Proposition 1 and (iii), ξD(ϕ,ψ) + ξD(ϕ,¬ψ) = [τD(¬ϕ ∧ ¬ψ) +

τD(ϕ ∧ ψ)] + [τD(¬ϕ ∧ ψ) + τD(ϕ ∧ ¬ψ)] = [τD(¬ϕ ∧ ¬ψ) + τD(¬ϕ ∧ ψ)] +
[τD(ϕ ∧ ψ) + τD(ϕ ∧ ¬ψ)] = [τD((¬ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ψ)) + τD((¬ϕ ∧ ¬ψ) ∧
(¬ϕ ∧ ψ))] + [τD((ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ)) + τD((ϕ ∧ ψ) ∧ (ϕ ∧ ¬ψ))] = τD

(¬ϕ) + τD(ϕ) = 1.
(v) By Proposition 1 and (iii), ξD(ϕ,ψ) + ξD(ψ, γ) − ξD(ϕ, γ) = [1 + τD(ϕ ∧

ψ) − τD(ϕ ∨ ψ)] +[1 + τD(ψ ∧ γ) − τD(ψ ∨ γ)] −[1 + τD(ϕ ∧ γ) − τD(ϕ ∨
γ)] = 1 + τD(ϕ ∧ ψ) + τD(ψ ∧ γ) − τD(ϕ ∧ γ) −τD(ϕ ∨ ψ) − τD(ψ ∨ γ) +
τD(ϕ ∨ γ) = 1 − 2τD(ψ) + 2τD(ϕ ∧ ψ) + 2τD(ψ ∧ γ) −2τD(ϕ ∧ γ)≤ 1.

(vi) If ϕ ≡ ψ, then (ϕ → ψ) ∧ (ψ → ϕ) is a tautology in LTL. Thus ξD(ϕ,ψ) =
1 by Eq. (9). �

Definition 12 Let D = (S,P, �init,AP,L) be a finite DTMC, and ϕ,ψ be LTL for-
mulae. Then

(i) ξD(ψ,ϕ � ψ) = 1 + τD(ψ) − τD(ϕ � ψ),
(ii) ξD(©ϕ,♦ϕ) = 1 + τD(©ϕ) − τD(♦ϕ),
(iii) ξD(©ϕ,�ϕ) = 1 + τD(�ϕ) − τD(©ϕ).

Definition 13 Let D = (S,P, �init,AP,L) be a finite DTMC, and ϕ,ψ be LTL for-
mulae. Define

ρD(ϕ,ψ) = 1 − ξD(ϕ,ψ), (13)

We call ρD(ϕ,ψ) the pseudo-metric between ϕ and ψ with respect to D.

Proposition 4 Let D = (S,P, �init,AP,L) be a finite DTMC, and ϕ,ψ, γ be LTL
formulae. Then

(i) ρD(ϕ,ϕ) = 0.
(ii) ρD(ϕ,ψ) = ρD(ψ,ϕ).
(iii) ρD(ϕ,ψ) + ρD(ϕ,¬ψ) = 1.
(iv) ρD(ϕ,ψ) + ρD(ψ, γ) ≥ ρD(ϕ, γ).
(v) ρD(ϕ,ψ) = τD(ϕ ∨ ψ) − τD(ϕ ∧ ψ).
(vi) ϕ ≡ ψ implies ρD(ϕ,ψ) = 0.
(vii) ρD(ψ,ϕ � ψ) = τD(ϕ � ψ) − τD(ψ).
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(viii) ρD(©ϕ,♦ϕ) = τD(♦ϕ) − τD(©ϕ).
(ix) ρD(©ϕ,�ϕ) = τD(©ϕ) − τD(�ϕ).

Remark 4 Let Form (LTL) denote the set of all LTL formulae. Then by Proposition4
(i)(ii)(iv), we can conclude that themapping ρD : Form(LTL) 2 −→ [0, 1] is actually
a pseudo-metric [13] on Form(LTL), which makes (Form(LTL), ρD) a logic metric
space, called the LTL logic metric space.
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A New Theory of T Truth Degree on Gödel
n-Valued Propositional Logic System

Nai-Diao Zhu, Xiao-Jing Hui and Xiao-Li Gao

Abstract By adding new operators Δ and ∼, axiomatic expansion of Gödel
n-valuedpropositional logic system is introduced,which is denotedbyGödel∼. In this
paper, the concept of t truth degree of propositional formula is put forward inGödel∼
(t take Δ,∼), and the MP rule, HS rule and some related properties are studied; the
concepts of t similarity degree, t pseudo-metric between propositional formulas, and
t divergent degree and t consistent degree of theory Γ in Gödel∼ are obtained, and
their correlation properties are discussed.

Keywords T truth degree · T similarity degree · T pseudo-metric · T divergent
degree · T consistent degree

1 Introduction

In the literature [1, 2], the concept of truth degree is given by professor Wang in both
the classical propositional logic system and multi-valued propositional logic system.
On this basis, some related researches on truth degree and random truth degree are
carried out by a large number of scholars in different logic systems (see [3–15]). The
basic connectives ∼ and Δ are introduced by Esteva et al., axiomatic expansion BLΔ

system of basic logic system BL is proposed and the system SBL∼ is established,
in which Δ deductive theorem and the strong complete theorem are both tenable
(see [16–19]). So some related research on Gödel propositional logic system can be
carried out smoothly.
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In SBL∼ fuzzy logic system, by virtue of Δ deductive theorem and strong com-
pleteness theorem, it is possible to establish quantitative logic theory in Gödel∼. In
this paper, by adding new operators Δ,∼, axiomatic expansion of Gödel n-valued
propositional logic system is introduced, the concepts of t truth degree of proposi-
tional formula, t similarity degree, t pseudo-metric between propositional formulas,
t divergent degree and t consistent degree of theory Γ in Gödel∼ are given. Their
related properties are discussed.

2 Preliminaries

Definition 1 ([18]) The axiom system BLΔ is as follows:
(BL) The axioms system of BL;
(Δ1) ΔA ∨ ¬ΔA;
(Δ2) Δ(A ∨ B) → (ΔA ∨ ΔB);
(Δ3) ΔA → B;
(Δ4) ΔA → ΔΔA;
(Δ5) Δ(A → B) → (ΔA → ΔB).

The inference rules of BLΔ are the MP rule and Δ rules, the MP rule is that from
A,A → B one can infer B, while the Δ rule is that from A one can infer ΔA.

Definition 2 ([19]) As the axiomatic expansion of SBL, the axiom system SBL∼ is
as follows:
(SBL) The axioms system of SBL;
(∼ 1) ∼∼ A → A;
(∼ 2) ¬A →∼ A;
(∼ 3) Δ(A → B) → Δ(∼ B →∼ B).

The inference rules of SBL∼ are also MP rules and Δ rules. If L is the axiomatic
expansion of SBL, so L∼ notes for the expansion of L, it is just as SBL expansion
for SBL∼, Gödel∼ and Π∼ are the two basic types of axiomatic expansion of SBL∼.
If not otherwise specified, in the following all discussions are carried out in Gödel∼
n-valued propositional logic system.

Theorem 1 ([15] Δ Deduction Theorem) Let L be an axiomatic expansion of BLΔ.
Then for each theory Γ and for all formulas A and B, we have:

Γ,A � B if and only if Γ � ΔA → B.

Theorem 2 ([19] Strong Completeness Theorem) Let L be an axiomatic expansion
of SBL∼. Then for theory Γ and formula A, the following conditions are equivalent:
(i) Γ � A;
(ii) e(A) = 1 for each L-algebra B and each model e of the theory Γ .
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3 T Truth Degree of Propositional Formula
and Its Related Properties

Definition 3 Let S = {p1, p2, . . .} be a countable set, ∼,Δ,∨,∧,→ respectively
are unary, unary, binary, binary and binary operation in S, F(s) is the type of
(1, 1, 2, 2, 2) free algebra generated by S, then we say that elements of F(S)
are proposition formulas or formulas. Notes: ∼ x = 1 − x, Δx = {1,x=1

0,x<1, x ∨ y =
max{x, y}, x ∧ y = min{x, y}, x → y = {1,x≤y

y,x≥y .

Definition 4 Let A = A(p1, p2, . . . , pm) ∈ F(S), then A corresponds to an element
function A. In Gödel∼ n-valued propositional logic system, A : Gm

n → Gn,A(x1,
x2, . . . , xm) is by operational signs ∼,Δ,∨,∧,→ connected to x1, x2, . . . , xm, the
way just as A = A(p1, p2, . . . , pm) is by conjunction ∼,Δ,∨,∧,→ connected to
the atomic formula p1, p2, . . . , pm. Then we say that A is the function induced by A.

Definition 5 Let A = A(p1, p2, . . . , pm) ∈ F(S) be a propositional formula contain-
ing m atomic formulas p1, p2, . . . , pm, A(x1, x2, . . . , xm) is the function induced by
A, define

τn(tA) = 1

nm
∑

(x1,x2,...,xm)∈Gm
n

tA(x1, x2, . . . , xm).

Then we say that τn(tA) is the t truth degree of formula A.

Theorem 3 Let A,B ∈ F(S), then
(i) A is tautology if and only if τn(ΔA) = 1, τn(∼ A) = 0; A is contradiction if and
only if τn(∼ A) = 1;
(ii) A ≈ B if and only if τn(tA) = τn(tB);
(iii) τn(∼ A) = 1 − τn(A), τn(∼ ΔA) = 1 − τn(ΔA);
(iv) If � A → B, thenτn(ΔA) ≤ τn(ΔB), τn(∼ A) ≥ τn(∼ B).

Proof (i) For ∀(x1, x2, . . . , xm) ∈ Gm
n , since A is tautology if and only if

A(x1, x2, . . . , xm) = 1,ΔA(x1, x2, . . . , xm) = 1,∼ A(x1, x2, . . . , xm) = 0 if and only
if

1

nm
∑

(x1,x2,...,xm)∈Gm
n

ΔA(x1, x2, . . . , xm) = 1,

1

nm
∑

(x1,x2,...,xm)∈Gm
n

∼ A(x1, x2, . . . , xm) = 0,

so by Definition5, we get τn(ΔA) = 1, τn(∼ A) = 0.
In the same way, since A is contradiction if and only if A(x1, x2, . . . , xm) = 0
if and only if ∼ A(x1, x2, . . . , xm) = 1 if and only if
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1

nm
∑

(x1,x2,...,xm)∈Gm
n

∼ A(x1, x2, . . . , xm) = 1,

so by Definition5, we get τn(∼A) = 1.

(ii) Let A ∈ F(S), pi ∈ F(S), since by [4], A ⊗ (Pi → Pi) ≈ A, so when A ≈ B, let
A,B contains the same atomic formula p1, p2, . . . , pm. For (x1, x2, . . . , xm) ∈ Gm

n ,
since A ≈ B if and only if A(x1, x2, . . . , xm) = B(x1, x2, . . . , xm) if and only if
tA(x1, x2, . . . , xm) = tB(x1, x2, . . . , xm) if and only if

1

nm
∑

(x1,x2,...,xm)∈Gm
n

tA(x1, x2, . . . , xm) = 1

nm
∑

(x1,x2,...,xm)∈Gm
n

tB(x1, x2, . . . , xm),

so by Definition5, we get τn(tA) = τn(tB).

(iii) For (x1, x2, . . . , xm) ∈ Gm
n , since ∼ A(x1, x2, . . . , xm) = 1 − A(x1, x2, . . . , xm),

∼ ΔA(x1, x2, . . . , xm) = 1 − ΔA(x1, x2, . . . , xm), so we have

1

nm
∑

(x1,x2,...,xm)∈Gm
n

∼ A(x1, x2, . . . , xm)

= 1

nm
∑

(x1,x2,...,xm)∈Gm
n

1 − A(x1, x2, . . . , xm),

1

nm
∑

(x1,x2,...,xm)∈Gm
n

∼ ΔA(x1, x2, . . . , xm)

= 1

nm
∑

(x1,x2,...,xm)∈Gm
n

1 − ΔA(x1, x2, . . . , xm),

so by Definition5, we get

τn(∼ A) = 1 − τn(A), τn(∼ ΔA) = 1 − τn(ΔA).

(iv) Let A,B contains the same atomic formula p1, p2, . . . , pm. For
∀(x1, x2, . . . , xm) ∈ Gm

n , since � A → B, so we have
A → B(x1, x2, . . . , xm) = 1. Again A → B(x1, x2, . . . , xm) = A(x1, x2, . . . , xm) →
B(x1, x2, . . . , xm) = 1, so we have A(x1, x2, . . . , xm) ≤ B(x1, x2, . . . , xm).

Combined with Δ,∼, we have

ΔA(x1, x2, . . . , xm) ≤ ΔB(x1, x2, . . . , xm),

∼ A(x1, x2, . . . , xm) ≥ ∼ B(x1, x2, . . . , xm),
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so we have

1

nm
∑

(x1,x2,...,xm)∈Gm
n

ΔA(x1, x2, . . . , xm)

≤ 1

nm
∑

(x1,x2,...,xm)∈Gm
n

ΔB(x1, x2, . . . , xm),

1

nm
∑

(x1,x2,...,xm)∈Gm
n

∼ A(x1, x2, . . . , xm)

≥ 1

nm
∑

(x1,x2,...,xm)∈Gm
n

∼ B(x1, x2, . . . , xm),

so by Definition5, we get

τn(ΔA) ≤ τn(ΔB), τn(∼ A) ≥ τn(∼ B). �

Theorem 4 A,B ∈ F(S), then τn(mA ∨ nB) = τn(mA) + τn(nB) − τn(mA ∧ nB).

Proof Suppose thatA,B contain the same atomic formulas p1, p2, . . . , pm. For a, b ∈
Gn, we have ma ∨ nb = ma + nb − ma ∧ nb, so for x1, x2, . . . , xm ∈ Gm

n , we have

mA ∨ nB(x1, x2, . . . , xm) = mA(x1, x2, . . . , xm) + nB(x1, x2, . . . , xm)

−mA ∧ nB(x1, x2, . . . , xm).

Therefore,

1

nm
∑

(x1,x2,...,xm)∈Gm
n

mA ∨ nB(x1, x2, . . . , xm)

= 1

nm
∑

(x1,x2,...,xm)∈Gm
n

mA(x1, x2, . . . , xm)

+ 1

nm
∑

(x1,x2,...,xm)∈Gm
n

nB(x1, x2, . . . , xm)

− 1

nm
∑

(x1,x2,...,xm)∈Gm
n

mA ∧ nB(x1, x2, . . . , xm).

so by Definition5, we get

τn(mA ∨ nB) = τn(mA) + τn(nB) − τn(mA ∧ nB).

�
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Theorem 5 Let A,B ∈ F(S), then
(i) τn(ΔA →∼ B) = τn(ΔA∧ ∼ B) − τn(ΔA) + 1;
(ii) τn(ΔA → ΔB) = τn(ΔA ∧ ΔB) − τn(ΔA) + 1;
(iii) τn(ΔA → B) = τn(ΔA ∧ B) − τn(ΔA) + 1.

Proof Suppose that A,B contains the same atomic formulas p1, p2, . . . , pm.
(i) For a, b ∈ Gn, we have Δa →∼ b = Δa∧ ∼ b − Δa + 1. So ∀x1, x2, . . . ,

xm ∈ Gm
n , we have

ΔA →∼ B(x1, x2, . . . , xm) = ΔA∧ ∼ B(x1, x2, . . . , xm) − ΔA(x1, x2, . . . , xm) + 1.

Therefore,

∑

(x1,x2,...,xm)∈Gm
n

ΔA →∼ B(x1, x2, . . . , xm)

=
∑

(x1,x2,...,xm)∈Gm
n

ΔA∧ ∼ B(x1, x2, . . . , xm)

−
∑

(x1,x2,...,xm)∈Gm
n

ΔA(x1, x2, . . . , xm) + 1.

Dividing both sides 1
nm , by Definition5, we get

τn(ΔA →∼ B) = τn(ΔA∧ ∼ B) − τn(ΔA) + 1.

(ii) ∀a, b ∈ Gn, we have Δa → Δb = Δa ∧ Δb − Δa + 1. So ∀x1, x2, . . . , xm ∈
Gm

n , we have

ΔA → ΔB(x1, x2, . . . , xm) = ΔA ∧ ΔB(x1, x2, . . . , xm) − ΔA(x1, x2, . . . , xm) + 1.

Therefore,

∑

(x1,x2,...,xm)∈Gm
n

ΔA → ΔB(x1, x2, . . . , xm)

=
∑

(x1,x2,...,xm)∈Gm
n

ΔA ∧ ΔB(x1, x2, . . . , xm)

−
∑

(x1,x2,...,xm)∈Gm
n

ΔA(x1, x2, . . . , xm) + 1.

Dividing both sides 1
nm , by Definition5, we get

τn(ΔA → ΔB) = τn(ΔA ∧ ΔB) − τn(ΔA) + 1.
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(iii) ∀a, b ∈ Gn, we have Δa → b = Δa ∧ b − Δa + 1. So ∀x1, x2, . . . , xm ∈ Gm
n ,

we have

ΔA → B(x1, x2, . . . , xm) = ΔA ∧ B(x1, x2, . . . , xm) − ΔA(x1, x2, . . . , xm) + 1.

Therefore,

∑

(x1,x2,...,xm)∈Gm
n

ΔA → B(x1, x2, . . . , xm)

=
∑

(x1,x2,...,xm)∈Gm
n

ΔA ∧ B(x1, x2, . . . , xm)

−
∑

(x1,x2,...,xm)∈Gm
n

ΔA(x1, x2, . . . , xm) + 1.

Dividing both sides 1
nm , by Definition5, we get

τn(ΔA → B) = τn(ΔA ∧ B) − τn(ΔA) + 1.

�

Corollary 1 (MP rules of t truth degree) Let A,B ∈ F(S), then
(i) τn(ΔA →∼ B) + τn(ΔA) ≤ τn(∼ B) + 1;
(ii) If τn(ΔA) ≥ α, τn(ΔA →∼ B) ≥ β, then τn(∼ B) ≥ α + β + 1;
(iii) τn(ΔA → ΔB) + τn(ΔA) ≤ τn(ΔB) + 1;
(iv) If τn(ΔA) ≥ α, τn(ΔA → ΔB) ≥ β, then τn(ΔB) ≥ α + β + 1.

Theorem 6 Let A,B,C ∈ F(S), then
(i) τn(ΔA →∼ B) + τn(∼ B →∼ C) ≤ τn(ΔA →∼ C) + 1;
(ii) τn(ΔA → ΔB) + τn(ΔB → ΔC) ≤ τn(ΔA → ΔC) + 1.

Proof (i) By Corollary1, we have

τn(ΔA →∼ B) + τn((ΔA →∼ B) → (ΔA →∼ C)) ≤ τn(ΔA →∼ C) + 1.

Suppose that A,B,C contain the same atomic formulas p1, p2, . . . , pm,
∀a, b, c ∈ Gn, (∼ b →∼ c) → ((Δa →∼ b) → (Δa →∼ c)) = 1,
then we have � (∼ B →∼ C) → ((ΔA →∼ B) → (ΔA →∼ C)),

by Theorem3(iv), we have

τn(∼ B →∼ C) ≤ τn((ΔA →∼ B) → (ΔA →∼ C)).

Integrated the above two sides, we get

τn(ΔA →∼ B) + τn(∼ B →∼ C) ≤ τn(ΔA →∼ C) + 1.
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(ii) By Corollary1, we get

τn(ΔA → ΔB) + τn((ΔA → ΔB) → (ΔA → ΔC)) ≤ τn(ΔA → ΔC) + 1

Suppose that A,B,C contains the same atomic formulas p1, p2, . . . , pm,
for a, b, c ∈ Gn, (Δb → Δc) → ((Δa → Δb) → (Δa → Δc)) = 1,
then we have � (ΔB → ΔC) → ((ΔA → ΔB) → (ΔA → ΔC)), by Theorem3
(iv), we get τn(ΔB → ΔC) ≤ τn((ΔA → ΔB) → (ΔA → ΔC)),

Integrated the above two sides, we get

τn(ΔA → ΔB) + τn(ΔB → ΔC) ≤ τn(ΔA → ΔC) + 1.

�

Corollary 2 (HS rules of t truth degree) Let A,B,C ∈ F(S), then
(i) If τn(ΔA →∼ B) ≥ α, τn(∼ B →∼ C) ≥ β, then τn(ΔA →∼ C) ≥ α + β + 1;
(ii) If τn(ΔA → ΔB) ≥ α, τn(ΔB → ΔC) ≥ β, then τn(ΔA → ΔC) ≥ α + β + 1.

4 T Similarity Degree and T Pseudo-Metric
of Propositional Formulas

Definition 6 LetA,B ∈ F(S), define ξn(mA, nB)=τn((mA → nB) ∧ (nB → mA)),

then it’s said that ξn(mA, nB) is the t similarity degree of proposition formulas
A and B.

Theorem 7 Let A,B ∈ F(S), then
(i) If one of A and B is a tautology, another is a contradiction, then ξn(mA, nB) = 0;
(ii) If A and B are all tautologies or are all contradictions, then ξn(mA, nB) = 1.

Proof Suppose that A,B contain the same atomic formulas p1, p2, . . . , pm.
(i)When one ofA andB is a tautology, another is a contradiction,∀x1, x2, . . . , xm ∈

Gm
n , then we have (mA → nB) ∧ (nB → mA)(x1, x2, . . . , xm) = 0. So we have∑
(x1,x2,...,xm)∈Gm

n
(mA → nB) ∧ (nB → mA)(x1, x2, . . . , xm) = 0.

Dividing both sides 1
nm , by Definition5, we get

τn((mA → nB) ∧ (nB → mA)) = 0.

According to Definition6, we have ξn(mA, nB) = 0.
(ii) When A and B are tautologies or contradictions, for x1, x2, . . . , xm ∈ Gm

n ,
we have (mA → nB) ∧ (nB → mA)(x1, x2, . . . , xm) = 1.∑

(x1,x2,...,xm)∈Gm
n
(mA → nB) ∧ (nB → mA)(x1, x2, . . . , xm) = 1.

Dividing both sides 1
nm , by Definition5,we get
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τn((mA → nB) ∧ (nB → mA)) = 1.

According to the Definition6, we get ξn(mA, nB) = 1. �

Theorem 8 Let A,B ∈ F(S), then
(i) ξn(ΔA,∼ B) = τn(ΔA →∼ B) + τn(∼ B → ΔA) − 1 = 1 − τn(ΔA∨ ∼ B) +
τn(ΔA∧ ∼ B);
(ii) ξn(ΔA →∼ B,∼ B → ΔA) = ξn(ΔA∨ ∼ B,ΔA∧ ∼ B, ) = ξn(ΔA,∼ B).

Proof Suppose that A,B contain the same atomic formulas p1, p2, . . . , pm.
(i) By Theorem4 and Definition6, we get ξn(ΔA,∼ B) = τn(ΔA →∼ B) +

τn(∼ B → ΔA) − τn((ΔA →∼ B) ∨ (∼ B → ΔA)). Since � (ΔA →∼ B) ∨ (∼ B
→ ΔA), so by Theorem3(i), we have

τn((ΔA →∼ B) ∨ (∼ B → ΔA)) = 1.

So we have ξn(ΔA,∼ B) = τn(ΔA →∼ B) + τn(∼ B → ΔA) − 1.
Since

τn(ΔA →∼ B) + τn(∼ B → ΔA) − 1

= τn(ΔA∧ ∼ B) − τn(ΔA) + 1 + τn(∼ B ∧ ΔA) − τn(∼ B) + 1 − 1

= 2τn(ΔA∧ ∼ B) − τn(ΔA) − τn(∼ B) + 1

= 1 − τn(ΔA∨ ∼ B) + τn(ΔA∧ ∼ B).

In summary, we get

ξn(ΔA,∼ B) = τn(ΔA →∼ B) + τn(∼ B → ΔA) − 1

= 1 − τn(ΔA∨ ∼ B) + τn(ΔA∧ ∼ B).

(ii) Since (i), we get

ξn(ΔA →∼ B,∼ B → ΔA)

= 1 − τn((ΔA →∼ B) ∨ (∼ B → ΔA)) + τn((ΔA →∼ B) ∧ (∼ B → ΔA))

= τn((ΔA →∼ B) ∧ (∼ B → ΔA)) = ξn(ΔA,∼ B).

ξn(ΔA∨ ∼ B,∼ B ∧ ΔA)

= 1 − τn((ΔA∨ ∼ B) ∨ (ΔA∧ ∼ B)) + τn((ΔA∨ ∼ B) ∧ (ΔA∧ ∼ B))

= 1 − τn(ΔA∨ ∼ B) + τn(ΔA∧ ∼ B) = ξn(ΔA,∼ B).

In summary, we get

ξn(ΔA →∼ B,∼ B → ΔA) = ξn(ΔA∨ ∼ B,ΔA∧ ∼ B) = ξn(ΔA,∼ B).

�
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Definition 7 Define binary nonnegative functions ρn : F(S) × F(S) → [0, 1], as
follows

ρn(mA, nB) = 1 − ξn(mA, nB),A,B ∈ F(S),

then we say that ρn(mA, nB) is a pseudo-metric on F(S).

Theorem 9 Let A,B ∈ F(S), then
(i) If one of A and B is a tautology, another is a contradiction, then ρn(mA, nB) = 1;
(ii) If both A and B are tautologies or both are contradictions, then ρn(mA, nB) = 0.

Proof The prove of (i), (ii) can be obtained by Theorem7 and Definition7. �

5 T Divergent Degree and T Consistency Degree of Theory
Γ of Propositional Formulas

Definition 8 Let Γ be a theory of F(S), define

div(Γ ) = sup{ρn(mA, nB)|A,B ∈ D(Γ )}.

Then it’s said that div(Γ ) is the t divergent degree of theory Γ . When div(Γ ) = 1,
then it’s said that Γ is a theory of full divergence.

Example 1 Calculating the divergence degree of Γ = {p,∼ p}.
Solution: Since � p → (∼ p → tA) is set up for each A ∈ F(S), so D(Γ ) = F(S),
namely div(Γ ) = 1, therefore Γ is fully divergent.

Definition 9 Let Γ be a theory of F(S), define

i(Γ ) = 1 − min{1 − ρn(mA, nB)�|A,B ∈ D(Γ )}.

Then it’s said that i(Γ ) is the pole index of Γ .

Proposition 1 Let Γ be a theory of F(S), define Γ is inconsistent if and only if
i(Γ ) = 1, Γ is consistent if and only if i(Γ ) = 0.

Proof Γ is inconsistent if and only if ρn(mA, nB) = 1 if and only if i(Γ ) = 1, Γ is
consistent if and only if ρn(mA, nB) = 0 if and only if i(Γ ) = 0. �

Definition 10 Let Γ be a theory of F(S), define

η(Γ ) = 1 − 1

2
div(Γ )(1 + i(Γ )).

Then it’s said that η(Γ ) is the η-t consistent degree of theory Γ .
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Proposition 2 Let Γ be a theory of F(S),then
(i) Γ is fully consistent, namely Γ is a full theorem if and only if η(Γ ) = 1;
(ii) Γ is consistent if and only if 1

2 ≤ η(Γ ) ≤ 1, Γ is consistent and fully divergent
if and only if η(Γ ) = 1

2 ;
(iii) Γ is inconsistent if and only if η(Γ ) = 0.

Proof (i) Let Γ is fully consistent, then ∀A,B ∈ D(Γ ), we have ρn(mA, nB) =
0, thus div(Γ ) = 0, so by Definition10, we get η(Γ ) = 1. On the other hand,
let η(Γ ) = 1, then by Definition10, we get 1

2div(Γ )(1 + i(Γ )) = 0, and 1
2 (1 +

i(Γ )) �= 0, so div(Γ ) = 0, thus the formulas of D(Γ ) are all theorems, therefore
Γ is fully consistent.

(ii) By Proposition1, when Γ is consistent, then i(Γ ) = 0, thus by Definition10,
we have 1

2 ≤ η(Γ ) ≤ 1. On the other hand, when Γ is inconsistent, then i(Γ ) = 1
and div(Γ ) = 1, thus η(Γ ) = 0, 1

2 ≤ η(Γ ) ≤ 1 is not set up.
When η(Γ ) = 1

2 , then by Definition10, we get div(Γ )(1 + (i(Γ )) = 1, and
div(Γ ) ≤ 1, so div(Γ ) = 1, i(Γ ) = 0, therefore by Definition8 and the Proposi-
tion1, we get that Γ is consistent and fully divergent. On the other hand, since Γ is
consistent and fully divergent, so we get div(Γ ) = 1, i(Γ ) = 0, so by Definition10,
we get η(Γ ) = 1

2 .
(iii) by (ii), we have that when Γ is inconsistent, then η(Γ ) = 0. On the other

hand, let η(Γ ) = 0, then by Definition5.10, we get div(Γ )(1 + (i(Γ )) = 2. Since
div(Γ ) ≤ 1, so i(Γ ) = 1, therefore by Proposition1, we get that Γ is inconsistent.

�

6 Conclusions

In this paper, by adding new operatorsΔ,∼, axiomatic expansion ofGödel n-valued
propositional logic system is introduced, the concepts of t truth degree of proposi-
tional formula, and t similarity degree, t pseudo-metric between propositional for-
mulas, and t divergent degree and t consistent degree of theory Γ in Gödel∼ are
given. And their correlation properties are discussed. The research of approximate
reasoning about Gödel∼ n-valued propositional logic system, we will be discussed
in another paper.
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Soundness and Completeness of Fuzzy
Propositional Logic with Three Kinds
of Negation

Zheng-Hua Pan

Abstract In order to distinguish and deal with different negations of fuzzy
knowledge, we have presented a fuzzy propositional logic with contradictory nega-
tion, opposite negation, medium negation, FScom for short. In this paper, we further
study semantics of FLcom. Based on the three-value interpretation of FLcom, the
soundness theorem and completeness theorem for FLcom are proved.

Keywords Fuzzy propositional logic ·Negation · Semantic interpretation · Sound-
ness · Completeness

1 Introduction

The concept of negation plays a special role in knowledge representation and
knowledge reasoning, especially in fuzzy knowledge representation and knowledge
reasoning. In known fuzzy sets and fuzzy logic theories, such as FS (fuzzy sets), IFS
(intuitionistic fuzzy sets), RS (rough sets) and Hájek’s BL (basic logic)
[1–4], fuzzy negation N is a generalization of the classical complement or negation
¬(¬0 = 1,¬1 = 0), N is defined as N (x) = 1 − x or N (x) = x → 0. Among
these theories, there has only one sort of negation, which is just distinction of expres-
sions, they have no essential difference with understanding the concept of negation.
However, some scholars have cognized that negation is not a clean concept from
a logical point of view, there are different negations in Database Query Languages
(such as SQL), ProductionRule Systems (such asCLIPS and Jess), Natural Language
Processing and SemanticWeb and so on [5–12].Wagner et al. proposed that there are
(at least) two kinds of negations in the above domains, a weak negation expressing
non-truth (in the sense of “she doesn’t like snow” or “he doesn’t trust you”), and
a strong negation expressing explicit falsity (in the sense of “she dislikes snow” or
“he distrusts you”) [5, 6]; Ferré introduced an epistemic extension of the concept of
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negation, considered that there are extensional negation and intentional negation in
logical concept analysis and natural language [8]; Kaneiwa proposed a “description
logic ALC∼ with classical negation and strong negation, the classical negation ¬
represents the negation of a statement, the strong negation ∼ may be more suitable
for expressing explicit negative information (or negative facts), in other words, ∼
indicates information that is directly opposite and exclusive to a statement rather than
its complementary negation [9]; Pan et al. introduced an epistemic extension for the
concept of negation, the negative relations in fuzzy concepts should distinguish con-
tradictory relation, opposite relation and medium negative relation [10–12], and then
presented the fuzzy sets with contradictory negation, opposite negation and medium
negation (FScom for short) [13], the fuzzy propositional logic system with contra-
dictory negation, opposite negation and medium negation (FLcom for short) [14].

This paper study semantics of FLcom, proving the soundness theorem and com-
pleteness theorem for FLcom based on a three-valued interpretation of FLcom.

2 Preliminaries

In [14], the negation of a fuzzy concept P was distinguished as the contradictory
negation ¬P , the opposite negation P and the medium negation ∼P .

(i) The contradictory negative relation between the fuzzy concepts P and ¬P
Characteristics of relation: the boundary between the extensions of ¬P and P is

uncertain, and the extensions relation must be “either this or that”.
For example, the relation between “young people”(P) and “non-young people”

(¬P) within the genus concept “people”, the relation between “quick velocity”(P)
and “non-quick velocity”(¬P) within the genus concept “velocity”. The character-
istic of these relations can be expressed as in the following figure (Fig. 1).

(ii) The opposite negative relation between fuzzy concepts P and P
Characteristics of relation: the boundaries between the extensions of P and P

are uncertain, and the extensions relation is not “either this or that”.
For example, the relation between “young people”(P) and “old people”( P)

within the genus concept “people”, the relation between “quick velocity”(P) and
“slow velocity”( P) within the genus concept “velocity”. The characteristic of these
relations can be expressed as the following figure (Fig. 2).

(iii) The medium negative relations between P (or P) and ∼P
Characteristics of relation: the boundaries between the extensions of P (or P )

and ∼P are uncertain, t and the extensions relation are not “either this or that”.

P ¬P

Fig. 1 The boundary between the extensions of ¬P and P is uncertain, and the extensions relation
must be “either this or that”
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P ╕P

Fig. 2 The boundaries between the extensions of P and P are uncertain, and the extensions
relation is not “either this or that”

P ╕P~P

Fig. 3 The boundaries between the extensions of P (or P ) and ∼P are uncertain, and the
extensions relations are not “either this or that”

For example, the relation between “young people”(P) (or “old people”( P ))
and “middle-aged people”(∼P) within the genus concept “people”, the relation
between “night”(P) (or “daylight”( P)) and “dawn”(∼P), the relation between
“conductor”(P) (or “dielectric”( P)) and “semiconductor”(∼P). The characteris-
tic of these relations can be expressed as the following figure (Fig. 3).

In [13], the contradictory negation A¬ of a fuzzy set A in FScom have relations

with the opposite negation A and the medium negation A∼: A¬ = A ∪ A∼.
Accordingly, the above contradictory negation P¬ of a fuzzy concept P has the

following relation with the opposite negation P and the medium negation P∼:

¬P = P∪ ∼ P (1)

Based on the above cognition, [14] presented the following fuzzy propositional
logic system with contradictory negation, opposite negation and medium negation
(FLcom for short):

Definition 1 (i) Let� be the set of proposition variables,¬ (contradictory negation),
(opposite negation), ∼ (medium negation) and ∧ (conjunction) are propositions

connectives.

(ii) The following formulas are axioms:

(A1) A → (B → A);
(A2) (A → (A → B)) → (A → B);
(A3) (A → B) → ((B → C) → (A → C));
(M1) (A → ¬B) → (B → ¬A);
(M2) (A → B) → (B → A);
(H) ¬A → (A → B), A → (A → B);
(∧) A ∧ B → A, A ∧ B → B;
(Y ) A → ¬A ∧ ¬ ∼ A;
(Y∼) ∼A → ¬A ∧ ¬ A;
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(iii) The following deduction forms are deduction rules:

(Dr1) A1, A2, . . ., An Ai (1 ≤ i ≤ n);
(Dr2) A → B, A B.

In [14], a lot of particular properties of FLcom have been proven. We can also
prove the following deduction forms in FLcom:

Proposition 1 In FLcom,

∼ A B (2)

∼ A ∼ A;∼ A ∼ A (3)

A A; A A (4)

B A → B; A A → B (5)

A, B (A → B); (A → B) A, B (6)

Now that FLcom is a formalized system, the deduction form � A (� may be
empty set) is provable in FLcom, which can be defined as follows:

Definition 2 The deduction form � A (� may be empty set) is provable in FLcom,
if there exists a finite sequence of deduction forms E1, E2, . . . , En such that En =
� A and for each En(1 ≤ k ≤ n), Ek is an axiom of FLcom or Ek follows from
Ei and E j (i < k, j < k) using the deduction rule of FLcom, then E1, E2, . . . , En

is called a proof of � A, n length of proof. � A is denoted by A when � is the
empty set, A is provable in FLcom when A is provable in FLcom . If � denotes
an infinite set of formulas and there is a finite set � ⊂ � such that � A is provable
in FLcom, then � A is provable in FLcom.

3 The Soundness and Completeness of FLCOM

We can prove the soundness theorem and completeness theorem of FLcom based on
a three-valued interpretation.

Definition 3 (three-valued interpretation) Let � be a set of formulas of FLcom. A
Mapping ∂ : � → {0, 1/2, 1} is called a three-valued assignment for all A, B ∈ �,
if

(a) ∂(A) + ∂( A) = 1;

(b) ∂(∼ A) =
⎧
⎨

⎩

1/2, when ∂(A) = 1
1, when ∂(A) = 1/2

1/2, when ∂(A) = 0;
(c) ∂(A → B) is a binary function 
(∂(A), ∂(B));
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 1 1/2 0
1 1 1/2 0
1/2 1 1 1/2
0 1 1 1

(d) ∂(A ∧ B) = min(∂(A), ∂(B));
(e) ∂(¬A) = max(∂( A), ∂(∼ A)).

Definition 4 (three-valued valid formula) (i) If ∂(A) = 1 for each three-valued
assignment ∂ then A is called a three-valued valid formula, which is denoted by
A. (ii) For each B ∈ �, if there is a three-valued assignment ∂ such that ∂(B) = 1,

then � is called three-valued satiable. (iii) For each three-valued assignment ∂, if ∂
satisfies {A} when ∂ satisfies � then � A is called a three-valued valid deduction
form, which is denoted by � A.

Theorem 1 (Soundness of FLcom) (a) If A, then A. (b) If � A, then � A.

Proof (a) Suppose that A. According to Definition2, there exists a proof of A :
E1, E2, . . ., En , in which En = A. We induct on the length n as follows:

(i) If n = 1, then E1 = A by Definition2, namely, A is an axiom of FLcom. A
is a three-valued valid deduction form, since the axioms of FLcom are three-valued
valid formulas. A by Definition4.

(ii) Suppose that (a) holds if n < k. When n = k, according to Definition2, En

is an axiom of FLcom or En follows from Ei and E j (i < n, j < n) by using the
deduction rule of FLcom. If En is an axiom of FLcom, then (a) holds as (I). If En

follows from Ai and A j (i < n, j < n) using the deduction rule, then Ei and E j are
three-valued valid deduction forms by the induction hypothesis, so En is three-valued
valid deduction form, namely, A is a three-valued valid deduction form. So A by
Definition4.

Therefore, (a) holds by the (I) and (II). (b) Can be proved similarly. �

Definition 5 (Maximally consistent set) Let � be a set of formulas of FLcom (�
may be finite or infinite). If � A is provable in FLcom for each formula A, then �

is called an inconsistent set. If � is an consistent set, and that for each consistent set
� ′ ⊇ � sure that �′ = �, then � is called a maximally consistent set.

Proposition 2 For all consistent set �, there is a maximally consistent set �∗ and
� ⊆ �∗.

Proof Let A1, A2, …, An , be formulas of FLcom. Defining �n : �1 = �, if
�n ∪ {An} is consistent then �n+1 = �n ∪ {An}, or else �n+1 = �n. Let �∗ =⋃∞

n=1 �n, �
∗ is proved to be a maximally consistent set and �∗ ⊇ � by

Definition5. �

Lemma 1 Let A be a formula of FLcom, A1, A2 ∈ {A, A,∼ A} and A1 �= A2, �
a set of formulas of FLcom. The following sentences are equivalent:
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(i) � is an inconsistent set;
(ii) there exists a A ∈ � such that � A1, A2 is provable in FLcom;
(iii) there exists a A ∈ � such that � ∼ A is provable in FLcom.

Proof By Theorem 4 in [14] any two formulas in {A, A,∼ A} are contradictory
formulas thus they are inconsistent formulas, so A1 and A2 are inconsistent formulas.
If � is an inconsistent set, then there exists a formula A in � such that � A1, A2 is
provable in FLcom according to Definition5, so (i) ⇒ (ii). If there exists a formula
A in � such that � A1, A2 is provable in FLcom, on account of A1 and A2 are
inconsistent formulas, so A1, A2 B (B is a formula of FLcom), that is � A1,
A2 B. Let B = ∼ A by the arbitrariness of the formula B of FLcom, so (ii) ⇒
(iii). If there exists a formula A in� such that� A1, A2 is provable in FLcom, then
� ∼ A B by (2), thus � is an inconsistent set, so (iii) ⇒ (i). �
Lemma 2 Let � be a maximally consistent set. Then
(i) � A is provable in FLcom, if and only if A ∈ �.
(ii) I f A B and B A are provable in FLcom, then A ∈ � if and only if B ∈ �.

Proof (i) Suppose that A /∈ �, thus � ∪ {A} is an inconsistent set since � is a
maximally consistent set. So, A ∈ � or∼ A ∈ �. If A ∈ �,� A is provable in
FLcom by (Dr1),� A is unprovable in FLcom by Lemma1. Similarly, if∼ A ∈ �,
� ∼ A is provable in FLcom by (Dr1),� A is unprovable in FLcom by Lemma1.
Suppose that � A is unprovable in FLcom, thus A /∈ � by (Dr1).
(ii) can be proved similarly. �
Lemma 3 Let � be a maximally consistent set, A and B are formulas of FLcom.
Then,

(i) One and only holds in A ∈ �, A ∈ � and ∼ A ∈ �.
(ii) A → B ∈ � if and only if A ∈ � or B ∈ �.
(iii) (A → B) ∈ � if and only if both A ∈ � and B ∈ �.

Proof (i) If there are two of them in A ∈ �, A ∈ � and ∼ A ∈ � that hold, then
� is an inconsistent set by Lemma1, this is in contradiction with the hypothesis.

(ii) If A → B ∈ �, then � A → B by Lemma2. If A ∈ �, then � A by
Lemma2. For A → (A → B) by (H), so (A → B) according (Dr2), that is
A → B ∈ � by Lemma2. If B ∈ �, � B by Lemma2. For B → (A → B) by
(A), so (A → B) according (Dr2), that is A → B ∈ � by Lemma2.

(iii) It is obvious by Lemma2 and (6). �
Lemma 4 Let � be a maximally consistent set, (A1, A2, A3) a permutation of
(A, A,∼ A). If � ∪ {A1} and � ∪ {A2} are inconsistent sets, then � A3 is prov-
able in FLcom.

Proof Since � is a maximally consistent set, and (A1, A2, A3) is a permutation of
(A, A ∼ A), then there exist Ai ∈ {A, A,∼ A} and Ai ∈ �(1 ≤ i ≤ 3). Suppose
that� A3 is unprovable in FLcom, then A3 /∈ �, and A1 /∈ �, A2 /∈ � for� ∪ {A1}
and � ∪ {A2} are inconsistent sets. Thus A1, A2, A3 /∈ � is in contradiction with
Ai ∈ �(1 ≤ i ≤ 3). �
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Lemma 5 Let � be a consistent set, �∗ a maximally consistent set, A a formula of
FLcom. Then there exists a three-valued assignment ∂ such that

(i) ∂(A) = 1 if and only if A ∈ �∗;
(ii) ∂(A) = 1/2 if and only if ∼ A ∈ �∗;
(iii) ∂(A) = 0 if and only if A ∈ �∗.

Proof If p is an atomic formula of FLcom, by Definition3, we may define ∂ as
follows:

∂(p) =
⎧
⎨

⎩

1, if p ∈ �∗
1/2, if ∼ p ∈ �∗
0, if p ∈ �∗

We induct to the number n of connective in A as follows:
(1) When n = 0, then A is an atomic formula of FLcom, (i), (ii) and (iii) hold by (3).
(2) Suppose that (i), (ii) and (iii) hold if n < k. When n = k, A has the following
three cases: A = B, or A =∼ B, or A = B → C .

Let A = B. According to Definition3, there are the following three cases:
(a) ∂( B) = 1 if and only if ∂(B) = 0, so B ∈ �∗ by (3), that is A ∈ �∗.
(b)∂( B) = 1/2 if andonly if∂(B) = 1/2, so∼ B ∈ �∗ by (3), thus∼ B ∈ �∗

by (4), that is ∼ A ∈ �∗.
(c) ∂( B) = 0 if and only if ∂(B) = 1, so B ∈ �∗ by (3), thus B ∈ �∗ by

(4), that is A ∈ �∗.
Let A =∼ B. It is divided into three parts to prove:
(a) According to Definition3, ∂(∼ B) = 1 if and only if ∂(B) = 1/2, so ∼ B ∈

�∗ by (3), that is A ∈ �∗.
(b) In order to prove that ∂(∼ B) = 1/2 if and only if ∼∼ B ∈ �∗ (i.e. ∼ A ∈

�∗),wemayprove that∂(∼ B) �= 1/2 if and only if∼∼ B /∈ �∗ as follows: suppose
that ∂(∼ B) �= 1/2, according to Definition3, ∂(B) = 1/2, and then ∼ B ∈ �∗ by
(3), so ∼∼ B /∈ �∗ by (i) in Lemma3; suppose that ∼∼ B /∈ �∗, according to (i)
in Lemma3, ∼ B ∈ �∗ or ∼ B ∈ �∗, since ∼ B ∈ �∗ does not hold (or else
�∗ ∼ B C is provable in FLcom byLemma2 and (2), that is,�∗ is inconsistent),
so ∼ B ∈ �∗, and then ∂(B) = 1/2 by (3), ∂(∼ B) = 1 by Definition3, that is
(∼ B) �= 1/2.

(c) In order to prove that ∂(∼ B) = 0 if and only if ∼ B ∈ �∗ (i.e. A ∈ �∗),
we may prove that ∂(∼ B) �= 0 if and only if ∼ B /∈ �∗ as follows: suppose that

∼ B /∈ �∗, according to (i) in Lemma3,∼ B ∈ �∗ or∼∼ B ∈ �∗. If∼ B ∈ �∗,
then ∂(B) = 1/2 by (3), and then ∂(∼ B) = 1( �= 0) by Definition3; if∼∼ B ∈ �∗,
then∼ B /∈ �∗ by (i) in Lemma3, so B ∈ �∗ or B ∈ �∗, so ∂(B) = 1 or ∂(B) = 0
by (3), thus ∂(∼ B) = 1/2 by Definition3, that is ∂(∼ B) �= 0. Contrarily, suppose
that ∂(∼ B) �= 0, according to Definition3, ∂(B) = 1, or ∂(B) = 1/2 or ∂(B) = 0,
by Lemma1 and �∗ is consistent set, there is ∼ B /∈ �∗ when ∂(B) = 1, or
∂(B) = 1/2 or ∂(B) = 0.

Let A = B → C . It is divided into three parts to prove:
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(a) According to Definition3, ∂(B → C) = 1 if and only if ∂(B) = 0 or
∂(C) = 1, which hold if and only if B ∈ �∗ or C ∈ �∗ by (3), so B → C ∈ �∗
by (ii) in Lemma3.

(b) According to Definition3, ∂(B → C) = 0 if and only if ∂(B) = 1 or ∂(C) =
0, which implies B ∈ �∗ or C ∈ �∗ by (3), so (B → C) ∈ �∗ by (iii) in
Lemma3.

(c) In order to prove that ∂(B → C) = 1/2 if and only if ∼ (B → C) ∈ �∗,
we may prove that ∂(B → C) �= 1/2 if and only if ∼ (B → C) /∈ �∗ as follows:
according toDefinition3, ∂(B → C) �= 1/2 if and only if ∂(B → C) = 1 or ∂(B →
C) = 0, which holds if and only if B → C ∈ �∗ or (B → C) ∈ �∗ by above (a)
and (b), so ∼ (B → C) /∈ �∗ by (i) in Lemma3. �

Theorem 2 (completeness of FLCOM)
(a) If � A, then � A is provable in FLcom;
(b) If A, then A is provable in FLcom.

Proof (a) if � A is unprovable in FLcom, according to Lemma4, � ∪ { A} and
� ∪ {∼ A} are consistent sets, so there exists a three-valued assignment ∂ such that
∂(A) ≤ 1/2 if ∂ satisfied �. Thus � A does not hold, by Definition4.
(b) This can be proved similarly. �

Theorem 3 (compactness of FLCOM)Let� be an infinite set of formulas of FLcom.
For each finite set � ⊂ �, if � is a consistent set then � is also consistent set.

Proof According to Lemma1, if � is an inconsistent set then � ∼ A is provable
in FLcom. By Definition2, there exist a finite set � ⊂ � such that � ∼ A is
provable in FLcom, and then � B by (2), namely, � is an inconsistent set. �

4 Conclusions

This paper presents a fuzzy propositional logic system with contradictory negation,
opposite negation and medium negation (FLcom) and study semantics of FLcom,
and introduce a three-value interpretation of FLcom, the soundness theorem and the
completeness theorem of FLcom are proved.
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Normal Form of n-Valued Lukasiewicz
Logic Formulas

Qing-Ping Wang

Abstract The disjunctive normal form and conjunctive normal form of Boolean
functions are very important to construct logic formulas in classical logic system.
Shannon expansion in symbolic computation tree logic is generalized to prove the
normal form of Boolean functions. In n-valued Lukasiewicz logic system Ln , the
expansion of n-valued McNaughton functions which are induced by logic formulas
is studied. The quasi disjunctive normal form and quasi conjunctive normal form of
m-ary n-valued McNaughton functions are given.

Keywords Shannon expansion · Boolean function · n-valued McNaughton
function · Normal form

1 Introduction

Since the technology of model checking was proposed, it has been successful applied
in various fields including aerospace, electronic commerce, communication technol-
ogy andmedical systems.Model checking is carried out on the basis of classical logic
[1–11]. In classical logic system, the normal form is an importantmethod to structural
logic formulas. The structure of logic formulas can be clearly understood by means
of the normal form. As everyone knows, the number of classical propositional logic
formulas which include withm atomic formulas is equal tom-ary Boolean functions,
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that is, 22
m
. But for many-valued logic, the problem is much more complicated. For

example, in three-value Lukasiewicz logic, the number of three-value propositional
logic formulas which incl withm atomic formulas is not equal to 33

m
. Because expan-

sions of Boolean functions are given by Shannon expansion, it is not complicated,
but the idea is clever. In this paper, firstly, the disjunctive normal form and conjunc-
tive normal form of Boolean functions are proved by Shannon expansion. Then the
quasi normal form of n-valued logic formulas is proposed, and the expansion n-value
McNaughton function is given. Finally, in n-value Lukasiewicz logic system Ln , the
quasi normal form and construction method of logical formulas are obtained.

2 Preliminaries

Definition 1 ([12]) Given S = {p1, p2, . . .}. Let us define the set F(S) inductively
as follows.

(1) p1, p2, . . . ∈ F(S).
(2) If A, B ∈ F(S), then ¬A, A → B ∈ F(S).
(3) Every element of F(S) is generated by (1) and (2).
Then F(S) is a free algebra of type (¬,→) generated by S. Eachmember of F(S)

is called a formula (also called proposition) of classical logic L , and each member
of S is called an atomic formula (atomic proposition) of L .

In Boolean algebra {0, 1}, operations ¬,→,∨,∧ are defined as follows.

¬0 = 1,¬1 = 0, a → b = 0 iff a = 1 and b = 0, (1)

a ∨ b = max{a, b}, a ∧ b = min{a, b}. (2)

Definition 2 ([12]) Let υ : F(S) → {0, 1} be a mapping. υ is called a valuation of
F(S) if υ is a homomorphism of type (¬,→), i.e.

υ(¬A) = ¬υ(A), υ(A → B) = υ(A) → υ(B).

υ(A) is also called the valuation of A. The set of all valuations of F(S) is denoted
by Ω .

Let A, B ∈ F(S). A is called a tautology, if υ(A) = 1 holds for every υ ∈ Ω . A is
called a contradiction, if υ(A) = 0 for every υ ∈ Ω . A and B are said to be logically
equivalent, in symbols, A ≈ B, if υ(A) = υ(B) holds for every υ ∈ Ω .

Definition 3 ([12]) A function f : {0, 1}m → 0, 1 is called an m-ary Boolean
function.

Proposition 1 ([12]) Every Boolean function can be induced by some formula.
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Definition 4 ([12]) Let A(p1, . . . , pm) ∈ F(S). A is said to be in disjunctive normal
form and in conjunctive normal form, respectively, if A has the respective forms

(Q11 ∧ · · · ∧ Q1s) ∨ · · · ∨ (Qt1 ∧ · · · ∧ Qts), (3)

and
(Q11 ∨ · · · ∨ Q1s) ∧ · · · ∧ (Qt1 ∨ · · · ∨ Qts), (4)

where each Qi j = p j or Qi j = ¬p j ( j = 1, . . . , s; i = 1, . . . , t).

Remark 1 A formula built up from either atomic propositions or the negations of
atomic formulas only by disjunctive (conjunctive) connectives is said to be in simple
disjunctive (conjunctive) normal form. For example, p1 ∨ p2 ∨ p3 is in simple dis-
junctive normal form, and ¬p1 ∧ p2 is in simple conjunctive normal form. A simple
disjunctive (conjunctive) normal form can be viewed as either a disjunctive normal
form or a conjunctive normal form.

Definition 5 ([1]) Let f (x1, . . . , xm) be a m-ary Boolean function, then

f (x1, . . . , xm) = (¬x1 ∧ f (0, x2, . . . , xm)) ∨ (x1 ∧ f (1, x2, . . . , xm)). (5)

is called Shannon expansion.

In the following, we give the generalization of Shannon expansion.

Proposition 2 Let f (x1, . . . , xm) be a m-ary Boolaen function, denote x0k =
¬xk, x1k = xk, (k = 1, 2), then

f (x1, x2, x3, . . . , xm) = ∨{xα1
1 ∧ xα2

2 ∧ f (α1,α2, x3, . . . , xm) : (α1,α2) ∈ {0, 1}2}.
(6)

Proof From Shannon expansion, we have

f (x1, x2, x3, . . . , xm) = (¬x1 ∧ f (0, x2, x3, . . . , xm)) ∨ (x1 ∧ f (1, x2, x3, . . . , xm)). (7)

and
f (0, x2, x3, . . . , xm) = (¬x2 ∧ f (0, 0, x3, . . . , xm)) ∨ (x2 ∧ f (0, 1, x3, . . . , xm)),

f (1, x2, x3, . . . , xm) = (¬x2 ∧ f (1, 0, x3, . . . , xm)) ∨ (x2 ∧ f (1, 1, x3, . . . , xm)),
substitute in Eq. (7)
f (x1, x2, x3, . . . , xm) = ∨{xα1

1 ∧ xα2
2 ∧ f (α1,α2, x3, . . . , xm) : (α1,α2) ∈ {0, 1}2}.

More generally, the disjunctive normal form of Boolean functions can be obtained
by Shannon expansion and its extended form.

Corollary 1 Let f (x1, . . . , xm) be am-ary Boolaen function, then f (x1, . . . , xm) =
∨{xα1

1 ∧ · · · ∧ xαm
m ∧ f (α1, . . . ,αm) :(α1, . . . ,αm) ∈ {0, 1}m}=∨{xα1

1 ∧ · · · ∧ xαm
m :

(α1, . . . ,αm) ∈ f −1(1)}.
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Remark 2 If f −1(1) = ∅, i.e. f (x1, . . . , xm) = 0, we can denote f (x1, . . . , xm) =
x1 ∧ ¬x1.

In the following, we give the Dual form of Shannon expansion and its extended
form.

Proposition 3 Let f (x1, . . . , xm)beam-aryBoolean function, denote x0k = xk, x1k =
¬xk, (k = 1, 2), then

f (x1, x2, x3, . . . , xm) = ∧{xβ1
1 ∨ xβ2

2 ∨ f (β1,β2, x3, . . . , xm) : (β1,β2) ∈ {0, 1}2}.
(8)

Corollary 2 Let f (x1, . . . , xm) be am-ary Boolaen function, then f (x1, . . . , xm) =
∧{xβ1

1 ∨ · · · ∨ xβm
m ∨ f (β1, . . . ,βm) :(β1, . . . ,βm) ∈ {0, 1}m}=∧{xβ1

1 ∨ · · · ∨ xβm
m :

(β1, . . . ,βm) ∈ f −1(0)}.
Remark 3 If f −1(0) = ∅, i.e. f (x1, . . . , xm) = 1, we can denote f (x1, . . . , xm) =
x1 ∨ ¬x1.

Theorem 1 ([12]) Every formula is logically equivalent to a formula in disjunctive
(conjunctive) normal form.

3 The Normal Form of n-Valued McNaughton Function

In this paper, denote L(n) = {0, 1
n−1 ,

2
n−1 , . . . ,

n−2
n−1 , 1}, h0(x) = ¬(¬x → x),

h 1
2
(x) = (x → ¬x) ∧ (¬x → x), h1(x) = ¬(x → ¬x).
In n-valued Lukasiewicz logic system Ln , the definitions of valuation, tautology,

contradiction, function induced by formula A are similar to the definitions in classical
logic system L . However, in Ln ,

x → y = min{1 − x + y, 1}, x, y ∈ L(n).

Definition 6 ([13]) If function g : (L(n))m → L(n) can be induced by any logic
formula in Ln , then g(x1, . . . , xm) is called a m-ary n-valued McNaughton function.

Remark 4 In classical logic system, every m-ary Boolean function f : {0, 1}m →
{0, 1} can be induced by a formula. However, in n-value logic system, every m-ary
n-value function can not be necessarily induced by a formula. Therefore, in n-value
logic system, the structure of m-ary n-value functions which are induced by logic
formulas is more complicated than Boolean functions. In the following, we will
generate Shannon expansion techniques to solve this problem. Firstly, the normal
form of three-valued McNaughton function is researched.
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Proposition 4 Let g(x1, . . . , xm) be three-valued McNaughton function, then

g(x1, x2, . . . , xm) = (h0(x1) ∧ g(0, x2, . . . , xm))

∨(h 1
2
(x1) ∧ g( 12 , x2, . . . , xm))

∨(h1(x1) ∧ g(1, x2, . . . , xm)).

Proposition 5 Let g(x1, . . . , xm) be three-valued McNaughton function, denote

x0k = h0(xk), x
1
2
k = h 1

2
(xk), x1k = h1(xk), (k = 1, 2), then

g(x1, x2, x3, . . . , xm) = ∨
{

xα1
1 ∧ xα2

2 ∧ g(α1,α2, x3, . . . , xm) : (α1,α2) ∈
{

0,
1

2
, 1

}2
}

.

Corollary 3 Letg(x1, . . . , xm)be three-valuedMcNaughton function, theng(x1, x2,
x3, . . . , xm)= ∨{xα1

1 ∧ · · · ∧ xαm
m ∧ g(α1, . . . , αm) : (α1, . . . , αm) ∈ {0, 1

2 , 1}m} =
(∨{xα1

1 ∧ · · · ∧ xαm
m : (α1, . . . ,αm) ∈ g−1(1)})∨(∨{xα1

1 ∧ · · · ∧ xαm
m ∧ 1

2 : (α1, . . . ,

αm) ∈ g−1( 12 )}).
Remark 5 (i) (∨{xα1

1 ∧ · · · ∧ xαm
m : (α1, . . . ,αm) ∈ g−1(1)})∨(∨{xα1

1 ∧ · · · ∧ xαm
m ∧

1
2 : (α1, . . . ,αm) ∈ g−1( 12 )}) is called the quasi disjunctive normal form of m-
ary three-valued McNaughton function. Note that in the disjunctive normal form,
xαi
i (i = 1, 2, . . . ,m) is xi or ¬xi . However, in quasi disjunctive normal form, xαi

i is
an one-ary function which is obtained by xi through calculating ¬,→,∨,∧.

(ii) Ifg−1(1)=g−1( 12 )=∅, i.e.g(x1, . . . , xm)=0, thenwedenoteg(x1, . . . , xm) =
x01 ∧ x11 , is an one-ary function, it can be as a simple quasi disjunctive normal form.

In the following, we give the Dual form of Proposition4.

Proposition 6 Let g(x1, . . . , xm) be three-valued McNaughton function, then

g(x1, x2, . . . , xm) = (¬h0(x1) ∨ g(0, x2, . . . , xm))

∧(¬h 1
2
(x1) ∨ g( 12 , x2, . . . , xm))

∧(¬h1(x1) ∨ g(1, x2, . . . , xm)).

Proposition 7 Let g(x1, . . . , xm) be three-valued McNaughton function, denote

x0k = ¬h0(xk), x
1
2
k = ¬h 1

2
(xk), x1k = ¬h1(xk), (k = 1, 2), then

g(x1, x2, x3, . . . , xm) = ∧
{

xβ1
1 ∨ xβ2

2 ∨ g(β1,β2, x3, . . . , xm) : (β1,β2) ∈
{

0,
1

2
, 1

}2
}

.

Corollary 4 Let g(x1, . . . , xm) be three-valued McNaughton function, then
g(x1, x2, x3, . . . , xm)=∧{xβ1

1 ∨ · · · ∨ xβm
m ∨ g(β1, . . . ,βm) : (β1, . . . ,βm) ∈ {0,

1
2 , 1}m} = (∧{xβ1

1 ∨ · · · ∨ xβm
m : (β1, . . . ,βm) ∈ g−1(0)}) ∧ (∧{xβ1

1 ∧ · · · ∨ xβm
m ∨ 1

2 :
(β1, . . . ,βm) ∈ g−1( 12 )}).
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Remark 6 (i) (∧{xβ1
1 ∨ · · · ∨ xβm

m : (β1, . . . ,βm) ∈ g−1(0)}) ∧ (∧{xβ1
1 ∨ · · · ∨ xβm

m

∨ 1
2 : (β1, . . . ,βm) ∈ g−1( 12 )}) is called the quasi conjunctive normal form of m-

ary three-valued McNaughton function. Note that in the conjunctive normal form,
xβi
i (i = 1, 2, . . . ,m) is xi or ¬xi . However, in quasi conjunctive normal form, xβi

i is
an one-ary function which is obtained by xi through calculating ¬,→,∨,∧.

(ii) If g−1(0) = g−1( 12 ) = ∅, i.e. g(x1, . . . , xm) = 1, then we denote g(x1, . . . ,
xm) = x01 ∨ x11 , is an one-ary function, it can be as a simple quasi disjunctive normal
form.

Now, we research the n-value McNaughton function. Then, the range of
McNaughton function is L(n) = {0, 1

n−1 ,
2

n−1 , . . . ,
n−2
n−1 , 1}. In order to give the

expansion of n-value McNaughton function, first, we give the following Lemma.

Lemma 1 ([14]) In n-valued Lukasiewicz logic system Ln, ∀k ∈ {0, 1, 2, . . . , n −
2, n − 1}, there is an one-ary logic formula Ak(p), such that Ak(x) which is induced

by Ak(p) satisfies Ak(x) =
{
1, x = k

n−1
0, x 	= k

n−1

, (x ∈ Ł(n)).

Proposition 8 Let g(x1, . . . , xm) be n-valued McNaughton function, then

g(x1, x2, . . . , xm) = (A0(x) ∧ g(0, x2, . . . , xm))

∨(A1(x) ∧ g( 1
n−1 , x2, . . . , xm))

∨ · · ·
∨(An−1(x) ∧ g(1, x2, . . . , xm)).

Proposition 9 Let g(x1, . . . , xm) be n-valued McNaughton function, denote x
k

n−1
l =

Ak(xl), (l = 1, 2; k = 0, 1, 2, . . . , n − 2, n − 1), then
g(x1, x2, x3, . . . , xm)=∨{xα1

1 ∧ xα2
2 ∧ g(α1,α2, x3, . . . , xm) :(α1,α2) ∈ {0, 1

n−1 ,
2

n−1 , . . . ,
n−2
n−1 , 1}2}.

Corollary 5 Let g(x1, . . . , xm) be n-valued McNaughton function, then
g(x1, . . . , xm) = ∨{xα1

1 ∧ · · · ∧ xαm
m ∧ g(α1, . . . ,αm) : (α1, . . . ,αm) ∈ {0, 1

n−1 ,
2

n−1 , . . . ,
n−2
n−1 , 1}m} = ∨n−1

k=1{xα1
1 ∧ · · · ∧ xαm

m ∧ k
n−1 : (α1, . . . ,αm) ∈ g−1( k

n−1 )}.
Remark 7 (i)∨n−1

k=1{xα1
1 ∧ · · · ∧ xαm

m ∧ k
n−1 : (α1, . . . ,αm) ∈ g−1( k

n−1 )} is called the
quasi disjunctive normal form of m-ary n-valued McNaughton function. ∀k =
1, 2, . . . , n − 1, if g−1( k

n−1 ) = ∅, i.e. g(x1, . . . , xm) = 0, then we denote g(x1, . . . ,

xm) = A0(x1) ∧ ¬A0(x1), is an one-ary function, it can be as a simple quasi disjunc-
tive normal form.

In the following, we give the Dual form of Proposition 8.
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Proposition 10 Let g(x1, . . . , xm) be n-valued McNaughton function, then

g(x1, x2, . . . , xm) = (¬A0(x) ∨ g(0, x2, . . . , xm))

∧(¬A1(x) ∨ g( 1
n−1 , x2, . . . , xm))

∧ · · ·
∧(¬An−1(x) ∨ g(1, x2, . . . , xm)).

Proposition 11 Let g(x1, . . . , xm) be n-valued McNaughton function, denote x
k

n−1
l= ¬Ak(xl), (l = 1, 2; k = 0, 1, 2, . . . , n − 2, n − 1), then g(x1, x2, x3, . . . , xm) =

∧{xβ1
1 ∨ xβ2

2 ∨ g(β1,β2, x3, . . . , xm) : (β1,β2) ∈ {0, 1
n−1 ,

2
n−1 , . . . ,

n−2
n−1 , 1}2}.

Corollary 6 Let g(x1, . . . , xm) be n-valued McNaughton function, then
g(x1, . . . , xm) = ∧{xβ1

1 ∨ · · · ∨ xβm
m ∨ g(β1, . . . ,βm) : (β1, . . . ,βm) ∈ {0, 1

n−1 ,
2

n−1 , . . . ,
n−2
n−1 , 1}m} = ∧n−2

k=0{xβ1
2 ∨ · · · ∨ xβm

m ∨ k
n−1 : (β1, . . . ,βm) ∈ g−1( k

n−1 )}.

Remark 8 (i)∧n−2
k=0{xβ1

2 ∨ · · · ∨ xβm
m ∨ k

n−1 : (β1, . . . ,βm) ∈ g−1( k
n−1 )} is called the

quasi conjunctive normal form of m-ary n-valued McNaughton function. ∀k =
0, 1, 2, . . . , n − 2, ifg−1( k

n−1 ) = ∅, i.e.g(x1, . . . , xm) = 1, thenwedenoteg(x1, . . . ,

xm) = A0(x1) ∨ ¬A0(x1), is an one-ary function, it can be as a simple quasi con-
junctive normal form.

4 Conclusions

In this paper, the expansions of the n-value McNaughton function are researched by
the method of Shannon expansions of Boolean function. Then the quasi disjunctive
normal form and quasi conjunctive normal form of m-ary n-valued McNaughton
function are gained. In this way, we can get the constructing methods of logic for-
mulas, then we can continue research counting problems of logic formulas.
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Relative Divergence Degree and Relative
Consistency Degree of Theories in a Kind
of Goguen Propositional Logic System

Xiao-Li Gao, Xiao-Jing Hui and Nai-Diao Zhu

Abstract Using induced function of formula, the paper gave definition of Γ -k truth
degree,Γ -k similarity degree andΓ -k pseudo-metric of formula relative to local finite
theory Γ under k conjunction in Goguen

∼,Δ propositional logic system, and proved
theMP rule, HS rule, and some basic properties ofΓ -k truth degree. At themeantime,
the concept of relative divergence degree and relative consistency degree of any
theoryΓ relative to the fixed theoryΓ0 inGoguen∼,Δ system is introduced. Important
relations between relative divergence degree and relative consistency degree are
obtained.

Keywords Goguen
∼,Δ system · Γ -k truth degree · Relative divergence degree ·

Relative consistency degree

1 Introduction

A large number of scholars had devoted themselves to the research on degree of
propositional logic conclusion and have achieved a lot of achievements since the
idea was put forward by Pavelka in the 1970s [1]. Starting from the degree of log-
ical concept, the theory of truth degree of formulas in propositional logic system
was given in [2–5]. The concept of random truth degree of the formula in proposi-
tional logic system was given by using the method of random assignment in paper
[6–8]. Using Borel probability measure, the theory of Borel probability truth degree
was proposed in [9, 10] in propositional logic system. The relative Γ -truth degrees
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of formula in logic system relative to the locally finite theory was proposed and
application scope of the theory of truth degrees was broadened in [11–13].

It is known that the research on Gödel logic system and Goguen logic system has
been hindered due to strong negativity. By introducing basic connectives ∼ and Δ,
the system SBL

∼
, in which the deductive theorem and the strong complete theorem

are both tenable is established in [14–17]. So, the research on Gödel propositional
logic system and Goguen proposition logic system can be carried out smoothly.

Axiomatic extensions of n-valued Goguen propositional logic system is first stud-
ied in this paper. Then, the definition of Γ -k truth degree, Γ -k similarity degree and
Γ -k pseudo-metric of formula relative to local finite theory Γ under k conjunction
and its related properties are given by using induced function. Finally, the concept of
relative divergence degree and relative compatibility of arbitrary theory Γ relative to
a particular theory are introduced in the Goguen

∼,Δ propositional logic system and
important relationship between relative divergence and relative compatibility degree
is obtained.

2 Preliminaries

Definition 1 ([16]) The axiom system BLΔ is as follows:
(BL) The axioms system of BL;
(Δ1) ΔA∨ ⇁ ΔA;
(Δ2) Δ(A ∨ B) → (ΔA ∨ ΔB);
(Δ3) ΔA → B;
(Δ4) ΔA → ΔΔA;
(Δ5) Δ(A → B) → (ΔA → ΔB).

The inference rules of BLΔ areMP rules andΔ rules.MP rules is that B is inferred
from A and A → B. Δ rules is A → ΔA.

If L is axiomatic extension of BL, the LΔ is marked as extension of L, which
is the same as BLΔ extension of BL. Δ Deduction Theorem are established in the
system BLΔ.

Theorem 1 [18] (Δ Deduction Theorem) Let L be an axiomatic extension of BLΔ.
Then, for any theory Γ , formulas A and B, we have:

Γ,A � B if and only ifΓ,ΔA → B.

SBL is an axiomatic extension when axiom ¬¬A ∨ ¬A is add to BL. SBLΔ is
also an axiomatic extension of SBL. The system of SBL

∼
is an logic system when

the connective ∼ is added in the SBL system.

Definition 2 ([17]) As an extension of axiomatic of SBL, the axiom system SBL
∼

is as follows:
(SBL) The axioms system of SBL;
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(∼ 1) ∼∼ A → A;
(∼ 2) ¬A →∼ A;
(∼ 3) Δ(A → B) → Δ(∼ B →∼ B).

If ΔA is ¬ ∼ A in system SBL
∼
, the relationship between systems SBLΔ and

SBL
∼
can be established. An equivalent axiom system SBL

∼
is as follows:

(SBLΔ) The axioms system of SBLΔ;
(∼1) ∼∼ A → A;
(∼3) Δ(A → B) → Δ(∼ B →∼ B).

The inference rules of SBL
∼
are also MP rules and Δ rules. If L is an extension

of axiomatic of SBL, L
∼
can be noted as an extension of L, which is just as SBL

expansed to SBL
∼
. Gödel

∼
and Π

∼
are the two basic types of axiomatic extension

of SBL
∼
. Δ Deduction Theorem established in the system SBL

∼
because SBL

∼
is

also an axiomatic extension of BLΔ.

Theorem 2 [17] (Strong Completeness Theorem) Let L be an axiomatic extension
of SBL

∼
. Then, for theory Γ and formula A, the following conditions are equivalent:

(i) Γ � A;
(ii) e(A) = 1 for each model of each L-algebra and theory Γ .

3 Definitions and Properties of Γ -k Truth Degree, Γ -k
Similarity Degree and Γ -k Pseudo-Metric

Definition 3 Let S= {p1, p2, . . .} be a countable set. ∼,Δ,∨,∧ and → are opera-
tions on S, in which ∼ and Δ are unary operation; ∨,∧ and → are binary operation.
F(S) is free algebra of type (∼,Δ,∨,∧,→) generated by S. Then, an element in
F(S) is said be a propositional formula or formula, and an element in S is said to be
an atomic formula.

Definition 4 Goguen propositional logic system is also called Product system,
denoted by Π . Let Π

∼,Δ = {0, 1
n−1 , . . . ,

n−2
n−1 , 1}, and qualify any x, y ∈ Π

∼,Δ,

∼ x = 1 − x, Δx = { 1,x=1
0x<1 , x ∨ y = max{x, y}, x ∧ y = min{x, y}, x → y = { 1,x≤y

y
x ,x>y .

Then, Goguen
∼,Δ system is an extension of n-valued Product propositional logic

system, which is denoted by Π
∼,Δ.

Definition 5 Let A = A(p1, p2, . . . , pm) ∈ F(S). Then, A corresponds to a function
A of n-valued and m-element. In Π

∼,Δ, A : Π
∼,Δ → [0, 1], and A(x1, x2, . . . , xm)

is connect to x1, x2, . . . , xm by operational sign ∼,Δ,∨,∧,→, which is the same
as A = A(p1, p2, . . . , pm) is connected to the atomic formula p1, p2, . . . , pm by con-
junction ∼,Δ,∨,∧,→. Then it’s said that A is a function induced by formula A.

Definition 6 In Π
∼,Δ. Let A(x1, x2, . . . , xm) be a function induced by proposi-

tional formula A = A(p1, p2, . . . , pm) in F(S), l � 0. Let us define: ∀(x1, . . . , xm,

. . . , xm+l) ∈ Π
∼,Δ, A

l : Π
∼,Δ → [0, 1], Al

(x1, . . . , xm, . . . , xm+l) = A(x1, x2, . . . ,

xm), and mark A
l
as the extension of function A to l-element.



92 X.-L. Gao et al.

Let Γ ⊆ F(S), A ∈ F(S), and qualify SΓ = {p ∈ S|∃B ∈ Γ , in which B is made
up of atomic propositional p}, SA = {p ∈ S|p appears in A}. If SΓ is finite, we say Γ

a local finite theory of Goguen
∼,Δ propositional logic system.

Definition 7 In Π
∼,Δ, let Γ ⊆ F(S), and SΓ is finite, A ∈ F(S), S = SΓ ∪ SA =

{p1, p2, . . . , pm}, then

τn,Γ (kA) = { 1 ,N(Γ ) = Ø
1

N(Γ )

∑

(x1,x2,...,xm)∈N(Γ )

kA(x1, x2, . . . , xm),N(Γ ) �= Ø
.

Thereinto, N(Γ ) = {(x1, x2, . . . , xm) ∈ Π
∼,Δ|∀B ∈ Γ,B(x1, x2, . . . , xm) = 1}.

τn,Γ (kA) is said to be Γ -k truth degree of formula A relative to local finite theory Γ

under k conjunction, denoted as Γ -k truth degree.

Unless otherwise specified, in the following we assume that: 1. Discussion in
Π

∼,Δ; 2. κ,λ,μ and η take any ∼,Δ; 3. Basic grammar, semantic concepts such
as theorem, logic equivalence, tautology, and contradiction are the same as classical
propositional logic.

Theorem 3 Let Γ ⊆ F(S), A ∈ F(S), and SΓ be finite, S = SΓ ∪ SA = {p1, p2, . . . ,
pm}, and S∗ = {p1, p2, . . . , pm, pm+1, . . . , pm+l} ⊆ F(S). Then,

τn,Γ (kA) = { 1 ,N∗(Γ ) = Ø
1

N∗(Γ )

∑

(x1,...,xm,xm+1,...,xm+l)∈N∗(Γ )

kA(x1, . . . , xm, xm+1, . . . , xm+l),N∗(Γ ) �= Ø
.

Thereinto, N∗(Γ ) = {(x1, . . . , xm, xm+1, . . . , xm+l) ∈ Π
∼,Δ|∀B ∈ Γ,B

l
(x1, . . . ,

xm, xm+1, . . . , xm+l) = 1}.
Proof Since N(Γ ) = {(x1, x2, . . . , xm) ∈ Π

∼,Δ|∀B ∈ Γ,B(x1, x2, . . . , xm) = 1},
N∗(Γ ) = {(x1, . . . , xm, xm+1, . . . , xm+l) ∈ Π

∼,Δ|∀B ∈ Γ,B
l
(x1, . . . , xm, xm+1, . . . ,

xm+l) = 1}. ByDefinition 6,we know for each (x1, . . . , xm, xm+1, . . . , xm+l) ∈ Π
∼,Δ,

B
l
(x1, . . . , xm, xm+1, . . . , xm+l) = B(x1, x2, . . . , xm). So |N∗(Γ )| = |N(Γ )| × nl.

Thus, if |N∗(Γ )|= ∅, |N(Γ )|= 0, we have τn,Γ (kA)= 1. If |N∗(Γ )|�= ∅, |N(Γ )|
�= ∅, since A

l
(x1, . . . , xm, . . . , xm+l) = A(x1, x2, . . . , xm), so

∑

(x1,...,xm,...,xm+l)∈Π
∼,Δ

kA(x1, . . . , xm, . . . , xm+l) = ∑

(x1,x2,...,xm)∈Π
∼,Δ×nl

kA(x1, x2, . . . , xm) = ∑

(x1,x2,...,xm)∈Π
∼,Δ

kA(x1, x2, . . . , xm) × nl.
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Also 1
N∗(Γ )

∑

(x1,...,xm,...,xm+l)∈N∗(Γ )

kA(x1, . . . , xm, . . . , xm+l)

= 1
N(Γ )×nl

∑

(x1,x2,...,xm)∈N(Γ )

kA(x1, x2, . . . , xm) × nl

= 1
N(Γ )

∑

(x1,x2,...,xm)∈N(Γ )

kA(x1, x2, . . . , xm).

Thus we have τn,Γ (kA) = 1
N∗(Γ )

∑

(x1,...,xm,...,xm+l)∈N∗(Γ )

kA(x1, . . . , xm, . . . , xm+l). �

For convenient, in this paper N∗(Γ ) and
∑

(x1,...,xm,...,xm+l)∈N∗(Γ )

kA(x1, . . . , xm, . . . ,

xm+l) will be denoted by N(Γ ) and
∑

(x1,x2,...,xm)∈N(Γ )

kA(x1, x2, . . . , xm).

Theorem 4 Let Γ1 ⊆ Γ2 ⊆ F(S), A ∈ F(S), and SΓ be finite. If τn,Γ1(kA) = 1,
τn,Γ2(kA) = 1.

Proof Since Γ1 ⊆ Γ2, N(Γ2) ⊆ N(Γ1). If N(Γ2) = ∅, τn,Γ2(kA) = 1. If N(Γ2) �=
∅, we can obtain N(Γ1) �= ∅. Since τn,Γ1(kA) = 1, and 1

N(Γ1)

∑

(x1,x2,...,xm)∈N(Γ1)

kA

(x1, x2, . . . , xm) = 1, |N(Γ1)| = ∑

(x1,x2,...,xm)∈N(Γ1)

kA(x1, x2, . . . , xm). For any (x1, x2,

. . . , xm)∈N(Γ1), we know kA(x1, x2, . . . , xm)= 1. For any (x1, x2, . . . , xm)∈N(Γ2),
we know kA(x1, x2, . . . , xm) = 1. Thus, we get |N(Γ2)| = ∑

(x1,x2,...,xm)∈N(Γ2)

kA(x1,

x2, . . . , xm). So we get τn,Γ2(kA) = 1. �

Theorem 5 Let Γ ⊆ F(S), A ∈ F(S), and SΓ be finite.
(i) If � λA → μB, τn,Γ (λA) ≤ τn,Γ (μB);
(ii) If � λA ≈ μB, τn,Γ (λA) = τn,Γ (μB);
(iii) If N(Γ ) �= ∅, τn,Γ (∼ kA) = 1 − τn,Γ (kA).

Proof Suppose that A, B contains the same atomic formula p1, p2, . . . , pm, for any
(x1, x2, . . . , xm) ∈ N(Γ )

(i) If � λA → μB, (λA → μB)(x1, x2, . . . , xm) = 1, λA(x1, x2, . . . , xm) →
μB(x1, x2, . . . , xm) = 1. Thus we have λA(x1, x2, . . . , xm) ≤ μB(x1, x2, . . . , xm).
Further we get

∑

(x1,x2,...,xm)∈N(Γ )

λA(x1, x2, . . . , xm) ≤ ∑

(x1,x2,...,xm)∈N(Γ )

μB(x1, x2, . . . ,

xm). So we obtain 1
N(Γ )

∑

(x1,x2,...,xm)∈N(Γ )

λA(x1, x2, . . . , xm) ≤ 1
N(Γ )

∑

(x1,x2,...,xm)∈N(Γ )

μB(x1, x2, . . . , xm). According to Definition 7, we can get τn,Γ (λA) ≤ τn,Γ (μB).
(ii) If � λA ≈ μB, λA(x1, x2, . . . , xm) = μB(x1, x2, . . . , xm). Thus we have∑

(x1,x2,...,xm)∈N(Γ )

λA(x1, x2, . . . , xm) = ∑

(x1,x2,...,xm)∈N(Γ )

μB(x1, x2, . . . , xm). So we

obtain 1
N(Γ )

∑

(x1,x2,...,xm)∈N(Γ )

λA(x1, x2, . . . , xm) = 1
N(Γ )

∑

(x1,x2,...,xm)∈N(Γ )

μB(x1, x2, . . . ,

xm). According to Definition 7, we can get τn,Γ (λA) = τn,Γ (μB).
(iii) If N(Γ ) �= ∅, we have τn,Γ (∼ kA) = 1

N(Γ )

∑

(x1,x2,...,xm)∈N(Γ )

∼ kA(x1, x2, . . . ,

xm) = 1
N(Γ )

∑

(x1,x2,...,xm)∈N(Γ )

(1 − kA(x1, x2, . . . , xm)) = 1 − τn,Γ (kA). �
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Lemma 1 Let ∀a, b ∈ Π
∼,Δ. Then λa ∨ μb = λa + μb − (λa ∧ μb).

Proof Firstly, let ∗1 = (λa ∨ μb) − λa − μb + (λa ∧ μb). Then, two cases are dis-
cussed. (1) If λa ≥ μb, ∗1 = λa − λa − μb + μb = 0. (2) If λa < μb, ∗1 = μb −
λa − μb + λa = 0. �

Theorem 6 Let Γ ⊆ F(S), A ∈ F(S), and SΓ be finite. Then

τn,Γ (λA ∨ μB) = τn,Γ (λA) + τn,Γ (μB) − τn,Γ (λA ∧ μB).

Proof Suppose that A, B contains the same atomic formula p1, p2, . . . , pm, for
any (x1, x2, . . . , xm) ∈ N(Γ ). By Lemma 1 we know λA(x1, x2, . . . , xm) ∨ μB(x1,
x2, . . . , xm) = λA(x1, x2, . . . , xm) + μB(x1, x2, . . . , xm) − (λA(x1, x2, . . . , xm) ∧
μB(x1, x2, . . . , xm)), and

λA(x1, x2, . . . , xm) ∨ μB(x1, x2, . . . , xm) = (λA ∨ μB)(x1, x2, . . . , xm),
λA(x1, x2, . . . , xm) ∧ μB(x1, x2, . . . , xm) = (λA ∧ μB)(x1, x2, . . . , xm).

Then we have (λA ∨ μB)(x1, x2, . . . , xm) = λA(x1, x2, . . . , xm) + μB(x1, x2, . . . ,
xm) − (λA ∧ μB)(x1, x2, . . . , xm).
So we get∑

(x1,x2,...,xm)∈N(Γ )

(λA ∨ μB)(x1, x2, . . . , xm) = ∑

(x1,x2,...,xm)∈N(Γ )

λA(x1, x2, . . . , xm) +
∑

(x1,x2,...,xm)∈N(Γ )

μB(x1, x2, . . . , xm)−
∑

(x1,x2,...,xm)∈N(Γ )

(λA ∧ μB)(x1, x2, . . . , xm).

Thus 1
|N(Γ )|

∑

(x1,x2,...,xm)∈N(Γ )

(λA ∨ μB)(x1, x2, . . . , xm)

= 1

|N(Γ )|
∑

(x1,x2,...,xm)∈N(Γ )

λA(x1, x2, . . . , xm) +

1

|N(Γ )|
∑

(x1,x2,...,xm)∈N(Γ )

μB(x1, x2, . . . , xm) −

1

|N(Γ )|
∑

(x1,x2,...,xm)∈N(Γ )

(λA ∧ μB)(x1, x2, . . . , xm).

ByDefinition 7, we know τn,Γ (λA ∨ μB) = τn,Γ (λA) + τn,Γ (μB) − τn,Γ (λA ∧ μB).
�

Lemma 2 Let ∀a, b ∈ Π
∼,Δ. Then, μb ≥ λa + (λa → μb).

Proof Firstly, let ∗2 = μb − λa − (λa → μb) + 1. Then, two cases are discussed.
(1) If λa ≤ μb, ∗2 = μb − λa ≥ 0. (2) If λa > μb, ∗2 = μb − λa − μb

λa + 1 =
μb(λa−1)

λa − λa(λa−1)
λa = (μb−λa)(λa−1)

λa ≥ 0. In summary, we can get μb ≥ λa + (λa →
μb). �
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Theorem 7 (MP rules of Γ -k truth degree) Let Γ ⊆ F(S), A,B ∈ F(S), and SΓ be
finite. If τn,Γ (λA) ≥ α, τn,Γ (λA → μB) ≥ β, then τn,Γ (μB) ≥ α + β − 1.

Proof Suppose that A, B contains the same atomic formula p1, p2, . . . , pm, for any
(x1, x2, . . . , xm) ∈ N(Γ ), by Lemma 2, we get μB(x1, x2, . . . , xm) ≥ λA(x1, x2, . . . ,
xm) + (λA(x1, x2, . . . , xm) → μB(x1, x2, . . . , xm)) − 1.

So, 1
|N(Γ )|

∑

(x1,x2,...,xm)∈N(Γ )

μB(x1, x2, . . . , xm)

≥ 1
|N(Γ )|

∑

(x1,x2,...,xm)∈N(Γ )

λA(x1, x2, . . . , xm) + 1
|N(Γ )|

∑

(x1,x2,...,xm)∈N(Γ )

(λA → μB)

(x1, x2, . . . , xm) − 1
|N(Γ )|

∑

(x1,x2,...,xm)∈N(Γ )

1.

By Definition 7, we get τn,Γ (μB) ≥ α + β − 1. �

Theorem 8 (HS rules of Γ -k truth degree) Let Γ ⊆ F(S), A,B,C ∈ F(S), and
SΓ be finite. If τn,Γ (λA → μB) ≥ α, τn,Γ (μB → ηC) ≥ β, then τn,Γ (λA → ηC) ≥
α + β − 1.

Proof Suppose that A, B, C contains the same atomic formula p1, p2, . . . , pm.
It is obvious that for all a, b, c ∈ Π

∼,Δ, (λa → μb) → ((μb → ηc) → (λa →
ηc)) = 1.

So, (λA → μB) → ((μB → ηC) → (λA → ηC)) is tautology. By Theorems
5(i) and 7, we get τn,Γ ((μB → ηC) → (λA → ηC)) ≥ τn,Γ (λA → μB) ≥ α, then
τn,Γ (λA → ηC) ≥ τn,Γ (μB → ηC) + τn,Γ ((μB → ηC) → (λA → ηC)) − 1 ≥
α + β − 1. �

Definition 8 Let Γ ⊆ F(S), A,B ∈ F(S), and SΓ be finite. Then

ξn,Γ (λA,μB) = τn,Γ ((λA → μB) ∧ (μB → λA)).

ξn,Γ (λA,μB) is called the Γ -k similarity degree of formule A, B relative to local
finite theory Γ under the λ,μ conjunction.

Theorem 9 Let Γ ⊆ F(S), A,B ∈ F(S), and SΓ be finite. Then

ξn,Γ (λA,μB) = τn,Γ (λA → μB) + τn,Γ (μB → λA) − 1.

Proof Suppose that A, B contains the same atomic formula p1, p2, . . . , pm, by The-
orem 6 and the Definition 8, we have ξn,Γ (λA,μB) = τn,Γ ((λA → μB) ∧ (μB →
λA)) = τn,Γ (λA → μB) + τn,Γ (μB → λA) − τn,Γ ((λA → μB) ∨ (μB → λA)) =
τn,Γ (λA → μB) + τn,Γ (μB → λA) − 1. �

Definition 9 Let Γ ⊆ F(S), A,B ∈ F(S), SΓ be finite, and qualify ρn,Γ : F(S) ×
F(S) → [0, 1]. Then,

ρn,Γ (λA,μB) = 1 − ξn,Γ (λA,μB).



96 X.-L. Gao et al.

ρn,Γ (λA,μB) is called the Γ -k pseudo-metric between formule A, B relative to
local finite theory Γ under the λ,μ conjunction, abbreviated as Γ -k pseudo-metric.
(F(S), ρn,Γ ) is called a logic pseudo-metric space.

Theorem 10 Let Γ ⊆ F(S), A,B ∈ F(S), and SΓ be finite. Then,

ρn,Γ (λA,μB) = 1 − τn,Γ ((λA → μB) ∧ (μB → λA)).

Proof It is easy to prove it by Definitions 8 and 9. �

4 The Divergence Degree and the Consistency Degree
of Any Theory Γ Relative to the Fixed Theory Γ0

Definition 10 Let Γ ⊂ F(S), and div(Γ ) = sup{ρ(λA,μB)|λA,μB ∈ D(Γ )}.
div(Γ ) is called the divergence degree of theory Γ . If div(Γ ) = 1, Γ is called a
fully divergent theory.

Definition 11 Let Γ, Γ0 ⊂ F(S). A deduction starting from Γ which is a finite
formule sequence λA1,λA2, . . . ,λAn relative to the theory Γ0. For any i ≤ n, λAi is
axiom, or λAi ∈ Γ0, or λAi ∈ Γ . For j < k ≤ i, λAi is obtained from λAj, and λAk

using the MP rule. Then λAn is called a conclusion of Γ relative to theory Γ0, which
is denoted by Γ �Γ0 λAn or λAn ∈ DΓ0(Γ ).

Definition 12 Let Γ0 ⊆ F(S), SΓ0 be finite. ∀Γ ⊆ F(S), define

divΓ0(Γ ) = sup{ρn,Γ0(λA,μB)|λA,μB ∈ DΓ0(Γ )}.

divΓ0(Γ ) is called the divergence degree of theory Γ relative to the fixed theory Γ0.

Theorem 11 Let Γ0 ⊆ F(S), SΓ0 be finite. ∀Γ ⊆ F(S), then
(i) 0 ≤ divΓ0(Γ ) ≤ 1;
(ii) If Γ0 = ∅ or Γ0 is a theorem set, then divΓ0(Γ ) = div(Γ );
(iii) If 0 ∈ D(Γ0), then divΓ0(Γ ) = 0.

Proof (i) Obvious.
(ii) If Γ0 = ∅ or Γ0 is a theorem set,D(Γ0 ∪ Γ ) = D(Γ ). Furthermore λA,μB ∈

DΓ0(Γ ). According to Theorem 10 we have ρn,Γ0(λA,μB) = 1 − τn,Γ0((λA →
μB) ∧ (μB → λA)) = 1 − τ ((λA → μB) ∧ (μB → λA)) = ρ(λA,μB). So we have
divΓ0(Γ ) = div(Γ ).

(iii) If 0 ∈ D(Γ0), by Definition 12 and λA,μB ∈ DΓ0(Γ ), we have τn,Γ0((λA →
μB) ∧ (μB → λA)) = 1. That is, ρn,Γ0(λA,μB) = 1 − τn,Γ0((λA → μB) ∧ (μB →
λA)) = 0. Thus we have divΓ0(Γ ) = 0. �
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Theorem 12 Let Γ0 ⊆ F(S), SΓ0 be finite, ∀Γ ⊆ F(S). Then,

divΓ0(Γ − (Γ0 ∩ Γ )) = divΓ0(Γ ).

Proof FromDefinition 12we know, divΓ0(Γ − (Γ0 ∩ Γ )) = sup{ρn,Γ0(λA,μB)|λA,

μB ∈ D((Γ − (Γ0 ∩ Γ )) ∪ Γ0)} = sup{ρn,Γ0(λA,μB)|λA,μB ∈ D(Γ0 ∪ Γ )} =
divΓ0(Γ ). �

Corollary 1 LetΓ0 ⊆ F(S), SΓ0 be finite, ∀Γ ⊆ F(S). IfΓ ⊆ Γ0, then divΓ0(Γ )= 0.

Definition 13 Let Γ, Γ0 ⊂ F(S). If 0 ∈ D(Γ0) ∪ Γ , and N(Γ ) �= ∅, then we say
that the theory Γ is not compatible with the specific theory Γ0. Otherwise, we say
that the theory Γ is compatible with the specific theory Γ0.

Specifically. IfΓ ⊆ D(Γ0), thenwe say that the theoryΓ is completely compatible
with the specific theory Γ0.

Theorem 13 Let Γ0 ⊆ F(S), SΓ0 be finite, ∀Γ ⊆ F(S). Then
(i) Theory Γ is completely compatible with the specific theory Γ0, if and only if
divΓ0(Γ ) = 0;
(ii) Theory Γ is not compatible with the specific theory Γ0, if and only if ∃λA,μB ∈
D(Γ0 ∪ Γ ), s.t. ρn,Γ0(λA,μB) = 1;
(iii) Theory Γ is compatible with the specific theory Γ0, if and only if ∀λA,μB ∈
D(Γ0 ∪ Γ ), s.t. ρn,Γ0(λA,μB) < 1.

Proof (i) Necessity: If theory Γ is completely compatible with the specific the-
ory Γ0, Γ ⊆ D(Γ ), D(Γ0 ∪ Γ ) = D(Γ0). So for any λA,μB ∈ D(Γ0 ∪ Γ ), we have
λA,μB ∈ D(Γ0). Thus ρn,Γ0(λA,μB) = 1 − τn,Γ0((λA → μB) ∧ (μB → λA)) = 0.
According to Definition 12 we can obtain divΓ0(Γ ) = 0.

Sufficiency: If divΓ0(Γ ) = 0. By Definition 12 we know λA ∈ Γ , ρn,Γ0(λA,T) =
0(T is theorem in Π

∼,Δ). λA ≈ ((λA → T) ∧ (T → λA))is obvious. According
to Theorem 5(ii) we have τn,Γ0(λA) = τn,Γ0(λA → T) ∧ (T → λA))=1 − ρn,Γ0

(λA,T)=1, then λA ∈ D(Γ0). Thus we get Γ ⊆ D(Γ0). So we can get that theory Γ

is completely compatible with the specific theory Γ0.
(ii) Necessity: If theory Γ is not compatible with the specific theory Γ0, 0 ∈

D(Γ0) ∪ Γ , and N(Γ ) �= ∅. According to N(Γ ) �= ∅ and Definition 7 we know
τn,Γ0(0) = 0. (0 → T) ∧ (T → 0) ≈ 0 is obvious. Due to Theorem 5(ii), we get
τn,Γ0((0 → T) ∧ (T → 0)) = τn,Γ0(0) = 0. Thus there exists 0,T in D(Γ0 ∪ Γ ), we
have ρn,Γ0(0,T) = 1 − τn,Γ0((0 → T) ∧ (T → 0)) = 1.

Sufficiency: If exist λA,μB ∈ D(Γ0 ∪ Γ ), such that ρn,Γ0(λA,μB) = 1, then
τn,Γ0((λA → μB) ∧ (μB → λA)) = 1 − ρn,Γ0(λA,μB) = 0. According to Defini-
tion 13, we know N(Γ ) �= ∅.

Let’s prove 0 ∈ D(Γ0 ∪ Γ ).
On the one hand, according to λA,μB ∈ D(Γ0 ∪ Γ ) and � λA → (μB → λA), �

μB → (λA → μB), we can useMP rule to getΓ0 ∪ Γ � (λA → μB) ∧ (μB → λA).
On the other hand, according toTheorem5(iii),we canobtain τn,Γ0 (∼ ((λA → μB) ∧



98 X.-L. Gao et al.

(μB → λA))) = 1 − τn,Γ0((λA → μB) ∧ (μB → λA)) = ρn,Γ0(λA,μB) = 1.Thus,
Γ0 ∪ Γ �∼ ((λA → μB) ∧ (μB → λA)). For � ((λA → μB) ∧ (μB → λA)) →
(∼ ((λA → μB) ∧ (μB → λA)) → ((λA → μB) ∧ (μB → λA)) ∧ (∼ ((λA →
μB) ∧ (μB → λA)))), we can get Γ0 ∪ Γ � ((λA → μB) ∧ (μB → λA))

∧ (∼ ((λA → μB) ∧ (μB → λA))) using MP rule. Since ((λA → μB) ∧ (μB →
λA)) ∧ (∼ ((λA → μB) ∧ (μB → λA))) ≈ 0. We obtain Γ0 ∪ Γ � 0. That is, 0 ∈
D(Γ0 ∪ Γ ). Theory Γ is not compatible with the specific theory Γ0.

(iii) The conclusion can be proved by using (ii). �

Definition 14 Let Γ0 ⊆ F(S), SΓ0 be finite, ∀Γ ⊆ F(S),

iΓ0(Γ ) = sup{[ρn,Γ0(λA,μB)]|∀λA,μB ∈ DΓ0(Γ )}.

iΓ0(Γ ) is called the polar index of theory Γ relative to the fixed theory Γ0. Thereinto,
[ρn,Γ0(λA,μB)] is the largest integer inρn,Γ0(λA,μB).

Theorem 14 Let Γ0 ⊆ F(S), SΓ0 be finite, ∀Γ ⊆ F(S).
(i) iΓ0(Γ ) = 1, if and only if theory Γ is not compatible with the specific theory Γ0;
(ii) iΓ0(Γ ) = 0, if and only if theory Γ is compatible with the specific theory Γ0.

Proof (i) According to Definition 14 and Theorem 13(ii), we know iΓ0(Γ ) = 1. If
and only if, there exists λA,μB ∈ DΓ0(Γ ), ρn,Γ0(λA,μB) = 1 is tenable. If and only
if theory of Γ is not compatible with the specific theory of Γ0.

(ii) According to Definition 14 and Theorem 13(iii), we know iΓ0(Γ ) = 0. If and
only if for any λA,μB ∈ DΓ0(Γ ). ρn,Γ0(λA,μB) < 1 is tenable. If and only if theory
of Γ is compatible with the specific theory of Γ0. �

Definition 15 Let Γ0 ⊆ F(S), SΓ0 be finite, ∀Γ ⊆ F(S),

ηΓ0(Γ ) = 1 − 1

2
divΓ0(Γ )(1 + iΓ0(Γ )).

ηΓ0(Γ ) is called as ηΓ0 -consistency degrees of theoryΓ relative to the fixed theoryΓ0.

Theorem 15 Let Γ0 ⊆ F(S), SΓ0 be finite, ∀Γ ⊆ F(S) (i) Γ is completely compat-
ible with the specific theory Γ0, if and only if ηΓ0(Γ ) = 1;
(ii) Γ is compatible with the specific theory Γ0, if and only if 1

2 ≤ ηΓ0(Γ ) ≤ 1;
(iii) Γ is compatible with the specific theory Γ0 and fully divergent, if and only if
ηΓ0(Γ ) = 1

2 ;
(iv) Γ is not compatible with the specific theory Γ0, if and only if ηΓ0(Γ ) = 0.

Proof (i) According to Theorem 13(i) and Definition 15, we know Γ is completely
compatible with the specific theory Γ0, if and only if divΓ0(Γ ) = 0, if and only if
ηΓ0(Γ ) = 1.

(ii) According to Theorem 11(i) and 13(ii) and Definition 15, we know Γ is
compatible with the specific theory Γ0,if and only if iΓ0(Γ ) = 0, if and only if
ηΓ0(Γ ) = 1 − 1

2divΓ0(Γ ), if and only if 1
2 ≤ ηΓ0(Γ ) ≤ 1.
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(iii) Necessity: it is easy to prove it by Definition 12 and Theorem 14(ii).
Sufficiency: If ηΓ0(Γ ) = 1

2 , divΓ0(Γ )(1 + iΓ0(Γ )) = 1. If iΓ0(Γ ) = 1, by The-
orem 14(i), we know Γ is not compatible with the specific theory Γ0. Accord-
ing to Theorem 13(ii) and Definition 14, we can get divΓ0(Γ ) = 1. So, ηΓ0(Γ ) =
1 − 1

2divΓ0(Γ )(1 + iΓ0(Γ )) = 0. This conflicts with the conditions. Thus, we can
get iΓ0(Γ ) = 0, divΓ0(Γ ) = 1. Γ is compatible with the specific theory Γ0 and fully
divergent due to Definition 12 and Theorem 14(ii).

(iv) Necessity: If Γ is not compatible with the specific theory Γ0, by Theorems
13(ii) and 14(i), we know iΓ0(Γ ) = 1, divΓ0(Γ ) = 1. Then we can obtain ηΓ0(Γ ) =
1 − 1

2divΓ0(Γ )(1 + iΓ0(Γ )) = 0.
Sufficiency: If there is ηΓ0(Γ ) = 0, divΓ0(Γ )(1 + iΓ0(Γ )) = 2. Since iΓ0(Γ ) ∈

{0, 1} and 0 ≤ divΓ0(Γ ) ≤ 1, we get iΓ0(Γ ) = 1 and divΓ0(Γ ) = 1. According to
Theorem 14(i), we know Γ is not compatible with the specific theory Γ0. �

5 Conclusions

The definition of Γ -k truth degree, Γ -k similarity degree and Γ -k pseudo-metric of
formula relative to local finite theory Γ under the k conjunction and its related prop-
erties are also given by using induced function. The concept of relative divergence
degree and relative compatibility of arbitrary theory Γ relative to a particular theory
Γ0 are introduced in the Goguen

∼,Δ propositional logic system and the important
relationship between them is also obtained. We will continue discussing how these
good properties in other logical system are in the future.
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A Class of Fuzzy Modal Propositional Logic
Systems with Three Kinds of Negation

Cheng Chen, Li-Juan Zhang and Zheng-Hua Pan

Abstract Distinguishing and dealing with different negations is a basic in fuzzy
knowledge representation and reasoning, fuzzy propositional logic formal system
with contradictory negation, opposition negation and medium negation (FLcom)
is capable of describing various negative relations in fuzzy knowledge. Based on
FLcom, the fuzzy modal propositional logic system with three kinds of negations
MKcom, as well as MKcom’s expansion systems MTcom, MS4com and MS5com
are proposed in this paper, the semantics of MKcom is discussed, the soundness and
completeness theorems of MKcom are proved.

Keywords Fuzzy propositional logic · Negation · Medium modal propositional
logic · Fuzzy modal propositional logic

1 Introduction

Modal Logic, as a research concerning inevitability and possibility of non-classical
logical theory of propositional calculus, gives a very appropriate non-true value
system. In recent years, in order to extend the value of modal logic, some scholars
remain committed to the theoretical study ofmodal logic, andmademany newmodal
logic systems. In 1985, Wu-Jia Zhu and Xi-An Xiao put forward the proposition
logic system MP and its expansion MP* [1, 2]. In 1989, Jing Zou gave a new modal
logic system and its semantics based on intermediary logic, and expanded the modal
concept of medium logic [3]. On the basis of medium logic, Dong-Mo Zhang and
Wu-Jia Zhu established a kind of modal logic system MK, MT, MS4 and MS5 with
different structures and semantic forms in 1995 [4, 5].

Along with the development of knowledge research, the negation of knowledge
plays a more and more important role in the knowledge processing.
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In recent years some scholars proposed that uncertain knowledge processing needs
different kinds of negations in many fields. Pan proposed that there are five kinds
of negative relations in crisp knowledge and fuzzy knowledge in 2006, and Pan
introduced three kinds of negations in fuzzy knowledge, namely contradictory nega-
tion, opposition negation and medium negation in 2008 [6], thereby introduced a
novel fuzzy set called fuzzy set with contradictory, negation, opposite negation and
medium negation, FScom for short in 2012 [7], the fuzzy propositional logic system
with contradictory negation, opposite negation and medium negation, FLcom for
short in 2013 [8].

This paper attempts to construct a kind of Fuzzy Modal Propositional Logic
System with contradictory negation, opposite negation and medium negation based
on the formal system of the medium modal logic MK and f FLcom.

2 Preliminaries

FLcom (Fuzzy Propositional Logic with Contradictory negation, Opposite negation
and Medium negation) was introduced in [8], it is a formal logic system which
differentiates contradiction, opposition and medium negations.

Definition 1 (i) Let S be a nonempty set, and its elements are called atomic proposi-
tions or atomic formula, “¬” (Contradictory negation), “ ” (Opposite negation), “∼”
(Medium negation), “→” (Implication), “∧” (Conjunctive) and “∨” (Disjunctive) is
a conjunction,“ (” and “)” is bracket. The fuzzy proposition, which is composed of
the connection words and brackets, can also be called fuzzy formula. Let � ibe the
set which is composed of all fuzzy formulae.

(ii) The following formulae in � are called axioms:
(A1): A → (B → A);
(A2): (A → (A → B)) → (A → B);
(A3): (A → B) → ((B → C) → (A → C));
(M1): (A → ¬B) → (B → ¬A);
(M2): (A → B) → (B → A);
(H): ¬A → (B → A);
(C): ((A → ¬A) → B) → ((A → B) → B);
(∨1): A → A ∨ B;
(∨2): B → A ∨ B;
(∧1): A ∧ B → A;
(∧2): A ∧ B → B;
(Y ): A → ¬A ∧ ¬ ∼ A;
(Y∼): ∼ A → ¬A ∧ ¬ A(¬A ∧ ¬ ∼ A → A).

(iii) The following deduction forms are the deduction rules:
(MP) A → B, A B.
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The formal system is composed of (i), (ii) and (iii), is called a fuzzy propositional
logic system with Contradictory negation, Opposite negation and Medium negation,
FLcom for short.

Definition 2 In FLcom, the formula fuzzy A with ¬ A, A and ∼ A have the fol-
lowing relationship

¬A = A∨ ∼ A.

The following is a semantic interpretation of FLcom:

Definition 3 (λ-assignment) Let ∂: � → [0, 1] be a mapping and is called a λ-
assignment of � for λ ∈ (0, 1), if ∂(A) + ∂( A) = 1

If λ ∈ [1/2, 1) and ∂(A) ∈ (λ, 1], then ∂(∼ A) = λ − 2λ − 1

1 − λ
(∂(A) − λ) (2)

If λ ∈ [1/2, 1) and ∂(A) ∈ [0, 1 − λ), then ∂(∼ A) = λ − 2λ − 1

1 − λ
∂(A) (3)

If λ ∈ (0, 1/2] and ∂(A) ∈ (1 − λ, 1], then ∂(∼ A) = 1 − 1 − 2λ

λ
(∂(A) + λ − 1) − λ

(4)

If λ ∈ (0, 1/2] and ∂(A) ∈ [0, λ), then ∂(∼ A) = 1 − 1 − 2λ

λ
∂(A) − λ (5)

Else,∂(∼ A) = max(∂(A), 1 − ∂(A)) (6)

∂(A ∨ B) = max(∂(A), ∂(B)), ∂(A ∧ B) = max(∂(A), ∂(B)),

∂(A → B) = �(∂(A), ∂(B)), here� : [0, 1]2 → [0, 1] is a function of two variables.

Theorem 1 In FLcom, A → A.

Proof
(a) A → (A→A) (A1)

(b) (A → (A → A)) → (A → A) (A2)
(c) A → A (a) (b) �

Theorem 2 InFLcom, A → (B → (A ∧ B)).

Proof A ∧ B → A ∧ B by Theorem 1, because A → (B → C), so A → (B →
(A ∧ B)). �
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3 MKcom: Fuzzy Modal Propositional Logic with Three
Kinds of Negation

Classical modal logic is a logic systemwithmodal words “inevitable” (�) and “may”
(♦). Based on Medium Logic System, Wu-Jia Zhu and Dong-Mo Zhang established
a series of MK, MT, MS4 and MS5 of the medium modal logic system with different
structures and semantic forms. Among them, MK is the basic system. The main
idea of MK is “inevitable A” (�A) is interpreted as A in all possible worlds as
true, “inevitable A” false as in all possible world in which A is false, the opposite
negation of�A is true (denoted as �A). And “inevitable a” in the intermediate state
understood as the existence of a through the possible world, the medium negation
of �A is true (denoted as ∼ �A), where a intermediate state, but in all through the
possible world A is not false. Similarly, “may A” (♦A) is true can be understood as
the existence of a through the possible world in which a is true, “mayA” false can
be understood as in any through the world in A are false, the opposite negation of A
as true (denoted as ♦A), “may A” in the intermediate state to show that there is a
up to the world, the medium negation of ♦A is true (denoted by ∼ ♦A), where A in
the intermediate state, but in all up to the world A are not really. In the above ideas,
it is proved that MK has the following properties [4]:

♦A 	
 � A,∼ �A 	
 �¬ A ∧ ♦ ∼ A,∼ ♦A 	
 �¬A ∧ ♦ ∼ A

For the distinction between three kinds of negative fuzzy propositional logic
FLcom, how to establish the modal propositional logic based on FLcom? To this
end, based on the medium modal logic formal system MK, we give a kind of fuzzy
modal propositional logic system with three kinds of negative MKCOM as follows.

Definition 4 (i) The basic set of symbols and the formation rules of the FLcom in
the form of the modal word �, ♦ constitute the form of language as �.

(ii) The following formulas in � are axioms:
(A1) A → (B → A);
(A2) (A → (A → B)) → (A → B);
(A3) (A → B) → ((B → C) → (A → C);
(M1) (A → ¬B) → (B → ¬A);
(M2) (A → B) → (B → A);
(H) ¬A → (B → A);
(C) ((A → ¬A) → B) → ((A → B) → B);
(∨1) A → A ∨ B;
(∨2) B → A ∨ B;
(∧1) A ∧ B → A;
(∧2) A ∧ B → B;
(Y ) A → ¬A ∧ ¬ ∼ A;
(Y∼) ∼ A → ¬A ∧ ¬ A(¬A ∧ ¬ ∼ A → A).
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(iii) Inference rule:
(R1) If A, then �A;
(R2) �(A → B) �A → �B;
(R3) ♦A 	
 � A;
(R4) ∼ �A 	
 �¬ A ∧ ♦ ∼ A;
(R5) ∼ ♦A 	
 �¬A ∧ ♦ ∼ A;

From the above (i), (ii) and (iii), FLcom forms a system, it is called a fuzzy
propositional logic system with three kinds of negations.
Note. in the above inference rules, (R2) corresponding to the classical modal formal
system K rules. (R3), (R4), and (R5) reflects the relationship between the word� and
♦.
Intuitively speaking, R3 represents “Amay be true if and only if not inevitableAfalse”;
R4 represents” inevitableA really taking the mid-value if and only if A does not
necessarily take false value but may take the mid-value”; R5 represents “A may
really taking the mid-value if and only if A not necessarily true but may take the mid-
value”.

In MKcom, the following conclusions can be proved:

Lemma 1 If A ↔ B, then �A ↔ �B.

Proof
(a) A ↔ B

(b) �A ↔ B) a) (R1)

(c) �(A ↔ B) → (�A ↔ �B) (b) (R2)

(d) �A ↔ �B (b) (c) �

Lemma 2 ∼ ♦A 	
∼ A� A.

Proof Since A�� A, and ¬A��¬ A, so �¬A���¬ A. Because of ∼ A��∼ A,
we can get ∼ A�� ∼ A, so � ∼ A��� ∼ A, therefore � ∼ A���

∼ A. From the above two results available ∼ ♦A 	
 �¬A ∧ ♦ ∼ A 	
 �¬A ∧
� ∼ A 	
 �¬A ∧ � ∼ A 	
 �¬A ∧ ♦ ∼ A 	
 �¬ A ∧ ♦ ∼ A 	
∼� A 	


∼ � A. �

Theorem 3 (Substitution theorem). If A��B, ∂(A) is an arbitrary formula in�,then
∂(A)��∂(B).

Theorem 4 In MKcom,
(1) �(A ∧ B) �A ∧ �B;

(2) �A ∧ �B �(A ∧ B);

(3) �A ∨ �B �(A ∨ B);

(4) ♦(A ∨ B) ♦A ∨ ♦B;
(5) ♦A ∨ ♦B ♦(A ∨ B);

(6) ♦A ∧ B) ♦A ∧ ♦B;
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Proof We choose to prove (1), (2) and (3) are similar.
(1)

(a) A ∧ B → A (∧1)

(b) �(A ∧ B → A) (a) (R1)

(c) �(A ∧ B) → �A (b)(R2)
(d) �(A ∧ B) → �B (c)
(e) �(A ∧ B) → (�A ∧ �B) (c) (d) (∧2)

(2)
(a) A → (B → (A ∧ B)) (A2)

(b) �A → �(B → A ∧ B)) a)(R1)
(c) �A assumption
(d) �B → A ∧ B)) (b) (c)
(e) �B → �(A ∧ B) (d) (R2)
(f) �B assumption
(g) �(A ∧ B)) (e) (f)
(h) (�A ∧ �B) → �(A ∧ B)) d) f)

(3)
(a) A → A ∨ B (∨1)

(b) �(A → A ∨ B) (R1)

(c) �A → �(A ∨ B)) (b) (R2)
(d) �B → �(A ∨ B)) (c)
(e) �A ∨ �B assumption
(f) �(A ∨ B) (c) (d) (e) �
We can prove the following result in MKcom.

Theorem 5 In MKcom,
(1) ¬�A ♦¬A,♦¬A ¬�A;
(2) ¬♦A �¬A,�¬A + ¬♦A.

4 Semantic Interpretation of MKCOM

The semantic interpretation of the intermediate FuzzyModal Logic SystemMKcom
consists of the following formal structure of quad <W, R, V, T>, where W is called
possible set, R is a binary relation on W , V is a mapping from {P1, P2, …}×W to
the true values set T , T = {0, 1/2, 1}, for arbitrary A and w ∈ W , V(A, w) represents
the value of the formula A in the possible world, which can be recursively defined as
follows:
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(1) V (Pn,w) ∈ {0, 1/2, 1}, n = 1, 2, 3, . . . .

(2) V ( A,w) =

⎧
⎪⎨

⎪⎩

0, if V (A,w) = 1

1/2, if V (A,w) = 1/2

1, if V (A,w) = 0

(3) V (∼ A,w) =
{
1, if V (A,w) = 1/2

1/2, else

(4) V (¬A,w) = max(V ( A,w), V (∼ A,w)) =
{
1/2, if V (A,w) = 1

1, if V (A,w) = 1/2 or V (A,w) = 0

(5) V (A ∧ B,w) = min(V (A,w), V (B,w))

(6) V (A ∨ B,w) = min(V (A,w), V (B,w))

(7) V (A → B,w) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if V (A,w) = 0 or V (B,w) = 1,

or V (A,w) = 1/2 and V (B,w) = 1/2

0, if V (A,w) = 1 and V (B,w) = 0

1/2, else

(9) V (�A,w) =

⎧
⎪⎨

⎪⎩

1, ∀w’ ∈ R[w] bring (V (A,w’) = 1)

0, ∀w’ /∈ R[w] bring (V (A,w’) = 0)

1/2, else

(10) V (♦A,w) =

⎧
⎪⎨

⎪⎩

1, ∀w’ ∈ R[w] bring (V (A,w’) = 1)

0, ∀w’ /∈ R[w] bring (V (A,w’) = 0)

1/2, else

Definition 5 The deduction form� A (� may be empty set) is provable inMKcom,
if there exists a finite sequence of deduction formsE1,E2, . . . ,En such thatEn = � A
and for each En(1 ≤ k ≤ n), either Ek is an axiom of MKcom or Ek follows from
Ei and Ej(i < k, j < k) using the deduction rule of MKcom, then E1,E2, . . . ,En is
called a proof of � A, n length of proof. � A is writes as A when � is empty set,
A is provable in FLcom when A is provable in FLcom. If � denote an infinite set
of formulas and there is finite set � ⊂ � such that � A is provable inMKcom, then
� A is called provable in MKcom.

Definition 6 (Three-valued valid formula) For any formal system<W,R, V,T>, if
V (A,w) = 1 for any three-valued assignment V, then A is called three-valued valid
formula, which is denoted by A. For any A ∈ Γ if there is A, then it is denoted by
� A.

Definition 7 The formula set � is a consistent set if and only if � A and ¬A is
established, when there is no formula A.
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Definition 8 If Γ is consistent set and no coordination for any A and Γ W {A} in
Γ , then Γ is called a maximal consistent set.

Theorem 6 (Soundness of MK com).
(a) If A, then A.

(b) If � A, then � A.

Proof (a). Assume that A, one has to prove the existence of A: E1,E2. . .En, by
Definition 5, where En = A. The following induction is about the length n of
E1,E2. . .En, where E1,E2. . .En, is a proof of A.

(i). If n =1, according to Definition 5, we can get E1 A, then A is called an axiom
in MKcom.Because axiom of MKcom is tautology, so A is just an eternal truth
reasoning. According to Definition 6, we can get A.

(ii). Assuming that when n < k, (a) was established. When n = k, En is an
axiomatic reasoning of MKcom, or En can be obtained by Ei and Ej (i < n, j < n)
using inference rules of MKcom. If En is an axiomatic reasoning of MKcom, say, (I)
is used to getEn; Soppoe thatEn is obtained byEi andEj (i < n, j < n) using inference
rules of MKcom, Ei and Ej is eternal truth reasoning by the induction hypothesis, so
En is an eternal truth reasoning, that is, A is an eternal truth reasoning. According
to Definition 6, we can get A.

Therefore, (a) holds by the (i) and (ii). Similarly we can prove (b). �

Lemma 3 Let A be a formula of MKcom,A1 and A2 are two formulae which does
not repeated in {A, A,∼ A}, � is a formula set of MKcom. Then the following
propositions are equivalent:
(a) Γ is no ta consistent set;
(b) there exists A ∈ �, so that � A1and A2 can be proved in MKcom;
(c) there exists A ∈ � that � ∼ A can be proved in MKcom.

Proof Arbitrary two formula are contradictory (i.e. not coordinated) in {A, A,∼ A},
so A1 and A2 are not coordinate formulae. If Γ is inconsistent, there exists A ∈ Γ ,
then Γ A1 and A2 in MKcom can permit by Definition 7, so we can get (a) ⇒
(b). If there exists A ∈ Γ , then Γ A1 and A2in MKcom can permit. And because
A1 and A2 are uncoordinated formulae, we can get Γ A1 and A2 B. For arbitrary
formula B, we can make B = ∼ A, so we get (b) ⇒ (c). If there exists A ∈ Γ , then
Γ ∼ A in MKcom can permit. And because of the presence of Γ ∼ A B, Γ
is not coordinated, so we get (c) ⇒ (a). �

Lemma 4 If � is amaximal consistent set inMKcom, andA is an arbitrary formula,
then A ∈ � when and only when � A.

Proof assume that A /∈ Γ , because Γ is a maximal consistent set, H is not a coor-
dinated set. Thus, there are two kinds of situations: (1) A ∈ Γ , or (2) ∼ A ∈ Γ .
If A ∈ Γ and Γ A in MKcom had proved, Γ A can’t permit by Lemma 3. If
∼ A ∈ Γ and Γ ∼ A in MKcom had proved, Γ A can’t permit by Lemma 3.
Assume that Γ A does not permit, namely A /∈ Γ . �
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Lemma 5 IfΓ is amaximal consistent set inMKcom, andA is an arbitrary formula,
then A ∈ � and ¬ A ∈ � have one and only one established.

Proof If A∈ Γ and ¬ A∈Γ are both established, since ¬A 	
 A∨ ∼ A, namely
A ∈ �, A ∈ � and ∼ A ∈ � were founded at the same time, � is not coordi-
nated by the Lemma 3, they are relative to the � are the maximal consistent set
contradiction. �

Lemma 6 If� is amaximal consistent set inMKcom, and A is an arbitrary formula,
then A∈ �, ∼ A∈ �and A∈ � have one and only one established.

Proof If there are two established among A∈ Γ , ∼A∈ Γ and A∈ Γ , then Γ is not
coordinated by Lemma 3, and they are relative to � are the maximal consistent set
contradiction. �

Theorem 7 Any consistent set of formulas can be extended to a maximal consistent
set in MKcom.

Proof All formulas of MKcom are enumerated as: A1, A2, …, An, Inductively define
�n:�1 = �, if�n∪{An} is consistent, define�n+1 = �n∪{An}, otherwise get�n+1 =
�n.We set up�∗ = �n, and can verify that�∗ is amaximal consistent set that contains
� by Definition 8. �

Theorem 8 Let� and� inMKcom be amaximal consistent set, then {A : �A ∈ �}
⊂ � if and only if {♦A: A ∈ �} ⊂ �.

Proof If there is {A:�A ∈ �}⊂ Δ, and assuming that A ∈ Δ, we only need to prove
♦ A∈ �. If∼ ♦A∈ �, then � ∼ ♦A, we can get � �¬ A by rule R5. So¬A∈ Δ can
be obtained, which is contradictory with A∈ Δ. If ♦A ∈ �, then we have � ♦A,
and because of Γ � A, so there is A ∈Δ, which is also contradictory with A ∈ Δ,
thus ♦A ∈ � by Lemma 6.

If {♦A: A ∈Δ} ⊂ �, and assuming that �A ∈ � also holds, we only need to
verify A ∈Δ. If ∼ A ∈Δ, then ♦ ∼ A∈ �, that is � ♦ ∼ A. On the other hand, it
can be easy to prove �A ∨ �¬A, then we can get � ( ♦ ∼ A ∧ �A) ∨ (♦ ∼
A ∧ �¬ A), so we have � �A∨ ∼ �A, which is contradictory with �A ∈ �. If
A ∈Δ, then ♦ A ∈ �, we can get ♦ A ∈ �, namely �A ∈ � can be obtained,
which is contradictory with �A ∈ �. So it is concluded that A ∈Δ. �

Lemma 9 If � is a maximal consistent set of MKcom system, then
(1) �A∈ � ⇔ A ∈ � makes � the maximal consistent set {A : �A ∈ �} ⊂ �.

(2) ♦A∈ � ⇔ A ∈ � makes � the maximal consistent set {♦A : A ∈ �} ⊂ �.

Proof (1) “⇒”: Obviously.
“⇐”: If any maximal consistent set Δ of {A: �A ∈ Γ } ⊂ � make A ∈ Δ,

it is not hard to prove {A : �A ∈ � } A, so statement A1, A2,..., An A is valid
in {A:�A ∈ �} and (A1 ∧ A2 ∧ . . . ∧ An) ⇒ A, �((A1 ∧ A2∧...∧An) ⇒ A) so

�(A1 ∧ A2∧…∧ An) ⇒ �A. Because �A1, �A2...�An is valid in �, � �A1 ∧
�A2∧...∧�An, and � �(A1 ∧ A2∧...∧ An), so � �A, �A ∈ �.
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(2) “⇒”: Obviously.
“⇐”: If ♦A ∈ �, then � A ∈ �, that is, to prove that a maximal consistent

set Δ makes {A: �A ∈ Γ } ⊂ � and A ∈ Δ. Otherwise, any maximal consistent
set Δ of {A: �A ∈ Γ } ⊂ Δ make A /∈ �, by � A ∈ Γ , then � A /∈ Γ and
∼ � A /∈ �. The former and the conclusion (1) have a maximal consistent set Δ0.
And A /∈ �0, by the latter then�¬A/∈ � or♦ ∼ A /∈ �. If�¬A/∈ �, then amaximal
consistent set Δ1 make {A: �A ∈ �} ⊂ Δ1 and ¬A /∈ �1, A ∈ Δ1, this is contrary
to the disproof assumption. If ♦ ∼ A /∈ �, by{A: �A ∈ �}⊂ �0, then{♦A: A ∈Δ0}
⊂ �, so ∼ A /∈ �0, and A ∈ �0, it is also contrary to the disproof assumption. So, a
maximal consistent set Δ make {A: �A ∈ Γ } ⊂ � and A ∈ �.

To prove the completeness of MKcom, we construct the following normal struc-
ture <W, R, V, T>, and W = {T/� is the maximal consistent set in MK}, R is the
binary relation on W.

<�,�> ∈ R if and only if {A: �A ∈ �} ⊂ �. For any propositional word Pi (i =
1, 2,…) and � ∈W :

V (Pi, Γ ) =
⎧
⎨

⎩

1, when Pi ∈ �

1/2, when ∼ Pi ∈ �

0, when Pi ∈ �

Theorem 10 For any formula A and � ∈ W,

(1)V(A, Γ ) = 1, if and only if A∈ �.

(2)V(A, Γ ) =1/2, if and only if ∼A∈ �.

(3)V(A, Γ ) = 0,if and only if A∈ �.

Proof Induct on the structure of A and we only discuss the case of A shaped like
�B, other cases can be classified into the case of �B or similar to the completeness
proof of FLcom.

(1). V (A, � ) = 1 if and only if ∀� ∈ W , (�, Δ)∈ Ri → V (B, �) = 1 if and only
if ∀� ∈ W , if ( �, �) ∈ Ri, then B ∈Δ if and only if �B ∈ � if and only if A∈ �.

(3). V (A, � ) = 0 if and only if ∃� ∈ W , (�, �) ∈ Ri ∧V (B, �) = 0 if and only
if ∃ Δ∈ W , (�, Δ)∈ Ri and B ∈ � if and only if � ∈ W , {♦ A:A ∈ �} ⊂ � and
B ∈ � if and only if ♦ B ∈ � if and only if � B ∈ �.
We can obtain (2) by (1) and (3). �

Theorem 11 (Completeness of MKcom).
(a) If � |= A, then � A is provable in MKcom.
(b) If|= A, then A is provable in MKcom.

Proof (a). If � |= A, then there is A∈ � by Lemma 10. According to Lemma 4, there
is � A. (2) can be proved in the same way. �

Based on Fuzzy Modal Propositional Logic System with three kinds of negation
(MKcom), we can further obtain the following extension systemsMTcom, MS4com
and MS5com of MKcom.

Definition 9 Adding the inference rule �A A in MKcom, then the intermediate
mode system MTcom can be obtained.
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Definition 10 Adding the inference rule �A �� A in MKcom, then the interme-
diate mode system MS4com can be obtained.

Definition 11 ToTAdding the inference rule♦A �♦A, then the intermediatemode
system MS5com can be obtained.

5 Conclusions

Base on fuzzy propositional logic system with three kinds of negation (FLcom), this
paper proposes fuzzy modal propositional logic systemwith three kinds of negations
(MKcom), and the extension systemsMTcom, MS4com and MS5com of MKcom.
These systems can be as foundation of the modal propositions and their different
negations.
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Robustness Analysis of Fuzzy
Computation Tree Logic

Li Li, Hong-Juan Yuan and Hai-Yu Pan

Abstract Fuzzy computation tree logic is an extension of classical temporal logic
computation tree logic, which is used to specify the properties of systems with uncer-
tain information content. This paper investigates the robustness of fuzzy computation
tree logic. Robustness results are proved based on completeHeyting algebra and stan-
dard Łukasiewicz algebra.

Keywords Temporal logic · Fuzzy computation tree logic · Model checking ·
Complete residuated lattices · Heyting algebra

1 Introduction

Temporal logics [1], such as linear temporal logic (LTL) and computation tree logic
(CTL), are a useful formalism for specification of reactive systems such as discrete-
event controllers. They have been successfully used in many situations, especially
for model checking [1].

To specifying systems with fuzzy uncertainty, much efforts have been made to
extend temporal logic to fuzzy setting in the past years. Chechik et al. [3, 4] defined
CTL over a finite De Morgan algebra and investigated its model-checking problem.
Li et al. gave LTL and CTL over possibility measures and their model-checking
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problems are also discussed [8–10]. Pan et al. presented model-checking algorithms
for semantics of CTL in the sense of fuzzy logic and finite lattices, respectively
[13, 14].

The present work is a continuation of [13, 14]. We mainly focus on robustness
analysis of semantics of fuzzy computation tree logic (FCTL) over complete residu-
ated lattices [2]. In application the proposition values, together with fuzzy transition
relations, of a model are somewhat imprecise and subjective, because they are often
provided by experts in ad hoc (heuristic) manner from experience or intuition. Hence,
it is necessary to require that two models close in some equivalence criterion should
yield near truth values to formulas of FCTL in two models. In light of this, we will
conduct robustness analysis of the semantics of FCTL based on a logically equiva-
lence measure introduced in [2]. Moreover, we propose a new measure to calculate
the perturbation degree of model based on normalized Minkowski distances [5].
Based on the measure, robustness of semantics of FCTL over standard Łukasiewicz
algebra is carefully investigated.

2 Fuzzy Computation Tree Logic for Fuzzy Kripke
Structures

We start with a short introduction to complete residuated lattices, and then present a
fuzzy extension ofKripke structures and its specification language fuzzy computation
tree logic. For more details on complete residuated lattices, the reader may refer to
[2]. We write N for the set of natural numbers, I the index set, and P(S) the power
set of S.

A complete residuated lattice [2] is an algebra L = (L , ∨, ∧, ⊗, →, 0, 1),
where (L , ∨, ∧, 0, 1) is a complete lattice with the minimum element 0 and the
maximum element 1, (L , ⊗, 1) is a commutative monoid, and ⊗ and → satisfy the
adjointness property, i.e. x ⊗ y ≤ z iff x ≤ y → z, for any x, y, z ∈ L . A complete
Heyting algebra can be defined as a complete residuated lattice with ⊗ = ∧. Stan-
dard Łukasiewicz algebra, where L = [0, 1], x ⊗L y = (x + y − 1) ∨ 0, x →L y =
(1 − x + y) ∧ 1, is a complete residuated lattice.

Let X be a universal set. A (lattice-valued) fuzzy set A of X over L is defined by
a function assigning to each element x of X a value A(x) in L; A(x) characterizes
the degree of membership of x in A. We say that an L-set A is crisp if A(x) ∈ {0, 1}
for all x ∈ X . We denote by L(X) the set of all fuzzy sets of X . We now turn to the
concept of fuzzy Kripke structures (FKSs). To do so, let AP be a fixed finite set of
atomic propositions.

Definition 1 ([11, 12]) A fuzzy Kripke structure over AP and L is a tuple K =
(S, R,V), where

• S is a finite, non-empty set of states;
• R, which is the fuzzy transition function, is a mapping from S × S to L;
• V is a labeling function V : S → L(AP) that assigns a truth value in L to an
atomic proposition in a state.
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For states s and s ′, R(s, s ′) is the possibility of making a transition to state s ′
given that the system is in state s. Kripke structures arise as a special case of FKSs
if the transition function and labeling function are crisp.

A pathπ in an FKSK is a non-empty sequence of statesπ = s0s1 · · · , where si ∈ S
for all i ≥ 0. A path can be either finite or infinite. We denote the (i + 1)-st state of π
by π(i), and |π| represents the length of π (i.e., the number of transitions). We write
Π(K, s) for the set of all infinite paths starting from state s ofK. When the context is
clear, we will drop the notationK. Now, we define a logic, called fuzzy computation
tree logic (FCTL), for expressing the behaviours of FKSs. For simplicity, we will
use the same symbol for a binary logical connective and its interpretation in a model.

Definition 2 ([13, 14]) Let AP be a set of atomic propositions. All well-formed
formulas of FCTL are inductively defined using the following grammar:

ϕ :: = true | p | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ → ϕ | ∃Xϕ | ∀Xϕ | ∃ϕUϕ | ∀ϕUϕ,

where p ∈ AP .

We interpret FCTL formulas over the states of an FKS K that has the same
propositions. Given an FKS K, a state s of K, we write [[K, ϕ]](s) for the degree to
which ϕ holds in the state s of K.

Definition 3 ([11, 12]) Let K be an FKS. The valuation [[K, ϕ]] is defined induc-
tively as:

[[K, true]](s) = 1,

[[K, p]](s) = V(s)(p),

[[K, ϕ1 ∧ ϕ2]](s) = [[K, ϕ1]](s) ∧ [[K, ϕ2]](s),
[[K, ϕ1 ∨ ϕ2]](s) = [[K, ϕ1]](s) ∨ [[K, ϕ2]](s),

[[K, ϕ1 → ϕ2]](s) = [[K, ϕ1]](s) → [[K, ϕ2]](s),
[[K, ∃Xϕ]](s) = sup

s ′∈S
(R(s, s ′) ⊗ [[K, ϕ]](s ′)),

[[K, ∀Xϕ]](s) = inf
s ′∈S(R(s, s ′) ⊗ [[K, ϕ]](s ′)),

[[K, ∃ϕ1Uϕ2]](s) = sup
π∈Π(s)

sup
i∈N

( ⊗

0≤ j<i

([[K, ϕ1]](π( j)) ⊗ R(π( j), π( j + 1))
)

⊗ [[K, ϕ2]](π(i))

)

,

[[K, ∀ϕ1Uϕ2]](s) = inf
π∈Π(s)

sup
i∈N

( ⊗

0≤ j<i

([[K, ϕ1]](π( j)) ⊗ R(π( j), π( j + 1))
)

⊗ [[K, ϕ2]](π(i))

)

.
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The proof of the following theorem is similar to that of Lemma 3 in [14] and is
omitted.

Theorem 1 The following equalities hold.
(i) [[∃ϕ1Uϕ2]] = μx .[[ϕ2]] ∪ ([[ϕ1]] ∩ [[∃Xx]]Π).

(ii) [[∀ϕ1Uϕ2]] = μx .[[ϕ2]] ∪ ([[ϕ1]] ∩ [[∀Xx]]).

3 Robustness Analysis

To formulate the robustness of semantics of FCTL, we need to measure the degree of
equality of two FKSs. This measurement is similar to that of given in lattice-valued
doubly labelled transition systems in [11].

Definition 4 Consider two FKSsK1 = (S, R1, V1) andK2 = (S, R2, V2)with the
same state space S and the same set AP of propositions. The equality degree of K1

and K2, denoted E(K, K′), is defined by

E(K, K′) = inf
s∈S

(
inf
p∈AP

(V1(s)(p) ↔ V2(s)(p)) ∧ inf
s ′∈S(R1(s, s

′) ↔ R2(s, s
′))

)
.

Such a function first considers one state at a time. For each state, the equality of
degree is given by the infimum of degrees of equality between the value of a propo-
sition in said state in the two structures. The one-step degree of equality, considering
the best way a transition from the first structure can be matched by a transition in the
second, and vice versa. For each state, the infimum of the local degree of equality and
the one-step degree of equality is taken. Finally, the infimum over all states is taken.
The following observation follows immediately from Definition 4. The desirability
of the definition is justified by the following fact, whose proof is easy and is thus
omitted.

Lemma 1 The equality degree E is a fuzzy equivalence relation on FKS, i.e., for
any FKSs K1, K2, K3, the following conditions hold:
(i) E(K1, K1) = 1;
(ii) E(K1, K2) = E(K2, K1);
(iii) E(K1, K2) ⊗ E(K2, K3) ≤ E(K1, K3).

One of themain results of this paper is the following theorem, which expresses the
intuition “if two models are equivalent, then the truth values of every FCTL formula
in the two models are also equivalent”.

Theorem 2 Let L be a complete Heyting algebra. LetK1 and K2 be two FKSs with
the same state space S and the same set AP of propositions. Then E(K1, K2) ≤
[[K1, ϕ]](s) ↔ [[K2, ϕ]](s) for all FCTL formulas ϕ and s ∈ S.
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Proof The proof can be given by structural induction on the structure of the for-
mula ϕ.
Induction basis: The cases ϕ = true and ϕ = p are trivial.
Induction step: Assume ϕ1 and ϕ2 are formulas for which the theorem holds.

• ϕ = ϕ1 ∧ ϕ2: We have from the induction hypothesis:

E(K1, K2)

≤ ([[K1, ϕ1]](s) → [[K2, ϕ1]](s)) ∧ ([[K1, ϕ2]](s) → [[K2, ϕ2]](s))
≤ ([[K1, ϕ1 ∧ ϕ2]](s) → [[K2, ϕ1]](s)) ∧ ([[K1, ϕ1 ∧ ϕ2]](s) → [[K2, ϕ2]](s))
= [[K1, ϕ1 ∧ ϕ2]](s) → [[K2, ϕ1 ∧ ϕ2]](s).

Similarly, we can also show that E(K1, K2) ≤ [[K2, ϕ1 ∧ ϕ2]](s) → [[K1, ϕ1 ∧
ϕ2]](s). Hence E(K1, K2) ≤ [[K1, ϕ1 ∧ ϕ2]](s) ↔ [[K2, ϕ1 ∧ ϕ2]](s).

• ϕ = ϕ1 ∨ ϕ2: We have from the induction hypothesis:

E(K1, K2)

≤ ([[K1, ϕ1]](s) → [[K2, ϕ1]](s)) ∧ ([[K1, ϕ2]](s) → [[K2, ϕ2]](s))
≤ ([[K1, ϕ1]](s) → [[K2, ϕ1 ∨ ϕ2]](s)) ∧ ([[K1, ϕ2]](s) → [[K2, ϕ1 ∨ ϕ2]](s))
= [[K1, ϕ1 ∨ ϕ2]](s) → [[K2, ϕ1 ∨ ϕ2]](s).

Similarly, we have E(K1, K2) ≤ [[K2, ϕ1 ∨ ϕ2]](s) → [[K1, ϕ1 ∨ ϕ2]](s). Hence
E(K1, K2) ≤ [[K1, ϕ1 ∨ ϕ2]](s) ↔ [[K2, ϕ1 ∨ ϕ2]](s).

• ϕ = ϕ1 → ϕ2: We have from the induction hypothesis:

E(K1, K2)

≤ [[K2, ϕ1]](s) → [[K1, ϕ1]](s)
≤ ([[K1, ϕ1]](s) → [[K1, ϕ2]](s)) → ([[K2, ϕ1 → ϕ2]](s)).

We also have

E(K1, K2) ≤[[K1, ϕ1 → ϕ2]](s) → ([[K1, ϕ1]](s) → [[K1, ϕ2]](s)).

Hence we have:

E(K1, K2) ≤ [[K1, ϕ1 → ϕ2]](s) → [[K2, ϕ1 → ϕ2]](s).

Similarly, we have E(K1, K2) ≤ [[K2, ϕ1 → ϕ2]](s) → [[K1, ϕ1 → ϕ2]](s).
Whence we have E(K1, K2) ≤ [[K1, ϕ1 → ϕ2]](s) ↔ [[K2, ϕ1 → ϕ2]](s).

• ϕ = ∃Xϕ1: We have from the induction hypothesis that

[[K1, ∃Xϕ1]](s) → [[K2, ∃Xϕ1]](s)
= sup

s ′∈S
(R1(s, s

′) ∧ [[K1, ϕ1]](s ′)) → sup
s ′∈S

(R2(s, s
′) ∧ [[K2, ϕ1]](s ′))
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≥ sup
s ′∈S

((R1(s, s
′) ∧ [[K1, ϕ1]](s ′)) → (R2(s, s

′) ∧ [[K2, ϕ1]](s ′)))

≥ sup
s ′∈S

((R1(s, s
′) → R2(s, s

′)) ∧ ([[K1, ϕ1]](s ′) → [[K2, ϕ1]](s ′)))

≥ E(K1, K2).

• ϕ = ∀Xϕ1: We have from the induction hypothesis that

[[K1, ∀Xϕ1]](s) → [[K2, ∀Xϕ1]](s)
= inf

s ′∈S(R1(s, s
′) ∧ [[K1, ϕ1]](s ′)) → inf

s ′∈S(R2(s, s
′) ∧ [[K2, ϕ1]](s ′))

≥ inf
s ′∈S((R1(s, s

′) ∧ [[K1, ϕ1]](s ′)) → (R2(s, s
′) ∧ [[K2, ϕ1]](s ′)))

≥ inf
s ′∈S((R1(s, s

′) → R2(s, s
′)) ∧ ([[K1, ϕ1]](s ′) → [[K2, ϕ1]](s ′)))

≥ E(K1, K2).

• ϕ = ∃ϕ1Uϕ2: By Theorem 1, we know that the sequence

x0(s) = 0,

xn+1(s) = [[K1, ϕ2]](s) ∨ ([[K1, ϕ1]](s) ∧ sup
s ′∈S

(R(s, s ′) ∧ xn(s
′))),

converges to [[K1, ∃ϕ1Uϕ2]](s). Similarly, the sequence

y0(s) = 0,

yn+1(s) = [[K1, ϕ2]](s) ∨ ([[K1, ϕ1]](s) ∧ sup
s ′∈S

(R(s, s ′) ∧ yn(s
′))),

converges to [[K2, ∃ϕ1Uϕ2]](s). We shall use induction on n to show that
E(K1, K2) ≤ xn(s) ↔ yn(s). For the base case, we have E(K1, K2) ≤ x0(s) ↔
y0(s) = 1. Assume by induction on n that E(K1, K2) ≤ xn(s) ↔ yn(s). Then
E(K1, K2) ≤ xn+1(s) ↔ yn+1(s). Hence

E(K1, K2) ≤ [[K1, ∃ϕ1Uϕ2]](s) ↔ [[K2, ∃ϕ1Uϕ2]](s).

• ϕ = ∀ϕ1Uϕ2: The case for ϕ = ∀ϕ1Uϕ2 is similar to the case for ϕ = ∃ϕ1Uϕ2,
hence the proof for the case is omitted. �

In the following, we introduce the concept of perturbation degree of fuzzy Kripke
structures based on normalized Minkowski distances.

Definition 5 Let L = [0, 1]. Consider two FKSs K1 = (S, R1, V1) and K2 =
(S, R2, V2) with the same state space S and the same set AP of propositions. The
perturbation degree between K1 and K2, denoted dr (K1, K2), is defined by
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dr (K1, K2) = r

√
√
√
√

1

|AP|.|S|
∑

p∈AP, s∈S
|V1(s)(p) − V2(s)(p)|r∨

r

√
1

|S|2
∑

s,s ′∈S
|R1(s, s ′) − R2(s, s ′)|r ,

where r is a parameter satisfying 1 ≤ r ≤ +∞.

Remark 1 If r = 1, i.e.,

d1(K1, K2) = 1

|AP|.|S|
∑

p∈AP, s∈S
|V1(s)(p) − V2(s)(p)|∨

1

|S|2
∑

s,s ′∈S
|R1(s, s

′) − R2(s, s
′)|,

where d1 is the Hamming metric, which has been used to measure the perturbation
of Markov decision processes [6]. If r = +∞, i.e.,

d+∞(K1, K2) = sup
p∈AP, s∈S

|V1(s)(p) − V2(s)(p)| ∨ sup
s,s ′∈S

|R1(s, s
′) − R2(s, s

′)|,

d+∞ is the uniformmetric, which has been used to measure the perturbation of fuzzy
automata [7].

The following observation follows immediately from Definition 5.

Remark 2 If dr (K1, K2) ≤ ε, ε ∈ [0, 1], then for all p ∈ AP, s, s ′ ∈ S,

|V1(s)(p) − V2(s)(p)| ≤ r
√|AP||S|ε,

|R1(s, s
′) − R2(s, s

′)| ≤ r
√

|S|2ε.

We need the following lemma, which is a basic result of mathematical analysis.

Lemma 2 ([7]) Let I be a set and {ai }i∈I , {bi }i∈I be two sequences of numbers in
[0, 1]. If |ai − bi | ≤ c for all i ∈ I , then

| sup
i∈I

ai − sup
i∈I

bi | ≤ c,

| inf
i∈I ai − inf

i∈I bi | ≤ c.

The result below shows that if L is the Standard Łukasiewicz algebra and models
are near enough, then the truth values of FCTL formulas defined over them are
nearby.
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Theorem 3 Let L be the Standard Łukasiewicz algebra, ϕ an FCTL formula, and
ε > 0. There exists a δ > 0 such that for all states s ∈ S, if dr (K1, K2) < δ, then
|[[K1, ϕ]](s) − [[K2, ϕ]](s)| < ε.

Proof We show that the theorem holds by structural induction on ϕ.
Induction basis: The case for ϕ = true is obvious. The case for ϕ = p, p ∈ AP
holds, because let δ = ε

r√|AP||S| , then for any K1 and K2, dr (K1, K2) < δ, we have
from Remark 2 that |[[K1, p]](s) − [[K2, p]](s)| < ε.
Induction step: Assume ϕ1 and ϕ2 are FCTL formulas for which the assertion
holds. We treat the cases ϕ = ∃Xϕ2 and ϕ = ∃ϕ1Uϕ2 in detail. The other cases can
be handled similarly.

• ϕ = ∃Xϕ1: Notice that ⊗L is a continuous t-norm, moreover, it is uniformly con-
tinuous for two arguments. So for every ε > 0. there exists some δ1 > 0 such
that

|R1(s, s
′) ⊗L [[K1, ϕ1]](s ′) − R2(s, s

′) ⊗ [[K2, ϕ1]](s ′)| < ε

where R1 and R2 are fuzzy transition functions of K1 and K2, respectively,
|R1(s, s ′) − R2(s, s ′)| < δ1 and |[[K1, ϕ1]](s ′) − [[K2, ϕ1]](s ′)| < δ1 for all states
s ′ ∈ S. Hence if dr (K1, K2) < δ1

r
√

|S|2 , and |[[K1, ϕ1]](s ′) − [[K2, ϕ1]](s ′)| < δ1,

then
|[[K1, ∃Xϕ1]](s) − [[K2, ∃Xϕ1]](s)| < ε.

Applying the induction hypothesis, we know that there exists some δ2 > 0 such
that

|[[K1, ϕ1]](s ′) − [[K2, ϕ1]](s ′)| < δ1

where dr (K1, K2) < δ2. Take δ = δ1
r
√

|S|2 ∧ δ2. dr (K1, K2) < δ implies that

|[[K1, ∃Xϕ1]](s) − [[K2, ∃Xϕ1]](s)| < ε.

• ϕ = ∃ϕ1Uϕ2: According to Theorem 1 and the preceding case, the assertion
clearly holds for the case ϕ = ∃ϕ1Uϕ2. �

4 Conclusion

In this paper, we discussed robustness of semantics function of FCTL. One result
showed that the semantics of FCTL is robust with respect with logically equivalence
measure when the truth structure of FCTL is a Heyting algebra. Another result
showed that the semantics of fuzzy computation tree logic is uniformly continuous
with respect to the measure induced by normalized Minkowski distances when the
truth structure of FCTL is Standard Łukasiewicz algebra.
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Localic Conuclei on Quantales

Fang-Fang Pan and Sheng-Wei Han

Abstract In this note, our main purpose is to investigate different kinds of quantic
conuclei. Also, we shall consider a characterization for (strong) localic conuclei.

Keywords Quantale · Subquantale · Quantic conucleus · Localic conucleus

1 Introduction

As a generalization of frames, Quantales were introduced by Mulvey (see [12])
in order to provide a lattice theoretic setting for studying non-commutative C∗-
algebras, as well as a constructive foundation for quantum mechanics. Quantales as
the structures of membership truth values have been applied to enriched category,
fuzzy set, fuzzy topology and fuzzy domain (see [3, 5, 7, 10, 11, 16–22]). At present,
Quantales arise in a lot of structures like rings, topological spaces, von-Neumann
algebras and inverse semigroups (see [2, 8, 9, 13, 14]). In quantale theory, Quantic
nuclei and conuclei are two important concepts, and play a crucial role in studying
the structure of quantales (see [4, 8, 9, 15]). Different kinds of quantic nuclei have
been studied by Rosenthal in [15]. In order to describe a quotient of quantale which
is a frame, Rosenthal introduced the concept of a localic nucleus, and, by means of
commutative, right-sided and idempotent nuclei, gave a characterization for localic
nuclei. In terms of the largest localic nucleus, Rosenthal proved that the category Frm
of frames is a reflective subcategory of the category Quant of quantales. For quantic
conuclei, there is not quite richness of theory and examples as exhibited by quantic
nuclei, however it is important to analyze relationship between quantales and frames.
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In order to investigate relationship between quantic nuclei and quantic conuclei, Han
and Zhao introduced the concept of ideal conucleus, and proved that quantic nuclei
and ideal conuclei are in one-to-one correspondence in Girard quantale (see [4]). In
[15], Rosenthal introduced the concept of a localic conucleus, but he did not explore a
deep study for the localic conuclei. In this note, our purpose is to investigate different
kinds of localic conuclei. Furthermore, we shall give a characterization for (strong)
localic conuclei.

Definition 1 Aquantale is a complete lattice Qwith an associative binary operation
& satisfying:

a&(
∨

i

bi ) =
∨

i

(a&bi ) and (
∨

i

ai )&b =
∨

i

(ai&b)

for all a, b, ai , bi ∈ Q.

Definition 2 Let Q be a quantale, a ∈ Q.
(i) a is right-sided iff a&1 ≤ a;
(ii) a is left-sided iff 1&a ≤ a; (iii) a is two-sided iff a is both right-sided and left-
sided;
(iv) a is idempotent iff a&a = a;
(v) a is semiprime iff b&b ≤ a =⇒ b ≤ a for all b ∈ Q.

A subset S ⊆ Q is a subquantale of Q if it is closed under sups and &.

Definition 3 Let Q be a quantale. A quantic conucleus on Q is a coclosure operator
g such that g(a)&g(b) ≤ g(a&b) for all a, b ∈ Q.

We denote by CN(Q) the set of all quantic conuclei on Q. Then CN(Q) is a
complete lattice with the pointwise order.

Lemma 1 Let Q be a quantale, g, k ∈ CN (Q). Then g ≤ k ⇐⇒ Qg ⊆ Qk.

Theorem 1 ([15]) Let Q be a quantale. If g is a quantaic conucleus (nucleus) on Q,
then Qg = {a ∈ Q : g(a) = a} is a subquantale (quantic quotient) of Q. Moreover,
if S is any subquantale (quantic quotient) of Q, then S = Qg for some quantic
conucleus (nucleus) g.

For the notions and concepts, which are not explained here, please refer to
[1, 15].

2 Localic Conuclei

In [15], Roenthal introduced the concept of localic conucleus, but he did not explore
a thorough study of localic conuclei. Although there is not quite richness of theory
and examples as exhibited by localic nuclei, localic conuclei also play an important
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role in studying relationship between quantales and frames. In this section, we shall
investigate properties of (strong) localic conuclei and give their characterization.

Let Q be a quantale, S ⊆ Q. 〈S〉 denotes the subquantale generated by S, that
is, 〈S〉 = ⋂{K ⊆ Q | K is a subquantale, S ⊆ K }, and (S) denote the semigroup
generated by S. We denote by gS the quantic conucleus determined by 〈S〉.
Lemma 2 ([6]) Let Q be a quantale, S ⊆ Q. Then each element of 〈S〉 can be
represented by elements of (S), that is, for each element q ∈ 〈S〉, there exists a
subset U ⊆ (S) such that q = ∨

U.

Corollary 1 Let Q be a quantale, S ⊆ Q. Then gS (a) = ∨{s ∈ (S) | s ≤ a} for all
a ∈ Q.

LetP(Q) denote the set of all subsets of Q. ThenP(Q) is a complete lattice with
the inclusion order. We have the following proposition.

Proposition 1 Let Q be a quantale. Then g
()
: P(Q) → CN (Q) is left adjoint to

Q
()
: CN (Q) → P(Q).

Proof It suffices to prove that ∀g ∈ CN (Q), S ∈ P(Q), gS ≤ g ⇐⇒ S ⊆ Qg.
Let gS ≤ g. Then by Lemma 1 and Theorem 1we have QgS

⊆ Qg , and S ⊆ 〈S〉 =
QgS

, which implies S ⊆ Qg Conversely, let S ⊆ Qg , then 〈S〉 ⊆ Qg , and gS ≤ gQg
=

g, that is, gS ≤ g. �

In what follows we shall consider different quantic conuclei.

Definition 4 Let Q be a quantale, g a quantic conucleus. Then g is called com-
mutative (weak commutative) provided that g(a&b) = g(b&a) (g(a)&g(b) = g(b)
&g(a)) for all a, b ∈ Q.

Definition 5 Let Q be a quantale and c ∈ Q. Then c is called co-symmetric provided
that c ≤ a&b ⇐⇒ c ≤ b&a for all a, b ∈ Q.

We denote by CS(Q) the set of all co-symmetric elements of Q.

Proposition 2 Let Q be a quantale, g a quantic conucleus. Then
(i) If g is commutative, then g is weak commutative;
(ii) g is commutative if and only if Qg ⊆ CS(Q);
(iii) g is weak commutative if and only if Qg is commutative.

Proof (i) Let g be a commutative conucleus. Then for all a, b ∈ Q, we have
g(a)&g(b) ∈ Qg and g(b)&g(a) ∈ Qg, which implies g(a)&g(b) = g(g(a)

&g(b)) = g(g(b)&g(a)) = g(b)&g(a), that is, g is weak commutative.
(ii) Let g be commutative and g(a) ≤ b&c. Then g(a) ≤ g(b&c) = g(c&b) ≤

c&b, which implies g(a) ∈ CS(Q), that is, Qg ⊆ CS(Q). Conversely, let Qg ⊆
CS(Q). Then for all a, b ∈ Q, we have g(a&b) = ∨{x ∈ Qg | x ≤ a&b} = ∨{y ∈
Qg | y ≤ b&a} = g(b&a), that is, g is commutative.

(iii) The proof is straightforward. �
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Proposition 3 Let Q be a quantale, g a quantic conucleus. Then g is commutative
if and only if there exists a subset K ⊆ CS(Q) such that (K ,&) is a semigroup and
g = gK .

Proof The proof directly follows from Theorem 1, Lemma 2 and Proposition 2. �

Definition 6 Let Q be a quantale, g a quantic conucleus. g is called right-sided
(weak right-sided) provided that g(a&1) ≤ g(a) (g(a)&g(1) ≤ g(a)) for all a ∈ Q.

Definition 7 Let Q be a quantale, c ∈ Q. c is called a co-right-sided prime element
provided that c ≤ a&1 =⇒ c ≤ a for all a ∈ Q.

Let CRP(Q) denote the set of all co-right-sided prime elements of Q.

Proposition 4 Let Q be a quantale and g be a quantic conucleus. Then
(i) If g is right-sided, then g is weak right-sided;
(ii) g is weak right-sided ⇐⇒ Qg is right-sided;
(iii) g is right-sided ⇐⇒ Qg ⊆ CRP(Q).

Proof The proof is similar to that of Proposition 2. �

Definition 8 Let Q be a quantale and g a quantic conucleus. g is called idempotent
(weak idempotent) provided that g(a&a) = g(a) (g(a)&g(a) = g(a)) for all a ∈ Q.

Definition 9 Let Q be a quantale, c ∈ Q. c is called a co-semiprime element pro-
vided that c ≤ a&a =⇒ c ≤ a for all a ∈ Q.

We denote by CSP(Q) the set of all co-semiprime elements of Q.

Proposition 5 Let Q be a quantale and g a quantic conucleus. Then
(i) If g is idempotent, then g is weak idempotent;
(ii) g is weak idempotent if and only if Qg is idempotent;
(iii) g is idempotent if and only if Qg ⊆ CSP(Q) and Qg is idempotent.

Proof The proof is similar to that of Proposition 2. �

Lemma 3 Let Q be a quantale and g a coclosure operator on Q. Then g(a ∧ b) =
g(a ∧ g(b)) = g(g(a) ∧ b) = g(g(a) ∧ g(b)) for all a, b ∈ Q.

Proof The proof is easy. �

Definition 10 Let Q be a quantale, g a coclosure operator on Q. g is called localic
provided that g(a ∧ b) = g(a)&g(b) for all a, b ∈ Q.

Proposition 6 Let g be a localic coclosure operator on a quantale Q. Then g is a
quantic conucleus on Q.

Proof It suffices to prove that g(a)&g(b) ≤ g(a&b) for all a, b ∈ Q.
For all a, b∈ Q, by Lemma 3we have g(a)&g(b)= g(a ∧ b)= g(g(a) ∧ g(b)) =

g(g(g(a) ∧ g(b))) = g(g(g(a))&g(g(b))) = g(g(a)&g(b)) ≤ g(a&b). �
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From Proposition 6, we can see that the concept of localic coclosure operator and
the concept of localic conucleus introduced in [15] are equivalent.

Proposition 7 ([15]) Let Q be a quantale and g a quantic conucleus. Then g is
localic ⇐⇒ Qg is a frame with & = ∧g .

Proposition 8 Let Q be a quantale and g be a quantic conucleus. Then the following
statements are equivalent:
(i) g is localic;
(ii) Qg is a frame with & = ∧g;
(iii) g is weak commutative, weak right-sided and weak idempotent.

Proof (i) ⇐⇒ (i i) and (i) =⇒ (i i i) are obvious.
(i i i) =⇒ (i) For all a, b ∈ Q, we have that (1) g(a ∧ b) ≤ g(a), g(a ∧ b) ≤

g(b) =⇒ g(a ∧ b) = g(a ∧ b)&g(a ∧ b) ≤ g(a)&g(b); (2) g(a)&g(b) ≤ g(a) ≤ a
and g(a)&g(b) = g(b)&g(a) ≤ g(b) ≤ b =⇒ g(a)&g(b) ≤ a ∧ b =⇒ g(a)

&g(b) ≤ g(a ∧ b). Thus, g(a ∧ b) = g(a)&g(b), which indicates that g is
localic. �

Definition 11 Let Q be a quantale and g a quantic conucleus. g is called strong
localic provided that g(a ∧ b) = g(a&b) for all a, b ∈ Q.

Proposition 9 Let Q be a quantale and g a strong localic conucleus. Then g is a
semigroup homomorphism, that is, g(a&b) = g(a)&g(b) for all a, b ∈ Q.

Proof For all a, b ∈ Q, by Lemma 3 we have g(a)&g(b) ≤ g(a&b) = g(a ∧ b) =
g(g(a) ∧ g(b)) = g(g(a)&g(b)) ≤ g(a)&g(b), which implies g(a&b) = g(a)

&g(b). �

Proposition 10 Let Q be a quantale and g a quantic conucleus. Then the following
are equivalent
(i) g is strong localic;
(ii) g is commutative, right-sided and idempotent.

Proof (i) =⇒ (i i) is obvious.
(i i) =⇒ (i) For all a, b ∈ Q, (1) Since g is idempotent, we have (a ∧ b)&(a ∧

b) ≤ a&b =⇒ g(a ∧ b) = g((a ∧ b)&(a ∧ b)) ≤ g(a&b); (2) Sinceg is right-sided
and commutative,we see that g(a&b) ≤ g(a&1) ≤ g(a) ≤ a and g(a&b) = g(b&a)

≤ b =⇒ g(a&b) ≤ a ∧ b =⇒ g(a&b) ≤ g(a ∧ b). Thus, g(a ∧ b) =
g(a&b), which indicates that g is strong localic. �

Proposition 11 Let Q be a quantale and g a quantic conucleus. Then g is strong
localic if and only if g is localic and g is also a semigroup homomorphism.

Proof The proof directly follows from Proposition 10. �

Let ε(Q) denote the set {a ∈ Q | a is idempotent and two-sided}. In [15], Rosen-
thal gave the following proposition.
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Proposition 12 ([15]) The following are equivalent for a quantale Q.
(i) Q has the largest localic subquantale;
(ii) ε(Q) is a frame with & = ∧;
(iii) e& f = f&e for all e, f ∈ ε(Q).

In fact, the above proposition is not right. The following example indicates the
case.

Example 1 Let Q = {0, a, 1} be a quantale with a binary operation & defined by the
table below

& 0 a 1
0 0 0 0
a 0 a 1
1 0 1 1

It is easy to verify that there only exists two localic subquantales ε(Q) = {0, 1}
and S = {0, a} in Q, but there does not exist the largest localic subquantale.

If a quantale satisfies some condition, then the result of Proposition 12 holds.

Proposition 13 If Q is a two-sided quantale, then Q has the largest localic sub-
quantale if and only if ε(Q) is a subquantale.

Proposition 14 If Q is a commutative two-sided quantale, then ε(Q) is the largest
localic subquantale.
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An Equivalent Form of Uncertain Measure

Xing-Fang Zhang and Feng-Xia Zhang

Abstract A new measure, called uncertain measure, was presented by Liu in 2007
in order to deal with uncertainty, intelligently. The definition of uncertain measure
contains Normality axiom, Duality axiom and Subadditivity axiom for any sequence
of events. This paper gives an equivalent form of the definition by substituting Sub-
additivity axiomwith a new Subadditivity axiom, Compared with the original axiom,
the new axiom only requires that the subadditivity hold for mutually disjoint sets.
The equivalent form illustrates that we have twomethods to complete uncertain mea-
sure. One method is to preserve original axioms of uncertain measure, and to add the
property which is equivalent to the conditions with Normality, Duality and Subaddi-
tivity for any sequence of mutually disjoint events. The other is to change the third
axiom of uncertain measure into Subadditivity for any sequence of mutually disjoint
events, and the front three axioms of uncertain measure is regarded as a property.

Keywords Uncertain measure ·Axiom ·Uncertainty theory · Equivalent condition

1 Introduction

In real life there are many kinds of uncertain parameters, for example, the price
of a product at tomorrow, the life of a light bulb, the time of dealing with a task
at tomorrow, etc. At the earliest, people gave it a real number directly by the most
simple way. In 1933, A.N. Kolmogoroff put forward probabilistic measure according
to the nature of the frequency that the random events happen. Probability theory was
founded based on it. Naturally, people applied probability theory to make uncertain
parameters [1, 2]. In 1965, Zadeh proposed fuzzy set theory. So fuzzy set theory
is apply to such problems [4]. In 2007, Baoding Liu also put forward a new theory
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called uncertainty theory to intelligently deal with uncertain parameters [4]. Later
the theory was completed gradually [5–7]. At present, it have been recognized to be
scientific. It has been widely applied to uncertain programming [3, 8–10], uncertain
game [11, 12], uncertain process [13], Zhang, 2013 [14], uncertain logic [15–17]
etc.

Probability theory origins from the statistical frequency. Naturally, for uncertain
parameterswith sufficient historical data, it is themost scientific to dealwith uncertain
parameters by using probability theory. This fact has been approved by many people.
In the circumstances of no historical data or the lack of historical data, people have
recognized to make decisions by experts’ evaluation. However, it is still disputable
that which method (subjective probability, fuzzy set theory and uncertainty theory) is
the best. Fuzzy set theory origins from the fuzzy concepts, such as tall, young people,
old people, bald, etc. While the characteristics of the uncertain parameters are dif-
ferent from fuzzy concepts. In objective recognition, uncertain parameter is unique,
but not sure. So we should build this theory based on two-valued logic. However, the
point of view of fuzzy set theory is: a fuzzy proposition is often neither true nor false,
it has a third possibility. This shows that it firstly denies two-valued logic. Naturally, it
does not satisfy the dual law and the law of contradiction. Therefore, fuzzy set theory
is not appropriate to deal with uncertain parameters. Subjective probability theory
and uncertainty theory are based on two-valued logic, and satisfy the dual law and
the law of contradiction. So they are more scientific relatively to deal with uncertain
parameters. The key of subjectively dealing with uncertain parameters is how to rea-
sonably select: disjunction and conjunction. At present, people have recognized that
triangle norm is an ideal operator tomeasure conjunction∩. In uncertainty theory, the
disjunction ∪ is restricted between triangle conorm-supremum and triangle conorm-
sum, and it uses triangle norm-infimum to measure conjunction. Uncertainty theory
is more scientific than subjective probability theory because it allows the hesitation
of cognition.

Uncertainmeasure is a basic concept in uncertainty theory. It includes four axioms:
Normality, Duality, Subadditivity and Product uncertainty measure. Where, Subad-
ditivity axiom is not convenient for application. Therefore, the paper will give its an
equivalent and convenient form.

2 Uncertain Measure and Its an Equivalent Form

Firstly, we introduce Liu’s uncertain measure.

Definition 1 ([4–7]) Let L be a σ-algebra on nonempty set Γ. A set function M is
called an uncertain measure on L if it satisfies the following axioms:

Axiom 1 (Normality) M{Γ } = 1, for the universal set Γ ;

Axiom 2 (Duality) M{Λ} + M{Λc} = 1, for any event Λ;
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Axiom 3 (Subadditivity) For every countable sequence of events {Λi }, we have

∞∨

i=1

M{Λi } ≤ M

{ ∞⋃

i=1

Λi

}

≤
∞∑

i=1

M{Λi }.

In this case, the triple (Γ, L , M) is called an uncertainty space.
Liu (2009) further presented the following axiom.
Let (Γk, Lk, Mk) be uncertainty spaces for k = 1, 2, . . . Write

Γ = Γ1 × Γ2 × · · · , L = L1 × L2 × · · ·

Then the product uncertain measure M on the product σ-algebra L is defined by the
following product axiom.

Axiom 4 (ProductAxiom)Let (Γk, Lk, Mk)beuncertainty spaces for k = 1, 2, . . . .
Then the product uncertain measure M is an uncertain measure satisfying

M

{ ∞∏

k=1

Λk

}

=
∞∧

k=1

Mk{Λk},

where Λk are arbitrarily chosen events from Lk for k = 1, 2, . . . . respectively.

We give an equivalent condition of uncertain measure in the following.

Theorem 1 Let L beaσ-algebraonnonempty setΓ.Aset function M is anuncertain
measure if and only if:

Condition 1 (Normality) M{Γ } = 1, for the universal set Γ ;

Condition 2 (Duality) M{Λ} + M{Λc} = 1, for each event Λ;

Condition 3 (Subadditivity) For every countable mutually disjoint sequence of
events {Λi }, we have

∞∨

i=1

M{Λi } ≤ M

{ ∞⋃

i=1

Λi

}

≤
∞∑

i=1

M{Λi }.

Proof The necessity is obvious. We only prove the sufficiency.
For sufficiency, it is obvious that we only need to prove that for every countable

sequence of events {Λi },

∞∨

i=1

M{Λi } ≤ M

{ ∞⋃

i=1

Λi

}

≤
∞∑

i=1

M{Λi }.
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First monotony holds. In fact, for any event A, B ∈ Ł, A ⊆ B,

since

B = A ∪ (B − A), A ∩ (B − A) = ∅,

we have

M{A} ≤ M{A} ∨ M{B − A} ≤ M{A ∪ (B − A)} = M{B}

by conditions 3. Thus, M{A} ≤ M{B}.
We prove that condition 3 holds in the following.
Since B ⊆ A ∪ B and A ⊆ A ∪ B, it follows that

M{B} ≤ M{A ∪ B}, M{A} ≤ M{A ∪ B}.

Therefore
M{B} ∨ M{A} ≤ M{A ∪ B}. (1)

Since

B = A ∪ B = A ∪ (B − B ∩ A), A ∩ (B − B ∩ A) = ∅,

we have

M{A ∪ B} ≤ M{A} + M{B − B ∩ A}

by conditions 3.
Note that B − B ∩ A ⊆ B. Thus M{B ∩ A ⊆ B} ≤ M{B} by monotonicity.

Therefore,

M{A ∪ B} ≤ M{A} + M{B}. (2)

Thus we have M{A} ∨ M{B} ≤ M{A ∪ B} ≤ M{A} + M{B} by (1) and (2). �

In general, it is obvious that for every countable sequence of events {Λi },

∞∨

i=1

M{Λi } ≤ M

{ ∞⋃

i=1

Λi

}

≤
∞∑

i=1

M{Λi }.

The equivalent form is very necessary. Since, in practical application, it is possible
that some scholars say that a set function with Normality, Duality and Subadditivity
for any sequence of mutually disjoint events is an uncertain measure. It is obvious
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that this not verifies completely the first three axioms of uncertain measure. Now
we may say that a set function with Normality, Duality and Subadditivity for any
sequence of mutually disjoint events is an uncertain measure according to Theorem
1. It is obvious that it simplifies procedures to verify if a set function is an uncertain
measure. Therefore the three conditions in the above theorem are more convenient
than the first three axioms of uncertain measure in application.

3 Conclusions

The contribution of the paper is to give an equivalent form of the first three axioms
of uncertain measure. This equivalent form illustrates that we have two methods
to complete uncertain measure. One method is to preserve the original axioms of
uncertain measure, and to add the property which is equivalent to the conditions with
Normality, Duality and Subadditivity for any sequence of mutually disjoint events.
The other is to change the third axiom of uncertain measure into Subadditivity for
any sequence of mutually disjoint events, and the first three axioms of uncertain
measure is regarded as a property.
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A Propositional Logic System for Regular
Double Stone Algebra

Hua-Li Liu and Yan-Hong She

Abstract Rough set theory is a mathematical theory dealing with uncertain and
imprecise information. Since the inception of this theory, many approaches have
come to the fore, and resulted in different “rough logic” as well. In this paper, a kind
of propositional logic system with semantics based on regular double stone algebra
is proposed, and its soundness and completeness theorems with respect to rough set
semantics are also obtained.

Keywords Rough set · Rough logic · Regular double stone algebra · Soundness
theorem · Completeness theorem

1 Introduction

Rough set theory [1, 2] is proposed by Pawlak to account for the definability of a
concept in terms of some elementary ones in an approximation space. It captures and
formalizes the basic phenomenon of information granulation. The finer the granula-
tion is, the more concepts are definable in it. For those concepts not definable in an
approximation space, the lower and upper approximations for them can be defined.
Recent years have witnessed its wide application in intelligent data analysis, decision
making, machine learning and other related fields [3–5].

Since the inception of rough set theory, many scholars have studied rough sets
from the perspective of rough set pairs and seek to capture the abstract feature of
rough set pairs, which resulted in a series of abstract structures for rough sets. For
instance, Iwinski [6] suggested a lattice-theoretic approach. Iwinski’s aim, which
was later extended by Pomykala [7], was to endow the rough sets of (U, R) with a
natural algebraic structure. Gehrke and Walker [8] extended the work of Pomykala

H.-L. Liu · Y.-H. She (B)
College of Science, Xi’an Shiyou University, Xi’an 710065, China
e-mail: yanhongshe@yeah.net, yanhongshe@gmail.com

H.-L. Liu
e-mail: lhl1901@163.com

© Springer International Publishing Switzerland 2017
T.-H. Fan et al. (eds.), Quantitative Logic and Soft Computing 2016,
Advances in Intelligent Systems and Computing 510,
DOI 10.1007/978-3-319-46206-6_15

137



138 H.-L. Liu and Y.-H. She

by proposing a precise structure theorem for the Stone algebra of rough sets, which is
in a setting more general than that in [7]. The work of Pomykala was also improved
by Comer [9] who noticed that the collection of rough sets of an approximation space
is, in fact, a regular double Stone algebra by introducing another unary operator, i.e.
the dual pseudo-complement operator. Comer [9] also showed the reverse result, i.e.
every regular double Stone algebra is isomorphic to a subalgebra of the rough set
algebra for some approximation space. Pagliani [10] investigated rough set systems
within the framework of Nelson algebras, and he showed that for any approximation
space, the corresponding rough set system can yield the structure of a semi-simple
Nelson algebra. He also showed that the converse direction of the above results hold
under the assumption of finite universe, i.e., any finite semi-simple Nelson algebra is
isomorphic to the rough set system induced by an approximation space.What’smore,
Banerjee and Chakraborty [11] proposed two algebraic structures called pre-rough
algebra and rough algebra, which are obtained by enriching the topological Boolean
algebra [11] with additional axioms.

Algebra theory and logic systems are strongly coupled in the development of
modern logic. Until now, diverse rough logics corresponding to rough set semantics
have been proposed. The notion of rough logic was initially proposed by Pawlak
in [12], in which five rough values, i.e., true, false, roughly true, roughly false and
roughly inconsistency were also introduced. This work was subsequently followed
by E. Ortowska and Vakarelov in a sequence of papers [13–15]. In [11], Banerjee
proposed two logic systemsL1 andL2 corresponding to pre-rough algebra and rough
algebra, respectively. These two formal logics include axioms and inference rules,
and in addition, the syntax and semantics are in perfect harmony, i.e., the correspond-
ing soundness theorem and completeness theorem hold. Sen and Chakraborty [16]
proposed a sequent calculus for topological quasi-Boolean algebras and pre-rough
algebras. As to regular double Stone algebra, Dü ntsch presented a corresponding
logic in [17], however, such a logic does not include axioms and inference rules,more-
over, the soundness and completeness theorem corresponding to the rough semantics
are not discussed. Dai [18] proposed a sequent calculus for rough sets with rough
double Stone algebra semantics, and obtained the corresponding soundness and com-
pleteness theorems.

In this paper, we aim to present a formal logic systemLr for rough set with regular
double Stone algebras. Our logic system contains axioms and inference rules, and
is also sound and complete with respect to the class of the regular double Stone
algebras. Moreover, the so-called standard completeness theorem for Lr is obtained,
i.e., Lr is complete w.r.t. the class of rough regular double Stone algebras.

2 Regular Double Stone Algebra

Let us first review the basic notions of rough set theory initially proposed by Pawlak.
Let U be a non-empty set, and R a binary equivalence relation on U . Then we

call (U, R) an approximation space. For any given subset A of U , we say that A
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is a definable set, if it is the union of some equivalence blocks induced by R, and
otherwise, a rough set. For any rough set X ⊆ U, two definable sets are employed
to approximate it from below and above, respectively, i.e.,

R(X) = {x |[x] ⊆ X}, R(X) = {x |[x] ∩ X �= ∅}, (1)

where [x] is the equivalence block containing x . Thenwe call R(X)(R̄(X)) the lower
approximation (upper approximation) of X . In what follows, we also identify a rough
set X with such a pair (R(X), R(X)). An easy verification shows that X is definable
if and only if R(X) = R(X).

Definition 1 ([7]) A Stone algebra (L ,∨,∧, ∗, 0, 1) is an algebra of type
(2, 2, 1, 0, 0) satisfying
(1) (L ,∨,∧, 0, 1) is a bounded distributive lattice;
(2) x∗ is the pseudo-complement of x , i.e., y ≤ x∗ if and only y ∧ x = 0;
(3) x∗ ∨ x∗∗ = 1.

Definition 2 ([9]) A double Stone algebra (L ,∨,∧, ∗,+, 0, 1) is an algebra of the
type (2, 2, 1, 1, 0, 0) such that
(1) (L ,∨,∧, 0, 1) a bounded distributive lattice with the least element 0 and the
largest element 1;
(2) x∗ is the pseudo-complement of x , i.e., y ≤ x∗ if and only y ∧ x = 0;
(3) x+ is the dual pseudo-complement of x , i.e., y ≥ x+ if and only y ∨ x = 1;
(4) x∗ ∨ x∗∗ = 1, x+ ∧ x++ = 0.

(L ,∨,∧, ∗,+, 0, 1) is regular, if it additionally satisfies

∀x, y ∈ L , x ∧ x+ ≤ y ∨ y∗. (2)

This is also equivalent to the fact that x∗ = y∗ and x+ = y+ imply x = y.
Let (U, R) be an approximation space, and RS(U ) the collection of all rough sets

in (U, R), i.e., RS(U ) = {(R(X), R(X))|X ⊆ U }. It was observed by Pomykala
that for any given approximation space (U, R), RS(U ) can be made into a Stone
algebra RS = (RS(U ),∨,∧, ∗, (∅,∅), (U,U )), where

(R(X), R(X)) ∨ (R(Y ), R̄(Y )) = (R(X) ∪ R(Y ), R̄(X) ∩ R̄(Y )),

(R(X), R(X)) ∧ (R(Y ), R̄(Y )) = (R(X) ∩ R(Y ), R̄(X) ∩ R̄(Y )),

(R(X), R̄(X))∗ = (U − R̄(X),U − R̄(X)) = (R̄(X)c, R̄(X)c).
It has been proved in the literature that the above operators are well defined. This

work was subsequently improved by Comer [9], who noticed that RS(U ) is in fact a
regular double Stone algebra, when one introduces the dual pseudo-complement +
by

(R(X), R̄(X))+ = (U − R(X),U − R(X)) = (R(X)c, R(X)c).

Wewill callRS = (RS(U ),∨,∧, ∗,+, (∅,∅), (U,U )) rough double Stone alge-
bra in what follows.

Regular double Stone algebra enjoys the following representation theorem.
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Theorem 1 ([9]) Each regular double Stone algebra is isomorphic to a subalgebra
of RS.

3 A Propositional Logic System Lr for Regular Double
Stone Algebra

The language ofLr consists of propositional variables p1, p2, . . . , pn, . . .(also called
atomic formulae) and logic symbols ∨,∧,+, ∗. The formation rules are as usual. In
Lr , one additional logic connective → is defined as follows:

A → B = (A+ ∨ B++) ∧ (A∗ ∨ B∗∗). (3)

The set of logic formulae is denoted by F(S).

Definition 3 The set of axioms inLr consists of the formulae of the following forms:
(1) A ∧ B → A;
(2) A ∧ B → B;
(3) A → A;
(4) A → A ∨ B;
(5) A ∨ B → B ∨ A;
(6) (A ∨ B) ∧ (A ∨ C) → A ∨ (B ∧ C);
(7) A∗ ∨ A∗∗;
(8) A+ ∧ A++ → ⊥;
(9) ⊥ → A.

The inference rules are as follows:

(1) MP rule: {A, A → B} � B;
(2) HS rule: {A → B, B → C} � A → C ;
(3) {A → B, A → C} � A → B ∧ C,

(4) {A → C, B → C} � A ∨ B → C ;
(5) {B} � A → B;
(6) {A ∧ B → ⊥} � B → A∗;
(7) {B → A∗} � A ∧ B → ⊥;
(8) {A ∨ B} � A+ → B;
(9) {A+ → B} � A ∨ B;

(10) {A∗ → B∗, A+ → B+} � B → A;
(11) {A → B} � B∗ → A∗;
(12) {A → B} � B+ → A+.

In Lr , syntactic notions such as theorems, Γ -consequence can be given in an usual
manner, and hence is omitted here.
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Presented below is the concept of valuation in Lr .

Definition 4 Let (L ,∨,∧, ∗,+, 0, 1) be a regular double Stone algebra. A map-
ping v : F(S) → L called a valuation in Lr if and only if it satisfies the following
conditions, i.e., ∀A, B ∈ F(S),

v(A ∨ B) = v(A) ∨ v(B), (4)

v(A ∧ B) = v(A) ∧ v(B), (5)

v(A∗) = v(A)∗, (6)

v(A+) = v(A)+, (7)

v(⊥) = 0. (8)

In what follows, the set of all valuations v : F(S) → L is denoted by Ω .

Definition 5 Let Γ ⊆ F(S), B ∈ F(S), then B is called a semantic consequence of
Γ (denoted by Γ |= B) if and only if ∀A ∈ Γ, v(A) = 1 implies v(B) = 1 for any
valuation v ∈ Ω. Particularly, if Γ = ∅, then we say that B is a valid formula.

Now, we are ready to present the most important results of this paper, i.e., the
soundness theorem and completeness theorem of Lr .

Theorem 2 ∀A ∈ F(S), Γ ⊆ F(S), Γ � A if and only if Γ |= A.

To prove Theorem 2, we need the following lemma.

Lemma 1 Let (L ,∨,∧, ∗,+, 0, 1) be a regular double Stone algebra and v :
F(S) −→ L any valuation in Ω. Then for any two formulae A, B ∈ F(S), v(A →
B) = 1 if and only if v(A) ≤ v(B).

Proof We have from the definition of valuation that v(A → B) = v((A+ ∨ B++) ∧
(A∗ ∨ B∗∗)) = (v(A)+ ∨ v(B)++) ∧ (v(A)∗ ∨ v(B)∗∗). Moreover, it follows from
the representation theorem of regular double Stone algebra that (L ,∨,∧, ∗,+, 0, 1)
is isomorphic to a subalgebra of some rough double Stone algebraRS = (RS(U ),∨,

∧, ∗, (∅,∅), (U,U )), i.e., (L ,∨,∧, ∗,+, 0, 1) can be embedded intoRS. �
Assume that f : L −→ RS(U ) is the embedding mapping and f (v(A)) =

(X , X̄), f (v(B)) = (Y , Ȳ ). Then

v(A → B) = 1 ⇔ f (v(A → B)) = (U,U )

⇔ ((X , X̄)+ ∨ (Y , Ȳ )++) ∧ ((X , X)∗ ∨ (Y , Ȳ )∗∗) = (U,U )

⇔ (Xc ∪ Y , Xc ∪ Y ) ∧ (X̄ c ∪ Ȳ , X̄ c ∪ Ȳ ) = (U,U )

⇔ Xc ∪ Y = U, X̄ c ∪ Ȳ = U
⇔ X ⊆ Y , X̄ ⊆ Ȳ
⇔ f (v(A)) ≤ f (v(B))

⇔ v(A) ≤ v(B).

This completes the proof of Lemma 1.
Now let’s turn to the proof of Theorem 2.
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Proof “Necessity.”We only need to show that each axiom is valid and each inference
rule preserves validity.

It can be easily verified that each axiom is valid and hence is omitted here.
For inference rules, we will only show that both (1) and (10) preserve validity.

The others can be proved similarly.
(1) Let v be any valuation in Ω, then we have from the validity of A and A →

B that v(A) = 1 and v(A → B) = 1. By Lemma 1, v(A → B) = 1 immediately
entails that v(A) ≤ v(B), which yields v(B) = 1, and hence, B is valid due to the
arbitrariness of v.

(10) Let v be any valuation in Ω. To show that B → A is valid, it suffices to
show that v(B → A) = 1. Then by Lemma 1, it is also equivalent to prove that
v(B) ≤ v(A).

We still denote by f the embeddingmapping and f (v(A)) = (X , X̄), f (v(B)) =
(Y , Ȳ ) as in the proof of Lemma 1. Then it follows immediately that v(B) ≤ v(A)

if and only if f (v(B)) ≤ f (v(A)).

We have from the validity of A∗ → B∗ and A+ → B+ and Lemma 1 that
v(A∗) ≤ v(B∗) and v(A+) ≤ v(B+),which implies that f (v(A∗)) ≤ f (v(B∗)) and
f (v(A+)) ≤ f (v(B+)), i.e., (Xc, Xc) ≤ (Y c,Y c) and (X̄ c, X̄ c) ≤ (Ȳ c, Ȳ c), and
hence, f (v(B)) ≤ f (v(A)).

“Sufficiency.” We will adopt the usual Lindenbaum algebra approach as follows.
To this end, we first define a binary relation ≈ on the set of logic formulae F(S)

in the following manner:

∀A, B ∈ F(S), A ≈ B ⇔ Γ � A ↔ B.

It is routine to show that ≈ is a congruence relation, and an induced quotient algebra
(F(S)/ ≈,∨,∧, [⊥], [T ])(T is any theorem in Lr ) is therefore obtained.

We will further prove that (F(S)/ ≈,∨,∧, [⊥], [T ]) is a regular double Stone
algebra with the least element [⊥] and the largest element [T ], respectively.

To do this, define a binary relation ≤ on F(S)/ ≈ as follows:

∀[A], [B] ∈ F(S)/ ≈, [A] ≤ [B] ⇔ Γ � A → B.

It can be easily verified that ≤ is a partial order on F(S)/ ≈, and [A ∨ B], [A ∧ B]
are the least upper bound and the largest lower bound of {[A], [B]}, respectively.
Moreover, axiom (9) follows and ∀A ∈ F(S), Γ � A → T that [⊥] and [T ] are the
least element and the largest element of F(S)/ ≈, respectively, which shows that
(F(S)/ ≈,∨,∧, [⊥], [T ]) is a bounded lattice.

We now will show that all the conditions in Definition 2 hold.
(1) It can be proved that in Lr , � A ∨ (B ∧ C) → (A ∨ B) ∧ (A ∨ C), which

together with axiom (6) immediately entail the distributivity of (F(S)/ ≈,∨,∧,

[⊥], [T ]).
(2) [A] ∧ [B] = [⊥] if and only ifΓ � (A ∧ B →⊥) ∧ (⊥→ A ∧ B) if and only

if Γ � A ∧ B →⊥ if and only if Γ � B → A∗ if and only if [B] ≤ [A]∗, where the
penultimate “if and only if” holds due to the inference rule (6) in Definition 3.
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(3) It can be proved similarly as above.
(4) It follows from axiom (7) and (8) that [A]∗ ∨ [A]∗∗ = [A∗ ∨ A∗∗] = [T ], and

[A]+ ∧ [A]++ = [A+ ∧ A++] = [⊥].
(5) If [A]∗ = [B]∗, [A]+ = [B]+, i.e., [A∗] = [B∗], [A+] = [B+], then we have

Γ � (A∗ → B∗) ∧ (B∗ → A∗), Γ � (A+ → B+) ∧ (B+ → A+). It follows from
the inference (10) in Definition 3 that Γ � A → B and Γ � B → A, which imme-
diately yield [A] = [B].

The above argument shows that (F(S)/ ≈,∨,∧, [⊥], [T ]) is indeed a regular
double Stone algebra.

If Γ |= A, then by Definition 5, for any regular double Stone algebra
L = (L ,∨,∧, ∗,+, 0, 1) and any valuation v ∈ Ω , ∀B ∈ Γ, v(B) = 1 implies that
v(A) = 1. Particularly, let L = (F(S)/ ≈,∨,∧, [⊥], [T ]), and v0 : S → F(S)/ ≈
be a mapping satisfying v0(p) = [p] and v0(⊥) = [⊥]. It can be extended to F(S) in
the followingmanner, and the obtainedmapping is denoted by v : F(S) → F(S)/ ≈:

v(p) = v0(p) = [p], v(⊥) = v0(⊥) = [⊥],

v(A ∧ B) = v(A) ∧ v(B),

v(A ∨ B) = v(A) ∨ v(B),

v(A∗) = v(A)∗,

v(A+) = v(A)+.

Obviously, v : F(S) −→ F(S)/ ≈ is a valuation.Wewill prove∀C ∈ F(S), v(C) =
[C] by induction on the number n of logic connectives contained in C below.

In case n = 0, i.e.,C is either an atomic proposition orC =⊥, then the conclusion
holds obviously.

Suppose that the conclusion holds when n ≤ k. Now, let’s consider the case of
n = k + 1.

There are still four subcases to be considered.
(1) If C = C1 ∨ C2, where the number of logic connectives contained in both C1

and C2 are less or equal to k, then v(C) = v(C1 ∨ C2) = v(C1) ∨ v(C2) = [C1] ∨
[C2] = [C1 ∨ C2] = [C].

(2) In case C = C1 ∧ C2, it can be proved similarly as above.
(3) If C = D∗, then v(C) = v(D∗) = v(D)∗ = [D]∗ = [D∗] = [C].
(4) In case C = [D+], it can be proved similarly as above.
It can be easily verified that ∀B ∈ Γ, v(B) = [B] = [T ], i.e., v(B) is the largest

element of F(S)/ ≈ . Combining with Γ |= A, we have that v(A) = [A] = [T ],
i.e., Γ � (A → T ) ∧ (T → A), whence Γ � A immediately follows.

This completes the proof of Theorem 2. �

Rough double Stone algebra is a special kind of regular double Stone algebra.
The following theorem will show thatLr enjoys the standard completeness theorem,
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i.e., it is complete with respect to the class of rough double Stone algebras. In what
follows, Γ |=R A means that A is the consequence of Γ with respect to the class of
rough double Stone algebras.

Theorem 3 Let A ∈ F(S), Γ ⊆ F(S), then Γ � A if and only if Γ |=R A.

Proof If Γ � A, then by Theorem 2, Γ |=R A.

For the converse direction, we only need to show that for any regular double Stone
algebra (L ,∨,∧, ∗,+, 0, 1) and any valuation v : F(S) −→ L satisfying ∀B ∈
Γ, v(B) = 1, v(A) = 1 holds. It follows from the representation theorem of reg-
ular double Stone algebra that (L ,∨,∧, ∗,+, 0, 1) is isomorphic to a subalgebra of
some rough double Stone algebra RS(U ) = (RS(U ),∨,∧, ∗,+, (∅,∅), (U,U )),

i.e., (L ,∨,∧, ∗,+, 0, 1) can be embedded intoRS(U ). Assume that the embedding
mapping is i, then it can be easily verified that the compositional mapping i ◦ v :
F(S) −→ RSU is a valuation, and in addition,∀B ∈ Γ, (i ◦ v)(B) = (U,U ).Com-
bining with Γ |=R A, we have (i ◦ v)(A) = (U,U ), which entails that v(A) = 1.
Hence Γ |= A, then we have from Theorem 2 that Γ � A. This completes the proof
of Theorem 3. �

4 Concluding Remarks

In the present paper, a kind of propositional logic system with semantics based on
regular double stone algebra is proposed, and its soundness theorem and complete-
ness theorem with respect to rough set semantics are also obtained. As pointed by
one reviewer of this paper, relationship between Lr and the pre-rough logic system
L1 proposed by Banerjee and the rough set logic initiated in [17] is an attractive
research topic, we will study them subsequently.
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The Comparison of Expressiveness
Between LTL and IGPoLTL

Jia-Qi Dang and Yong-Ming Li

Abstract The expressiveness of linear temporal logic plays an important role in
model checking. But the expressiveness of linear temporal logic based on generalized
possibility measure has not been researched roundly.We compare the expressiveness
of linear temporal logic (LTL) and interval generalized possibilistic linear temporal
logic (IGPoLTL), and prove that LTL is a proper subclass of IGPoLTL. Besides,
we define the α-equivalence between LTL formulae and IGPoLTL formulae and get
some corresponding properties.

Keywords Interval generalized possibilistic linear temporal logic · Linear temporal
logic · Expressiveness · Model checking

1 Introduction

Model checking [1–3] is an effective automated verification technique to analyze
correctness of software and hardware design. The primary parts of model checking
includes three steps: abstracting the mathematical model of the system, specifying
the properties of the system, and verifying whether the system satisfies the properties
using model-checking algorithms. Generally, a finite state model or Kripke structure
is used to represent system. The properties of the system are specified using temporal
logic, such as linear temporal logic (LTL) or computation tree logic (CTL). The
verification phase gives a Boolean answer: the properties hold in the system or not
hold in it with counterexample.

Classical models and temporal logic usually are qualitative and Boolean. How-
ever, in reality, the systems, such as computer hardware and software systems, are
inevitably referred to a lot of uncertainty information, this will affect modeling and
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verifying of systems. In order to deal with the uncertain information, many quantita-
tive extensions of the state-transition model have been proposed, such as models that
embed state changes into times [1], models that assign probabilities [1], possibilities
[4, 5], multi-valued [6–8], or fuzzy [9–11], etc., methods, the quantitative temporal
logic such as probabilistic temporal logic [1], possibilistic temporal logic [4, 5],
fuzzy temporal temporal logic [9–11] are also proposed to represent the quantitative
properties of system.

Probabilistic computation tree logic (PCTL) and CTL are not comparable with
each other [1]. This indicates that PCTLcan be used for doingmodel checking of real-
world problems, which cannot handle classical CTL model checking. Possibilistic
CTL(PoCTL) is differ from PCTL, CTL is a proper subclass of PoCTL. However, the
expressiveness of linear temporal logic based on generalized possibility measure has
not been researched roundly, we have studied quantitative model checking of linear-
time properties based on generalized possibility measures [12]. This paper is based
on the above work to compare the expressiveness of LTL and interval generalized
possibilistic linear temporal logic (IGPoLTL).

The content of this paper is organized as follows. Section2 gives some preliminary
knowledge. Section3 gives the definition of equivalence between LTL formulae and
IGPoLTL formulae, and proves that LTL is a proper subclass of IGPoLTL, and defines
the α-equivalence between LTL formulae and IGPoLTL formulae.

2 Preliminaries

In this section, we introduce some notions of classical LTL and generalized possi-
bilistic linear temporal logic (GPoLTL), including the notion of Kripke structure and
the syntax and semantics of LTL as well as the notion of generalized possibilistic
Kripke structure and the syntax and semantics of GPoLTL.

2.1 Linear Temporal Logic

Definition 1 ([2]) A Kripke structure is a tuple M = (S, I, R, AP, L), where we
have the following:
(1) S is a countable, nonempty set of states;
(2) I ⊆ S is a set of initial states;
(3) R ⊆ S × S is a transition relation;
(4) AP is a set of atomic propositions;
(5) L : S −→ 2AP is a labeling function.

Definition 2 [1] (Syntax of LTL) LTL formulae over the set AP of atomic proposi-
tions are formed according to the following grammar:
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ϕ:: = true | a | ϕ1 ∧ ϕ2 | ¬ϕ | ©ϕ | ϕ1 � ϕ2

where a ∈ AP .

Definition 3 [1] (Semantics of LTL) Assume that π = s0s1s2 · · · is a path starting s0
in a Kripke structure M , πi = si si+1si+2 · · · and a ∈ AP . The satisfaction relation
(|=) is defined recursively as follows:

π |= true;
π |= a, iff a ∈ L(s0);
π |= ϕ1 ∧ ϕ2, iff π |= ϕ1 and π |= ϕ2;
π |= ¬ϕ, iff π � ϕ;
π |= ©ϕ, iff π1 |= ϕ;
π |= ϕ1 � ϕ2, iff ∃ j � 0, π j |= ϕ2, and πi |= ϕ1 for all 0 ≤ i < k.

2.2 Generalized Possibilistic Linear Temporal Logic

Definition 4 ([13]) A generalized possibilistic Kripke structure (GPKS, in short) is
a tuple M = (S, P, I, AP, L), where
(1) S is a countable, nonempty set of states;
(2) P : S × S −→ [0, 1] is a function, called possibilistic transition distribution func-
tion;
(3) I : S −→ [0, 1] is a function, called possibilistic initial distribution function;
(4) AP is a set of atomic propositions;
(5) L : S × AP −→ [0, 1] is a possibilistic labeling function, which can be viewed
as function mapping a state s to the fuzzy set of atomic propositions which are
possible in the state s, i.e., L(s, a) denotes the possibility or truth value of atomic
proposition a that is supposed to hold in s.

Furthermore, if the set S and AP are finite sets, then M = (S, P, I, AP, L) is
called a finite generalized possibilistic Kripke structure.

Remark 1 (1) In Definition 4, if we require the transition possibility distribution and
initial distribution to be normal, i.e., ∨s ′∈S P(s, s ′) = 1 and ∨s∈S I (s) = 1, and the
labeling function L is also crisp, i.e., L : S × AP −→ {0, 1}. Then we obtain the
notion of possibilistic Kripke structure (PKS) [4, 5]. In this case, we also say that M
is normal.
(2) Paths in GPKS M are infinite paths. They are defined as infinite state sequences
π = s0s1s2 · · · ∈ Sω such that P(si , si+1) > 0 for all i ≥ 0. Let Paths(M) denotes
the set of all paths in M , and Paths f in(M) denotes the set of finite path fragments
s0s1 · · · sn ,wheren ≥ 0 and P(si , si+1) > 0 for 0 ≤ i ≤ n − 1.Let Paths(s)denotes
the set of all paths in M that start in state s. Similarly, Paths f in(s) denotes the set
of finite fragments s0s1 · · · sn such that s0 = s.
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Definition 5 [12] (Syntax of GPoLTL) Generalized possibilistic linear temporal
logic (GPoLTL, in short) formulae over the set AP of atomic propositions are the
same as LTL formulae, which are formed according to the following grammar:

ϕ:: = true | a | ϕ1 ∧ ϕ2 | ¬ϕ | ©ϕ | ϕ1 � ϕ2

where a ∈ AP .

Other path formulae can be derived as follows:
ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2);
ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2;
♦ϕ = true � ϕ;
�ϕ = ¬♦¬ϕ;
ϕ1Rϕ2 = ¬(¬ϕ1 � ¬ϕ2).

Definition 6 [12] (Path semantics of GPoLTL) Assume that π = s0s1s2 · · · is a path
starting s0 in a GPKS M , πi = si si+1si+2 · · · , π[i] = si , ϕ is a GPoLTL formula,
its path semantics over M is a fuzzy set on Paths(M), i.e., ||ϕ||M :Paths(M) −→
[0, 1], which is defined recursively as follows:

||true||M(π) = 1;
||a||M(π) = L(s0, a);
||ϕ1 ∧ ϕ2||M(π) = ||ϕ1||M(π) ∧ ||ϕ2||M(π);
||¬ϕ||M(π) = 1 − ||ϕ||M(π);
|| © ϕ||M(π) = ||ϕ||M(π1);
||ϕ1 � ϕ2||M(π) = ∨

j≥0(||ϕ2||M(π j ) ∧ ∧
i< j ||ϕ1||M(πi )).

Definition 7 [12] (Language semantics of GPoLTL) Let ϕ be a GPoLTL formula.
The language semantics of ϕ over the alphabet Σ = [0, 1]AP (or Σ = l AP for some
finite subset l ⊆ [0, 1]) is a fuzzy ω-language, i.e., ||ϕ|| : Σω −→ [0, 1], which is
defined iteratively as follows: for σ = A0A1 · · · ∈ Σω , write σ j = A j A j+1 · · · ,

||true||(σ) = 1;
||a||(σ) = A0(a);
||ϕ1 ∧ ϕ2||(σ) = ||ϕ1||(σ) ∧ ||ϕ2||(σ);
||¬ϕ||(σ) = 1 − ||ϕ||(σ);
|| © ϕ||(σ) = ||ϕ||(σ1);
||ϕ1 � ϕ2||(σ) = ∨

j≥0(||ϕ2||(σ j ) ∧ ∧
i< j ||ϕ1||(σi )).

3 The Comparison of Expressiveness Between LTL
and IGPoLTL

In this section, we first define the equivalence between LTL formulae and IGPoLTL
formulae and prove the relation of LTL and interval generalized possibilistic lin-
ear temporal logic (IGPoLTL). In addition, we define α-equivalence between LTL
formulae and IGPoLTL formulae.
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3.1 Definition of Equivalence Between LTL Formulae
and IGPoLTL Formulae

Definition 8 (Syntax of IGPoLTL) IGPoLTL formulae over the set AP of atomic
propositions are formed according to the following grammar:

ϕ:: = true | aJ | ϕ1 ∧ ϕ2 | ¬ϕ | ©ϕ | ϕ1 � ϕ2

where a ∈ AP , J ⊆ [0, 1].
Definition 9 (Semantics of IGPoLTL) Assume that π = s0s1s2 · · · is a path starting
from s0 in aGPKSM ,πi = si si+1si+2 · · · ,π[i] = si ,ϕ andψ are IGPoLTL formulae,
The satisfaction relation (|=) is defined recursively as follows:

π |= true;
π |= aJ , iff L(s0, a) ∈ J ;
π |= ϕ ∧ ψ, iff π |= ϕ and π |= ψ;
π |= ¬ϕ, iff π � ϕ;
π |= ©ϕ, iff π1 |= ϕ;
π |= ϕ � ψ, iff ∃ j � 0, π j |= ψ, and πi |= ϕ for all 0 ≤ i < k.

Definition 10 For a generalized possibilisticKripke structureM , ifϕ is an IGPoLTL
formula over AP , let WordsM(ϕ), or briefly Words(ϕ), denote{π ∈ Paths(M)|π
|= ϕ}.
Definition 11 IGPoLTL formulae ϕ and ψ are called equivalent, denoted ϕ ≡ ψ, if
Words(ϕ) = Words(ψ) for any GPKS M over AP .

Definition 12 An IGPoLTL formula ϕ is equivalent to a LTL formula ψ, denoted
ϕ ≡ ψ, if WordsM(ϕ) = WordsT S(M)(ψ) for any generalized possibilistic Kripke
structure M = (S, P, I, AP, L), where T S(M) = (S,→, I ′, AP, L ′) is defined by
s → t iff P(s, t) > 0, s ∈ I ′ iff I (s) > 0, a ∈ L ′(s) iff L(s, a) > 0. Obviously,
PathsM(s) = PathsT S(M)(s), so we use the same symbol Paths(s) to denote
PathsM(s) and PathsT S(M)(s) in the following.

Definition 13 The length of IGPoLTL formulae ϕ are denoted by |ϕ|, i.e., |ϕ|
denotes the number of subformulae of ϕ, which is defined as follows:

if ϕ = true, then | ϕ |=1;
if ϕ ∈ AP , then | ϕ |=1;
| ¬ϕ |=| ϕ |+1;
| ϕ1 ∧ ϕ2 |=| ϕ1 |+| ϕ2 |+1;
| ©ϕ |=| ϕ |+1;
| ϕ1 � ϕ2 |=| ϕ1 |+| ϕ2 |+1.

IGPoLTL is obviously a simple crispness of GPoLTL. Even so, IGPoLTL is pow-
erful than LTL considering their expressiveness, we show this fact in the following
subsection.
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3.2 IGPoLTL is More Powerful than LTL Considering
Their Expressiveness

Theorem 1 For any LTL formula ϕ, there exists an IGPoLTL formula ψ such that
ϕ ≡ ψ.

Proof The proof is proceeded by induction on the length of formula ϕ.
For any GPKS M and any path π = s0s1s2 · · · ∈ Paths(M), we have the follow-

ing discussion.
There are six cases to be considered.
Case1: ϕ = true, then ψ = true;
Case2: ϕ = a.
Note that π |= a iff a ∈ L ′(s0) iff L(s0, a) > 0 iff a |= a>0. Therefore, ϕ = a ≡

a>0 = ψ;
Case3: ϕ = ϕ1 ∧ ϕ2.
By the induction hypothesis, there exist IGPoLTL formulae ψ1 and ψ2 such that

ϕ1 ≡ ψ1, ϕ2 ≡ ψ2. Note that π |= ϕ1 ∧ ϕ2, iff π |= ϕ1 and π |= ϕ2, iff π |= ψ1 and
π |= ψ2, iff π |= ψ1 ∧ ψ2. Therefore, ϕ = ϕ1 ∧ ϕ2 ≡ ψ1 ∧ ψ2 = ψ;

Case4: ϕ = ©ϕ1.
By the induction hypothesis, there exists an IGPoLTL formula ψ1 such that ϕ1 ≡

ψ1. Note that π |= ©ϕ1 iff π1 |= ϕ1 iff π1 |= ψ1 iff π |= ©ψ1. Therefore, ϕ =
©ϕ1 ≡ ©ψ1 = ψ;

Case5: ϕ = ¬ϕ′.
By the induction hypothesis, there exists an IGPoLTL formula ψ′ such that ϕ′ ≡

ψ′. Note that π |= ¬ϕ′ iff π � ϕ′ iff π � ψ′ iff π |= ¬ψ′. Therefore, ϕ = ¬ϕ′ ≡
¬ψ′ = ψ;

Case6: ϕ = ϕ1 � ϕ2.
By the induction hypothesis, there exist IGPoLTL formulae ψ1 and ψ2 such that

ϕ1 ≡ ψ1, ϕ2 ≡ ψ2. Note that π |= ϕ1 � ϕ2, iff there exists j ≥ 0 such that π j |= ϕ2

and πi |= ϕ1 for all 0 ≤ i < k, iff there exists j ≥ 0 such that π j |= ψ2 and πi |= ψ1

for all 0 ≤ i < k, iff π |= ψ1 � ψ2. Therefore, ϕ = ϕ1 � ϕ2 ≡ ψ1 � ψ2 = ψ. �

3.3 LTL is a Proper Subclass of IGPoLTL

Theorem 2 There is no LTL formula that is equivalent to a=1.

Proof Assume that there is a LTL formula ϕ such that ϕ ≡ a=1. Consider the fol-
lowing two finite generalized possibilistic Kripke structures M1 and M2, see Figs. 1
and 2. By the figures, we have L(s0, a) = 0.5 in M1. But L(s0, a) = 1 in M2. Path
s0s1sω

3 does not satisfy a=1 in M1, while s0s1sω
3 satisfies a=1 in M2. Therefore,

s0s1sω
3 /∈ WordsM1(a=1), but s0s1sω

3 ∈ WordsM2(a=1). This implies that

WordsM1(a=1) �= WordsM2(a=1). (1)
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Fig. 1 A finite GPKS M1

Fig. 2 A finite GPKS M2

Since ϕ is an LTL formula, and T S(M1) = T S(M2), we have

WordsT S(M1)(ϕ) = WordsT S(M2)(ϕ). (2)

By the assumptionϕ ≡ a=1, it follows thatWordsT S(M)(ϕ) = WordsM(a=1) for
any generalized possibilistic Kripke structure M . Then we have

WordsM1(a=1) = WordsM2(a=1). (3)

Equations (1) and (3) show a contradiction, which demonstrates that there is no
LTL formula that is equivalent to a=1. �

CombiningTheorems 1 and 2, it follows that LTL is a proper subclass of IGPoLTL.
Using the same method, we can prove that following theorems also hold for any

generalized possibilistic Kripke structure M .

Theorem 3 There is no LTL formula that is equivalent to a=1 ∧ b=1.

Theorem 4 There is no LTL formula that is equivalent to ©a=1.

Theorem 5 There is no LTL formula that is equivalent to a=1 � b=1.
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3.4 Alternative Way to Define Equivalence Between LTL
Formulae and IGPoLTL Formulae

The definition of equivalence between LTL formulae and IGPoLTL formulae is not
unique. In this subsection, We will give another way to define equivalence between
LTL formulae and IGPoLTL formulae.

Definition 14 An IGPoLTL formula ϕ is α-equivalent to a LTL formula ψ, denoted
ϕ ≡α ψ, if WordsM(ϕ) = WordsT Sα(M)(ψ) for any GPKS M = (S, P, I, AP, L)

and α ∈ (0, 1], where T Sα(M) = (S,→α, Iα, AP, Lα) is defined by s →α t iff
P(s, t) ≥ α, s ∈ Iα iff I (s) ≥ α, a ∈ Lα(s) iff L(s, a) ≥ α. Obviously, PathsM
(s) = PathsT Sα(M)(s), so we use the same symbol Paths(s) to denote PathsM(s)
and PathsT Sα(M)(s) in the following.

We will give some properties of IGPoLTL using the definition of α-equivalence
between IGPoLTL formulae and LTL formulae for α ∈ (0, 1]. The proofs are similar
to those in Sects. 3.2 and 3.3.

Proposition 1 For all LTL formula ϕ and α ∈ (0, 1], there exists an IGPoLTL for-
mula ψ such that ϕ ≡α ψ.

Proposition 2 For all α ∈ (0, 1), there is no LTL formula that is α-equivalent to
a=1.

4 Conclusion

In this paper, we mainly compare the expressiveness between linear temporal logic
and interval generalized possibilistic linear temporal logic. We introduce the def-
inition of equivalence between LTL formulae and IGPoLTL formulae, and obtain
the conclusion that LTL is a proper subclass of IGPoLTL. In addition, we define
α-equivalence between LTL formulae and IGPoLTL formulae, and get some corre-
sponding properties.
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Abstract During the past years, substantial progress has been made towards
developing quantitative formal verification methods. In this paper, we establish a
lattice-valued relation between the states of a quantitative transition system(QTS),
called lattice-valued language containment relation, tomeasure towhat extent the lan-
guage of one state is included by that of the other. We study the relationship between
lattice-valued language containment relation and two lattice-valued versions of sim-
ilarity defined previously, and we explore the properties of compositionality of the
lattice-valued language containment relation. These properties suggest that our lan-
guage containment relation provides an appropriate basis for a quantitative theory of
concurrent and distributed systems.
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1 Introduction

Labelled transition systems (LTSs), a variant of automata, are a basic model for
formal description, specification, and analysis of concurrent and distributed systems
[19]. The most fundamental verification approach to comparing LTSs is by means of
concepts ofpreorders and equivalence relations, amongwhich language containment
(equivalence) and (bi)similarity are one of the basic tools for verifying LTSs [19].
Classical formal verification techniques are largely qualitative; for example, given
two LTSs, either the language of one of them is contained by the other or not.

In the past years, researchers have been devoted to developing a quantitative
approach to formal model and verification. A great variety of LTSs whose transi-
tions, states or actions contain quantitative data, have been proposed to model the
quantitative properties of systems [2–4, 10, 20, 21]. Classical system relations such
as language containment and equivalence have been adapted for these systems. Two
general approaches can be recognized in the existing literature. One, from [7–9, 18],
is based on distance functions over systems. More precisely, language containment
and equivalence relations are replaced by the real-valued distances. For instance,
the authors in [18] presented the weighted transition systems that are LTSs assigned
weights from non-negative real numbers to transitions and actions, and introduced
three types of distances on weighted transition systems as extensions of language
containment relation of LTSs.

The other approach, from [12–16], is based on lattice-valued (fuzzy) relations on
the state space of lattice-valued extensions of LTSs. For instance, the lattice automata
of Kupferman and Lusting [12] assign to each word a value from a finite De Morgan
lattice. To generalize the language containment to the lattice-valued setting, they
defined the implication value of two lattice automata A and B as the truth value of
the statement “for all words, the membership value in A implies the membership
value in B”. The present work is closely related to this kind of approach.

In this paper, following the methodology in [14, 16], we concern ourselves with
extending the notion of language containment relation to the complete residuated
lattice-valued setting and discuss its properties. Complete residuated lattices are a
very general algebraic structure with very important applications in different areas
such as fuzzy automata [5, 6, 17].

In [14], Pan et al. considered the general quantitative model of finite-state transi-
tion systems in the framework of finite residuated lattices, and established the simu-
lation semantics over the model. Some models have quantitative transition systems
[16], where the actions of LTSs are equipped with a complete residuated lattice-
valued equality relation, and lattice-valued Kripke structures [15] as special cases.
Based on finite-state quantitative transition systems (QTS), in [16] we introduced
a lattice-valued relation between states of a QTS, called approximate similarity, to
quantify to what extent one state is simulated by the other.

To investigate the behaviours of QTSs from the view point of language, we intro-
duce two lattice-valued language containment relations T I andLI (cf. Definition 2)
over the state space of a QTS as extensions of language containment relation of an
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LTS, to measure to what extent the language of one state is included by that of the
other, where T I is motivated by the distance functions in [18], whileLI is motivated
by the implication value of lattice automata [12]. We show that the two lattice-valued
relations coincide. It should be pointed out that although the distance functions and
lattice-valued relations versions of language containment relation in the literature
have counterparts of both T I and LI, the relationships between them have not yet
been studied.

Webelieve that our lattice-valued language containment relation is a natural exten-
sion of language containment relation in the complete residuated lattice-valued set-
ting. As an evidence, we will provide some of its properties, from the perspectives
of simulation, and compositionality. First, we relate lattice-valued language con-
tainment relation with two lattice-valued versions of similarity, lattice-valued sim-
ilarity and approximate similarity previously introduced in [14, 16], showing that
just as similarity implies language containment relation, so lattice-valued similarity
is contained by lattice-valued language containment relation. However, while lan-
guage containment relation coincideswith similarity for deterministic LTSs,we show
that lattice-valued language containment relation and lattice-valued similarity do not
coincide for deterministic QTSs. Moreover, the usual relation between similarity
and language containment relation cannot be transferred to the case for approximate
similarity and lattice-valued language containment relation. We also show that the
lattice-valued language containment relation is compositional for the approximate
synchronous composition operator.

2 Preliminaries

In this section we first review basic concepts of complete residuated lattices and
some properties of this kind of algebraic structures, then recall the basic elements of
LTSs, which are used to give the notion of QTSs. We write N for the set of natural
numbers, I the index set, and P(S) the power set of S.

A complete residuated lattice [1] is an algebraL = (L , ∨, ∧, ⊗, →, 0, 1)with
four binary operations and two constants such that

• (L , ∨, ∧, 0, 1) is a complete lattice with the least element 0 and the largest
element 1 with respect to the lattice ordering ≤;

• (L , ⊗, 1) is a commutativemonoid with the unit element 1, i.e.⊗ is commutative,
associative, and 1 ⊗ x = x for all x ∈ L; and

• ⊗ and → form an adjoint pair, i.e. x ⊗ y ≤ z iff x ≤ y → z, for all x, y, z ∈ L .

The complete residuated lattice L is finite if (L , ∨, ∧, 0, 1) is a finite lattice.
A complete Heyting algebra can be defined as a complete residuated lattice with
⊗ = ∧. The notation x ↔ y will be reserved as (x → y) ∧ (y → x) (biimplication),
which is used to model the equivalence of truth values. Given a finite sequence
x0, x1, . . . , xn ∈ L , we abbreviate x0 ⊗ · · · ⊗ xn as

⊗

0≤i≤n
xi . Moreover, for any x ∈
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L , we can inductively define the power of x as follows: x0 = 1, x1 = x , and xn+1 =
xn ⊗ x for any nonnegative integer n.

In the following let L be a complete residuated, let X a universal set. A lattice-
valued set (for short,L-set) A of X overL, is defined by a function assigning to each
element x of X a value A(x) in L , A(x) characterizes the degree of membership of
A at x . We say that an L-set A is crisp if A(x) ∈ {0, 1} for all x ∈ X . We denote
by L(X) the set of all lattice-valued subsets of X . For A, B ∈ L(X), we say that
A is contained in B, denoted by A ⊆ B, if A(x) ≤ B(x) for all x ∈ X . We say that
A = B if A ⊆ B and B ⊆ A.

Let X and Y be non-empty sets. A lattice-valued relation (for short, L-relation)
between sets X and Y is function from X × Y to L . A reflexive, symmetric, and
transitive L-relation on X is called an L-equivalence relation. An L-equivalence on
X where E(x, y) = 1 implies x = y will be called an L-equality.

For every finite or countably infinite set �, the symbol �∗ denotes the set of all
finite words over �. Then length of a given word σ is denoted by |σ|, and the indi-
vidual letters in σ are denoted by σ(0), . . . ,σ(|σ| − 1). The empty word is denoted
by ε, and we set |ε| = 0.

A labelled transition system (LTS) A is a quadruple (S, s0, �, R) where S is a
set of states with an initial state s0 ∈ S, � is a set of actions, and R ⊆ S × � × S
is a transition relation. The transition relation R denotes possible state changes; if
(s, a, t) ∈ R we say that the system can move from state s to t by performing action
a. As a more compact notation, we usually write s

a−→ t whenever, (s, a, t) ∈ R,
a ∈ �, and t ∈ S. If for any state s ∈ S and any action a ∈ �, there exists at most
one transition s

a−→ s ′, thenA is called deterministic. An LTSA is called finite if S
and � are finite sets, and infinite otherwise.

The generalized transition relations
σ−→ for σ ∈ �∗ are defined recursively by:

• s
ε−→ s for any state s.

• (s, a, s ′) ∈ R with a ∈ � implies s
a−→ s ′ with a ∈ �∗.

• s
σ1−→ s ′ and s ′ σ2−→ t imply s

σ1σ2−→ t .

σ ∈ �∗ is a trace of a state s in A if there is a state s ′ such that s σ−→ s ′. The set
of traces of the state s in LTS A is called the language of state s, and is denoted by
L(A, s). Where the context is clear, we will drop the notation A. In particular, the
set L(A, s0) associated with the initial state s0 of A is also called the language of
A. We use the notation L(A) to denote the language of A.

We define language containment relation for LTSs as usual. Let Ai = (Si , si, 0,
�, Ri ), i = 1, 2, be two LTSs and s ∈ S1, t ∈ S2. Then, s is contained by t with
respect to language, written as s ⊆L t , if L(A1, s) ⊆ L(A2, t). More precisely, if
for every trace σ1 ∈ L(A1, s), there exists a trace σ2 ∈ L(A2, t) such that σ1 = σ2.
This concept is common in the area of formal verification. An equivalent concept
of language containment is usually illustrated from automata-theoretic view: s is
contained by t with respect to language, if for every σ ∈ �∗ and σ ∈ L(A1, s),
σ ∈ L(A2, t). We say thatA1 is contained byA2, writtenA1 ⊆L A2, if s1, 0 ⊆L s2, 0.
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In this article, we sometime mention language equivalence. Two LTSs A1 and A2

are called language-equivalent if A1 ⊆L A2 and A2 ⊆L A1.
Labelled transition systems are generalized to quantitative transition systems by

augmenting them with an additional structure in [16]. The labels are endowed with
an L-equality relation θ. An LTS may be viewed as a degenerate QTS, one in which
θ is crisp.

Definition 1 A quantitative transition system (QTS) is Q = (A, θ), where A =
(S, s0, �, R), which is called the support set of QTS, is an LTS; θ is an L-equality
relation over �.

We say that Q is finite if the support set A of Q is finite and L is finite; Q is
deterministic if the support set A of Q is deterministic.

3 Lattice-Valued Language Containment Relation

In this section we will generalize the language containment relation to the com-
plete residuated lattice-valued setting, then relate it to two lattice-valued versions
of similarity in [14, 16]. We proceed by giving a method to combine the similarity
degree on actions to a similarity degree over the words, then between states. In what
follows, unless specifically noted, we consider the fixed QTS Q = (A, θ) where
A = (S, s0, �, R) and θ is an L-equality relation over �.

Definition 2 Let Q be a QTS. The word equality Eθ on �∗ is defined as, for all
σ1, σ2 ∈ �∗, as follows:

Eθ(σ1,σ2) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if σ1 = σ2 = ε;
⊗

0≤i<|σ1|
θ(σ1(i),σ2(i)) if |σ1| = |σ2| and |σ1| > 0;

0 otherwise.

The truth value ofσ1 accepted by the state s inQ, denoted by T v(s, σ1), is defined as,
T v(s, σ1) = ∨

σ∈La(s)
Eθ(σ, σ1). We define two lattice-valued language containment

relations among states as follows: for all s, t ∈ S,

T I(s, t) =
∧

σ1∈L(s)

∨

σ2∈L(t)

Eθ(σ1, σ2), LI(s, t) =
∧

σ1∈�∗
(T v(s, σ1) → T v(t, σ1)).

Recall that in the complete residuated lattice-valued logics, supremum (
∨
) and

infimum (
∧
) are used to model the existential and general quantifiers, respectively,

while the implication operator is used to model the implication of the corresponding
logical calculus. HenceDefinition 2 is the natural generalization of classical language
containment relation in the framework of complete residuated lattices, where T I and
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LI are the lattice-valued extensions of language containment relation from the views
of formal verification and automata theory, respectively.

The following theorem shows that the two relations T I and LI coincide. Hence,
we consider some properties of T I in the sequel.

Theorem 1 Let Q be a QTS. Then, T I = LI.
Proof First, we show that LI(s, t) ≤ T I(s, t) holds for all s, t ∈ S. By the prop-
erties of complete residuated lattices, we have that

LI(s, t) ≤ ∧

σ∈L(s1)

( ∨

σ1∈L(s)
Eθ(σ1,σ) → ∨

σ2∈L(t) Eθ(σ2,σ)
)

= ∧

σ∈L(s)

∧

σ1∈L(s)

(Eθ(σ1,σ) → ∨

σ2∈L(t)
Eθ(σ2,σ)

)

≤ ∧

σ∈L(s)

(Eθ(σ,σ) → ∨

σ2∈L(t)
Eθ(σ2,σ)

)

= ∧

σ∈L(s)

∨

σ2∈L(t)
Eθ(σ2,σ)

= T I(s, t)

which implies that assertion (1) holds.
Now, we prove the other direction. We observe that for all σ ∈ �∗,

∨

σ′
1∈L(s)

∧

σ1∈L(s)

∨

σ2∈L(t)
(Eθ(σ1, σ2) ⊗ Eθ(σ

′
1,σ)) ≤ ∨

σ′
1∈L(s)

∨

σ2∈L(t)
(Eθ(σ

′
1, σ2)

⊗Eθ(σ
′
1,σ))

≤ ∨

σ2∈L(t)
Eθ(σ, σ2)

Using the properties of complete residuated lattices, we also have that for all σ ∈ �∗,
∨

σ′
1∈L(s)

∧

σ1∈L(s)

∨

σ2∈L(t)
(Eθ(σ1, σ2) ⊗ Eθ(σ

′
1,σ)) = ∨

σ′
1∈L(s)

∧

σ1∈L(s)

( ∨

σ2∈L(t)
Eθ(σ1, σ2)

⊗Eθ(σ
′
1,σ)

)

≥ ∨

σ′
1∈L(s)

( ∧

σ1∈L(s)

∨

σ2∈L(t)
Eθ(σ1, σ2)

⊗Eθ(σ
′
1,σ)

)

= ∧

σ1∈L(s)

∨

σ2∈L(t)
Eθ(σ1, σ2)

⊗ ∨

σ′
1∈L(s)

Eθ(σ
′
1,σ)

Based on the above analysis, we can derive that for all σ ∈ �∗,
∧

σ1∈L(s)

∨

σ2∈L(t)

Eθ(σ1, σ2) ⊗ ∨

σ′
1∈L(s)

Eθ(σ
′
1,σ) ≤ ∨

σ2∈L(t)
Eθ(σ, σ2). According to the definition of

complete residuated lattices, for all σ ∈ �∗, we have
∧

σ1∈L(s)

∨

σ2∈L(t)
Eθ(σ1, σ2) ≤
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∨

σ′
1∈L(s)

Eθ(σ
′
1,σ) → ∨

σ2∈L(t)
Eθ(σ, σ2). Thus, T I(s, t) ≤ LI(s, t). Now the theorem

follows. �

So far, T I has been defined as an L-relation between states within a single QTS.
An alternative perspective is to consider them as an L-relations between QTSs. It
can be done by defining the disjoint union of QTSs in the usual sense.

Definition 3 ([16]) Let Q1 = ((S1, s1, 0, �, R1), θ) and Q2 = ((S2, s2, 0, �,

R2), θ) be two QTSs where S1 ∩ S2 = ∅. The union of Q1 ∪ Q2 is defined as
a QTS Q = ((S, s0, �, R), θ) with S = S1 ∪ S2 ∪ {s0} where s0 /∈ S1 ∪ S2; R =
R1 ∪ R2 ∪ {(s0, a, s1,0) | a ∈ �} ∪ {(s0, a, s2,0) | a ∈ �}.

With this definition, we can define the truth value of Q1 included by Q2 with
respect to language as T I(Q1, Q2) = T I(s1, 0, s2, 0).

Now we are in a position to analyze the relationship between our lattice-valued
language containment relation and classical language inclusion relation. We know
from Definition 2 that if s ⊆La t , then T I(s, t) = 1. The following counterexample
shows that the converse does not always hold.

Example 1 Consider a QTS Q = (({s, t}, s, �, R), θ), where L is the standard
Gödel algebra, � = {a} ∪ {bi : i ∈ N}, the transition relation R consists of the tran-
sitions:
(s, a, s) and (t, bi , t) for every i ∈ N, θ is defined as, for all c, d ∈ �,

θ(c, d) =

⎧
⎪⎨

⎪⎩

1 if c = d;
1 − 0.5i if c = a, d = bi , or c = bi , d = a, i ∈ N;
0 otherwise.

Then, by Definition 2, we have that T I(s, t) = 1, but s ⊆La t does not hold.

In the following, we first recall the definitions of two lattice-valued versions of
similarity over QTSs, which have originally appeared in [14, 16], then provide a
comparison between lattice-valued language containment relation and lattice-valued
versions of similarity. The motivations with respect to introducing the two lattice-
valued versions of similarity, can be found in [14, 16].

Definition 4 ([14, 16]) Let Q be a QTS. An L-relation R ∈ L(S × S) is called
an L-simulation, if for all s, t ∈ S, R(s, t) = ∧

s
a→s ′

∨

t
b→t ′

(
θ(a, b) ⊗ R(s ′, t ′)

)
. The

L-similarity, written �L, is the greatest fixed point of the above recursive equation.

Definition 5 ([16]) Let Q be a QTS, s, t ∈ S and δ ∈ L .
(1) A relation Rδ ⊆ S × S is called a δ-simulation if for any (s, t) ∈ Rδ and for

each a ∈ �, when s
a→ s ′, there exist b ∈ � and t

b→ t ′ such that θ(a, b) ≥ δ and
(s ′, t ′) ∈ Rδ . δ-similarity, written �δ , is the union of all δ-simulations; we say that
t δ-simulates s if s �δ t .
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(2) The degree that s is simulated by t with respect to �δ is defined as: S(s, t) =
∨{δ ∈ L | s �δ t}. S is called an approximate similarity.

The relationship between the L-similarity and lattice-valued language contain-
ment relation is captured by the following result which holds for all quantitative
transition systems, not necessarily finite. The following theorem expresses the intu-
ition: “Similarity implies language containment relation”.

Theorem 2 Let Q be a QTS. Then, �L⊆ T I.
Proof Let s, t ∈ S. We have from the properties of complete residuated lattices and∨

i∈I

∧

j∈J
ai j ≤ ∧

j∈J

∨

i∈I
ai j (ai j ∈ L) that

T I(s, t) = ∧

σ1∈L(s)

∨

σ2∈L(t)
Eθ(σ1, σ2)

= ∧

s
a→s ′

∧

σ′
1∈L(s ′)

∨

t
b→t ′

∨

σ′
2∈L(t ′)

(
θ(a, b) ⊗ Eθ(σ

′
1, σ′

2)
)

≥ ∧

s
a→s ′

∨

t
b→t ′

∧

σ′
1∈L(s ′)

∨

σ′
2∈L(t ′)

(
θ(a, b) ⊗ Eθ(σ

′
1, σ′

2)
)

= ∧

s
a→s ′

∨

t
b→t ′

∧

σ′
1∈L(s ′)

(
θ(a, b) ⊗ ∨

σ′
2∈L(t ′)

Eθ(σ
′
1, σ′

2)
)

≥ ∧

s
a→s ′

∨

t
b→t ′

(
θ(a, b) ⊗ ∧

σ′
1∈L(s ′)

∨

σ′
2∈L(t ′)

Eθ(σ
′
1, σ′

2)
)

= ∧

s
a→s ′

∨

t
b→t

(θ(a, b) ⊗ T I(s ′, t ′))

Now, the result can be shown by using a structural-induction argument. �

As is well-known, in the boolean setting, language containment relation coincides
with similarity on deterministic LTSs. The following example gives a counterexam-
ple to illustrate that the equality �L= T I does not hold for deterministic QTSs in
general, moreover, unfortunately, the example also shows that Theorem2 cannot hold
for the case of approximate similarity S, i.e., S ⊆ T I does not hold necessarily.

Example 2 Consider two deterministic QTSs with the same L-equality relation
θ where L is the standard Łukasiewicz algebra, their support sets are shown in
Fig. 1, and θ is defined by: θ(a, a) = θ(b, b) = θ(c, c) = 1, θ(a, b) = θ(b, a) =
0.6, θ(a, c) = θ(c, a) = 0.4, θ(b, c) = θ(c, b) = 0.7.We have T I(s0, t0) = 0.4,
while �L (s0, t0) = 0.3 and S(s0, t0) = 0.6.

Remark 1 We note that the distance function analogues of approximate similarity
and L-similarity coincide [9, 18, 20]. The fact that approximate similarity and L-
similarity do not coincide in the arbitrary residuated lattice setting in [16], together
with Example 2, implies that the results obtained in the lattice-valued relations are
more richer.
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Fig. 1 Two deterministic
LTSs s0

s1

s2 s3

a

b c

t0

t1 t1

t3 t4

b c

b c

4 Compositionality

In the two-valued case, compositionality theorems is used to analyze large systems
by decomposing them into smaller components. For example, if LTS A1 contains
LTS B1 and A2 contains B2 with respect to language, we have that the composition
of A1 and A2 contains the composition of B1 and B2. We show that our lattice-
valued language containment relation has the corresponding results for approximate
synchronous composition operator.

Recall that the synchronous composition operator requires that the systems are
strictly synchronous, whereas the asynchronous composition operator requires that
the systems act independently. Motivated by [11], for every δ ∈ L , we can consider
the δ-approximate synchronous operator, where � is equipped with an L-equality
relation.

Definition 6 Let Qi = ((Si , si, 0, �, Ri ), θ), i = 1, 2, be two QTSs, and δ ∈ L .
The δ-approximate synchronization operator ‖δ acting on the two systems results
in another transition systemQ = Q1‖δQ2, whereQ = ((S1 × S2, (s1, 0, s2, 0), � ×
�, R), θ′); the transition relation R is such that ((s1, s2), (a, b), (s ′

1, s
′
2)) ∈ R iff

(s1, a, s ′
1) ∈ R1, (s2, b, s ′

2) ∈ R2, θ(a, b) ≥ δ, and a, b ∈ �; θ′ is defined as, for
each (a1, b1), (a2, b2) ∈ � × �, θ′((a1, b1), (a2, b2)) = θ(a1, a2) ⊗ θ(b1, b2).

The above definition is well-defined, since it is easy to prove that θ′ is an L-
equality relation on � × �. The idea of the approximate synchronization is to let
two transition systems synchronize using actions that are close, but not necessarily
the same. As the extreme cases, ‖1 and ‖0 mean synchronous and asynchronous
composition operators, respectively. Approximate synchronization operator satisfies
the following properties:

Proposition 1 Suppose that Q1‖δQ2, Q′
1‖δQ′

2 are well-defined. Let δ1 ≤ δ2 and
δ3 ≤ δ4. Then
(1) T I(Q1‖δ1Q2, Q′

1‖δ4Q′
2) ≤ T I(Q1‖δ1Q2, Q′

1‖δ3Q′
2);

(2) T I(Q1‖δ1Q2, Q′
1‖δ3Q′

2) ≤ T I(Q1‖δ2Q2, Q′
1‖δ3Q′

2).

To study further property of lattice-valued language containment relation with
respect to approximate synchronization, we need to give some concepts on distribu-
tive lattices.
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For a distributive lattice L, an element x ∈ L is called join-irreducible if for any
y, z ∈ L , x = y ∨ z implies that either x = y or x = z. In a distributive lattice, if x
is join-irreducible and x ≤ y ∨ z, then it always holds that x ≤ y or x ≤ z. Let J I
denote the set of all join-irreducible elements of L . Then for any finite distributive
lattice L and x ∈ L , x = ∨{y ∈ J I(L) : y ≤ x}. It should be pointed out that a
complete Heyting algebra is a distributive lattice.

Proposition 2 LetL be a finiteHeyting algebra, δ ∈ L , l ∈ J I(L) andQi , Q′
i , i =

1, 2, be QTSs. If l ≤ T I(Q1, Q2) ∧ T I(Q′
1, Q′

2). Then l ≤ T I(Q1‖δQ′
1,

Q2‖δ∧lQ′
2).

Proof By Definition 6, if σ ∈ L(Q1‖δQ′
1), there exist σ1 ∈ L(Q1) and σ2 ∈ L(Q2)

such that θ(σ1(i),σ2(i)) ≥ δ and σ(i) = (σ1(i),σ2(i)) for all i < |σ|. By the
assumption that l ≤ T I(Q1, Q2) ∧ T I(Q′

1, Q′
2) and l ∈ J I(L), for every σ1 ∈

L(Q1) (resp. σ2 ∈ L(Q2)), there exists σ′
1 ∈ L(Q2) (resp. σ′

2 ∈ L(Q′
2)) such that

l ≤ Eθ(σ1,σ
′
1) (resp. l ≤ Eθ(σ2,σ

′
2)). Letσ

′ = (σ′
1,σ

′
2)whereσ′(i) = (σ′

1(i), σ′
2(i))

for all i < |σ|. Then σ′ ∈ L(Q2‖δ∧lQ′
2). This assertion is proved as follows: since

for every i < |σ|, δ ≤ θ(σ1(i),σ2(i)), l ≤ θ(σ1(i),σ′
1(i)), l ≤ θ(σ2(i),σ′

2(i)), we
have that for all i < |σ|, δ ∧ l ≤ θ(σ′

1(i),σ
′
2(i)). Therefore, σ′ ∈ L(Q2‖δ∧lQ′

2), as
required. Based on the above analysis, we know that for every σ ∈ L(Q1‖δQ′

1),
there exists a σ′ ∈ L(Q2‖δ∧lQ′

2) such that Eθ(σ, σ′) = Eθ(σ1,σ
′
1) ∧ Eθ(σ2,σ

′
2) ≥ l.

Hence the proposition holds. �

The following theorem shows that lattice-valued language containment relation
has a compositional property with respect to approximate synchronization, which is
a direct consequence of the above proposition.

Theorem 3 Let δ, δ′ ∈ L and Qi , Q′
i , i = 1, 2, be QTSs and L be a finite Heyt-

ing algebra. Suppose δ′ = T I(Q1, Q2) ∧T I(Q′
1, Q′

2). Then T I(Q1,Q2) ∧ T I
(Q′

1,Q′
2) ≤ T I(Q1‖δQ′

1,Q2‖δ∧δ′Q′
2).

5 Conclusion

Based on the notion of QTSs, we have introduced two lattice-valued language con-
tainment relations from different viewpoints to quantify a concept of “closeness"
between the states of a QTS and showed that they coincide. The relation has compo-
sitionality under approximate synchronous operator. These properties suggest that
our relation provides an appropriate basis for a quantitative theory of concurrent and
distributed systems.
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An Approach of Matching Based
on Performance Specification
of Components

Bao-Hua Wang and Yi-Xiang Chen

Abstract Software component technology is important to construct software
system. How to seek out required component efficiently and accurately is a chal-
lenge issue for component-based software development. The goal of this paper is
to propose matching method, called specification-based performance matching. At
first, performance specification is formally defined. And then, based on performance
specification, we give two kinds of matchings: the Boolean matching and quantita-
tive matching. Finally, properties of specification-based performance matching are
presented and some examples are given to illustrate effectiveness of the machining
method we propose.

Keywords Software components · Performance specification · Quantitative ·
Matching

1 Introduction

Component-based software development (CBD) [1–3] is the mainstream technol-
ogy of software development. Software components are assembled into a composite
component or combined into a complex software system so that one can reduces the
development cost. The concept of software component has had several definitions
up to date. CMU/SEI defines software component as an opaque implementation of
functionality, subject to third-party composition and conformation with a component
model in [4]. Szyperski defines in [2] software component as a unit of composition
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with contractually specified interfaces and explicit context dependencies only. Refer-
ence [5] defines a software component as unit which can be deployed independently
subject to composition by third parties. References [6, 7] adopt Szyperski’s defini-
tion. In this paper, we also adopt Szyperski’s definition.

It is well known that how to seek out required components efficiently and accu-
rately for component is a basic issue. Specifying software component is one method
of exploring this issue. The specification of software component can help users to
understand and use software component. Specification-based component matching
includes syntax and semantic matching [8]. Syntax matching is based on information
of the functions and interfaces [9, 10]. Semantics refers to constraints and behaviors
information of software component interaction [11].

In this paper, we introduce an approach of matching of software components
based on performance specification of software components. Performance is made
of facets of performance. The specification of a performance (called performance
specification) is the set of specifications of performance’s facets. Specifications of
performance’s facet consists of four parts: name, checkpoint, flag and value. Then,
we introduce the refinement relationship between performance’s facet based spec-
ification of performance’s facet. After then, we introduce the matching between
performances based on the refinement relationship of performances and further set
up two kinds ofmatchings between requisite components and candidate components:
Boolean matching and quantitative matching.

The remainder of this paper is organized as follows. Section2 presents the soft-
ware performance and the formal definition of performance specification. Section3
introduces the Boolean matching of performance. Based on the Boolean matching
of performance, we define the Boolean matching between requisite components and
candidate components. Section4 introduces the quantitative matching between req-
uisite component and candidate component. Section5 is the conclusion section.

2 Performance Specification and Refinement

Matching is a way to retrieve software component or compare two software compo-
nents. Specification is a foundation of matching technology of software components
and plays a crucial role in the method and efficiency of software component match-
ing. Performance matching is very key to the success of software development. The
matching of performance specification helps us to select the appropriate software
component in performance. In this paragraph, we define the performance specifica-
tion as follows.

Definition 1 (Specification of performance’s facet) The specification of a perfor-
mance’s facet consists of four parts: the name of performance’s facet, the checkpoint
of performance’s facet, the flag of performance’s facet, the value of performance’s
facet. It is denoted as a quadruple facet = (name, checkpoint, flag, value).

The flag of a performance’s facet takes the value 1 and −1. The flag value of
a performance’s facet represents the relation between this performance’s facet and
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its value. The value of a performance’s facet takes real numbers from the interval
(0,∞). When facet.flag = 1, then the bigger the value of a performance’s facet is,
the better this performance’s facet is. But, when facet.flag = −1, then the smaller
the value of performance’s facet is, the better this performance’s facet is.

Definition 2 (Specification of performance) We use per = {facet1, . . . , facetn}
to represent specification of performance, where faceti is a facet of performance
for each i.

Example 1 Suppose that a performanceper1 is about the throughout and the response
time. Its description is that the throughout of the payment function is no less than
20 users per seconds when 1000 users use the payment function and the response
time of the payment function is no more than 6 seconds when 1000 users use
the payment function. We use facet1 = (“pay-throughout”, “1000users”, 1, 20)
to represent the throughout and facet2 = (“pay-response”, “1000users”, −1, 6) to
represent the response time. Then, the specification of the performance is per1 =
{facet1, facet2} = {(“pay-throughout”, “1000users”, 1, 20), (“pay-response”,
“1000users”, −1, 6)}.

2.1 Refinement Relation

Definition 3 (Refinement relation) For two given performance’s facets facet1 and
facet2, we say that facet1 refines facet2, denoted by facet1 � facet2,
if (facet1.name=facet2.name) ∧ (facet1.checkpoint=facet2.checkpoint)∧
(facet1.flag = facet2.flag) ∧ (((facet1.flag = 1) ∧ (facet1.value ≥ facet2.value))
∨((facet1.flag = −1) ∧ (facet1.value ≤ facet2.value))).

Example 2 If the performance’s facet facet1 is (“pay-throughout”, “1000users”, 1,
20) and another performance’s facet facet2 is (“pay-throughout”, “1000users”, 1,
18), then we have facet1 � facet2. If a performance’s facet facet3 is (“pay-response”,
“1000users”, −1, 5)}) and another performance’s facet facet4 is (“pay-response”,
“1000users”, −1, 6)}), then we have facet3 � facet4.

The refinement relation has the following desirable properties.

Proposition 1 (Reflexivity) The refinement relation � satisfies reflexivity.

Proof Obvious. �

Proposition 2 (Antisymmetry) If faceti � facetj and facetj � faceti, then faceti =
facetj.

Proof Since (faceti � facetj), we have that faceti.name = facetj.name,
faceti.checkpoint = facetj.checkpoint and faceti.flag = facetj.flag.
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We discuss the two cases of flag.
Case 1: (faceti.flag = 1)
Since faceti � facetj, we have faceti.value ≥ facetj.value. Since facetj � faceti,

we have facetj.value ≥ faceti.value.
As a result, we get faceti.value = facetj.value.

Case 2: (faceti.flag = −1)
Similarly, we have faceti.value = facetj.value.
Therefore, we have shown that (faceti.name = facetj.name)∧

(faceti.checkpoint = facetj.checkpoint) ∧ (faceti.flag = facetj.flag)∧
(facetj.value = faceti.value), then we get (faceti = facetj). �

Proposition 3 (Transitivity) If faceti � facetj and facetj � facetk, then
faceti � facetk .

Proof Since (faceti � facetj), we have that faceti.name=facetj.name, faceti.
checkpoint = facetj.checkpoint and faceti.flag=facetj.flag. Since (facetj
� facetk), we have facetj.name = facetk .name, facetj.checkpoint= facetk .
checkpoint and facetj.flag = facetk .flag. As a result, we have faceti.name = facetk .
name, faceti.checkpoint=facetk .checkpoint and faceti.flag=facetk .flag.

We discuss the cases of different flags: Case 1: (faceti.flag = 1) and Case 2:
(faceti.flag = −1). Their proofs are the same as the previous proposition.

So, we have (faceti.name = facetk .name) ∧ (faceti.checkpoint = facetk .
checkpoint) ∧ (faceti.flag = facetk .flag) ∧ (((faceti.flag = 1)∧ (faceti.value≥
facetk .value)) ∨ ((faceti.flag= − 1) ∧ (faceti.value ≤ facetk .value))). Therefore
(faceti � facetk). �

From the propositions, we get the fact that the refinement relation is a partial order
relation.

3 Boolean Matching of Software Components

Matching is to determine the relationship between the candidate component and the
requisite component. Based on performance specification of software component,
we introduce the Boolean matching of software component.

3.1 The Matching Framework of the Performance
Specification

The matching framework of the performance specification is shown in Fig. 1.
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Fig. 1 The matching
framework of the
performance specification

candidate component require component

� �
� �

� �

specification specificationmatching select

boolean matching quantitative matching

3.2 Boolean Matching of Software Components

Definition 4 (Booleanmatching) For a given requisite component R and a candidate
component C, we say that the candidate component C matches the requisite compo-
nent R in a Boolean way, denoted by C |= R, if ∀x∃y((x ∈ perr

∧
y ∈ perc) → (y �

x)), where perr is the performance specification of R and perc is the performance
specification of C.

Example 3 For given a requisite component R1 and a candidate component C1, if
the performance specification ofR1 is {(“pay − response”, “1000users”,−1, 6)} and
the performance specification of C1 is {(“pay − response”, “1000users”,−1, 5)},
then C1 |= R1. For another example, for a given requisite component R2 and a
candidate component C2, the performance specification of R2 is represented as
{(“pay-response”, “1000users”,−1, 6), (“pay − throughout”, “1000users”, 1, 20)}
and the performance specification of C2 is {(“pay − response”, “1000users”,
−1, 5), (“pay − throughout”, “1000users”, 1, 15)}, then C2 |= R2 is false.

3.3 Examples of the Boolean Matching

Examples of the Boolean matching are shown in Table1.

4 Quantitative Matching of Components

When we select software component by considering performance specification, it
is a rare case that a candidate component matches completely a requisite compo-
nent under all performance’s facets. In this paragraph, we introduce the quantitative
matching method which helps us to select the optimal software component.
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Table 1 Boolean matching of components

Performance specification of
requisite component

Performance specification of candidate
component

Boolean
matching

{(“pay-response”, “1000users”, −1, 6)} {(“pay-response”, “1000users”, −1, 5)} TRUE

{(“pay-response”, “1000users”, −1, 8)} FLASE

{(“order-response”,“1000users”, −1, 4)} FLASE

{(“pay-response”, “1000users”,
−1, 6), (“pay-throughout”,
“1000users”, 1, 20)}

{(“pay-response”, ”1000users’, −1, 7)} FLASE

{(“pay-response”, “1000users”, −1, 6)}
(“pay-throughout”,“1000users”, 1, 30)}

TRUE

{ (“pay-response”, “1000users”, −1, 6)}
{(“pay-throughout”, “1000users”, 1, 15)}

FLASE

4.1 Quantitative Refinement of Performance’s Facet

Definition 5 (Quantitative matching of performance’s facet) For two given per-
formance’s facets facet1 and facet2, we say that facet1 refines facet2 quantitatively,
donated by facet1 �δ facet2), if facet1 and facet2 has the same name, the same check-
point and the same flag, and δ is calculated by δ = m(facet1, facet2) as follows:

When facet1.flag = 1,

m(facet1, facet2) =

⎧
⎪⎪⎨

⎪⎪⎩

(
facet1.value
facet2.value

)
1
2 , facet1.value < facet2.value

1, facet1.value ≥ facet2.value

When facet1.flag = −1,m(facet1, facet2)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, facet1.value ≤ facet2.value

(
2∗facet2.value−facet1.value

facet2.value
)
1
2 , facet2.value < facet1.value

< 2 ∗ facet2.value

0, facet1.value ≥ 2 ∗ facet2.value

Inspired by the research results of multi-dimensional software trustworthiness
[12], we get the following properties.

Proposition 4 (Boundness) It is used to describe thatm(facet1, facet2) is in a certain
range.
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Proof Since m(facet1, facet2) is different for the flag, we discuss alternative cases
as follows:

Case 1: (facet1.flag = 1)
When facet1.value < facet2.value, we have 0 < (

facet1.value
facet2.value

)
1
2 < 1. When

facet1.value ≥ facet2.value we have m(facet1, facet2) = 1. As a result, we get
0 < m(facet1, facet2) ≤ 1.

Case 2: (facet1.flag = −1)
When facet1.value ≤ facet2.value, we have m(facet1, facet2) = 1. When

facet2.value ≤ facet1.value < 2 ∗ facet2.value ⇒ 0< 2∗facet2.value−facet1.value
facet2.value

≤1, we

have 0 < (
2∗facet2.value−facet1.value

facet2.value
)
1
2 ≤ 1. When facet1.value ≥ 2 ∗ facet2.value, we

have m(facet1, facet2) = 0. As a result, we get 0 ≤ m(facet1, facet2) ≤ 1.
In a word, m(facet1, facet2) is a bounded function. �

Proposition 5 (Consistency) Consistency means that if facet1 � facet3 then
m(facet1, facet2) ≥ m(facet3, facet2).

Proof We prove this result in the flags’ cases.
Case 1: (facet1.flag = 1)

Since ∂(m(facet1,facet2))
∂(facet1.value)

= 1
2 ∗ (

facet1.value
facet2.value

)− 1
2 ≥ 0, m(facet1 facet2) is an

increasing function for facet1. Since facet1 � facet3 implies facet1.value ≥ facet3.
value, we have m(facet1, facet2) ≥ m(facet3, facet2). As a result, if facet1 � facet3
then m(facet1, facet2) ≥ m(facet3, facet2).

Case 2: (facet1.flag = −1)
Since ∂(m(facet1,facet2))

∂(facet1.value)
≤ 0, m(facet1, facet2) is a decreasing function for

facet1. Since facet1 � facet3 implies facet1.value ≤ facet3.value, we have m
(facet1, facet2)≥m(facet3, facet2). Then, facet1�facet3 implies m(facet1, facet2) >
m(facet3, facet2). �

Proposition 6 (Approximation) Approximation means that if facet1 is closing in a
refinement way to facet2, then m(facet1, facet2) is increasing.

Proof We shall prove it in the cases of the flag of facet1.
Case 1: (facet1.flag = 1)
In this case, we have 0 ≤ facet1.value ≤ facet2.value. Set x = facet2.

value − facet1.value, i.e., x denotes the distance from facet1.value to facet2.
value, then

m(facet1, facet2) =
(
facet2.value − x

facet2.value

) 1
2

.

Since 0 ≤ facet1.value ≤ facet2.value, we have

∂(m(facet1, facet2))

∂(x)
=

(

− 1

2 ∗ facet2.value

)

∗
(
facet2.value − x

facet2.value

)− 1
2

≤ 0.

Case 2: (facet1.flag = −1)
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This case implies that facet2.value ≤ facet1.value < 2 ∗ facet2.value.We set x =
facet1.value − facet2.value, i.e., x denotes the distance from facet2.
value to facet1.value. Then m(facet1, facet2) = (

facet2.value−x
facet2.value

)
1
2 .

Since facet2.value ≤ facet1.value < 2 ∗ facet2.value, we have

∂(m(facet1, facet2))

∂(x)
=

(

− 1

2 ∗ facet2.value

)

∗
(
facet2.value − x

facet2.value

)− 1
2

≤ 0.

Both cases show thatm(facet1, facet2) is a decreasing function of x. Thus, we have
that the degree of the matching increases when x decreases of x. Therefore, when
facet1.value is closing to facet2.value in a refinement way, the degree of matching
increases. �

Proposition 7 (Acceleration) Acceleration means that if facet1 is closing to facet2
in a refinement way, the increasing rate of m(facet1, facet2) decreases.

Proof For different flags, separately discuss all cases separately.
Case 1: (facet1.flag = 1)
Similar to Claim 4, we have

∂2(m(facet1, facet2))

∂(x)2
= 1

4 ∗ facet2.value
∗

(
facet2.value − x

facet2.value

)− 3
2

> 0

where x = facet2.value − facet1.value.
Asa result,m(facet1, facet2) is a decreasing function in the range (facet2.value, 2 ∗

facet2.value), and the rate of increasing is decreasingwhen facet1.value changes from
2 ∗ facet2.value to facet2.value. The decreasing of x is the fact that facet1.value is
closing to facet2.value. In other word, m(facet1, facet2) is increasing in the approx-
imation of facet2.value.

Case 2: (facet1.flag = −1)
Similarly, we have that

∂2(m(facet1, facet2))

∂(x)2
= 1

4 ∗ facet2.value
∗

(
facet2.value − x

facet2.value

)− 3
2

> 0.

where x = facet1.value − facet2.value.
We can get that the increasing rate of m(facet1, facet2) decreases, when

facet1.value is closing to facet2.value in a refinement way. �
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4.2 Quantitative Matching of Components

Definition 6 (Quantitative matching of components) Suppose that a requisite com-
ponent R and a candidate component C have the same number of performance’s
facets. We say that the candidate component C matches the requisite component R in
a quantitative matching way, denoted by C |=δ R, where δ = δ1 ∗ δ2 ∗ · · · ∗ δn and
for each i, perc.faceti �δi perr .faceti.

Example 4 Wehave a requisite componentR and a candidate componentC. The per-
formance specification ofR is {(“pay − response”, “1000users”,−1, 6)} and the per-
formance specification of C is {(“pay − response”, “1000users”,−1, 5)}. We have
that C |=δ R with δ = 1.

For another example,we are given a requisite component R1 and a candidate com-
ponent C1. The performance specification of R1 is {(“pay − response”,
“1000users”,−1, 6), (“pay − throughout”, “1000users”, 1, 20)} and the
performance specification of C1 is {(“pay − response”, “1000users”,−1, 5),
(“pay − throughout”, “1000users”, 1, 15)}. Therefore, after computing δ, we get
that C1 |=δ R1 with δ = δ1 × δ2 = 1 × ( 1520 )

1
2 = 0.87.

Example 5 Here are examples of quantitative matching of software components
(Table2).

Table 2 Ranks of Matching of Components

Requisite Components Performance
Specification of
Candidate Components

Quantitative Matching

{(“pay-response”, “1000users”, −1, 6)} {(“pay-response”,
“1000users”, −1, 5)}

1

{(“pay-response”,
“1000users”, −1, 9)}

0.71

{(“order-response”,
“1000users”, −1, 4)}

0

{(“pay-response”,“1000users”,−1, 6),
(“pay-throughout”, “1000users”, 1, 20)}

{(“pay-response”,
“1000users’, −1, 7)}

0

{(“pay-response”,
“1000users”, −1, 6)}
(“pay-throughout”,
“1000users”, 1, 30)}

1

{(“pay-response”,
“1000users”, −1, 6)}
{ (“pay-throughout”,
“1000users”, 1, 15)}

0.87
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5 Conclusions

Software component matching and assembly are an important activity in component-
based software development. This paper presents a kind of matching between req-
uisite components and candidate components based on performance specification of
software components. Two kinds of matchings: the Boolean matching and quantita-
tive matching are introduced in this paper. Some simple examples show the effec-
tiveness of our matching method. Practice use of the method will be our future work.
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Bisimulation Relations for Weighted
Automata over Valuation Monoids

Chao Yang and Yong-Ming Li

Abstract In this paper, we firstly give a definition of bisimulation relations for
weighted automata over valuation monoids and prove that weighted automata A and
B are equivalent with behavior under a bisimulation relation. Then we put forward
the notion of surjective functional bisimulation relations and construct the related
equivalence relations on A. We also give the properties of these related equivalence
relations and define bisimulations relations for A with these properties. Finally, we
prove the existence of the greatest bisimulation relation and give the method of
constructing the greatest bisimulation relation.

Keywords Valuation monoid · Weighted automata · Bisimulation relation · The
greatest bisimulation relation

1 Introduction

Bisimulation relations are very powerful tools that have been used in computer sci-
ence to solve practical problems. Park and Milner [1, 2] introduced bisimulation
relations and pointed out that they can be used in discrete event systems like process
algebras, Petri nets or automata models. In automata theory, bisimulation relations
can be used to reduce the states of an automaton by combining equivalent states to
generate an aggregated automaton with an equivalent behavior but with fewer states
[3–6].

People have investigated bisimulation relations in the context of deterministic,
nondeterministic, fuzzy, weighted and other kinds of automata. One type of bisim-
ulation relations for weighted automata has been introduced by Ésik and Kuich [7].
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A universal definition of bisimulation relations introduced by Buchholz [8] can be
applied to a wide class of automata models. A new approach to bisimulation rela-
tions has been proposed in [9–11] in the framework of fuzzy automata and it has
been applied to ordinary nondeterministic automata in [12]. In 2011, M. Droste and
I. Meinecke [13] firstly put forward the notion of valuation monoid and weighted
automata with weights in a valuation monoid. In semirings, we define bisimulation
relations by relational matrixs which is constructed with the identity element. Since
there is no identity element with multiplication in valuation monoids, the definition
of bisimulation relations by relational matrixs for weighted automata over semirings
is not suitable for that over valuation monoids. We also find that the method of
constructing the greatest surjective functional bisimulation relation with matrixs for
weighted automata over semirings is also not suitable for weighted automata over
valuation monoids.

The structure of the paper is as follows. In Sect. 2 we introduce basic notions
related to valuation monoids and weighted autonata over them. Then in Sect. 3 we
give the definition of bisimulation relations for weighted automata over valuation
monoids and prove that weighted automata A and B are equivalent with behavior
under a bisimulation relation. Thenwe put forward the notion of surjective functional
bisimulation relations and construct the related equivalence relations for A. We also
give properties of these related equivalence relations and define bisimulations rela-
tions for Awith these properties. Section4 contains proofs of existence of the greatest
bisimulation relation and construction of the greatest bisimulation relation.

2 Preliminaries

Throughout this paper, S denotes the non-empty set,
∑+ and

∑∗ denote respectively
the free semigroup and the freemonoid over an alphabet

∑
, and ε denotes the identity

element in
∑∗.

A valuation monoid (S,+, val, 0) consists of a commutative monoid (S,+, 0)
and a valuation function val : S+ → S with val(s) = s and val(s1, . . . , sn) = 0
whenever si = 0 for some i ∈ {1, 2, . . . , n}.

Note that (S,+, val, (·m,n |m, n ∈ N ), 0) is a Cauchy valuation monoid if (S,+,

val, 0) is a valuation monoid and ·m,n : S × S → S with m, n ∈ N is a family of
products such that for all s, si , s ′

j ∈ S and all finite subsets A, B⊆ f in S:

0·m,ns = s·m,n0 = 0, (1)

val(s1, . . . , sm, s1
′, . . . , sn ′) = val(s1, . . . , sm)·m,nval(s1

′, . . . , sn ′), (2)

(∑
{s|s ∈ A}

)
·m,n

(∑
{s ′|s ′ ∈ B}

)
=

∑
{s·m,ns

′|s ∈ A, s ′ ∈ B}. (3)
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A weighted automaton A = (Q,
∑

, δ, I, F) over a Cauchy valuation monoid
(S,+, val, (·m,n|m, n ∈ N ), 0) consists of a finite state set Q, an alphabet

∑
, a

set I ⊆ Q of initial states, a set F ⊆ Q of final states and a weight function
δ : Q × ∑×Q → S. For all w = a1a2 · · · an ∈ ∑+, T = (ti )1≤i≤n are defined as
finite sequences of matching transitions ti = (qi−1, ai , qi ) where i = 1, 2, . . . , n.
Moreover, δ(T ) = (δ(ti ))1≤i≤n is the sequence of the transition weights of T and
wgt (T ) = val(δ(T )) is the weight of T . A run is successful if it starts in an initial
state from I and ends in a final state from F . We denote the set of successful runs
of A by succ(A). The behavior of A is the function ||A|| : ∑+ → S, defined by
(||A||, w) = ∑{val(δ(T ))|T ∈ succ(A)}, for all w ∈ ∑+, if there is no successful
run on w, (||A||, w) = 0.

The above definition of weighted automata over a Cauchy valuation monoid
(S,+, val, (·m,n|m, n ∈ N ), 0) does not consider the initial or final weights. In this
paper, we define weighted automata over a Cauchy valuation monoid with initial and
final weights.

Definition 1 Let A = (Q,
∑

, δ, I, F) be a weighted automaton over a Cauchy val-
uation monoid (S,+, val, (·m,n|m, n ∈ N ), 0) where Q is a finite state set,

∑
is an

alphabet, δ : Q × ∑×Q → S is a weight function, I : Q → S and F : Q → S are
initial weight function and final weight function respectively.

The behavior of A is the function ||A|| : ∑∗ → S, defined by (||A||, ε) =∑
q0∈Q val(I (q0), F(q0)), for all w = a1a2 · · · an ∈ ∑+, (||A||, w) = ∑

q0,...,qn∈Q
val(I (q0), δ(q0, a1, q1), . . . , δ(qn−1, an, qn), F(qn)).

Definition 2 Let A = (Q,
∑

, δ, I, F) and B = (P,
∑

, η, J,G) be weighted
automata over a Cauchy valuationmonoid (S,+, val, (·m,n |m, n ∈ N ), 0). There is a
function ϕ : Q → P between A and B if it is bijective and for all q, q ′ ∈ Q, a ∈ ∑

,
the following holds:

J (ϕ(q)) = I (q), (4)

η(ϕ(q), a,ϕ(q ′)) = δ(q, a, q ′), (5)

G(ϕ(q)) = F(q). (6)

Then we say that A and B are isomorphic.

3 Bisimulation Relations for Weighted Automata

Definition 3 Let A = (Q,
∑

, δ, I, F) and B = (P,
∑

, η, J,G) be weighted
automata over aCauchy valuationmonoid (S,+, val, (·m,n |m, n ∈ N ), 0). R ⊆ Q ×
P is a relation from the state Q of A to the state P of B. For all q ∈ Q, p ∈ P, a ∈ ∑

,
if
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J (p) =
∑

{I (q ′)|(q ′, p) ∈ R}, (7)
∑

{δ(q, a, q ′)|(q ′, p) ∈ R} =
∑

{η(p′, a, p)|(q, p′) ∈ R}, (8)

F(q) =
∑

{G(p′)|(q, p′) ∈ R}. (9)

Then R is called a bisimulation relation between A and B.

Lemma 1 Let (S,+, val, (·m,n |m, n ∈ N ), 0) be a Cauchy valuation monoid. For
all s1, . . . , si−1, si j , si+1, . . . , sn ∈ S, j ∈ J , then

val

⎛

⎝s1, . . . ,
∑

j∈J

si j , . . . , sn

⎞

⎠ =
∑

j∈J

val(s1, . . . , si−1, si j , si+1, . . . , sn). (10)

Proof

val

⎛

⎝s1, . . . ,
∑

j∈J

si j , . . . , sn

⎞

⎠

= val

⎛

⎝s1, . . . ,
∑

j∈J

si j

⎞

⎠ ·i,n−ival(si+1, . . . , sn)

⎛

⎝val(s1, . . . , si−1)·i−1,1

∑

j∈J

si j

⎞

⎠ ·i,n−i ·

val(si+1, . . . , sn)

=
⎛

⎝
∑

j∈J

val(s1, . . . , si−1)·i−1,1si j

⎞

⎠ ·i,n−ival(si+1, . . . , sn)

=
⎛

⎝
∑

j∈J

val(s1, . . . , si−1, si j )

⎞

⎠ ·i,n−ival(si+1, . . . , sn)

=
∑

j∈J

val(s1, . . . , si−1, si j )·i,n−ival(si+1, . . . , sn)

=
∑

j∈J

val(s1, . . . , si−1, si j , si+1, . . . , sn)

�

Theorem 1 Let A = (Q,
∑

, δ, I, F) and B = (P,
∑

, η, J,G) be weighted
automata over a Cauchy valuation monoid (S,+, val, (·m,n|m, n ∈ N ), 0). |Q| =
n, |P| = m. If R is a bisimulation relation between A and B, then ||A|| = ||B||.
Proof If w = ε
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(||A||, ε) =
∑

q0∈Q
val(I (q0), F(q0)) =

∑

q0∈Q
val(I (q0),

∑
{G(p0)|(q0, p0) ∈ R})

=
∑

q0∈Q

∑

(q0,p0)∈R

val(I (q0),G(p0)) =
∑

p0∈P

∑

(q0,p0)∈R

val(I (q0),G(p0))

=
∑

p0∈P

val(
∑

(q0,p0)∈R

I (q0),G(p0)) =
∑

p0∈P

val(J (p0),G(p0)) = (||B||, ε).

(||A||, w)

=
∑

q0,...,qk∈Q
val(I (q0), δ(q0, a1, q1), . . . , δ(qk−1ak , qk), F(qk))

=
∑

qk∈Q

∑

q0,...,qk−1∈Q
val(I (q0), δ(q0, a1, q1), . . . , δ(qk−1, ak , qk),F(qk))

=
∑

qk∈Q

∑

q0,...,qk−1∈Q
val(I (q0), δ(q0, a1, q1), . . . , δ(qk−1, ak , qk)

∑

(qk ,pk )∈R

G(pk))

=
∑

qk∈Q

∑

q0,...,qk−1∈Q

∑

(qk ,pk )∈R

val(I (q0), δ(q0, a1, q1), . . . , δ(qk−1, ak , qk),G(pk))

=
∑

qk∈Q

∑

(qk ,pk )∈R

∑

q0,...,qk−1∈Q
val(I (q0), δ(q0, a1, q1), . . . , δ(qk−1, ak , qk),G(pk))

=
∑

pk∈P

∑

(qk ,pk )∈R

∑

q0,...∈Q
val(I (q0), δ(q0, a1, q1), . . . , δ(qk−1, ak , qk),G(pk))

=
∑

pk∈P

∑

q0,...,qk−1∈Q

∑

(qk ,pk )∈R

val(I (q0), δ(q0, a1, q1), . . . , δ(qk−1, ak , qk),G(pk))

=
∑

pk∈P

∑

q0,...,qk−1∈Q
val(I (q0), δ(q0, a1, q1), . . . ,

∑

(qk ,pk )∈R

δ(qk−1, ak , qk),G(pk))

=
∑

pk∈P

∑

q0,...,qk−1∈Q
val(I (q0), δ(q0, a1, q1), . . . ,

∑

(qk ,pk )∈R

δ(qk−1, ak , qk))·k+1,1·

val(G(pk))

=
∑

pk∈P

⎛

⎝
∑

q0,...,qk−1∈Q
val(I (q0)δ(q0, a1, q1), . . . ,

∑

(qk ,pk )∈R

δ(qk−1, ak , qk))

⎞

⎠ ·k+1,1·

G(pk).

Let d(w) = ∑
q0,...,qk−1∈Q val(I (q0), δ(q0, a1, q1), . . . ,

∑
(qk ,pk )∈R δ(qk−1, ak, qk)).

By induction on the length of the input string w, it follows that for all
w = a1a2 · · · ak ∈ ∑+

, d(w) = ∑
p0,...,pk−1∈P val(J (p0), η(p0, a1, p1), . . . , η

(pk−1, ak, pk)).
Hence, for all w = a1a2 · · · ak ∈ ∑+
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(||A||, w) =
∑

pk∈P

d(w)·k+1,1G(pk)

=
∑

pk∈P

( ∑

p0,...,pk−1∈P

val(J (p0), η(p0, a1, p1), . . . , η(pk−1, ak, pk))

)

·k+1,1 G(pk)

=
∑

pk∈P

∑

p0,...,pk−1∈p

val(J (p0),η(p0, a1, p1), . . . , η(pk−1, ak, pk))·k+1,1G(pk)

=
∑

p0,...,pk∈P

val(J (p0), η(p0, a1, p1), . . . , η(pk−1, ak, pk),G(pk)) = (||B||, w).

Thus, ||A|| = ||B||. �

Definition 4 Let A = (Q,
∑

, δ, I, F) and B = (P,
∑

, η, J,G) be weighted
automata over a Cauchy valuation monoid (S,+, val, (·m,n|m, n ∈ N ), 0). R is a
bisimulation relation between A and B. If R : Q → P is a surjective function, we
say that R is a surjective functional bisimulation relation between A and B and B is
an aggregated automata of A.

Corollary 1 Let A = (Q,
∑

, δ, I, F) and B = (P,
∑

, η, J,G) be weighted
automata over a Cauchy valuation monoid (S,+, val, (·m,n |m, n ∈ N ), 0). R is a
surjective functional bisimulation relation between A and B if and only if for all
q ∈ Q, p ∈ P, a ∈ ∑

, the following holds:

R : Q → P is a sur jective f unction, (11)

J (p) =
∑

{I (q ′)|R(q ′) = p}, (12)

η(R(q), a, p) =
∑

{δ(q, a, q ′)|R(q ′) = p}, (13)

F(q) = G(R(q)). (14)

Proof Combining Definitions 1 and 4, we can see that the conclusion
holds. �

If R is a surjective functional bisimulation relation between A and B, we can
construct an equivalence relation R̃ on Q by R where R̃ = {(q, q ′)|R(q) = R(q ′)}.
Theorem 2 Let A = (Q,

∑
, δ, I, F) and B = (P,

∑
, η, J,G) be weighted

automata over a Cauchy valuation monoid (S,+, val, (·m,n |m, n ∈ N ), 0). R̃ is an
equivalence relation on Q. Then R̃ is constructed by a surjective functional bisimu-
lation relation between A and B if and only if the following holds:
(a) If (q, q ′) ∈ R̃, for all q ′′ ∈ Q, a ∈ ∑

,

∑
{δ(q, a, q ′′′)|(q ′′, q ′′′) ∈ R̃} =

∑
{δ(q ′, a, q ′′′)|(q ′′, q ′′′) ∈ R̃}, (15)

(b) If (q, q ′) ∈ R̃, F(q) = F(q ′);
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(c) Constructing a weighted automaton AR̃ = (QR̃,
∑

, δR̃, IR̃, FR̃) where for all
[q], [q ′′] ∈ QR̃, a ∈ ∑

,

Q R̃ = {[q]|q ∈ Q}, (16)

IR̃([q]) =
∑

{I (q ′)|(q, q ′) ∈ R̃}, (17)

δR̃([q], a, [q ′′]) =
∑

{δ(q, a, q ′′′)|(q ′′, q ′′′) ∈ R̃}, (18)

FR̃([q]) = F(q). (19)

Then AR̃ and B are isomorphic.

Proof (⇒) (a) If R̃ is an equivalence relation on Q which is constructed by a
surjective functional bisimulation relation R between A and B, for all q ∈ Q,
there exists unique p ∈ P such that R(q) = p. Then if (q, q ′) ∈ R̃, there exists
unique p ∈ P such that R(q) = R(q ′) = p. Therefore, for all q ′′ ∈ Q, a ∈ ∑

,∑ {δ(q, a, q ′′′)|(q ′′, q ′′′) ∈ R̃} = ∑ {δ(q, a, q ′′′)|R(q ′′) = R(q ′′′) = p′′}= ∑{δ(q,
a, q ′′′)|R(q ′′′) = p′′}= η(R(q), a, p′′)= η(p, a, p′′),∑ {δ(q ′, a, q ′′′)|(q ′′, q ′′′) ∈ R̃} = ∑ {δ(q ′, a, q ′′′)|R(q ′′) = R(q ′′′) = p′′}= ∑

{δ(q ′, a, q ′′′)|R(q ′′′) = p′′}= η(R(q ′), a, p′′)= η(p, a, p′′).
Thus, if (q, q ′) ∈ R̃, for all q ′′ ∈ Q, a ∈ ∑

,

∑
{δ(q, a, q ′′′)|(q ′′, q ′′′) ∈ R̃} =

∑
{δ(q ′, a, q ′′′)|(q ′′, q ′′′) ∈ R̃}. (20)

(b) Since R̃ is an equivalence relation on Q which is constructed by a sur-
jective functional bisimulation relation R between A and B, for all q ∈ Q, there
exists unique p ∈ P such that R(q) = p. Then if (q, q ′) ∈ R̃, there exists unique
p ∈ P such that R(q) = R(q ′) = p. Therefore, F(q) = G(R(q)) = G(p), F(q ′) =
G(R(q ′)) = G(p). Thus, if (q, q ′) ∈ R̃, F(q) = F(q ′).

(c) Let ϕ : QR̃ → P(i.e.ϕ : [q] 	→ p) where R(q) = p. Since R is a surjective
functional bisimulation relation between A and B, for all q ∈ Q, there exists unique
p ∈ P such that R(q) = p. Then for all [q] ∈ QR̃ , there exists unique p ∈ P such
that ϕ([q]) = p. So, ϕ is a map. Since R is a surjective functional bisimulation
relation between A and B, for all p ∈ P , there existsq ∈ Q such that R(q) = p. Then
there exists [q] ∈ QR̃ such that ϕ([q]) = p. So, ϕ is a surjective map. If ϕ([q]) =
ϕ([q ′]) = p, R(q) = R(q ′) = p. Hence, (q, q ′) ∈ R̃, and evidently, it is equivalent
to [q] = [q ′]. Thus, ϕ is an injective map. ϕ : QR̃ → P is a bijective map.

Furthermore, for all [q], [q ′′] ∈ QR̃, a ∈ ∑
, J (ϕ([q])) = J (p) = ∑{I (q ′)|

R(q ′) = p} = ∑ {I (q ′)|R(q) = R(q ′) = p}= ∑ {I (q ′)| (q, q ′) ∈ R̃} = IR̃([q]),
η(ϕ([q]), a,ϕ([q ′′])) = η(p, a, p′′) = η(R(q), a, p′′) = ∑{δ(q, a, q ′′′)|R(q ′′′) =
p′′}= ∑{δ(q, a, q ′′′)|R(q ′′) = R(q ′′′) = p′′}= ∑{δ(q, a, q ′′′)|(q ′′, q ′′′) ∈ R̃} = δR̃
([q], a, [q ′′]), G(ϕ([q])) = G(p) = G(R(q)) = F(q) = FR̃([q]).

Thus, AR̃ andB are isomorphic.
(⇐) Let R̃ be an equivalence relation on Q and suppose that it satisfies conditions

(a) and (b). We can construct a weighted automaton AR̃ = (QR̃,
∑

, δR̃, IR̃, FR̃).
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Since AR̃ and B are isomorphic, for all [q], [q ′′] ∈ QR̃, a ∈ ∑
, there exists a bijective

map ϕ : AR̃ → B (i.e.ϕ : [q] 	→ p) which satisfies

J (ϕ([q])) = IR̃([q]) (21)

η(ϕ([q]), a,ϕ([q ′′])) = δR̃([q], a, [q ′′]) (22)

G(ϕ([q]) = FR̃([q]) (23)

Let R0 = {(q, p)|ϕ([q]) = p}. Now, we prove that R0 is a surjective functional
bisimulation relation between A and B.

Since R̃ is an equivalence relation on Q, for all q ∈ Q, there exists unique [q] ∈
QR̃ . Since ϕ is a bijective map, for all [q] ∈ QR̃ , there exists unique p ∈ P such that
ϕ([q]) = p. Then for all q ∈ Q, there exists unique p ∈ P such that (q, p) ∈ R0.
Sinceϕ is a bijective map, for all p ∈ P , there exists [q] ∈ QR̃ such thatϕ([q]) = p.
Then there exists q ∈ Q such that (q, p) ∈ R0. Thus, R0 : Q → P is a surjective
map.

Furthermore, for all p ∈ P , J (p) = J (ϕ([q])) = IR̃([q]) = ∑{I (q ′)|(q, q ′) ∈
R̃} = ∑ {I (q ′)|[q ′] = [q]} = ∑{I (q ′)|ϕ([q ′]) = ϕ([q])} = ∑{I (q ′)|ϕ([q ′]) =
p} = ∑{I (q ′)|(q ′, p) ∈ R0} = ∑{I (q ′)|R0(q ′) = p}.

For all q ∈ Q, p′′ ∈ P, a ∈ ∑
, η(R0(q), a, p′′) = η(ϕ([q]), a,ϕ([q ′′])) = δR̃

([q], a, [q ′′]) =∑ {δ(q, a,q ′′′)|(q ′′, q ′′′) ∈ R̃} =∑ {δ(q, a, q ′′′)|[q ′′] = [q ′′′]} =∑

{δ(q, a, q ′′′)|ϕ([q ′′]) = ϕ([q ′′′])} =∑ {δ(q,a, q ′′′)|ϕ([q ′′′]) = p′′} = ∑{δ(q, a,
q ′′′)|(q ′′′ p′′) ∈ R0}= ∑{δ(q, a, q ′′′)|R0(q ′′′) = p′′}.

For all q ∈ Q, F(q) = FR̃([q]) = G(ϕ([q])) = G(p) = G(R0(q)).
Therefore, R0 is a surjective functional bisimulation relation between A and B.
Now, we prove R̃0 = R̃.
Since R0 = {(q, p)|ϕ([q]) = p} is a surjective functional bisimulation relation

between A and B, R̃0 = {(q, q ′)|R0(q) = R0(q ′)}= {(q, q ′)|ϕ([q]) = ϕ([q ′])}=
{(q, q ′)|[q] = [q ′]}= {(q, q ′)|(q, q ′) ∈ R̃} = R̃.

Thus, R̃ is an equivalence relation on Q which is constructed by a surjective
functional bisimulation relation R0 between A and B. �

According to above the theorem, we can get ||A|| = ||AR̃|| and |Q| ≥ |QR̃|.
Definition 5 Let A = (Q,

∑
, δ, I, F) be a weighted automaton over a Cauchy val-

uation monoid (S,+, val, (·m,n |m, n ∈ N ), 0). R̃ an equivalence relation on Q. If R̃
satisfies the following conditions:
(a) If (q, q ′) ∈ R̃, for all q ′′ ∈ Q, a ∈ ∑

,

∑
{δ(q, a, q ′′′)|(q ′′, q ′′′) ∈ R̃} =

∑
{δ(q ′, a, q ′′′)|(q ′′, q ′′′) ∈ R̃}, (24)

(b) If (q, q ′) ∈ R̃, F(q) = F(q ′).
Then we say that R̃ is a bisimulation relation for A and AR̃ is an aggregated

automaton of A.



Bisimulation Relations for Weighted Automata over Valuation Monoids 189

4 Construction of the Greatest Bisimulation Relation

Before constructing the greatest bisimulation relation for A, we firstly prove the
existence of the greatest bisimulation relation for A.

Theorem 3 Let A = (Q,
∑

, δ, I, F) be a weighted automaton over a Cauchy val-
uation monoid (S,+, val, (·m,n|m, n ∈ N ), 0). Then the set of the bisimulation rela-
tions for A has the greatest element.

Proof It is clear that the equality relation is a bisimulation relation. So, the set
of bisimulation relations for A is not empty. Since the set of states of A is finite,
the set of bisimulation relations for A is finite. Let R̃1, R̃2 be two bisimulation
relation for A. We can construct the minimum equivalence relation R̃ which con-
tains R̃1 and R̃2. Notice that (q, q ′) ∈ R̃ if and only if there exists finite states
qi1, qi2, . . . , qik−1 ∈ Q such that (q, qi1) ∈ R̃i1, (qi1, qi2) ∈ R̃i2, . . . , (qik−1, q ′) ∈
R̃ik , where R̃i1, R̃i2, . . . , R̃ik ∈ {R̃1, R̃2}.

Now, we prove that R̃ is also a bisimulation relation for A.
Since R̃ is the minimum equivalence relation which contains R̃1 and R̃2, for all

q ∈ Q, we use [q], [q]1, [q]2 to represent the equivalence class in R̃, R̃1 and R̃2

respectively. Then there exists q j1, q j2, . . . , q jk1 , ql1, ql2, . . . , qlk2 ∈ Q such that

[q] = [q j1]1 ∪ [q j2]1 ∪ · · · ∪ [q jk1 ]1 = [ql1]2 ∪ [ql2]2 ∪ · · · ∪ [qlk2 ]2 (25)

Hence, (q ′′, q ′′′) ∈ R̃ if and only if there exists j ∈ { j1, j2, . . . , jk1} such that

(q ′′
j , q

′′′) ∈ R̃1, if and only if there exists l ∈ {l1, l2, . . . , lk2} such that (q ′′
l , q

′′′) ∈
R̃2.

If (q, q ′) ∈ R̃1, for all q ′′ ∈ Q, a ∈ ∑
,
∑{δ(q, a, q ′′′)|(q ′′, q ′′′) ∈ R̃} =

k1∑

i=1

∑{δ

(q, a, q ′′′)|(q ′′
j i , q

′′′) ∈ R̃1} =
k1∑

i=1

∑{δ(q ′, a, q ′′′)|(q ′′
j i , q

′′′) ∈ R̃1} = ∑{δ(q ′, a,

q ′′′)|(q ′′, q ′′′) ∈ R̃}. If (q, q ′) ∈ R̃2, for all q ′′ ∈ Q, a ∈ ∑
,
∑{δ(q, a, q ′′′)|(q ′′, q ′′′)

∈ R̃} =
k2∑

i=1

∑{δ(q, a, q ′′′)|(q ′′
li , q

′′′) ∈ R̃2} =
k2∑

i=1

∑{δ(q ′, a, q ′′′)|(q ′′
li , q

′′′) ∈ R̃2} =
∑ {δ(q ′, a, q ′′′)|(q ′′, q ′′′) ∈ R̃}. If (q, q ′) ∈ R̃, there exists finite states qi1, qi2, . . . ,
qik−1 ∈ Q such that (q, qi1) ∈ R̃i1, (qi1, qi2) ∈ R̃i2, . . . , (qik−1, q ′) ∈ R̃ik where R̃i1,

R̃i2, . . . , R̃ik ∈ {R̃1, R̃2}. Then for all q ′′ ∈ Q, a ∈ ∑
,
∑{δ(q, a, q ′′′)|(q ′′, q ′′′) ∈

R̃} = ∑{δ(qi1, a, q ′′′)|(q ′′, q ′′′) ∈ R̃} = · · · = ∑{δ(qik−1, a, q ′′′)|(q ′′, q ′′′) ∈ R̃}
=∑{δ(q ′, a,q ′′′)|(q ′′, q ′′′) ∈ R̃}. Hence, if (q, q ′) ∈ R̃, for allq ′′ ∈ Q, a ∈ ∑

,
∑{{δ

(q, a, q ′′′)|(q ′′, q ′′′) ∈ R̃} =∑{δ(q ′, a, q ′′′)|(q ′′, q ′′′) ∈ R̃}.
If (q, q ′) ∈ R̃, there exists finite states qi1, qi2, . . . , qik−1 ∈ Q such that (q, qi1) ∈

R̃i1, (qi1, qi2) ∈ R̃i2, . . . , (qik−1, q ′) ∈ R̃ik where R̃i1, R̃i2, . . . , R̃ik ∈ {R̃1, R̃2}.
Then F(q) = F(qi1) = F(qi2) = · · · = F(qik−1) = F(q ′). Hence, if (q, q ′) ∈ R̃,
F(q) = F(q ′).

R̃ is a bisimulation relation for A. Thus, we can draw the conclusion that the set
of bisimulation relations for A has the greatest element. �
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Theorem 4 Let A = (Q,
∑

, δ, I, F) be a weighted automaton over a Cauchy val-
uation monoid (S,+, val, (·m,n|m, n ∈ N ), 0). We define equivalence relations on
Q by induction as follows:
R̃0 = {(q, q ′) ∈ Q × Q|F(q) = F(q ′)};
R̃i+1 = {(q, q ′) ∈ R̃i | ∑{δ(q, a, q ′′′)|(q ′′, q ′′′) ∈ R̃i } = ∑{δ(q ′, a, q ′′′)|(q ′′, q ′′′)

∈ R̃i }, f or all q ′′ ∈ Q, a ∈ ∑}.
Then
(a) R̃0 ⊇ R̃1 ⊇ · · · ⊇ R̃i ⊇ R̃i+1 ⊇ · · · ;
(b) If R̃k = R̃k+1, for all n ∈ N, R̃k = R̃k+n;
(c) There exists k ∈ N such that R̃k = R̃k+1. Then R̃k is the greatest bisimulation
relation for A.

Proof (a) According to the definition of R̃i , the conclusion holds.
(b) We prove by induction on n. For n = 1, it is clear that R̃k = R̃k+1. Now, we

assume that if n = m(m ≥ 1), R̃k = R̃k+m holds. If n = m + 1, R̃k+m+1 = {(q, q ′) ∈
R̃k+m | ∑{δ(q, a, q ′′′)|(q ′′, q ′′′) ∈ R̃k+m} = ∑{δ(q ′, a, q ′′′)|(q ′′, q ′′′) ∈ R̃k+m}, f or
all q ′′ ∈ Q, a ∈ ∑} ={(q, q ′) ∈ R̃k | ∑{δ(q, a, q ′′′)|(q ′′, q ′′′) ∈ R̃k} = ∑{δ(q ′, a,
q ′′′)|(q ′′, q ′′′) ∈ R̃k}, f or all q ′′ ∈ Q, a ∈ ∑} = R̃k+1 = R̃k . Thus, if R̃k = R̃k+1,

for all n ∈ N , R̃k = R̃k+n .
(c) Since the set of states of A is finite, there are finite equivalence relations on

Q. Since R̃0 ⊇ R̃1 ⊇ R̃2 ⊇ · · · ⊇ R̃i . . ., there exists k ∈ N such that R̃k = R̃k+1.
If (q, q ′) ∈ R̃k , (q, q ′) ∈ R̃0. Then F(q) = F(q ′). Since R̃k = R̃k+1, if (q, q ′) ∈
R̃k , (q, q ′) ∈ R̃k+1. Then for all q ′′ ∈ Q, a ∈ ∑

,
∑{δ( q, a, q ′′′)|(q ′′, q ′′′) ∈ R̃k} =∑{δ(q ′, a, q ′′′)|(q ′′, q ′′′) ∈ R̃k}. Thus, R̃k is a bisimulation relation for A.

We can prove by induction on i that R̃k is the greatest bisimulation rela-
tion for A. Assume that R̃ is also a bisimulation relation for A. for i = 0, it
is clear that R̃ ⊆ R̃0. Now, we assume that if i = m(m ≥ 0), R̃ ⊆ R̃m . If i =
m + 1, for all q ∈ Q, let [q]m, [q] be the equivalence class in R̃m, R̃ respec-
tively, there exists q j1, q j2, . . . , q jk1 ∈ Q such that [q]m = [q j1] ∪ [q j2] ∪ · · · ∪
[q jk1]. Then (q ′′, q ′′′) ∈ R̃m if and only if there exists j ∈ { j1, j2, . . . , jk1} such that
(q ′′

j , q
′′′) ∈ R̃. Thus, if (q, q ′) ∈ R̃, for all q ′′ ∈ Q, a ∈ ∑

,
∑{δ(q, a, q ′′′)|(q ′′, q ′′′)

∈ R̃m} =
k1∑

i=1

∑{δ(q, a, q ′′′)|(q ′′
j i , q

′′′) ∈ R̃}=
k1∑

i=1

∑{δ(q ′, a, q ′′′)|(q ′′
j i , q

′′′) ∈ R̃}=
∑{δ(q ′, a, q ′′′)|(q ′′, q ′′′) ∈ R̃m}. Since R̃ ⊆ R̃m , if (q, q ′) ∈ R̃, (q, q ′) ∈ R̃m . Then
(q, q ′) ∈ R̃m+1. Hence, for all i ∈ N , R̃ ⊆ R̃i especially R̃ ⊆ R̃k . Thus, R̃k is the
greatest bisimulation relation for A. �

Algorithm 1 Let A = (Q,
∑

, δ, I, F) be a weighted automaton over a Cauchy
valuation monoid (S,+, val, (·m,n|m, n ∈ N ), 0) and Q = {q1, q2, . . . , qn}.

Step 1. Let X = {(qi , q j )|F(qi ) = F(q j )}.
Step 2. For all q j ∈ Q, a ∈ ∑

, letMaxa(qi , q j ) = ∑{δ(qi , a, qk)|(q j , qk) ∈ X}.
Step 3. For all (qi , qm) ∈ X , if there exists a ∈ ∑

such that Maxa(qi , q j ) �=
Maxa(qm, q j ), then we delete (qi , qm) from X and get a new X .
Step 4. We execute Step 2 and Step 3 until X becomes constant.
Step 5. If X becomes constant, then R̃k = X .
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5 Conclusions

In this paper, we mainly study bisimulation relations for weighted automata over
valuation monoids. Bisimulation relations for weighted automaton A over valuation
monoids are equivalence relations with two additional properties as shown in Defi-
nition 5 (a) and (b). If we get the greatest bisimulation relation, we can construct an
aggregated automaton of A with an equivalent behavior but with fewer states.
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Weighted Automata Over Valuation Monoids
with Input and Multi-output Characteristics

Jian-Hua Jin, Dong-Xue Li and Chun-Quan Li

Abstract Weighted automata are significant modelling notions of discrete dynamic
systems. This paper aims to study weighted automata over valuation monoids with
input and multi-output characteristics, whose truth values involve a wide range of
algebraic structures such as semirings and strong bimonoids. In particular, if these
domains are Cauchy double unital valuation monoids, it is pointed out that weighted
sequential-like automata and weighted generalized Moore automata are equivalent
in the sense of the same input and multi-output behaviors.

Keywords Weighted automata · Valuation monoids · Weighted sequential-like
automata · Weighted generalized moore automata · Equivalence

1 Introduction

Fuzzy automata have been increasingly important models in computer science and
artificial intelligence, which initiated by Wee and Santos [16–18, 21] as early as in
the late 1960s. It is noticeable that fuzzy automata explore new frontiers and help to
provide sound formal theory for discrete dynamic systems [11, 19]. Not only these
automata are constantly concerned about theories likemathematical models [14, 20],
its have also been widely applied to many fields in machine intelligence [22], digital
image compression [5], natural language processing [8, 13] and model checking
[12, 15].
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Weighted automata are developed based on general algebraic systems recently.
Chatterjee et al. [1–4] established probablistic weighted automata and study quan-
titative languages which compute objectives such as the long-run average cost and
maximal reward. Li [10] studies finite automata theory with membership values in
lattices, where the role of the distributive law for the underlying lattice was analyzed.
Droste et al. [6] initiatedweightedfinite automata theory over strong bimonoids based
on run semantics, initial algebra semantics and free monoid semantics. Droste and
Meinecke [7] investigated weighted automata and regular expressions over valuation
monoids, where the weight of a successful run is computed by a valuation function.

It is interesting to study the behaviors of weighted automata over valuation
monoids associated with input-output or input-multioutput characteristics. As is
pointed out by Li and Pedrycz [9], a complex system may be modeled by two dif-
ferent fuzzy machines. Li and Pedrycz proved the equivalence relationship between
lattice-valued sequential-like machines and lattice-valued finite Moore machines
over lattice-ordered monoids, which means that they exhibit the same input-output
characteristics. However, little research is done on the relationships among weighted
automata over valuation monoids in the sense of input-multioutput features. The pur-
pose of this paper is to investigate these automata, in which the input feature means
a single-input.

The rest of the paper is arranged as follows. Section2 introduces three kinds
of weighted automata and their response functions, including weighted sequential-
like automata, weighted generalized Mealy automata and weighted generalized
Moore automata over valuation monoids. Section3 studies the relationship between
weighted sequential-like automata and weighted generalized Moore automata with
the same input and multi-output sets, whose codomains are Cauchy double unital
valuation monoids. Moreover, some illuminated examples are presented. Section4
gives conclusions finally.

2 Weighted Automata Over Valuation Monoids with Input
and Multi-output Characteristics

Let N be the set of positive integers and Σ an alphabet. By Σ∗ we denote the set of
all finite words over Σ , containing the empty word ε. Then Σ∗ is the free monoid
generated by Σ with the concatenation operation. For θ ∈ Σ∗, |θ| is the length of θ.
By Σ+ we denote the set of non-empty finite words in Σ∗. Let AQ denote the set of
all functions from set Q to set A. For every F ∈ AQ×Q and σ ∈ AQ, we write Fq1,q2
instead of F(q1, q2) and σq1 instead of σ(q1) for all q1, q2 ∈ Q.

Amonoid (A,+, 0) is complete [7] if it has infinitary sumoperations
∑

I : AI → A
for any index set I such that

∑
i∈∅ di = 0,

∑
i∈{k} di = dk,

∑
i∈{j,k} di = dj + dk , for

j �= k.
∑

j∈J(
∑

i∈Ij di) = ∑
i∈I di if

⋃
j∈J Ij = I and Ij

⋂
Ik = ∅ for j �= k.
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Definition 1 A valuation monoid (A,+, val, 0) consists of a commutative monoid
(A,+, 0) and a valuation function val: A+ → A with val(d) = d for all d ∈ A and

val(d1, . . . , dn) = 0

whenever d1, . . . , dn ∈ A and di = 0 for some i ∈ {1, . . . , n}, A+ = {(d1, . . . , dn) ∈
An | d1, . . . , dn ∈ A, n ∈ N∗}. Moreover, a valuation monoid (A,+, val, 0) is called
a double unital valuation monoid if there exists an element e ∈ A such that for any
d1, . . . , di−1, di+1, . . . , dn ∈ A,

val(d1, . . . , di−1, e, di+1, . . . , dn) = val(d1, . . . , di−1, di+1, . . . , dn).

The double unital valuation monoid will be denoted by (A,+, val, 0, e).

A valuation monoid includes a variety of algebraic systems such as bounded
lattices, strong bimonoids and semirings, examples can be found in [7, 10].

Definition 2 The algebraic system (A,+, val, {·m,n|m, n ∈ N}, 0, e) is a Cauchy
double unital valuation monoid if (A,+, val, 0, e) is a double unital valuation
monoid and ·m,n : A × A → A with m, n ∈ N is a family of products such that for all
d, di, d′

j ∈ A and all finite subsets B,C ⊆ A:

0 ·m,n d = d ·m,n 0 = 0

val(d1, . . . , dm, d′
1, . . . , d

′
n) = val(d1, . . . , dm) ·m,n val(d′

1, . . . , d
′
n),

and ∑
(d|d ∈ B) ·m,n

∑
(d′|d′ ∈ C) =

∑
(d ·m,n d

′|d ∈ B, d′ ∈ C).

Definition 3 A weighted sequential-like automaton M = (Q,σ, τ ) over a finite
input alphabetΣ , a finite multi-output set Y = Y1 × · · · × Yk and a valuationmonoid
(A,+, val, 0, e) is a triple (for short WSLAM), consisting of a finite nonempty state
set Q, an initial weight vector σ ∈ AQ and a transition mapping τ : Σ × Y → AQ×Q

such that: ∑

y∈Y

∑

p∈Q
τ (u, y)q,p �= 0,∀q ∈ Q, ∀u ∈ Σ.

To compute with words, τ is extended to a function from Σ∗ × Y∗ to AQ×Q,
denoted by τ ∗ : Σ∗ × Y∗ → AQ×Q,

τ ∗(θ,ω)q,p =

⎧
⎪⎪⎨

⎪⎪⎩

e, if l = mi = 0, ∀i ∈ {1, . . . , k} and q = p
0, if l = mi = 0, ∀i ∈ {1, . . . , k} and q �= p
a, if l = mi �= 0 and ∀i ∈ {1, . . . , k}
0, otherwise
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where θ = u1u2 . . . ul, |θ| = l, ui ∈ Σ , ω = (ω1, . . . ,ωk) ∈ Y∗ = Y∗
1 ×

Y∗
2 × · · ·Y∗

k ,

ωi = yi1yi2 . . . yimi , |ωi| = mi, i = {1, . . . , k}, and
a = ∑

q1,...,ql−1∈Q val(τ (u1, (y1l, . . . , ykl))q,q1 , τ (u2, (y12, . . . , yk2))q1,q2 , . . . , τ (ul,
(y1l, . . . , ykl))ql−1,p).

Noting that if the above ω = (ω1, . . . ,ωk) satisfies the condition |ωi| = m, ∀i ∈
{1, . . . , k}, then we denote ω by

ω = (ω1, . . . ,ωk) = (y11y12 . . . y1m, y21y22 . . . y2m, . . . , yk1yk2 . . . ykm) = (y11,
y21, . . . , yk1)(y12, y22, . . . , yk2) . . . (y1m, y2m, . . . , ykm).

The input and multi-output (I/MO) behavior of M, denoted by ϕ = ϕM : Σ∗ ×
Y∗ → A, is defined for all θ ∈ Σ∗ and ω = (ω1, . . . ,ωk) ∈ Y∗ = Y∗

1 × Y∗
2 × · · · ×

Y∗
k ,

ϕ(θ,ω) =
∑

p∈Q

∑

q∈Q
val(σq, (τ

∗(θ,ω))q,p).

Definition 4 Aweighted generalized Mealy automaton N = (Q,σ, δ, h) over Σ,Y
and a double unital valuation monoid (A,+, val, 0, e) is a quadruple, where Q and
Σ are finite nonempty sets, a finite set Y = Y1 × · · · × Yk , δ : Σ → AQ×Q and h :
Σ × Y → AQ are mappings, and σ ∈ AQ is an initial weight vector, which satisfy
the following condition:

∑

y∈Y

∑

p∈Q
val((δ(u))q,p, (h(u, y))q) �= 0,∀q ∈ Q,∀u ∈ Σ.

For a weighted generalized Mealy automaton N , we could define a corresponding
input-transition-output function f : Σ × Y → AQ×Q as follows: for all q, p ∈ Q, u ∈
Σ and y ∈ Y ,

(f (u, y))q,p = val((δ(u))q,p, (h(u, y))q).

Then the I/MO behavior of N can be given as follows:

ϕ = ϕN : Σ∗ × Y∗ → A,

for any θ ∈ Σ∗ and all ω = (ω1, . . . ,ωk) ∈ Y∗ = Y∗
1 × Y∗

2 × · · · × Y∗
k ,

ϕ(θ,ω) =
∑

p∈Q

∑

q∈Q
val(σq, (f

∗(θ,ω))q,p).

Definition 5 A weighted Moore automaton M2 = (Q,σ, δ, g) over a finite input
alphabet Σ , a finite multi-output set Y = Y1 × · · · × Yk and a valuation monoid
(A,+, val, 0, e) is a quadruple (for shortWMAM), where σ ∈ AQ is an initial weight
vector, the transition mapping δ : Σ → AQ×Q and output function g : Y → AQ sat-
isfy the following condition:
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∑

y∈Y

∑

p∈Q
val((δ(u))q,p, (g(y))q) �= 0,∀q ∈ Q,∀u ∈ Σ.

The response function ϕ : Σ∗ × Y∗ → A ofM2 is defined in the following form:

ϕ(θ,ω) =
{
a, if mi = l + 1, ∀i ∈ {1, . . . , k}
0, otherwise

where θ = u1u2 . . . ul, |θ| = l, ui ∈ Σ , ω = (ω1, . . . ,ωk) ∈ Y∗ = Y∗
1 × Y∗

2 × · · ·
Y∗
k ,

ωi = yi1yi2 . . . yimi , |ωi| = mi, i = {1, . . . , k}, and
a = ϕ(θ,ω) = ∑

q,q1,...,qk∈Q val((σ)q, g(y0)q, (δ(u1))q,q1 , (g(y1))q1 , (δ(u2))q1,q2 ,
(g(y2))q2 , . . . , (δ(uk))qk−1,qk , (g(yk))qk ).

3 The Relationship Between WSLAM and WMAM

In this section, consider WSLAMM1 and WMAMM2 over valuation monoids with
the same input set Σ and the same multi-output set Y . If their response functions
ϕ1 = ϕM1 and ϕ2 = ϕM2 satisfy the following equation:

ϕ1(θ, (y1, y2, . . . , yk)) =
∑

yi0∈Yi,i∈{1,...,k}
ϕ2(θ, (y10y1, y20y2, . . . , yk0yk)),

for any input sequence θ = u1u2 . . . ul ∈ Σ∗ and output sequence (y1, y2, . . . , yk) ∈
Y∗
1 × Y∗

2 × · · · × Y∗
k with yi = yi1yi2 . . . yil (i ∈ {1, . . . , k}), thenM1 andM2 are said

to be equivalent.

Proposition 1 If (A,+, val, 0, e) is a Cauchy double unital valuation monoid
(A,+, val, {·m,n|m, n ∈ N}, 0, e), then for every WMAM M, there exists an equiv-
alent WSLAM M1.

Proof Suppose a WMAMM = (Q,σ, δ, g) over Σ,Y and (A,+, val, 0, e). Then a
WSLAMM1 = (Q,σ1, τ ) over Σ,Y and (A,+, val, 0, e) is constructed as follows:
σ1 ∈ AQ is given by

(σ1)q =
∑

y0∈Y
val((σ)q, (g(y0))q),∀q ∈ Q,

τ : Σ × Y → AQ×Q is given by

(τ (u, y))q,p = val((δ(u))q,p, (g(y))p),∀(q, p) ∈ Q × Q.

Owing to the Cauchy double unital valuation monoid (A,+, val, {·m,n|m, n ∈ N},
0, e), the response function for M1 is computed by Definitions3 and 5 as follows:
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for each θ = u1u2 . . . ul ∈ Σ∗, ω = (ω1, . . . ,ωk) ∈ Y∗, ωi = yi1yi2 . . . yil, i ∈
{1, . . . , k}. Denote ω = Z1Z2 . . . Zl, where Zj = (y1j, y2j, . . . , ykj), j ∈ {1, 2, . . . , l}.
ϕ1(θ,ω) = ∑

q,q1,...,qk∈Q val((σ1)q, (τ (u1,Z1))q,q1 , (τ (u2,Z2))q1,q2 , . . . , (τ (uk,
Zk))qk−1,qk )

= ∑
y0∈Y

∑
q,...,qk∈Q val((σ)q, (g(y0))q, (δ(u1))q,q1 , (g(Z1))q1 , . . . , (δ(uk))qk−1,qk ,

(g(Zk))qk )
= ∑

y0∈Y ϕ(θ, y0Z1 . . . Zk) = ∑
y0∈Y ϕ(θ, y0ω),

otherwise, ϕ1(θ,ω) = 0 = ∑
y0∈Y ϕ(θ, y0ω). Therefore, M1 is equivalent to the

given automaton M. �

The following example illuminates the construction above.

Example 1 Let L = [0, 1], a + b = sup{a, b}, val(a, b) = a ∧ b,∀a, b ∈ [0, 1].
Then (L,+, val, 0, 1) is a Cauchy double unital valuation monoid. A WMAM
M = (Q,σ, δ, g) over Σ,Y and (A,+, val, 0, 1) is given by, Q = {q1, q2, q3},
Σ = {u, v},Y = Y1 × Y2,Y1 = Y2 = {a, b}. σ = 0.8

q1
+ 0.6

q2
+ 0.3

q3
, g(a, a) = 0.5

q1
+

0.1
q2

+ 0.2
q3

,g(a, b) = 0.7
q1

+ 0.2
q2

+ 0.2
q3

,g(b, a) = 0.1
q1

+ 0.3
q2

+ 0.4
q3

,g(b, b) = 0.2
q1

+ 0.3
q2

+
0.7
q3

,

δ(u)=((δ(u))i,j)3×3=
⎛

⎝
1 0.8 0.7
0.7 0.5 0.4
0.2 0.3 1

⎞

⎠ , δ(v) = ((δ(v))i,j)3×3 =
⎛

⎝
0.7 0.8 0.9
0.2 0.3 0.4
0.3 0.2 0.5

⎞

⎠ .

The corresponding WSLAM M1 = (Q,σ1, τ ) is constructed as follows: σ1 =
(σ1)q1
q1

+ (σ1)q2
q2

+ (σ1)q3
q3

, where (σ1)q1 = ∑
y∈Y val((σ)q1 , (g(y))q1) = (0.8 ∧ 0.5) ∨

(0.8 ∧ 0.7) ∨ (0.8 ∧ 0.1) ∨ (0.8 ∧ 0.2) = 0.7;
(σ1)q2 = (0.6 ∧ 0.1) ∨ (0.6 ∧ 0.2) ∨ (0.6 ∧ 0.3) ∨ (0.6 ∧ 0.3) = 0.3;
(σ1)q3 = (0.3 ∧ 0.2) ∨ (0.3 ∧ 0.2) ∨ (0.3 ∧ 0.4) ∨ (0.3 ∧ 0.7) = 0.3.

τ (u, (a, a)) =
⎛

⎝
0.5 0.1 0.2
0.5 0.1 0.2
0.2 0.1 0.2

⎞

⎠ , τ (u, (a, b)) =
⎛

⎝
0.7 0.2 0.2
0.7 0.2 0.2
0.2 0.2 0.2

⎞

⎠ ,

τ (u, (b, a)) =
⎛

⎝
0.1 0.3 0.4
0.1 0.3 0.4
0.1 0.3 0.4

⎞

⎠ , τ (u, (b, b)) =
⎛

⎝
0.2 0.3 0.7
0.2 0.3 0.4
0.2 0.3 0.7

⎞

⎠ ,

τ (v, (a, a)) =
⎛

⎝
0.5 0.1 0.2
0.2 0.1 0.2
0.3 0.1 0.2

⎞

⎠ , τ (v, (a, b)) =
⎛

⎝
0.7 0.2 0.2
0.2 0.2 0.2
0.3 0.2 0.2

⎞

⎠ ,

τ (v, (b, a)) =
⎛

⎝
0.1 0.3 0.4
0.1 0.3 0.4
0.1 0.2 0.4

⎞

⎠ , τ (v, (b, b)) =
⎛

⎝
0.2 0.3 0.7
0.2 0.3 0.4
0.2 0.2 0.5

⎞

⎠ ,

Take θ = uv,ω = (ba, aa) ∈ Y∗
1 × Y∗

2 , Then
ϕ1(θ,ω) = ∑

p1,p2,p3∈Q val((σ1)p1 , τ (u, (b, a))p1,p2 , τ (v, (a, a))p2,p3) = (0.7 ∧ 0.1 ∧
0.5) ∨ (0.7 ∧ 0.3 ∧ 0.1) ∨ (0.7 ∧ 0.4 ∧ 0.2) = 0.3. ϕ(θ, (aba, aaa)) = 0.3,ϕ(θ,
(aba, baa)) = 0.3,ϕ(θ, (bba, baa)) = 0.2,ϕ(θ, (bba, aaa)) = 0.3.
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Thus ϕ1(θ,ω) = ∑
x1,x2∈Y1 ϕ(θ, (x1ba, x2aa)).

Proposition 2 Let (A,+, val, {·m,n|m, n ∈ N}, 0, e) be a Cauchy double unital val-
uation monoid. Then for every WSLAM M, there exists an equivalent WMAM M1.

Proof Suppose WSLAMM = (Q,σ, τ ) over Σ,Y and (A,+, val, {·m,n|m, n ∈ N},
0, e). Then a WMAM M1 = (Q1,σ1, δ, g) over Σ,Y and (A,+, val, {·m,n|m, n ∈
N}, 0, e) is constructed as follows: Q1 = Q × Y ,σ1 ∈ AQ1 is given by

σ1(q, y) =
{

σ(q), if y = y0
0, otherwise

where y0 = (y01, y02, . . . , y0k) is a particular output symbol in Y . δ : Σ → AQ1×Q1

is designed as follows:

δ(u1)(q,y),(q1,y1) = (τ (u1, y1))q,q1 , ∀u1 ∈ Σ,∀(q, y), (q1, y1) ∈ Q1 × Q1.

g : Y → AQ1 is given by for any y ∈ Y ,

(g(y))(q,y1) =
{
1, if y = y1
0, ify �= y1

Then for any θ = u1u2 . . . ul ∈ Σ∗, ω = (ω1, . . . ,ωk) ∈ Y∗, ωi = yi1yi2 . . .

yil, i ∈ {1, . . . , k}, denote ω = z1z2 . . . zl, where zj = (y1j, y2j, . . . , ykj), j ∈
{1, 2, . . . , l}.ϕ1(θ, y0ω)=∑

q,q1,...,qk∈Q val((σ1)(q,y0), (g(y0))(q,y0), (δ(u1))(q,y0),(q1,z1),
(g(z1))(q1,z1), (δ(u2))(q1,z1),(q2,z2), (g(z2))(q2,z2), . . . , (δ(uk))(qk−1,zk−1),(qk ,zk),

(g(zk))(qk ,zk)) = ∑
q,q1,...,qk∈Q val((σ1)(q,y0), (g(y0))(q,y0), (δ(u1))(q,y0),(q1,z1), . . . ,

(g(zk))(qk ,zk)) = ∑
q,q1,...,qk∈Q val((σ)q, τ (u1, z1)q,q1 , τ (u2, z2)q1,q2 , . . . ,

τ (uk, zk)qk−1,qk ) = ϕ(θ,ω).

Obviously, for all θ ∈ Σ∗,ω ∈ Y∗, y ∈ Y ,

∑

y∈Y
ϕ1(θ, yω) = ϕ(θ,ω).

This completes the proof. �
Example 2 Given a WSLAM M = (Q,σ, τ ) over Σ,Y and ([0, 1],+, val, 0, 1),
where ([0, 1],+, val, 0, 1) is the same as in Example 1, Q = {q1, q2, q3},Σ =
{u, v},Y = Y1 × Y2,Y1 = Y2 = {a, b},A = [0, 1],σ ∈ AQ is given as,

σ = 1
q1

+ 0
q2

+ 0.4
q3

; τ : Σ × Y → AQ×Q is given by,

τ (u, (a, b)) =
⎛

⎝
1 0.8 0.6
0.3 0.3 0.5
0.4 0.5 0.7

⎞

⎠ , τ (u, (a, a)) =
⎛

⎝
0.5 0.7 0.5
0.2 0.4 0.3
0.3 0.6 0.8

⎞

⎠ ,

τ (u, (b, a)) =
⎛

⎝
0.5 0.3 0.7
0.2 0.4 0.6
0.8 0.5 0.7

⎞

⎠ , τ (u, (b, b)) =
⎛

⎝
0.5 0.3 0.4
0.1 0.2 0.5
0.6 0.5 0.7

⎞

⎠ ,
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τ (v, (a, b)) =
⎛

⎝
0.5 0.7 0.9
0.3 0.4 0.5
0.7 0.6 0.8

⎞

⎠ , τ (v, (a, a)) =
⎛

⎝
0.3 0.2 0.5
0.4 0.6 0.7
0.3 0.4 0.5

⎞

⎠ ,

τ (v, (b, a)) =
⎛

⎝
0.7 0.6 0.5
0.3 0.5 0.7
0.5 0.6 0.7

⎞

⎠ , τ (v, (b, b)) =
⎛

⎝
0.3 0.5 0.7
0.4 0.4 0.6
0.5 0.7 0.8

⎞

⎠ .

Let θ = uv, y = (ba, ab), Then
ϕ(θ, y) = ∑

val((σ)p1 , τ (u, (b, a))p1,p2 , τ (v, (a, b))p2,p3) = (1 ∧ 0.5 ∧ 0.9) ∨ (1 ∧
0.3 ∧ 0.5) ∨ (1 ∧ 0.7 ∧ 0.8) ∨ (0.4 ∧ 0.8 ∧ 0.9) ∨ (0.4 ∧ 0.5 ∧ 0.5) ∨ (0.4 ∧
0.7 ∧ 0.8) = 0.7.

AWMAMM2 = (Q1,σ1, δ, g) overΣ,Y and ([0, 1],+, val, 0, 1) is constructed
as follows: Q1 = Q × Y ,σ1 ∈ AQ1 , σ1 = 1

(q1,(b,b))
+ 0.4

(q3,(b,b))
, δ : Σ → AQ1×Q1 is

given by

δ(u1)(q,y),(q1,y1) = (τ (u1, y1))q,q1 , ∀u1 ∈ Σ,∀(q, y), (q1, y1) ∈ Q1 × Q1.

g : Y → AQ1 is constructed as follows:
g(a, b) = 1

(q1,(a,b))
+ 1

(q2,(a,b))
+ 1

(q3,(a,b))
, g(a, a) = 1

(q1,(a,a))
+ 1

(q2,(a,a))
+ 1

(q3,(a,a))
,

g(b, a) = 1
(q1,(b,a))

+ 1
(q2,(b,a))

+ 1
(q3,(b,a))

, g(b, b) = 1
(q1,(b,b))

+ 1
(q2,(b,b))

+ 1
(q3,(b,b))

.

Then we can derive the results that ϕ2(u, v, (aba, aab)) = 0,
ϕ2(u, v, (aba, bab)) = 0,ϕ2(uv, (bba, aab)) = 0 and
ϕ2(uv, (bba, bab)) = ∑

p1,p2,p3∈Q val((σ1)(p1,(b,b)), g(b, b)(p1,(b,b)),
δ(u)(p1,(b,b)),(p2,(b,a)), g(b, a)(p2,(b,a)), δ(v)(p2,(b,a)),(p3,(a,b)), g(b, a)(p3,(a,b))) = 0.7.

Hence, ϕ(θ, y) = ∑
x1,x2∈Y1 ϕ2(uv, (x1ba, x2ab)).

4 Conclusions

The paper introduces the notions of weighted sequential-like automata and weighted
generalized automata over valuation monoids. Considering these automata’s behav-
iors accompanied by input andmultioutput characteristics, we have demonstrated the
equivalence between weighted sequential-like automata and weighted generalized
automata over Cauchy double unital valuation monoids. It is worthwhile for further
research the modeling applications of complex dynamic systems described by the
proposed automata.
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(Grant No. 11401495).



Weighted Automata Over Valuation Monoids … 201

References

1. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative Languages, in CSL 2008. LNCS.
5213, 385–400 (2008)

2. Chatterjee, K., Doyen, L., Henzinger, T.A.: Alternating weighted automata, in FCT 2009.
LNCS. 5699, 3–13 (2009)

3. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties for quanti-
tative languages pp. 199–208 (2009)

4. Chatterjee, K. , Doyen, L., Henzinger, T.A.: Probabilistic weighted automata. in CONCUR
2009, LNCS. 5710, 244–258 (2009)

5. Culik, K., Kari, J.: Image compression using weighted finite automata. Comput. Graph. 17,
305–313 (1993)

6. Droste, M., Stber, T., Vogler, H.: Weighted Finite Automata over Strong Bimonids. Inf. Sci.
180, 156–166 (2010)

7. Droste, M., Meinecke, I.: Weighted automata and regular expressions over valuation monoids.
Int. J. Found. Comput. Sci. 22, 1829–1844 (2011)

8. Knight, K., May, J.: Applications of Weighted Automata in Natural Language Processing.
In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata, pp. 571–591.
Springer, Berlin (2009)

9. Li, Y.M., Pedrycz, W.: The Equivalence between Fuzzy Mealy and Fuzzy Moore Machines.
Soft Comput. 10, 953–959 (2006)

10. Li, Y.M.: Finite automata theory with membership values in lattices. Inf. Sci. 181, 1003–1017
(2011)

11. Liu, F.: Diagnosability of fuzzy discrete-event systems: a fuzzy approach. IEEE Trans. Fuzzy
Syst. 17(2), 372–384 (2009)

12. Meinecke, I., Quaas, K.: Parameterized Model Checking of Weighted Networks. Theor. Com-
put. Sci. 534, 69–85 (2014)

13. Mohri, M.: Finite-State Transducers in Language and Speech Processing. Comput Linguist.
23, 269–311 (1997)

14. Mordeson, J.N.,Malik, D.S.: FuzzyAutomata and Languages: Theory andApplications. Chap-
man & Hall/CRC, Boca Raton (2002)

15. Pan, H.Y., Li, Y.M., Cao, Y.Z., Ma, Z.Y.: Model Checking Computation Tree Logic over Finite
Lattices. Theor. Comput. Sci. 612, 45–62 (2016)

16. Santos, E.S.: Maximin automata. Inf. Control. 12, 367–377 (1968)
17. Santos, E.S.: Max-product machines. J. Math. Anal. Appl. 37, 677–686 (1972)
18. Santos, E.S.,Wee,W.G.: General formulation of sequential machines. Inf. Control. 12(1), 5–10

(1968)
19. Ushio, T., Takai, S.: Supervisory Control of Discrete Event Systems Modeled by Mealy

Automata with Nondeterministic Output Functions. In: Proceedings of the American Control
Conference Hyatt Regency Riverfront, St. Louis, MO, USA June. 10–12(2009)

20. Ying, M.S.: A formal model of computing with words. IEEE Trans Fuzzy Syst. 10(5), 640–652
(2002)

21. Wee, W.G.: On generalizations of adaptive algorithm and application of the fuzzy sets concept
to pattern classification, PhD Thesis, Purdue University (1967)

22. Zadeh, L.A.: Fuzzy languages and their relation to human and machine intelligence. Electronic
Research Laboratory, University of California, Berkeley. Tech. Rep. ERL-M302 (1971)



Splitting Algorithm of Valuation Algebra
and Its Application in Automaton
Representation of Semiring
Valued Constraint Problems

Bang-He Han, Yong-Ming Li and Qiong-Na Chen

Abstract A splitting algorithm is developed for solving single-query projection
problems in valuation algebras. This method is based on a generalized combination
theorem. It is shown that by using this new kind of combination property, a given
single-query projection problem can be broken into pieces of subprojection problems
which might be solved simultaneously by different computational resources. At last,
as an application of splitting algorithms, we develop an optimized procedure for
automaton representation of semiring valued constraint problems.

Keywords Valuation algebra · Automaton representation · Semiring valued
constraint

1 Introduction

Two main factors were proposed [15] in formalisms for representing information.
These two main factors are combination and projection operations. A valuation alge-
bra [17] is one of this kind of models, where the projection problems also called
local computation problem [15, 16, 23, 28–30]. Constraint systems [22], relations,
probabilistic networks and logic all have these unifying structure. A kind of valuation
algebra named semiring induced valuation algebra such as the soft constraint satis-
faction problems (SCSPs) has been studied in [1–7, 11, 17, 20, 31]. The algebraic
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structure semiring is used to define combination and focusing operations by its two
operations+,×. Valuations in SCSPsmean preferences for different assignments [4,
25, 26].

There are four major local computation architectures called Shenoy-Shafer,[29]
Lauritzen-Spiegelhalter [19], HUGIN [13] and Idempotent Architecture [15].
All these methods are based on join tree [8, 15, 24, 27]. Frameworks for com-
puting approximately with upper or lower bounds have been discussed in [9, 10, 12,
14, 17].

Based on the initial combination axiom, we are going to present the Strong Com-
bination Property in valuation algebras. Then this paper is mainly concerned with
what we can make use of the Strong Combination Property in solving projection
problems. After we give a method for breaking the initial projection problem, an
algorithm named splitting algorithm is proposed.

A method of representing the soft constraint problems as fuzzy finite automa-
ton was proposed in [21]. There exists one disadvantage: the representation method
mainly depends on the initial projection problem. As one application of our splitting
algorithm, we develop an optimized procedure for automaton representation of semi-
ring valued constraint problems, by which we can reduce the complexity to some
extent.

For more details of valuation algebras we refer to [15]. For preliminaries of sem-
rings and soft constraint systems we refer to [2, 4, 6]. For semiring-valued Finite
automaton, we refer to [18].

2 Main Result 1: Splitting Algorithm of Valuation Algebra

In this section, we will give a splitting algorithm for single marginalization problem
in valuation algebras.

2.1 A Generalized Combination Property

In this subsection,we present a generalized combination property in labeled valuation
algebras.

Lemma 1 [15] Suppose that (Φ, D) is a valuation algebra. If φ,ψ ∈ Φ such that
d(φ) = x, d(ψ) = y, x ⊆ z ⊆ x ∪ y, then

(φ ⊗ ψ)↓z = φ ⊗ ψ↓y∩z .

Theorem 1 (Generalized Combination Property) In labeled valuation algebras,
∀φ,ψ ∈ Φ, t ∈ r , if

d(φ) ∩ d(ψ) ⊆ t ⊆ d(φ) ∪ d(ψ), (1)
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then
(φ ⊗ ψ)↓t = φ↓t ⊗ ψ↓t . (2)

Proof Denote d(φ) = x , d(ψ) = y, note that x ∩ y ⊆ t ⊆ x ∪ y. It suffices to show
that

(φ ⊗ ψ↓(x∪t)∩y)↓t = φ↓x∩t ⊗ ψ↓y∩t .

According to the Transitivity Axiom, we have

(φ ⊗ ψ)↓t = ((φ ⊗ ψ)↓x∪t )↓t .

Since x ⊆ x ∪ t ⊆ x ∪ y, by Lemma 1,

((φ ⊗ ψ)↓x∪t )↓t = (φ ⊗ ψ↓(x∪t)∩y)↓t .

By expression (1), it is easy to show that (x ∪ t) ∩ y = y ∩ t ⊆ t ⊆ x ∪ (y ∩ t).
Thus by using Lemma 1 again, we have

(φ ⊗ ψ↓(x∪t)∩y)↓t = (φ ⊗ ψ↓y∩t )↓t = φ↓x∩t ⊗ ψ↓y∩t .

This completes the proof. �

The generalized combination property requires that the set of variables to which
the projection operation marginalizes contains the intersection of the domains of
the two factors. It shows that in order to marginalize to t which satisfies expression
(1), it is not necessary to compute first the combination but that we can as well first
marginalize each factor to t and then combine the two results.

Suppose that (Φ, D) is a semiring induced valuation algebra. Consider the pro-
jection problem: φ,ψ ∈ Φ, d(φ) ∩ d(ψ) ⊆ t ⊆ d(φ) ∪ d(ψ), compute (φ ⊗ ψ)↓t .

∀x ∈ Ωt , we can compute (φ ⊗ ψ)↓t (x) by either the expressions (1), (2) or the
generalized combination property. Denote the numbers of the operations needed in
computing (φ ⊗ ψ)↓t (x) by Nde f , Ngcp correspondingly. We make a quantitative
comparison as follows:

Theorem 2 (1) Nde f = 2
∏

X∈d(φ)∪d(ψ)−t | ΩX | −1;
(2) Nscp = ∏

X∈d(φ)−t | ΩX | +∏
Y∈d(ψ)−t | ΩY | −1.

Example 1 Suppose that (Φ, D) is a semiring induced valuation algebra. φ,ψ ∈ Φ,
d(φ) = {X1, . . . , X5}, d(ψ) = {X2, X4, X6, X7, X8} and t = {X2, X4, X7}, clearly
we have d(φ) ∩ d(ψ) = {X2, X4} ⊆ t , then by the above discussion, we have

Nde f = 2
∏

i∈{1,3,5,6,8}
| ΩXi | −1,

Nscp =
∏

i∈{1,3,5}
| ΩXi | +

∏

j∈{6,8}
| ΩX j | −1.
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For instance, assume that ΩXi = 5,∀i = i, . . . , 8, then Nde f = 6249, while
Nscp = 149.

2.2 t-Factorization, t-Partition, t-Splitting

In this subsection we are going to bring in some basic concepts which are based on
the generalized combination property.

Denote I = {1, 2, . . . , n}. Suppose Ii ⊆ I , Ii 	= ∅, i = 1, 2, . . . ,m. Recall that
{I1, I2, . . . , Im} is called a partition of I if for i 	= j , Ii ∩ I j = ∅, ⋃m

i=1 Ii = I .

Definition 1 Suppose that (Φ, D) is a labeled valuation algebra. φi ∈ Φ, i =
1, 2, . . . , n. φ = φ1 ⊗ φ2 · · · ⊗ φn , t ⊆ d(φ) = ⋃n

i=1 d(φi ). I = {1, 2, . . . , n}. {I1,
I2, . . . , Im} is a partition of I ,m ≥ 2. Then {I1, I2, . . . , Im} is said to be a t-partition
of I with respect to φ if ∀h, k ∈ {1, 2, . . . ,m}, h 	= k,

⋃

i∈Ih
d(φi ) ∩

⋃

j∈Ik
d(φ j ) ⊆ t. (3)

Particularly, ifm = 2, then we call {I1, I2} a binary t-partition of I with respect to φ.

Suppose {I1, I2, . . . , Im} is a t-partition of I with respect to φ, φ = φ1 ⊗ φ2 · · · ⊗
φn . Denote ψI j = ⊗

i∈I j φi , j = 1, 2, . . . ,m, obviously by the Semigroup Axiom
we have

φ = ψI1 ⊗ ψI2 ⊗ · · · ⊗ ψIm . (4)

We call the right side of expression (4) a t-factorization of φ with respect to the
t-partition {I1, I2, . . . , Im} of I . When m = 2, then expression (4) is called a binary
t-factorization of φ.

According to the generalized combination property we have the following theo-
rem:

Theorem 3 Suppose that (Φ, D) is a labeled valuation algebra. φi ∈ Φ, i =
1, 2, . . . , n.φ = φ1 ⊗ φ2 · · · ⊗ φn, t ⊆ d(φ). I = {1, 2, . . . , n}. If {I1, I2} is a binary
t-partition of I with respect to φ, then

φ↓t = ψ
↓t∩d(ψI1 )

I1
⊗ ψ

↓t∩d(ψI2 )

I2
. (5)

We see that φ↓t splits into the combination of two valuations, thus we call the right
sides of the equality (5) binary t-splitting of φ↓t with respect to the binary t-partition
{I1, I2} of I . And the performance of changing φ↓t to ψ

↓t∩d(ψI1 )

I1
⊗ ψ

↓t∩d(ψI2 )

I2
is said

to be a binary t-splitting transformation.
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Lemma 2 Suppose that (Φ, D) is a labeled valuation algebra. φi ∈ Φ, i = 1, 2,
. . . , n. φ = φ1 ⊗ φ2 · · · ⊗ φn, t ⊆ d(φ). I = {1, 2, . . . , n}. {I1, I2, . . . , Im} is a t-
partition of I with respect to φ. Then ∀u, v ⊆ {I1, I2, . . . , Im}, u, v 	= ∅ and
u ∩ v = ∅,

⋃

i∈⋃
Ih∈u Ih

d(φi ) ∩
⋃

j∈⋃
Ik∈v Ik

d(φ j ) ⊆ t. (6)

Theorem 4 Suppose that (Φ, D) is a labeled valuation algebra. φi ∈ Φ, i =
1, 2, . . . , n. φ = φ1 ⊗ φ2 ⊗ · · · ⊗ φn, t ⊆ d(φ). I = {1, 2, . . . , n}. {I1, I2, . . . , Im}
is a t-partition of I with respect to φ. Then

φ↓t = ψ
↓t∩d(ψI1 )

I1
⊗ ψ

↓t∩d(ψI2 )

I2
⊗ · · · ⊗ ψ

↓t∩d(ψIm )

Im
. (7)

Proof By Theorem 3 and Lemma 2, we have ψ
↓t
I1

⊗ ψ
↓t
I2

⊗ · · · ⊗ ψ
↓t
Im

= (ψI1 ⊗
ψI2)

↓t ⊗ ψ
↓t
I3

⊗ · · · ⊗ ψ
↓t
Im

= · · · = (ψI1 ⊗ ψI2 ⊗ · · · ⊗ ψIm )↓t . �

We call the right sides of the expressions (7) t-splitting of φ↓t with respect to the

t-partition {I1, I2, . . . , Im} of I . And the performance of changingφ↓t toψ
↓t∩d(ψI1 )

I1
⊗

· · · ⊗ ψ
↓t∩d(ψIm )

Im
is said to be t-splitting transformation. {I1, I2, . . . , Im} is called the

corresponding t-partition with this t-splitting transformation of φ↓t .

Definition 2 Suppose that (Φ, D) is a labeled valuation algebra. φi ∈ Φ, i =
1, 2, . . . , n. φ = φ1 ⊗ φ2 ⊗ · · · ⊗ φn , t ⊆ d(φ). I = {1, 2, . . . , n}. {I1, I2, · · · , Im}
is a t-partition of I with respect to φ. Then the t-splitting ψ

↓t
I1

⊗ ψ
↓t
I2

⊗ · · · ⊗ ψ
↓t
Im

is said to be a final t-splitting of φ↓t if ∀I j ∈ {I1, I2, . . . , Im}, there exists no t-
partition of I j . And the corresponding t-partition {I1, I2, . . . , Im} of I is called a
final t-partition of I .

We say that two t-splitting of φ↓t are equal iff the corresponding t-partitions of I
are equal.Given aprojectionproblemφ↓t = (φ1 ⊗ φ2 · · · ⊗ φn)

↓t , I = {1, 2, . . . , n}.
A natural question is: does there exist different final t-splitting of φ↓t (i.e., final t-
partition of I )? The next theorem tells us that if there exists one final t-splitting of
φ↓t , then it is unique.

Definition 3 I = {1, 2, . . . , n}, suppose that Part1 = {I1, I2, . . . , Im}, Part2 =
{J1, J2, · · · , Jk} are two different partitions of I . Then the intersection of them,
denoted by Par1 ∩ Par2 is defined as follows: ∀i, j ∈ I , i , j belong to the same
part of Par1 ∩ Par2 iff i and j belong to the same part in either partition.

Lemma 3 Suppose that (Φ, D) is a labeled valuation algebra. φi ∈ Φ, i = 1, 2,
. . . , n.φ = φ1 ⊗ φ2 · · · ⊗ φn, t ⊆ d(φ). I = {1, 2, . . . , n}. If there exist two different
t-partitions Part1 and Part2 of I with respect to φ, then Par1 ∩ Par2 is also a
t-partition of I with respect to φ thinner than at least one of them.
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By Definition 3 and Lemma 3, we have

Theorem 5 (Uniqueness of final t-splitting) Suppose that (Φ, D) is a labeled val-
uation algebra. φi ∈ Φ, i = 1, 2, . . . , n. φ = φ1 ⊗ φ2 ⊗ · · · ⊗ φn, t ⊆ d(φ). I =
{1, 2, . . . , n}. If there exists one final t-splitting of φ↓t , then there exists exact only
one t-splitting of φ↓t .

Now let us have a look at how the final t-splitting of φ↓t helps in reducing the
computation complexity. Similar with what we do in Sect. 2.1, suppose that (Φ, D)

is a semiring induced valuation algebra. φi ∈ Φ, i = 1, 2, . . . , n. φ = φ1 ⊗ φ2 · · · ⊗
φn , t ⊆ d(φ). I = {1, 2, . . . , n}. {I1, I2, . . . , Im} is the final t-splitting of φ↓t . ∀x ∈
Ωt , we can compute (φ1 ⊗ φ2 · · · ⊗ φn)

↓t (x) by either definition or expression (7).
Denote the numbers of operations needed in computing (φ1 ⊗ φ2 · · · ⊗ φn)

↓t (x) by
Nde f , Nscp correspondingly. We make a quantitative comparison as follows:

Theorem 6 (1) Nde f = n
∏

X∈d(φ)−t | ΩX | −1;
(2) Nscp = ∑m

i=1 | Ii | (
∏

X∈d(ψIi )−t | ΩX |) − 1.

2.3 Extended t-Splitting and Extended t-Splitting
Transformation

Given an initial factorization ofφ,φ = φ1 ⊗ φ2 ⊗ · · · ⊗ φn ,φi ∈ Φ, i = 1, 2, . . . , n.
t ⊆ d(φ). I = {1, 2, . . . , n}. Bad situation happens if there exists no final t-partition
of I . This means that we can’t perform any t-splitting transformation to φ↓t . So we
can’t enjoy the efficiency in reducing the computation complexity by using the final
t-splitting transformation. Therefore, we have to turn to other methods that maybe
less efficient in reducing the computation complexity.

Theorem 7 Suppose that (Φ, D) is a labeled valuation algebra. φi ∈ Φ, i =
1, 2, . . . , n. φ = φ1 ⊗ φ2 · · · ⊗ φn, t ⊆ d(φ). I = {1, 2, . . . , n}. If there exists a set
s of variables contained in d(φ) which is disjoint with t such that the final t ∪ s-
partition of I with respect to φ exists, denoted by {I1, I2, . . . , Im}, then

φ↓t = (ψ
↓(t∪s)∩d(ψI1 )

I1
⊗ · · · ⊗ ψ

↓(t∪s)∩d(ψIm )

Im
)↓t . (8)

Definition 4 We call the right sides of expressions (8) extended t-splitting of φ↓t
with respect to the partition {I1, I2} of I . This process of changing φ↓t to expressions
(8) is called extended t-splitting transformation. The set of variables s is said to be
the adjoint set of variables in this extended t-splitting transformation.

Can we reduce the computation complexity by using Theorem 7? The answer is
positive. For instance, suppose that (Φ, D) is a semiring induced valuation algebra.
Consider the marginalization problem (φ1 ⊗ φ2)

↓t , where φ1,φ2,∈ Φ, t ⊆ d(φ1) ∪
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d(φ2). I = {1, 2}. Let s = d(φ1) ∩ d(φ2) − t . Then it is easy to see that d(φ1) ∩
d(φ2) ⊆ s ∪ t , thus {{1}, {2}} is a t ∪ s-partition of I .

∀ x ∈ Ωt , we can compute (φ ⊗ ψ)↓t (x) by either definition or expression (8).
Denote the numbers of operations needed in computing (φ ⊗ ψ)↓t (x) byNde f ,Nscp

correspondingly. Similar with the discussion in Sect. 3, we can see that:

Nde f = 2 | Ωd(φ1)∪d(φ2)−t | −1.

Since s = d(φ1) ∩ d(φ2) − t , it can be shown that

| Ωd(φ1)∪d(φ2)−t |=| Ωs | × | Ωd(φ1)−t∪s | × | Ωd(φ2)−t∪s | .

Therefore

Nde f =| Ωs | ×(2× | Ωd(φ1)−t∪s | × | Ωd(φ2)−t∪s |) − 1,

thus we have

Nscp =| Ωs | ×(| Ωd(φ1)−t∪s | + | Ωd(φ2)−t∪s |) − 1.

Remark 1 The key point in extended t-splitting transformation is to find an adjoint
set s of variables such that t ∪ s 	= d(φ) and the final t ∪ s-partition of I exists with
respect to a given initial factorization of φ, φ = φ1 ⊗ φ2 · · · ⊗ φn . At the end of
this subsection, we are going to introduce two types of algorithms for solving this
problem.

2.4 Splitting Algorithm of Valuation Algebras

Based on the above discussion, in this subsection we are going to give a splitting
algorithm of labeled valuation algebras.

Definition 5 Suppose that φ = φ1 ⊗ φ2 ⊗ · · · ⊗ φn , t ⊆ d(φ), then a sequence of
valuations ψ1, ψ2, . . . ,ψm is called a splitting sequence of φ↓t if
(1) ψ1 = φ↓t ;
(2) ∀i = 2 to m, ψi is the result of ψi−1 by using the (extended) t-splitting transfor-
mation.

Definition 6 (Splitting Algorithm) Suppose that (Φ, D) is an labeled valuation alge-
bra. φi ∈ Φ, i = 1, 2, . . . , n. φ = φ1 ⊗ φ2 ⊗ · · · ⊗ φn , denote d(φ) = V , t ⊆ V .
The splitting algorithm means constructing a splitting consequences of φ↓t by
(extended) t-splitting transformations.
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3 Main Result 2: Automaton Representation of Semiring
Valued Constraint Problem

Given a constraint system CS =< S, D, V >, where S is a positively ordered semi-
ring, V = {X1, X2, · · · , XN }, D(Xi ) = {0i , 1i }. c = (con, de f ), con = {Xi1 , . . . ,

Xid }, d = |con|. de f : ∏id
j=i1

D(X j ) → S.
By combing the method in [21] and our splitting algorithm, we give the following

procedures for automaton representation of semiring valued constraint problem:
First of all, we can construct an S-DFAAc = (Q, δ, q0, F) on� = ⋃{D(Xi )|i =

1, · · · , N } which accept de f as follows:
(1) Q = {p0, p1} ∪ {qα|α is a 0-1 string, 1 ≤ |α| ≤ d};
(2) δ(p0, 01) = q0, δ(p0, 11) = q1; ∀α which is a 0-1 string and 1 ≤ |α| ≤ d,
δ(qα, 0|α|+1) = qα0, δ(qα, 1|α|+1) = qα1.
(3) p0 is the initial state.
(4) If |α| = d, F(qα) = de f (α). Here for instance, if con = {X1, X2, X3}, then
F(q010) = de f (01, 12, 03).

For those we have not specified, δ(s,σ) = p1; F(s) = 0, s ∈ Q.
Secondly, denote the corresponding S-DFA with c1 and c2 byA1 andA2, respec-

tively. Then we can show that A1 × A2 is an automaton representation of c1 ⊗ c2.
Thirdly, given a constraint c = (con, de f ) with S-DFA representation Ac =

(Q, δ, q0, F). Assume con = {X1, X2, · · · , XN }. con ′ = {Xi1 , Xi2 , · · · , Xik }. i1 <

· · · < ik . We try to get an S-FFA π(A) = (π(Q),π(δ),π0(Q),π(F)) which satisfies
Recπ(A) = c ⇓ con

′
as follows.

(1) ∀i = 1, · · · , n + 1, let Qi = {δ∗(q0, θ)|θ ∈ ∏i−1
j=1 D(X j ). Here, for instance,

(01, 02, 13) is treated as the string 010213. In particular, Q1 = {q0}. Denote π(Q) =⋃k
j=1 Qi j ∪ Qik+1.
(2) ∀σ ∈ �, ∀q ∈ Qi j ,
•When j = 1, · · · , k − 1, if i j+1 − 2 ≥ i j , then define π(δ)(q,σ) = {δ∗(q,σθ)|

θ ∈ ∏i j+1−2
h=i j

D(Xh)} ∩ Qi j+1 ; otherwise π(δ)(q,σ) = {δ∗(q,σ)} ∩ Qi j+1 .
• When j = ik , define π(δ)(q,σ) = {δ∗(q,σ)} ∩ Qik+1.
(3) π0(Q) = Qi1 .
(4)∀q ∈ Qik+1, defineπ(F)(q) = ∑{F(δ∗(q, θ)|θ ∈ ∏n

h=ik+1 D(Xh)}. For those
we have not specified, π(F)(q) = 0.

Remark 2 π(A) is an S-FFA, and we can translate it as an DFA πD(A)

without using the powerset construction method.

Given a constraint system CS = (S, D, V ), c1 =< de f1, con1 >, c2 =< de f2,
con2 >. We want to get an S-DFA representation of (c1

⊗
c2) ⇓con . According to

what we have discussed above, we can do this in the following way:

Step 1 construct Ac1 and Ac2 .
Step 2 construct Ac1 × Ac2 .
Step 3 construct π(Ac1 × Ac2) with respect to con.
Step 4 construct πD(Ac1 × Ac2).
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According to expression (3) in Definition 1, we have

Theorem 8 Given a constraint system CS = (S, D, V ), c1 =< de f1, con1 >,

c2 =< de f2, con2 >. We can get an S-DFA representation of (c1
⊗

c2) ⇓con in the
following steps:

Step 1 construct Ac1 and Ac2 .
Step 2∗ construct π(Ac1) and π(Ac2) with respect to con.
Step 3∗ construct πD(Ac1) and πD(Ac2).
Step 4∗ construct πD(Ac1) × πD(Ac2).

Definition 7 (Automaton representation for single query of semiring-valued con-
straint satisfaction problems) Given a constraint system CS = (S, D, V ), C =
{c1, · · · , cn}, ci =< de fi , coni >. con ⊆ V , V = ⋃{coni }. Give an S-DFA rep-
resentation of (c1 ⊗ · · · ⊗ cn) ⇓ con.

Splitting algorithm for Automaton representation for single query
of semiring-valued constraint satisfaction problems

Step 1 First get a splitting sequence of (c1 ⊗ · · · ⊗ cn) ⇓ con by using splitting
algorithm.

Step 2 Get the order for combination and projection operations according to the
last valuation in the splitting sequence we get in Step 1.

Step 3 By the order we have in Step 2, we get the order for constructing product
automatons and projection automatons.
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Topological Constructions
of Epsilon-Bisimulation

Yan-Fang Ma and Liang Chen

Abstract ε-bisimulation provides a kind of abstraction description for the
correctness of software with probabilistic information. ε-limit bisimulation had been
proposed, which entails that specification is the limit of implementations based on
ε-bisimulation. In this paper, we only focus on the topological properties of ε-limit
bisimulation. According to the definition of ε-limit bisimulation, several closure
constructions are established, such as subnet closure, tail closure, natural extension
and iteration. These closure constructions are useful to characterize properties of
software.

Keywords Topology · Bisimulation · Correctness of software · Probabilistic
process calculus

1 Introduction

According to the theory of process algebra, correctness can be described by relation
between implementation and its specification. There exists many relations which can
be used to describe correctness, such as bisimulation equivalence, trace equivalence,
failure equivalence, and so on. In real world situations, some softwares are often
approximate correctness. This is mainly caused by some probabilistic phenomenons
of system. For example, in network system, unreliability of hardware may make
a site to crash with probability 0.0034 [1, 2]. The correctness of these softwares
with probabilistic phenomenons may be abstracted by probabilistic bisimulation in
probabilistic process algebra [3–5].
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ε-bisimulation is an important relation in the deterministic probabilistic processes,
which extends the classical probabilistic bisimulation [6, 7] to approximate case.
If a deterministic probabilistic process P simulate Q, but the absolute difference
between the probability of executing the same action is less than or equal to ε, then
P simulates Q with a bound ε, and vice versa. Furthermore, a quantitative model
of deterministic probabilistic processes is presented. In software development and
design, if the real specification is described as a probabilistic process, then one may
use probabilistic bisimulation to prove the correctness of software. However, in the
real world, implementations often approximate the specification, so ε-bisimulation
of probabilistic processes set may be used to verify the correctness of software.

In the course of developing and designing software, many reasons can lead to
the fact that the first implementation does not satisfy the specification completely,
such as the technology of design, hardware equipment, and so on. Therefore, the
developer or designer should modify the implementation step by step. Thus, a lots of
implementation versions are obtained. These implementations have the same char-
acterization, that is close to the specification more and more. Since the procedure of
modifying implementation might be concurrent, steps of modification can be treated
as a partial order.

For describing the relation that implementations are close to its specification step
by step, Ying proposed strong limit bisimulations and weak limit bisimulation. Some
important topological characteristics are proved in [8, 9]. The first author established
the limit and topology of two-thirds bisimulation and parameterized bisimulation
[10, 11].

ε-bisimulation can be used to verify the correctness of software with probabilistic
information. In [12], the first author presented ε-limit bisimulation and ε-bisimulation
limit to describe the situation that implementation approximates specification dynam-
ically. In topology, closure is an important definition, the closure of a set A is the
least closed set that including A. A set and its closure have the same limit points.
Since the ε-bisimulation limit characterizes the fact that the limit of implementation
is its specification under ε-bisimulation, in this paper, we will show whether or not
the set of probabilistic process and its closure have the same ε-bisimulation limit.

In Sect. 2, the definition of ε- bisimulation is introduced. In Sect. 3, some topo-
logical constructions of ε-limit bisimulation are presented, such as subnet closure of
ε-limit bisimulation, tail closure of ε-limit bisimulation, natural extension of ε-limit
bisimulation and iteration structure of ε-limit bisimulation. In Sect. 4, we state our
future work.

2 Preliminaries

Let A be the names set, Ā the co-names set and Γ = A ∪ Ā the labels set. 1 is the
“idle action”. Define Act = Γ ∪ {1} to be the set of all actions; α,β . . . ∈ Act.

The syntax of probabilistic process algebra and semantics can be found in [7].
DefineDPr to be the set of all deterministic probabilistic processes. That means that
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for eachW ∈ DPr,W
α[p]→ Q, where the probabilistic derivation of typeα has at most

one. Next, we review the definition of ε-bisimulation.

Definition 1 (ε-bisimulation) [7] Let ε ∈ [0, 1).Rε ⊆ DPr × DPr is a binary rela-
tion. If for any α ∈ Act, (W,Q) ∈ Rε implies:

(1) when W
α[p]→ W ′, Q′ ∈ DPr can be found, such that Q

α[q]→ Q′, the absolute
difference |p − q| less than or equal to ε and the next states satisfy (W ′,Q′) ∈ Rε;

(2) when Q
α[q]→ Q′, W ′ ∈ DPr can be found, such that W

α[p]→ W ′, the absolute
difference |p − q| less than or equal to ε and the next states satify (W ′,Q′) ∈ Rε,

then R is called an ε-bisimulation.

If an ε-bisimulation Rε can be found such that (W,Q) ∈ Rε, then the processes
W and Q are called ε-bisimilar, written W

ε∼ Q. Define
ε∼= ⋃{Rε : Rε is an ε-

bisimulation }.

3 The Topological Construction of ε-Limit Bisimulation

When ε-bisimulation is chosen as the criteria of verifying the correctness between
specification and implementation, the first implementation may not satisfy the speci-
fication. So, the implementation will be modified. Thus, a series of implementations
are produced. For a simple system, these implementations can form a sequence
{Pn : n ∈ N}, where N is natural number set. In {Pn : n ∈ N}, P1, P2, . . . can not sat-
isfy the specification, but n0 ∈ N can be found, such that for each n ≥ n0, Pn

ε∼ Q,
where Q is the specification.

From the view of topology, specification can be treated as limit of implementa-
tions. Generally, for a complex system, the design pattern may be net, for example,
the system includes several module. These module can be revised at the same time.
In this case, sequence is not sufficient to describe this kind of pattern. So, we can
appeal to net in topology. In [12], the author presented ε- limit bisimulation and
ε-bisimulation limit to describe dynamic correctness. In this work, some important
topological constructions of ε-limit bisimulation will be established in order to find
some mathematical tools to explain the developing and designing of software.

Suppose that (B,≤) be a directed set, U be a nonempty set. A net V in U over
D can be expressed as {Vn : n ∈ B}, where for every n ∈ B, Vn = V (n) ∈ U. For the
detailing information of directed set and net can be found in the paper [13].

Let DPrN be the set of all nets on DPr. For any {Vn : n ∈ B} ∈ DPrN , where B is
directed set, Vn ∈ DPr for any n ∈ B. In the next discuss, we will use the definition
of cofinality, cofinal subset and subnet, that are important to establish the closure
construction of ε- limit bisimulation. For the detailing information, please see the
paper [14].
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Definition 2 (ε-limit bisimulation) [12] For ε ∈ [0, 1), a relation Sε ⊆ DPr × DPrN
is a relation between processes set and processes net set. If for each α ∈ Act,
(W, {Vn : n ∈ B}) ∈ Sε implies:

(1) whenW
α[p]→ W ′, {V ′

n : n ∈ B} ∈ DPrN and n0 ∈ B can be found, such that Vn
α[qn]→

V ′
n, for each n ≥ n0, the absolute difference |p − qn| less than or equal to ε and the

next stats satisfy (W ′, {V ′
n : n ∈ B}) ∈ Sε;

(2) when H is a cofinal subset of B and Vm
α[qn]→ V ′

m for any m ∈ H, W ′ ∈ DPr

and a cofinal subset K of H can be found, such that W
α[p]→ W ′, for each k ∈ K ,

the absolute difference | p − qk | less than or equal to ε and the next stats satisfy
(W ′, {Vk : k ∈ K}) ∈ Sε.

From the definition of ε- limit bisimulation, we know that ε-limit bisimulation is
the limit version of ε-bisimulation.When the specification is described as determinis-
tic probabilistic processP, the implementations are characterized by the deterministic
probabilistic process net {Qn : n ∈ D}, and P and {Qn : n ∈ D} have the relation of ε-
bisimulation, then the ultimate aim of modifying implementations {Qn : n ∈ D} is to
satisfy the specificationP, thereforeP is treated as the limit behavior of {Qn : n ∈ D}.
Definition 3 (ε-bisimulation limit) [12]
(1) Suppose that ε ∈ [0, 1),W ∈ DPr and {Vn : n ∈ B} ∈ DPrN . If an ε-limit bisim-
ulation Rε ⊆ DPr × DPrN can be found such that (W, {Vn : n ∈ B}) ∈ Rε, thenW is
an ε-bisimulation limit of {Vn : n ∈ B}, written W

ε∼ lim
n∈B Vn.

(2)Suppose that {Vn : n ∈ B} ∈ DPrN . If W ∈ DPr and ε ∈ [0, 1) can be found such
that W

ε∼ lim
n∈D Vn, then {Vn : n ∈ B} is said to be ε- bisimulation convergent.

From the paper [7], we know that the identical relation between determinis-
tic probabilistic process is ε-bisimulation. Next, we will try to establish a relation
between deterministic probabilistic process and deterministic probabilistic process
net, which is the extension of identical binary relation between deterministic proba-
bilistic process. Suppose that ε ∈ [0, 1),

IlimSε
= {W, {Vn : n ∈ B}) : W ∈ DPr, {Vn : n ∈ B} ∈ DPrN , and there is

n0 ∈ D satisfies Vn = W for each n ≥ n0}.

Proposition 1 ε ∈ [0, 1), Sε ⊆ DPr × DPrN . Then IlimSε
is an ε-limit bisimulation.

This proposition states that, in the real development and designing of software,
if the implementations obtained are the same with specification, then from the view
of topology, specification is the limit behavior of these implementations. We don’t
need to modify the implementation. More generally, we can obtain the following
property.

Sε = {(W, {Vn : n ∈ B}) : W ∈ DPr, {Vn : n ∈ DPrN }and there exists n0 ∈ B

such that Vn
ε∼ W for any n ≥ n0}.
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Proposition 2 Sε is an ε-limit bisimulation.

Next, wewill show some topological constructions of ε-limit bisimulations, which
are useful to describe some designing module of software from mathematical view.

3.1 Subnet Closure

Let ε ∈ [0, 1), Sε ⊆ DPr × DPrN . The subnet closure of ε- limit bisimulation is
defined as following.

sub(Sε) = {(W, {Vn : n ∈ B}) : (W, {Um : m ∈ H}) ∈ Sε can be found such that
{Vn : n ∈ B} is the subnet of {Um : m ∈ H}}.

Theorem 1 Suppose that ε ∈ [0, 1) and Sε be a relation between deterministic prob-
abilistic process and deterministic probabilistic process net, i.e. Sε ⊆ DPr × DPrN .
If for any α ∈ Act, (W, {Vn : n ∈ B}) ∈ Sε satisfies:

(1) when W
α[p]→ W ′, {V ′

n : n ∈ B} ∈ DPrN and n0 ∈ B can be found, such that

Vn
α[qn]→ V ′

n, the absolute difference |p − qn| less than or equal to ε for every n ≥ n0
and the next states satisfy (P, {Qn : n ∈ D}) ∈ sub(S);

(2) when H is a cofinal subset of B and Vm
α[qm]→ V ′

m for every m ∈ H, then W ′ ∈ DPr

and a cofinal subset M of H can be obtained, such that W
α[p]→ W ′, the absolute dif-

ference |p − qk| less than or equal to ε for k ∈ M and (W ′, {Vk : k ∈ M}) ∈ sub(Sε)

holds, then sub(Sε) becomes an ε-limit bisimulation.

Proof “⇒” is obvious.
“⇐” Let (W, {Um : m ∈ H}) ∈ sub(Sε). Then (W, {Vn : n ∈ B}) ∈ Sε can be

found, that satisfies {Um : m ∈ H} is a subnet of {Vn : n ∈ B}. According to the defin-
ition of subnet, there exists a functionN : H → B, whichmakes (H,N) is a cofinality
of B and for eachm ∈ H,Um = VNm . By the properties of subnet, we can assume the
function N is increasing.

When W
α[p]→ W ′, then {V ′

n : n ∈ B} and n0 ∈ B can be found that makes for all

n ≥ n0, Vn
α[qn]→ V ′

n, the absolute difference |p − qn| ≤ ε and the next states satisfy
(W ′, {V ′

n : n ∈ B}) ∈ sub(Sε). (H,N) is a cofinality of B leads to there existsm0 ∈ H
such that for each m ≥ m0, Nm0 ≥ n0. For each m ∈ H, let U ′

m = V ′
Nm
. So, Um =

VNm

α[qNm ]→ V ′
Nm

= U ′
m for eachm ≥ m0, and {U ′

m : m ∈ H} is a subnet of {V ′
n : n ∈ B}

and (W ′, {U ′
m : m ∈ H}) ∈ sub(Sε). That means that whenW

α[p]→ W ′, {U ′
m : m ∈ H}

and m0 ∈ H can be obtained such that Um
α[qNm ]→ U ′

m holds, and for all m ≥ m0, the
absolute difference | p − qNm |≤ ε, (W ′, {U ′

m : m ∈ H}) ∈ sub(Sε).

WhenM is a cofinal subset of H, and for each f ∈ M, Uf
α[qf ]→ U ′

f , then according
to the definition of subset, we can obtain N(M) is a cofinal subset of B. For every
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f ∈ M, suppose that V ′
Nf

= U ′
f . Then for each f ∈ M, VNf = Uf

α[qf ]→ U ′
f = V ′

Nf
.W ′ ∈

DPr and a cofinal subset G of N(M) can be obtained, that satisfy W
α[p]→ W ′ and

(W ′, {V ′
r : r ∈ G}) ∈ sub(Sε). Furthermore, N is increasing that leads to N−1(G) is

a cofinal subset ofM. By the definition of ε- limit bisimulation, it holds that {v′
r : r ∈

G} = {U ′
f : f ∈ N−1(G)} and (W ′, {U ′

f : f ∈ N−1(G)}) ∈ sub(Sε). The theorem is
proved. �

Proposition 3 Let ε ∈ [0, 1). If Sε is an ε-limit bisimulation, then sub(Sε) is also an
ε-limit bisimulation.

3.2 Tail Closure

Let B be a directed set, n ∈ B and ε ∈ [0, 1). Then B[n) = {m ∈ B : n ≤ m} and B[n)
is a cofinal subsets of B. Suppose that Sε ⊆ DPr × DPrN . Then

tail(Sε) = {(W, {Vn : n ∈ B}) : (W, {Vn : n ∈ B[n0)}) ∈ Sε for some n0 ∈ B}.

Theorem 2 Let ε ∈ [0, 1), Sε ⊆ DPr × DPrN . If for any α ∈ Act, (W, {Vn | n ∈
B}) ∈ S satisfies:

(1) when W
α[p]→ W ′, {V ′

n | n ∈ B} ∈ DPrN and n0 ∈ B can be obtained, that satisfies

for any n ≥ n0, Vn
α[qn]→ V ′

n, the absolute difference | p − qn | less than or equal to ε
and the next states satisfy (W ′, {V ′

n | n ∈ B}) ∈ tail(Sε).

(2) when H is a cofinal subset of B and for every m ∈ H, Vm
α[qm]→ V ′

m, W
′ ∈ DPr and

a cofinal subset M of H can be found, that make W
α[p]→ W ′, the absolute difference

| p − qk | less than or equal to ε, where k ∈ M and the next states satisfy (W ′, {V ′
k :

k ∈ M}) ∈ tail(Sε), then tail(Sε) is an ε- limit bisimulation.

Proof “⇒” is easy to prove. Now we prove “⇐”.
Let (W, {Vn : n ∈ B}) ∈ tail(Sε). Then, some n0 ∈ B can be found such that

(W, {Vn : n ∈ B[n0)}) ∈ Sε. When W
α[p]→ W ′, {V ′

n : n ∈ B[n0)} ∈ DPrN and n1 ∈
B[n0) can be obtained such that Vn

α[qn]→ V ′
n, and for any n ∈ B[n0), the absolute differ-

ence | p − qn |≤ ε with n ≥ n1, and the next states satisfy (W ′, {V ′
n : n ∈ B[n0)}) ∈

tail(Sε). That is to say, there is n2 ∈ B[n0) leads to (W ′, {V ′
n : n ∈ B[n2)}) ∈ Sε. For

any n ∈ B with n � n0, we can choose an arbitrary elements of DPr as V ′
n. Thus,

we can obtain {V ′
n : n ∈ B} ∈ DPrN , and Vn

α[qn]→ V ′
n, for each n ≥ n1, the absolute

difference | p − qn |≤ ε and (W ′, {V ′
n : n ∈ B}) ∈ tail(Sε) holds.

On the other hand, when H is a cofinal subset of B and for each m ∈ H, Vm
α[qm]→

V ′
m, then m0 ∈ C can be obtained such that m0 ≥ n0, H[m0) is a cofinal subset of
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B[n0) and for each m ∈ H[m0), Vm
α[qm]→ V ′

m. Thus, there are V
′ ∈ DPr and a cofinal

subset of H[m0), M, such that W
α[p]→ W ′, the absolute difference | p − qk |≤ ε and

(W ′, {V ′
k : k ∈ M}) ∈ tail(Sε) holds. Furthermore, M is also a cofinal sunset of H

that leads to the proof of the theorem. �

Proposition 4 Let ε ∈ [0, 1). When Sε is an ε-limit bisimulation, tail(Sε) is also an
ε-limit bisimulation.

3.3 Nature Extension

Natural extension is a kind of closure property on the processes and nets of processes.
Next, this definition is reviewed.

Definition 4 ([8]) Let {Um : m ∈ H}, {Vn : n ∈ B} ∈ DPrN . If (H,N) is a cofinality
ofB and for every n ∈ B, Vn = Umn for somemn ∈ H withNmn ≥ n, then {Vn : n ∈ B}
is a natural extension of {Um : m ∈ H}.

For any Sε ⊆ DPr × DPrN ,

ext(Sε) = {(W, {Vn : n ∈ B}) : there exists{Um : m ∈ H} ∈ DPrN such that
(W, {Um : m ∈}) ∈ Sε and{Vn : n ∈ B} is natural extensions of
{Um : m ∈ H}}.

Theorem 3 Let ε ∈ [0, 1). When Sε is an ε-limit bisimulation, ext(Sε) is also an ε-
limit bisimulation.

Proof Let (W, {Vn : n ∈ B}) ∈ ext(Sε).Then {Um : m ∈ H} ∈ DPrN can be obtained
such that (W, {Um : m ∈ H}) ∈ Sε and {Vn : n ∈ B} is a natural extension of {Um :
m ∈ H}.By the definition of natural extension, there is a functionN such that (H,N)

is a cofinality of B. Generally, assume that N is increasing. At same time, for any
n ∈ B, Vn = Umn holds. And, there is some mn ∈ H, such that Nmn ≥ n, n1 ≤ n2 ⇒
mn1 ≤ mn2 .

(1) When W
α[p]→ W ′, {U ′

m : m ∈ H} ∈ DPrN and m0 ∈ H can be obtained such

that Um
α[pm]→ U ′

m, for any m ≥ m0, the absolute difference| p − pm |≤ ε and the next
states satify (W ′, {U ′

m | m ∈ H}) ∈ S. For any n ∈ B, let V ′
n = U ′

mn
,Nmn ≥ n. For any

n ≥ Nm0 , Nmn ≥ n ≥ Nm0 holds and mn ≥ m0. Then for all n ≥ Nm0 , Vn = Umn

α[pmn ]→
U ′

mn
= V ′

n, the absolute difference | p − pmn |≤ ε, V ′
n | n ∈ B} is a natural extension

of {U ′
m | m ∈ H} and (W ′, {V ′

n | n ∈ B}) ∈ ext(Sε).

(2) When M is a cofinal subset of B and for all l ∈ M, Vl
α[ql]→ V ′

l , then there
existsM ′ = {ml : l ∈ M} that is a cofinal subset of H. For each l ∈ M, let U ′

ml
= V ′

l .

Thus, for all l ∈ M, Uml = Vl
α[ql]→ V ′

l = U ′
ml
. Therefore, there are W ′ ∈ DPr and a
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cofinal subset ofM,K , satisfying W
α[p]→ W ′, for each k ∈ K , the absolute difference

| p − qk |≤ ε and (W ′, {V ′
k : k ∈ K}) ∈ Sε holds.Assume thatF = {l ∈ M : ml ∈ K}.

Then F is a cofinal subset of M, and {V ′
l : l ∈ F} = {U ′

k : k ∈ K}. So, we finish the
proof. �

3.4 Iteration Structure

In this subsection, we will discuss the iteration structure of ε-limit bisimulation.
This construction can express the dynamic counterpart of the composition of binary
relation on processes set.

Suppose that for every j ∈ J , (Bj ,≤ j ) be a directed set. {(Bj ,≤ j ) | j ∈ J } is
defined as× j∈J (Bj ,≤ j ) = (× j∈JB j ,≤), where≤means that for all d, e ∈ × j∈JB j ,
d ≤ e if and only if d( j) ≤ e( j) for every j ∈ J . From the definition of directed
set, we can get (× j∈JB j ,≤) is a directed set. Assume that B be a directed set.
For each m ∈ B, Dm be a directed set and C = B × ×m∈BDm. If for any m ∈ B,
{R(m, n) : n ∈ Dm} is a net over Dm, then the iteration

∏

m∈B
{R(m, n) : n ∈ Dm} of

{R(m, n) : n ∈ Dm}(m ∈ B) is the net {R(m, f (m)) : (m, f ) ∈ C} over C.

Now let ε ∈ [0, 1), Sε ⊆ DPr × DPrN and (Tm)ε ⊆ DPr × DPrN for every m ∈
B. Then the composition of Sε ◦ {(Tm)ε : m ∈ B} of Sε and {(Tm)ε : m ∈ B} is defined
as

Sε ◦ {(Tm)ε : m ∈ B} = {(W,
∏

m∈B
{R(m, n) : n ∈ Dm}) : there exists Vm ∈ DPr

(m ∈ B) such that(W, {Vm : m ∈ B}) ∈ Sε and for each
m ∈ B, (Vm, {R(m, n) : m ∈ Dm}) ∈ (Tm)ε}.

Theorem 4 Suppose that ε ∈ [0, 1). Let Sε and (Tm)ε (m ∈ B) be both
1

2
ε-limit

bisimulations. Then Sε ◦ {(Tm)ε : m ∈ D} is also an ε-limit bisimulation.

Proof Suppose that (W,
∏

m∈D
{R(m, n) : n ∈ Dm}) ∈ Sε ◦ {(Tm)ε : m ∈ B}. Then there

exists Vm ∈ DPr (m ∈ B) such that (W, {Vm : m ∈ B}) ∈ Sε, and for each m ∈ B,
(Vm, {R(m, n) : m ∈ Dm}) ∈ (Tm)ε.

Suppose thatW
α[p]→ W ′. Then {V ′

m : m ∈ B} ∈ DPrN andm0 ∈ B can be acquired

such that Vm
α[qm]→ V ′

m, and for each m ≥ m0, the absolute difference | p − qm |≤
1

2
ε. At the same time, (W ′, {V ′

m : m ∈ B}) ∈ Sε. For every m ≥ m0, {R′(m, n) :
n ∈ Dm} and f0(m) ∈ Dm can be obtained that make R(m, n)

α[r(m,n)]→ R′(m, n), for

n ≥ f0(m), the absolute difference | qm − r(m,n) |≤ 1

2
ε and the next states hold

(V ′
m, {R′(m, n) | n ∈ Dm} ∈ (Tm)ε. The arbitrary element of Dm can be choose to be

f0(m) form � m0. Therefore, f0 ∈ ×m∈BDm is well defined and (m, f ) ≥ (m0, f0). So
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m ≥ m0, f (m) ≥ f0(m), and R(m, f (m))
α[r(m,f (m))]→ R′(m, f (m)), and | p − r(m,f (m)) |≤|

p − qm | + | qm − r(m,f (m)) |≤ ε for any (m, f ) ≥ (m0, f0). Furthermore, (W ′, {R′(m,

f (m)) | (m, f ) ∈ C}) ∈ Sε ◦ {(Tm)ε | m ∈ B}.
(2) Let U be a cofinal subset of C. Define

Pro jBU = {m ∈ B : (m, f ) ∈ U for somef ∈ Xm∈BDm}.
Pro jmU = {f (m) : (m, f ) ∈ U}, for anym ∈ B.

By the definition of cofinal subset, we can get Pro jBU is a cofinal subset of
B. At the same time, for every m ∈ Pro jBU, Pro jmU is also a cofinal subset of

Dm. For all (m, f ) ∈ U, let R(m, f (m))
α[r(m,f (m))]→ R′(m, f (m)). Then (Tm)ε is a

1

2
ε-

limit bisimulation leads to for every m ∈ Pro jBU, R(m, n)
α[r(m,n)]→ R′(m, n) for all

n ∈ Pro jmU and V ′
m ∈ DPr, a cofinal subset Km of Pro jmU and qm ∈ [0, 1] can

be found to make Vm
α[qm]→ V ′

m, the absolute difference | r(m, n) − qm |≤ 1

2
ε and

(V ′
m, {R(m, k)′ : n ∈ Km}) ∈ (Tm)ε holds. Furthermore, Sε is a

1

2
ε-limit bisimulation

and Pro jBU is a cofinal subnet of B make there are W ′ ∈ DPr and a cofinal sub-

net H of Pro jBU and p ∈ [0, 1] such that W
α[p]→ W ′ and | qh − p |≤ 1

2 ε, h ∈ H and
(W ′, {V ′

h : h ∈ H}) ∈ Sε. So, (W ′,�h∈H{R(h, k)′ : k ∈ Kh}) ∈ Sε ◦ {(Tm)ε : m ∈ B},
and | r(m, n) − p |≤| r(m, n) − qh | + | qh − p |≤ ε. By the definition of cofinal
subset ofU, we can getH × ×h∈HKh is a cofinal subset ofU. Therefore, Sε ◦ {(Tm)ε :
m ∈ B} is also an ε-limit bisimulation. �

Theorem 4 states the iteration property between modulars of system. If given
the specification P, and the first designment of implementation {Qn | n ∈ D} may
not satisfy the specification, then the more concrete designment of implementation
will be developed. Thus, the iteration between the first implementation and the more
concrete implementation can satisfy the specification.

Proposition 5 For each j ∈ J , let S j is the ε-limit bisimulation. Then
⋃

j∈J
S j is also

the ε-limit bisimulation.

Theorem 5 (1) Let W ∈ DPr. If there is n0 ∈ B that makes Vn
ε∼ W for each n ≥ n0,

then W
ε∼ lim

n∈B Vn.

(2) When {Vn : n ∈ B} is a subnet of {Um : m ∈ H} and W
ε∼ lim

m∈H Um, then W
ε∼

lim
n∈B Vn.

(3) Suppose that B be a directed set. For each m ∈ B, let Dm be a directed set. Assume
that C = B × ×m∈BDm and R(m, f ) = (m, f (m)) for each (m, f ) ∈ C.When for each

m ∈ B, Vm

1

2
ε

∼ lim
n∈Dm

W (m, n), and V

1

2
ε

∼ lim
m∈B Vm, then V

ε∼ lim
(m,f )∈C

(W ◦ R)(m, f ).
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Proof (1), (2) and (3) can be obtained by Propositions 2, 3 and 4. �

This theorem states that the set of probabilistic processes and its closure have the
same ε-bisimulation limit.

4 Conclusion and Future Work

In this work, the topological constructions of ε-limit bisimulation are mainly dis-
cussed. These topological constructions obtained in this paper can help the developer
and designer of software to verify the correctness of software.

Notice that our results are based on deterministic probabilistic processes. How-
ever, there are many nondeterministic phenomena during the development and
designing of software. So, in the future, we will focus on the other methods to
establish the dynamic correctness for the nondeterministic processes.
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An Outline of 4-Valued Transition
Statement Calculus

Long Hong

Abstract This paper aims to establish a framework of 4-valued transition statement
calculus so that we can characterize transition states and the changing process among
them from logic. We briefly introduce interval adjacency and transition as prelimi-
naries; create transition connectives that can reflect the direction and the multi-state
of transition, and interpret the intuition meaning of truth-value of them. Emphasis
here is on an analysis to the intension of a transition. We establish a formal system
of 4-valued transition statement calculus LT4, and focus on the discussions of the
valuation and the characteristics of LT4, in which soundness theorem and adequacy
theorem are given.

Keywords Transition phenomenon · Semantic · Syntax · Soundness · Adequacy

1 Introduction

Transition means a gradually changing process from one state to another [1]. For
example, dawn is the transition from night to day; middle age is the transition from
youth to old age. These examples show an unidirectional type of transition. Another
type of transition is bidirectional such as gray from black to white or from white
to black, and the amplifying region of the transistor from cut-off to saturation and
vice versa. Moreover, transition has also a multi state-ness, i.e., many states are in
the transfer process between two states. For example, in the changing process from
spring to winter, it goes through summer between spring and autumn, and autumn
between summer and winter. The examples mentioned above can be perceived by
human senses, so transition is a universal phenomenon in nature or society. Since the
1900s transition has been widely concerned and millions of published papers using

L. Hong (B)
College of Computer, Nanjing University of Posts and Telecommunications, Nanjing, China
e-mail: hongl@njupt.edu.cn

L. Hong
Institute of Modern Logic and Application, Nanjing University, Nanjing, China

© Springer International Publishing Switzerland 2017
T.-H. Fan et al. (eds.), Quantitative Logic and Soft Computing 2016,
Advances in Intelligent Systems and Computing 510,
DOI 10.1007/978-3-319-46206-6_23

225



226 L. Hong

transition as a subject covered almost all disciplines [2, 3]. Though there are quite
a number of contributions for dealing with transition, most of these papers studied
the transition in specific. Transition is of state, and studying state from logic point
of view is a basic method. There have been many kinds of non-classic logic that
describe state, such as modal logic [4], tense logic [5], medium logic [6] and so on.
We shall introduce a novel multi-valued logic for characterizing transition and the
changing process among states in order to set a logical foundation on transition.

The remainder of this paper is organized as follows: in Sect. 2, we briefly intro-
duce interval adjacency and transition as preliminaries. Incorporating the intension
of a transition, we create transition connectives in Sect. 3, and intuitively describe
the functions of them. In Sect. 4, we establish formal system of 4-valued transition
statement calculus (LT4). We introduce the valuation of LT4, and give soundness
theorem and adequacy theorem in Sect. 5.

2 Preliminaries

2.1 Interval Adjacency

The left hand symbol and the right hand symbol of an interval are respectively denoted
by and , i.e. ∈ {(, [} and ∈ {), ]}. The group of three symbols , in the middle of
a, b , b, c is called interval adjacency; the two intervals are called neighboring
intervals, and b is called the adjacent element. The interval adjacency is called a
Type I adjacency if both and in the adjacency are closed or open, otherwise that
is called a Type II adjacency. Therefore, a sequence of neighboring intervals is as
follows:

where r is a real number. Clearly, there are n-1 interval adjacencies in the sequence
consisted of n neighboring intervals.

2.2 Transition

We describe transition in the real number field.

Definition 1 Given f : X → Ri ∪ Ri+1 ∪ Ri+2 ⊂ R, where X is a non empty set. Let
a ∈ Ri, b ∈ Ri+1 and c ∈ Ri+2, then a< b<c. If f is monotonic and continuous, the
variable process of its value in Ri is called the transition of f at somewhere between
Ri−1 and Ri+1; f is called a transition function, and Ri+1 is called a shift area.

Denote the ordered triple T(y, μ, β) as a transition. Where, y = f (x) and x ∈ X,
and y is a transition variable; the μ is a shift area mentioned above; the β that is the
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Ri+1 Ri+3Ri+2 RnR2 …
R1 …Ri

ri ri+1 ri+2 ri+3r1 r2 r3 ri+4 rn rn+1

… …

Fig. 1 The expression of transition in number line. From increasing transition, Ri+1 is the shift
area from Ri to Ri+2; Ri is the initial area and Ri+2 is the arrival area. However, Ri and Ri=2 are
arrival area and initial area in decreasing transition, respectively. For multi-step transition, Ri is the
initial area and Ri+3 is the arrival area; Ri+1 and Ri+2 are shift area.

first point of a shift area reached by f is called the beginning point of the transition.
Moreover, let x ∈μ and x �=β, then T(y, μ, β) is an increasing transition if β< x, or
a decreasing transition if β> x. T(y, μ, β) is called a single-step transition if μ=Ri,
or multi-step transition if μ=Ri ∪ Ri+1∪…∪Ri+n.

Theorem 1 The interval adjacencies among the codomain of a transition function
are Type II adjacencies.

By Theorem1, the form of the neighbor intervals of an increasing transition is as
follows:

. . ., [ri, ri+1), [ri+1, ri+2), . . ., [ri+n−1, ri+n), . . .

and that of a decreasing transition is

. . ., (ri, ri+1], (ri+1, ri+2], . . ., (ri+n−1, ri+n], . . .

Transition occurs one after the other and continuously; the description of it in real
line is shown in Fig. 1. Increasing and decreasing transition are for showing direction
of the transition. Consider increasing transition, in Fig. 1, Ri+1 is the shift area (μ)
from Ri to Ri+2; Ri is the initial area of the transition and Ri+2 is the arrival area. For
decreasing transition, on the contrary, Ri and Ri+2 are arrival area and initial area,
respectively. These three areas form a complete transition.

3 Connectives of Transition Logic

3.1 Transition Connectives

To characterize transition, firstly, we create four transition connectives besides classic
connectives, which are shown in Table1.
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Table 1 Names and symbols
of transition connectives

Name Symbol

Single-step increasing connective ↑
Single-step decreasing connective ↓
Multi-step increasing connective ↗
Multi-step decreasing connective ↙

Then, we assign truth-value to initial area so that ensure whether a transition
is complement. Let p be a statement and it stands for ‘Ri is the initial area of the
transition’, then there are five statements: ↑, ↓, p, ↗ p and ↙ p. Where ↑ stands
for ‘Ri is the initial area of the single-step increasing transition’; ↙ p stands for ‘Ri

is the initial area of the multi-step decreasing transition’, etc. If assignment of the
compound statements above is true, it means that there are three areas related to Ri,
initial, shift and arrival, which form a complete transition.

3.2 Intuitive Interpretation of Some Compound Statements

(1) ↗α ∨ ↙α, ↑α ∨ ↓α.
In multi-step or single-step, transition is either increasing or decreasing.

(2) ↗α →↑α, ↙α→↓α.
If there exist a multi-step increasing (decreasing) transition, then there is single-

step increasing (decreasing) transition.
(3) ↗ α → ¬ ↙ α,↙ α → ¬ ↗ α.

If there exist multi-step increasing (decreasing) transition, then no multi-step
decreasing (increasing) transition.
(4) ¬(↙ α∧ ↗ α).

There is neither multi-step decreasing nor increasing transition.
(5) ¬ ↗ α ↔↓ α.

Being single-step decreasing transition if and only if not multi-step increasing
transition.Knowable, the negation directly to transition connectives is dual.As above,
single-step and decreasing are obtained by negating both multi-step and increasing.
The other compound statements like this explanation are as follows:
(6) ↑α↔ ¬ ↙α.
(7) ↗α↔ ¬ ↓α.
(8) ↙α↔ ¬ ↑α.
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Fig. 2 Relation between
truth-value and interval

Ri+1 Ri+3Ri+2Ri

01 111000

Ri+1 Ri+3Ri+2Ri

10 000111

(a) Increasing transition

(b) Decreasing transition

3.3 Truth-Value and Their Meaning

Denote 00, 10, 01 and 00 as the truth-value of 4-valued transition logic. ‘11’ is the
same meaning as true in 2-value logic, and ‘00’ as false. ‘10’ and ‘01’ are neither
true nor false. Moreover, the scale of true of ‘10’ is higher than ‘01’.

We firstly discuss where truth-value is in number line. As shown in Fig. 1, transi-
tion occurs one after the other and continuously, in which we may take four neigh-
boring intervals to associating with four truths, so that can reflect direction and
multi-state. The relation between truth-values and intervals is intuitively shown in
Fig. 2. According to Theorem1 and the caption of Fig. 1, ‘00’ in Fig. 2 relates to initial
area, and ‘11’ to arrival area. Frommulti-step transition, ‘10’ and ‘01’ associate with
transition area, but in single-step ‘10’ relates to initial area and ‘01’ to arrival area.
For the same interval, furthermore, truth-value on increasing transition is different
from decreasing area, e.g. the Ri in Fig. 2 relates to ‘00’ on increasing transition, but
to ‘11’ on decreasing.

We then explain truths of transition connectives. If truth-value of transition con-
nective is 11, then the transition is at initial area in a complete transition. If truth is
00, then the transition is at arrival area. If truth is 10, then the transition is at shift
area on multi-step transition or at initial area on single-step. If the truth is 01, then it
is at shift area, or at arrival area on single-step.

3.4 Relation Between Increasing and Decreasing Transition

The relation between truths and intervals in increasing and decreasing has been illus-
trated by Fig. 2(a) and Fig. 2(b). However, wemust make relation between increasing
and decreasing clear to use one of them as basic model for transition logic.

Definition 2 Let truth-value set of 4-valued transition logic s4 ={00, 01, 10, 11}
and interval set interval={Ri,Ri+1,Ri+2,Ri+3}, then

fI : s4 → interval
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is called increasing mapping, and fI (00) = Ri, fI (01) = Ri+1, fI (10) = Ri+2 and
fI (11) = Ri+3;

fD : s4 → interval

is called decreasing mapping, and fD(00) = Ri+3, fD(01) = Ri+2, fD(10) = Ri+1 and
fD(11) = Ri.

Theorem 2 ¬f −1
I (Rj) = f −1

D (Rj). Where i ≤ j ≤ i+3 and symbol ¬ is bit negation
connective.

Theorem2 gives a guarantee of the ability to describe transition direction by
selecting either increasing or decreasing. And we use increasing transition as basic
model.

4 Formal 4-Valued Transition Statement Calculus LT4

4.1 Syntax of LT4

(1) Alphabet of symbols
a. Statement variables: p; p1, p2, ….
b. Connectives: ¬, →.
c. Transition connectives: ↗, ↙.
d. Others: ), (.

(2) Set of well-formed formulas (wff )
a. p is a wff and pi is a wff, where i ≥1.
b. If α and β are wffs, then ¬α, ↗α, ↙α and α→β are wffs.
c. The set of all wffs is merely generated by a and b.

(3) Axioms
Let Γ be the set of wffs, and α, β, ϕ ∈ Γ , then following wffs are axioms of LT4:
(Ax1) α→(β→α).
(Ax2) (¬α → ¬β) → (β → α).

(Ax3) (α→(β →ϕ))→((α→β)→(α→ϕ)).
(Ax4) ↙α→α.
(Ax5) ↗α→ ¬α.
(Ax6) ↗(α→β)→ (↗α→↗β).
(Ax7) ↙(α→β)→ (↙α→↙β).

(4) Rule of deduction
(MF) α, α→β �β.
Where ‘� ’is a symbol, but not a symbol of LT4. If Γ �α, we say Γ yields α.
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4.2 Basic Definitions

For simplicity of presentation, some connectives are defined as follows.

Definition 3

(1) α∧β is the abbreviation of ¬(α → ¬β).
(2) α∨β is the abbreviation of ¬α → β.
(3) α↔β is the abbreviation of (α→β) ∧ (β→α).
(4) ↑α is the abbreviation of ¬ ↙ α.
(5) ↓α is the abbreviation of¬ ↗ α.

4.3 Some Theorems

Theorem 3

(1) ¬¬α ↔ α
(2) ¬(α∨β) ↔ (¬α∧ ¬β)
(3) ¬(α∧β) ↔ (¬α∨¬β)
(4) (α→β) ↔ (¬α∨β)
(5) (α∨β) ∧ ϕ) ↔ ((α ∧ ϕ) ∨ (β∧ ϕ))
(6) (α∧β) ∨ ϕ) ↔ ((α ∨ ϕ) ∧ (β∨ ϕ))

Theorem 4

(1) α�β, β�ϕ ⇒α�ϕ
(2) Γ , ¬α�β, ¬β⇒Γ �α
(3) Γ , α�β ⇒Γ �α→β
(4) α∧β �α, β
(5) α, β �α∧β
(6) ¬β,α → β � ¬α

Where ‘⇒’ is a symbol of nature language. If α ⇒β, we say ‘if α then β’.

Theorem 5

(1) (¬α→α) →α
(2) α → (¬α→β)
(3) ¬α → (α→β)
(4) β→ (¬α→β)

Theorem 6

(1) ↗(α→β) →↗(¬β → ¬α)
(2) ↗(α→β) → (↗ ¬β →↗ ¬α)
(3) ↗α→(α→β)
(4) α→ (↗α→β)
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(5) ↑(α→β) → ↑(¬β → ¬α)
(6) ↗(α→β)→ (↑ α→↑β)
(7) ↙(α→β) →↙ (¬β → ¬α)
(8) ¬α→ (↙α→β)
(9) ↙α→(¬α→β)

(10) ↓(α→β) → ↑(¬β → ¬α)
(11) ↗ (↗α→↗β) → (↙α→↙β)
(12) ↑ (↗α→↗β)→ (↙α→↙β)
(13) ↗ (↗α→↗β)→ ¬(↗α→↗β)
(14) ↗α→↗(α∧β)
(15) ↗β→↗(α∧β)
(16) ↗(α∨β) →↗α
(17) ↗(α∨β) →↗β
(18) ↙(α∧β) →↙α
(19) ↙(α∧β) →↙β
(20) ↙α→↙(α∨β)
(21) ↙β→↙(α∨β)
(22) ↗(α∨β) → (↗α∨ ↗β)
(23) (↙α∨ ↙β) →↙(α∨β)
(24) (↗α∧ ↗β) →↗(α∧β)

Proof For (3).

(1) ↗α assumption
(2) ↗α→ ¬ α Ax5
(3) ¬α (1), (2), MP
(4) ¬α → (α→β) Theorem5 (3)
(5) α→β (3), (4), MP
(6) ↗α→(α→β) (1), (5), Theorem4 (3) �

For (9).

(1) ↙α assumption
(2) ↙α→α Ax4
(3) α (1), (2), MP
(4) α → (¬β→ α) Ax1
(5) ¬β→α (3), (4), MP
(6) (¬β→α)→(¬α→ β) Ax2, Theorem3 (1)
(7) ¬α→β (5), (6), MP
(8) ↙α→(¬ α→ β) (1), (7), Theorem4 (3) �

Theorem 7

(1) α � ↓α
(2) ¬α � ↑α
(3) Γ , ↗α �β, ¬β⇒Γ � α
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Theorem 8

(1) ↗α→↑α
(2) ↙α→↓ α
(3) ↗α→ ¬ ↙ α
(4) ↙ α→ ¬ ↗ α
(5) ¬ (↗ α∧ ↙ α)
(6) ¬ ↗α�↙α
(7) ¬ ↙α�↗α

Proof For (1).

(1) ¬ (↗α→↑ α) assumption
(2) ↗ α∧¬ ↑ α Definition3 (2), Theorem3 (2)
(3) ↗ α (2), Theorem4 (4)
(4) ↗ α→ ¬α Ax5
(5) ¬α (3), (4), MP
(6) ¬ ↑ α (2), Theorem4 (4)
(7) ↙ α Definition3 (4), Theorem3 (1)
(8) ↙ α→ α Ax4
(9) α (3), (7), MP

(10) ↗ α→↑ α (5), (9), (1), Theorem4 (2) �

5 Discussion

5.1 Valuation of LT4

Denote x1x0 as a truth-value form of LT4, where x1, x0 ∈{0, 1}.
Definition 4 Let Γ be the set of wffs of LT4, and s4={11, 10, 01, 00} be the truth-
value set of LT4. The mapping

v : Γ → s4

is called a valuation of LT4 such that, for all α, β∈ Γ ,

(1) v(α)=α1α0, v(β)=β1β0;

(2) v(¬α)= ¬v(α)= ¬α¬
1 α0, where¬αi =

{
1 αi = 0
0 αi = 1

, 0 ≤ i ≤ 1.

(3) v(↗α)=
{

00 α1 = 1
1¬α0 α1 = 0

.

(4) v(↙α)=
{

00 v(α) = 01
v(α) otherwise

.
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(5) v(α→β) =→(v(α)v(β))=→α1β
→
1 α0β0, where →αiβi =

{
0 αi = 1, βi = 0
1 otherwise

,

0 ≤ i ≤ 1.

Theorem 9

(1) v(α∧β)= ∧ (v(α)v(β))= ∧α1β
∧
1 α0β0,where ∧αiβi =

{
1 αi = βi = 1
0 otherwise

, 0 ≤
i ≤ 1.

(2) v(α∨β)=∨(v(α)v(β))= ∨α1β
∨
1 α0β0, where ∨αiβi =

{
0 αi = βi = 0
1 otherwise

, 0 ≤
i ≤ 1.

(3) v(α↔β) =↔(v(α)v(β))=↔α1β
↔
1 α0β0, where ↔αiβi =

{
0 αi �= βi

1 αi = βi
, 0 ≤

i ≤ 1.

(4) v(↑α)=
{

0¬α0 α1 = 1
11 α1 = 0

.

(5) v(↓α)=
{

11 v(α) = 10
v(α) otherwise

.

(6) →αiβi =∨¬αiβi.

Theorem 10

(1) v(α ∨¬α)= 11
(2) v(α ∨ 00)= v(α)
(3) v(α ∨ 11)= 11
(4) v(α ∧¬α)= 00
(5) v(α ∧ 00)= 00
(6) v(α ∧ 11)= v(α)
(7) v(α→β) =v(¬α∨β).

Theorem 11 v(α→β) =11 if v(α)=v(β).

Theorem 12 v(α→β) =v(β) if v(α)= 11.

5.2 Soundness Theorem for LT4

Definition 5 Letα∈Γ . If for every valuation v, v (α)=11, thenα is called a tautology
and denoted by |= A; if α is a last member of some deductions from �, then α is
yielded by Γ , denoted by Γ � α.

Theorem 13 If v(α) =11 and v(α→β) =11, then v(β) =11.

Theorem 14 v(α → (β→ α)) =11.

Theorem 15 v((α→(β→ϕ))→((α→ϕ)→(α→ϕ))) =11.
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Theorem 16 v((¬α→ ¬β) →(β→α)) =11.

Theorem 17 v(↙α→α)=11.

Theorem 18 v(↗α→ ¬α)=11.

Theorem 19 v(↗(α→β)→ (↗α→↗β))=11.

Proof v(↗(α→β)→ (↗α→↗β))
=v(¬ ↗(α→β)∨¬ ↗ α∨ ↗ β)
= ∨(∨(¬(v(↗(α→β)))v(↗β))¬(v(↗α)))

Clearly, if v(↗(α→β))=00, or v(↗α)=00, or v(↗β)=11, then this theorem is valid.
Consider v(↗(α→β)) �=00. By Definition4 (3), v(↗(α→β))=1→α0β0. There are
two cases.
Case 1: When v(↗(α→β))=11,v(α→β)=00, i.e. v(β)=00, so v(↗β)=11.
Case 2: When v(↗(α→β))=10,v(α→β)=01, i.e. v(β)=00 or v(β)=01. Thanks to
v(β)=01, v(↗β)=10. Hence

∨(¬(v(↗(α→β)))v(↗β))
=∨(¬(10) (1¬β0))

=∨((01) (1¬β0))

=11. �

Theorem 20 v(↙(α→β)→ (↙α→↙β))=11.

Theorem 21 Γ �α⇒|=α. (Soundness theorem)

5.3 Adequacy Theorem for LT4

Theorem 22 LT4is consistent.

Definition 6 An extension LT4∗ of LT4 is consistent if for α∈ Γ , in the theorems of
LT4∗ no α are both α and ¬ α, or both α and ↗α, or both ¬α and ↙ α.

Theorem 23 An extension LT4∗ of LT4 is consistent if and only if there exist a wff
that is not a theorem of LT4∗.

Moreover, changing truth-value into decimal number from binary number, the
valuation of α, for any α∈Γ , is as follows:

V (α) =
⎧
⎨

⎩

0
m 0 < m < 3
3

.

Clearly,whenV (α)=3,α is a tautology;whenV (α)=m, non ofα,¬α,↗α and↙α
is a tautology. To describe briefly below, let Γ m ⊂Γ , and for any α∈Γ m, V (α)=m.
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Theorem 24 Letα∈Γ –Γ m, andα is not a theorem of LT4∗. Then, an extension LT4∗∗
of LT4 is consistent if it is obtained by adding ¬ α or ↗ α as an axiom.

Theorem 25 |=α ⇒Γ �α. (Adequacy theorem)

Theorem 26 LT4 is decidable.
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Generalized G-Generated Implications

Yue Zhu and Dao-Wu Pei

Abstract A new class of fuzzy implications, which are called the generalized
g-generated implications, generated from decreasing functions and g-generators,
are proposed. This class of fuzzy implications are generalizations of g-generated
implications proposed by Professor Yager in 2004. Naturally, some basic properties
of these new fuzzy implications are investigated. The law of importation and the
distributive equations for these fuzzy implications are studied in detail. Relations of
this class of implications with other known fuzzy implications are discussed.

Keywords Fuzzy logic · Fuzzy implication · g-generated implication · Law of
importation · Distributive equation

1 Introduction

Fuzzy implications are important operations in many fields. In particular, in fuzzy
logic, as propositional connectives, fuzzy implications can be used to model
fuzzy conditionals “If p, then q” where p and q are fuzzy statements [4]. As we
know, fuzzy implications have a significant role in approximate reasoning and fuzzy
control [2, 8, 13]. In addition, fuzzy implications in many other fields are also very
important. These fields including many-valued logic, fuzzy decision making, image
processing, expert system, data mining, fuzzy relational equation, fuzzy mathemati-
cal morphology, fuzzy DI-subsethoodmeasures, and so on [2]. All these applications
have led to generate more fuzzy implications.

The main research topics of fuzzy implications are the characterizations and con-
struction methods.

Characterizations of fuzzy implications in terms of algebraic properties are impor-
tant so that we can better understand the behavior of fuzzy implications.
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Many kinds of fuzzy implications have been proposed. Among them, the most
popular ones are R-implications, (S, N)-implications, QL-implications and D-
implications, which are obtained from t-norms, s-norms and negations [2].

Unlike the above methods derived from binary operators, fuzzy implications can
be constructed based on generating functions such as f- and g-generated implica-
tions and h-implications. f- and g-generated implications were proposed by Professor
Yager [17] in 2004.

Baczyński et al. [1] studied some properties and relations between Yager’s impli-
cations and the other kinds of fuzzy implications. And characterizations of Yager’s
implications based on distributive equations have been shown. Massanet et al. [11]
obtained some characterizations of Yager’s implications based on the law of impor-
tation. Recently, Xie and Liu [16] proposed a generalization of Yager’s f-generated
implications, and discussed the basic algebraic properties of the class of implications
and studied some classical logic tautologies for them.

Hilnena et al. [5] obtained a class of new implications in terms of two fuzzy
negations and a uninorm. This is the other way to generalize f-generated implications.
Massanet et al. [12] introduced h-implications by means of additive generators of
representable uninorms. Liu [7] proposed a new class of fuzzy implications in terms
of the so-called generalized h-generators, and also discussed their properties.

In this paper, we propose a new class of fuzzy implications as generalization of
Yager’s g-generated implications. We investigate properties of these new implica-
tions, study the law of importation and distributive equations for them and discuss the
relations between this new class of implicationswith other known fuzzy implications.

2 Preliminaries

This section recalls some necessary concepts and known results used in the rest of
the paper (see [2] or [15]). We denote U = [0, 1] in this paper.

A functionN : U → U is called a fuzzy negation (shortly negation), ifN(0) = 1,
N(1) = 0 and N is decreasing.

A fuzzy negation is strict if it is strictly decreasing and continuous.
A fuzzy negation is strong if it is an involution.
There are three important fuzzy negations: the standard fuzzy negation, the least

(or Gödel) and the greatest fuzzy negations are respectively defined as follows:

NC(x) = 1 − x, N1(x) =
{
1, if x = 0,
0, if x ∈ (0, 1]. N2(x) =

{
0, if x = 1,
1, if x ∈ [0, 1).

A function I : U2 → U is a fuzzy implication, (shortly implication), if it is
decreasing about thefirst variable, increasing about the secondvariable, and I(0, 0) =
I(1, 1) = 1, I(1, 0) = 0.

The set of all fuzzy implications will be denoted by FI.
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A fuzzy implication I is said to satisfy
(NP) if I(1, y) = y, y ∈ U;
(EP) if I(x, I(y, z)) = I(y, I(x, z)), x, y, z ∈ U;
(IP) if I(x, x) = 1, x ∈ U;
(OP) if I(x, y) = 1 ⇐⇒ x ≤ y, x, y ∈ U;
(CP(N)) if I(x, y) = I(N(y),N(x)) where N is a given negation, x, y ∈ U.

A binary operation T onU is a triangular norm (shortly t-norm), if it is commuta-
tive, associative, increasing and has a neutral element 1. Dually, a binary operation
S on U is a triangular conorm (shortly t-conorm), if it is commutative, associative,
increasing and has a neutral element 0.

A pair of important t-norm and s-norm are as follows:

TM(x, y) = min(x, y), SM(x, y) = max(x, y), x, y ∈ U.

Two interesting fuzzy implications will be used to describe our main results:
Weber implication and the largest (S,N)-implication ([2]):

IWB(x, y) =
{
1, if x < 1,
y, if x = 1; ID(x, y) =

{
1, if x = 0,
y, if x > 0.

In 2004, ProfessorYager [17] introduced twonewkinds of implications as follows.

Definition 1 Let f : U → [0,∞] be a strictly decreasing and continuous function
with f (1) = 0. The function I : U2 → U defined by,

I(x, y) = f −1(x · f (y)), x, y ∈ U,

with convention 0 · ∞ = ∞, is called an f- generated implication. The function f
itself is called an f-generator of I . In such a case, to emphasize the apparent relation
we will write If instead of I .

Definition 2 Let g : U → [0,∞] be a strictly increasing and continuous function
with g(0) = 0. The function I : U2 → U defined by,

I(x, y) = g(−1)(
1

x
· g(y)), x, y ∈ U,

with convention∞ · 0 = ∞, 10 = ∞, is called a g-generated implication,where g(−1)

is the pseudo-inverse of g given by

g(−1)(x) =
{

g−1(x), if x ∈ [0, g(1)),
1, if x ∈ [g(1),∞].

g itself is called a g-generator of I . In such a case, we will similarly write Ig instead
of I .
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In this paper, we call a function g : U → [0,∞] a g-generator if it is strictly
increasing and continuous with g(0) = 0.

By Φ we denote the set of all increasing bijections on U.

Definition 3 For two n-ary functions f , g : Un → U, g is called a Φ-conjugate of
f , denoted g = fϕ, if there exists a ϕ ∈ Φ such that

g(x1, x2, ..., xn) = ϕ−1(f (ϕ(x1),ϕ(x2), ...,ϕ(xn))), x1, x2, ..., xn ∈ U.

Let I ∈ FI. The function NI : U → U defined by NI = I(x, 0) is called the
natural negation of I or the negation induced by I .

By [2] we know that if IS,N is an (S,N)-implication and IT ,S,N is a QL-operation,
then

NIS,N = N, NIT ,S,N = N .

Proposition 1 ([2]) If I ∈ FI satisfies (EP) and (NP), then I satisfies the law of
contraposition CP(N) if and only if N = NI and NI is strong.

3 Definition and Properties of the New Implications

Yager’s definition of g-generated implication can be naturally generalized as follows.

Definition 4 A function I : U2 → U defined by

I(x, y) = g(−1)(f (x) · g(y)), x, y ∈ U,

with the conventions ∞ · 0 = ∞, 1
0 = ∞, is called a generalized g-generated oper-

ation, where f : U → [1,∞] is a decreasing and continuous function satisfying
f (0) = ∞, f (1) = 1, g is a g-generator, and g(−1) is the pseudo-inverse of the func-
tion g in the sense of Proposition2.

In such case, to emphasize the apparent relation we will write I f ,g instead of I .
If a generalized g-generated operation is an implication, thenwe call it generalized

g-generated implication. The set of all generalized g-generated implications will be
denoted by GGI.
Remark 1 (i) If f (x) = 1

x , then I f ,g is the same as g-generated implication Ig. This
fact shows that the new implication I f ,g is a generalization of Yager’s g-generated
implication.
(ii) It should be noted that in [16] Xie et al. introduced generalized f -generated
implication If ,g(x, y) = f −1(g(x) · f (y)), where f is an f -generator, g is an increasing
function satisfy g(0) = 0 and g(1) = 1. This class of implications are very similar
to our implication I f ,g defined by Definition4. However, they indeed are completely
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different. The readers can clearly see this fact from Theorem12 in Sect. 5.
(iii) According to the definition of pseudo-inverse, I f ,g can be rewritten as

I f ,g(x, y) = g−1(min(f (x) · g(y), g(1))), x, y ∈ U.

(iv) Similar to the corresponding results and proofs of g-generated implications (see
[17] or [2]), we can prove some results hold for generalized g-generated implications.
For the sake of simplicity, we will omit proofs of these new results in this and next
sections.

Example 1 (i) Let f (x) = 1
x2 and g(x) = − ln(1 − x). Then for x, y ∈ U we have

I f ,g(x, y) =
{
1, if x = y = 0,

1 − (1 − y)
1
x2 , otherwise.

(ii) Let f (x) = 1 − ln x and g(x) = x. Then for x, y ∈ U we have

I f ,g(x, y) =
{

(1 − ln x) · y, if y ≤ 1
1−ln x ,

1, otherwise.

The next proposition shows that generalized g-generated implications are indeed
fuzzy implications.

Proposition 2 If I f ,g is a generalized g-generated operation, then it is a fuzzy impli-
cation, i.e., I f ,g ∈ FI.

The following theorem shows the fact that when function f is fixed, a necessary
and sufficient condition under which two generalized g-generated implications are
equal is: the g-generators are unique up to a positive multiplicative constant.

Theorem 1 Let f : U → [1,∞] be a decreasing and continuous function satisfying
f (0) = ∞, f (1) = 1, and g1, g2 two g-generators. Then the following statements are
equivalent:
(i) I f ,g1 = I f ,g2 ;
(ii) There exists a constant c ∈ (0,∞) such that g2(x) = c · g1(x), x ∈ U.

Remark 2 From the above result it follows that, if g is a g-generator such that g(1) <

∞, then function g1 : U → U, defined by g1(x) = g(x)
g(1) , is a well defined g-generator

such that I f ,g = I f ,g1 and g1(1) = 1. In other words, it is enough to consider only
increasing generators with g(1) = ∞ or g(1) = 1.

The next proposition shows some properties of generalized g-generated implica-
tions.
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Proposition 3 If I = I f ,g ∈ GGI, then
(i) I satisfies (NP) and (EP);
(ii) I satisfies (IP) if and only if

f (x)

⎧
⎨

⎩

≥ g(1)
g(x) , if g(1) < ∞

= 1, if x = 1, g(1) = ∞
= ∞, if x ∈ [0, 1), g(1) = ∞

;

(iii) if g(1) = ∞, then I does not satisfy the ordering property (OP);
rm(iv) I(x, y) ≥ y, x, y ∈ U.

The following proposition shows some properties of natural negations of gener-
alized g-generated implications.

Proposition 4 If I = I f ,g ∈ GGI, then for allx ∈ U we have

NI(x) =
{
1, if f (x) = ∞,

0, if f (x) < ∞.

Thus, NI is not continuous. In particular,
(i) if f (x) is strictly decreasing, then NI = N1.
(ii) if

f (x) =
{
1, if x = 1,
∞, if x ∈ [0, 1),

then NI = N2.

Corollary 1 If I ∈ GGI, then I does not satisfy the law of contraposition CP(N) for
any fuzzy negation N.

Following this, we explore the continuity of generalized g-generated implications.

Proposition 5 If I = I f ,g ∈ GGI where f is strictly decreasing, then I is continuous
except at the point (0,0). Moreover, I(x, y) is right-continuous at 0 with respect to
both arguments.

Proposition2 shows that when g(1) = ∞, I f ,g does not satisfy ordering property
(OP). When f (x) is strictly decreasing, however, the following theorem provides a
necessary and sufficient condition under which I f ,g satisfies ordering property (OP).

Theorem 2 If I = I f ,g ∈ GGI where f is strictly decreasing, then the following
statements are equivalent:
(i) I satisfies the ordering property (OP).

(ii) g(1) < ∞ and g(x) = g(1)
f (x) .

For the Φ-conjugates of a generalized g-generated implication, we have:

Proposition 6 If I = I f ,g ∈ GGI, then each Φ-conjugate of I is also a generalized
g-generated implication and Iϕ = I f ◦ϕ,g◦ϕ.
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4 The Law of Importation and the Distributive
Equations for New Implications

In classical logic, (p ∧ q) → r ≡ (p → (q → r)) is a tautology which is called the
law of importation (shortly LI). The general form of the above equivalence is given
by

I(T(x, y), z) = I(x, I(y, z)), x, y, z ∈ U,

where I ∈ FI, T is a t-norm. In this case, we say that implication I satisfies the law
of importation with respect to T (see [2, 9, 10]).

The following conclusion shows the relationship between generalized g-generated
implications and the law of importation (LI).

Proposition 7 Suppose that I = I f ,g ∈ GGI where f is strictly decreasing and
g(1) = ∞. Define

F : U2 → U, (x, y) �→ f −1(f (x) · f (y)), x, y ∈ U,

and denote Ran(f ) = {f (x) | x ∈ U} to represent the range of f . Then I satisfy
I(F(x, y), z) = I(x, I f ,g(y, z)) if and only if f (x) · f (y) ∈ Ran(f ), and F is a com-
mutative and increasing function with a neutral element 1.

From Corollary 3.35 in [6], we easily know that the function F in Proposition7
is a t-norm and then we can obtain the following proposition.

Proposition 8 Suppose that T is a t-norm, If ,g ∈ GGI where f is strictly decreasing
and g(1) = ∞. If f (x) · f (y) ∈ Ran(f ), then If ,g satisfies the law of importation (LI)
with respect to T if and only if T(x, y) = f −1(f (x) · f (y)).

When g(1) < ∞, we get the following conclusion.

Proposition 9 Suppose that T is a t-norm, I = I f ,g ∈ GGI where f is strictly
decreasing and g(1) < ∞, then I satisfies the law of importation (LI) with respect
to T if and only if

T(x, y) = f −1(f (x) · f (y)), x, y ∈ U.

From Propositions8 and 9, the following theorem can be deduced.

Theorem 3 Suppose that T is a t-norm and I = I f ,g ∈ GGI where f is strictly
decreasing. If f (x) · f (y) ∈ Ran(f ), then I satisfies the law of importation (LI) with
respect to T if and only if T(x, y) = f −1(f (x) · f (y)).

In fuzzy logic, many authors discussed the distributive equations. If I is a fuzzy
implication, T , T1 and T2 are t-norms, S, S1 and S2 are s-norms, then four kinds of
distributivity for fuzzy implications over t-norms and s-norms are defined as follows
(see [2, 3, 14, 15]),
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(D1) I(S(x, y), z) = T(I(x, z), I(y, z)) for x, y, z ∈ U;
(D2) I(T(x, y), z) = S(I(x, z), I(y, z)) for x, y, z ∈ U;
(D3) I(x,T1(y, z)) = T2(I(x, y), I(x, z)) for x, y, z ∈ U;
(D4) I(x, S1(y, z)) = S2(I(x, y), I(x, z)) for x, y, z ∈ U.

The following two propositions are important for our discussion.

Proposition 10 ([2]) Let a function I : U2 → U satisfy the left neutrality property
(NP), T be a t-norm and S a s-norm.

(i) If the triple (I,T , S) satisfies (D1), then T = TM = min(x, y).
(ii) If the triple (I,T , S) satisfies (D2), then S = SM = max(x, y).

Proposition 11 ([2])For a function I : U2 → U the following statements are equiv-
alent:

(i) I is decreasing in the first variable, i.e., I satisfies (I1).
(ii) I satisfies I(max(x, y), z) = min(I(x, z), (y, z)) for x, y, z ∈ U.
(iii) I satisfies I(min(x, y), z) = max(I(x, z), (y, z)) for x, y, z ∈ U.

In the following, we deal with the above distributive equations based on our
implications.

Theorem 4 If I = I f ,g ∈ GGI where f is strictly decreasing, then the triple (I,T , S)
satisfies (D1) if and only if S = SM and T = TM.

Similarly to Theorem4, we have the following conclusion about (D2).

Theorem 5 If I = I f ,g ∈ GGI where f is strictly decreasing, then the triple (I,T , S)
satisfy (D2) if and only if S = SM and T = TM.

Now, let us discuss (D3) and (D4) for I f ,g with g(1) < ∞.

Proposition 12 ([2]) Let T1 and T2 be t-norms, S1 and S2 s-norms and function
I : U2 → U satisfy the left neutrality property (NP).

(i) If the triple (I,T1,T2) satisfies (D3) for all x, y, z ∈ U, then T1 = T2.
(ii) If the triple (I, S1, S2) satisfies (D4) for all x, y, z ∈ U, then S1 = S2.

Proposition 13 ([2])For a function I : U2 → U the following statements are equiv-
alent:
(i) I is increasing in the second variable, i.e., I satisfies (I2).
(ii) I satisfies I(x,min(y, z)) = min(I(x, y), (x, z)) for x, y, z ∈ U.
(iii) I satisfies I(x,max(y, z)) = max(I(x, y), (x, z)) for x, y, z ∈ U.

Theorem 6 If I = I f ,g ∈ GGI where f is strictly decreasing and g(1) < ∞, then
the triple (I,T1,T2) satisfies (D3) if and only if T1 = T2 = TM.

Similarly to Theorem6, we have following conclusion about (D4).

Theorem 7 If I = I f ,g ∈ GGI where f is strictly decreasing and g(1) < ∞, then
the triple (I, S1, S2) satisfies (D4) if and only if S1 = S2 = SM.
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5 Intersection of GGI with Other Known Classes
of Implications

Next theorem shows fact that generalized g-generated implications are not (S,N)-
implications.

Theorem 8 If I = I f ,g ∈ GGI where f is strictly decreasing, then I is not an (S,N)-
implication.

Proof Assume that I is a (S,N)-implication obtained form a s-norm S and a
fuzzy negation N . Thus, we have NI = N . However, by Proposition4, when f is
strictly decreasing, NI = N1, i.e., N = NI = N1. From [2], we know that the (S,N)-
implication obtained from N1 is the largest (S,N)-implication ID, i.e.,

I(x, y) = ID(x, y) =
{
1, if x = 0,
y, if x > 0.

Then when x, y ∈ (0, 1), we have

I(x, y) = g(−1)(f (x) · g(y)) = g(−1)(min(f (x) · g(y), g(1))) = y.

We get f (x) · g(y) = g(y), a contradiction, i.e., I is not a (S,N)-implication. �

Similarly, for QL-implications we can obtain the following theorem.

Theorem 9 If I = I f ,g ∈ GGI where f is strictly decreasing, then I is not an QL-
implication.

Proof If I is a QL-implication obtained from a s-norm S, a t-norm T and a fuzzy
negation N . From Remark 1 and Proposition3, we know that N = NIf ,g = N1. By
[2], the QL-operation I f ,g generated from N1 is not a implication, a contradiction,
i.e., I f ,g is not a QL-implication. �

Proposition 14 ([2]) For a function I : U2 → U, the following statements are
equivalent:

(i) I is an R-implication generated from a left-continuous t-norm.
(ii) I satisfies (I2), the exchange principle (EP), the ordering property (OP) and it

is right-continuous with respect to the second variable.

Theorem 10 If I = I f ,g ∈ GGI where f is strictly decreasing, then the following
statements are equivalent:

(i) I is an R-implication obtained from a left-continuous t-norm.
(ii) g(1) < ∞ and g(x) = g(1)

f (x) .
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Proof “(i) =⇒ (ii)” Assume that I is an R-implication obtained from a left-
continuous t-norm. From Proposition14, we know that I satisfies the ordering prop-
erty (OP). Hence, by Theorem2, we have g(1) < ∞, so g(x) = g(1)

f (x) .

“(ii)=⇒ (i)” Assume g(1) < ∞ such that g(x) = g(1)
f (x) . From Theorem2, Proposi-

tions1, 2 and 4, I f ,g satisfies (I2), the exchange principle (EP), the ordering property
(OP) and it is right-continuous with respect to the second variable. Then, by Propo-
sition14, I is an R-implication obtained from a left-continuous t-norm. �

The following we will investigate the intersections between generalized g-
generated implications and f -generated implications.

Proposition 15 ([2]) Let f be an f -generator, If an f -generated implication. Then

(i) the natural negation NIf is a strict negation if and only if f (0) < ∞;
(ii) If (x, y) = 1 if and only if x = 0 or y = 1, i.e., If does not satisfy the identity

principle (IP) and the ordering property (OP).

Theorem 11 If I = I f ,g ∈ GGI where f is strictly decreasing and g(1) < ∞, then
I is not an f -generated implication.

Proof Let I be an f -generated implication. From Proposition15, we know that
I(x, y) = 1 if and only if x = 0 or y = 1. On the other hand, I is a generalized
g-generated implication with g(1) < ∞. Meanwhile, fix arbitrarily y ∈ (0, 1). Then
there exists x0 ∈ (0, 1) such that f (x0) · g(y) ≥ g(1) we get

I(x0, y) = g(−1)(f (x0) · g(y)) ≥ g(−1)(g(1)) = 1.

Then I(x0, y) = 1, therefore there exists x, y ∈ (0, 1) such that I(x, y) = 1. Thus I
is not an f -generated implication. �

Theorem 12 If I = I f ,g ∈ GGI, then I is not an f -generated implicationwith f (0) <

∞.

Proof Let I be an f -generated implicationwith f (0) < ∞. Then fromProposition15,
we get that the natural negation NI is a strict negation. However, by Proposition3, NI

is not continuous, a contradiction. Then, we have I is not an f -generated implication
with f (0) < ∞. �

6 Conclusions

In this paper, we proposed a class of new fuzzy implications, called generalized
Yager’s g-generated implications, which is generated from a decreasing function f
and a g-generator. We investigated some basic properties of these new implications.
We also studied the law of importation and the distributive equations for them,
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discussed the relations between this new class and other known fuzzy implications
such as (S,N)-implications, R-implications and QL-implications.

As future work, we will investigate other ways to generalize Yager’s implications,
apply the proposed new implications to approximate reasoning and fuzzy control.
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On Relations Between Several Classes
of Uninorms

Gang Li and Hua-Wen Liu

Abstract Uninorms are an important class of aggregation functions in information
aggregation. It is well known that there exist many different classes of uninorms
in references. In this paper, the relationships among several classes of uninorms
are discussed. Moreover, a complete characterization of the class of almost equitable
uninorms is presented.As a byproduct, a characterization of the class of representable
uninorms is obtained.

Keywords Uninorms · Continuous underlying operators · Almost equitable
uninorms · Boundary

1 Introduction

Uninorms constitute an important class of aggregation functions in information
aggregation. Since their introduction by Yager and Rybalov [23], they have attracted
lots of research activities, ranging from theoretical study to practical applications.
The first deep study by Fodor et al. revealed the structure of uninorms in [10]. Later
on it is justified that uninorms are useful in many fields like expert systems [4], fuzzy
logic [11], fuzzy mathematical morphology [6] and bipolar aggregation [24]. On the
other hand, the theoretical study of uninorms is evenmore extensive [14, 18, 20, 21].

Nowadays, several classes of uninorms are available. For example, the four usual
classes of uninorms: Umin(or Umax), idempotent uninorms, representable uninorms
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and uninorms continuous in ]0, 1[2. Moreover, in order to discuss the migrativity of
uninorms, a class of uninorms which are locally internal on the boundary appeared
in [18], and the class of almost equitable uninorms [19] was introduced to describe
the equitable behavior of uninorms when receiving contradictory information. So, it
is interesting to discuss the relations among different classes of uninorms.

2 Preliminaries

We assume that the reader is familiar with some basic notions concerning t-norms
and t-conorms which can be found for instance in [1, 13]. Also, some results on
uninorms can be found in [10].

Definition 1 ([13]) A function N : [0, 1] → [0, 1] is said to be a negation if it
is decreasing and satisfies N(0) = 1,N(1) = 0. Moreover, if N is continuous and
strictly decreasing, then it is called a strict negation. If a strict negation N is involu-
tive, i.e., N(N(x)) = x for all x ∈ [0, 1], then it is called a strong negation.

Definition 2 ([23]) A uninorm is a two-place function:U : [0, 1]2 → [0, 1]which is
associative, commutative, increasing in each variable and there exists some element
e ∈ [0, 1], called neutral element, such that U(e, x) = x for all x ∈ [0, 1].

We summarize some fundamental results from [10].
It is clear that the function U becomes a t-norm when e = 1 and a t-conorm

when e = 0. For any uninorm we have U(0, 1) ∈ {0, 1}. A uninorm U such that
U(0, 1) = 0 is called conjunctive and if U(0, 1) = 1 then it is called disjunctive.

Throughout this paper, we exclusively consider uninorms with a neutral element
e strictly between 0 and 1.

With any uninorm U with neutral element e ∈]0, 1[, we can associate two binary
operations TU , SU : [0, 1]2 → [0, 1] defined by

TU(x, y) = 1

e
· U(ex, ey)

and

SU(x, y) = 1

1 − e
(U(e + (1 − e)x, e + (1 − e)y) − e).

It is easy to see that TU is a t-norm and that SU is a t-conorm. In other words, on
[0, e]2 any uninorm U is determined by a t-norm TU , and on [e, 1]2 any uninorm U
is determined by a t-conorm SU ; TU is called the underlying t-norm, and SU is called
the underlying t-conorm. Let us denote the remaining part of the unit square by A(e),
i.e., A(e) = [0, 1]2\([0, e]2 ∪ [e, 1]2). On the set A(e), any uninorm U is bounded
by the minimum and maximum of its arguments, i.e. for any (x, y) ∈ A(e) it holds
that

min(x, y) ≤ U(x, y) ≤ max(x, y). (1)
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The most studied classes of uninorms are:

• Uninorms in Umin (or Umax) [10], those given by minimum (or maximum) in A(e).
• Uninorms in Uloc [7], those local internal in the area A(e), i.e.,U(x, y) ∈ {x, y} for
all (x, y) ∈ A(e).

• Idempotent uninorms inUid [3, 22], those that satisfyU(x, x) = x for all x ∈ [0, 1].
• Representable uninorms in Urep [9, 10], those that have an additive generator (or
multiplicative generator).

• Uninorms in CU [12], those that are continuous in the open square ]0, 1[2.
• Uninorms in COU [9, 14, 16], those that are with continuous underlying operators.
• Uninorm inUbli [2, 15, 18], those that are locally internal on the boundary of [0, 1]2,
i.e., U(0, x) = U(x, 0) ∈ {0, x},U(1, x) = U(x, 1) ∈ {1, x} for all x ∈ [0, 1].

• Uninorms in Uaeq [17, 19], those satisfy U(x,N(x)) = e for all x ∈ [0, 1] and a
strong negation N : [0, 1] → [0, 1].

Note that a uninormU with neutral element e ∈]0, 1[ is often called almost equitable
with respect to N if U(x,N(x)) = e for all x ∈]0, 1[ and a strong negation N .

The relationships among the classes of uninorms above will be studied in detail
in the following section.

3 Main Results

Our first result is about the class of uninorms with continuous underlying operators.

Proposition 1 The following statements hold:

(i) Urep ⊆ CU ⊆ COU;
(ii) Umin ∩ COU �= ∅,Umax ∩ COU �= ∅,Uloc ∩ COU �= ∅;
(iii) Uid ⊆ COU;
(iv) Umin ⊆ Uloc,Umax ⊆ Uloc,Uid ⊆ Uloc.

Remark 1 (i) It is obvious that the uninormU ∈ Uid ∩ Umin has the following form

U(x, y) =
{
max(x, y) (x, y) ∈ [e, 1]2,
min(x, y) otherwise.

where e ∈]0, 1[ is the neutral element of U. Uninorm U ∈ Uid ∩ Umax has form

U(x, y) =
{
min(x, y) (x, y) ∈ [0, e]2,
max(x, y) otherwise.

where e ∈]0, 1[ is the neutral element ofU. UninormU ∈ Umin ∩ COU has form

U(x, y) =
⎧
⎨

⎩

eT( xe ,
y
e ) (x, y) ∈ [0, e]2,

e + (1 − e)S( x−e
1−e ,

y−e
1−e ) (x, y) ∈ [e, 1]2,

min(x, y) otherwise,
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where e ∈]0, 1[ is the neutral element of U and T , S are continuous t-norm,
t-conorm, respectively. Uninorm U ∈ Umax ∩ COU has form

U(x, y) =
⎧
⎨

⎩

eT( xe ,
y
e ) (x, y) ∈ [0, e]2,

e + (1 − e)S( x−e
1−e ,

y−e
1−e ) (x, y) ∈ [e, 1]2,

max(x, y) otherwise,

where e ∈]0, 1[ is the neutral element of U and T , S are continuous t-norm,
t-conorm, respectively.

(ii) A complete characterization of the uninorms in Uloc ∩ COU was given in [8].

Now, we discuss the class of uninorms which are locally internal on the boundary.

Lemma 1 ([17, 18]) Let U be a uninorm with neutral element e ∈]0, 1[. Then the
following two statements hold:

(i) IfU is a conjunctive uninormwith continuous underlying t-norm, thenU(0, y) =
U(y, 0) = 0,U(1, y) = U(1, y) ∈ {1, y} for all y ∈ [0, 1].

(ii) If U is a disjunctive uninorm with continuous underlying t-conorm, then
U(y, 0) = U(0, y) ∈ {0, y},U(1, y) = U(y, 1) = 1 for all y ∈ [0, 1].

Based on Lemma 1, we can obtain the second result which is about the class of
uninorms which are locally internal on the boundary.

Proposition 2 The following three statements hold:

(i) Urep ⊆ CU ⊆ COU ⊆ Ubli;
(ii) Uid ⊆ Uloc ⊆ Ubli;
(iii) Umin ⊆ Ubli,Umax ⊆ Ubli.

Remark 2 (i) There exists uninorm U ∈ Ubli,U /∈ Uloc, for example, the repre-
sentable uninorm.
(ii) There exists uninorm U ∈ Ubli, but U /∈ COU,U /∈ Umin,U /∈ Umax. Further-
more, there exists uninorm U /∈ Ubli. Two uninorms are given in the following
examples.

Example 1 Suppose that U : [0, 1]2 → [0, 1] is defined as follows

U(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2xy (x, y) ∈ [0, 1
2 [2,

1 (x, y) ∈] 12 , 1]2,
0 x = 0 or y = 0,
y x = 1

2 ,

x y = 1
2 ,

max(x, y) otherwise.
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By Theorem 4 in [16], U is a uninorm of which the underlying t-norm TU and the
underlying t-conorm SU are defined as follows:

TU(x, y) =
{

1
2xy (x, y) ∈ [0, 1[2,
min(x, y) otherwise,

SU(x, y) =
{
1 (x, y) ∈]0, 1]2,
max(x, y) otherwise,

It is obvious that U ∈ Ubli,U /∈ Umax. But the underlying operators TU , SU are not
continuous. Hence, U /∈ COU .
Example 2 Suppose that U : [0, 1]2 → [0, 1] is defined by

U(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

eTD(
x
e ,

y
e ) (x, y) ∈ [0, e]2,

e + (1 − e)SD(
x−e
1−e ,

y−e
1−e ) (x, y) ∈ [e, 1]2,

1 x = 1 or y = 1,
y0 (x, y) ∈ [0, e[×]y0, 1)∪]y0, 1) × [0, e[,
max(x, y) otherwise

(2)
where e ∈]0, 1[, y0 ∈]e, 1[ and

TD(x, y) =
{
0 (x, y) ∈ [0, 1[2,
min(x, y) otherwise

, SD(x, y) =
{
1 (x, y) ∈]0, 1]2,
max(x, y) otherwise.

U is a uninorm. In fact, it is obvious that U is commutative, increasing in each
variable and with neutral element e. Only the associativity of U need to be verified,
i.e., for all (x, y, z) ∈ [0, 1]3

U(x,U(y, z)) = U(U(x, y), z).

Without loss of generality, we assume that x ≤ y ≤ z.

• 0 < x ≤ b < e < z ≤ y0. Then U(y, z) = z, U(x,U(y, z)) = U(x, z) = z and
U(U(x, y), z) = U(0, z) = z.

• 0 < x ≤ y < e < y0 < z < 1.ThenU(y, z) = y0. So,U(x,U(y, z)) = U(x, y0) =
y0 and U(U(x, y), z) = U(0, z) = y0.

• 0 < x < e < y ≤ y0. Then U(y, z) = 1. So, U(x,U(y, z)) = U(x, 1) = 1 and
U(U(x, y), z) = U(y, z) = 1.

• 0 < x < e < y0 < y ≤ z < 1. Then U(y, z) = 1. So, U(x,U(y, z)) = U(x, 1) =
1 and U(U(x, y), z) = U(y0, z) = 1.
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For the remaining cases. U(x,U(y, z)) = U(U(x, y), z) holds obviously.
It is obvious that U /∈ Ubli,U /∈ Umax. Furthermore, the underlying operators

TU , SU are not continuous. Hence, U /∈ COU .
Now, we discuss the class of almost equitable uninorms.

Lemma 2 ([17]) Let U : [0, 1]2 → [0, 1] be a uninorm with neutral element e ∈
]0, 1[ and N be a strong negation. If U is almost equitable with respect to N, then e
is the only fixed point of N, i.e., N(e) = e.

Lemma 3 ([17]) Let U : [0, 1]2 → [0, 1] be a uninorm with neutral element e ∈
]0, 1[. If U is locally internal on [0, e[×]e, 1]∪]e, 1] × [0, e[ (i.e., U(x, y) ∈ {x, y}
for any (x, y) in this region), then there does not exist strong negation N such that U
is almost equitable with respect to N.

Lemma 4 ([17]) Let U : [0, 1]2 → [0, 1] be a uninorm with neutral element e ∈
]0, 1[ and N be a strong negation. If U is continuous in ]0, 1[2, then U is almost
equitable with respect to N if and only if U is a representable uninorm with addi-
tive generator h : [0, 1] → [−∞,+∞] and N = NU is a strong negation, where
NU(x) = h−1(−h(x)) for all x ∈ [0, 1].
Based on above Lemmas, we give a complete characterization theorem of almost
equitable uninorms as follows:

Theorem 1 Let U : [0, 1]2 → [0, 1] be a uninorm with neutral element e ∈]0, 1[
and N be a strong negation. U is almost equitable with respect to N if and only if
U is a representable uninorm with additive generator h : [0, 1] → [−∞,+∞] and
N = NU is a strong negation, where NU(x) = h−1(−h(x)) for all x ∈ [0, 1].
Proof If U is a representable uninorm and N = NU then U(x,N(x)) = e for all
x ∈]0, 1[ by Proposition 6 in [5].

Conversely, let U be a uninorm which is almost equitable with respect to N . Then
U(x,N(x)) = e for all x ∈]0, 1[. We can prove the result in the following steps.

Step 1: U(x, y) �= e for all x ∈]0, 1[, y ∈ [0, 1] such that y �= N(x). On the con-
trary, suppose that there exists x0 ∈]0, 1[, y0 ∈ [0, 1] such that y0 �= N(x0) and
U(x0, y0) = e. Then, U(U(x0, y0),N(x0)) = U(e,N(x0)) = N(x0) and U(U(x0,
N(x0)), y0) = U(e, y0) = y0, a contradiction with the associativity of U. Hence, by
the monotonicity of U, we have U(x, y) < e for all x ∈]0, 1[, y ∈ [0, 1] such that
y < N(x), and U(x, y) > e for all x ∈]0, 1[, y ∈ [0, 1] such that y > N(x).

Step 2: There does not exist (x, y) ∈]0, e[2 such thatU(x, y) = 0. On the contrary,
suppose that there exist x1, x2 ∈]0, e[ such that x1 < x2,U(x1, x2) = 0. Since U is
almost equitable with respect toN , we haveU(x1,N(x1)) = e,U(x2,N(x2)) = e and

e ≤ N(x2) < N(x1) < 1,U(N(x1),N(x2)) ≥ e

by Lemma 2. Furthermore, we have

U(U(x1,N(x1)),U(x2,N(x2))) = U(e, e) = e
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and
U(U(x1, x2),U(N(x1),N(x2))) = U(0,U(N(x1),N(x2))).

If U(N(x1),N(x2)) = 1 then

U(U(x1, x2),U(N(x1),N(x2))) = U(0, 1) ∈ {0, 1}.

On the other hand, if U(N(x1),N(x2)) < 1, then

U(U(x1, x2),U(N(x1),N(x2))) = U(0,U(N(x1),N(x2))) < e

by the result in (Step 1) and the monotonicity of U.
So, in both cases, we get a contradiction with the associativity and the commuta-

tivity of U.
Step 3: There does not exist (x, y) ∈]e, 1[2 such that U(x, y) = 1. On the con-

trary, suppose that there exist y1, y2 ∈]e, 1[ such that y1 < y2,U(y1, y2) = 1. Since
U is almost equitable with respect to N , we have U(y1,N(y1)) = e,U(y2,N(y2)) =
e. By Lemma 2, 0 < N(y2) < N(y1) < e,U(N(y1),N(y2)) ≤ e. Hence, U(N(y1),
N(y2)) > 0 by the result in (Step 2). Furthermore, we have

U(U(y1,N(y1)),U(y2,N(y2))) = U(e, e) = e,

U(U(y1, y2),U(N(y1),N(y2))) = U(1,U(N(y1),N(y2))),

and

U(1,U(N(y1),N(y2))) > U(N(U(N(y1),N(y2))),U(N(y1),N(y2))) = e

by the result in (Step 1) and the monotonicity of U. So, we obtain a contradiction
with the associativity and commutativity of U.

Step 4: U is continuous in ]0, 1[2. By Lemma 2.1.2 in [1], we only need to prove
that for all x0, y0 ∈]0, 1[ both the vertical section U(x0, ·) :]0, 1[→ [0, 1] and the
horizontal section U(·, y0) :]0, 1[→ [0, 1] are continuous functions of one variable.
Due to the commutativity ofU, the continuity of horizontal sectionU(·, y0) is proved
here. For all y0 ∈]0, 1[, we know that U(x, y0) ∈ [0,U(1, y0)] for all x ∈ [0, 1]. By
Eq. (1), U(1, y0) ∈ [y0, 1]. For every x0 ∈]0,U(1, y0)[, we have

U(U(x0,N(y0)), y0) = U(x0,U(N(y0), y0)) = U(x0, e) = x0.

Since y0 ∈]0, 1[, N(y0) ∈]0, 1[. Now, we prove thatU(x0,N(y0)) ∈]0, 1[. We divide
the proof in four cases.

• (x0,N(y0)) ∈]0, e]2. Then U(x0,N(y0)) ∈]0, e] by the result in (Step 2).
• (x0,N(y0)) ∈]e, 1[2. Then U(x0,N(y0)) ∈]e, 1[ by the result in (Step 2).
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• x0 ∈]0, e],N(y0) ∈ [e, 1[. Then U(x0,N(y0)) ∈ [x0,N(y0)] by Eq. (1). Hence,
U(x0,N(y0)) ∈]0, 1[.

• x0 ∈ [e, 1[,N(y0) ∈]0, e]. Then U(x0,N(y0)) ∈ [N(y0), x0] by Eq. (1). Hence,
U(x0,N(y0)) ∈]0, 1[.
Hence, the result holds by Lemma 4. �

Example 3 ([13]) Suppose that conjunctive uninorm U : [0, 1]2 → [0, 1] is defined
by

U(x, y) =
{ xy

xy+(1−x)(1−y) (x, y) �= {0, 1},
0 otherwise

(3)

It is obvious that U is a representable uninorm with additive generator h(x) =
log( x

1−x ) and neutral element e = 1
2 . It is easy to verify that U is almost equitable

with respect to the strong negation N , where N(x) = NU(x) = h−1(−h(x)) = 1 − x
for all x ∈ [0, 1].

By Theorem 1, a new characterization for the class of representable uninorms can
be obtained as follows:

Corollary 1 Let U : [0, 1]2 → [0, 1] be uninorm with neutral element e ∈]0, 1[.
Then U is a representable uninorm if and only if there exists a strong negation
N : [0, 1] → [0, 1] such that U(x,N(x)) = e for all x ∈ [0, 1].
Finally, relations between the class of almost equitable uninorms and the other classes
of uninorms are summarized in the following proposition.

Proposition 3 The following two statements hold:

(i) Umin ∩ Uaeq = ∅,Umax ∩ Uaeq = ∅,Uid ∩ Uaeq = ∅,Uloc ∩ Uaeq = ∅;
(ii) Urep ∩ Uaeq = CU ∩ Uaeq = COU ∩ Uaeq = Ubli ∩ Uaeq = Uaeq = Urep.
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A p-R0 Type Triple I Method for Interval
Valued Fuzzy Reasoning

Li-Na Ma and Shuo Liu

Abstract In this paper, we introduce the concept of p-relative degrees of activation,
and a p-R0 type triple Imethod for interval valued fuzzy reasoningmodel is proposed
which is proved to be continuous. Furthermore, we showed that this method has a
good transmissible performance for approximate errors.

Keywords Interval valued fuzzy reasoning · p-R0 type triple I method ·Continuity

1 Introduction

Fuzzy reasoning is a kind of approximate reasoning models for simulating human
reasoning. As core content of the fuzzy control technology, it has gained broad
attention after being proposed. However, its theoretical basis is not perfect. Full
implication triple I method for fuzzy inference is proposed by Wang in [1], which
made it possible to provide logical basis for fuzzy reasoning.

The general form of fuzzy reasoning can be expressed as follows [1]

Rule1: A11 and A12 and · · · and A1n imply B1

Rule2: A21 and A22 and · · · and A2n imply B2

· · · · · · · · ·
Rulel : Al1 and Al2 and · · · and Aln imply Bl

and A∗
1 and A∗

2 and · · · and A∗
n

Obtain B∗

(1)
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where Ai j , A∗
j ∈ F(X j ), Bi , B∗ ∈ F(Y ) (F(X j ),F(Y ) respectively denote the set

of all fuzzy subsets of domain X j and Y ), i = 1, 2, . . . , l; j = 1, 2, . . . , n.
As to the fuzzy reasoning model (1), a commonly used approach is to transform

the multiple premises of each rule into a fuzzy set by use product. A new method
to solve the model (2) is given in [1], which can be converted in to the following
interval-valued fuzzy reasoning model (short as IVFS reasoning model):

Rule1: U1 imply B1

Rule2: U2 imply B2

· · ·
Rulel : Ul imply Bl

and A∗
Obtain B∗

(2)

where Ui = [ai1, ci1] × · · · × [ain, cin] are interval-valued fuzzy sets of a domain
X = {1, 2, . . . , n}, A∗ ∈ F(X), B1, . . . , Bl , B∗ ∈ F(Y ).

The principle of “Fire One Or Leave (in brief, FOOL)” was proposed by Wang
in [1], and on the basis of this principle triple I method was used to solve the IVFS
reasoning model. The concept of p-sensitive parameter was defined after an analysis
of sensitivity of the consequents with respect to the antecedents of rules, and the
(p-θ) method for (2) was given in [2]. In this paper we introduce the concept of
p-relative degrees of activation, hence the (p-θ) method for the IVFS reasoning
model has been refined to be the p-R0 type triple I method. Furthermore, we prove
that this method is continuous [4–7] and has a good transmissible performance for
approximate errors.

2 The Full Implication Triple I Inference Method

In this section, we briefly overview the full implication triple I inference method of
fuzzy inference. For more details, please see [3].

Triple I Method of FMP Suppose that a fuzzy rule “if x is A, then y is B” and
an input “x is A∗” are given, where A, A∗ ∈ F(X), B ∈ F(Y ). Then the triple I
solution B∗ of FMP is the smallest fuzzy subset of Y such that (A(x) → B(y)) →
(A∗(x) → B∗(y)) gains the greatest value for all x ∈ X and y ∈ Y .

In particular, this method is called R0 type triple I method when “→” is taken as
the implication operator R0, and the R0 type triple I solution B∗ can be calculated as
follows:

B∗(y) = sup
x∈X

{A∗(x) ⊗0 R0(A(x), B(y))}, y ∈ Y, (3)

where ⊗0 is the residuum of the operator R0.
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3 p-R0 Type Triple I Method for Interval Valued Fuzzy
Reasoning

In this section, the domain X is always refers to X = {1, 2, . . . , n}, and we use the
notation IF(X) to denote the set of all interval valued fuzzy set of X .

In the following,we use theHamming distance to estimate the approximate degree

of fuzzy sets, that is, ‖A1 − A2‖ = 1
n

n∑

i=1
|A1(xi ) − A2(xi )|, in which A1, A2 ∈

F(X).

Definition 1 ([1]) Let U ∈ IF(X), U = [a1, c1] × · · · × [an, cn], x∗ = (x∗
1 , . . . ,

x∗
n ) ∈ [0, 1]n . Define

d p(x∗,U) = 1

n

n∑

j=1

( |x∗
j − e j |
w j

)p

, p > 0. (4)

d p(x∗,U) is called the p-sensitive distance from x∗ to U , where e j = c j+a j

2 , w j =
c j − a j , j = 1, 2, . . . , n.

Definition 2 ([1]) Let U ,V ∈ IF(X),U = [a1, c1] × · · · × [an, cn],V = [s1, t1] ×
· · · × [sn, tn]. Then the p-sensitive distance between U and V is defined as follows:

d p(U ,V) = inf{d p(x,V)|x ∈ U}, (5)

where x ∈ U means x j ∈ [a j , c j ], j = 1, 2, . . . , n.

Definition 3 ([1]) The IVFS reasoning model is said to be in p-good condition, if
for all x ∈ Ui , d p(x,Ui ) < d p(U j ,Ui ), i, j = 1, 2, . . . , l, j �= i.

Theorem 1 ([1]) The IVFS reasoning model is in p-good condition if and only if
d p(Ui ,U j ) > ( 12 )

p, i, j = 1, 2, . . . , l, i �= j.

Definition 4 ([2]) Let a domain Y = {y1, . . . , ys} be a nonempty set, B,C ∈ F(Y ).
Define

Mp(B,C) = 1

s

s∑

r=1

|B(yr ) − C(yr )|p. (6)

Then Mp(B,C) is called the p-distance between B and C .

Definition 5 ([2]) In the IVFS reasoning model, a p-sensitive parameter of the kth
rule is defined by

s pk = max

{
Mp(Bi , Bk)

d p(Ui ,Uk)
∨ Mp(Bk, Bi )

d p(Uk,Ui )
|i = 1, . . . , l, i �= k

}

, k = 1, 2, . . . , l.

(7)
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Let A∗ = (x1, . . . , xn) ∈ [0, 1]n . Define the p-synthetical distance from A∗ to Uk as
follows:

ρp(A∗,Uk) = s pk d
p(A∗,Uk), k = 1, 2, . . . , l. (8)

Remark 1 According to the actual situation,we often assume that there does not exist
two rules which have the same antecedents but different consequents in the IVFS
reasoning model, otherwise we can combine them into a single rule. So although
d p(Ui ,Uk) and d p(Uk,Ui ) all appear in the denominator, both are not zero. Therefore,
the s pk definition is reasonable.

Definition 6 ([2]) Let p > 0, and θ(> 0) be a threshold value. The IVFS reasoning
model is said to be (p-θ) solvable, if it is in p-good condition and K (θ) = {k �
l|ρp(A∗,Uk) < θ} �= ∅.
Definition 7 ([2]) In the IVFS reasoning model, the (p-θ) relative activation degree
of the input A∗ which is about the ki th rule is defined by

r(p-θ, ki ) = (ρp(A∗,Uki ))
−1

t∑

j=1
(ρp(A∗,Uk j ))

−1

. (9)

Remark 2 In Definition 7, when the input A∗ is exactly the central data fuzzy set of
the antecedents of the ki th rule, ρp(A∗,Uki ) = 0, then the result of the expression (9)
is meaningless. Furthermore, in Definition 6, the specific method of setting threshold
value is not given. In fact, the threshold settings is random and with a strong subjec-
tivity in some cases, which would result in the loss of data. So we refine Definition 7
and propose the concept of p-relative activation degree, which can overcome the
shortcomings.

Definition 8 In the IVFS reasoning model, the p-relative activation degree of the
input A∗ about the i th(i = 1, 2, . . . , l) rule is defined by

r(p, i) =
⎧
⎨

⎩

1, A∗ is the central data fuzzy set of Ui ,
(ρp(A∗,Ui ))

−1

n∑

j=1
(ρp(A∗,U j ))−1

, otherwise. (10)

Next, we give the p-R0 type triple I method for the IVFS reasoning model.

Definition 9 Let p > 0 and the IVFS reasoning model is in p-good condition. Then
the p-R0 type triple I method for the IVFS reasoning model is defined as follows:
(i) To solve the central data fuzzy set Ak of the antecedents of the kth(k = 1, 2, . . . , l),
that is, Ak = (Ak1, Ak2, . . . , Akn) where Akt = 1

2 (akt + ckt ), t = 1, 2, . . . , n. Then,
to calculate the R0 type triple I solution B∗

k of the following FMP model:

from Ak −→ Bk and A∗, calculate B∗
k (k = 1, 2, . . . , l). (11)
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(ii) To compute the weighted average by multiplying each B∗
k by a corresponding

p-relative activation degree, then the p-R0 type triple I solution B∗ for the IVFS

reasoning model can be calculated by B∗ =
l∑

j=1
r(p, j)B∗

j .

Example 1 In the IVFS reasoning model, let X = {1, 2, 3}, Y = {1, 2}. The rules
and the input A∗ are given as follows:

Rule1 U1 = [0.10, 0.20] × [0.00, 0.20] × [0.50, 0.60] −→ B1 = (0.30, 0.20)
Rule2 U2 = [0.30, 0.40] × [0.50, 0.70] × [0.50, 0.60] −→ B2 = (0.50, 0.40)
Rule3 U3 = [0.50, 0.60] × [0.40, 0.60] × [0.60, 0.70] −→ B3 = (0.60, 0.80)
Rule4 U4 = [0.00, 0.20] × [0.20, 0.60] × [0.10, 0.20] −→ B4 = (0.40, 0.70)
Rule5 U5 = [0.50, 0.60] × [0.40, 0.45] × [0.30, 0.40] −→ B5 = (0.30, 0.40)
and A∗ = (0.20, 0.40, 0.60)
Calculate B∗ = ?

(12)
Let p = 1. Calculate the 1-R0 type triple I solution B∗ for the above IVFS reasoning
model (12).

Solution. By (4), (5), we have

d p(Ui ,U j ) =

⎛

⎜
⎜
⎜
⎜
⎝

0 1.17 1.83 1.33 3.17
1.17 0 0.67 1.58 1.5
1.83 0.67 0 2.17 0.83
1.33 1.67 2.67 0 1.67
2.17 1.25 0.92 1.17 0

⎞

⎟
⎟
⎟
⎟
⎠

The smallest element is 0.67 > 1
2 in the above matrix whenever i �= j . So the above

IVFS reasoning model (4) is in 1-good condition. By (6), we have

(Mp(Bi , Bj )) =

⎛

⎜
⎜
⎜
⎜
⎝

0 0.2 0.45 0.3 0.1
0.2 0 0.25 0.2 0.1
0.45 0.25 0 0.15 0.35
0.3 0.2 0.15 0 0.2
0.1 0.1 0.35 0.2 0

⎞

⎟
⎟
⎟
⎟
⎠

(13)

And by (7), (13), we obtain the 1-sensitive parameter of each rule one by one:
s p1 = 0.25, s p2 = 0.37, s p3 = 0.42, s p4 = 0.23, s p5 = 0.42. Then we obtain the
1-sensitive distance between A∗ and the antecedents of every rule, respectively,
d p(A∗,U1) = 0.67, d p(A∗,U2) = 0.67, d p(A∗,U3) = 1.5, d p(A∗,U4) = 1.67, d p

(A∗,U5) = 2.17. Thus, we have the 1-synthetical distance from A∗ to Uk)(k =
1, 2, 3, 4, 5.) : ρp(A∗,U1) = 0.17, ρp(A∗,U2) = 0.25, ρp(A∗,U3) = 0.63, ρp

(A∗,U4) = 0.38, ρp(A∗,U5) = 0.91. By (9), we obtain the 1-relative activation
degree of the input A∗ which is about each rule, in order, r(p, 1) = 0.39, r(p, 2) =
0.26, r(p, 3) = 0.1, r(p, 4) = 0.17, r(p, 5) = 0.07.
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Furthermore, it is easy to obtain the central data fuzzy set of each rule:
A1 = (0.15, 0.1, 0.55), A2 = (0.35, 0.6, 0.55), A3 = (0.55, 0.5, 0.65), A4 = (0.1,
0.4, 0.15), A5=(0.55, 0.425, 0.35). By (3), we have B∗

1 (1)=(0.2 ⊗0 R0(0.15, 0.3))
∨ (0.4 ⊗0 R0(0.1, 0.3)) ∨ (0.6 ⊗0 R0(0.55, 0.3)) = 0.2 ∨ 0.4 ∨ 0.45 = 0.45, and
B∗
1 (2) = (0.2 ⊗0 R0(0.15, 0.2)) ∨ (0.4 ⊗0 R0(0.1, 0.2))∨(0.6 ⊗0 R0(0.55, 0.2))=

0.2 ∨ 0.4 ∨ 0.45 = 0.45, i.e., B∗
1 = (0.45, 0.45). By a similar argument we have

B∗
2 = (0.5, 0.45), B∗

3 = (0.6, 0.6), B∗
4 = (0.6, 0.6), B∗

5 = (0.6, 0.6). Thus, we
obtain the 1-R0 type triple I solution B∗ = 0.39 × B∗

1 + 0.26 × B∗
2 + 0.1 × B3 ∗

+0.17 × B∗
4 + 0.07 × B∗

5 = (0.51, 0.49).

Definition 10 Let X,Y be nonempty finite domains, Ui → Bi (i = 1, 2, . . . , l) be
the known fuzzy rules, where Ui ∈ IF(X), Bi ∈ F(Y ), and Ai denote the central
data fuzzy set of Ui . If we have the p-R0 type triple I method f is continuous at Ai ,
then f is said to be continuous at Ui .

Lemma 1 ([4]) Let a, b1, b2 ∈ [0, 1]. Then we have the following:

(i) |a ∧ b1 − a ∧ b2| � |b1 − b2|;
(ii) |a ∨ b1 − a ∨ b2| � |b1 − b2|.
Lemma 2 Let ai , bi ∈ [0, 1], i ∈ {1, 2, . . . , n}. Then
(i) |

n∧

i=1
ai −

n∧

i=1
bi | �

n∨

i=1
|ai − bi |;

(ii) |
n∨

i=1
ai −

n∨

i=1
bi | �

n∨

i=1
|ai − bi |.

Proof We only prove (i), (ii) similarly follows. Let
n∧

i=1
ai = ak ,

n∧

i=1
bi = b j . Then for

all i, i ∈ {1, 2, . . . , n}, we have ak � ai , b j � bi . In particular, we have

ak � a j , b j � bk . If ak � b j � bk , then |
n∧

i=1
ai −

n∧

i=1
bi |=|ak − b j | � |ak − bk | �

n∨

i=1
|ai − bi |. And if b j < ak � a j , then |

n∧

i=1
ai −

n∧

i=1
bi | = |ak − b j | � |a j − b j | �

n∨

i=1
|ai − bi |. This proves (i). �

Lemma 3 ([4]) Let X,Y be nonempty finite domains, A∗, A ∈ F(X), B ∈ F(Y ).
Then there exists δ0 > 0 such that for all y ∈ Y , E A∗

y = E Ay(⊂ X) whenever ‖A∗ −
A‖ < δ0, where E A∗

y = {x ∈ X |(A∗(x))′ < R0(A(x), B(y))}, E Ay = {x ∈ X |
(A(x))′ < R0(A(x), B(y))}.
Lemma 4 Let X,Y be nonempty finite domains,A∗, Ak ∈ F(X), Bk ∈ F(Y ), k =
1, 2, . . . , l, and B∗

k is the R0 type triple I solution for FMPmodel (11). Then for each
ε > 0, there is a δ > 0 such that |B∗

k (y) − Bk(y)| < ε whenever‖A∗ − Ak‖ < δ.
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Proof Obviously, for an arbitrary x ∈ X , we have Ak(x) ⊗0 R0(Ak(x), Bk(y)) �
Bk(y) and

∨

x∈X
{Ak(x) ⊗0 R0(Ak(x), Bk(y))} � Bk(y). Then

|B∗
k (y) − Bk(y)| = | ∨

x∈X
{A∗(x) ⊗0 R0(Ak(x), Bk(y))} − Bk(y)|

� | ∨

x∈X
{A∗(x) ⊗0 R0(Ak(x), Bk(y))}

− ∨

x∈X
{Ak(x) ⊗0 R0(Ak(x), Bk(y))}|

= | ∨

x∈E A∗
y

{A∗(x) ∧ R0(Ak(x), Bk(y))}
(14)

− ∨

x∈E Aky

{Ak(x) ∧ R0(Ak(x), Bk(y))}|,

where E A∗
y = {x ∈ X |(A∗(x))′ < R0(Ak(x), Bk(y))}, E Aky = {x ∈ X |(Ak(x))′ <

R0(Ak(x), Bk(y))}. ByLemma3, there exists δ0>0 such that E A∗
y=E Aky whenever

‖A∗ − A‖ < δ0. So for each ε > 0, putting δ = min{ δ0
n+1 ,

ε
n+1 }. Then for all y ∈ Y ,

we have E A∗
y = E Aky whenever‖A∗ − Ak‖ < δ.Obviously, for all x ∈ X , |A∗(x) −

Ak(x)| < nδ, then by (14), we get

|B∗
k (y) − Bk(y)| � | ∨

x∈E Aky

{A∗(x) ∧ R0(Ak(x), Bk(y))}
− ∨

x∈E Aky

{Ak(x) ∧ R0(Ak(x), Bk(y))}|
�

∨

x∈E Aky

|A∗(x) ∧ R0(Ak(x), Bk(y))

−Ak(x) ∧ R0(Ak(x), Bk(y))|
(by Lemma 2(i))

�
∨

x∈E Aky

|A∗(x) − Ak(x)| (by Lemma 1(i))

�
∨

x∈X
|A∗(x) − Ak(x)| < nδ < ε.

�

In the following, we use the notation Ak to denote the central data fuzzy set of
Uk ∈ IF(X).

Lemma 5 Let U1,U2, . . . ,Ul ∈ IF(X), Uk = [a1, c1] × · · · × [an, cn], A∗ = (x∗
1 ,

. . . , x∗
n ) ∈ [0, 1]n, A∗ �= Ak, Ai = (xi1, . . . , xin) ∈ [0, 1]n(i �= k, i = 1, 2, . . . , l),

p � 1, and putting w jk = c j − a j ( j = 1, 2, . . . , n), bk = min{ρp(A∗,Uk), ρ
p(Ai ,

Uk)}, w jk . Then we have |d p(A∗,Uk) − d p(Ai ,Uk)| � 1
n

n∑

j=1

p·|x∗
j −xi j |
w

p
jk

.

Proof Putting e jk = c j+a j

2 , j = 1, 2, . . . , n. Then we have
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|d p(A∗,Uk) − d p(Ai ,Uk)| = 1
n

n∑

j=1

( |x∗
j −e jk |p−|xi j−e jk |p

w
p
jk

)

� 1
n

n∑

j=1

( |(x∗
j −e jk )p−(xi j−e jk )p |

w
p
jk

)

= 1
n

n∑

j=1

( |p(ξ jk−e jk )p−1·(x∗
j −xi j )|

w
p
jk

)

� 1
n

n∑

j=1

(
p·|x∗

j −xi j |
w

p
jk

)
. (by (ξ jk − e jk)p−1 � 1)

(where point ξ jk is between x∗
j and xi j ).

Hence, by (8) we get |ρp(A∗,Uk)
−1 − ρp(Ai ,Uk)

−1| = | ρp(Ai ,Uk )−ρp(A∗,Uk )

ρp(Ai ,Uk )·ρp(A∗,Uk )
| �

1
b2k

· |ρp(A∗,Uk) − ρp(Ai ,Uk)| = 1
b2k

· |s pk · d p(A∗,Uk) − s pk · d p(Ai ,Uk)| = s pk
b2k

|d p

(A∗,Uk) − d p(Ai ,Uk)| � 1
n

n∑

j=1
(
p·|x∗

j −xi j |
w

p
jk

). �

Lemma 6 Let U1,U2, . . . ,Ul ∈ IF(X), A∗ = (x∗
1 , . . . , x

∗
n ) ∈ [0, 1]n, and A∗ �=

Ak, Ai = (xi1, . . . , xin) ∈ [0, 1]n(i �= k, i = 1, 2, . . . , l), p � 1, bk = min{ρp(A∗,
Uk), ρ

p(Ai ,Uk)}, w p
k =min{w p

1k, . . . , w
p
nk}. Putting w jk=c j − a j ( j = 1, 2, . . . , n),

s p = max{s p1 , . . . , s pl }, b = min{b1, . . . , bl}, w p = min{w p
1 , . . . , w

p
l }, a = min

{
l∑

k=1
(ρp(A∗,Uk))

−1,
l∑

k=1
(ρp(Ai ,Uk))

−1}, c =
l∑

k=1
(ρp(Ai ,Uk))

−1. Then we have

| 1
l∑

k=1
(ρp(A∗,Uk))−1

− 1
l∑

k=1
(ρp(Ai ,Uk))−1

| � l · s p
a2 · b2 · n ·

n∑

j=1

p · |x∗
j − xi j |
w p

.

Proof By Lemma 5, we get

| 1
l∑

k=1
(ρp(A∗,Uk ))−1

− 1
l∑

k=1
(ρp(Ai ,Uk ))−1

|

= |
l∑

k=1
(ρp(Ai ,Uk ))

−1−
l∑

k=1
(ρp(A∗,Uk ))

−1

l∑

k=1
(ρp(A∗,Uk ))−1·

l∑

k=1
(ρp(Ai ,Uk ))−1

|

� 1
a2 · |

l∑

k=1
(ρp(A∗,Uk))

−1 −
l∑

k=1
(ρp(Ai ,Uk))

−1|

� 1
a2

l∑

k=1
|(ρp(A∗,Uk))

−1 − (ρp(Ai ,Uk))
−1|

� 1
a2

l∑

k=1
(
s pk
b2k

· 1
n ·

n∑

j=1

p·|x∗
j −xi j |
w

p
jk

)

� 1
a2 · l · s p

b2 · 1
n ·

n∑

j=1

p·|x∗
j −xi j |
w p = l·s p

a2·b2·n ·
n∑

j=1

p·|x∗
j −xi j |
w p .
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Thus, by (10) we have

|r(p, j) − ri (p, j)| = | (ρp(A∗,U j ))
−1

l∑

k=1
(ρp(A∗,Uk ))

−1
− (ρp(Ai ,U j ))

−1

l∑

k=1
(ρp(Ai ,Uk ))

−1
|

� |
(ρp(A∗,U j ))

−1·
m∑

k=1
(ρp(Ai ,Uk ))

−1−(ρp(Ai ,U j ))
−1·

m∑

k=1
(ρp(A∗,Uk ))

−1

l∑

k=1
(ρp(A∗,Uk ))

−1·
l∑

k=1
(ρp(Ai ,Uk ))

−1
|

� 1
a2
(|

l∑

k=1
(ρp(Ai ,Uk))−1| · |(ρp(A∗,U j ))

−1 − (ρp(Ai ,U j )
−1|

+ |(ρp(Ai ,U j ))
−1| · |

l∑

k=1
(ρp(Ai ,Uk))−1 −

l∑

k=1
(ρp(A∗,Uk))−1|))

� 1
a2

|
l∑

k=1
(ρp(Ai ,Uk))−1(|(ρp(A∗,U j ))

−1 − (ρp(Ai ,U j )
−1|

+ |
l∑

k=1
(ρp(Ai ,Uk))−1 −

l∑

k=1
(ρp(A∗,Uk))−1|))

� c
a2
( s

p

b2
· 1
n ·

n∑

j=1

p·|x∗
j −xi j |
w p + l · ( s p

b2
· 1
n ·

n∑

j=1

p·|x∗
j −xi j |
w

p
jk

))

= c·(l+1)·s p
a2·b2·n ·

n∑

j=1

p·|x∗
j −xi j |
w p .

�
Theorem 2 The p-R0 type triple I method for the IVFS reasoning model is contin-
uous at Ui (i = 1, 2, . . . , l).

Proof We use the notation f to denote the p-R0 type triple I method for the IVFS
reasoning model. Let A∗ = (x∗

1 , . . . , x
∗
n ), Ai = (xi1, . . . , xin). Then we have

‖ f (A∗) − f (Ai )‖ = 1
m

∑

y∈Y
| f (A∗)(y) − f (Ai )(y)|

= 1
m

∑

y∈Y
|

l∑

j=1
r(p, j) · B∗

j (y) −
l∑

j=1
ri (p, j) · Bj (y)|

� 1
m

∑

y∈Y

l∑

j=1
|r(p, j) · B∗

j (y) − ri (p, j) · Bj (y)|

� 1
m

∑

y∈Y

l∑

j=1
(|r(p, j)||B∗

j (y) − Bj (y)|
+ |Bj (y)||r(p, j) − ri (p, j)|)
� 1

m

∑

y∈Y

l∑

j=1
(|B∗

j (y) − Bj (y)| + |r(p, j) − ri (p, j)|).

(15)

By Lemma 4, we get that for each ε > 0 there is a δ > 0 such that |B∗
j (y) −

Bj (y)| < ε
2l whenever‖A∗ − Ai‖ < δ.Putting δ1 = a2b2w pε

2lpc(l+1)s p , then byLemma5we
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have |r(p, j) − ri (p, j)| < ε
2l whenever‖A∗ − Ai‖ < δ1. For each ε > 0, we take

δ = min{δ0, δ1}, then by (15) we get ‖ f (A∗) − f (Ai )‖ < 1
m

∑

y∈Y

l∑

j=1
( ε
2l + ε

2l ) = ε.

This proves Theorem 2. �

In the following, we will investigate the transmissible performance for approxi-
mate errors.

Definition 11 Let U ∈ IF(X), A∗ = (x∗
1 , . . . , x

∗
n ) ∈ [0, 1]n . Define w(A∗, A) =

n∨

i=1
|x∗

i − xi |,where A denotes the central data fuzzy set of U .w(A∗, A) is called the

maximum number of point by point error between A∗ and U .
Proposition 1 Let f be the p-R0 type triple I method for the IVFS reasoning
model. If the maximum number of point by point error between the input A∗ and
U(i = 1, 2, . . . , l) is less than ε, then the maximum number of point by point error
between the output f (A∗) and f (Ai ) is also less than ε, where Ai denotes the central
data fuzzy set of Ui .

Proof By Lemmas 4 and 6, we obtain that for each ε > 0, there exist δ1 >
0, δ2 > 0 such that |B∗

j (y) − Bj (y)| < ε
2l whenever‖A∗ − Ai‖ < δ1, and |r(p, j) −

ri (p, j)| < ε
2l whenever‖A∗ − Ai‖ < δ2. Putting δ = min{δ1, δ2}. Then we get

|B∗
j (y) − Bj (y)| < ε

2l and |r(p, j) − ri (p, j)| < ε
2l whenever ‖A∗ − Ai‖ < δ. For

each ε > 0, if w(A∗, Ai ) < ε < δ then ‖A∗ − Ai‖ < δ. Hence we have

w( f (A∗), f (Ai )) = ∨

y∈Y
| f (A∗)(y) − f (Ai )(y)|

= ∨

y∈Y
|

l∑

j=1
r(p, j) · B∗

j (y) −
l∑

j=1
ri (p, j) · B j (y)|

�
∨

y∈Y
l∑

j=1
|r(p, j) · B∗

j (y) − ri (p, j) · B j (y)|

�
∨

y∈Y
l∑

j=1
(|r(p, j)||B∗

j (y) − B j (y)| + |B j (y)||r(p, j) − ri (p, j)|)

�
∨

y∈Y
l∑

j=1
(|B∗

j (y) − B j (y)| + |r(p, j) − ri (p, j)|)

<
∨

y∈Y
l∑

j=1
( ε
2l + ε

2l ) = ε.

�

This result states that the p-R0 type triple I method for the IVFS reasoning model
has a good transmissible performance for approximate errors.
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Multiple Fuzzy Implications and Their
Generating Methods

Fang Li and Dao-Wu Pei

Abstract By means of multiple iteration about the first variable of a known fuzzy
implication, a new fuzzy implication is introduced. It is proved that the new implica-
tion preserves some important properties of the original implication. These properties
include the identity principle (IP), the left neutrality property (NP), the exchange prin-
ciple (EP), and so on. Based on this idea, by considering multiple iteration about the
second variable of the known fuzzy implications, another new kind of fuzzy impli-
cations are similarly introduced, main properties of this kind of new implications are
analyzed. This work is beneficial to enhance applications of fuzzy implications in
other fields.

Keywords Fuzzy logic · Fuzzy implication · Multiple fuzzy implication · Mixed
fuzzy implication

1 Introduction

Fuzzy implications, as a kind of most important logical connectives, play a kernel
role in many fields (see [2, 4, 5, 10, 13]).

In the literature, there are three main directions on the study of fuzzy implication
(see [2] or [4]): properties and characterizations of the known fuzzy implications
(see [1, 2]), construction methods of new fuzzy implications (see [2, 3, 6, 8, 11,
12]), and practical applications of fuzzy implications (see [2, 9, 10, 13]).

In [8], the authors proposed a new construction method of fuzzy implications
by multiple iterations of the known fuzzy implications about the first variable. A
kind of new fuzzy implications are obtained, and various properties of these new
implications are discussed in detail.
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In this paper, by multiple iteration about the second variable of the known fuzzy
implications, we can generate new classes of fuzzy implications. In addition, we will
study properties of the new implications, and study which properties they have when
the known implications are (S, N)-implication and R-implication respectively.

Finally, we will integrate these two types of implications together, get a new kind
of fuzzy implications when the time of iteration is a special number, the above two
types of implications are all special cases of these implications.

The content of this paper is organized as follows: the second part recalls some
useful definitions and properties for the paper. In the third part,we propose a newclass
of functions, which are fuzzy implications under certain conditions, analyze their
properties, and study which properties the new implications posses when the known
implications are (S, N)-implications or R-implications, respectively. The fourth part,
by multiple iteration about two variables of the known implications, we proposed
another new kind of fuzzy implications. Lastly, the fifth part concludes the paper.

2 Preliminaries

In this section, we recall some basic notations and facts used later in the paper (see
[2, 5, 7, 10, 13]). Let U = [0, 1].
Definition 1 A binary operation T on U is a t-norm if it fulfills commutativity,
associativity, monotonicity and boundary condition T(1, x) = x for all x ∈ U.

Definition 2 A binary operation S on U is a t-conorm if it fulfills commutativity,
associativity, monotonicity and boundary condition S(0, x) = x for all x ∈ U.

Definition 3 A unary operation N on U is a fuzzy negation if N(0) = 1,N(1) = 0
and N is decreasing.

Definition 4 A binary operation I on U is an (fuzzy) implication if it is decreasing
in the first variable, increasing in the second variable, and

I(0, 0) = I(1, 1) = 1, I(1, 0) = 0.

Several common used fuzzy implications are given by Table1.
In this paper, we use T , S, N and I to denote t-norm, t-conorm, fuzzy negation

and fuzzy implication, respectively.
For some special types of implications, they also have some of the following

properties.
Let I be an implication, and x, y, y1, y2 ∈ U.

(i) The left neutrality principle, (NP): I(1, y) = y;
(ii) The identity principle, (IP): I(x, x) = 1;
(iii) The ordering principle, (OP): I(x, y) = 1 ⇐⇒ x ≤ y;
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Table 1 Examples of fuzzy implications

Name Notation Formula

Lukasiewicz ILK ILK (x, y) = min(1, 1 − x + y)

Kleene-Dienes IKD IKD(x, y) = max(1 − x, y)

Rescher IRS IRS(x, y) =
{
0, x > y

1, x ≤ y

Godel IGD IGD(x, y) =
{
y, x > y

1, x ≤ y

Weber IWB IWB(x, y) =
{
1, x < 1

y, x = 1

R0 I0 I0(x, y) =
{
max(1 − x, y), x > y

1, x ≤ y

(iv) The consequent boundary, (CB): I(x, y) = y;
(v) The law of excluded middle, (LEM): S(N(x), x) = 1;
(vi) 1-Lipschitz property, (1-Li): |I(x, y2) − I(x, y1)| ≤ |y2 − y1|;
(vii) Special property, (SP): I(x, y) ≤ I(x + ε, y + ε), ∀ε ≥ 0.

In the literature [8], a new class of fuzzy implications, namely multiple fuzzy
implications, are constructed by means of multiple iteration about the first variable
of the known fuzzy implications as follows.

Definition 5 ([8]) Let I1, I2, . . . , In be fuzzy implications. Then JI1,I2,...,In , called the
n-dimension function generated by (I1, I2, . . . , In), is defined as

JI1,I2,...,In(x, y) = I1(x, I2(x, I3(x, . . . , In(x, y) . . .))), x, y ∈ U.

It has been proved that this function is a fuzzy implication [8]. Therefore, we call
it a multiple fuzzy implication about x.

3 Multiple Fuzzy Implications About the Second Variable

Similar to the multiple fuzzy implications about x, in this section we define a class
of multiple fuzzy implications about y, and discuss their properties.

Definition 6 Let I1, I2, . . . , In be fuzzy implications. Then GI1,I2,...,In defined below
is called a n-dimension function generated by (I1, I2, . . . , In),

GI1,I2,...,In(x, y) = I1(x, I2(I3(I4(. . . In(x, y), . . . , y), y), y)), x, y ∈ U.
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The following proposition shows that this function is also a fuzzy implication.
We call it multiple fuzzy implication about y.

Proposition 1 Let I1, . . . , In be fuzzy implications satisfied (1-Li) and (SP), n a
positive even number. Then GI1,...,In is also a fuzzy implication.

Proof The conclusion holds obviously for the case n = 2 (see [8] or [11]). Without
loss of generality, we take n = 4.

(i) Take x1, x2, y ∈ U with x1 ≤ x2. Since I1, I2, I3, I4 are fuzzy implications, we
have

I4(x1, y) ≥ I4(x2, y), I3(I4(x1, y), y) ≤ I3(I4(x2, y), y);
I2(I3(I4(x1, y), y), y) ≥ I2(I3(I4(x1, y), y), y);
I1(x1, I2(I3(I4(x1, y), y), y)) ≥ I1(x, I2(I3(I4(x1, y), y), y)).
Moreover, we have GI1,I2,I3,I4(x1, y) ≥ GI1,I2,I3,I4(x2, y).
(ii) Take x, y1, y2 ∈ U with y1 ≤ y2. Since I1, I2, I3, I4 satisfy (SP), we have for

any ε > 0 with x + ε, y + ε ∈ U,

Ii(x + ε, y) ≤ Ii(x, y) ≤ Ii(x + ε, y + ε) ≤ Ii(x, y + ε).

Since I1, I2, I3, I4 all satisfy (1-Li), we have Ii(x, y2) − Ii(x, y1) ≤ y2 − y1, i =
1, 2, 3, 4. Let y2 − y1

.= ε. Thus

I3(I4(x, y1), y1) ≤ I3(I4(x, y1) + ε, y1 + ε) ≤ I3(I4(x, y2), y2).

Similarly, we have I2(I3(I4(x, y1), y1), y1) ≤ I2(I3(I4(x, y2), y2), y2). Thus we
obtain

GI1,I2,I3,I4(x, y1) ≤ GI1,I2,I3,I4(x, y2).

(iii) By simple calculation we have,

GI1,I2,I3,I4(0, 0) = 1 = GI1,I2,I3,I4(1, 1); GI1,I2,I3,I4(1, 0) = 0.

By the definition of fuzzy implication, GI1,I2,I3,I4 is a fuzzy implication.
Obviously, the above proof is valid for all even numbers, thus when n is a positive

even number, GI1,...,In is a fuzzy implication. �

Example 1 Let n = 4, I1 = IKD, I2 = IGD, I3 = IWB and I4 = IRS . We have

GI1,I2,I3,I4(x, y) =
{
1, if x ≤ y,
max(1 − x, y), if x > y.

Thus GI1,I2,I3,I4(x, y) = R0(x, y).

Remark 1 When n is a positive odd number, e.g., n = 3, we have

I1(1, I2(I3(1, 0), 0)) = 1.
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Thus, GI1,I2,I3 is not an implication.

Proposition 2 Let I1, . . . , In be fuzzy implications, GI1,...,In a fuzzy implication gen-
erated by the above implications.

(i) If I1, . . . , In all satisfy (IP) and (OP), then GI1,...,In also satisfies (IP).
(ii) If I1, . . . , In all satisfy (NP) and (IP), then GI1,...,In also satisfies (NP).
(iii) If I1, . . . , In all satisfy (OP), then GI1,I2,I3,I4 also satisfies (OP).

Proof (i) Let n = 4 and x ∈ U. Since I1, . . . , I4 satisfy (IP) and (OP), we have

I1(x, I2(I3(I4(x, x), x), x)) = I1(x, I2(I3(1, x), x)) = I1(x, 1) = 1.

(ii) Let n = 4 and x ∈ U. Since I1, . . . , I4 satisfy (NP) and (IP), we have

I1(1, I2(I3(I4(1, x), x), x)) = I1(1, I2(I3(x, x), x)) = I1(1, x) = x.

(iii) Let n = 4 and x, y ∈ U with x ≤ y. Since I1, . . . , I4 satisfy (OP), we have

I1(x, I2(I3(I4(x, y), y), y)) = 1.

When I1(x, I2(I3(I4(x, y), y), y)) = 1 and x > y, we have

I1(x, I2(I3(I4(x, y), y), y)) = 0.

This is a contradiction. So x ≤ y. Thus I1(x, I2(I3(I4(x, y), y), y)) satisfies (OP).
Similar to the case n = 4, we can easily see that when n is any even number, this

proposition still holds. �

Proposition 3 Let I1, . . . , In be (S, N)-implications with Ii(x, y) = Si(Ni(x), y) (i =
1, . . . , n), GI1,...,In a fuzzy implication generated by above implications. Then for
x, y ∈ U, we have

GI1,...,In(x, y) = S1(N1(x), S2(N2(S3(N3(. . . Sn(Nn(x), y) . . . , y), y), y), y), y),

where Si and Ni are t-conorm and fuzzy negation, respectively, n is a positive even
number.
(i)When I1, . . . , In satisfy (CB), GI1,...,In also satisfies (CB);
(ii)When all Ii satisfies (LEM), GI1,...,In satisfies (NP).

Proof (i) Let x, y ∈ U, and Ii satisfy (CB) for each i. Then we have Si(Ni(x), y) ≥ y.
So

S2(N2(S3(N3(. . . Sn(Nn(x), y) . . . , y), y), y), y) ≥ y,

S1(N1(x), S2(N2(S3(N3(. . . Sn(Nn(x), y) . . . , y), y), y), y)) ≥ y.

Thus, GI1,...,In satisfies (CB).
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(ii) We know that every (S, N)-implication satisfies (NP) (see [2]). Now by the
knowncondition, every Ii satisfies (LEM), for (S,N)-implications, equivalently, every
Ii satisfies (IP), we have that GI1,...,In satisfies (NP) by Proposition 2 (ii). �

Proposition 4 Let I1, . . . , In be R-implications with

Ii(x, y) = sup{t ∈ U | Ti(x, t) ≤ y}, i = 1, . . . , n.

Then GI1,...,In satisfies (NP).

Proof Since all of Ii are R-implications, we have that Ii satisfies (IP) and (NP). By
Proposition 2(ii), GI1,...,In also satisfies (NP). �

4 The Mixed Fuzzy Implication

Combining the multiple fuzzy implications about both x and y, in this section we
define a class of multiple fuzzy implications about both variables x and y, and study
their properties.

Definition 7 Let I1, . . . , In be fuzzy implications. Then HI1,...,In defined below is
called an n-dimension mixed function generated by the above implications,

HI1,...,In(x, y) = JI1,...,Ii(x,GIi+1,...,In(x, y)), x, y ∈ U.

Remark 2 Obviously, both the multiple fuzzy implications about x and y are special
cases of the new functions defined by Definition 7. In fact, in Definition 7, when
i = n, we have HI1,...,In(x, y) = JI1,I2,...,In(x, y); when i = 1, we have HI1,...,In(x, y) =
GI1,I2,...,In(x, y).

Proposition 5 Let I1, . . . , In be fuzzy implications satisfying (1-Li) and (SP), n − i
be a positive even number. Then HI1,...,In is also a fuzzy implication.

Proof From Proposition 1, when Ii+1, . . . , In are fuzzy implications satisfying (1-Li)
and (SP), and n − i is a positive even number, then GIi+1,...,In is a fuzzy implication.
Also, by Proposition 5.1 of [8], when I1, . . . , Ii are fuzzy implications, G is a fuzzy
implications. Thus, JI1,...,Ii,G is also a fuzzy implication. Therefore,HI1,...,In is a fuzzy
implication. �

In this paper we call HI1,...,In the mixed multiple fuzzy implication.

Example 2 Let n = 5, I1 = ILK , I2 = IKD, I3 = IGD, I4 = IWB, I5 = IRS .
By Example 1, we have

I2(x, I3(I4(I5(x, y), y), y)) =
{
1, x ≤ y,
max(1 − x, y), x > y.
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Since I1(x, y) = min(1, 1 − x + y), we have

HI1,I2,I3,I4,I5(x, y) =
⎧
⎨

⎩

1, x ≤ y,
min(1, 2 − 2x), 1 − y ≥ x > y,
min(1, 1 − x + y), x ≥ max(y, 1 − y).

Proposition 6 Let I1, . . . , In be fuzzy implications, HI1,...,In the fuzzy implication
generated.

(i) If I1, . . . , In satisfy (IP) and (OP), then HI1,...,In also satisfies (IP).
(ii) If I1, . . . , In satisfy (NP) and (IP), then HI1,...,In also satisfies (NP).
(iii) If I1, . . . , In satisfy (OP), then HI1,...,In also satisfies (OP).

Proof From Propositions 2 and 5.2 of [8], this proposition can be proven. �
Proposition 7 Let I1, . . . , In be (S, N)-implications, HI1,...,In the corresponding fuzzy
implication generated. If I1, . . . , In satisfy (CB), then HI1,...,In also satisfies (CB).

Proof FromProposition 3, we haveGIi+1,...,In(x, y) ≥ y. Since I1, . . . , Ii satisfy (CB),
we have

HI1,...,In(x, y) = S1(N1(x), S2(N2(x), . . . , Si(Ni(x),GIi+1,Ii+2,...,In(x, y)))) ≥ y.

�
Proposition 8 Let I1, . . . , In be R-implications, HI1,...,In the corresponding fuzzy
implication generated. Then HI1,...,In satisfies (NP).

Proof Since I1, . . . , In are R-implications, so all of them satisfy (NP). From Propo-
sition 4, GIi+1,...,In(x, y) satisfies (NP). Also, by Proposition 5.2 of [8], HI1,...,In also
satisfies (NP). �

5 Conclusions

Fuzzy implications have important applications inmany fields. So it is very necessary
to study construction methods and properties of fuzzy implications.

In this paper, we mainly continue the study of multiple fuzzy implications studied
in [8]. Two kinds of new construction methods of fuzzy implications are proposed.
The first method is multiple iteration about the second variable of the fuzzy impli-
cation. The second method is multiple iteration about both variables of the fuzzy
implication, main properties of the second kind of the new implications are investi-
gated. Our results show that the new implications have good behaviors.

In the future, we will discuss relations between the two kinds of new implica-
tions and the existing implications such as (S, N)-implications and R-implications.
Naturally, applications of the new implications in fuzzy control, data mining, fuzzy
decision and other fields should be important topics for further study.
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Extended Threshold Generation of a New
Class of Fuzzy Implications

Zhi-Hong Yi and Feng Qin

Abstract The threshold generation of a new implication from two given ones is
introduced by Massanet and Torrens. Along the lines of the ordinal sum method
in the construction of fuzzy connectives, the paper deals with generalization of the
e-threshold generationmethod by applying the scalingmethod in the second variable,
which can generate some implications different from usual implications, such as f -,
g-implications, R-implications, S-implications and the ones derived from the ordinal
sum method. And generated implications are characterized.

Keywords Fuzzy connectives · Fuzzy implications · Threshold generation

1 Introduction

Fuzzy implications [5], with which fuzzy conditional statements of the type
“if-then” can be well modeled, play an important role in both approximating reason-
ing and fuzzy control. There exists several different models of fuzzy implications
that can be more or less adequate in any case, depending on the behavior of the
conditional rule they have to model, or depending on the inference rule that is going
to be applied. Among these different models, the most established and well-studied
classes of fuzzy implications are the so-calledR−, (S,N)−,QL−,D− implications,
usually obtained from fuzzy connectives, such as t-norms, t-conorms and negations.
Moreover, fuzzy implications can also be obtained from other binary functions,
such as copulas, quasi-copulas, conjunctors in general [11], representable aggrega-
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tion functions [9] and uninorms [1, 7, 10, 20]. The typical ones are f−, g− gener-
ated implications [4, 14, 22, 23] by Yager [33], h−implications by Massanet and
Torrens [21], (g,min)−implications, (h,min)-implications and h−1−implications
by Liu [17–19], (f , g)-implications by Xie and Liu [31], (g, u)−implications by
Zhang and Liu [34], fuzzy implications IU,f ,g by Hliněná et al. [13].

Moreover, there is another method of generating new fuzzy implications from
already existing ones. The remarkable ones are ϕ-conjugation, min and max oper-
ations, convex combinations and composition over given one or two fuzzy impli-
cation(s). In the recent years, in [24, 25], Massanet and Torrens provide a new
construction method to get fuzzy implication from two given ones, called threshold
generation method, similar to the threshold generation method, they [26] introduced
the vertical threshold generation method of fuzzy implication through an adequate
scaling on the first variable of the given fuzzy implications. Su et al. [30] introduced
a new class of fuzzy implications, called ordinal sum implications, from a family of
given implications, which is similar to ordinal sum of t-norms (or t-conorms) [16].

Intrigued by those referred studies, we generalize the e-threshold generation
method from a single value to multi-value by applying the scaling method in the
second variable of the initial implications, and some implications different from the
existing implications can be obtained.

The paper is organized as follows. In Sect. 2, some known concepts and results to
be used are listed. In Sect. 3, we give the extended threshold generation of a fuzzy
implication from a family of fuzzy implications and show that the E−generated
fuzzy implications are really a new class of implications different from the usually
referred ones. Finally, some concluding remarks and comments on future work are
given.

2 Preliminary

For some necessary results and notations about fuzzy operators, we recommend [2,
12, 16].

Definition 1 ([5, 12]) A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if
it satisfies the following conditions:

I is decreasing in the first variable, (I1)

I is increasing in the second variable, and (I2)

I(0, 0) = 1, (I3)

I(1, 1) = 1, (I4)

I(1, 0) = 0. (I5)
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It can be easily verified that I(0, 0) = I(0, 1) = I(1, 1) = 1. Hence a fuzzy impli-
cation is usually considered as an extension of the corresponding classical one.
Throughout the paper, we use the same notations for the most referred implications
and some related properties as those appeared in [24].

In the following, we list the threshold generation method.

Theorem 1 ([24]) (Threshold generation method) Let I1, I2 be two implications and
e ∈]0, 1[, then the binary function II1−I2 : [0, 1]2 → [0, 1], given by

II1−I2(x, y) =
⎧
⎨

⎩

1, x = 0;
eI1(x,

y
e ), x > 0, 0 ≤ y ≤ e;

e + (1 − e)I2(x,
y−e
1−e ), x > 0, y > e

(1)

is a fuzzy implication, called the e-generated implication from I1 to I2.

3 Extended Threshold Generation Method

Now we consider a special sequence {ei}i∈N in ]0, 1[, which is strictly increasing,
i.e., ei < ej if i, j ∈ N with i < j; or strictly increasing if i ≤ n and constant if i > n
for some n ∈ N, i.e., 0 < e1 < e2 < . . . < en = e < 1 and ei = e if i > n. If {ei}i∈N
is strictly increasing, then there is some e ∈]0, 1] such that lim

i→∞ ei = e ∈]0, 1]. For
a sequence {ei}i∈N with limit, define

E =
{ {ei | i ∈ N}, {ei}i∈N is strictly increasing if i ≤ n and constant if i > n

{ei | i ∈ N} ⋃{e}, {ei}i∈N is strictly increasing.
(2)

the set E will be used throughout the paper. Thus the set E is either finitely or
infinitely countable. For the generating method, we will use a family of implications
{I0} ⋃{Ii}i∈N ⋃{I0} denoted by I throughout the paper. For consistency, if |E| = n,
we assume, Ii = In−1 for all i ≥ n, and somewhere e0 = 0. Using the denotation, we
give the extended threshold generation method in the following.

Theorem 2 Let E be the set defined by Eq.2 where {ei}i∈N is the aforementioned
sequence, and I the referred family of fuzzy implications, then IE : [0, 1]2 → [0, 1]
defined by

IE(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, x = 0;
e1I0(x,

y
e1
), x > 0, 0 ≤ y ≤ e1;

ei + (ei+1 − ei)Ii(x,
y−ei

ei+1−ei
), x > 0, ei < y ≤ ei+1 for i ∈ N,

e, x > 0, y = e;
e + (1 − e)I0(x, y−e

1−e ), x > 0, y > e;

(3)

is a fuzzy implication.
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Proof We only provide the proof for the case when {ei}i∈N in ]0, 1[ is strictly increas-
ing with lim

i→∞ ei = e < 1, the others can be checked similarly. We proceed the proof

in the following steps:

(i) (I1) It can be checked easily.
(ii) (I2) Let y1 ≤ y2, if x = 0, then, IE(x, y1) = 1 = IE(x, y2); if x > 0, there are

several cases to be considered.

(a) If y1, y2 ∈]ei, ei+1] for some i ∈ N, then IE(x, y1) = ei + (ei+1 − ei)Ii(x,
y1−ei
ei+1−ei

) ≤ ei + (ei+1 − ei)Ii(x,
y2−ei
ei+1−ei

) = IE(x, y2) by the increasingness of

Ii. Similarly if y1, y2 ∈ [0, e1] or y1, y2 ∈]e, 1] the increasingness of IE can
be checked by using the increasingness of I0 and I0, respectively. In addition,
IE(x, y1) = e ≥ IE(x, y2) = e if y1 = y2 = e.

(b) For the case y1 ∈ [0, e1], if y2 ∈]ei, ei+1] for some i ∈ N, then IE(x, y1) ≤
IE(x, y2) since IE(x, y1) = e1I1(x,

y1
e1
) ∈ [0, e1] and IE(x, y2) = ei +

(ei+1 − ei)Ii(x,
y2−ej
ei+1−ei

) ∈ [ei, ei+1]; Similarly we can check (I2) for the case

y2 ∈]e, 1]. Additionally, IE(x, y1) ≤ e1 ≤ e = IE(x, y2) if y2 = e.
(c) For the case y1 ∈]ei, ei+1]with some i ∈ N, if y2 ∈]ej, ej+1]with i < j and j ∈

N, then IE(x, y1) ≤ IE(x, y2) since IE(x, y1) = ei + (ei+1 − ei)Ii(x,
y1−ei
ei+1−ei

) ∈
[ei, ei+1] and IE(x, y2) = ej + (ej+1 − ej)Ij(x,

y2−ej
ej+1−ej

) ∈ [ej, ej+1]. Similarly

we can check (I2) for the case y2 ∈]e, 1]. Additionally, IE(x, y1) ≤ ei+1 ≤
e = IE(x, y2) if y2 = e.

(d) If y1 = e and y2 ∈]e, 1], then IE(x, y1) ≤ IE(x, y2) since IE(x, y1) = e and
IE(x, y2) = e + (1 − e)I0(x, y2−e

1−e ) ∈ [e, 1];
(iii) (I3, I4, I5)

IE(0, 0) = 1 by Eq.3;

IE(1, 1) = e + (1 − e)I0(1, 1) = 1 since I0 is a fuzzy implication;

IE(1, 0) = e1I0(1, 0) = 0 since I0 is a fuzzy implication.

Therefore, IE is a fuzzy implication. �

Remark 1 For the case when E is finite, if E = {e}, i.e., ei = e ∈]0, 1[ for all i ∈ N,
then the generationmethod reduces to the e-threshold generationmethodwith I0 = I1
and I0 = I2 in Eq.1; if E = {e1, e2, . . . , en = e} with n > 1, then Eq.3 reduces to

IE(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, x = 0;
e1I0(x,

y
e1
), x > 0, 0 ≤ y ≤ e1;

ei + (ei+1 − ei)Ii(x,
y−ei

ei+1−ei
), x > 0, ei < y ≤ ei+1 for 1 ≤ i ≤ n − 1,

e + (1 − e)I0(x, y−e
1−e ), x > 0, e < y ≤ 1;

(4)



Extended Threshold Generation of a New … 285

To sum up, the aforementioned method of generating fuzzy implications is a
generalization of e−generation method. In the sequel, the fuzzy implication IE is
called E-generated implication or E-generation of a family of fuzzy implications I.
Example 1 We give an E−generated implications when E is infinite, where the
classes of f−implications can be found in [14, 33]. The Yager’s class of f−
implications Iλf is given by Iλf (x, y) = 1 − x

1
λ (1 − y) with f−generator f (x) =

(1 − x)λ, (λ > 0). Let E = {ei = 1 − 1
2i | i ∈ N} with lim

i→∞ ei = e = 1 and λ = i for

i ∈ N. Then the E-generated fuzzy implication IE from the family of fuzzy implica-
tions {IYG} ⋃{Iλ=i

f }i∈N is given by

IE(x, y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, x = 0;
1
2 (2y)

x, x > 0, 0 ≤ y ≤ 1
2 ;

1 − 1
2i + ( 1

2i − 1
2i+1 )x

1
i (1 − y−1+ 1

2i
1
2i

− 1
2i+1

), x > 0, 1 − 1
2i < y ≤

1 − 1
2i+1 for each i ∈ N;

1, x > 0, y = 1;

Example 2 Wegive anE−generated implications whenE is finite.With the implica-
tions IYG, IGG, IGD and E = { 13 , 2

3 }, the generated implication IE by Eq.4 is given by

IE(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
3 (3y)

x, x > 0, 0 ≤ y ≤ 1
3 ;

1
3 + 1

3
3y−1
x , x > 0, 1

3 < y ≤ 2
3 , x > 3y − 1,

2
3 , x > 0, 1

3 < y ≤ 2
3 , x ≤ 3y − 1,

y, x > 0, 2
3 < y ≤ 1, x > 3y − 2,

1, else,

(5)

Remark 2 (i) The E-threshold generation method is different from the ordinal sum
methods in [30], which can be illustrated by Fig. 1.

(ii) Throughout this paper, we only focus on the aforementioned class of sequences
in ]0, 1[, specifically. In fact, the strictly decreasing sequence {ei}i∈N with
lim
i→∞ ei = e can also be applied to the generation method. For the case e > 0,

with the same family of implications in Theorem 2, the generation operation
given by

IE(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

1, x = 0;
e1 + (1 − e1)I0(x,

y−e1
1−e1

), x > 0, e1 < y ≤ 1;
ei+1 + (ei − ei+1)Ii(x,

y−ei+1

ei−ei+1
), x > 0, ei+1 < y ≤ ei for i ∈ N,

eI0(x,
y
e ), x > 0, 0 ≤ y ≤ e;

is also a fuzzy implication.
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Fig. 1 The left figure and the right one are the surface plot of the generated implications whose

original implications are IRC, IKD, IWB with E = { 13 , 2
3 } in the E-threshold generation and the

disjoint intervals be {[0, 1
3 ], [ 13 , 2

3 ], [ 23 , 1]} in the ordinal sum construction, respectively

Proposition 1 Let IE be the E-generation of a family of fuzzy implications I, then
(i) IE(x, y) ∈ [0, e1] if x > 0, y ∈ [0, e1]; for each ei ∈ E,IE(x, y) ∈ [ei, ek+1] if

x > 0, y ∈]ei, ek+1] and IE(x, y) ∈ [e, 1] if x > 0, y ∈]e, 1].
(ii) For each ei ∈ E, IE(x, ei) = ei if x > 0; IE(x, e) = e if x > 0.
(iii) For each ei ∈ E, IE(x, y) < ei+1 for x > 0, y ∈]ei, ei+1[ ⇔ Ii(a, b) < 1 for a >

0, b < 1;
(iv) For each ei ∈ E, IE(x, y) > ei for x > 0, y ∈]ei, ei+1[ ⇔ Ii(a, b) > 0 for

a > 0, b > 0.

Proof The results can be got by direct calculation by using Eq.3. �

Proposition 2 Let IE be the E-generation of a family of fuzzy implications I, then
(i) IE is neither an f -generated implication nor a g-generated implication.
(ii) If |E| ≥ 2 then IE is not an h-implication. If E = {e}, then IE is an h-implication
if and only if I0 is an f -generated implication and I0 is a g-generated implication
with generators satisfying f (0) = g(1) = ∞.

Proof (i) Assume IE is an f -generated implication, then there is a strictly decreasing,
continuous function f : [0, 1] → [0,+∞] with f (1) = 0 such that
I(x, y) = f −1(xf (y)). Hence, for arbitrary x > 0 and each ei ∈ E, IE(x, ei) =
f −1(xf (ei)) = ei by Proposition1(ii). Then xf (ei) = f (ei), thuswe can get ei = 1
or ei = 0, which contradicts the fact that ei ∈]0, 1[. For the case when IE is a
g-generated implication, we can get a similar contradiction.

(ii) If |E| ≥ 2, assume that IE is an h-implication, then there is a strictly increasing,
continuous function h : [0, 1] → [−∞,+∞] such that I(x, y) = h−1(xh(y))
with h(0) = −∞, h(e) = 0 and h(1) = +∞ and e ∈]0, 1[. Similar as above, we
have xh(ei) = h(ei) for arbitrary x > 0 and each ei ∈ E. Thus for each ei ∈ E,
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ei = 1 or ei = 0 or ei = e, which implies E = {e}, which contradicts the fact that
|E| ≥ 2. For the case E = {e}, the result is that of Theorem 2 in [24].

�

By direct calculation, we can get the following results.

Proposition 3 Let IE be the E-generation of a family of fuzzy implications I, then
the natural negation of IE is NIE (x) = IE(x, 0) =

{
1, x = 0;
e1NI0(x), x > 0; and is always

non-continuous.

Remark 3 As is well known, an (S,N)-implication IS,N is given by IS,N (x, y) =
S(N(x), y) with S being a t-conorm and N a negation, while its natural negation
NIS,N = N . Since the natural negation of IE is always non-continuous, then IE can
never be an (S,N)-implication derived from a t-conorm S and a continuous negation
N . Whence IE can never be an S-implication.

Proposition 4 Let IE be the E-generation of a family of fuzzy implications I, then
(i) IE(x, y) = 1 if and only if either x = 0 or (x > 0 and e < y ≤ 1, I0(x, y−e

1−e ) = 1)
or (e = 1, x > 0, y = 1), i.e., IE does not satisfy (OP);
(ii) IE(x, x) = 1 if and only if either x = 0 or (e < x ≤ 1 with I0(x, x−e

1−e ) = 1) or
(e = 1, x = 1), i.e., IE does not satisfy (IP);

Remark 4 If I is the residual implication [12] derived from an arbitrary t-norm(not
necessarily left-continuous), then I satisfies (IP). Since IE does not satisfy both (OP)
and (IP), then IE is not an R-implication derived from any t-norms.

Much attention are paid to the characterization of generated implications [1, 3,
7, 23]. Here we can characterize all the implications generated by the extended
threshold generation method.

Theorem 3 (Characterization of the E-generated implications) Let I be a fuzzy
implication and E be the aforementioned set.
(i) For the case when E is finite, i.e., E = {ei | i = 1, 2, . . . n} with 0 < e1 < e2 <
. . . < en = e < 1 for some n ∈ N, then I is an E-generated implication if and only
if for each ei ∈ E, I(x, ei) = ei whenever x > 0. In this case, the operations Ii :
[0, 1]2 → [0, 1] defined by

Ii(x, y) =
{
1, x = 0;
I(x,ei+(ei+1−ei)y)−ei

ei+1−ei
, x > 0; (6)

for 0 ≤ i ≤ n − 1 with e0 = 0 are fuzzy implications and I0(x, y) = I(x,e+(1−e)y)−e
1−e is

also a fuzzy implication. By these fuzzy implications, I can be generated.
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(ii)For the case that E is infinite, i.e., {ei}i∈N is a strictly increasing sequence in ]0, 1[
with lim

i→∞ ei = e ∈]0, 1]. then I is an E-generated implication if and only if for each
ei ∈ E, I(x, ei) = ei and I(x, e) = e whenever x > 0. In this case, the operations
Ii : [0, 1]2 → [0, 1] by

Ii(x, y) =
{
1, x = 0;
I(x,ei+(ei+1−ei)y)−ei

ei+1−ei
, x > 0; (7)

are fuzzy implications for i ∈ N
⋃{0} with e0 = 0 and I0(x, y) = I(x,e+(1−e)y)−e

1−e is
also a fuzzy implication for e < 1. By these fuzzy implications, I can be generated.

Proof We only focus on the first case.
(⇒): It is a direct result of Proposition 1;
(⇐): Firstly,weprove that the operations Ii definedbyEq.6 are fuzzy implications.

By Proposition 1, Ii is well-defined. For each 0 ≤ i ≤ n − 1, we have the following
results.

1. (I1) Let x1 ≤ x2, if x1 = 0, then, Ii(x1, y) = 1 ≥ Ii(x2, y) for all y ∈ [0, 1] byEq.3;
if x1 > 0, then for all y ∈ [0, 1], Ii(x1, y)= I(x1,ei+(ei+1−ei)y)−ei

ei+1−ei
≥ I(x2,ei+(ei+1−ei)y)−ei

ei+1−ei

= Ii(x2, y) by the decreasingness of I on the first variable; Hence, Ji is decreasing
in the first variable.

2. (I2) Let y1 ≤ y2. by Eq.6, it is enough to check the case when x > 0, then
Ii(x, y1) = I(x,ei+(ei+1−ei)y1)−ei

ei+1−ei
≤ I(x,ei+(ei+1−ei)y2)−ei

ei+1−ei
= Ii(x, y2), since I is

increasing on the second variable. Therefore, Ii is increasing in the second vari-
able.

3. (I3, I4, I5) With Eq.6
Ii(0, 0) = 1;

Ii(1, 1) = I(1,ei+1)−ei
ei+1−ei

= 1;

Ii(1, 0) = I(1,ek)−ei
ei+1−ei

= ei−ei
ei+1−ei

= 0;

Thus, Ii is a fuzzy implication. Similarly, it can be checked that I0 is also a fuzzy
implication.

Next, we check that the E-generation of the fuzzy implications {Ii | 0 ≤ k ≤ n −
1} ⋃{I0} reduces to I , i.e., IE = I .

IE(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, x = 0;
e1I0(x,

y
e1
), x > 0, 0 ≤ y ≤ e1;

ei + (ei+1 − ei)Ii(x,
y−ei

ei+1−ei
), x > 0, ei < y ≤ ei+1

for each 0 ≤ i ≤ n − 1;
e + (1 − e)I0(x, y−e

1−e ), x > 0, e < y ≤ 1.
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=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, x = 0;
e1

I(x,e1
y
e1
)

e1
, x > 0, 0 ≤ y ≤ e1;

ei + (ei+1 − ei)
I(x,ei+(ei+1−ei)

y−ei
ei+1−ei

)−ei

ei+1−ei
, x > 0, ei < y ≤ ei+1

for each 0 ≤ i ≤ n − 1;
e + (1 − e)

I(x,(1−e) y−e
1−e+e)−e

1−e , x > 0, e < y ≤ 1.

= I(x, y).
�

Remark 5 The initial implications Ii and I0 except I0 can not be unique since
these operations on {(x, 0) | 0 < x ≤ 1} are not involved in the generation method.
For instance, in Example 2(ii) if TLK is replaced by the fuzzy implication I4,

where I4(x, y) =
{
0, 0 < x ≤ 1, y = 0;
TLK(x, y), else; , then the same implication can be

generated.

4 Concluding Remarks and Future Work

In this paper, threshold generated implication by a single point is extended to
multi-valued(countable) case. We present the construction theorem for the gener-
ation method and show that the generated implications, which are different from
the ones derived from the ordinal sum method, are neither f−, g−implications,
R−implications nor S−implications. Moreover, a characterization theorem for the
generated implications is provided. In the future work, we will concentrate on some
related properties, such as the exchange law and distributivity [7, 8, 15, 27–29, 32]
over fuzzy connectives.
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Mechanisms of Mixed Fuzzy Reasoning
for Asymmetric Types

Yan Liu and Mu-Cong Zheng

Abstract In the basicmodels of fuzzy reasoning, the fuzzy propositions are the same
type of fuzzy sets. In the paper, we intend to investigate the inference mechanisms of
mixed fuzzy reasoning for asymmetric types such that the fuzzy propositions are the
different type of fuzzy sets.We establish the two newmodels for the asymmetric type
approximate reasoning problems and present the corresponding methods to solve the
new models. Furthermore, we analyze the characterizations of the solutions and give
their reductivity.

Keywords Fuzzy reasoning · Intuitionistic fuzzy sets · Asymmetric type · Triple I
method · Reductivity

1 Introduction

The theory of fuzzy sets introduced by Zadeh [1] has been found to be useful to deal
with uncertainty, imprecision and vagueness of information. It is well known that
fuzzy reasoning is a significant part of the theory of fuzzy sets. Two fundamental
inference models of fuzzy reasoning are fuzzy modus ponens (FMP) and fuzzy
modus tollens (FMT). The most widespread reasoning principle for FMP and FMT
is Zadeh’s method Composition Rule of Inference (CRI) [2–4]. The Triple I method
given by Wang [5] is a very important method to solve the problems of FMP and
FMT [4–8]. Tang et al. [9, 10] generalize the Triple I method by selecting different
implications in the solutions of Triple I method for FMP and FMT.
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Intuitionistic fuzzy sets introduced by Atanassov [11], as a generation of fuzzy
set, is a pair of fuzzy sets, namely a membership and a non-membership function
which represent positive and negative aspects of the given information. FMP and
FMT are extended to models of deductive processes with intuitionistic fuzzy sets
which are IFMP (intuitionistic fuzzy modus ponens) and IFMT (intuitionistic fuzzy
modus tollens) [12–15]. The CRI method of intuitionistic fuzzy reasoning was dis-
cussed in [12]. Zheng et al. [1] presented the Triple I method of intuitionistic fuzzy
reasoning, proved the reductivity of the Triple I method for IFMP and showed that
the Triple I method of IFMT satisfied the local reductivity instead of reductivity. In
order to improve the quality of the Triple I method for lack of reductivity, Liu and
Zheng [14] proposed the dual Triple I approximate reasoning method for IFMT. The
decomposition methods for solving the IFMP problem and the IFMT problem were
presented in [15] and [14] respectively.

In FMP and IFMP, the inference modalities are the same as follows:

Given If x is A then y is B
input x is A∗
output y is B∗

(1.1)

the inference former A, A∗ and rear B, B∗ are symmetric, i.e., they all are the fuzzy
sets and the intuitionistic fuzzy sets in FMP and IFMP respectively. In the process of
approximate reasoning, “if-then” rule is looked on as implication relations between
the two fuzzy propositions and it would be represented as fuzzy implication operator
and intuitionistic fuzzy implication operator in solving FMP problem and IFMP
problem respectively.

In fact, the information is varied and the inference rules are hybrid in our everyday
reasoning. Taking account of the variety of information and inference rules in the real
world, we intend to investigate the inference mechanisms of mixed fuzzy reasoning
for asymmetric types such that formers and rears are the different type of fuzzy sets
in this paper. We first discuss the type that the formers are the intuitionistic fuzzy
sets and the rears are the fuzzy sets (FIRF type for short), then discuss the type that
the formers are the fuzzy sets and the rears are the intuitionistic fuzzy sets (FFRI
type for short).

2 Two Methods for Solving the FIRF Type Problem

We consider the inference method of the model with intuitionistic fuzzy formers and
fuzzy rears. The inference model is as follows:

Given If x is A then y is B
input x is A∗
output y is B∗

(2.1)
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where A, A∗ are intuitionistic fuzzy sets on X , x ∈ X , A = (At , A f ), A∗ = (A∗
t , A

∗
f ),

B, B∗ are fuzzy sets instead of the intuitionistic fuzzy sets on Y , y ∈ Y .

2.1 First Decomposition Then Aggregation Method
(FDTA Method)

Based on the decomposition method of intuitionistic fuzzy reasoning (see [15]), we
first decompose the model (2.1) into two FMP models, then solve the two FMP
problems, finally aggregate the two solutions.

Step1: The model (2.1) is decomposed into the following two FMP models:

Given At (x) → B(y)
input A∗

t (x)
output B∗

1 (y)
(2.2)

Given A− f (x) → B(y)
input A∗

− f (x)
output B∗

2 (y)
(2.3)

where → is usually selected as a residual fuzzy implication, x ∈ X , y ∈ Y . A− f =
1 − A f , A∗

− f = 1 − A∗
f .

Step2: Solving the problems (2.2) and (2.3) respectively.

B∗
1 (y) = ∨x∈X {A∗

t (x) ⊗ (At (x) → B(y))}

B∗
2 (y) = ∨x∈X {A∗

− f (x) ⊗ (A− f (x) → B(y))}

Step3: Aggregating solutions B∗
1 (y) and B∗

2 (y). The output of model (2.1) is

B∗(y) = B∗
1 (y) ∧ B∗

2 (y) (2.4)

2.2 First Expansion Then Restriction Method
(FETR Method)

We first take the fuzzy set B as a degenerate intuitionistic fuzzy set, and convert
B into B ′ = (B ′

t , B
′
f ) where B ′

t = B, B ′
f = 1 − B, so model (2.1) is transformed

into an intuitionistic fuzzy reasoning model. By the method of intuitionistic fuzzy
reasoning, then we get the solution B ′∗. Since B ′∗ is a intuitionistic fuzzy set, we
need to convert B ′∗ into a fuzzy set also.
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Step1: Model (2.1) is transformed into a intuitionistic fuzzy reasoning model as
follows:

Given A(x) →L∗ B ′(y)
input A∗(x)
output B ′∗(y)

(2.5)

where A, A∗, B ′, B ′∗ are intuitionistic fuzzy sets and →L∗ is usually selected as a
residual intuitionistic fuzzy implication induced by t-norm ⊗, x ∈ X , y ∈ Y .

Step2: We solve the output B ′∗ of problem (2.5) by the Triple I method given by
[13].

B′∗(y) = (∨x∈X {A∗
t (x) ⊗ (A− f (x) → B(y))},∧x∈X {A∗

f (x) ⊕ (1 − A− f (x) → B(y))})

Step3: By the two degeneration operations B∗ = B ′∗
t and B∗ = 1 − B ′∗

f , we can
finally get two solutions

B∗(y) = ∨x∈X {A∗
t (x) ⊗ (A− f (x) → B(y))} (2.6)

and
B∗(y) = 1 − ∧x∈X {A∗

f (x) ⊕ (1 − A− f (x) → B(y))}
= ∨x∈X {A∗

− f (x) ⊗ (A− f (x) → B(y))} (2.7)

respectively.

2.3 Character Analysis of Solutions

In the above two subsections, we can obtain a solution by FDTA method and obtain
two solutions by FETR method. What is the relationship between these solutions?
Now we denote B∗

3 (y) = ∨x∈X {A∗
t (x) ⊗ (A− f (x) → B(y))}, and denote the solu-

tions given by (2.4), (2.6) and (2.7) as B1(y), B2(y) and B3(y) respectively. Then
B1 = B∗

1 ∧ B∗
2 , B

2 = B∗
3 , B

3 = B∗
2 .

Theorem 1 If →L∗ in model (2.5) is generated by residual fuzzy implication → in
the models (2.2) and (2.3), then B2 ≤ B1 ≤ B3.

Proof Obviously, B1 ≤ B3. As A∗
t (x) ≤ A∗

− f (x),∀x ∈ X , we can get that

A∗
t (x) ⊗ (A− f (x) → B(y)) ≤ A∗

− f (x) ⊗ (A− f (x) → B(y))
A∗
t (x) ⊗ (A− f (x) → B(y)) ≤ A∗

t (x) ⊗ (At (x) → B(y))

It is clear that B∗
3 ≤ B∗

2 . Thus B
2 ≤ B3.
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B∗
1 ∧ B∗

2= (∨x∈X {A∗
t (x) ⊗ (At (x) → B(y))}) ∧ (∨x∈X {A∗

− f (x) ⊗ (A− f (x) → B(y))})
= ∨x∈X {(A∗

t (x) ⊗ (At (x) → B(y))) ∧ (A∗
− f (x) ⊗ (A− f (x) → B(y)))}

≥ ∨x∈X {A∗
t (x) ⊗ (A− f (x) → B(y))}

= B∗
3

i.e., B∗
3 ≤ B∗

1 ∧ B∗
2 . So B2 ≤ B1. The proof is completed. �

In fuzzy reasoning, the reductivity of inference methods is an important topic (see
[6]). The following theorem tell us the reductivity of solutions by FDTA and FETR
methods.

Theorem 2 If →L∗ is a residual intuitionistic implication induced by a
left-continuous t-norm, then the solutions given by (2.4) and (2.7) for the model
(2.1) are reductive, i.e., B∗ = B whenever A∗ = A satisfies the condition ∃x0 ∈ X
such that A(x0) = 1∗ = (1, 0).

Proof ∃x0 ∈ X such that A(x0) = 1∗ = (1, 0), i.e., A∗
t (x0) = 1, A∗

− f (x0) = 1. It fol-
lows from Theorem 6 in [6] that B∗

1 and B∗
2 are reductive, therefore B1 and B3 are

reductive. The proof is completed.

3 Two Methods for Solving the FFRI Type Problem

Now we consider the inference method of the model with fuzzy formers and fuzzy
intuitionistic rears. The inference model is as follows:

Given If x is A then y is B
input x is A∗
output y is B∗

(3.1)

where A, A∗ are fuzzy sets on X , x ∈ X , B = (Bt , B f ), B∗ = (B∗
t , B

∗
f ) are intu-

itionistic fuzzy sets on Y , y ∈ Y .

3.1 First Decomposition Then Aggregation Method
(FDTA Method)

Similar to Sect. 2.1 we first decompose model (3.1) into two FMPmodels, then solve
the two FMP problems, finally aggregate the two solutions into a intuitionistic fuzzy
solution.

Step1: The model (3.1) is decomposed into the following two FMP models:
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Given A(x) → Bt (y)
input A(x)
output B∗

t (y)
(3.2)

Given A(x) → B− f (y)
input A(x)
output B∗

− f (y)
(3.3)

where → is usually selected as a residual fuzzy implication.
Step2: Solving problems (3.2) and (3.3) respectively.

B∗
t (y) = ∨x∈X {A∗(x) ⊗ (A(x) → Bt (y))}

B∗
− f (y) = ∨x∈X {A∗(x) ⊗ (A(x) → B− f (y))}

Step3: Aggregating solutions B∗
1 (y) and B∗

2 (y) into a intuitionistic fuzzy solution.
The output of model (3.1) is:

B∗ = (B∗
t , B

∗
f ) = (B∗

t , 1 − B∗
− f )

= (∨x∈X {A∗(x) ⊗ (A(x) → Bt (y))},1 − ∨x∈X {A∗(x) ⊗ (A(x) → B− f (y))})
(3.4)

3.2 Direct Expansion Method (DE Method)

Its similar to Sect. 2.2 we convert fuzzy sets A, A∗ into intuitionistic fuzzy sets
A′ = (A, 1 − A), A′∗ = (A∗, 1 − A∗) respectively, so model (3.1) is transformed
into a intuitionistic fuzzy reasoning model. By the method of intuitionistic fuzzy
reasoning, then we get the solution B∗.

Step1: The model (3.1) is transformed into a intuitionistic fuzzy reasoning model
as follows:

Given A′(x) →L∗ B(y)
input A′∗(x)
output B∗(y)

(3.5)

where A′, A′∗, B, B∗ are the intuitionistic fuzzy sets and →L∗ is usually selected as
a residual intuitionistic fuzzy implication induced by t-norm ⊗.

Step2: We solve the output B∗ of the problem (3.5) by the Triple I method given
by [13].

B∗(y) = (∨x∈X {A∗(x) ⊗ ((A(x) → Bt (y)) ∧ (A(x) → B− f (y)))},
∧x∈X {(1 − A∗(x)) ⊕ (1 − A(x) → B− f (y))})

= (∨x∈X {A∗(x) ⊗ (A(x) → Bt (y))},
1 − ∨x∈X {A∗(x) ⊗ (A(x) → B− f (y))})

(3.6)
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3.3 Character Analysis of Solutions

We denote the solutions given by (3.4) and (3.6) as B4(y), B5(y) respectively. Obvi-
ously, B5(y) = B4(y). So we get the following theorem.

Theorem 3 The FDTA method is equivalent to the DE method for model (3.1).

Theorem 4 If →L∗ is a residual intuitionistic implication induced by a
left-continuous t-norm, then the solutions of the FDTA method and the DE method
for model (3.1) are reductive, i.e., B∗ = B whenever A∗ = A satisfies the condition
∃x0 ∈ X such that A(x0) = 1∗ = (1, 0).

4 Conclusions

In current research, the basic models of fuzzy reasoning are symmetric type, i.e., the
formers and rears are the same type sets such as FMP and IFMP. In this paper, we
consider new models where the formers and rears are different types of sets. We first
present twomodels of mixed fuzzy reasoning for different types, then we propose the
corresponding methods to solve the new models. Moreover, we obtain the reductiv-
ity of the solutions. We provide alternative approximate reasoning mechanisms for
mixed fuzzy reasoning under the multiple information representations. The methods
may be useful tools to be applied in a wide variety of fields related to fuzzy reasoning
in future.
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Two Kinds of Modifications of Implications

Wen-Wen Zhang and Dao-Wu Pei

Abstract The identity principle (IP) and ordering property (OP) are two important
properties of fuzzy implications. They have important role in the applications of fuzzy
implications. However, many fuzzy implications do not satisfy these two properties.
In this paper, two kinds of new modifications of fuzzy implications are proposed
such that every new implication satisfies one of the two properties, respectively.
Then properties of the modified fuzzy implications are explored.

Keywords Fuzzy logic · Fuzzy implication · Identity principle ·Ordering property

1 Introduction

Fuzzy implications are widely studied as one kind of the most important operators in
fuzzy logic and approximate reasoning. The five kinds of basic fuzzy implications are
(S, N )-implications, R-implications, QL-implications, and Yager’s f -implications
and g-implications [1–5].

Fuzzy implications have played an important role in many applied fields, such as
intelligent control, image processing, data mining, fuzzy mathematical morphology,
and so on. Therefore, in recent years many scholars have constructed different types
of fuzzy implications to meet the needs of applications. On the other hand, in order
to better understand these different types of fuzzy implications, it is very necessary
to characterize them by their algebraic properties [1–5].

It is needless to say, we hope that the fuzzy implications have very good prop-
erties, such as identity principle, ordering property, left neutrality property, law of
contraposition and exchange principle etc. However, many implications do not sat-
isfy some of these properties. So Fodor [6] proposed some methods to modify fuzzy
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implications so that the modified fuzzy implications satisfy the law of contraposition
with respect to a strong fuzzy negation. Based on this work, Aguilo et al. [7] also
put forward some new methods to modify fuzzy implications, the modified fuzzy
implications satisfy the law of contraposition with respect to a strong fuzzy negation
and even a family of not strong fuzzy negations.

So, how to modify the fuzzy implications so that they satisfy the other properties?
This is what we are interested in. In this paper we first introduce two new methods
to modify fuzzy implications, and then we explored the properties of the modified
fuzzy implications.

2 Preliminaries

This section reviews some necessary concepts and examples (see [8–11]). In the
whole, we denote U = [0, 1].
Definition 1 ([8, 11]) A binary operation T (or S) onU is said to be a t-norm (resp.
t-conorm), if it is commutative, associative, non-decreasing in both variables and 1
(resp. 0) is its neutral element.

Definition 2 ([8, 11]) A unary operation N onU is a (fuzzy) negation if it is decreas-
ing, N (0) = 1 and N (1) = 0.

Moreover, a fuzzy negation is strict if it is strictly decreasing and continuous, and
strong if it is an involution, i.e., N (N (x)) = x for all x ∈ U .

Example 1 The standard fuzzy negation N0 and the least fuzzy negation N1 are as
follows.

N0(x) = 1 − x, x ∈ U ; N1(x) =
{
1, x = 0
0, x ∈ (0, 1].

Definition 3 ([8]) A binary operation I onU is a fuzzy implication, or implication,
if the following conditions hold:
(I1) I is decreasing in the first variable;
(I2) I is increasing in the second variable;
(I3) I (0, 0) = I (1, 1) = 1, I (1, 0) = 0.

We will denote by FI the set of all implications.

Some basic properties of fuzzy implications are given below (see [8]).
The left neutrality principle (NP): I (1, y) = y, y ∈ U ;
The identity property (IP): I (x, x) = 1, x ∈ U ;
The ordering property (OP): I (x, y) = 1 ⇐⇒ x ≤ y, x, y ∈ U ;
The contrapositive symmetry with respect to a fuzzy negation N (CP(N )): I (x, y) =
I (N (y), N (x)), x, y ∈ U ;
The exchange principle (EP): I (x, I (y, z)) = I (y, I (x, z)), x, y, z ∈ U .
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Table 1 Several basic fuzzy implications

Name Symbol Formula

Lukasiewicz IL IL (x, y) = min(1, 1 − x + y)

Reichenbach IRC IRC (x, y) = 1 − x + xy

Yager IYG IYG(x, y) =
{
yx , x > y

1, x ≤ y

Godel IGD IGD(x, y) =
{
y, x > y

1, x ≤ y

Table1 give some basic fuzzy implications.

Definition 4 ([8]) Let I be a fuzzy implication. The function NI , defined by NI (x) =
I (x, 0), x ∈ U , is called the natural negation of I .

3 The IP-Modifications of Fuzzy Implications

This section presents the first kind of modifications of fuzzy implications, so that the
modified fuzzy implications satisfy (IP). Some properties of the modified implica-
tions are also studied.

First, we can imitate Professor Wang’s method to construct a good implication
(Revised Kleene implication, or R0 implication) from a familiar implication (Kleene
implication) (see [9], or [10, 11]), and give the following definition.

Definition 5 Let I ∈ FI. Then the binary operation I (1) on U , called the first kind
of modification, or IP-modification of I , is defined as

I (1)(x, y) =
{
1, x ≤ y
I (x, y), x > y.

(1)

Example 2 (i) If I = IRC , then

I (1)RC(x, y) =
{
1, x ≤ y
1 − x + xy, x > y.

(ii) If I = IYG , then

I (1)YG(x, y) =
{
1, x ≤ y
yx , x > y > 0.

(iii) If I0(x, y) = min{1, 1 − x + √
y}, then
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I (1)0 (x, y) =
{
1, x ≤ y
min{1, 1 − x + √

y}, x > y.

Theorem 1 If I ∈ FI, then I (1) ∈ FI.
Proof Suppose that x1, x2 ∈ U with x1 ≤ x2.

If x1 ≤ x2 ≤ y, then I (1)(x1, y) = I (1)(x2, y) = 1.
If x1 ≤ y < x2 then 1 = I (1)(x1, y) ≥ I (1)(x2, y).
If y < x1 ≤ x2, then I (1)(x1, y) = I (x1, y) ≥ I (x2, y) = I (1)(x2, y).
This shows that I (1) satisfies (I1).
In the same way we can prove that I (1) satisfies (I2). Also

I (1)(1, 1) = I (1)(0, 0) = 1, I (1)(1, 0) = I (1, 0) = 0.

I.e., I (1) satisfies (I3). Therefore, I (1) ∈ FI. �

Remark 1 By Theorem1 and the definition of I (1), it is not difficult to see that I (1)

satisfies (IP) and I (1) ≥ I .

Proposition 1 If I ∈ FI satisfies (IP) or (OP), then I (1) = I .

Proof (i) Suppose that I satisfy (IP). Then I (x, x) = 1. Thus, to prove I (1) = I , it is
only need to consider x, y ∈ U with x ≤ y. In this case, 1 = I (x, x) ≤ I (x, y) = 1.
So we have I (x, y) = 1 = I (1)(x, y).

(ii) Suppose that I satisfy (OP). Then obviously, we have I = I (1). �

Remark 2 Based on Proposition1, we know that if I satisfies (OP), then I (1) satisfies
(OP). However, the converse is not true. In Example 2(ii), I (1)YG satisfies (OP), but IYG
does not satisfy (OP).

Below we will explore the conditions for I under which I (1) satisfy (OP).

In Example2, I (1)RC and I (1)YG satisfy (OP) but I (1)0 does not satisfy (OP). We observe
that when x, y ∈ U with x > y, IRC(x, y) < 1 and IYG(x, y) < 1. However, when
x > y ≥ x2, I (1)0 (x, y) = 1. This is the reason why I (1)0 does not satisfies (OP). So
if I (1) satisfies (OP), then I always less than 1 with x > y.

From the above analysis, we can obtain the following proposition.

Proposition 2 Let I ∈ FI. Then I (1) satisfies (OP) if and only if for x, y ∈ U,
I (x, y) < 1 whenever x > y.

Proof “=⇒” Suppose that I (1) satisfy (OP). Consider x, y ∈ U with x > y. Then
I (x, y) = I (1)(x, y) < 1.

“⇐=” Suppose that I (x, y) < 1 whenever x > y. If I (1)(x0, y0) = 1 for some
x0 > y0, then I (x0, y0) = I (1)(x0, y0) < 1. This is a contradiction. �
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By Proposition2 we can get the following corollary.

Corollary 1 Let I ∈ FI. Then the following statements hold:
(i) If I is strictly monotonic in the first variable with x > 0 and y < 1, then I (1)

satisfies (OP).
(ii) If I is strictly monotonic in the second variable with x > 0 and y < 1, then I (1)

satisfies (OP).
(iii) If I satisfies (IP) and is strictly monotonic when 0 < x ≤ 1, 0 ≤ y ≤ x, then
I (1) satisfies (OP).

Proof (i) Suppose that I be strictly monotonic in the first variable with x > 0 and
y < 1. Then I (x, y) < I (0, y) = 1. Therefore, for all x, y ∈ U with x > y, we have
I (x, y) < 1. Thus by Proposition2, I (1) satisfies (OP).

(ii) Suppose that I be strictly monotonic in the second variable with x > 0 and
y < 1. Then I (x, y) < I (x, 1) = 1. Therefore, for all x, y ∈ U with x > y, we have
I (x, y) < 1. Thus by Proposition2, I (1) satisfies (OP).

(iii) Suppose that I satisfy (IP), that is I (x, x) = 1, x ∈ U , and when 0 < x ≤ 1
and 0 ≤ y ≤ x , I be strictly monotonic. Then, I (x, y) < I (x, x) = 1 whenever x >

y. Thus by Proposition2, I (1) satisfies (OP). �

Remark 3 (i) Since f -implications and g-implications are all strictly monotonic
in two variables with x > 0 and y < 1, therefore, the IP-modifications of f -
implications and g-implications are all satisfy (OP);
(ii) If I is a residual implication induced by a left continuous t-norm, then I satisfy
(OP). By Proposition1, I (1) = I . Naturally, I (1) satisfies (OP).

Now we discuss properties of I which are preserved by I (1).

Proposition 3 Let I ∈ FI and N be a strict negation.
(i) If I satisfies (NP) [or (CB), (CP(N))], then I (1) satisfies (NP) [resp. (CB),
(CP(N))].
(ii) The natural negation of I (1) is the same as the natural negation of I . That is,
NI (1) = NI .

Proof (i) Suppose that I satisfy (NP). If y = 1, I (1)(1, 1) = 1; If y ∈ [0, 1),
I (1)(1, y) = I (1, y) = y. Therefore, ∀y ∈ U , I (1)(1, y) = y.

Suppose that I satisfy (CB). For x, y ∈ U , if x ≤ y we have I (1)(x, y) = 1 ≥
y. If x > y then I (1)(x, y) = I (x, y) ≥ y. Therefore, ∀x, y ∈ U , we always have
I (1)(x, y) ≥ y. That is, I (1) satisfies (CB).

Suppose that I satisfies (CP(N )) with respect to a strict negation N . Because of
the negation N is strict, we have

x ≤ y ⇐⇒ N (y) ≤ N (x), x > y ⇐⇒ N (y) > N (x).
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Table 2 Comparison of properties of I and I (1)

Property IP OP NP CB CP(N ) EP

I U Y Y Y Y Y

I (1) Y Y Y Y Y U

Thus,

I (1)(N (y), N (x)) =
{
1, N (y) ≤ N (x)
I (N (y), N (x)), N (y) > N (x)

=
{
1, x ≤ y
I (x, y), x > y

= I (1)(x, y), x, y ∈ [0, 1].

Therefore, I (1) satisfies (CP(N )).
(ii) The natural negation of I (1) is defined as NI (1) (x) = I (1)(x, 0).
If 0 < x ≤ 1, then NI (1) (x) = I (1)(x, 0) = I (x, 0) = NI (x).
If x = 0, then NI (1) (0) = I (1)(0, 0) = 1 = NI (0).
Therefore, we have NI (1) = NI . �

Remark 4 If I satisfies (IP) or (OP), then I (1) = I . Furthermore, if I also satisfies
(EP) then I (1) satisfies (EP). However, if I does not satisfy (IP) or (OP), it is uncertain
that whether I (1) satisfies (EP) or not. In Example 2, IRC satisfies (EP) but I (1)RC does
not satisfy (EP). In fact, taking x = 0.5, y = 0.8 and z = 0.4, we have

I (1)(0.5, I (1)(0.8, 0.4)) = 1, I (1)(0.8, I (1)(0.5, 0.4)) = 0.76.

That is, I (1)RC does not satisfy (EP).

Table2 shows the properties preserved by I (1), where “Y” stands for “Yes”, “U”
for “Uncertain”, N is the strict negation.

4 The Second Kind of Modification of Fuzzy Implications

In Sect. 3 we present the first kind of modifications of fuzzy implications. Although
they satisfy (OP) under certain conditions, but there are some implications which
do not satisfy (OP). For example, there are x0 and y0 in U with x0 > y0, such that
I (x0, y0) = 1. In this case, the first kind of modifications do not satisfy (OP).

In this sectionwemodify these implications andmore general implications, so that
the modified implications always satisfy (OP). The basic properties of the modified
implications will also be discussed.
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First, we propose the following concept.

Definition 6 Let I ∈ FI, and N a fuzzy negation with N (x) < 1 for x > 0. Then
the binary operation I (2) on U , called the second kind of modification, or OP-
modification of I , is defined as

I (2)(x, y) =
{
1, x ≤ y
I (x, y) ∧ (N (x) ∨ y), x > y.

(2)

Example 3 (i) If we take I = IYG and N = N1, then

I (2)YG(x, y) =
{
1, x ≤ y
yx , x > y > 0.

(ii) If I = IL and N = N1, then

I (2)L (x, y) =
{
1, x ≤ y
y, x > y

= IG(x, y).

(iii) If I = I0 and N = N0, then

I (2)0 (x, y) =
⎧
⎨

⎩

1, x ≤ y
1 − x, y < x ≤ 1 − y
y, x > y, x > 1 − y.

Theorem 2 If I ∈ FI, then I (2) ∈ FI.
Proof Let x1, x2 ∈ U with x1 ≤ x2.

If x1 ≤ x2 ≤ y then I (2)(x1, y) = 1 = I (2)(x2, y).
If x1 ≤ y < x2 then I (2)(x1, y) = 1 ≥ I (2)(x2, y).
If y < x1 ≤ x2 then

I (2)(x1, y) = I (x1, y) ∧ (N (x1) ∨ y) ≥ I (x2, y) ∧ (N (x2) ∨ y) = I (2)(x2, y).

Therefore, I (2) satisfies (I1). In the same way we can prove that I (2) satisfies (I2).
Also, it is easy to verify the condition (I3):

I (2)(1, 1) = I (2)(0, 0) = 1, I (2)(1, 0) = 0.

Therefore, I (2) ∈ FI. �

Remark 5 By Theorem2 and the definition of I (2), we see that I (2) satisfies (OP),
(IP) and I (2) ≤ I (1). So we call I (2) the (OP-IP)-modification of I .
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Next we discuss properties preserved by I (2).

Proposition 4 Suppose that I ∈ FI and N a fuzzy negation with N (x) < 1 for
x > 0, I (2) is defined by (2). We have the following conclusions.
(i) If I satisfies (NP) or (CB), then I (2) satisfies (NP) or (CB). Moreover, if N be a
strong negation and I satisfies (CP(N)), then I (2) satisfies (CP(N)).
(ii) NI (2) = NI ∧ N.

Proof (i) First, suppose that I satisfy (NP).
If y = 1, then I (2)(1, 1) = 1.
If y ∈ [0, 1), then I (2)(1, y) = I (1, y) ∧ (N (1) ∨ y) = y ∧ y = y.
Therefore, ∀y ∈ U , I (2)(1, y) = y. That is, I (2) satisfies (NP).
Next, suppose that I satisfy (CB).
If ∀x, y ∈ U with x ≤ y, I (2)(x, y) = 1 ≥ y.
If x > y, I (2)(x, y) = I (x, y) ∧ (N (x) ∨ y) ≥ y ∧ y = y.
Therefore, ∀x, y ∈ U , I (2)(x, y) ≥ y. That is, I (2) satisfies (CB).
Now Suppose that N is a strong negation and I satisfies (CP(N )). Since the

negation N is strong, we have

x ≤ y ⇐⇒ N (y) ≤ N (x), x > y ⇐⇒ N (y) > N (x).

Thus we obtain

I (2)(N (y), N (x)) =
{
1, N (y) ≤ N (x)
I (N (y), N (x))

∧
(N (N (y))

∨
N (x)), N (y) > N (x)

=
{
1, x ≤ y
I (x, y)

∧
(N (x)

∨
y), x > y

= I (2)(x, y), x, y ∈ U.

Therefore, I (2) also satisfies (CP(N )).
(ii) If x = 0, then NI (2) (0) = 1 = NI (0)

∧
N (0).

If x > 0, we have

NI (2) (x) = I (2)(x, 0) = I (x, 0)
∧

(N (x)
∨

0) = NI (x)
∧

N (x).

Therefore, ∀x ∈ U , NI (2) = NI ∧ N . �

Remark 6 Generally speaking, I (2) does not preserve (EP). However, if I satisfies
(CB) and N = N1, then I (2) satisfies (EP) even if I does not satisfy (EP). In fact,

I (2)(x, I (2)(y, z)) =
{
1, y ≤ z
I (2)(x, I (y, z)

∧
((N (y)

∨
z))), y > z

=
{
1, y ≤ z, or x ≤ z, y > z
z, x > z, y > z.
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Table 3 Comparison of properties of I and I (2)

Property IP OP NP CB CP(N ) EP

I U U Y Y Y Y

I (2) Y Y Y Y Y U

Thus, we have

I (2)(y, I (2)(x, z)) =
{
1, x ≤ z, or y ≤ z, x > z
z, x > z, y > z.

Therefore, ∀x, y, z ∈ U , I (2)(x, I (2)(y, z)) = I (2)(y, I (2)(x, z)). This shows that
I (2) satisfies (EP).

Table3 shows the properties preserved by I (2), where N is a strong negation.

5 Conclusions

In this paper we introduced two kinds of modified fuzzy implications. The first
kinds of modified fuzzy implications satisfy (IP) and (OP) under certain conditions.
The second kinds of modified fuzzy implications satisfy (OP), certainly, also satisfy
(IP). It was found that the two kinds of modified fuzzy implications preserve most
properties of the original fuzzy implications.

It is worth noting that, in practical applicationswhenwewant that the implications
have property (IP) or (OP), we can suitably modify the given implications which
do not have these properties. If the given implication satisfies the conditions of
Proposition2, the first kind of modification is a better choice, otherwise, we should
choose the second kind.

In the future work, we shall consider other modifications, and study further prop-
erties satisfied by the modifications.
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Distributivity for 2-Uninorms
over Semi-uninorms

Ya-Ming Wang and Feng Qin

Abstract This paper is devoted to solving the distributivity equations for 2-uninorms
over semi-uninorms. Our investigations are motivated by the couple of distributive
logical connectives and their generalizations, such as t-norms, t-conorms, uninorms,
nullnorms, and fuzzy implications, which are often used in fuzzy set theory. There are
two generalizations of them. One is a 2-uninorm covering both a uninorm and a null-
norm, which forms a class of commutative, associative and increasing operators on
the unit interval with an absorbing element that separates two subintervals with neu-
tral elements. Another is a semi-uninorm, which generalizes a uninorm by omitting
commutativity and associativity. In this work, all possible solutions of the distribu-
tivity equation for the three defined subclasses of 2-uninorms over semi-uninorms
are characterized.

Keywords Distributivity equations · Semi-t-norms · Semi-t-conorms ·
Semi-uninorms · 2-uninorms

1 Introduction

The functional equations involving aggregation operators [4, 5, 9, 19–22] play an
important role in theories of fuzzy sets and fuzzy logic.AsRef. [12] pointed out, a new
direction of investigations is concerned with distributivity equation and inequalities
for uninorms and nullnorms [3, 7, 8, 11–13, 22–25, 30]. Uninorms, introduced by
Yager and Rybalov [30], and studied by Fodor et al. [15], are special aggregation
operators that have proven to be useful inmany fields like fuzzy logic, expert systems,
neural networks, utility theory and fuzzy system modeling [14, 16, 18, 26–29].
Uninorm is interesting because its structure is a special combination of a t-norm and
a t-conorm having a neutral element lying somewhere in the unit interval.
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This paper ismainly devoted to solving the distributivity equations for 2-uninorms
over semi-uninorms. Our investigations are motivated by the couple of distributive
logical connectives and their generalizations, which are used in fuzzy set theory.
Recently, there appeared two kind of their generalizations. One is a 2-uninorm,which
generalizes both a nullnorm and a uninorm. Such generalization, further extending to
the n-uninorm,was introduced by P.Akella in [2]. A 2-uninormbelongs to the class of
increasing, associative and commutative binary operators on the unit interval with an
absorbing element separating two subintervals having their ownneutral elements. The
other is a semi-uninorm—a generalization of a uninorm by omitting commutativity
and associativity, which was introduced by Drewniak et al. to study distributivity
between a uninorm and a nullnorm [9].

This paper is organized as follows. In Sect. 2, we recall the structures of uninorms,
semi-uninorms and2-uninorms.Over here,we also recall the characterization of three
subclasses of 2-uninorms and the functional equation of distributivity. In Sect. 3, the
main section, we investigate distributivity for a 2-uninorm over a semi-uninorm
and give full characterization for the above-mentioned three subclasses. Section4 is
conclusion and further work.

2 Preliminaries

In this section, we recall basic definitions and facts to be used later in the paper.

Definition 1 ([30]) Let s ∈ [0, 1]. A binary operator U : [0, 1]2 → [0, 1] is called
a uninorm if it is commutative, associative, non-decreasing in each variable, and
there exists an element s ∈ [0, 1] called neutral element such that U(s, x) = x for all
x ∈ [0, 1].

It is clear that U becomes a t-norm when s = 1, while U becomes a t-conorm
when s = 0 (see [17]). For any uninorm U, we have U(0, 1) ∈ {0, 1}, and U is
called conjunctive when U(0, 1) = 0 and disjunctive when U(0, 1) = 1. By Us we
denote the family of all uninorms with the neutral element s ∈ [0, 1]. Now we recall
the general structure of a uninorm (for more details see [6, 10, 15]) by using the
notation Ds = [0, s) × (s, 1] ∪ (s, 1] × [0, s) for s ∈ [0, 1].
Theorem 1 ([15]) Let s ∈ [0, 1]. Then, U ∈ Us if and only if

U =

⎧
⎪⎨

⎪⎩

TU if (x, y) ∈ [0, s]2,
SU if (x, y) ∈ [s, 1]2,
C if (x, y) ∈ Ds,

(1)

where TU and SU are respectively isomorphic with a t-norm and a t-conorm, the
increasing operation C : Ds → [0, 1] fulfills min(x, y) � C(x, y) � max(x, y) for
(x, y) ∈ Ds.
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Theorem 2 ([15]) Let U : [0, 1]2 → [0, 1] be a uninorm with the neutral element
s ∈ (0, 1).

(i) If U(0, 1) = 0 and the function U(x, 1) is continuous except for the point x = s,
then C = min in Eq. (1) and the class of such uninorms is denoted by Umin

s .
(ii) If U(0, 1) = 1 and the function U(x, 0) is continuous except for the point x = s,

then C = max in Eq. (1) and the class of such uninorms is denoted by Umax
s .

Definition 2 ([6]) An element a ∈ [0, 1] is called an idempotent element of F :
[0, 1]2 → [0, 1] if F(a, a) = a. The operation F is called idempotent if all elements
from [0, 1] are idempotent.

Theorem 3 ([6]) Let s ∈ [0, 1]. Then, the operations

Umin
s =

{
max if (x, y) ∈ [s, 1]2,
min elsewhere ,

(2)

and

Umax
s =

{
min if (x, y) ∈ [0, s]2,
max elsewhere ,

(3)

are unique idempotent uninorms in Umin
s and Umax

s , respectively.

Definition 3 ([9]) A binary operator V : [0, 1]2 → [0, 1] is called a semi-uninorm
if it is non-decreasing in each variable, and there exists an element s ∈ [0, 1] called
neutral element such that V (s, x) = x for all x ∈ [0, 1].

It is clear that a commutative and associative semi-uninorm is a uninorm. By
Vs we denote the family of all semi-uninorms with the neutral element s ∈ [0, 1].
A semi-uninorm V is called a semi-t-norm if e = 1, while V is called a semi-t-
conorm if e = 0. For any V ∈ Vs, we have V (0, 0) = 0 and V (1, 1) = 1. Therefore,
V is a binary aggregation operator with the neutral element s ∈ [0, 1]. Moreover, a
semi-uninorm V is said to be conjunctive if V (0, 1) = V (1, 0) = 0 and disjunctive
if V (0, 1) = V (1, 0) = 1. In fact, for any conjunctive semi-uninorm V , it holds that
V (0, x) = V (x, 0) = 0 for all x ∈ [0, 1], while for any disjunctive semi-uninorm V ,
it follows that V (1, x) = V (x, 1) = 1 for all x ∈ [0, 1].

Now we recall the structure of a semi-uninorm, which has also been given by
Drewniak et al. [9] in another form.

Theorem 4 ([9]) Let s ∈ [0, 1]. Then, V ∈ Vs if and only if

V =

⎧
⎪⎨

⎪⎩

TV if (x, y) ∈ [0, s]2,
SV if (x, y) ∈ [s, 1]2,
C if (x, y) ∈ Ds,

(4)
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where TV and SV are respectively isomorphic with a semi-t-norm and a semi-
t-conorm, the increasing operation C : Ds → [0, 1] fulfills min(x, y) � C(x, y) �
max(x, y) for (x, y) ∈ Ds. Moreover, TV and SV is called the underlying semi-t-norm
and semi-t-conorm of V , respectively.

By Vmax
s (Vmin

s ) we denote the family of all semi-uninorms with the same neutral
element s ∈ (0, 1) fulfilling the additional condition: V (0, x) = V (x, 0) = 0 for all
x ∈ (s, 1] (V (1, x) = V (x, 1) = 1 for all x ∈ [0, s)) [9].

From Theorems 4 and 7 in [9], we can obtain structures of elements in Vmax
s and

Vmin
s .

Theorem 5 ([9]) Let V ∈ Vs with the neutral element s ∈ (0, 1). Then,

(i) V ∈ Vmin
s if and only if

V =

⎧
⎪⎨

⎪⎩

TV if (x, y) ∈ [0, s]2,
SV if (x, y) ∈ [s, 1]2,
min if (x, y) ∈ Ds,

(5)

(ii) V ∈ Vmax
s if and only if

V =

⎧
⎪⎨

⎪⎩

TV if (x, y) ∈ [0, s]2,
SV if (x, y) ∈ [s, 1]2,
max if (x, y) ∈ Ds,

(6)

where TV and SV are isomorphic with a semi-t-norm and a semi-t-conorm,
respectively.

Theorem 6 ([9]) The operatorsUmin
s andUmax

s in Theorem 3 are unique idempotent
semi-uninorms in Vmin

s and Vmax
s , respectively.

Now we recall the definitions and some results of 2-uninorms.

Definition 4 ([2]) Let 0 � e � k � f � 1. An operator G : [0, 1]2 → [0, 1] is
called a 2-uninorm, if it is commutative, associative, non-decreasing with respect
to both variables, and fulfilling

G(e, x) = x for all x ∈ [0, k] and G(f , x) = x for all x ∈ [k, 1]. (7)

By Uk(e,f ) we denote the class of all 2-uninorms.

Remark 1 ([12]) Any operator G ∈ Uk(e,f ) fulfills the condition:

G(k, x) = k for all x ∈ [e, f ]. (8)
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Lemma 1 ([2]) Let G ∈ Uk(e,f ) be a 2-uninorm with 0 � e � k � f � 1 and k ∈
(0, 1). Then, two mappings U1 and U2 defined by, for x, y ∈ [0, 1],

U1(x, y) = G(kx, ky)

k
(9)

and

U2(x, y) = G(k + (1 − k)x, k + (1 − k)y) − k

1 − k
(10)

are uninorms with the neutral elements e
k and f−k

1−k , respectively.

Lemma 2 ([12]) Let G ∈ Uk(e,f ) be a 2-uninorm with 0 � e � k � f � 1. Then,

(i) G(x, 0) is continuous except for the point e if and only if U1(x, 0) is continuous
except for the point e

k .
(ii) G(x, 1) is continuous except for the point f if and only if U2(x, 1) is continuous

except for the point f−k
1−k .

Lemma 3 ([2]) Let G ∈ Uk(e,f ) be a 2-uninorm with 0 � e � k � f � 1. Then,
G(0, 1) ∈ {0, k, 1}.

Depending on the values of G(0, 1), which plays a zero element role for the
operator G, we obtain from the above lemmas that three subclass of operators in
Uk(e,f ) are respectively denoted by C0

k(e,f ), C
k
k(e,f ), C

1
k(e,f ) (or simplifying them C0,

Ck , C1).

Theorem 7 ([2]) Let G ∈ Uk(e,f ) be a 2-uninorm such that G(x, 1) is discontinuous
only at the points e and f . Then, G ∈ C0 and G(1, k) = k if and only if 0 < e � k <

f � 1, and G has the following form

G(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tc1(x, y) if (x, y) ∈ [0, e]2,
Sc1(x, y) if (x, y) ∈ [e, k]2,
Tc2(x, y) if (x, y) ∈ [k, f ]2,
Sc2(x, y) if (x, y) ∈ [f , 1]2,
min(x, y) if (x, y) ∈ [0, e) × (e, 1] ∪ (e, 1] × [0, e)

∪[k, f ) × (f , 1] ∪ (f , 1] × [k, f ),
k if (x, y) ∈ [e, k) × (k, 1] ∪ (k, 1] × [e, k),

(11)

where Tc1 and Tc2 are isomorphic with t-norms, Sc1 and Sc2 are isomorphic with
t-conorms. We denote the set of all such 2-uninorms by C0

k .

Theorem 8 ([2]) Let G ∈ Uk(e,f ) be a 2-uninorm such that G(x, 1) is discontinuous
only at the point e, and G(x, e) is discontinuous only at the point f . Then, G ∈ C0

and G(1, k) = 1 if and only if 0 < e � k � f < 1, and G has the following form
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G(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tc(x, y) if (x, y) ∈ [0, e]2,
Sc(x, y) if (x, y) ∈ [e, k]2,
Td(x, y) if (x, y) ∈ [k, f ]2,
Sd(x, y) if (x, y) ∈ [f , 1]2,
min(x, y) if (x, y) ∈ [0, e) × (e, 1] ∪ (e, 1] × [0, e),
max(x, y) if (x, y) ∈ [e, f ) × (f , 1] ∪ (f , 1] × [e, f ),
k if (x, y) ∈ [e, k) × (k, f ] ∪ (k, f ] × [e, k),

(12)

where Tc and Td are isomorphic with t-norms, Sc and Sd are isomorphic with t-
conorms. We denote the set of all such 2-uninorms by C0

1.

Theorem 9 ([2]) Let G ∈ Uk(e,f ) be a 2-uninorm such that G(x, 0) is discontinuous
only at the points e and f . Then, G ∈ C1 and G(0, k) = k if and only if 0 � e < k �
f < 1, and G has the following form

G(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Td1(x, y) if (x, y) ∈ [0, e]2,
Sd1(x, y) if (x, y) ∈ [e, k]2,
Td2(x, y) if (x, y) ∈ [k, f ]2,
Sd2(x, y) if (x, y) ∈ [f , 1]2,
max(x, y) if (x, y) ∈ [0, f ) × (f , 1] ∪ (f , 1] × [0, f )

∪[0, e) × (e, k] ∪ (e, k] × [0, e),
k if (x, y) ∈ [0, k) × (k, f ] ∪ (k, f ] × [0, k),

(13)

where Td1 and Td2 are isomorphic with t-norms, Sd1 and Sd2 are isomorphic with
t-conorms. We denote the set of all such 2-uninorms by C1

k .

Theorem 10 ([2]) Let G ∈ Uk(e,f ) be a 2-uninorm such that G(x, 0) is discontinu-
ous only at the point f , and G(x, f ) is discontinuous only at the point e. Then, G ∈ C1

and G(0, k) = 0 if and only if 0 < e � k � f < 1, and G has the following form

G(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tc(x, y) if (x, y) ∈ [0, e]2,
Sc(x, y) if (x, y) ∈ [e, k]2,
Td(x, y) if (x, y) ∈ [k, f ]2,
Sd(x, y) if (x, y) ∈ [f , 1]2,
min(x, y) if (x, y) ∈ [0, e) × (e, f ] ∪ (e, f ] × [0, e),
max(x, y) if (x, y) ∈ [0, f ) × (f , 1] ∪ (f , 1] × [0, f ),
k if (x, y) ∈ [e, k) × (k, f ] ∪ (k, f ] × [e, k),

(14)

where Tc and Td are isomorphic with t-norms, Sc and Sd are isomorphic with t-
conorms. We denote the set of all such 2-uninorms by C1

0.
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Theorem 11 ([2]) Let G ∈ Uk(e,f ) be a 2-uninorm such that G(x, 0) is discontin-
uous only at the point e, and G(x, 1) is discontinuous only at the point f . G ∈ Ck if
and only if 0 � e < k < f � 1, and G has the following form

G(x, y)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Td(x, y) if (x, y) ∈ [0, e]2,
Sd(x, y) if (x, y) ∈ [e, k]2,
Tc(x, y) if (x, y) ∈ [k, f ]2,
Sc(x, y) if (x, y) ∈ [f , 1]2,
max(x, y) if (x, y) ∈ [0, e) × (e, k] ∪ (e, k] × [0, e),
min(x, y) if (x, y) ∈ [k, f ) × (f , 1] ∪ (f , 1] × [k, f ),
k if (x, y) ∈ [0, k) × (k, 1] ∪ (k, 1] × [0, k),

(15)

where Tc and Td are isomorphic with t-norms, Sc and Sd are isomorphic with t-
conorms.

For convenience, we assume that all of the underlying operators Tc, Td , Tc1 , Tc2 ,
Td1 , Td2 and Sc, Sd , Sc1 , Sc2 , Sd1 , Sd2 of 2-uninorms in this paper are continuous.
Next, we consider the distributivity equation.

Definition 5 ([1]) Let F, G : [0, 1]2 → [0, 1]. We say that G is distributive over
F, if for all x, y, z ∈ [0, 1],

G(x,F(y, z)) = F(G(x, y),G(x, z)). (16)

Lemma 4 ([25]) Let F : X2 → X have the right (left) neutral element e in a subset
∅ �= Y ⊂ X (i.e., ∀x∈Y ,F(x, e) = x (F(e, x) = x)). If the operation F is distributive
over another operation G : X2 → X fulfilling G(e, e) = e, then G is idempotent in Y.

Lemma 5 ([25]) If an operation F : [0, 1]2 → [0, 1] with the neutral element e ∈
[0, 1] is distributive over another operation G : [0, 1]2 → [0, 1] fulfilling G(e, e) =
e, then G is idempotent.

Lemma 6 ([25]) Every increasing operation G : [0, 1]2 → [0, 1] is distributive
over max and min.

3 Distributivity for a 2-Uninorm over a Semi-uninorm

Lemma 7 Let 0 � e � k � f � 1. If a 2-uninorm G is distributive over a semi-
uninorm F with the neutral element s ∈ [0, 1], then G(s, s) = s.

Remark 2 In this paper, we always assume that the semi-uninorm F has neutral
element s ∈ (0, 1) because Ref. [12] has discussed the cases s = 0 and s = 1. That
is, F is a semi-t-norm or a semi-t-conorm.



318 Y.-M. Wang and F. Qin

To completely characterize distributivity for a 2-uninorm G over a semi-uninorm F,
according to Theorems from 7 to 11, there are five cases to be consider: (1) G ∈ C0

k ;
(2) G ∈ C0

1; (3) G ∈ C1
k ; (4) G ∈ C1

0; (5) G ∈ Ck . First, let us consider Case (1):
G ∈ C0

k .

3.1 G ∈ C0
k

Lemma 8 Let G ∈ C0
k be a 2-uninorm with 0 < e � k < f � 1, and let F ∈ Vs be

a semi-uninorm with the neutral element s ∈ (0, 1) such that the underlying semi-t-
norm TF and semi-t-conorm SF are continuous. If G is distributive over F, then F is
idempotent.

So far, we know from Lemma 8 that the structure of F is completely determined.
Therefore, the rest of this investigation requires that we characterize the operator
G. Furthermore, we can only consider the case e < k because the case e = k is
fully similar and much easier. Note that the assumption 0 < e < k < f � 1 and the
order relationship between s and e, k, f , then there are four cases: (1) s ∈ (0, e]; (2)
s ∈ (e, k]; (3) s ∈ (k, f ]; (4) s ∈ (f , 1). The following lemma shows that two cases
(2) and (4) are impossible.

Lemma 9 Let G ∈ C0
k be a 2-uninorm with 0 < e < k < f � 1, and let F ∈ Vs

be a semi-uninorm with the neutral element s ∈ (0, 1) and F(1, x) = F(x, 1) = x
for x ∈ [0, s) such that the underlying semi-t-norm TF and semi-t-conorm SF are
continuous. If G is distributive over F, then s ∈ (0, e] or s ∈ (k, f ].
Theorem 12 Let G ∈ C0

k be a 2-uninorm with 0 < e < k < f � 1, and let F ∈ Vs

be a semi-uninorm with the neutral element s ∈ (0, 1) and F(1, x) = F(x, 1) = x
for x ∈ [0, s) such that the underlying semi-t-norm TF and semi-t-conorm SF are
continuous. Then G is distributive over F if and only if F = Umin

s and one of the
following two cases holds.

(i) s � e and the structure of G is

G(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tc1
1 (x, y) if (x, y) ∈ [0, s]2,

Tc1
2 (x, y) if (x, y) ∈ [s, e]2,

Sc1(x, y) if (x, y) ∈ [e, k]2,
Uc2(x, y) if (x, y) ∈ [k, 1]2,
k if (x, y) ∈ [e, k) × (k, 1] ∪ (k, 1] × [e, k),
min(x, y) otherwise ,

(17)

where Tc1
1 and Tc1

2 are isomorphic with t-norms, Sc1 is isomorphic with a t-
conorm.
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(ii) k < s � f and the structure of G is

G(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uc1(x, y) if (x, y) ∈ [0, k]2,
Tc2
1 (x, y) if (x, y) ∈ [k, s]2,

Tc2
2 (x, y) if (x, y) ∈ [s, f ]2,

Sc2(x, y) if (x, y) ∈ [f , 1]2,
k if (x, y) ∈ [e, k) × (k, 1] ∪ (k, 1] × [e, k),
min(x, y) otherwise ,

(18)

where Tc2
1 and Tc2

2 are isomorphic with t-norms, Sc2 is isomorphic with a t-
conorm.

Theorem 13 Let G ∈ C0
k be a 2-uninorm with 0 < e � k < f � 1, and let F ∈ Vs

be a semi-uninorm with the neutral element s ∈ (0, 1) and F(0, x) = F(x, 0) = x
for x ∈ (s, 1] such that the underlying semi-t-norm TF and semi-t-conorm SF are
continuous. Then G is not distributive over F.

3.2 G ∈ C1
k

Lemma 10 Let G ∈ C1
k be a 2-uninorm with 0 � e < k � f < 1, and let F ∈ Vs be

a semi-uninorm with the neutral element s ∈ (0, 1) such that the underlying semi-t-
norm TF and semi-t-conorm SF are continuous. If G is distributive over F, then F is
idempotent.

Next, we only consider the case e < k because the case e = k is similar and much
easier.

Theorem 14 Let G ∈ C1
k be a 2-uninorm with 0 � e < k < f < 1, and let F ∈ Vs

be a semi-uninorm with the neutral element s ∈ (0, 1) and F(1, x) = F(x, 1) = x
for x ∈ [0, s) such that the underlying semi-t-norm TF and semi-t-conorm SF are
continuous. Then G is not distributive over F.

Lemma 11 Let G ∈ C1
k be a 2-uninorm with 0 � e < k < f < 1, and let F ∈ Vs

be a semi-uninorm with the neutral element s ∈ (0, 1) and F(0, x) = F(x, 0) = x
for x ∈ (s, 1] such that the underlying semi-t-norm TF and semi-t-conorm SF are
continuous. If G is distributive over F, then s ∈ [e, k) or s ∈ [f , 1).
Theorem 15 Let G ∈ C1

k be a 2-uninorm with 0 � e < k < f < 1, and let F ∈ Vs

be a semi-uninorm with the neutral element s ∈ (0, 1) and F(0, x) = F(x, 0) = x
for x ∈ (s, 1] such that the underlying semi-t-norm TF and semi-t-conorm SF are
continuous. Then G is distributive over F if and only if F = Umax

s and one of the
following two cases holds.
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(i) e � s < k and the structure of G is

G(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Td1(x, y) if (x, y) ∈ [0, e]2,
Sd11 (x, y) if (x, y) ∈ [e, s]2,
Sd12 (x, y) if (x, y) ∈ [s, k]2,
Ud2(x, y) if (x, y) ∈ [k, 1]2,
k if (x, y) ∈ [0, k) × (k, f ] ∪ (k, f ] × [0, k),
max(x, y) otherwise ,

(19)

where Td1 is isomorphic with a t-norm, Sd11 and Sd12 are isomorphic with t-
conorms.

(ii) s � f and the structure of G is

G(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ud1(x, y) if (x, y) ∈ [0, k]2,
Td2(x, y) if (x, y) ∈ [k, f ]2,
Sd21 (x, y) if (x, y) ∈ [f , s]2,
Sd22 (x, y) if (x, y) ∈ [s, 1]2,
k if (x, y) ∈ [0, k) × (k, f ] ∪ (k, f ] × [0, k),
max(x, y) otherwise ,

(20)

where Td2 is isomorphic with a t-norm, Sd21 and Sd22 are isomorphic with t-
conorms.

3.3 G ∈ C0
1

Lemma 12 Let G ∈ C0
1 be a 2-uninorm with 0 < e � k � f < 1, and let F ∈ Vs be

a semi-uninorm with the neutral element s ∈ (0, 1) such that the underlying semi-t-
norm TF and semi-t-conorm SF are continuous. If G is distributive over F, then F is
idempotent.

Lemma 13 Let G ∈ C0
1 be a 2-uninorm with 0 < e < k < f < 1, and let F ∈ Vs

be a semi-uninorm with the neutral element s ∈ (0, 1) and F(1, x) = F(x, 1) = x
for x ∈ [0, s) such that the underlying semi-t-norm TF and semi-t-conorm SF are
continuous. If G is distributive over F, then s ∈ (0, e].
Theorem 16 Let G ∈ C0

1 be a 2-uninorm with 0 < e < k < f < 1, and let F ∈ Vs

be a semi-uninorm with the neutral element s ∈ (0, 1) and F(1, x) = F(x, 1) = x
for x ∈ [0, s) such that the underlying semi-t-norm TF and semi-t-conorm SF are
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continuous. Then G is distributive over F if and only if F = Umin and the structure
of G is

G(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tc
1 (x, y) if (x, y) ∈ [0, s]2,

Tc
2 (x, y) if (x, y) ∈ [s, e]2,

Sc(x, y) if (x, y) ∈ [e, k]2,
Ud(x, y) if (x, y) ∈ [k, 1]2,
k if (x, y) ∈ [e, k) × (k, f ] ∪ (k, f ] × [e, k),
max(x, y) if (x, y) ∈ [e, k) × (f , 1] ∪ (f , 1] × [e, k),
min(x, y) otherwise ,

(21)

where s � e and Tc
1 and Tc

2 are isomorphic with t-norms, Sc is isomorphic with a
t-conorm.

Theorem 17 Let G ∈ C0
1 be a 2-uninorm with 0 < e < k < f < 1, and let F ∈ Vs

be a semi-uninorm with the neutral element s ∈ (0, 1) and F(0, x) = F(x, 0) = x
for x ∈ (s, 1] such that the underlying semi-t-norm TF and semi-t-conorm SF are
continuous. Then G is not distributive over F.

3.4 G ∈ C1
0

Lemma 14 Let G ∈ C1
0 be a 2-uninorm with 0 < e � k � f < 1, and let F ∈ Vs be

a semi-uninorm with the neutral element s ∈ (0, 1) such that the underlying semi-t-
norm TF and semi-t-conorm SF are continuous. If G is distributive over F, then F is
idempotent.

Next, we only consider the case e < k < f , the other cases e = k ae k = f are
similar.

Theorem 18 Let G ∈ C1
0 be a 2-uninorm with 0 < e < k < f < 1, and let F ∈ Vs

be a semi-uninorm with the neutral element s ∈ (0, 1) and F(1, x) = F(x, 1) = x
for x ∈ [0, s) such that the underlying semi-t-norm TF and semi-t-conorm SF are
continuous. Then G is not distributive over F.

Lemma 15 Let G ∈ C1
0 be a 2-uninorm with 0 < e < k < f < 1, and let F ∈ Vs

be a semi-uninorm with the neutral element s ∈ (0, 1) and F(0, x) = F(x, 0) = x
for x ∈ (s, 1] such that the underlying semi-t-norm TF and semi-t-conorm SF are
continuous. If G is distributive over F, then s ∈ [f , 1).
Theorem 19 Let G ∈ C1

0 be a 2-uninorm with 0 < e < k < f < 1, and let F ∈ Vs

be a semi-uninorm with the neutral element s ∈ (0, 1) and F(0, x) = F(x, 0) = x
for x ∈ (s, 1] such that the underlying semi-t-norm TF and semi-t-conorm SF are
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continuous. Then G is distributive over F if and only if F = Umax
s and the structure

of G is

G(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uc(x, y) if (x, y) ∈ [0, k]2,
Td(x, y) if (x, y) ∈ [k, f ]2,
Sd1 (x, y) if (x, y) ∈ [f , s]2,
Sd2 (x, y) if (x, y) ∈ [s, 1]2,
k if (x, y) ∈ [e, k) × (k, f ] ∪ (k, f ] × [e, k),
min(x, y) if (x, y) ∈ [0, e) × (k, f ] ∪ (k, f ] × [0, e),
max(x, y) otherwise ,

(22)

where s � f and Td is isomorphic with a t-norm, Sd1 and Sd2 are isomorphic with
t-conorms.

3.5 G ∈ Ck

Lemma 16 Let G ∈ Ck be a 2-uninorm with 0 < e � k < f � 1, and let F ∈ Vs be
a semi-uninorm with the neutral element s ∈ (0, 1) such that the underlying semi-t-
norm TF and semi-t-conorm SF are continuous. If G is distributive over F, then F is
idempotent.

Next, without loss of generality, we only consider the case e < k.

Lemma 17 Let G ∈ Ck be a 2-uninorm with 0 < e < k < f � 1, and let F ∈ Vs

be a semi-uninorm with the neutral element s ∈ (0, 1) and F(1, x) = F(x, 1) = x
for x ∈ [0, s) such that the underlying semi-t-norm TF and semi-t-conorm SF are
continuous. If G is distributive over F, then s ∈ (k, f ].
Theorem 20 Let G ∈ Ck be a 2-uninorm with 0 < e < k < f � 1, and let F ∈ Vs

be a semi-uninorm with the neutral element s ∈ (0, 1) and F(1, x) = F(x, 1) = x
for x ∈ [0, s) such that the underlying semi-t-norm TF and semi-t-conorm SF are
continuous. Then G is distributive over F if and only if F = Umin

s and the structure
of G is

G(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ud(x, y) if (x, y) ∈ [0, k]2,
Tc
1 (x, y) if (x, y) ∈ [k, s]2,

Tc
2 (x, y) if (x, y) ∈ [s, f ]2,

Sc(x, y) if (x, y) ∈ [f , 1]2,
k if (x, y) ∈ [0, k) × (k, 1] ∪ (k, 1] × [0, k),
min(x, y) otherwise,

(23)
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where k < s � f and Tc
1 and Tc

2 are isomorphic with t-norms, Sc is isomorphic with
a t-conorm.

Lemma 18 Let G ∈ Ck be a 2-uninorm with 0 < e < k < f � 1, and let F ∈ Vs

be a semi-uninorm with the neutral element s ∈ (0, 1) and F(0, x) = F(x, 0) = x
for x ∈ (s, 1] such that the underlying semi-t-norm TF and semi-t-conorm SF are
continuous. If G is distributive over F, then s ∈ [e, k).
Theorem 21 Let G ∈ Ck be a 2-uninorm with 0 < e < k < f � 1, and let F ∈ Vs

be a semi-uninorm with the neutral element s ∈ (0, 1) and F(0, x) = F(x, 0) = x
for x ∈ (s, 1] such that the underlying semi-t-norm TF and semi-t-conorm SF are
continuous. Then G is distributive over F if and only if F = Umax

s and one of the
structure of G is

G(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Td(x, y) if (x, y) ∈ [0, e]2,
Sd1 (x, y) if (x, y) ∈ [e, s]2,
Sd2 (x, y) if (x, y) ∈ [s, k]2,
Uc(x, y) if (x, y) ∈ [k, 1]2,
k if (x, y) ∈ [0, k) × (k, 1] ∪ (k, 1] × [0, k),
max(x, y) otherwise ,

(24)

where e � s < k and Td is isomorphic with a t-norm, Sd1 and S
d
2 are isomorphic with

t-conorms.

4 Conclusions and Further Work

In this paper, we have investigated distributivity for 2-uninorms over semi-uninorms.
In fact, 2-uninorms cover both uninorms and nullnorms, which form a class of com-
mutative, associative and increasing operators on the unit interval with an absorb-
ing element separating two subintervals having their own neutral elements. While
semi-uninorms are generalizations of uninorms by omitting commutativity and asso-
ciativity. Moreover, all possible solutions of the distributivity equation for the three
defined subclasses of 2-uninorms over semi-uninorms are characterized. In future
work, we will concentrate on the converse, that is, distributivity for semi-uninorms
over 2-uninorms. Indeed, this problem is very difficult because we are not sure that
the second operator, namely, the 2-uninorm, is idempotent.
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Further Studies of Left (Right)
Semi-uninorms on a Complete Lattice

Yuan Wang, Ke-Ming Tang and Zhu-Deng Wang

Abstract In this paper, we lay bare some new formulas for calculating the upper
and lower approximation left (right) semi-uninorms of a binary operation and further
discuss the relations between the upper and lower approximation left (right) semi-
uninorms of a given binary operation and the lower and upper approximation left
(right) semi-uninorms of its dual operation, respectively.

Keywords Fuzzy connective ·Uninorm ·Left (right) semi-uninorm ·Upper (lower)
approximation

1 Introduction

Uninorms, introduced by Yager and Rybalov [14], and studied by Fodor et al. [3], are
special aggregation operators that have been proven useful in many fields like fuzzy
logic, expert systems, neural networks, aggregation, and fuzzy systemmodeling [12,
13]. Uninorms are interesting because their structure is a special combination of
t-norms and t-conorms [3]. It is well known that a uninorm U can be conjunctive
or disjunctive whenever U (0, 1) = 0 or 1, respectively. This fact allows us to use
uninorms in defining fuzzy implications and coimplications [7, 8].

There are real-life situations when truth functions can not be associative or
commutative. By throwing away the commutativity from the axioms of uninorms,
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Mas et al. [5, 6] introduced the concepts of left and right uninorms, Wang and Fang
[10, 11] studied the residual operators and the residual coimplicators of left (right)
uninorms on a complete lattice. By removing the associativity and commutativity
from the axioms of uninorms, Liu [4] introduced the concept of semi-uninorms on a
complete lattice.

Recently, Su et al. [9] generalized the concepts of both left (right) uninorms and
semi-uninorms, introduced the left (right) semi-uninorm, and laid bare the formu-
las for calculating the upper and lower approximation left (right) semi-uninorms
of a given binary operation on a complete lattice. In this paper, we further study
the concepts of left (right) semi-uninorms on a complete lattice. We will improve
Theorems3.6, 3.7, 4.6 and 4.7 in [9], correct Example3.8 in [9], give out some
new formulas for calculating the upper and lower approximation left (right) semi-
uninorms of a binary operation, and further discuss the relations between the upper
and lower approximation left (right) semi-uninorms of a given binary operation and
the lower and upper approximation left (right) semi-uninorms of its dual operation,
respectively.

The knowledge about lattices required in this paper can be found in [1].
Throughout this paper, unless otherwise stated, L always represents any given

complete lattice with maximal element 1 and minimal element 0; J stands for any
index set.

2 Left (Right) Semi-uninorms on a Complete Lattice

In this section, we briefly recall some necessary concepts about the left (right) semi-
uninorms and illustrate these notions by means of an example and two theorems.

Definition 1 (Su et al. [9]) A binary operation U on L is called a left (right) semi-
uninorm if it satisfies the following two conditions:
(U1) there exists a left (right) neutral element, i.e., an element eL ∈ L (eR ∈ L)
satisfying U (eL , x) = x (U (x, eR) = x) for all x ∈ L ,
(U2) U is non-decreasing in each variable.

If a left (right) semi-uninormU on L is associative, thenU is a left (right) uninorm
[10]. If a left (right) semi-uninorm U with left (right) neutral element eL (eR) has
a right (left) neutral element eR (eL ), then eL = U (eL , eR) = eR . Let e = eL = eR .
Then U is a semi-uninorm [4].

Definition 2 (Wang and Fang [10, 11]) Let J be any index set. A binary operation
U on L is called left (right) infinitely ∨-distributive if

U
( ∨

j∈J

x j , y
)

=
∨

j∈J

U (x j , y)
(
U

(
x,

∨

j∈J

y j
)

=
∨

j∈J

U (x, y j )
)

∀x, y, x j , y j ∈ L;

left (right) infinitely ∧-distributive if
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U
( ∧

j∈J

x j , y
)

=
∧

j∈J

U (x j , y)
(
U

(
x,

∧

j∈J

y j
)

=
∧

j∈J

U (x, y j )
)

∀x, y, x j , y j ∈ L .

If a binary operationU is left infinitely ∨-distributive (∧-distributive) and also right
infinitely∨-distributive (∧-distributive), thenU is said to be infinitely∨-distributive
(∧-distributive).

Noting that the least upper bound of the empty set is 0 and the greatest lower
bound of the empty set is 1, we have that

U (0, y) = U
( ∨

j∈∅
x j , y

)
=

∨

j∈∅
U (x j , y) = 0

(
U (x, 0) = U

(
x,

∨

j∈∅
y j

)
=

∨

j∈∅
U (x, y j ) = 0

)

for any x, y ∈ L when U is left (right) infinitely ∨-distributive and

U (1, y) = U
( ∧

j∈∅
x j , y

)
=

∧

j∈∅
U (x j , y) = 1

(
U (x, 1) = U

(
x,

∧

j∈∅
y j

)
=

∧

j∈∅
U (x, y j ) = 1

)

for any x, y ∈ L when U is left (right) infinitely ∧-distributive.
Example 1 (Su et al. [9]) Let eL , eR ∈ L ,

UeL
sW (x, y) =

{
y if x ≥ eL ,
0 otherwise,

UeL
sM(x, y) =

{
y if x ≤ eL ,
1 otherwise,

UeR
sW (x, y) =

{
x if y ≥ eR,
0 otherwise,

UeR
sM(x, y) =

{
x if y ≤ eR,
1 otherwise,

where x and y are elements of L . ThenUeL
sW (UeR

sW ) andUeL
sM (UeR

sM ) are, respectively,
the smallest and greatest left (right) semi-uninorms; UeL

sW and UeR
sW are, respectively,

the smallest right infinitely ∨-distributive left semi-uninorm and left infinitely ∨-
distributive right semi-uninorm; and UeL

sM and UeR
sM are, respectively, the greatest

right infinitely∧-distributive left semi-uninorm and left infinitely∧-distributive right
semi-uninorm.

Definition 3 (Su et al. [9]) Let A ∈ LL×L . Define the upper approximation Au and
the lower approximation Al of A as follows:

Au(x, y) =
∨

{A(u, v) | u ≤ x, v ≤ y} ∀x, y ∈ L ,

Al(x, y) =
∧

{A(u, v) | u ≥ x, v ≥ y} ∀x, y ∈ L .
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By Definition3, if A is non-decreasing in its first variable, then

Au(x, y) =
∨

{A(x, v) | v ≤ y}, Al(x, y) =
∧

{A(x, v) | v ≥ y} ∀x, y ∈ L;

if A is non-decreasing in its second variable, then

Au(x, y) =
∨

{A(u, y) | u ≤ x}, Al(x, y) =
∧

{A(u, y) | u ≥ x} ∀x, y ∈ L .

Theorem 1 Let A ∈ LL×L .
(1) If A is left (right) infinitely ∨-distributive, then Au is left (right) infinitely
∨-distributive.
(2) If A is left (right) infinitely ∧-distributive, then Al is left (right) infinitely
∧-distributive.
Proof We only prove that statement (1) holds.

If A is left infinitely ∨-distributive, then A is non-decreasing in its first variable
and for any index set J ,

Au(x, y) =
∨

{A(u, v) | u ≤ x, v ≤ y} =
∨

{A(x, v) | v ≤ y} ∀x, y ∈ L ,

Au

( ∨

j∈J

x j , y
)

=
∨

{A(
∨

j∈J

x j , v) | v ≤ y} =
∨

{
∨

j∈J

A(x j , v) | v ≤ y}

=
∨

j∈J

( ∨
{A(x j , v) | v ≤ y}

)
=

∨

j∈J

Au(x j , y) ∀x j , y ∈ L ,

i.e., Au is left infinitely ∨-distributive.
Similarly, we can show that Au is right infinitely ∨-distributive when A is right

infinitely ∨-distributive. �

Definition 4 (De Baets [2]) Consider a strong negation N on L . The N -dual oper-
ation of a binary operation A on L is the binary operation AN on L defined by

AN (x, y) = N−1
(
A(N (x), N (y))

)
∀x, y ∈ L .

Note that (AN )N−1 = (AN )N = A for any binary operation A on L .
The following theorem collects some properties of the N -dual operation.

Theorem 2 (Su et al. [9]) Let A, B be two binary operations and N a strong nega-
tion on L. Then the following statements hold:
(1) (A ∧ B)N = AN ∨ BN and (A ∨ B)N = AN ∧ BN .

(2) If A is left (right) infinitely ∨-distributive, then AN is left (right) infinitely ∧-
distributive.
(3) If A is left (right) infinitely ∧-distributive, then AN is left (right) infinitely ∨-
distributive.
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(4) If A is increasing (decreasing) in its i th variable, then AN is increasing (decreas-
ing) in its i th variable (i = 1, 2).
(5) The N-dual operation of a left (right) semi-uninorm with a left (right) neutral el-
ement eL (eR) is a left (right) semi-uninorm with a left (right) neutral element N (eL)
(N (eR)).
(6) (UeL

sW )N = UN (eL )
sM , (UeL

sM)N = UN (eL )
sW , (UeR

sW )N = UN (eR)
sM and (UeR

sM)N = UN (eR)
sW .

(7) (AN )u = (Al)N and (AN )l = (Au)N .

3 Main Results

In this section, we give out some new formulas for calculating the upper and lower
approximation left (right) semi-uninorms of a binary operation and further discuss
the relations between the upper and lower approximation left (right) semi-uninorms
of a given binary operation and the lower and upper approximation left (right) semi-
uninorms of its dual operation, respectively.

For a binary operation A on L , if there exists a left semi-uninorm U with the left
neutral element eL such that A ≤ U , then it follows from Theorem 3.1 in [9] that

∧
{U | A ≤ U,U is a left semi − uninorm with the left neutral element eL}

is the smallest left semi-uninorm that is stronger than A on L , we call it the upper
approximation left semi-uninorm of A and written as [A)eLs ; if there exists a left
semi-uninorm U with the left neutral element eL such that U ≤ A, then

∨
{U | U ≤ A,U is a left semi − uninorm with the left neutral element eL}

is the largest left semi-uninorm that is weaker than A on L , we call it the lower
approximation left semi-uninorm of A and written as (A]eLs .

Similarly, we introduce the following symbols:
[A)eRs : the upper approximation right semi-uninorm of A;
(A]eRs : the lower approximation right semi-uninorm of A;
(A]eLs∧: the right infinitely ∧-distributive lower approximation left semi-uninorm of
A;
(A]eR∧s : the left infinitely ∧-distributive lower approximation right semi-uninorm of
A;
[A)eLs∨: the right infinitely ∨-distributive upper approximation left semi-uninorm of
A;
[A)eR∨s : the left infinitely ∨-distributive upper approximation right semi-uninorm of
A.

By removing the condition A is non-decreasing in its first variable in Theorem
3.6 in [9], we have the following theorem.
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Theorem 3 Let A ∈ LL×L and eL ∈ L.
(1) If A ≤ UeL

sM , then [A)eLs = UeL
sW ∨ Au.

(2) If UeL
sW ≤ A, then (A]eLs = UeL

sM ∧ Al .
(3) If A ≤ UeL

sM and A is right infinitely ∨-distributive, then [A)eLs∨ = UeL
sW ∨ Au.

(4) If UeL
sW ≤ A and A is right infinitely ∧-distributive, then (A]eLs∧ = UeL

sM ∧ Al .

Proof The proofs of the statements (1) and (2) refer to the proofs of Theorem 3.6
(1) and (2) in [9].

(3) LetU3 = UeL
sW ∨ Au . If A ≤ UeL

sM , thenU3 ∈ U eL
s (L) by statement (1). Noting

that A is right infinitely ∨-distributive, we can see that Au is also right infinitely
∨-distributive by Theorem1. Thus, U3 is right infinitely ∨-distributive and U3 ∈
U eL
s∨(L). By the proof of Theorem 3.6 (1) in [9], we have that [A)eLs∨ = UeL

sW ∨ Au .
(4) LetU4 = UeL

sM ∧ Al . IfU
eL
sW ≤ A, thenU3 ∈ U eL

s (L) by statement (2). Noting
that UeL

sM and A are all right infinitely ∧-distributive, we can see that U3 is also right
infinitely ∧-distributive, i.e., U3 ∈ U eL

s∧(L). Moreover, by the proof of Theorem 3.6
(2) in [9], we have (A]eLs∧ = UeL

sM ∧ Al . �
Analogous to Theorem3, by throwing away the condition that A is non-decreasing

in its second variable in Theorem 3.7 in [9], we get the following theorem.

Theorem 4 Let A ∈ LL×L and eR ∈ L.
(1) If A ≤ UeR

sM , then [A)eRs = UeR
sW ∨ Au.

(2) If UeR
sW ≤ A, then (A]eRs = UeR

sM ∧ Al .
(3) If A ≤ UeR

sM and A is left infinitely ∨-distributive, then [A)eR∨s = UeR
sW ∨ Au.

(4) If UeR
sW ≤ A and A is left infinitely ∧-distributive, then (A]eR∧s = UeR

sM ∧ Al .

We see that A(b, 1) = 0 	= 1 and B(a, 0) = 1 	= 0 fromExample 3.8 in [9]. Thus,
A isn’t right infinitely ∧-distributive and B isn’t right infinitely ∨-distributive.

Below, we correct Example 3.8 in [9].

Example 2 Let L = {0, a, b, 1}be a lattice,where 0 < a < 1,0 < b < 1,a ∨ b = 1
and a ∧ b = 0. Define two binary operations A and B on L as follows:

A 0 a b 1
0 0 0 0 1
a a 1 a 1
b 0 0 a 1
1 a 1 a 1

B 0 a b 1
0 0 0 a a
a 0 0 a a
b 0 1 a 1
1 0 1 1 1

Clearly, A ≤ U 0L
sM , U

1L
sW ≤ B, A is non-decreasing in its first variable and right infi-

nitely ∧-distributive, and B is non-decreasing in its first variable and right infinitely
∨-distributive. Thus, Au = A and Bl = B. Let U1 = U 0L

sW ∨ A and U2 = U 1L
sM ∧ B.

Then
U1 0 a b 1
0 0 a b 1
a a 1 1 1
b 0 a 1 1
1 a 1 1 1

U2 0 a b 1
0 0 0 0 a
a 0 0 0 a
b 0 a 0 1
1 0 a b 1
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Noting thatU1(a, a ∧ b) = U1(a, 0) = a 	= 1 = U1(a, a) ∧U1(a, b) andU2(b, a ∨
b) = U2(b, 1) = 1 	= a = U2(b, a) ∨U2(b, b), we see that U1 isn’t right infinitely
∧-distributive andU2 isn’t right infinitely∨-distributive. This shows thatU1 isn’t the
upper approximation right infinitely ∧-distributive left semi-uninorm of A and U2

isn’t the lower approximation right infinitely ∨-distributive left semi-uninorm of B.
This example illustrates that analogous to Theorems3 and 4 may not hold for

calculating the upper approximation right (left) infinitely ∧-distributive left (right)
semi-uninorm and the lower approximation right (left) infinitely ∨-distributive left
(right) semi-uninorm of a binary operation.

Now, we further investigate the relations between the upper and lower approxima-
tion left (right) semi-uninorms of a given binary operation and the lower and upper
approximation left (right) semi-uninorms of its dual operation, respectively.

By virtue of Theorem3, we can improve Theorem 4.6 in [9] by removing the
condition that A is non-decreasing in its first variable and have the following theorem.

Theorem 5 Let A, N andeL beabinaryoperation, strongnegationandfixed element
on L, respectively. Then the following statements hold:
(1) If A ≤ UeL

sM , then [A)eLs = ((AN ]N (eL )
s )N .

(2) If UeL
sW ≤ A, then (A]eLs = ([AN )

N (eL )
s )N .

(3) If A ≤ UeL
sM and A is right infinitely ∨-distributive, then

[A)eLs∨ = ((AN ]N (eL )
s∧ )N .

(4) If UeL
sW ≤ A and A is right infinitely ∧-distributive, then

(A]eLs∧ = ([AN )
N (eL )
s∨ )N .

Proof We only prove that statements (1) and (3) hold.
(1) If A ≤ UeL

sM , then [A)eLs = UeL
sW ∨ Au by Theorem3 and AN ≥ (UeL

sM)N =
UN (eL )

sW by Theorem2. Thus, (AN ]N (eL )
s = UN (eL )

sM ∧ (AN )l by Theorem3. Moreover,
by virtue of Theorems2 and 3, we see that

(
(AN ]N (eL )

s

)
N = (

UN (eL )
sM ∧ (AN )l

)
N = (

UN (eL )
sM ∧ (Au)N

)
N

= (UN (eL )
sM )N ∨ (

(Au)N
)
N = UeL

sW ∨ Au = [A)eLs .

(3) If A ≤ UeL
sM and A is right infinitely ∨-distributive, then [A)eLs∨ = UeL

sW ∨ Au

by Theorem3, AN ≥ (UeL
sM)N = UN (eL )

sW and AN is right infinitely ∧-distributive by
Theorem2. Thus, (AN ]N (eL )

s∧ = UN (eL )
sM ∧ (AN )l by Theorem3.Moreover, we see that

[A)eLs∨ = ((AN ]N (eL )
s∧ )N by the proof of statement (1). �

Analogous to Theorem5, by throwing away the condition that A is non-decreasing
in its second variable in Theorem 4.7 in [9], we have the following theorem.
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Theorem 6 Let A, N and eR be a binary operation, strong negation and fixed
element on L, respectively. Then the following statements hold:
(1) If A ≤ UeR

sM , then [A)eRs = ((AN ]N (eR)
s )N .

(2) If UeR
sW ≤ A, then (A]eRs = ([AN )

N (eR)
s )N .

(3) If A ≤ UeR
sM and A is left infinitely ∨-distributive, then

[A)eR∨s = ((AN ]N (eR)∧s )N .

(4) If UeR
sW ≤ A and A is left infinitely ∧-distributive, then

(A]eR∧s = ([AN )
N (eR)∨s )N .
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Interval-Valued Intuitionistic (T, S)-Fuzzy
LI-Ideals in Lattice Implication Algebras

Chun-Hui Liu

Abstract Combining interval-valued intuitionistic fuzzy sets, t-norm T and s-norm
S on D[0, 1] with the notion of ideal in lattice implication algebras, the concepts of
interval-valued intuitionistic (T, S)-fuzzy LI-ideal and interval-valued intuitionistic
(T, S)-fuzzy lattice ideal are introduced, some their properties are investigated. Some
characterization theorems of interval-valued intuitionistic (T, S)-fuzzy LI-ideals are
obtained. It is proved that the notion of interval-valued intuitionistic (T, S)-fuzzy LI-
ideal is equivalent to the notion of interval-valued intuitionistic (T, S)-fuzzy lattice
ideal in a lattice H implication algebra.

Keywords Many-valued logic · Lattice implication algebra · Interval-valued intu-
itionistic (T, S)-fuzzy LI-ideal

1 Introduction

With the developments of mathematics and computer science, non-classical math-
ematical logic has been actively studied. At present, many-valued logic has always
been a kind of important non-classical logic. In order to research the many-valued
logical system whose propositional value is given in a lattice, Xu proposed the con-
cept of lattice implication algebras [1]. This structure was studied subsequently by
many others [1–9]. Among them, Jun etc. introduced the notion of LI-ideals in lattice
implication algebras and investigated their properties in [6]. The present author [9]
studied the lattice structural feature of the set containing all of LI-ideals in a given
lattice implication algebra.

Since the emergence of fuzzy set by Zadeh [10] in 1965, fuzzy set was studied
from many viewpoint algebraically [11–13]. Later in 1986, Atanassov generalized
Zadeh’ fuzzy set and introduced the concept of intuitionistic fuzzy sets, he also
introduced the concept of interval-valued intuitionistic fuzzy sets shortly after [22].
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The algebraic aspect of this generalization was studied extensively afterward(Peng
[14], Jun [15], Xue [16]) and [17]). Liu etc. studied the theories of interval-valued
intuitionistic (T, S)-fuzzy filters on residuated lattices by applying this new notion
in [18].

In this paper, We will continue to study the problem of ideal in lattice implication
algebras by applying the notions of interval valued intuitionistic fuzzy sets, t-norm
T and s-norm S on D[0, 1], introduce the notions of interval-valued intuitionistic
(T, S)-fuzzy LI-ideals and interval-valued intuitionistic (T, S)-fuzzy lattice ideals
and discuss some of their properties. We believe that our work would serve as a
foundation for enriching corresponding lattice-valued logical system based on lattice
implication algebras.

2 Preliminaries

Definition 1 ([2]) Let (L ,∨,∧, ′,→, O, I ) be a bounded lattice with an order-
reversing involution ′, where I and O are the greatest and the smallest elements of
L respectively, →: L × L → L is a mapping. Then (L ,∨,∧, ′,→, O, I ) is called
a lattice implication algebra if the following conditions hold for all x, y, z ∈ L:
(I1) x → (y → z) = y → (x → z);
(I2) x → x = I ;
(I3) x → y = y′ → x ′;
(I4) x → y = y → x = I implies x = y;
(I5) (x → y) → y = (y → x) → x ;
(I6) (x ∨ y) → z = (x → z) ∧ (y → z);
(I7) (x ∧ y) → z = (x → z) ∨ (y → z).
In the sequel, for the sake of simplicity, a lattice implication algebra (L ,∨,∧,

′,→, O, I ) will be denoted by L .

Lemma 1 ([2]) Let L be a lattice implication algebra. Then for all x, y, z ∈ L
(p1) x � y if and only if x → y = I ;
(p2) O → x = I, I → x = x and x → I = I ;
(p3) x → y � (y → z) → (x → z) and x → y � (z → x) → (z → y);
(p4) y � z implies x → y � x → z, and x � y implies y → z � x → z;
(p5) x ∨ y = (x → y) → y;
(p6) x → (y ∧ z) = (x → y) ∧ (x → z) and x → (y ∨ z) = (x → y) ∨ (x → z);
(p7) x ⊕ y = y ⊕ x and (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z);
(p8) O ⊕ x = x, I ⊕ x = I and x ⊕ x ′ = I ;
(p9) x ∨ y � x ⊕ y and x � (x → y)′ ⊕ y;
(p10) x � y implies x ⊕ z � y ⊕ z;
where x ⊕ y = x ′ → y and x ′ = x → O.

Definition 2 ([1]) A lattice implication algebra L is said to be a lattice H implication
algebra, if the following condition holds for all x, y, z ∈ L ,

x ∨ y ∨ ((x ∧ y) → z) = I. (H)
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Remark 1 In a lattice H implication algebra L , it is easy to check that x ∨ y = x ′ →
y for all x, y ∈ L .

Definition 3 ([6]) Let L be a lattice implication algebra. An LI-ideal K is a non-
empty subset of L such that for all x, y ∈ L
(LI1) O ∈ K ;
(LI2) (x → y)′ ∈ K and y ∈ K imply x ∈ K .

Now we fix some notations for interval-valued fuzzy set. ā = [a−, a+] is a closed
interval of [0, 1], where 0 � a− � a+ � 1, D[0, 1] is the set containing all such
closed intervals of [0, 1]. The interval [a, a] is simply identified as a. Define on
D[0, 1] an order relation � as follows
(1) ā1 � ā2 ⇐⇒ a−

1 � a−
2 and a+

1 � a+
2 ;

(2) ā1 = ā2 ⇐⇒ a−
1 = a−

2 and a+
1 = a+

2 ;
(3) ā1 ≺ ā2 ⇐⇒ ā1 � ā2 and ā1 �= ā2;
(4) kā = [ka−, ka+], whenever 0 � k � 1;
(5) max{ā1, ā2} = [max{a−

1 , a−
2 },max{a+

1 , a+
2 }];

(6) min{ā1, ā2} = [min{a−
1 , a−

2 },min{a+
1 , a+

2 }];
(7) sup{āλ}λ∈Λ = [sup{a−

λ }λ∈Λ, sup{a+
λ }λ∈Λ];

(8) inf{āλ}λ∈Λ = [inf{a−
λ }λ∈Λ, inf{a+

λ }λ∈Λ];
where ā1 = [a−

1 , a+
1 ], ā2 = [a−

2 , a+
2 ] ∈ D[0, 1] and {āλ}λ∈Λ ⊆ D[0, 1]. Then,

D[0, 1] with � forms a complete lattice, with ∨ = max,∧ = min, 0̄ = [0, 0] and
1̄ = [1, 1] being its the smallest element and the greatest element, respectively.

Definition 4 ([19]) Let X be a non-empty set. An interval-valued fuzzy set on X
is a mapping Ῡ : X → D[0, 1] such that for all x ∈ X , Ῡ (x) = [Υ −(x), Υ +(x)],
where Υ − and Υ + are two fuzzy sets on X with Υ −(x) � Υ +(x). Let Ῡ be an
interval-valued fuzzy set on X . For all [0, 0] ≺ ᾱ � [1, 1], the crisp set Ῡᾱ = {x ∈
X |Ῡ (x) � ᾱ} is called a level subset of Ῡ .

Definition 5 ([19]) Let X be a non-empty set. An interval-valued intuitionistic fuzzy
set A on X is defined as an object of the form

A = {(x, Φ̄A , Ψ̄A )|x ∈ X},

where Φ̄A and Ψ̄A are two interval-valued fuzzy sets on X with [0, 0] � Φ̄A (x) +
Ψ̄A (x) � [1, 1], for all x ∈ X .

In the sequel, for the sake of simplicity, an interval-valued intuitionistic fuzzy set
on X will be denoted by the symbol A = (Φ̄A , Ψ̄A ).

Definition 6 ([20, 21]) Let T (resp. S) be a mapping form D[0, 1] × D[0, 1] to
D[0, 1]. T (resp. S) is called a t-norm (resp. s-norm) on D[0, 1], if it satisfies the
following conditions: for all ā, b̄, c̄ ∈ D[0, 1],
(1) T (ā, 1̄) = ā (resp. S(ā, 0̄) = ā);
(2) T (ā, b̄) = T (b̄, ā) (resp. S(ā, b̄) = S(b̄, ā));
(3) T (T (ā, b̄), c̄) = T (ā, T (b̄, c̄)) (resp. S(S(ā, b̄), c̄) = S(ā, S(b̄, c̄)));



340 C.-H. Liu

(4) ā � b̄ implies T (ā, c̄) � T (b̄, c̄) (resp. S(ā, c̄) � S(b̄, c̄)).
The set of all T -idempotent elements (resp. S-idempotent elements) denoted by
DT = {ā ∈ D[0, 1]|T (ā, ā) = ā} (resp. DS = {ā ∈ D[0, 1]|S(ā, ā) = ā}). An
interval-valued fuzzy set Ῡ is said to satisfy the imaginable property under T (resp.
S), if ImῩ ⊆ DT (resp. ImῩ ⊆ DS).

3 Interval-Valued Intuitionistic (S, T)-Fuzzy LI-Ideals

In the sequel, We will use the symbols T and S to denote a t-norm and a s-norm on
D[0, 1] unless otherwise specified, and assume that all the t-norm and s-norm are
idempotent.

Definition 7 Let L be a lattice implication algebra. An interval-valued intuitionistic
fuzzy setA = (Φ̄A , Ψ̄A ) on L is said to be an interval-valued intuitionistic (T, S)-
fuzzy LI-ideal (IVI-(T, S)-fuzzy LI-ideal for short) of L , if it satisfies the following
conditions: for all x, y ∈ L ,
(a1) Φ̄A (O) � Φ̄A (x) and Ψ̄A (O) � Ψ̄A (x);
(a2) Φ̄A (x) � T (Φ̄A ((x → y)′), Φ̄A (y)) and Ψ̄A (x) � S(Ψ̄A ((x → y)′), Ψ̄A

(y)).
denote by IVILI(L) is the set containing all IVI-(T, S)-fuzzy LI-ideals of L .

Example 1 Let L = {O, a, b, c, d, I }, O ′ = I, a′ = c, b′ = d, c′ = a, d ′ = b, I ′ =
O , the Hasse diagram of L is defined as in Fig. 1 and its implication operator → is
defined as in Table1.

Then (L ,∨,∧, ′,→) is a lattice implication algebra. Define an interval-valued
intuitionistic fuzzy set A = (Φ̄A , Ψ̄A ) on L by Φ̄A (O) = Φ̄A (c) = [0.7, 0.8],
Φ̄A (x) = [0.3, 0.4], x ∈ L\{O, c}, and Ψ̄A (O) = Ψ̄A (c) = [0.1, 0.2], Φ̄A (x) =
[0.5, 0.6], x ∈ L\{O, c}. It is easily to verify thatA is an interval-valued intuitionis-
tic (T, S)-fuzzy LI-ideal of L . Where, for all ā = [a−, a+], b̄ = [b−, b+] ∈ D[0, 1],
T (ā, b̄) = [a−b−,max{a−b+, a+b−}] and S(ā, b̄) = max{ā, b̄}.
Proposition 1 Let L be a lattice implication algebra and A = (Φ̄A , Ψ̄A ) ∈
IVILI(L). Then for all x, y ∈ L,
(a3) x � y =⇒ Φ̄A (x) � Φ̄A (y) and Ψ̄A (x) � Ψ̄A (y).

Fig. 1 Hasse diagram of L
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Table 1 Definition of “→”

→ O a b c d I

O I I I I I I

a c I b c b I

b d a I b a I

c a a I I a I

d b I I b I I

I O a b c d I

Proof Assume that x, y ∈ L and x � y, then (x → y)′ = I ′ = O . Since A ∈
IVILI(L), by using (a2) and (a1), we have that Φ̄A (x) � T (Φ̄A ((x → y)′), Φ̄A

(y)) = T (Φ̄A (O), Φ̄A (y)) � T (Φ̄A (y), Φ̄A (y)) = Φ̄A (y) and Ψ̄A (x) � S(Ψ̄A

((x → y)′), Ψ̄A (y)) = S(Ψ̄A (O), Ψ̄A (y)) � S(Ψ̄A (y), Ψ̄A (y)) = Ψ̄A (y).Hence
(a3) is valid. �

Theorem 1 Let L be a lattice implication algebra andA = (Φ̄A , Ψ̄A ) an interval-
valued intuitionistic fuzzy set on L. Then A ∈ IVILI(L) if and only if, for all
x, y, z ∈ L, it satisfies the conditions (IVI1) and
(a4) Φ̄A ((x → z)′) � T (Φ̄A ((x → y)′), Φ̄A ((y → z)′)) and Ψ̄A ((x → z)′) �
S(Ψ̄A ((x → y)′), Ψ̄A ((y → z)′)).

Proof Assume that A ∈ IVILI(L) and x, y, z ∈ L . Then A satisfies (a1) by Defi-
nition 7. Since by (I3) and Lemma 1,

((x → z)′ → (y → z)′)′ → (x → y)′ = (x → y) → ((y → z) → (x → z)) = I,

we have (x → z)′ → (y → z)′)′ � (x → y)′. Thus, by (a2) and (a3) we
have Φ̄A ((x → z)′) � T (Φ̄A (((x → z)′ → (y → z)′)′), Φ̄A ((y → z)′)) � T
(Φ̄A ((x → y)′), Φ̄A ((y → z)′)) and Ψ̄A ((x → z)′) � S(Ψ̄A (((x → z)′ → (y →
z)′)′), Ψ̄A ((y → z)′)) � S(Ψ̄A ((x → y)′), Ψ̄A ((y → z)′)), HenceA also satisfies
(a4).

Conversely, assume that A satisfies (a1) and (a4). In order to show that A ∈
IVILI(L), it is sufficient to show that A satisfies (a2) by Definition 7. In fact,
since (x → O)′ = x for any x ∈ L , by (a4) we have Φ̄A (x) = Φ̄A ((x → O)′) �
T (Φ̄A ((x → y)′), Φ̄A ((y → O)′)) = T (Φ̄A ((x → y)′), Φ̄A (y)) and Ψ̄A (x) =
Ψ̄A ((x → O)′) � S(Ψ̄A ((x → y)′), Ψ̄A ((y → O)′)) = S(Ψ̄A ((x → y)′), Ψ̄A

(y)). Hence A satisfies (a2) and the proof is completed. �

Theorem 2 Let L be a lattice implication algebra andA = (Φ̄A , Ψ̄A ) an interval-
valued intuitionistic fuzzy set on L. ThenA ∈ IVILI(L) if and only if it satisfies the
condition: for all x, y, z ∈ L,
(a5) z � x ⊕ y=⇒ Φ̄A (z) � T (Φ̄A (x), Φ̄A (y))and Ψ̄A (z) � S(Ψ̄A (x), Ψ̄A (y)).
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Proof Assume that A ∈ IVILI(L) and x, y, z ∈ L . If z � x ⊕ y, then by Lemma
1 and (I5) we can get that

I = z → (x ⊕ y) = z → (x ′ → y) = x ′ → (z → y) = (z → y)′ → x,

and so ((z → y)′ → x)′ = O . Thus, by using (a2),we have that

Φ̄A (z) �T (Φ̄A ((z → y)′), Φ̄A (y))

�T (T (Φ̄A (((z → y)′ → x)′), Φ̄A (x)), Φ̄A (y))

=T (T (Φ̄A (O), Φ̄A (x)), Φ̄A (y))

�T (T (Φ̄A (x), Φ̄A (x)), Φ̄A (y))

=T (Φ̄A (x), Φ̄A (y)),

and

Ψ̄A (z) �S(Ψ̄A ((z → y)′), Ψ̄A (y))

�S(S(Ψ̄A (((z → y)′ → x)′), Ψ̄A (x)), Ψ̄A (y))

=S(S(Ψ̄A (O), Ψ̄A (x)), Ψ̄A (y))

�S(S(Ψ̄A (x), Ψ̄A (x)), Ψ̄A (y))

=S(Ψ̄A (x), Ψ̄A (y)),

that is, A satisfies condition (a5).
Conversely, assume that A satisfies the condition (a5). On the one hand, since

O � x ⊕ x for any x ∈ L , we have Φ̄A (O) � T (Φ̄A (x), Φ̄A (x)) = Φ̄A (x) and
Ψ̄A (O) � S(Ψ̄A (x), Ψ̄A (x)) = Ψ̄A (x), that is, A satisfies condition (a1). On the
other hand, for all x, y ∈ L , it follows from x � (x → y)′ ⊕ y that Φ̄A (x) �
T (Φ̄A ((x → y)′), Φ̄A (y)) and Ψ̄A (x) � S(Ψ̄A ((x → y)′), Ψ̄A (y)), that is, A
also satisfies condition (a2). By Definition 7, we have A ∈ IVILI(L). �

Remark 2 Let L be a lattice implication algebra. for all x, y, z ∈ L , since z � x ⊕ y
if and only if (z → x)′ � y if and only if x ′ → (y′ → z′) = I , from Theorem 2, we
have the following:

Corollary 1 Let L be a lattice implication algebra andA = (Φ̄A , Ψ̄A ) an interval-
valued intuitionistic fuzzy set on L. ThenA ∈ IVILI(L) if and only if it satisfies one
of the following conditions: for all x, y, z ∈ L,
(a6) (z → x)′ � y implies Φ̄A (z) � T (Φ̄A (x), Φ̄A (y)) and Ψ̄A (z) � S(Ψ̄A (x),
Ψ̄A (y));
(a7) x ′ → (y′ → z′) = I implies Φ̄A (z) � T (Φ̄A (x), Φ̄A (y))and Ψ̄A (z) � S(Ψ̄A

(x), Ψ̄A (y)).

Theorem 3 Let L be a lattice implication algebra andA = (Φ̄A , Ψ̄A ) an interval-
valued intuitionistic fuzzy set on L. Then A ∈ IVILI(L) if and only if, for all
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x, y ∈ L, it satisfies conditions (IVI3) and
(a8) Φ̄A (x ⊕ y) � T (Φ̄A (x), Φ̄A (y)) and Ψ̄A (x ⊕ y) � S(Ψ̄A (x), Ψ̄A (y)).

Proof Assume that A ∈ IVILI(L), then A satisfies the condition (a5) by Theo-
rem 2. Let x, y ∈ L , if x � y, then x � y � y ⊕ y by (p9). From (a5), it follows
that Φ̄A (x) � T (Φ̄A (y), Φ̄A (y)) = Φ̄A (y) and Ψ̄A (x) � S(Ψ̄A (y), Ψ̄A (y)) =
Ψ̄A (y), that is, A satisfies condition (a3). Since x ⊕ y � x ⊕ y, by (a5) we have
Φ̄A (x ⊕ y) � T (Φ̄A (x), Φ̄A (y)) and Ψ̄A (x ⊕ y) � S(Ψ̄A (x), Ψ̄A (y)), that is,A
also satisfies condition (a8).

Conversely, assume that A satisfies the conditions (a3) and (a8). Obviously,
Φ̄A (O) � Φ̄A (x) and Ψ̄A (O) � Ψ̄A (x) by O � x and (a3), that is, A satisfies
condition (a1). Let x, y ∈ L , since x � (x → y)′ ⊕ y, by using (a3) and (a8),wehave
Φ̄A (x) � Φ̄A ((x → y)′ ⊕ y) � T (Φ̄A ((x → y)′), Φ̄A (y)) and Ψ̄A (x) � Ψ̄A

((x → y)′ ⊕ y) � S(Ψ̄A ((x → y)′), Ψ̄A (y)), that is, A satisfies condition (a2).
Hence A ∈ IVILI(L) by Definition 7. �

Theorem 4 Let L be a lattice implication algebra andA = (Φ̄A , Ψ̄A ) an interval-
valued intuitionistic fuzzy set on L. Then A ∈ IVILI(L) if and only if, for all
ᾱ, β̄ ∈ D[0, 1] with ᾱ + β̄ � [1, 1], the sets U (Φ̄A ; ᾱ)( �= ∅) and V (Ψ̄A ; β̄)( �= ∅)

areLI-ideals of L.WhereU (Φ̄A ; ᾱ) = {x ∈ L|Φ̄A (x) � ᾱ} and V (Ψ̄A ; β̄) = {x ∈
L|Ψ̄A (x) � β̄}.
Proof Assume that A ∈ IVILI(L), then for all x ∈ L , by (a1) we have Φ̄A (O) �
Φ̄A (x) and Ψ̄A (O) � Ψ̄A (x). From conditions U (Φ̄A ; ᾱ) �= ∅ and V (Ψ̄A ; β̄) �=
∅, it follows that there existsa, b ∈ L such that Φ̄A (O) � Φ̄A (a) � ᾱ and Ψ̄A (O) �
Ψ̄A (b) � β̄. Hence O ∈ U (Φ̄A ; ᾱ) and O ∈ V (Ψ̄A ; β̄).

For all x, y ∈ L , let (x → y)′ ∈ U (Φ̄A ; ᾱ) and y ∈ U (Φ̄A ; ᾱ), then Φ̄A ((x →
y)′) � ᾱ and Φ̄A (y) � ᾱ. Since A ∈ IVILI(L), by using (a2) we have Φ̄A (x) �
T (Φ̄A ((x → y)′), Φ̄A (y)) � T (ᾱ, ᾱ) = ᾱ, thus x ∈ U (Φ̄A ; ᾱ). Therefore
U (Φ̄A ; ᾱ) is an LI-ideal of L .

For all x, y ∈ L , let (x → y)′ ∈ V (Ψ̄A ; β̄) and y ∈ V (Ψ̄A ; β̄), then Ψ̄A ((x →
y)′) � β̄ and Ψ̄A (y) � β̄. Since A ∈ IVILI(L), by using (a2) we have Ψ̄A (x) �
S(Ψ̄A ((x → y)′), Ψ̄A (y)) � T (β̄, β̄) = β̄, thus x ∈ V (Ψ̄A ; β̄). Therefore
V (Ψ̄A ; β̄) is an LI-ideal of L too.

Conversely, assume that U (Φ̄A ; ᾱ)( �= ∅) and V (Ψ̄A ; β̄)( �= ∅) are LI-ideals of
L . Since for any x ∈ L , x ∈ U (Φ̄A ; Φ̄A (x)) and x ∈ V (Ψ̄A ; Ψ̄A (x)), we have
U (Φ̄A ; Φ̄A (x)) �= ∅ and V (Ψ̄A ; Ψ̄A (x)) �= ∅, thus U (Φ̄A ;
Φ̄A (x)) and V (Ψ̄A ; Ψ̄A (x)) are LI-ideals of L , and thus O ∈ U (Φ̄A ; Φ̄A (x)) and
O ∈ V (Ψ̄A ; Ψ̄A (x)), this shows that Φ̄A (O) � Φ̄A (x) and Ψ̄A (O) � Ψ̄A (x), that
is, A satisfies condition (a1).

For all x, y ∈ L , let ᾱ = T (Φ̄A ((x → y)′), Φ̄A (y)) and β̄ = S(Ψ̄A ((x → y)′),
Ψ̄A (y)), then (x → y)′, y ∈ U (Φ̄A ; ᾱ) and (x → y)′, y ∈ V (Ψ̄A ; β̄). Therefore
Φ̄A (x) � T (Φ̄A ((x → y)′), Φ̄A (y)) and Ψ̄A (x) � S(Ψ̄A ((x → y)′), Ψ̄A (y)),
that is, A also satisfies condition (a2). Hence A ∈ IVILI(L) by Definition 7. �
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Suppose L be a lattice implication algebra and A an interval-valued intuition-
istic fuzzy set on L . For all ᾱ, β̄ ∈ D[0, 1], we define A(ᾱ,β̄) = {x ∈ L|Φ̄A (x) �
ᾱ and Ψ̄A (x) � β̄}.
Theorem 5 Let L be a lattice implication algebra, and A = (Φ̄A , Ψ̄A ) ∈ IVILI
(L). Then For all ᾱ, β̄ ∈ D[0, 1], A(ᾱ,β̄)( �= ∅) is an LI-ideal of L.

Proof Assume that A(ᾱ,β̄) �= ∅, then there exists x ∈ L such that Φ̄A (x) � ᾱ and

Ψ̄A (x) � β̄. Since A ∈ IVILI(L), by (a1) we have Φ̄A (O) � Φ̄A (x) � ᾱ and
Ψ̄A (O) � Ψ̄A (x) � β̄, therefore O ∈ A(ᾱ,β̄).

Let x, y ∈ L and (x → y)′ ∈ A(ᾱ,β̄), y ∈ A(ᾱ,β̄), then Φ̄A ((x → y)′) � ᾱ, Ψ̄A

((x → y)′) � β̄ and Φ̄A (y) � ᾱ, Ψ̄A (y) � β̄. Since A ∈ IVILI(L), by (a2) we
have Φ̄A (x) � T (Φ̄A ((x → y)′), Φ̄A (y)) � T (ᾱ, ᾱ) = ᾱ and Ψ̄A (x) � S(Ψ̄A

((x → y)′), Ψ̄A (y)) � S(β̄, β̄) = β̄, it follows that x ∈ A(ᾱ,β̄).
Hence A(ᾱ,β̄) is an LI-ideal of L by Definition 3. �

Remark 3 Let L be a lattice implication algebra, the LI-ideal A(ᾱ,β̄) in Theorem 5
is called an IVI-(T, S)-cut LI-ideal of IVI-(T, S)-fuzzy LI-ideal A of L .

Theorem 6 Let L be a lattice implication algebra. Then any LI-ideal K of L is an
IVI-(T, S)-cut LI-ideal of some IVI-(T, S)-fuzzy LI-ideal of L.

Proof Define an interval-valued intuitionistic fuzzy set A = (Φ̄A , Ψ̄A ) on L by

Φ̄A (x) =
{

ᾱ, x ∈ K

[0, 0], x /∈ K
and Ψ̄A (x) =

{
[1, 1] − ᾱ, x ∈ K

[1, 1], x /∈ K

where ᾱ ∈ D[0, 1]. Since K is an LI-ideal of L , we have O ∈ K . Therefore
Φ̄A (O) = ᾱ � Φ̄A (x) and Ψ̄A (O) = [1, 1] − ᾱ � Ψ̄A (x), for all x ∈ L . This
shows that A satisfies (a1).

For all x, y ∈ L , if x ∈ K , then we have Φ̄A (x) = ᾱ = T (ᾱ, ᾱ) � T (Φ̄A ((x →
y)′), Φ̄A (y)) and Ψ̄A (x) = [1, 1] − ᾱ = S([1, 1] − ᾱ, [1, 1] − ᾱ) � T (Ψ̄A ((x →
y′)), Ψ̄A (y)). If x /∈ K , then (x → y)′ /∈ K or y /∈ K by K is anLI-ideal of L . Hence
Φ̄A (x) = [0, 0] = T (Φ̄A ((x → y)′), Φ̄A (y)) and Ψ̄A (x) = [1, 1] = S(Ψ̄A ((x →
y′)), Ψ̄A (y)). These show that A satisfies (a2).

Therefore A is an IVI-(T, S)-fuzzy LI-ideal of L . �

Theorem 7 Let L be a lattice implication algebra, and A = (Φ̄A , Ψ̄A ) ∈ IVILI
(L). Then K (A ) = {x ∈ L|Φ̄A (x) = Φ̄A (O) and Ψ̄A (x) = Ψ̄A (O)} is anLI-ideal
of L.

Proof Obviously, O ∈ K (A ) by the definition of K (A ). For any x, y ∈ L , let
(x → y)′ ∈ K (A ) and y ∈ K (A ), then Φ̄A ((x → y)′) = Φ̄A (y) = Φ̄A (O) and
Ψ̄A ((x → y)′) = Ψ̄A (y) = Ψ̄A (O). It follows fromA ∈ IVILI(L) that Φ̄A (x) �
T (Φ̄A ((x → y)′), Φ̄A (y)) = T (Φ̄A (O), Φ̄A (O)) = Φ̄A (O) and Ψ̄A (x) � S
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(Ψ̄A ((x → y)′), Ψ̄A (y)) = S(Ψ̄A (O), Ψ̄A (O))= Ψ̄A (O), these togetherwith Φ̄A

(O) � Φ̄A (x) and Ψ̄A (O) � Ψ̄A (x),wehave that Φ̄A (x) = Φ̄A (O) and Ψ̄A (x) =
Ψ̄A (O), thus x ∈ K (A ). It follows that K (A ) is an LI-ideal of L . �

4 Interval-Valued Intuitionistic (S, T)-Fuzzy Lattice Ideals

Definition 8 Let L be a lattice implication algebra. An interval-valued intuitionistic
fuzzy setA = (Φ̄A , Ψ̄A ) on L is said to be an interval-valued intuitionistic (T, S)-
fuzzy lattice ideal (IVI-(T, S)-fuzzy lattice ideal for short) of L , if for all x, y ∈ L ,
it satisfies the conditions (IVI3) and
(a9) Φ̄A (x ∨ y) � T (Φ̄A (x), Φ̄A (y)) and Ψ̄A (x ∨ y) � S(Ψ̄A (x), Ψ̄A (y)).

Example 2 Let L be the lattice implication algebra given in Example 1. We de-
fine an interval-valued intuitionistic fuzzy set A = (Φ̄A , Ψ̄A ) on L by Φ̄A (O) =
Φ̄A (d) = [0.7, 0.8], Φ̄A (x) = [0.3, 0.4], x ∈ L\{O, d}, and Ψ̄A (O) = Ψ̄A (d) =
[0.1, 0.2], Φ̄A (x) = [0.5, 0.6], x ∈ L\{O, d}. It is easy to verify that A is an
interval-valued intuitionistic (T, S)-fuzzy lattice ideal of L . Where, for all ā =
[a−, a+], b̄ = [b−, b+] ∈ D[0, 1], T (ā, b̄) = [a−b−,max{a−b+, a+b−}] and
S(ā, b̄) = max{ā, b̄}.
Theorem 8 Let L be a lattice implication algebra, and A = (Φ̄A , Ψ̄A ) ∈ IVILI
(L). Then A is an IVI-(T, S)-fuzzy lattice ideal of L.

Proof Assume that A ∈ IVILI(L). Proposition 1 shows that A satisfies the con-
dition (a3). Let x, y ∈ L , since ((x ∨ y) → y)′ = ((x → y) ∧ (y → y))′ = (x →
y)′ � x , by (a2) and (a3)wehave Φ̄A (x ∨ y) � T (Φ̄A (((x ∨ y) → y)′), Φ̄A (y)) �
T (Φ̄A (x), Φ̄A (y)) and Ψ̄A (x ∨ y) � S(Ψ̄A (((x ∨ y) → y)′), Ψ̄A (y)) � S
(Ψ̄A (x), Ψ̄A (y)).

Hence A satisfies the condition (a9). Therefore A is IVI-(T, S)-fuzzy lattice
ideal of L by Definition 8. �

Remark 4 In general, the converse of Theorem 8 is not true. For example, the IVI-
(T, S)-fuzzy lattice idealA of L given in Example 2 is not an IVI-(T, S)-fuzzy LI-
ideal of L . Since Φ̄A (a) = [0.3, 0.4] ≺ [0.7, 0.8] = T (Φ̄A ((a → d)′), Φ̄A (d)).

Theorem 9 Let L be a lattice H implication algebra and A = (Φ̄A , Ψ̄A ) an IVI-
(T, S)-fuzzy lattice ideal of L. Then A ∈ IVILI(L).

Proof Assume that A is an IVI-(T, S)-fuzzy lattice ideal of lattice H implication
algebra L . Since O � x for any x ∈ L , by (a3) we have Φ̄A (O) � Φ̄A (x) and
Ψ̄A (O) � Ψ̄A (x). Thus A satisfies the condition (a1). Let x, y ∈ L , we have
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Φ̄A (x) � Φ̄A (x ∨ y) = Φ̄A ((x → y) → y) [by (a3) and Lemma 1]
= Φ̄A (y ∨ (x → y)′) [by property H]
� T (Φ̄A ((x → y)′), Φ̄A (y)) [by (a9)]

Ψ̄A (x) � Ψ̄A (x ∨ y) = Ψ̄A ((x → y) → y) [by (a3) and Lemma 1]
= Ψ̄A (y ∨ (x → y)′) [by property H]
� S(Ψ̄A ((x → y)′), Ψ̄A (y)) [by (a9)]

thus A satisfies condition (a2).
Hence we have A ∈ IVILI(L) by Definition 7. �

5 Concluding Remarks

In this paper, we combined the notions of interval valued intuitionistic fuzzy sets,
t-norm T and s-norm S on D[0, 1] with the notion of ideals in lattice implication al-
gebras, introduced the concepts interval-valued intuitionistic (T, S)-fuzzy LI-ideals
and interval-valued intuitionistic (T, S)-fuzzy lattice ideals. Some their properties,
characterizations and the relations between them were discussed. Several interesting
results were obtained. This work gives interactions between Lattice-Valued Logic
and the theory of interval-valued intuitionistic fuzzy sets. It should be noticed that
other type interval-valued intuitionistic (T, S)-fuzzy ideals can also be considered in
lattice implication algebras and other logical algebras by using the similar methods.
We hope that more research topics of Lattice-Valued Logic will arise along this line.
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Tense Operators on Pseudo-MV Algebras

Wen-Juan Chen

Abstract In this paper the concept of tense operators on a pseudo-MV algebra is
introduced. Since a pseudo-MV algebra can be regarded as an axiomatization of non-
commutative infinite-valued Łukasiewicz logic, these tense operators are considered
to quantify the dimension, i.e. one expresses “it is always going to be the case that” and
the other expresses “it has always been the case that”.We investigate basic properties
of tense operators on pseudo-MV algebras and characterize the homomorphism of
tense pseudo-MV algebras. Finally, we define a stronger version of tense pseudo-MV
algebras and discuss the properties of filters under tense operators.

Keywords Tense operators · Pseudo-MV algebras · Tense pseudo-MV algebras ·
Filters

1 Introduction

It is well known that propositional logics do not incorporate dimension of time. To
obtain a tense logic, the propositional calculus is enriched by adding new unary
operations G, H , F and P in [3] which are called tense operators. The tense operator
G usually expresses “it is always going to the case that” and H expresses “it has
always been the case that”, while the operators F and P can be defined by means of
G and H , they usually express “it will at some time be the case that” and “it has at
some time been the case that”.

Study of tense operators was originated in the 1980s. In [3], tense operators were
firstly introduced for the classical propositional logic as operators on the correspond-
ing Boolean algebra satisfying the axioms:
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(B1) G(1) = 1, H(1) = 1;
(B2) G(x ∧ y) = Gx ∧ Gy, H(x ∧ y) = Hx ∧ Hy;
(B3) x ≤ GPx , x ≤ HFx .

Subsequently, to introduce tense operators in non-classical logics, the list of
axioms for tense operators has been enlarged. For example, for Heyting algebras
it was done in [4], for effect algebras see [5, 6], for basic algebras it was done in [2],
for other interesting algebras the reader is referred to [7–10]. Among them, let us
mention that tense MV-algebras were introduced in [8] which offered the algebraic
framework in order to develop some tense many-valued logics. Many authors have
investigated the representation of tense MV-algebras in [1, 8, 16].

On the other hand, the concepts of pseudo-MV algebras were introduced by
Georgescu and Iorgulescu in [11, 12] and Rachunek in [17], respectively, as a non-
commutative generalization of MV-algebras. Meanwhile, the pseudo-MV algebra
can be regarded as an algebraic structure for the non-commutative infinite-valved
Łukasiewicz propositional calculus [15]. Hence to introduce non-commutative tense
many-valued logic, we investigate tense operators on pseudo-MV algebras in this
paper.

The paper is organized as follows. In Sect. 2, we recall some definitions and results
which will be used in what follows. In Sect. 3, we define tense pseudo-MV algebras
and show the main results of our paper.

2 Preliminaries

In this section, we recall some definitions and results which will be used in what
follows. Tense MV-algebras were introduced by Diagonescu and Georgescu in [8].

Definition 1 [8] Let A = 〈A;⊕,′ , 1〉 be an MV-algebra. We say that (A,G, H) is
a tense MV-algebra, if G and H are unary operations on A which are called tense
operators and the following axioms are satisfied for all x, y ∈ A:
(TM1) G(1) = H(1) = 1;
(TM2) G(x → y) ≤ G(x) → G(y), H(x → y) ≤ H(x) → H(y), where x → y =
x ′ ⊕ y;
(TM3) Gx ⊕ Gy ≤ G(x ⊕ y), Hx ⊕ Hy ≤ H(x ⊕ y);
(TM4) G(x ⊕ x) ≤ Gx ⊕ Gx , H(x ⊕ x) ≤ Hx ⊕ Hx ;
(TM5) Fx ⊕ Fx ≤ F(x ⊕ x), Px ⊕ Px ≤ P(x ⊕ x), where F and P are the unary
operations on A defined by Fx = (Gx ′)′, Px = (Hx ′)′;
(TM6) x ≤ GP(x), x ≤ HF(x).

In [8], the authors showed that if (A,G, H) is a tense MV-algebra, then axiom
(TM2) is equivalent to the following conditions for all x, y ∈ A, (TM2′)Gx 
 Gy ≤
G(x 
 y) and Hx 
 Hy ≤ H(x 
 y); (TM2′′) G and H are increasing, i.e., x ≤ y
implies Gx ≤ Gy and Hx ≤ Hy. Hence based on axiom (TM2′′), for all x ∈ A, we
have G(0) ≤ Gx and H(0) ≤ Hx .
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Let A = 〈A;⊕,′ , 1〉 be an MV-algebra. Then we can define some operations
as follows: x 
 y = (x ′ ⊕ y′)′, x � y = y′ 
 x and 0 = 1′. Below we give a new
characterization of tense MV-algebra.

Proposition 1 Let A = 〈A;⊕,′ , 1〉 be an MV-algebra. If F and P are unary oper-
ations on A and the following axioms are satisfied for all x, y ∈ A:
(DTM1) F(0) = P(0) = 0;
(DTM2) F(x � y) ≥ F(x) � F(y), P(x � y) ≥ P(x) � P(y);
(DTM3) Fx 
 Fy ≥ F(x 
 y), Px 
 Py ≥ P(x 
 y);
(DTM4) F(x 
 x) ≥ Fx 
 Fx, P(x 
 x) ≥ Px 
 Px;
(DTM5) Gx 
 Gx ≥ G(x 
 x), Hx 
 Hx ≥ H(x 
 x), where G and H are the
unary operations on A defined by Gx = (Fx ′)′, Hx = (Px ′)′;
(DTM6) x ≥ FH(x), x ≥ PG(x).

Then (A,G, H) is a tense MV-algebra.

Proof It is easy to verify that (A,G, H) satisfies axioms (TM1)-(TM6) in
Definition 1. We omit the details for brevity. �

Let (A,G, H) be a tense MV-algebra. Define a unary operation ρ on A by ρx =
x 
 Gx 
 Hx for x ∈ A. Then ρx ≤ x for x ∈ A. For n ∈ N, we can define ρnx by
induction: ρ0x = x and ρn+1x = ρ(ρnx).

Proposition 2 ([8]) Let (A,G, H) be a tense MV-algebra. Then the following two
conditions are equivalent:
(1) (A,G, H) is a simple tense MV-algebra;
(2) For each a ∈ A \ {1} there exists n ∈ N such that ρn(an) = 0.

Proposition 3 ([8]) Let (A,G, H) be a tense MV-algebra. Then the following two
conditions are equivalent:
(1) (A,G, H) is a subdirectly irreducible tense MV-algebra;
(2) There exists b ∈ A \ {1} such that for all a ∈ A \ {1} there exists n ∈ N such that
ρn(an) ≤ b.

3 Tense Pseudo-MV Algebras

In this sectionwe define tense pseudo-MValgebras and discuss some basic properties
of these structures. Thenwegive a strongversionof tense pseudo-MValgebras, called
strong tense pseudo-MV algebras and characterize filters under tense operators.

Recall that a pseudo-MV algebra is an algebra A = 〈A;⊕,− ,∼ , 1〉 satisfying the
following axioms for all x, y, z ∈ A:
(P1) 1− = 1∼ (is denoted by 0);
(P2) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z;
(P3) x ⊕ 1− = 1− ⊕ x = x ;
(P4) x ⊕ 1 = 1 ⊕ x = 1;
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(P5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−;
(P6) x ⊕ (x∼ 
 y) = y ⊕ (y∼ 
 x) = (x 
 y−) ⊕ y = (y 
 x−) ⊕ x ;
(P7) x 
 (x− ⊕ y) = (x ⊕ y∼) 
 y;
(P8) x−∼ = x , where y 
 x = (x− ⊕ y−)∼.

A pseudo-MV algebraA is anMV-algebra if the operation⊕ is commutative, i.e.,
x ⊕ y = y ⊕ x .

On pseudo-MV algebra A, we can define the following operations x →L y =
x− ⊕ y, x →R y = y ⊕ x∼, x �L y = y∼ 
 x , x �R y = x 
 y−, x ∨ y = x ⊕
(x∼ 
 y) and x ∧ y = (x− ∨ y−)∼. We also define a natural partial order relation:
x ≤ y if andonly if x ∨ y = y.With respect to this relation, 〈A; ∨,∧,≤〉 is a bounded
lattice.

Now, we give the definition of tense pseudo-MV algebras.

Definition 2 Let A = 〈A;⊕,− ,∼ , 1〉 be a pseudo-MV algebra and G, H unary
operations on A satisfying the following axioms for all x, y ∈ A:
(TP1) G(1) = H(1) = 1;
(TP2) Gx ⊕ Gy ≤ G(x ⊕ y), Hx ⊕ Hy ≤ H(x ⊕ y);
(TP3) G(x →L y) ≤ Gx →L Gy, G(x →R y) ≤ Gx →R Gy,
H(x →L y) ≤ Hx →L Hy, H(x →R y) ≤ Hx →R Hy;
(TP4) G(x ⊕ x) ≤ Gx ⊕ Gx , H(x ⊕ x) ≤ Hx ⊕ Hx ;
(TP5) Fx ⊕ Fx ≤ F(x ⊕ x), Px ⊕ Px ≤ P(x ⊕ x), where F and P are the
unary operations on A defined by Fx = (Gx−)∼ = (Gx∼)− and Px = (Hx∼)− =
(Hx−)∼;
(TP6) x ≤ GPx , x ≤ HFx .

Then (A,G, H) is called a tense pseudo-MV algebra and G, H are called tense
operators.

Remark 1 Let A be a pseudo-MV algebra. If the operation ⊕ is commutative, then
the unary operations − and ∼ coincide, we have x →L y = x →R y, so (A,G, H)

is a tense MV-algebra.

Example 1 Let A be a pseudo-MV algebra. Define unary operations G = H such
that G(1) = 1 and G(x) = 0 for 1 �= x ∈ A. Then (A,G, H) is a tense pseudo-MV
algebra.

Example 2 Let A be a pseudo-MV algebra. Define the unary operations G(x) =
H(x) = x for each x ∈ A. Then (A,G, H) is a tense pseudo-MV algebra.

A frame is a pair (X, R), where X is a non-empty set and R is a binary relation on
X . The notion of frame allows us to construct another example of tense pseudo-MV
algebra.

Example 3 Let L be a complete pseudo-MV chain, (X, R) a frame and G∗,
H∗ the unary operations on the pseudo-MV algebra LX defined by G∗(p)(x) =∧

y∈X {p(y)|x Ry}, H∗(p)(x) = ∧
y∈X {p(y)|yRx} for p ∈ LX and x ∈ X . Then

(LX ,G∗, H∗) is a tense pseudo-MV algebra.
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Below we list elementary properties of tense pseudo-MV algebras.

Proposition 4 Let (A,G, H) be a tense pseudo-MV algebra. Then we have

(1) if x ≤ y, then Gx ≤ Gy, Hx ≤ Hy, Fx ≤ Fy, Px ≤ Py;
(2) G(x →L y) ≤ Fx →L Fy, G(x →R y) ≤ Fx →R Fy, H(x →L y) ≤

Px →L Py, H(x →R y) ≤ Px →R Py;
(3) Fx �L Fy ≤ F(x �L y), Fx �R Fy≤F(x �R y), Px �L Py≤P(x �L y),

Px �R Py ≤ P(x �R y);
(4) Gx 
 Gy ≤ G(x 
 y), Hx 
 Hy ≤ H(x 
 y), F(x 
 y) ≤ Fx 
 Fy,

P(x 
 y) ≤ Px 
 Py;
(5) F(x ⊕ y) ≤ Fx ⊕ Fy, P(x ⊕ y) ≤ Px ⊕ Py;
(6) G(x ∨ y) ≤ Fx ∨ Gy, H(x ∨ y) ≤ Px ∨ Hy; Gx ∧ Fy ≤ F(x ∧ y), Hx ∧

Py ≤ P(x ∧ y);
(7) G(x ⊕ x) = Gx ⊕ Gx, G(x 
 x) = Gx 
 Gx, H(x ⊕ x) = Hx ⊕ Hx,

H(x 
 x) = Hx 
 Hx, F(x ⊕ x) = Fx ⊕ Fx, F(x 
 x) = Fx 
 Fx,
P(x ⊕ x) = Px ⊕ Px, P(x 
 x) = Px 
 Px;

(8) Fx 
 y ≤ F(x 
 Py), Px 
 y ≤ P(x 
 Fy), G(Hx ⊕ y) ≤ x ⊕ Gy,
H(Gx ⊕ y) ≤ x ⊕ Hy;

(9) PG(x) ≤ x, FH(x) ≤ x;
(10) PGP = P,GPG = G, HFH = H, FHF = F;
(11) G and H preserve arbitrary existing infima; While F and P preserve arbitrary

existing suprema.

Proof (1) Since x ≤ y ⇔ x →L y = 1 ⇔ x →R y = 1, it follows that 1 = G(1) =
G(x →L y) ≤ Gx →L Gy by (TP1) and (TP3). Hence Gx →L Gy ≤ 1, we have
Gx →L Gy = 1, so Gx ≤ Gy. Similarly, we thus have Hx ≤ Hy. If x ≤ y, then
y− ≤ x−, we have G(y−) ≤ G(x−) and (Fx)− = G(x−), it turns out that (Fy)− ≤
(Fx)−, thus Fx ≤ Fy. Dually, we have Px ≤ Py.

(2) Since x →L y = y− →R x−, we have G(x →L y) = G(y− →R x−) ≤
G(y−) →R G(x−) = (Fy)− →R (Fx)− = Fx →L Fy. The rest can be proved
similarly.

(3)Wehave Fx �L Fy = (Fy)∼ 
 Fx = ((Fx)− ⊕ Fy)∼ = (Fx →L Fy)∼ ≤
(G(x →L y))∼ = F((x →L y)∼) = F(y∼ 
 x) = F(x �L y) using (2). The rest
can be proved similarly.

(4) We have Hx 
 Hy ≤ Hx 
 H(x∼ ∨ y) = Hx 
 H(x →R (x 
 y)) ≤ Hx

 (Hx →R H(x 
 y)) = Hx ∧ H(x 
 y) ≤ H(x 
 y). Similarly, Gx 
 Gy ≤
G(x 
 y). On the other hand, F(x 
 y) = (G(x 
 y)−)∼ = (G(y− ⊕ x−))∼ ≤
(G(y−) ⊕ G(x−))∼ = ((Fy)− ⊕ (Fx)−)∼ = Fx 
 Fy. Similarly, P(x 
 y) ≤
Px 
 Py.

(5)Wehave (F(x ⊕ y))− = G((x ⊕ y)−) = G(y− 
 x−) ≥ G(y−) 
 G(x−) =
(Fy)− 
 (Fx)− = (Fx ⊕ Fy)−, thus F(x ⊕ y) ≤ Fx ⊕ Fy. Similarly, P(x ⊕ y)
≤ Px ⊕ Py.

(6) We have Fx ∨ Gy = Gy ⊕ ((Fx)− ⊕ Gy)∼ = Gy ⊕ (G(x−) ⊕ Gy)∼ ≥
Gy ⊕ (G(x− ⊕ y))∼ = Gy ⊕ (G(x →L y))∼ = G(x →L y) →R Gy ≥ G((x →L

y) →R y) = G(x ∨ y). Similarly, H(x ∨ y) ≤ Px ∨ Hy. On the other hand, we
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have F(x ∧ y) = (G(x ∧ y)−)∼ = (G(x− ∨ y−))∼ ≥ (Fx− ∨ Gy−)∼ = (Fx−)∼
∧ (Gy−)∼ = Gx ∧ Fy. Similarly, Hx ∧ Py ≤ P(x ∧ y).

(7) By (TP2) and (TP4), we have G(x ⊕ x) = Gx ⊕ Gx . On the other hand,
G(x 
 x) = G((x∼ ⊕ x∼)−) = (F(x∼ ⊕ x∼))− ≤ (F(x∼) ⊕ F(x∼))− = ((Gx)∼
⊕ (Gx)∼)− = Gx 
 Gx . And by (4), we have Gx 
 Gx ≤ G(x 
 x). Thus G(x 

x) = Gx 
 Gx . The rest can be proved similarly.

(8) Since y ≤ x− ∨ y, we have Gy ≤ G(x− ∨ y) = G(x →L x 
 y) ≤ Fx →L

F(x 
 y) = (Fx)− ⊕ F(x 
 y) by (2), thus 1 = (Gy)− ⊕ Gy ≤ (Gy)−
⊕ ((Fx)− ⊕ F(x 
 y)) = ((Gy)− ⊕ (Fx)−) ⊕ F(x 
 y) = (Fx 
 Gy)− ⊕ F(x

 y), it turns out that (Fx 
 Gy)− ⊕ F(x 
 y) = 1, which implies that Fx 

Gy ≤ F(x 
 y).Hence Fx 
 y ≤ Fx 
 GPy ≤ F(x 
 Py). Similarly, Px 
 y ≤
P(x 
 Fy). On the other hand, G(Hx ⊕ y) = (F(Hx ⊕ y)∼)− = (F(y∼

 (Hx)∼))− = (F(y∼ 
 Px∼))− ≤ (Fy∼ 
 x∼)− = x ⊕ (Fy∼)− = x ⊕ Gy.
Similarly, H(Gx ⊕ y) ≤ x ⊕ Hy.

(9) Since Fx = (Gx−)∼, we have Fx∼ = (Gx)∼. By (TP6), it follows that x∼ ≤
HF(x∼) = H(Gx)∼, then PGx = (H(Gx)∼)− ≤ x∼− = x . Similarly, FHx ≤ x .

(10) Since x ≤ GPx , we have Px ≤ PGPx by (1). Using (9), it follows that
PGPx ≤ Px , thus PGPx = Px . The rest can be proved similarly.

(11) By (1), G(∧i∈I xi ) ≤ G(xi ) for all i ∈ I , we have G(∧i∈I xi ) ≤ ∧i∈I Gxi .
Suppose that y = ∧i∈I Gxi . Then y ≤ G(xi ) for all i ∈ I . Using (1) and (9), Py ≤
PG(xi ) ≤ xi for all i ∈ I , which implies Py ≤ ∧i∈I xi , it follows that y ≤ GPy ≤
G(∧i∈I xi ). Hence G(∧i∈I xi ) = ∧i∈I Gxi . Similarly, H(∧i∈I xi ) = ∧i∈I Hxi . On the
other hand, F(∨i∈I xi ) = (G(∨i∈I xi )−)∼ = (G(∧i∈I x−

i ))
∼ = (∧i∈I (Gx−

i∈I ))∼ =
∨i∈I Fxi . Similarly, P(∨i∈I xi ) = ∨i∈I Pxi . �

Following from Proposition 4, we will see that the tense operators F and P satisfy
conditions (DTP2)-(DTP5) in the next proposition. Moreover, it is easy to show that
F(0) = P(0) = 0 and FHx ≤ x , PGx ≤ x . Conversely, if the operations F and P
satisfy conditions (DTP1)-(DTP6), then (A,G, H) is a tense pseudo-MV algebra.
The proof is straightforward.

Proposition 5 Let A = 〈A;⊕,− ,∼ , 1〉 be a pseudo-MV algebra and F, P unary
operations on A satisfying the following conditions for all x, y ∈ A:
(DTP1) F(0) = P(0) = 0;
(DTP2) Fx 
 Fy ≤ F(x 
 y), Px 
 Py ≤ P(x 
 y);
(DTP3) F(x �L y) ≤ Fx �L Fy, F(x �R y) ≤ Fx �R Fy,

P(x �L y) ≤ Px �L Py, P(x �R y) ≤ Px �R Py;
(DTP4) F(x 
 x) ≤ Fx 
 Fx, P(x 
 x) ≤ Px 
 Px;
(DTP5) Gx 
 Gx ≤ G(x 
 x), Hx 
 Hx ≤ H(x 
 x), where G and H are the
unary operations of A defined by Gx = (F(x−))∼ and Hx = (P(x∼))−;
(DTP6) FHx ≤ x, PGx ≤ x.

Then (A,G, H) is a tense pseudo-MV algebra.

Let (A,G, H) be a tense pseudo-MV algebra. We define a unary operation d on
A by dx = x ∧ Gx ∧ Hx for any x ∈ A. Then dx ≤ x for any x ∈ A. For n ∈ N,
we define dnx by induction d0x = x and dn+1x = d(dnx).
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Lemma 1 Let (A,G, H) be a tense pseudo-MV algebra. Then for x, y ∈ A and
n ∈ N, the following statements hold:
(1) dn0 = 0, dn1 = 1, dn+1x ≤ dnx;
(2) if x ≤ y, then dnx ≤ dn y;
(3) x ≤ dn(dnx−)∼ and x ≤ dn(dnx∼)−;
(4) if dx = x, then dx− = x− and dx∼ = x∼;
(5) x = dx if and only if dnx = x.

Proof We only prove (3). The rest are obvious. Since x ≤ x ∧ GPx ∧ HFx ≤ (x ∨
Fx ∨ Px) ∧ G(x ∨ Fx ∨ Px) ∧ H(x ∨ Fx ∨ Px) = d(x ∨ Fx ∨ Px) = d(x ∨
(Gx∼)− ∨ (Hx∼)−) = d((x∼ ∧ Gx∼ ∧ Hx∼)−) = d(dx∼)−, we have (dnx∼)− ≤
d(d(dnx∼))− = d(dn+1x∼)−, it follows thatdn(dnx∼)− ≤ dn(d(dn+1x∼)−) = dn+1

(dn+1x∼)−. Thus (3) is true by induction. �

Proposition 6 Let (A,G, H) be a tense pseudo-MV algebra. Then d(A) = {x ∈
A|dx = x} is closed under the pseudo-MV operations of A, i.e., 〈d(A);⊕,− , ∼, 1〉
is a pseudo-MV subalgebra of A.

Proof Let x, y ∈ d(A). Then d(x ⊕ y) = (x ⊕ y) ∧ G(x ⊕ y) ∧ H(x ⊕ y). Since
dx = x and dy = y, it turns out that x ≤ Gx , x ≤ Hx and y ≤ Gy, y ≤ Hy.
By Definition 2 (2), we have x ⊕ y ≤ Gx ⊕ Gy ≤ G(x ⊕ y). Similarly, x ⊕ y ≤
H(x ⊕ y), so d(x ⊕ y) = x ⊕ y which implies that d(A) is closed under operation
⊕. According to Lemma 1, d(A) is closed under unary operations − and ∼. More-
over, sinced(0) = 0 andd(1) = 1,wehave 0, 1 ∈ d(A). Henced(A) is a pseudo-MV
subalgebra of A. �

Definition 3 Let (A1,G1, H1) and (A2,G2, H2) be tense pseudo-MV algebras.
A function f : (A1,G1, H1) → (A2,G2, H2) is called a homomorphism, if f :
A1 → A2 is a homomorphism of pseudo-MV algebras and f (G1x) = G2( f (x))
and f (H1x) = H2( f (x)) for all x ∈ A.

Remark 2 Let f : (A1,G1, H1) → (A2,G2, H2) be a homomorphism of tense
pseudo-MV algebras. If x ∈ d(A1), then f (x) ∈ d(A2). Hence we can define a
function f d = f |d(A1) : d(A1) → d(A2), it follows that f d is a homomorphism
of pseudo-MV algebras. In fact, the assignment A �→ d(A) and f �→ f d define a
covariant functor (.)d from the category of tense pseudo-MV algebras to the category
of pseudo-MV algebras

In the following, we characterize homomorphisms from an arbitrary tense pseudo-
MV algebra to the tense pseudo-MV algebra in Example 3.

Lemma 2 Let (A,G, H) be a tense pseudo-MV algebra, X a non-empty set, L
a complete pseudo-MV chain and f : A → LX a homomorphism of pseudo-MV
algebras. For x, y ∈ X, let

αxy = ∧
a∈A( f (a)(x) →R f (Pa)(y)); βxy = ∧

b∈A( f (b)(y) →L f (Fb)(x));
γxy = ∧

c∈A( f (Gc)(y) →R f (c)(x)); δxy = ∧
d∈A( f (Hd)(x) →L f (d)(y)).

Then αxy = βxy = γxy = δxy .
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Proof We have

βxy =
∧

b∈A

( f (b)(y) →L f (Fb)(x)) =
∧

c∈A

( f (c∼)(y) →L f (Fc∼)(x))

=
∧

c∈A

(( f (Fc∼)(x))− →R ( f (c∼)(y))−)

=
∧

c∈A

( f ((Fc∼)−)(x) →R f ((c∼)−)(y))

=
∧

c∈A

( f (Gc)(x) →R f (c)(y)) = γxy,

and

αxy =
∧

a∈A

( f (a)(x) →R f (Pa)(y)) =
∧

d∈A

( f (d−)(x) →R f (Pd−)(y))

=
∧

d∈A

(( f (Pd−)(y))∼ →L ( f (d−)(x))∼)

=
∧

d∈A

( f ((Pd−)∼)(y) →L f ((d−)∼)(x))

=
∧

d∈A

( f (Hd)(y) →L f (d)(x)) = δxy .

For any c ∈ A, since PGc− ≤ c− by Proposition 4(9), it follows that

αxy ≤ f (Gc−)(x) →R f (PGc−)(y)
≤ f (Gc−)(x) →R f (c−)(y)
= ( f (c−)(y))∼ →L ( f (Gc−))∼

= f (c)(y) →L f (Fc)(x),

therefore, αxy ≤ ∧c∈A( f (c)(y) →L f (Fc)(x)) = βxy .
On the other hand, for b ∈ A, since FHb∼ ≤ b∼ by Proposition 4(9) again, we

have

βxy ≤ f (Hb∼)(y) →L f (FHb∼)(y)
≤ f (Hb∼)(y) →L f (b∼)(x)
= ( f (b∼)(x))− →R ( f (Hb∼)(y))−

= f (b)(x) →R f (Pb)(y),

therefore, βxy ≤ ∧b∈A f (b)(x) →R f (Pb)(y) = αxy , it turns out that αxy = βxy .
Hence αxy = βxy = γxy = δxy . �
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Given a homomorphism of pseudo-MV algebras f : A → LX , we define the fol-
lowing binary relation R f on X : R f = {(x, y) ∈ X2|αxy = 1}.
Proposition 7 Let A and LX be pseudo-MV algebras and f : A → LX a homomor-
phism. Then the following assertions are equivalent:
(1) f : (A,G, H) → (LX ,G∗, H∗) is a homomorphism of tense pseudo-MV alge-
bras;
(2) For any a ∈ A and x ∈ X, the inequalities

∧{ f (a)(y)|x R f y} ≤ f (Ga)(x) and∧{ f (a)(y)|yR f x} ≤ f (Ha)(x) hold;
(3) For any a ∈ A and x ∈ X, the inequalities f (Fa)(x) ≤ ∨{ f (a)(y)|x R f y} and
f (Pa)(x) ≤ ∨{ f (a)(y)|yR f x} hold.
Proof The proof is similar to the case of tense MV-algebras. See [8]. �

Let A be a pseudo-MV algebra and F a nonempty subset of A. F is called a
filter of A if the following conditions are satisfied: (F1) 1 ∈ F; (F2) if x, y ∈ F, then
x 
 y ∈ F and y 
 x ∈ F; (F3) if x ∈ F and y ∈ Awith x ≤ y, then y ∈ F.Moreover,
a filter F with x 
 F = F 
 x for x ∈ A is called a normal filter. Any normal filter
F of A determines a congruence θF on A defined by 〈x, y〉 ∈ θF iff x →R y ∈ F
and y →R x ∈ F iff x →L y ∈ F and y →L x ∈ F. Conversely, a congruence θ on
A determines a normal filter Fθ of A defined by Fθ = {x ∈ A|〈x, 1〉 ∈ θ}. It is easy
to show that the correspondence between the set of all normal filters and the set of
all congruences is bijective.

Let (A,G, H) be a tense pseudo-MV algebra and F a filter of A. Then F is called
a tense filter of (A,G, H), if F is closed under operators G and H . In other words,
if F is a tense filter of A, then for all x ∈ F, we have Gx ∈ F and Hx ∈ F. If a tense
filter F is normal, then F is called a normal tense filter. On the other hand, let θ be a
congruence on A. If 〈x, y〉 ∈ θ implies 〈Gx,Gy〉 ∈ θ and 〈Hx, Hy〉 ∈ θ, then θ is
called a congruence on (A,G, H).

Proposition 8 Let (A,G, H) be a tense pseudo-MV algebra. Then there exists a
bijective correspondence between the normal tense filters of (A,G, H) and the con-
gruences on (A,G, H).

Proof Straightforward. �

Definition 4 Let (A,G, H) be a tense pseudo-MV algebra. If the tense operators
G and H satisfy G2x = Gx , H 2x = Hx and GHx = HGx = x for all x ∈ A, we
call (A,G, H) a strong tense pseudo-MV algebra.

Proposition 9 Let (A,G, H) be a strong tense pseudo-MV algebra. The tense filter
[a) of (A,G, H) generated by {a} has the following form [a) = {x ∈ A|x ≥ μn1

1 

μn2
2 
 · · · 
 μnt

t ,where μi ∈ {a,Ga, Ha}, ni ∈ N, i = 1, 2, . . . , t}.
Proof Obviously, 1 ∈ [a). Let x, y ∈ [a). Then x ≥ μn1

1 
 μn2
2 
 · · · 
 μnt

t where
μi ∈ {a,Ga, Ha}, ni ∈ N, i = 1, 2, . . . , t and y ≥ νm1

1 
 νm2
2 
 · · · 
 νms

s where
ν j ∈ {a,Ga, Ha},m j ∈ N, j = 1, 2, . . . , s. Then x 
 y ≥ μn1

1 
 μn2
2 
 · · · 
 μnt

t
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 νm1
1 
 νm2

2 
 · · · 
 νms
s where μi , ν j ∈ {a,Ga, Ha} and ni ,m j ∈ N, i = 1, 2,

. . . , t , j = 1, 2, . . . , s. Hence x 
 y ∈ [a). Similarly, y 
 x ∈ [a). Suppose that
x ∈ [a) and y ∈ Awith x ≤ y. Then y ∈ [a). For all x ∈ [a). Then x ≥ μn1

1 
 μn2
2 


· · · 
 μnt
t where μi ∈ {a,Ga, Ha}, ni ∈ N, i = 1, 2, . . . , t , it turns out that Gx ≥

G(μn1
1 ) 
 G(μn2

2 ) 
 · · · 
 G(μnt
t ) ≥ (Gμ1)

n1 
 (Gμ2)
n2 
 · · · 
 (Gμt )

nt where
Gμi ∈ {a,Ga} ⊆ {a,Ga, Ha}, thus Gx ∈ [a). Similarly, Hx ∈ [a). Hence [a) is
a tense filter of (A,G, H). �

Corollary 1 Let (A,G, H) be a strong tense MV-algebra. Then the tense fil-
ter [a) of (A,G, H) generated by {a} has the following form: [a) = {x ∈ A|x ≥
an1 
 (Ga)n2 
 (Ha)n3 , ni ∈ N, i = 1, 2, 3}. Moreover, [a) is normal.
Proposition 10 Let (A,G, H) be a strong tense MV-algebra. Then the following
assertions are equivalent:
(1) (A,G, H) is a simple strong tense MV-algebra;
(2) For each a ∈ A\{1}, there exist n1, n2, n3 ∈ N such that an1 
 (Ga)n2 

(Ha)n3 = 1.

Proposition 11 Let (A,G, H) be a strong tense MV-algebra. Then the following
assertions are equivalent:
(1) (A,G, H) is a subdirectly irreducible strong tense MV-algebra;
(2) There exists b ∈ A\{1} such that for any a ∈ A\{1} there exist n1, n2, n3 ∈ N

such that b ≤ an1 
 (Ga)n2 
 (Ha)n3 .

We denote B(A) = {x ∈ A|x ⊕ x = x}.
Corollary 2 Let (A,G, H) be a strong tense MV-algebra and a ∈ B(A). Then the
tense filter [a) of (A,G, H) generated by {a} is: [a) = {x ∈ A|x ≥ a 
 Ga 
 Ha}.
Moreover, [a) is normal.

4 Conclusions

In this paper, we investigate tense operators on pseudo-MV algebras which can be
regraded as a non-commutative generalization of tense MV-algebras. In view of
importance of filters in studying algebras of logics, we discuss properties of tense
filters in tense pseudo-MV algebras. In our future work, we will consider characteri-
zation of special tense filters and focus on tense operators on other non-commutative
logical algebras.
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( f, g)-Derivations on R0-Algebras

Hua-Rong Zhang

Abstract In this paper, the notions of ( f, g)-derivations and isotone ( f, g)-
derivations on R0-algebras are introduced and related properties are discussed. Some
characterization theorems of these derivations are derived. We give some equivalent
characterizations for isotone ( f, g)-derivations. Finally we investigate the properties
of ( f, g)-derivations on linearly-ordered R0-algebras.

Keywords ( f, g)-derivation · R0-algebra · Boolean element · Isotone ( f, g)-
derivation

1 Introduction

In [25], Wang proposed the notion of R0-algebras for the purpose of providing an
algebraic structure for fuzzy logic system L∗. Recently, algebraic theory of R0-
algebras has been intensively explored [8, 11, 17, 21, 27]. The notion of derivation,
introduced from analysis, is helpful to study the structure and property of algebraic
systems. In recent years, some authors [1, 3, 4, 15, 16, 22–24] have investigated
derivations in rings, near rings, prime rings and semiprime rings. After these studies,
several authors [10, 24, 26] discussed the derivations of lattices. Subsequently, the
research about generalized derivations on rings [9, 12] and lattices showed up. In
[6], Ceven and Ozturk studied f -derivations of lattices. Ceven [5] also discussed
symmetric bi-derivations of lattices. In [20], Ozbal and Firat introduced the notion
of symmetric f -bi-derivations of a lattice. Generalized ( f, g)-derivations on lattices
were investigated by Mustafa and Sahin [18]. The derivations and f -derivations of
BCI-algebras were defined and studied in [13, 14, 19]. In [2], Alshehri applied the
notion of derivations to MV-algebras [7] and discussed some properties.
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Now, in this paper, we study the ( f, g)-derivations on R0-algebras. Since deriva-
tions and f -derivation of R0-algebras are special ( f, g)-derivations, we can know the
corresponding properties of derivations and f -derivations from ( f, g)-derivations.

The paper is organized as follows. In Sect. 2, basic definitions and results are given.
In Sect. 3, we introduce the notion of ( f, g)-derivations on R0-algebras and study
their properties. In Sect. 4, we study the properties of isotone ( f, g)-derivations of R0-
algebras and givemany equivalent characterizations for isotone ( f, g)-derivations. In
Sect. 5,we particularly discuss the ( f, g)-derivations of linearly-orderedR0-algebras.

2 Preliminaries

Definition 1 ([25]) Let L be a bounded distributive lattice with order-reversing invo-
lution ′ and a binary operation →, (L, ′,∨,→) is called an R0-algebra if it satisfies
the following axioms:
(1) x → y = y′ → x ′;
(2) 1 → x = x ;
(3) (y → z) ∧ ((x → y) → (x → z)) = y → z;
(4) x → (y → z) = y → (x → z);
(5) x → (y ∨ z) = (x → y) ∨ (x → z);
(6) (x → y) ∨ ((x → y) → (x ′ ∨ y)) = 1.

Now, if we define x ≤ y if and only if x ∨ y = y for all x, y ∈ L, then according
to [25], ≤ is an order relation over L. If the order ≤ defined on L is total, then we
say that L is a linearly ordered R0-algebra.

Let L be anR0-algebra, for x, y ∈L, define x 	 y = (x → y′)′, x ⊕ y = x ′ → y.
It is easily proved that	 and⊕ are commutative, associative and x ⊕ y = (x ′ 	 y′)′.
In [21], Pei proved that R0-algebra is a particular MTL algebra and its t-norm 	 is
a nilpotent minimum t-norm.

In what follows, L will denote an R0-algebra, unless otherwise specified.

Definition 2 ([11]) Let a ∈ L, a is called a Boolean element of L if a ∨ a′ = 1.

In this paper, we use B(L) to represent all Boolean elements of L. It is trivial that
if a ∈ B(L), then a′ ∈ B(L) and 0, 1 ∈ B(L).

Lemma 1 ([26]) An R0-algebra L has the following properties, for all x, y, z ∈ L:
(1) x ′ = x → 0, x ′′ = x;
(2) x 	 y ≤ x ∧ y;
(3) x 	 x ′ = 0;
(4) x 	 (y ∨ z) = (x 	 y) ∨ (x 	 z);
(5) x ≤ y if and only if y′ ≤ x ′;
(6) If x ≤ y, then x 	 z ≤ y 	 z;
(7) If x 	 y = 1, then x = y = 1;
(8) x 	 y ≤ z if and only if x ≤ y → z;
(9) a ∨ (x 	 y) = (a ∨ x) 	 (a ∨ y), for a ∈ B(L).
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Lemma 2 ([10]) Let L be an R0-algebra. Then the following conditions are equiv-
alent:
(1) a ∈ B(L);
(2) a ∨ a′ = 1;
(3) a ∧ a′ = 0;
(4) a 	 a = a;
(5) a 	 x = a ∧ x for all x ∈ L.

About R0-algebras, and t-norms, there are lots of results. But there are few results
about the operation ⊕. For this, we give the following results:

Lemma 3 Let x, y, z ∈ L. Then the following hold:
(1) 0 ⊕ 0 = 0;
(2) x ⊕ x ′ = 1;
(3) a ⊕ a = a if and only if a ∈ B(L);
(4) a ⊕ x = a ∨ x for a ∈ B(L);
(5) If x ≤ y, then x ⊕ z ≤ y ⊕ z;
(6) a ∧ (x ⊕ y) = (a ∧ x) ⊕ (a ∧ y) for a ∈ B(L);
(7) x ∨ y ≤ x ⊕ y;
(8) If x ⊕ y = 0, then x = y = 0.

Proof (1) 0 ⊕ 0 = (0′ → 0) = 1 → 0 = 0.
(2) x ⊕ x ′ = (x ′ → x ′) = 1.
(3) If a ∈ B(L), then a ⊕ a = (a′ 	 a′)′ = a′′ = a. Conversely, a 	 a = (a′ ⊕

a′)′ = a′′ = a. This shows that a ∈ B(L).
(4) Assume that a ∈ B(L), then a ⊕ x = (a′ 	 x ′)′ = (a′ ∧ x ′)′ = a ∨ x .
(5) Suppose x ≤ y, then y′ ≤ x ′. By Lemma 1(6), y′ 	 z′ ≤ x ′ 	 z′. Thus (x ′ 	

z′)′ ≤ (y′ 	 z′)′. That is, x ⊕ z ≤ y ⊕ z.
(6) By Lemma 1(1) and Lemma 1(9), a ∧ (x ⊕ y) = a′′ ∧ (x ′ 	 y′)′ = (a′ ∨

(x ′ 	 y′))′ = ((a′ ∨ x ′) 	 (a′ ∨ y′))′=((a ∧ x)′ 	 (a ∧ y)′)′=(a ∧ x) ⊕ (a ∧ y).
(7) By Lemma 1(2), x ′ 	 y′ ≤ x ′, y′. Thus x, y ≤ (x ′ 	 y′)′. Hence x ∨ y ≤

x ⊕ y.
(8) By (7), x ∨ y ≤ x 	 y = 0. Thus x = y = 0. �

Definition 3 ([25]) Let L and J be two R0-algebras. The function f : L −→ J is
called a homomorphism if it satisfies the following conditions, for all x, y ∈ L:
(1) f (0L) = 0J , f (1L) = 1J ;
(2) f (x ′) = ( f (x))′;
(3) f (x ∨L y) = f (x) ∨J f (y); f (x →L y) = f (x) →J f (y).

A homomorphism f : L −→ L is called an endomorphism. A homomorphism f
is called an isomorphism if it is bijective (see [25]).

Remark 1 [25] If f is a homomorphism, then f (x ∧L y) = f (x) ∧J f (y), f (x 	L

y) = f (x) 	J f (y), f (x ⊕L y) = f (x) ⊕J f (y).
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Definition 4 ([8]) An ideal I of L is a subset of L satisfying the following conditions:
(1) 0 ∈ I;
(2) ∀x, y ∈ I imply x ⊕ y ∈ I;
(3) x ∈ I and y ≤ x imply y ∈ I.

Lemma 4 Let I be an ideal of L and f : L −→ L an isomorphism. Then f (I) is an
ideal.

Proof It is obvious. �

Lemma 5 The following conditions are equivalent, for all x, y ∈ L
(1) x ≤ y;
(2) x 	 y′ = 0;
(3) x ′ ⊕ y = 1.

Proof (1)=⇒(2) Suppose x ≤ y, then y′ ≤ x ′. Thus x 	 y′ ≤ x 	 x ′ = 0. Hence
x 	 y′ = 0.

(2)=⇒(1)Given that x 	 y′ = 0, then x 	 y′ ≤ 0.Hence x ≤ y′ → 0 = y′′ = y.
(2)⇐⇒(3) x 	 y′ = 0 ⇐⇒ (x 	 y′)′ = 1 ⇐⇒ (x ′′ 	 y′)′=1 ⇐⇒ x ′ ⊕ y = 1.

�

3 ( f, g)-Derivations of R0-Algebras

Definition 5 Let L be an R0-algebras and d: L −→ L a function. We call d a
derivation on L, if d(x 	 y) = (d(x) 	 y) ⊕ (x 	 d(y)) for all x, y ∈ L.

Definition 6 Let L be an R0-algebras and f : L −→ L be a homomorphism. A
function d : L −→ L is called a f -derivation on L, if d(x 	 y) = (d(x) 	 f (y)) ⊕
( f (x) 	 d(y)).

Definition 7 Let L be anR0-algebras and f, g: L−→Lhomomorphisms.A function
d : L −→ L is called an ( f, g)-derivation on L, if d(x 	 y) = (d(x) 	 f (y)) ⊕
(g(x) 	 d(y)).

We often abbreviate d(x), f (x), g(x) as dx, f x, gx .

Remark 2 In Definition 7, when f = g, d is an f -derivation; when f = g = i, i is
the identity map, d is a derivation.

Example 1 Define d: L −→ L by dx = 0, for all x ∈ L . For any homomorphism
f, g : L −→ L , d is an ( f, g)-derivation.
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Example 2 Let L= {0, 1/3, 2/3, 1} with Cayley tables as follows:

x x ′
0 1
1/3 2/3
2/3 1/3
1 0

→ 0 1/3 2/3 1
0 1 1 1 1
1/3 2/3 1 1 1
2/3 1/3 1/3 1 1
1 0 1/3 2/3 1

It can be easily checked that L is an R0-algebra. Define f, g : L −→ L , by

f (x) =
{
0, 0, 1/3;
1, 2/3, 1.

and g = i, i is the identity map.

Then f and g are homomorphisms. We define d1(0) = d1(1) = d1(1/3) = 0,
d1(2/3) = 1/3, then d1 is an ( f, g)-derivation. But d2(0) = d2(1) = 0, d2(1/3) =
d2(2/3) = 1/3 is not an ( f, g)-derivation.

Lemma 6 Let L be an R0 algebra and d an ( f, g)-derivation. Then d1 ∈ B(L).

Proof Assume that f, g are two homomorphisms, then f 1 = g1 = 1. Thus d1 =
d(1 	 1) = (d1 	 f 1) ⊕ (g1 	 d1) = (d1 	 1) ⊕ (1 	 d1) = d1 ⊕ d1.
By Lemma 3(3), we know that d1 ∈ B(L). �

Theorem 1 Let d be an ( f, g)-derivation on L. Then, for all x ∈ L, the following
hold:
(1) d0 = 0;
(2) dx 	 f (x ′) = f x 	 d(x ′) = dx 	 g(x ′) = gx 	 d(x ′) = 0;
(3) dx ≤ f x, gx;
(4) dx = (d1 	 f x) ⊕ dx = dx ⊕ (gx 	 d1).

Proof (1) Suppose that f, g are two homomorphisms, then f 0 = g0 = 0. Thus d0 =
d(0 	 0) = (d0 	 f 0) ⊕ (g0 	 d0) = (d0 	 0) ⊕ (0 	 d0) = 0 ⊕ 0 = 0.

(2) 0 = d0 = d(x 	 x ′) = (dx 	 f (x ′)) ⊕ (gx 	 d(x ′)) and 0 = d0 = d(x ′ 	
x) = (d(x ′) 	 f x) ⊕ (g(x ′) 	 dx). By Lemma 3(8), we have dx 	 f (x ′) = gx 	
d(x ′) = f x 	 d(x ′) = dx 	 g(x ′) = 0.

(3) By (2) andRemark 1, 0 = dx 	 f (x ′) = dx 	 ( f x)′. According to Lemma 5,
we get dx ≤ f x . Similarly dx ≤ gx .

(4)dx = d(1 	 x) = (d1 	 f x) ⊕ (g1 	 dx) = (d1 	 f x) ⊕ dx . Similarly,we
have dx = dx ⊕ (gx 	 d1). �
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Proposition 1 Let d be an ( f, g)-derivation of L and x, y ∈ L. If x ≤ y, then the
following hold:
(1) d(x 	 y′) = dx 	 dy′ = 0. In particular, dx 	 dx ′ = 0.
(2) dx ≤ f y, gy and d(y′) ≤ ( f x)′, (gx)′.
Proof (1) Suppose that x ≤ y, then x 	 y′ = 0. Thus d(x 	 y′) = 0. On the other
hand, since f is a homomorphism, x ≤ y implies that f x ≤ f y.Hencewehave dx ≤
f x ≤ f y. Then dx 	 d(y′) ≤ f y 	 d(y′) ≤ f y 	 f (y′) = f y 	 ( f y)′ = 0.
Therefore, dx 	 d(y′) = 0. When x = y, we have dx 	 d(x ′) = 0.

(2) By (1), we have 0 = d(x 	 y′) = (dx 	 f (y′)) ⊕ (gx 	 d(y′)). According
to Lemma 3(8), we have dx 	 f (y′) = gx 	 d(y′) = 0. Then, by Lemma 5, dx ≤
f y, d(y′) ≤ (gx)′. On the other hand, 0 = d(y′ 	 x) = (d(y′) 	 f x) ⊕ (g(y′) 	
dx). Thus, we have d(y′) 	 f x = g(y′) 	 dx = 0. Therefore, by Lemma 5, we
have dx ≤ gy, d(y′) ≤ ( f x)′. �

Proposition 2 Let d be an ( f, g)-derivation of L. Then the following identities hold:
(1) If f x ≤ d1 and gx ≤ d1, then dx = f x ∨ gx;
(2) If f x ≥ d1 and gx ≥ d1, then dx ≥ d1.

Proof (1) If f x ≤ d1 and gx ≤ d1. By Lemma 6 and Theorem 1(4), dx = dx ⊕
( f x 	 d1) = dx ⊕ ( f x ∧ d1) = dx ⊕ f x ≥ f x . Similarly, we also have dx ≥ gx .
Thus dx ≥ f x ∨ gx .We know dx ≤ f x ∨ gx fromTheorem 1(3). Thismeans dx =
f x ∨ gx .
(2) If f x ≥ d1 and gx ≥ d1, then dx = (d1 	 f x) ⊕ dx = (d1 ∧ f x) ⊕ dx =

d1 ⊕ dx ≥ d1. �

Proposition 3 Let d be a ( f, g)-derivation on L. Then d(x ′) = (dx)′ if and only if
either dx = f x or dx = gx.

Proof Suppose that dx = f x . Since f is a homomorphism, we get that, for all x ∈
L , f (x ′) = ( f x)′. Thus d(x ′) = (dx)′. Conversely, Suppose that d(x ′) = (dx)′. We
have 0 = f x 	 d(x ′) = f x 	 (dx)′. Thus, by Lemma 5, f x ≤ dx . And dx ≤ f x .
Hence dx = f x . Similarly, we can get that if d(x ′) = (dx)′, then dx = gx . �

Theorem 2 Let d be an ( f, g)-derivation on L such that f, g are isomorphisms and
I an ideal of L. Then d(I) ⊆ f (I) ∩ g(I ).

Proof If y ∈ d(I), then there exists x ∈ I such that y = dx . By Theorem 1(3), we
have y = dx ≤ f x ∈ f (I) and y = dx ≤ gx ∈ g(I). Since I is an ideal, by Lemma 4,
we know that f (I) and g(I) are ideals. Thus y ∈ f (I) ∩ g(I). This means, d(I) ⊆ f (I)
∩ g(I). �

4 Isotone ( f, g)-Derivations of R0-Algebras

Definition 8 Let d be an ( f, g)-derivation of L . If x ≤ y implies dx ≤ dy for all
x, y ∈ L, then d is called an isotone ( f, g)-derivation.
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Definition 9 Let d be an ( f, g)-derivation of L. If d(x ⊕ y) = dx ⊕ dy for all x, y ∈
L, then d is called an additive ( f, g)-derivation.

Example 3 Let L= {0, a, b, 1}. 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, a and b are not comparable,
with the following Cayley tables:

x x ′
0 1
a b
b a
1 0

→ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

It can be easily checked that L is an R0-algebras. Define maps f, g : L −→ L by

f x =

⎧
⎪⎪⎨

⎪⎪⎩

0, x = 0;
b, x = a;
a, x = b;
1, x = 1.

gx =

⎧
⎪⎪⎨

⎪⎪⎩

0, x = 0;
0, x = a;
1, x = b;
1, x = 1.

Then f and g are homomorphisms. Now, we define d : L −→ L by d1 = db =
a, d0 = da = 0, then d is an isotone ( f, g)-derivation.

Theorem 3 Let d be an ( f, g)-derivation on L. Then the following conditions are
equivalent:
(1) d is isotone;
(2) dx ≤ d1;
(3) dx = d1 	 f x = d1 	 gx.

Proof (1)=⇒(2) Trivial.
(2)=⇒(3) Since dx ≤ d1 and dx ≤ f x , we have dx ≤ d1 ∧ f x = d1 	 f x . On

the other hand, by Theorem 1(4), dx = (d1 	 f x) ⊕ dx ≥ d1 	 f x . Thus dx =
d1 	 f x . Similarly, dx = d1 	 gx .

(3)=⇒(1) Suppose that x ≤ y. Since f is a homomorphism, we have f x ≤ f y.
Thus dx = d1 	 f x ≤ d1 	 f y = dy. When dx = d1 	 gx , similarly we have
dx ≤ dy. �

Proposition 4 Let d be an isotone ( f, g)-derivation of L. Then d(L) ⊆ B(L).

Proof Since d is an isotone ( f, g)-derivation, we get that, for x ∈ L , dx = dx ⊕
(d1 	 f x) = dx ⊕ dx . This means that d(L) ⊆ B(L). �
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Proposition 5 Let d be an ( f, g)-derivation of L which is not a Boolean algebra.
Then the identity map i is not an ( f, g)-derivation.

Proof Suppose i is an ( f, g)-derivation. It is trivial that i is isotone. By Proposition 4,
for any x ∈ L , we have i(x) = x ∈ B(L). It is a contradiction. Thus i is not an ( f, g)-
derivation. �

Theorem 4 Let d be an ( f, g)-derivation on L. Then the following are equivalent:
(1) d is isotone;
(2) d(x 	 y) = dx 	 dy;
(3) d(x ⊕ y) = dx ⊕ dy.

Proof (1)=⇒(2)
Suppose that d is isotone, then, by Theorem 3(3), d(x 	 y) = d1 	 f (x 	 y) =

d1 	 d1 	 f x 	 f y = (d1 	 f x) 	 (d1 	 f y) = dx 	 dy.
(2)=⇒(1) Since dx = d(x 	 1) = dx 	 d1 ≤ d1. By Theorem 3(2), we have

that d is isotone.
(1)=⇒(3) d(x ⊕ y) = d1 	 f (x ⊕ y) = d1 ∧ ( f x ⊕ f y) = (d1 ∧ f x) ⊕ (d1

∧ f y) = (d1 	 f x) ⊕ (d1 	 f y) = dx ⊕ dy.
(3)=⇒(1) Since d1 = d(x ⊕ 1) = dx ⊕ d1 ≥ dx , by Theorem 3(2), we know

that d is isotone. �

Corollary 1 d is an isotone ( f, g)-derivation of L if and only if d is an additive
( f, g)-derivation.

Proof Obvious. �

Theorem 5 Let d be an ( f, g)-derivation of L. Then the following are equivalent:
(1) d is isotone;
(2) d(x 	 y) = dx 	 f y = gx 	 dy.

Proof (1)=⇒(2) Since d(x 	 y) = (dx 	 f y) ⊕ (gx 	 dy) ≥ dx 	 f y and d(x 	
y) = dx 	 dy ≤ dx 	 f y. We have d(x 	 y) = dx 	 f y. Similarly, d(x 	 y) =
gx 	 dy holds.

(2)=⇒(1) Assume d(x 	 y) = dx 	 f y, then dx = d(1 	 x) = d1 	 f x . By
Theorem 3(3), we have that d is isotone. �

Theorem 6 Let d be an ( f, g)-derivation on L. Then the following are equivalent:
(1) d is isotone;
(2) d(x ∧ y) = dx ∧ dy;
(3) d(x ∨ y) = dx ∨ dy.

Proof (1)=⇒(2) By Theorem 3(3) and Lemma 6, d(x ∧ y) = d1 	 f (x ∧ y) =
d1 ∧ ( f x ∧ f y) = (d1 ∧ f x) ∧ (d1 ∧ f y) = (d1 	 f x) ∧ (d1 	 f y) = dx ∧ dy.

(2)=⇒(1) Suppose dx = d(x ∧ 1) = dx ∧ d1. Then dx ≤ d1. By Theorem 3(2),
we know that d is isotone.

(1)=⇒(3) d(x ∨ y) = d1 	 f (x ∨ y) = d1 ∧ ( f x ∨ f y) = (d1 ∧ f x) ∨ (d1 ∧
f y) = (d1 	 f x) ∨ (d1 	 f y) = dx ∨ dy.
(3)=⇒(1) It is similar to the proof of (2)=⇒(1). �
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Theorem 7 Let d be an isotone ( f, g)-derivation of L. Then the following hold:
(1) d(x ∧ y) = d(x 	 y) = dx ∧ f y = gx ∧ dy;
(2) d(x ∨ y) = d(x ⊕ y).

Proof (1) Assume that d is isotone, then by Theorems 4 and 6, d(x ∧ y) = dx ∧
dy = dx 	 dy = d(x 	 y) = dx 	 f y = dx ∧ f y = gx 	 dy = gx ∧ dy.

(2) d(x ∨ y) = dx ∨ dy = dx ⊕ dy = d(x ⊕ y). �

Proposition 6 Let d be an isotone ( f, g)-derivation of L. Then, if f x ≥ d1 and
gx ≥ d1, then dx = d1.

Proof By Proposition 2, if f x ≥ d1 and gx ≥ d1, then dx ≥ d1. And d is isotone,
thus dx ≤ d1. Hence dx = d1. �

Let L be an R0-algebras and d: L −→ L a function. Define Fixd(L) = {x ∈
L: dx = x}.
Proposition 7 Let d be an isotone ( f, g)-derivation on L. Then the following hold:
(1) 0 ∈ Fixd(L);
(2) If x, y ∈ Fixd(L), x ⊕ y ∈ Fixd(L).

Proof (1) It is trivial that 0 ∈ Fixd(L).
(2) Suppose x, y ∈Fixd(L). Then d(x ⊕ y) = dx ⊕ dy = x ⊕ y. This shows that

x ⊕ y ∈ Fixd(L). �

Theorem 8 Let d be an ( f, g)-derivation on L. If d(x ′) = dx, for all x ∈ L, then
the following hold:
(1) d1 = 0;
(2) dx 	 dx = 0;
(3) If d is isotone, then d = 0.

Proof (1) By Lemma 1(1), we have d1 = d(0′) = d0 = 0;
(2) By Proposition 1(1), 0 = dx 	 d(x ′) = dx 	 dx ;
(3) Suppose d is isotone, then, for x ∈ L, dx ≤ d1 = 0. Thus d = 0. �

5 ( f, g)-Derivations of Linearly-Ordered R0-Algebras

Lemma 7 ([11]) If L is linearly ordered, then B(L)= {0, 1}.
Proposition 8 Let d be an ( f, g)-derivation of a linearly ordered R0-algebras L.
Then d1=0 or d1=1.

Proof By Proposition 4, d1 ∈ {0, 1}. Thus d1 = 0 or d1 = 1. �

Theorem 9 Let d be an isotone ( f, g)-derivation of a linearly ordered R0-algebras
L. Then, if d1 = 0, then d = 0.
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Proof If d1 = 0, then dx ≤ d1 = 0, and so d = 0. �

Theorem 10 Let d be an isotone ( f, g)-derivation of a linearly ordered R0-algebras
L. Then d−1(0) = {x ∈ L|d(x) = 0} is an ideal of L.
Proof Since d0 = 0, we have that 0 ∈ d−1(0). Suppose that x ∈ d−1(0) and y ≤ x .
Then dx = 0. Since d is isotone, we have dy ≤ dx = 0 which implies that dy = 0,
Therefore y ∈ d−1(0). Now, Let x, y ∈ d−1(0). Then, d(x ⊕ y) = dx ⊕ dy = 0 ⊕
0 = 0. Thus x ⊕ y ∈ d−1(0). This means d−1(0) is an ideal of L. �
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Parametrization Filters and Their Properties
in Residuated Lattices

Lian-Zhen Liu and Xiang-Yang Zhang

Abstract Filters play a key role in studying algebraic structures of logics. Recently,
various special filters in residuated lattices have been introduced. Hence it is very
important to develop a general definition for special filters. In the paper, we intro-
duce the notion of parametrization filters and study some of their properties. The
relationship of Extension property (Triple of equivalent characteristics, and Quotient
characteristics) between the set of parametrization filters and the set of (α,β]-fuzzy
parametrization filters is investigated.

Keywords Parametrization filter · (α,β]-fuzzy parametrization filter · Extension
property · Triple of equivalent characteristics · Quotient characteristics

1 Introduction

Filters play an important role in studying algebraic structures of logics. From logical
point of view, filters correspond to sets of provable formulae. Based on this reason,
various types of filters have been proposed and some results of them have been
obtained.

The “Extension property”, “Triple of equivalent characteristics” and “Quotient
characteristics” were often studied for each special filter and its fuzzification. In
order to illuminate the triviality of these properties, and to provide a tool for review-
ers dealing with papers about new types of filters, Víta [10, 11] introduced t-filters
and fuzzy t-filters in bounded commutative integral residuated lattices. He studied
the “Extension property”, “Triple of equivalent characteristics” and “Quotient char-
acteristics” of t-filters and fuzzy t-filters, respectively, and demonstrated that the
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existing results in many papers can be seen as straightforward consequences of his
theory. Then he left the following open problem:

Problem. Whether this theory holds for a special type of filter that is defined by
a quasi-equation and it is not definable as a t-filter (all of special types of filters that
the author has seen could be defined as t-filters for suitable t).

As Víta said, t-filters cover many special types of filters, such as Boolean filters,
implicative filters, positive implicative filters, etc. However, as we can see, prime
filters–the most important filters in logical algebras, are not included in t-filters. On
the other hand, in [10, 11], the author investigated the “Extension property”, “Triple
of equivalent characteristics” and “Quotient characteristics” of t-filters and fuzzy t-
filters, but he did not consider the intrinsical connection of the above three properties
between a special filter and its fuzzification.

The motivations of this paper are to develop a general definition for special filters,
and to study the intrinsical connection between special filters and their fuzzification.

As side effects, the results of this paper point out that for a special filter or its
fuzzification, it is enough to study either one of them, the other is a straightforward
consequence of the former. Also, these results provide a tool for reviewers dealing
with papers about new types of filters or fuzzy filters.

2 Preliminaries

We recollect some definitions and results which will be used in the following and we
shall not cite them every time they are used.

Definition 1 ([1, 12]) An integral residuated lattice (IRL for short) is a structure
L = (L,∨,∧,�,→,�, 1) of type (2,2,2,2,2,0) satisfying the following axioms:
(C1) (L,∨,∧) is a lattice;
(C2) (L,�, 1) is a monoid, i.e. � is associative and x � 1 = 1 � x = x;
(C3) x � y ≤ z if and only if x ≤ y → z if and only if y ≤ x � z for all x, y, z ∈ L;
(C4) x ≤ 1 for all x ∈ L.

Let L be an IRL. L is called commutative, if x � y = y � x for any x, y ∈ L. L is
called bounded if L has a bottom element 0.

Let L be a bounded IRL. For any x ∈ L, we define ¬x = x → 0,∼ x = x � 0. If
¬ ∼ x =∼ ¬x, then L is call good. If¬ ∼ x =∼ ¬x = x, then L is called involutive.

Definition 2 ([12]) Let L be an IRL, ∅ 
= F ⊆ L. F is called a filter in L if the
following conditions are fulfilled:
(F1) If x, y ∈ F, then x � y ∈ F;
(F2) If x ≤ y and x ∈ F, then y ∈ F.

The set of filters in L is denoted by F(L)

Let F be a filter, from Definition 2, it follows that F is closed under operations
∧,∨,→,�. That is, if x, y ∈ F, then x ∨ y, x ∧ y, x → y, x � y ∈ F.
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In the sequel, we will use x̄ as an abbreviation of a finite sequence x1, x2, . . ..
Let L be an IRL, α,β ∈ [0, 1],α < β. A fuzzy subset of L is a mapping μ : L →

[0, 1]. For t ∈ [0, 1], the set μt = {x ∈ L : μ(x) ≥ t} is called level set of μ.
Let μ be a fuzzy subset of L. If μ(x) ≤ α for all x ∈ L, then μt = ∅ for all t > α.

If μ(x) ≥ β for all x ∈ L, then μt = L for all t ≤ β. In what follows, we assume that
μ satisfies μ(a) > α,μ(b) < β for some a, b ∈ L.

Definition 3 ([5–7]) Let μ be a fuzzy subset in L. μ is called an (α,β]-fuzzy filter
if for any t ∈ (α,β], every non-empty level set μt is a filter in L.

Remark 1 (α,β]-fuzzy filters generalize many types of fuzzy filters in IRL. For
example, fuzzy filters [3, 4, 8, 10] can be seen as (0,1]-fuzzy filters; (∈,∈ ∨q)-
fuzzy filters [6, 15] can be seen as (0, 0.5]-fuzzy filters; (∈,∈ ∨q)-fuzzy filters [6]
can be seen as (0.5, 1]-fuzzy filters.

Corollary 1 If μ is an (α,β]-fuzzy filter, then μ(1) > α.

Corollary 2 If μ is an (α,β]-fuzzy filter, then μμ(1)∧β is a filter.

Theorem 1 ([5–7]) Let μ be a fuzzy subset of L. Then the following are equivalent:
(1) μ is an (α,β]-fuzzy filter;
(2) μ satisfies the following:
(FF1) ∀x, y ∈ L, μ(x � y) ∨ α ≥ μ(x) ∧ μ(y) ∧ β;
(FF2) ∀x, y ∈ L, if x ≤ y, then μ(y) ∨ α ≥ μ(x) ∧ β.

3 Parametrization Filters in Residuated Lattices

In [10], Víta showed that all of special types of filters that he has seen could be defined
as t-filters for suitable t. However, as we can see, prime filters which are special type
of filters are not included in t-filters. Hence there raises a natural question: how to
define a general notion for types of filterswhichwill covermanyknown special filters.
In the following, we introduce parametrization filters with the intent on developing
a unified definition for types of filters.

Definition 4 Let F be a filter in residuated lattice L, sij(x̄)(1 ≤ i ≤ n, 1 ≤ j ≤
m), tij(x̄)(1 ≤ i ≤ k, 1 ≤ j ≤ h) be terms on L. F is called a parametrization fil-
ter with parameter (s11(x̄), . . . , snm(x̄); t11(x̄), . . . , tkh(x̄)), if it satisfies property P,
where property P is:
(P1) If s11(x̄) ∈ F, . . . , s1m1(x̄) ∈ F, then t11(x̄) ∈ F or t12(x̄) ∈ F or · · · or t1k1(x̄) ∈
F;
(P2) If s21(x̄) ∈ F, . . . , s2m2(x̄) ∈ F, then t21(x̄) ∈ F or t22(x̄) ∈ F or · · · or t2k2(x̄) ∈
F;

...

(Pn) If sn1(x̄) ∈ F, . . . , snmn(x̄) ∈ F, then tn1(x̄) ∈ F or tn2(x̄) ∈ F or · · · or tnkn(x̄) ∈
F.
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The set of parametrization filters with parameter (s11(x̄), . . . , snm(x̄); t11(x̄), . . . ,
tkh(x̄)) is denoted by (PF(L), (s11(x̄), . . . , snm(x̄); t11(x̄), . . . , tkh(x̄))) (PF(L) for
short).

Remark 2 ThenotionofP-filters introduced in [2] is a special case of parametrization
filters.

Example 1 (1) Let F be a filter in L, t(x̄) a term, s(x̄) = x̄ → x̄. If F satisfies the
condition:

If s(x̄) ∈ F, then t(x̄) ∈ F.

ByDefinition 4, F is a parametrization filter with parameter (s(x̄); t(x̄)). On the other
hand, from [10, 11], F is a t-filter. This shows that t-filters are parametrization filters
with parameter (s(x̄); t(x̄)).

(2) Let F be a filter in L such that F 
= L, and let s11(x̄) = x ∨ y, t11(x̄) =
x, t12(x̄) = y. If F satisfies the following:

If s11(x̄) ∈ F, then t11(x̄) ∈ F or t12(x̄) ∈ F.

By Definition 4, F is a parametrization filter with parameter (s11(x̄); t11(x̄), t12(x̄)).
On the other hand, from [1, 12], F is a prime filter. This shows that prime filters are
parametrization filters with parameter (s11(x̄); t11(x̄), t12(x̄)).

(3) Let L be a bounded commutative integral residuated lattice, F a filter in L. Let
s11(x̄) = ¬¬x, t11(x̄) = x. If F satisfies the following:

If s11(x̄) ∈ F, then t11(x̄) ∈ F.

Then F is a parametrization filter with parameter (s11(x̄); t11(x̄)). From [13], F is an
EIMTL filter. This shows that EIMTL filters are parametrization filters with para-
meter (s11(x̄); t11(x̄)).

(4) Let F be a filter in L and let s11(x̄) = x → y, t11(x̄) = x � y. If F satisfies the
following condition:

(i) if s11(x̄) ∈ F, then t11(x̄) ∈ F.
(ii) if t11(x̄) ∈ F, then s11(x̄) ∈ F.
Then fromDefinition 4,F is a parametrization filterwith parameter (s11(x̄), t11(x̄);

t11(x̄), s11(x̄)). By [1, 12], F is a normal filter in L. This shows that normal filters are
parametrization filters with parameter (s11(x̄), t11(x̄); t11(x̄), s11(x̄)).

Transform Rule: For property P, we construct P∗ as follows:
(1) If s11(x̄) ≥ 1, . . . , s1m1(x̄) ≥ 1, then t11(x̄) ≥ 1 or t12(x̄) ≥ 1 or · · · or t1k1(x̄) ≥

1.
(2) If s21(x̄) ≥ 1, . . . , s2m2(x̄) ≥ 1, then t21(x̄) ≥ 1 or t22(x̄) ≥ 1 or · · · or t2k2(x̄) ≥

1.
...

(n) If sn1(x̄) ≥ 1, . . . , snmn(x̄) ≥ 1, then tn1(x̄) ≥ 1 or tn2(x̄) ≥ 1 or · · · or
tnkn(x̄) ≥ 1.
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Given a class B of residuated lattices, let B(P∗) denote its subclass given by P∗.

Example 2 (1) For t-filters, the corresponding P∗ is: if x̄ → x̄ ≥ 1, then t(x̄) ≥ 1 for
any x̄ ∈ L.

(2) For prime filters, the corresponding P∗ is: if x ∨ y ≥ 1, then x ≥ 1 or y ≥ 1.
(3) For EIMTL-filters, the corresponding P∗ is: if ¬¬x ≥ 1, then x ≥ 1.

Definition 5 ([9, 10]) Let L be an IRL, X ⊆ F(L). We say that

• X satisfies the intersection property, if X is closed under intersections.
• X satisfies the Extension property, if for any X1,X2 ∈ F(L), X1 ∈ X and X1 ⊆ X2

imply X2 ∈ X.
• X satisfies Triple of equivalent characteristics, if the following are equivalent:
(TEC1) F ∈ X for all F ∈ F(L);
(TEC2) {1} ∈ X;
(TEC3) L ∈ C, where C is a class of residuated lattices.

Definition 6 ([10]) Let L be an IRL. We say X satisfies Quotient characteristics, if
for any normal filter F, F ∈ X if and only if L/F ∈ C.
Lemma 1 Let L be an IRL, X ⊆ F(L). If X satisfies Extension property, then X
satisfies Triple of equivalent characteristics.

Proof It is obvious. �

Lemma 2 Let Fi(i ∈ I) ∈ (PF(L), (s11(x̄), . . . , snm(x̄); t11(x̄), . . . , tkh(x̄))). If tj1
(x̄) = tj2(x̄) = · · · = tjkj (x̄) (1 ≤ j ≤ n), then ∩i∈IFi ∈ (PF(L), (s11(x̄), . . . , snm
(x̄); t11(x̄), . . . , tkh(x̄))).

Proof It can be derived from Definition 4. �

Corollary 3 Let X ⊆ (PF(L), (s11(x̄), . . . , snm(x̄); t11(x̄), . . . , tkh(x̄))). If tj1(x̄) =
tj2(x̄) = · · · = tjkj (x̄) (1 ≤ j ≤ n), then X satisfies intersection property.

Corollary 4 Let L be an IRL. The following hold:
(1) t-filters satisfy intersection property;
(2) EIMTL-filters satisfy intersection property;
(3) Normal filters satisfy intersection property.

In general, if there exist tij(x̄) 
= tij′ (x̄) for some i(1 ≤ i ≤ n), j, j
′
(1 ≤ j, j

′ ≤ ki),
then the result of Lemma 2 may not be true. Indeed, let L be the residuated lat-
tice defined in Example 3. Routine calculation shows that F = {1, b, c, d},G =
{1, a, c, d} are prime filters, but F ∩ G = {1, c, d} is not a prime filter. This shows
that prime filters do not satisfy intersection property.

Lemma 3 Let L be a bounded IRL, F be a filter in L. If m(x1, x2, . . . , xn) be a 0-free
term on L and x1, x2, . . . , xn ∈ F, then m(x1, x2, . . . , xn) ∈ F.
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Proof For x, y ∈ L, if x, y ∈ F, then x ∨ y, x ∧ y, x → y, x � y ∈ F as F is a
filter. Since m(x1, x2, . . . , xn) is a 0-free term, and x1, x2, . . . , xn ∈ F, we have
m(x1, x2, . . . , xn) ∈ F. �

Lemma 4 Let G ∈ F(L),F ⊆ G,F ∈ (PF(L), (s11(x̄), . . . , snm(x̄); t11(x̄), . . . ,
tkh(x̄))). If there exist 0-free terms mi(x̄)(1 ≤ i ≤ n) such that mi(si1, si2, . . . , sini) →
tij(x̄) ∈ F(1 ≤ i ≤ n, 1 ≤ j ≤ ki), then G ∈ (PF(L), (s11(x̄), . . . , snm(x̄); t11
(x̄), . . . , tkh(x̄))).

Proof For each i(1 ≤ i ≤ n), if si1(x̄), si2(x̄), . . . , sini(x̄) ∈ G, then mi(si1(x̄),
si2(x̄), . . . , sini(x̄)) ∈ G. Frommi(si1, si2, . . . , sini) → tij(x̄) ∈ F ⊆ G, we have tij(x̄)
∈ G. By Definition 4, G ∈ (PF(L), (s11(x̄), . . . , snm(x̄); t11(x̄), . . . , tkh(x̄))). �

The following examples show that the Extension property and Triple of equivalent
characteristics of some filters do not hold.

Example 3 Let L = {0, a, b, c, d, 1} be a lattice whose Hasse diagram is below.

0

a b

c
d

1

Define � and → on L as follows:

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a a a
b 0 0 b b b b
c 0 a b c c c
d 0 a b c c d
1 0 a b c d 1

→=� 0 a b c d 1
0 1 1 1 1 1 1
a b 1 b 1 1 1
b a a 1 1 1 1
c 0 a b 1 1 1
d 0 a b c 1 1
1 0 a b c d 1

Routine calculation shows that (L,∧,∨,�,→,�, 1) is an integral residuated lat-
tice. Obviously, {1}, {1, c, d}, {1, b, c, d}, {1, a, c, d} are filters in L. It is easily
checked that the filter {1} is a prime filter. But {1, c, d} is not a prime filter. This
shows that Extension property and Triple of equivalent characteristics of prime fil-
ters do not hold.

Example 4 Let L = {0, a, b, c, 1} be a chain with Cayley tables as follows:

� 0 a b c 1
0 0 0 0 0 0
a 0 0 0 0 a
b 0 0 b b b
c 0 0 b c c
1 0 a b c 1

→=� 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b a a 1 1 1
c a a b 1 1
1 0 a b c 1
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Define ∧ and ∨ operations on L as min and max, respectively. Routine calcula-
tion shows that (L,∧,∨,� →,�, 1) is a residuated lattice. Obviously, {1}, {1, c},
{1, c, b} are filters in L. It is easily checked that {1} is an EIMTL-filter, {1, c} is not an
EIMTL-filter because ¬¬b = c ∈ {1, c}, but b /∈ {1, c}. This shows that Extension
property and Triple of equivalent characteristics of EIMTL filters do not hold.

Lemma 5 PF(L) satisfies Quotient characteristics.

4 (α,β]-Fuzzy Parametrization Filters in Residuated
Lattices

Inspired by [15], in this section, we introduce the notion of (α,β]-fuzzy parame-
trization filters and investigate some of their properties.

Definition 7 Let μ be an (α,β]-fuzzy filter. μ is called an (α,β]-fuzzy parame-
trization filter with parameter (s11(x̄), . . . , snm(x̄); t11(x̄), . . . , tkh(x̄)) ((α,β]-fuzzy
parametrization filter for short), if for each t ∈ (α,β], every non-empty level set
μt is a parametrization filter with parameter (s11(x̄), . . . , snm(x̄); t11(x̄), . . . , tkh(x̄))
in L.

Let FPF(L) be the set of all (α,β]-fuzzy parametrization filters with parameter
(s11(x̄), . . . , snm(x̄); t11(x̄), . . . , tkh(x̄)) in L.

From Definition 7, the following is clearly obtained.

Corollary 5 Let F be a filter in L. Then F is a parametrization filter with parameter
(s11(x̄), . . . , snm(x̄); t11(x̄), . . . , tkh(x̄)) if and only if the characteristics function χF

is an (α,β]-fuzzy parametrization filter.

Theorem 2 Let μ be a fuzzy subset in L. Then the following are equivalent:
(1) μ is an (α,β]-fuzzy parametrization filter;
(2) μ is an (α,β]-fuzzy filter and satisfies the following conditions:
(FP1) μ(t11(x̄)) ∨ · · · ∨ μ(t1k1(x̄)) ∨ α ≥ μ(s11(x̄)) ∧ · · · ∧ μ(s1m1(x̄)) ∧ β for any
x̄ ∈ L;
(FP2) μ(t21(x̄)) ∨ · · · ∨ μ(t2k2(x̄)) ∨ α ≥ μ(s21(x̄)) ∧ · · · ∧ μ(s2m2(x̄)) ∧ β for any
x̄ ∈ L;

...

(FPn) μ(tn1(x̄)) ∨ · · · ∨ μ(tnkn(x̄)) ∨ α ≥ μ(sn1(x̄)) ∧ · · · ∧ μ(snmn(x̄)) ∧ β for any
x̄ ∈ L.

Proof (1) ⇒ (2) Suppose μ is an (α,β]-fuzzy parametrization filter, then μ is an
(α,β]-fuzzy filter by Definitions 3 and 7. For any x̄ ∈ L, let t = μ(s11(x̄)) ∧ · · · ∧
μ(s1m1(x̄)) ∧ β, we have s11(x̄) ∈ μt, . . . , s1m1(x̄) ∈ μt . If t ≤ α, then μ(t11(x̄)) ∨
· · · ∨ μ(t1k1(x̄)) ∨ α ≥ α ≥ t. If α < t, then from (1) and Definition 7, we get that
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μt is a parametrization filter, thus t11(x̄) ∈ μt , or · · · , or t1k1(x̄) ∈ μt . This means that
μ(t11(x̄)) ∨ · · · ∨ μ(t1k1(x̄)) ∨ α ≥ t. Hence (FP1) holds. Similarly, we can prove
(FP2)-(FPn)hold. This proves that (2) holds.

(2) ⇒ (1) For any t ∈ (α,β], suppose μt 
= ∅, then μt is a filter by (2) and Defin-
ition 7. If s11(x̄) ∈ μt, . . . , s1m1(x̄) ∈ μt , then μ(s11(x̄)) ∧ · · · ∧ μ(s1m1(x̄)) ∧ β ≥ t.
From (FP1), it follows that μ(t11(x̄)) ∨ · · · ∨ μ(t1k1(x̄)) ∨ α ≥ t, and so t11(x̄) ∈ μt

or · · · or t1k1(x̄) ∈ μt . This means that (P1) holds. Analogously, we can prove (P2)-
(Pn) hold. By Definition 4, μt is a parametrization filter. Hence μ is an (α,β]-fuzzy
parametrization filter by Definition 7. �

Corollary 6 Let μ be an (α,β]-fuzzy filter. Then the following are equivalent:
(1) μ is an (α,β]-fuzzy normal filter;
(2) μ(x → y) ∨ α ≥ μ(x � y) ∧ β and μ(x � y) ∨ α ≥ μ(x → y) ∧ β for any
x, y ∈ L.

Corollary 7 If μ is an (α,β]-fuzzy normal filter, then (μ(x � y) ∨ α) ∧ β =
(μ(x → y) ∨ α) ∧ β for any x, y ∈ L.

Next, we mainly discuss the relationship of Extension property (Triple of equiv-
alent characteristics, Quotient characteristics) between parametrization filters and
(α,β]-fuzzy parametrization filters.

From [7, 9], the following theorem is obvious.

Theorem 3 Let L be an IRL. Then the following are equivalent:
(1) PF(L) satisfies the intersection property;
(2) FPF(L) satisfies the intersection property, that is, if μi ∈ FPF(L)(i ∈ �), then∧

i∈� ∈ FPF(L).

Theorem 4 Let L be an IRL. Then the following are equivalent:
(1) PF(L) satisfies Extension property; (2) FPF(L) satisfies Extension property, i.e.,
if μ ∈ FPF(L), ν is an (α,β]-fuzzy filter and μ ≤ ν, μ(1) ∨ α = ν(1) ∨ α, then
ν ∈ FPF(L).

Proof (1) ⇒ (2) From Definition 7, it will suffice to prove that for any t ∈ (α,β],
if ν t 
= ∅, then ν t ∈ PF(L). It is clear that 1 ∈ ν t . From μ(1) ∨ α = ν(1) ∨ α and
μ ≤ ν, we have μt ⊆ ν t and 1 ∈ μt . Thus μt ∈ PF(L) as μ ∈ FPF(L). By (1), ν t ∈
PF(L).

(2) ⇒ (1) Let F ⊆ G be two filters. Then χF and χG are (α,β]-fuzzy filters
and χF ≤ χG,χF(1) ∨ α = χG(1) ∨ α. If F ∈ PF(L), then Corollary 5 shows that
χF ∈ FPF(L). By (2),χG ∈ FPF(L), soG ∈ PF(L) byCorollary 5. FromDefinition
5, we get that PF(L) satisfies Extension property. �

We call FPF(L) satisfying Triple of equivalent characteristics, if the following
are equivalent:
(FTEC1) μ ∈ FPF(L) for every (α,β]-fuzzy filter μ in L;
(FTEC2) χ{1} ∈ FPF(L);
(TEC3) L ∈ B(P∗).
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Theorem 5 Let L be an IRL. Then the following are equivalent:
(1) PF(L) satisfies Triple of equivalent characteristics;
(2) FPF(L) satisfies Triple of equivalent characteristics.

Proof (1) ⇒ (2) We will prove (FTEC1) ⇒ (FTEC2)⇒ (TEC3)⇒(FTEC1).
(FTEC1) ⇒ (FTEC2) It is obvious.
(FTEC2)⇒ (TEC3) Suppose χ{1} ∈ FPF(L). Then {1} ∈ PF(L) by Definition 7.

By (1), we get L ∈ B(P∗), i.e., (TEC3) holds.
(TEC3)⇒ (FTEC1)Letμbe an (α,β]-fuzzyfilter.ByDefinition7, forα < t ≤ β,

if μt 
= ∅, then μt is a filter. From (TEC3), it follows that {1} ∈ PF(L). This together
with (1) leads to μt ∈ PF(L), and so μ ∈ FPF(L) by Definition 7.

(2) ⇒ (1) It is clear that (TEC1) ⇒ (TEC2)⇒ (TEC3) by (2). Now we prove
(TEC3) ⇒ (TEC1). Let F be a filter, then χF is an (α,β]-fuzzy filter by Definition
3. From (TEC1) and (2), we get that χF ∈ FPF(L), and so F ∈ PF(L) by Definition
7. This proves that (TEC1) holds. �

In view of Theorems 4, 5 and Lemma 1, the following is obvious.

Corollary 8 If FPF(L) satisfies Extension property, then it satisfies Triple of equiv-
alent characteristics.

Let μ be an (α,β]-fuzzy filter. For any x ∈ L, we define
μx : L → [0, 1] μx(y) = ((μ(x → y) ∧ μ(y → x)) ∨ α) ∧ β.

μ[x] : L → [0, 1] μ[x](y) = ((μ(x � y) ∧ μ(y � x)) ∨ α) ∧ β.

Lemma 6 Let μ be an (α,β]-fuzzy filter. Then for any x, y ∈ L, the following hold:
(1) μx = μy if and only if (μ(x → y) ∨ α) ∧ β = (μ(y → x) ∨ α) ∧ β = μ(1) ∧ β;
(2) μ[x] = μ[y] if and only if (μ(x � y) ∨ α) ∧ β = (μ(y � x) ∨ α) ∧ β =
μ(1) ∧ β.

Proof (1) Suppose μx = μy. Then μx(y) = μy(y), i.e., ((μ(x → y) ∧ μ(y → x)) ∨
α) ∧ β = (μ(1) ∨ α) ∧ β = μ(1) ∧ β. Thus (μ(x → y) ∨ α) ∧ β ≥ μ(1) ∧ β,

(μ(y → x) ∨ α) ∧ β ≥ μ(1) ∧ β. From Theorem 1 and Corollary 1, we know that
μ(1) = μ(1) ∨ α ≥ μ(x → y) ∧ β,μ(1) = μ(1) ∨ α ≥ μ(y → x) ∧ β, so μ(1) ∧ β
= (μ(1) ∨ α) ∧ β ≥ (μ(x → y) ∨ α) ∧ β,μ(1)∧ β = (μ(1) ∨ α)∧ β ≥ (μ(y → x)
∨ α) ∧ β. Hence (μ(x → y) ∨ α) ∧ β = (μ(y → x) ∨ α) ∧ β = μ(1) ∧ β.

Conversely, if (μ(x → y) ∨ α) ∧ β = (μ(y → x) ∨ α) ∧ β = μ(1) ∧ β, then
from μ(x → z) ∨ α ≥ μ(x → y) ∧ μ(y → z) ∧ β, we have (μ(x → z) ∨ α) ∧ β
≥ (μ(y → z) ∨ α) ∧ β. Similarly, we can prove (μ(y → z) ∨ α) ∧ β ≥ (μ(x →
z) ∨ α) ∧ β. Hence (μ(y → z) ∨ α) ∧ β = (μ(x → z) ∨ α) ∧ β. Analogously,
(μ(z → x) ∨ α) ∧ β = (μ(z → y) ∨ α) ∧ β. Therefore μx(z) = ((μ(x → z) ∧ μ
(z → x)) ∨ α) ∧ β = (μ(y → z) ∧ μ(z → y)) ∨ α) ∧ β = μy(z).

(2) can be proved similarly. �

Corollary 9 Let μ be an (α,β]-fuzzy filter. Then for any x, y ∈ L, the following
hold:
(1) μx = μy if and only if x → y ∈ μμ(1)∧β, y → x ∈ μμ(1)∧β;
(2) μ[x] = μ[y] if and only if x � y ∈ μμ(1)∧β, y � x ∈ μμ(1)∧β .
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Proof (1) μx = μy if and only if (μ(x → y) ∨ α) ∧ β = (μ(y → x) ∨ α) ∧ β =
μ(1) ∧ β if and only if μ(x → y) ∨ α ≥ μ(1) ∧ β,μ(y → x) ∨ α ≥ μ(1) ∧ β if
and only if μ(x → y) ≥ μ(1) ∧ β,μ(y → x) ≥ μ(1) ∧ β if and only if x → y ∈
μμ(1)∧β, y → x ∈ μμ(1)∧β .

(2) is proved similarly. �

Lemma 7 If μ is an (α,β]-fuzzy normal filter, then μx = μ[x] for all x ∈ L.

Proof By definitions of μx and μ[x], we have μx(y) = ((μ(x → y) ∨ α) ∧ β) ∧
((μ(y → x) ∨ α) ∧ β,μ[x](y) = ((μ(x � y) ∨ α) ∧ β) ∧ ((μ(y � x) ∨ α) ∧ β.
Ifμ is an (α,β]-fuzzy normal filter, then fromCorollary 7,we know that (μ(x � y) ∨
α) ∧ β = (μ(x → y) ∨ α) ∧ β, (μ(y � x) ∨ α) ∧ β = (μ(y → x) ∨ α) ∧
β. Hence μx = μ[x]. �

Corollary 10 Let μ be an (α,β]-fuzzy normal filter. Then for any x, y ∈ L, μx = μy

if and only if x ≡μμ(1)∧β y.

Let μ be an (α,β]-fuzzy normal filter. Let L/μ = {μx : x ∈ L}. Define
μx ∨μ μy = μx∨y, μx ∧μ μy = μx∧y, μx �μ μy = μx�y,

μx →μ μy = μx→y, μx �μ μy = μx�y

Lemma 8 If μ is an (α,β]-fuzzy normal filter, then L/μ = (L/μ,∧μ,∨μ,�μ,→μ

,�μ,μ1) is an integral residuated lattice, and is isomorphic to L/μμ(1)∧β .

Proof The proof is similar to that of [4]. �

We say that FPF(L) satisfies Quotient characteristics, if for any (α,β]-fuzzy
normal filter μ, μ ∈ FPF(L) if and only if L/μ ∈ B(P∗).

Lemma 9 Let μ be an (α,β]-fuzzy normal filter. If μ ∈ FPF(L), then L/μ ∈ B(P∗).

Proof Suppose μ is an (α,β]-fuzzy normal filter. Then μμ(1)∧β is a normal filter in
L. If μ ∈ FPF(L), then μμ(1)∧β ∈ PF(L) by Definition 7. Since L/μμ(1)∧β ∈ B(P∗),
we have L/μ ∈ B(P∗) follows from Lemma 8. �

The following example shows that the converse of Lemma 9 may not be true.

Example 5 Let L be the integral residuated lattice defined in Example 3. Define
the fuzzy subset μ as μ(1) = 0.9,μ(d) = 0.85,μ(c) = 0.85,μ(b) = 0.3,μ(a) =
0.2,μ(0) = 0.2. Routine calculation shows thatμ is a (0.2, 0.92]-fuzzy normal filter,
hence by Lemma 8, (L/μ,∨μ,∧μ,�μ,→μ,�μ,μ1) is an integral residuated lattice.
For any x, y ∈ L, if μx ∨μ μy = μ1, then μx = μ1 or μy = 1. This shows that L/μ sat-
isfies conditionP∗: x ∨ y = 1 implies x = 1 or y = 1. Butμ is not a (0.2, 0.92]-fuzzy
prime filter because μ(a) ∨ μ(b) ∨ 0.2 � μ(a ∨ b) ∧ 0.92.
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Lemma 10 Let μ be an (α,β]-fuzzy filter, α < t ≤ β. If μt 
= ∅, then μ(1) ∧ β ≥ t
and μμ(1)∧β ⊆ μt .

Proof If μt 
= ∅, then 1 ∈ μt , i.e., μ(1) ≥ t. Hence μ(1) ∧ β ≥ t and μμ(1)∧β

⊆ μt . �

Lemma 11 Let L be an IRL. If PF(L) satisfies Extension property, then (α,β]-fuzzy
normal filter μ ∈ FPF(L) if and only if L/μ ∈ B(P∗).

Proof Suppose L/μ ∈ B(P∗). Then from Lemma 8, we know that L/μμ(1)∧β ∈
B(P∗), soμμ(1)∧β ∈ PF(L). Letα < t ≤ β, ifμt 
= ∅, thenμμ(1)∧β ⊆ μt . SincePF(L)

satisfies Extension property, we get thatμt ∈ PF(L). Hence μ ∈ FPF(L). The neces-
sity is followed by Lemma 9. �

The following theorem is a consequence of the preceding results.

Theorem 6 If PF(L) satisfies Extension property, then the following are equivalent:
(1) PF(L) satisfies Quotient characteristics;
(2) FPF(L) satisfies Quotient characteristics.
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Weak Pseudo-Quasi-Wajsberg Algebras

Wen-Jun Liu and Wen-Juan Chen

Abstract In this paper we introduce a generalization of pseudo-quasi-Wajsberg
algebras, called weak pseudo-quasi-Wajsberg algebras (weak PQW-algebras, for
short). And then some properties of weak PQW-algebras are investigated. Finally,
we define weak pseudo-quasi-MV algebras and a related categorical equivalence is
established.

Keywords Wajsberg algebras · Quasi-Wajsberg algebras · Weak pseudo-quasi-
Wajsberg algebras · Weak pseudo-quasi-MV algebras

1 Introduction

It is known that quasi-MV algebra arising from the quantum computational logic
is an algebraic model for describing the set of all density operators of the Hilbert
spaceC2, endowed with a suitable stock of quantum logical gates. In the past decade,
many properties and their associated logics of quasi-MV algebras have been inves-
tigated [1, 8–11]. Recently, pseudo-quasi-MV algebras (PQMV-algebras, for short)
as a non-commutative generalization of quasi-MV algebras were introduced in [4,
5]. Meanwhile, the variety of PQMV-algebras as a subvariety of quasi-pseudo-MV
algebras (QPMV-algebras, for short) introduced in [2, 3] plays an important role in
studying QPMV-algebras.

In [5], the authors showed that PQMV-algebras are term equivalent to pseudo-
quasi-Wajsberg algebras which are non-commutative generalization of
quasi-Wajsberg algebras. In 2010, in order to study the logical aspects of quasi-MV
algebras, Bou et. al. introduced quasi-Wajsberg algebras in [1]. Thus pseudo-quasi-
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Wajsberg algebras are related to the non-commutative quantum computational logic.
In this paper we want to continue and generalize this study. We present and discuss
structures which are weaker than those of pseudo-quasi-Wajsberg algebras.

The paper is organized as follows. In Sect. 2, we recall some definitions and results
which is used in thesequel. In Sect. 3, we introduce weak pseudo-quasi-Wajsberg
algebras (weak PQW-algebras, for short) and investigate properties of weak PQW-
algebras. In Sect. 4,we defineweakpseudo-quasi-MValgebras and establish a related
categorical equivalence.

2 Preliminary

In this section, we recall some definitions and results which will be used in what
follows.

Wajsberg algebraswere defined and investigated by Font et al. in [7]. Among other
results, the categorical equivalence betweenWajsberg algebras andMV algebras was
established.

Definition 1 ([7]) An algebra A = 〈A;→,′ , 1〉 of type 〈2, 1, 0〉 is called aWajsberg
algebra, if it satisfies the following axioms for all x, y, z ∈ A:
(W1) 1 → x = x ;
(W2) (x → y) → ((y → z) → (x → z)) = 1;
(W3) (x → y) → y = (y → x) → x ;
(W4) (x ′ → y′) → (y → x) = 1.

Quasi-Wajsberg algebras were introduced as a generalization of Wajsberg alge-
bras. In fact, it is a term equivalent version of quasi-MV algebras.

Definition 2 ([1]) An algebra A = 〈A;→,′ , 1〉 of type 〈2, 1, 0〉 is called a quasi-
Wajsberg algebra, if it satisfies the following axioms for all x, y, z ∈ A:
(QW1) 1 → (x → y) = x → y;
(QW2) (x → y) → ((y → z) → (x → z)) = 1;
(QW3) (x → y) → y = (y → x) → x ;
(QW4) (x ′ → y′) → (y → x) = 1;
(QW5) x ′′ = x ;
(QW6) 1 → (1 → x)′ = (1 → x)′.

According to the definition, any Wajsberg algebra is a quasi-Wajsberg algebra.
Conversely, if a quasi-Wajsberg algebra satisfies the condition 1 → x = x , then it is
a Wajsberg algebra.

In [5], Liu and Chen introduced pseudo-quasi-MV algebras as non-commutative
generalization of quasi-MV algebras. At the same time, they defined and studied
pseudo-quasi-Wajsberg algebras which were categorically equivalent to pseudo-
quasi-MV algebras.
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Definition 3 ([5]) An algebra A = 〈A;→,�,′ , 1〉 of type 〈2, 2, 1, 0〉 is called a
pseudo-quasi-Wajsberg algebra, if it satisfies the following axioms for all x, y, z ∈ A:
(PQW1) 1 → x = 1 � x ;
(PQW2) 1 → (x → y) = x → y, 1 � (x � y) = x � y;
(PQW3) (x � y) → y = (y � x) → x = (y → x) � x = (x → y) � y;
(PQW4) (x → y) → ((y → z) � (x → z)) = 1,

(x � y) � ((y � z) → (x � z)) = 1;
(PQW5) (x ′ � y′) → (y → x) = 1, (x ′ → y′) → (y � x) = 1;
(PQW6) x → y′ = y � x ′;
(PQW7) 1 → (1 → x)′ = (1 → x)′, 1 � (1 � x)′ = (1 � x)′;
(PQW8) x ′′ = x .

Following from the definition, quasi-Wajsberg algebras are pseudo-
quasi-Wajsberg algebras. On the other hand, a pseudo-quasi-Wajsberg algebra in
which the two implications coincide is a quasi-Wajsberg algebra.

Definition 4 ([5]) An algebra A = 〈A;⊕,′ , 0〉 of type 〈2, 1, 0〉 is called a pseudo-
quasi-MV algebra, if it satisfies the following axioms for all x, y, z ∈ A:
(PQMV1) (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z);
(PQMV2) x ⊕ y ⊕ 0 = x ⊕ y;
(PQMV3) x ⊕ 0 = 0 ⊕ x ;
(PQMV4) x ⊕ 0′ = 0′ = 0′ ⊕ x ;
(PQMV5) (x ⊕ 0)′ = x ′ ⊕ 0;
(PQMV6) y ⊕ (x ′ ⊕ y)′ = (y ⊕ x ′)′ ⊕ y = x ⊕ (y′ ⊕ x)′ = (x ⊕ y′)′ ⊕ x ;
(PQMV7) x ′′ = x .

Theorem 1 ([5]) Let A = 〈A;→,�,′ , 1〉 be a pseudo-quasi-Wajsberg algebra.
Define a binary operation ⊕ and a constant 0 by x ⊕ y = x ′ → y = y′ � x and
0 = 1′. Then f (A) = 〈A;⊕,′ , 0〉 is a pseudo-quasi-MV algebra.

Theorem 2 ([5]) Let A = 〈A;⊕,′ , 0〉 be a pseudo-quasi-MV algebra. Define the
binary operations by x → y = x ′ ⊕ y, x � y = y ⊕ x ′ and a constant 1 by 1 = 0′.
Then g(A) = 〈A;→,�,′ , 1〉 is a pseudo-quasi-Wajsberg algebra.

3 Weak Pseudo-quasi-Wajsberg Algebras

In this section, we introduce the concepts of weak pseudo-quasi-Wajsberg algebras
and study the related properties between them.

Definition 5 An algebra A = 〈A;→,�,′ , 1〉 of type 〈2, 2, 1, 0〉 is called a weak
pseudo-quasi-Wajsberg algebra (weak PQW-algebra, for short), if it satisfies the
following axioms for all x, y, z ∈ A:
(WW1) 1 → x = 1 � x ;
(WW2) 1 → (x → y) = x → y, 1 � (x � y) = x � y;
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(WW3) (x → y) � y = (y → x) � x ,
(x � y) → y = (y � x) → x ;

(WW4) (x → y) → ((y → z) � (x → z)) = 1,
(x � y) � ((y � z) → (x � z) = 1;

(WW5) (x ′ � y′) → (y → x) = 1, (x ′ → y′) → (y � x) = 1;
(WW6) x → y′ = y � x ′;
(WW7) 1 → (1 → x)′ = (1 → x)′;
(WW8) x ′′ = x ;
(WW9) x → (y � z) = y � (x → z).

Obviously, pseudo-quasi-Wajsberg algebra is a weak PQW-algebra. Conversely,
a weak PQW algebra which satisfies the axiom (x � y) → y = (y � x) → x =
(y → x) � x = (x → y) � y is a pseudo-quasi-Wajsberg algebra.

Now we list some properties of weak PQW-algebras.

Proposition 1 In a weak PQW algebra A = 〈A;→,�,′ , 1〉, the following equali-
ties and implications hold for all x, y ∈ A:
(P1) If x → y = 1 and y → x = 1, then 1 → x = 1 → y,

If x � y = 1 and y � x = 1, then 1 � x = 1 � y;
(P2) If x → y = 1 and y → z = 1, then x → z = 1,

If x � y = 1 and y � z = 1, then x � z = 1;
(P3) 1 → 1 = 1, 1 � 1 = 1;
(P4) (1 → x) → (1 → x) = 1, (1 → x) � (1 → x) = 1;
(P5) (x → y) → (x → y) = 1, (x → y) � (x → y) = 1,

(x � y) � (x � y) = 1, (x � y) → (x � y) = 1;
(P6) (1 → x) → x = 1, (1 � x) � x = 1;
(P7) (1 → x) → 1 = 1, (1 � x) � 1 = 1;
(P8) (x → y) � 1 = 1, (x � y) → 1 = 1,

(x → y) → 1 = 1, (x � y) � 1 = 1;
(P9) ((x � y) → y) � x = (x → (y � x)) � (y � x),

((x → y) � y) → x = (x � (y → x)) → (y → x);
(P10) (x → (1 → y)) → (1 � (x → y)) = 1,

(x � (1 � y)) � (1 → (x � y)) = 1;
(P11) (x � y)′ = (x � y) → 1′, (x → y)′ = (x → y) � 1′;
(P12) ((x → y)′ � 1′) → (x → y) = 1, ((x → y)′ → 1′) � (x → y) = 1,

((x � y)′ → 1′) � (x � y) = 1, ((x � y)′ � 1′) → (x � y) = 1;
(P13) ((x → y) → (1′ � (x → y))) � (1′ � (x → y)) = 1,

((x � y) � (1′ → (x � y))) → (1′ → (x � y)) = 1;
(P14) 1′ � (x → y) = 1, 1′ → (x � y) = 1;
(P15) x → 1 = 1, x � 1 = 1;
(P16) x � (1 → x) = 1, x → (1 � x) = 1;
(P17) (1 → x) � y = x � y, (1 � x) → y = x → y;
(P18) x � (1 → y) = x � y, x → (1 � y) = x → y;
(P19) (1 → x) � (1 → y) = x � y, (1 � x) → (1 � y) = x → y;
(P20) 1 → 1′ = 1′, 1 � 1′ = 1′.
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Proof (P1) If x → y = 1 and y → x = 1, we have 1 → y = 1 � y = (x → y) �
y = (y → x) � x = 1 � x = 1 → x by (WW3) and (WW1). If x � y = 1 and
y � x = 1, we have 1 � y = 1 → y = (x � y) → y = (y � x) → x = 1 →
x = 1 � x by (WW3) and (WW1).

(P2) If x → y = 1 and y → z = 1, we have 1 = (x → y) → ((y → z) � (x →
z)) = 1 → (1 � (x → z)) = 1 � (x → z) = x → z by (WW4) and (WW2). If
x � y = 1and y � z = 1,wehave1 = (x � y) � ((y � z) → (x � z)) = 1 �
(1 → (x � z)) = 1 → (x � z) = x � z by (WW4) and (WW2).

(P3) Applying (WW4) twice and (WW2), we have 1 → 1 = 1 → ((x → y) →
((y → z) � (x → z))) = (x → y) → ((y → z) � (x → z)) = 1.Moreover, 1 �
1 = 1 → 1 = 1.

(P4)Wehave (1 → x) → (1 → x) = (1 � x) → (1 � x) = 1 → ((1 � x) →
(1 � x)) = (1 � 1) � ((1 � x) → (1 � x)) = 1 by (WW1), (WW2), (P3) and
(WW4). The second equation can be proved similarly.

(P5) We have (x → y) → (x → y) = (1 → (x → y)) → (1 → (x → y)) = 1
by (WW2) and (P4). The rest can be proved similarly.

(P6) We have (1 → x) → x = (1 � x) → x = (x � 1) → 1 = (x � 1) →
((x � 1) � (x � 1)) = (x � 1) → ((1 → (x � 1)) � (x � 1)) = (x � 1) →
(((x � 1) → 1) � 1) = (1 → (x � 1)) → (((x � 1) → 1) � (1 → 1)) = 1 by
(WW1), (WW3), (P5), (WW2), (WW3), (WW2), (P3) and (WW4). The second equa-
tion can be proved similarly.

(P7) We have (1 → x) → 1 = (1 → x) → ((1 → x) � (1 → x)) = (1 → x)
→ ((1 → (1 → x)) � (1 → x)) = (1 → x) → (((1 → x) → 1) � 1) = (1 →
(1 → x)) → (((1 → x) → 1) � (1 → 1)) = 1 by (P5), (WW2), (WW3), (P3) and
(WW4). The second equation can be proved similarly.

(P8)We have (x → y) � 1 = (1 � (x → y)) � 1 = 1 by (WW1), (WW2) and
(P7). The rest can be proved similarly.

(P9) We have ((x � y) → y) � x = ((y � x) → x) � x = (x → (y � x))
� (y � x) by (WW3). The second equation can be proved similarly.

(P10) We have (x → (1 → y)) → (1 � (x → y)) = (x → (1 → y)) →
(((1 → y) → y) � (x → y)) = 1 by (P6) and (WW4). The second equation can
be proved similarly.

(P11) We have (x � y) → 1′ = 1 � (x � y)′ = 1 � (1 � (x � y))′ = 1 →
(1 � (x � y))′ = (1 � (x � y))′ = (x � y)′ by (WW6), (WW2), (WW1),
(WW7) and (WW2). The second equation can be proved similarly.

(P12) We have ((x → y)′ � 1′) → (x → y) = (1 → (x → y)) → (x → y) =
1 by (WW6) and (P6). The rest can be proved similarly.

(P13)We have ((x → y) → (1′ � (x → y))) � (1′ � (x → y)) = (((x → y)
� 1′) → 1′) � (x → y) = ((x → y)′ → 1′) � (x → y) = 1 by (P7), (P11) and
(P12). The second equation can be proved similarly.

(P14) We have 1′ � (x → y) = 1 � (1′ � (x → y)) = ((x → y) → 1) �
(1′ � (x → y)) = ((x → y) → ((1 → (x → y)′) → 1)) � (1′ � (x → y)) =
((x → y) → (((x → y) � 1′) → 1)) � (1′ � (x → y)) = ((x → y) → ((x →
y)′ → 1)) � (1′ � (x → y)) = ((x → y) → (1′ � (x → y))) � (1′ � (x →
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y)) = 1 by (WW2), (P8), (P7), (WW6), (P11) and (P13). It is similar to the second
equation.

(P15)Wehave x → 1 = 1′ � x ′ = 1 � (1′ � x ′) = (1′ � (1 → x ′)) � (1′ �
x ′) = (1′ � (1 � x ′)) � (1 → (1′ � x ′)) = 1by (WW6), (P14), (WW2), (WW1),
(WW6) and (P10). The second equation can be proved similarly.

(P16) We have x � (1 → x) = x � ((x ′ → 1) → x) = x � ((1′ � x) →
x) = x � ((x � 1′) → 1′) = x � (1 � (x � 1′)′) = x � (1 → (x � 1′)′) = x
� (1 → (1 → x ′)′) = x � (1 → x ′)′ = (1 → x ′) → x ′ = 1 by (P15), (WW6),
(WW1), (WW6), (WW7), (WW6) and (P6). The second equation can be proved
similarly.

(P17) On the one hand, we have 1 = (x � (1 → x)) � (((1 → x) � y) →
(x � y)) = 1 → (((1 → x) � y) → (x � y)) = ((1 → x) � y) → (x � y)by
(WW4), (P16), (WW1) and (WW2). On the other hand, we have 1 = ((1 � x) �
x) � ((x � y) → ((1 → x) � y)) = 1 → ((x � y) → ((1 → x) � y)) =
(x � y) → ((1 → x) � y) by (WW4), (WW1), (P6) and (WW2). Then, by (WW3)
and (WW2), we obtain (1 → x) � y = x � y. The second equation can be proved
similarly.

(P18) The proof is similar to (P17).
(P19) We have (1 → x) � (1 → y) = x � (1 → y) = x � y by (P17) and

(P18). The second equation can be proved similarly.
(P20) We have 1 � 1′ = 1 → (1 → 1)′ = (1 → 1)′ = 1′ by (WW1), (P3) and

(WW7). The second equation can be proved similarly. �

In any weak PQW-algebra, we can define two relations x ≤1 y ⇔ x → y = 1
and x ≤2 y ⇔ x � y = 1. Let us mention that in a pseudo-quasi-Wajsberg algebra,
it is easy to see that x → y = 1 if and only if x � y = 1. Thus the relations ≤1 and
≤2 coincide in a pseudo-quasi-Wajsberg algebra.

Proposition 2 Let A be a weak PQW-algebra. Then the relation ≤1 with the lowest
element 0 and the greatest element 1 has the following properties for any x, y ∈ A:
(1) x ≤1 x;
(2) if x ≤1 y and y ≤1 x, then 1 → x = 1 → y;
(3) if x ≤1 y and y ≤1 z, then x ≤1 z.

Proof (1) Since x → x = (1 � x) → (1 � x) = 1 by (P19), (WW1) and (P4), we
have x ≤1 x .

(2) If x ≤1 y and y ≤1 x , then x → y = 1 and y → x = 1, it follows that 1 →
x = 1 → y by (P1).

(3) If x ≤1 y and y ≤1 z, then x → y = 1 and y → z = 1, it follows that x →
z = 1 by (P2), so x ≤1 z. Moreover, since x → 1 = 1 by (P15), we have x ≤1 1.
Also 0 ≤1 1 → x by (P14) and 1 → x ≤1 x by (P6), we have 0 ≤1 x by (2). �

Similarly, we have

Proposition 3 Let A be a weak PQW-algebra. Then the relation ≤2 with the lowest
element 0 and the greatest element 1 has the following properties for all x, y ∈ A:
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(1) x ≤2 x;
(2) if x ≤2 y and y ≤2 x, then 1 � x = 1 � y;
(3) if x ≤2 y and y ≤2 z, then x ≤1 z.

Remark 1 Let A be a weak PQW-algebra. Let R(A) = {x ∈ A|1 → x = x}. Then
the relations ≤1 and ≤2 restricted to R(A) are partial orderings.

The following proposition is easy to prove. The proof is omitted.

Proposition 4 In a weak PQW-algebra A, the following are true for all x, y, z ∈ A:
(1) x ≤1 1 � x and x ≤2 1 → x;
(2) 1 � x ≤1 x and 1 → x ≤2;
(3) x → y ≤1 (y → z) � (x → z), x � y ≤2 (y � z) → (x � z);
(4) x � y ≤1 (z � x) → (z � y), x → y ≤2 (z → x) � (z → y);
(5) x ≤1 (y � x), x ≤2 (y → x);
(6) x ≤1 y � z ⇔ y ≤2 x → z, x ≤2 y → z ⇔ y ≤1 x � z;
(7) x ≤1 y ⇒ y → z ≤2 x → z, x ≤2 y ⇒ y � z ≤1 x � z;
(8) x ≤1 y ⇒ z → x ≤1 z → y, x ≤2 y ⇒ z � x ≤2 z � y;
(9) x ≤1 y ⇔ y′ ≤2 x ′, x ≤2 y ⇔ y′ ≤1 x ′.

Now, we define two binary operations x ∨1 y = (x → y) � y = (y → x) � x
and x ∨2 y = (x � y) → y = (y � x) → x .

Proposition 5 Let A be a weak PQW-algebra. Then the following are true for all
x, y ∈ A:
(1) x ∨1 y is a supremum for x and y with respect to ≤1;
(2) x ∨2 y is a supremum for x and y with respect to ≤2.

Proof (1) By definition of ∨1, (WW3) and (WW9), we have x → (x ∨1 y) = x →
((x → y) � y) = x → ((y → x) � x) = 1, thus x ≤1 x ∨1 y. Similarly, we have
y ≤1 x ∨1 y. Let z ∈ A such that x ≤1 z and y ≤1 z. Then x → z = 1 and y → z =
1. By (WW4), (WW1) and (WW2), we have 1 = (y → z) → ((z → x) � (y →
x)) = 1 → ((z → x) � (y → x)) = (z → x) � (y → x). Then we obtain 1 =
((z → x) � (y → x))�(((y → x) � x) → ((z → x) � x)) = ((y → x) � x)
→ ((z → x) � x) = (x ∨1 y) → (x ∨1 z) = (x ∨1 y) → (1 → z). Thus we have
(x ∨1 y) ≤1 (1 → z).

(2) The proof is similar to (1). �

Dually, we can define the binary operations x ∧1 y = (x ′ ∨2 y′)′ and x ∧2 y =
(x ′ ∨1 y′)′.

Proposition 6 Let A be a weak PQW-algebra. Then the following are true for all
x, y ∈ A:
(1) x ∧1 y is an infimum for x and y with respect to ≤1;
(2) x ∧2 y is an infimum for x and y with respect to ≤2.
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Proposition 7 Let A be a weak PQW-algebra. Then
(1) x ∨1 y = y ∨1 x and x ∧1 y = y ∧1 x;
(2) (x ∨1 y) ∨1 z = x ∨1 (y ∨1 z) and (x ∧1 y) ∧1 z = x ∧1 (y ∧1 z);
(3) x ∨1 x = 1 → x and x ∧1 x = 1 → x;
(4) (x ∨1 y) ∧1 x = 1 → x and (x ∧1 y) ∨1 x = 1 → x.

Proof We only check the case of ∨1. The case of ∧1 can be proved dually.
(1) Directly from the definition of ∨1.
(2) Since y ≤1 y ∨1 z, we have x ∨1 y ≤1 x ∨1 (y ∨1 z) and z ≤1 y ∨1 z ≤1

x ∨1 (y ∨1 z), it turns out that (x ∨1 y) ∨1 z ≤1 x ∨1 (y ∨1 z). Similarly, x ∨1 (y ∨1

z) ≤1 (x ∨1 y) ∨1 z. Thus (x ∨1 y) ∨1 z = x ∨1 (y ∨1 z).
(3) We have x ∨1 x = (x � x) → x = ((1 → x) � (1 → x)) → x = 1 → x

by (P19) and (P4).
(4) Since 1 → x ≤1 x ∨1 y and 1 → x ≤1 x by Proposition 4 and (WW1), we

have 1 → x ≤1 (x ∨1 y) ∧1 x . On the other hand, (x ∨1 y) ∧1 x ≤1 x ≤1 1 → x .
Thus (x ∨1 y) ∧1 x = 1 → x . �

Similarly, we have

Proposition 8 Let A be a weak PQW-algebra. Then
(1) x ∨2 y = y ∨2 x and x ∧2 y = y ∧2 x;
(2) (x ∨2 y) ∨2 z = x ∨2 (y ∨2 z) and (x ∧2 y) ∧2 z = x ∧2 (y ∧2 z);
(3) x ∨2 x = 1 � x and x ∧2 x = 1 � x;
(4) (x ∨2 y) ∧2 x = 1 � x and (x ∧2 y) ∨1 x = 1 � x.

Proposition 9 In a weak PQWalgebra A = 〈A;→,�, 0, 1〉, the following are true
for all x, y, z ∈ A:
(1) (x ∨1 y) → z = (x → z) ∧2 (y → z), (x ∨2 y) � z = (x � z) ∧1 (y � z);
(2) z → (x ∧1 y) = (z → x) ∧1 (z → y), z � (x ∧2 y) = (z � x) ∧2 (z � y);
(3) (x ∨1 y) → y = x → y, (x ∨2 y) � y = x � y;
(4) x → (x ∧1 y) = x → y, x � (x ∧2 y) = x � y.

Proof The proof is similar to [6]. �

4 Weak Pseudo-Quasi-MV Algebras and a Categorical
Equivalence

In this section we introduce the concept of weak pseudo-quasi-MV algebras and
prove that they are term equivalent to weak PQW-algebras.

Definition 6 An algerbra A = 〈A;⊕,′ , 0〉 of type 〈2, 1, 0〉 is called a weak pseudo-
quasi-MV algebra, if it satisfies the following axioms for all x, y, z ∈ A:
(WPQ1) (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z);
(WPQ2) x ⊕ y ⊕ 0 = x ⊕ y;
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(WPQ3) x ⊕ 0 = 0 ⊕ x ;
(WPQ4) x ⊕ 0′ = 0′ = 0′ ⊕ x ;
(WPQ5) (x ⊕ 0)′ = x ′ ⊕ 0;
(WPQ6) y ⊕ (x ′ ⊕ y)′ = x ⊕ (y′ ⊕ x)′, (y ⊕ x ′)′ ⊕ y = (x ⊕ y′)′ ⊕ x ;
(WPQ7) x ′′ = x .

Remark 2 In any weak pseudo-quasi-MV algebra, we denote 1 = 0′ and have x ′ ⊕
x = x ⊕ x ′ = 1. Indeed, x ′ ⊕ x = 0 ⊕ x ′ ⊕ x = (0 ⊕ x ′) ⊕ x = (x ⊕ 0)′ ⊕ x =
(x ⊕ 1′)′ ⊕ x = (1 ⊕ x ′)′ ⊕ 1 = 1′ ⊕ 1 = 0 ⊕ 1 = 1.

On any weak pseudo-quasi-MV algebra, we define:
(1) x ∨1 y = y ⊕ (x ′ ⊕ y)′, x ∨2 y = (y ⊕ x ′)′ ⊕ y;
(2) x ∧1 y = (x ′ ∨2 y′)′, x ∧2 y = (x ′ ∨1 y′)′;
(3) x ≤1 y = x ∨1 y = y ⊕ 0, x ≤2 y = x ∨2 y = y ⊕ 0.

Proposition 10 Let A be a weak pseudo-quasi-MV algebra. For x, y ∈ A, the fol-
lowing conditions are equivalent:
(1) x ≤1 y,
(2) x ′ ⊕ y = 1;

Proof (1) ⇒ (2) Since x ≤1 y, we have x ∨1 y = y ⊕ 0. Thus x ′ ⊕ y = (x ′ ⊕ y)
⊕ 0 = x ′ ⊕ (y ⊕ 0) = x ′ ⊕ (x ∨1 y) = x ′ ⊕ (y ⊕ (x ′ ⊕ y)′) = (x ′ ⊕ y) ⊕ (x ′ ⊕
y)′ = 1.

(2) ⇒ (1) Since x ∨1 y = y ⊕ (x ′ ⊕ y)′ = y ⊕ 1′ = y ⊕ 0, we havex ≤1 y.
�

Similarly, we have

Proposition 11 Let A be a weak pseudo-quasi-MV algebra. For x, y ∈ A, the fol-
lowing conditions are equivalent:
(1) x ≤2 y;
(2) y ⊕ x ′ = 1.

Remark 3 Based on Propositions 10 and 11, it is easy to see that 0 ≤1 x and x ≤1 1
for each x ∈ A. Similarly, we have 0 ≤2 x and x ≤2 1.

Theorem 3 Let A = 〈A;⊕,′ , 0〉 be a weak pseudo-quasi-MV algebra. Define the
binary operations x → y = x ′ ⊕ y, x � y = y ⊕ x ′ and a constant 1 = 0′. Then
f (A) = 〈A;→,�,′ , 1〉 is a weak PQW-algebra.

Proof We check the conditions in Definition5 consecutively.
(WW1) 1 → x = 1′ ⊕ x = 0 ⊕ x = x ⊕ 0 = x ⊕ 1′ = 1 � x .
(WW2) 1 → (x → y) = 1′ ⊕ (x ′ ⊕ y) = 0 ⊕ (x ′ ⊕ y) = x ′ ⊕ y = x → y.

Similarly, we have 1 � (x � y) = x � y.
(WW3) Since (x � y) → y = (y ⊕ x ′)′ ⊕ y and (y � x) → x = (x ⊕ y′)′ ⊕

x , we have (x � y) → y = (y � x) → x by (WPQ6). Similarly, we can prove
(x → y) � y = (y → x) � x .
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(WW4) Obviously, (x → y) → ((y → z) � (x → z)) ≤ 1. Since (x → y) →
((y → z) � (x → z)) = (x ′ ⊕ y) → ((y′ ⊕ z) � (x ′ ⊕ z)) = (x ′ ⊕ y) → ((x ′ ⊕
z) ⊕ (y′ ⊕ z)′) = (x ′ ⊕ y)′ ⊕ ((x ′ ⊕ z) ⊕ (y′ ⊕ z)′) = ((x ′ ⊕ y)′ ⊕ x ′) ⊕ (z ⊕ (y′
⊕ z)′) = (x ′ ∨2 y′) ⊕ (z ∨1 y) ≥ y′ ⊕ y = 1, we have (x → y) → ((y → z) �
(x → z)) = 1. Similarly, we have (x � y) � ((y � z) → (x � z)) = 1.

(WW5) We have (x ′ � y′) → (y → x) = (y′ ⊕ x) → (y′ ⊕ x) = (y′ ⊕ x)′ ⊕
(y′ ⊕ x) = 1. Similarly, we have (x ′ → y′) → (y � x) = 1.

(WW6) We have x → y′ = x ′ ⊕ y′ = y � x ′.
(WW7) We have 1 → (1 → x)′ = 1′ ⊕ (1 → x)′ = 0 ⊕ (0 ⊕ x)′ = 0 ⊕

x ′ = (0 ⊕ x)′ = (1 → x)′ by (WPQ5). Similarly, we have 1 � (1 � x)′ =
(1 � x)′.

(WW8) From(WPQ7).
(WW9) We have x → (y � z) = x ′ ⊕ (y � z) = x ′ ⊕ (z ⊕ y′) = (x ′ ⊕ z) ⊕

y′ = (x → z) ⊕ y′ = y � (x → z). �

Conversely, we have

Theorem 4 Let A = 〈A;→,�,′ , 1〉 be a weak PQW-algebra. Define a binary
operation ⊕ and a constant 0 by x ⊕ y = x ′ → y = y′ � x and 0 = 1′. Then
g(A) = 〈A;⊕,′ , 0〉 is a weak pseudo-quasi-MV algebra.

Proof We check the conditions in Definition 6 consecutively.
(WPQ1) Since (x ⊕ y) ⊕ z = (x ′ → y) ⊕ z = z′ � (x ′ → y) and x ⊕ (y ⊕

z) = x ⊕ (y′ → z) = x ′ → (y′ → z) = x ′ → (z′ � y), we have (x ⊕ y) ⊕ z =
x ⊕ (y ⊕ z) by (WW9).

(WPQ2) Since x ⊕ y ⊕ 0 = (x ′ → y) ⊕ 0 = (x ′ → y) ⊕ 1′ = 1 � (x ′ → y)=
1 → (x ′ → y) = x ′ → y by (WW1) and (WW2), we have x ⊕ y ⊕ 0 = x ⊕ y.

(WPQ3) We have x ⊕ 0 = 0′ � x = 1 � x = 1 → x = 0′ → x = 0 ⊕ x .
(WPQ4)We have 0′ ⊕ x = x ′ � 0′ = x ′ � 1 = 1 = 0′ by (L13). Similarly, x ⊕

0′ = 0′.
(WPQ5) Since (x ⊕ 0)′ = (0′ � x)′ = (1 � x)′ = (1 � x) → 0 = x → 0 = 1

� x ′ by (WW6), (L9), (L15) and (WW6), and x ′ ⊕ 0 = 0′ � x ′ = 1 � x ′, we have
(x ⊕ 0)′ = x ′ ⊕ 0.

(WPQ6) We have y ⊕ (x ′ ⊕ y)′ = y ⊕ (x → y)′ = (x → y) � y = (y → x)
� x = (y′ ⊕ x) � x = x ⊕ (y′ ⊕ x)′ by (WW3). Similarly, (y ⊕ x ′)′ ⊕ y = (x �
y)′ ⊕ y = (x � y) → y = (y � x) → x = (x ⊕ y′) → x = (x ⊕ y′)′ ⊕ x .

(WPQ7) From (WW8). �

Based on Theorems 3 and 4, we can easily check that

Theorem 5 Themappings f and g defined in Theorems 3 and 4 aremutually inverse
correspondences.
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Characterizations of a Class of Commutative
Algebras of Logic Systems

Xue-Min Ling and Luo-Shan Xu

Abstract This paper gives new properties of WBR0-algebras and commutative
WBR0-algebras.Acomprehensive characterization for commutativeWBR0-algebras
by various other logic algebras is obtained. Three characterizationswith simpler types
and fewer axioms of commutative WBR0-algebras are also given.

Keywords WBR0-algebra · CFI-algebra ·MV-algebra · NLI-algebra · Residuated
lattice · Lattice implication algebra

1 Introduction

The study of non-classical logics includes syntax, semantics and algebras of logic
calculus of logical systems. In the study of logic systems, one found that most logic
systems are related to some logic algebras. For example, the Łukasiewicz continuous-
valued logic system is matched with MV-algebras, the intuitionistic propositional
logic system is matched with Heyting algebras. The formal logic system L∗ posed
byWang ismatchedwithR0-algebras [8]. So, researches on various logic algebras are
important in the study of non-classical logics. Afterwards, a new algebraic structure
of WBR0-algebras [10] was posed according to characterizations of BR0-algebras.
Significant results [1–3, 9] were obtained.

The purpose of this paper is to study commutativeWBR0-algebras. Many proper-
ties of (commutative) WBR0-algebras are obtained. It is proved that a commutative
WBR0-algebra is actually equivalent to a (2, 0)-type algebra expressed by an “→”
operator. Several characterizations with simpler types and fewer axioms of commu-
tative WBR0-algebras are given.
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2 Preliminaries

In the study of various kinds of logic systems, one put forward many logic algebras.
On the basis of these logic algebras, a number of related stronger or weaker algebras
are proposed. Basic concepts and related results of WBR0-algebras, FI-algebras and
NLI-algebras are given below. For other concepts and results not clearly specified
please refer to [2, 3, 6, 7, 9, 14].

Definition 1 ([10]) A (2, 2, 0, 0)-type algebra (M,⊕,→, 0, 1) is called a WBR0-
algebra, if ∀a, b, c ∈ M , the following statements hold:
(WB1) a ⊕ 0 = a;
(WB2) a ⊕ b = b ⊕ a;
(WB3) a → b = (b → 0) → (a → 0);
(WB4) a → (b → c) = b → (a → c);
(WB5) (b → c) → ((a → b) → (a → c)) = 1;
(WB6) a → (a ⊕ b) = 1;
(WB7) (a ⊕ b) → c = (((a → c) → 0) ⊕ ((b → c) → 0)) → 0;
(WB8) 1 → a = a;
(WB9) If a → b = b → a = 1, then a = b.

Definition 2 ([7]) A (2, 0)-type algebra (M,→, 0) is called an FI-algebra if
∀a, b, c ∈ M and 1 = 0 → 0, the following statements hold:
(I1) a → (b → c) = b → (a → c);
(I2) (a → b) → ((b → c) → (a → c)) = 1;
(I3) a → a = 1;
(I4) If a → b = b → a = 1, then a = b;
(I5) 0 → a = 1.
If M also satisfies the following condition:

(Com) : (a → b) → b = (b → a) → a, ∀a, b ∈ M,

then M is said to be a commutative FI-algebra, briefly, CFI-algebra.

Remark 1 (1) (WB4) in Definition 1 is not independent by [9]. (2) By [1, 10], a
WBR0-algebra is an FI-algebra and a BR0-algebra is a WBR0-algebra.

Lemma 1 ([2, 9]) In a WBR0-algebra, ∀a, b, c ∈ M:
(1) a → a = 1, specially 0 → 0 = 1;
(2) If a → c = 1, b → c = 1, then (a ⊕ b) → c = 1;
(3) (a → 0) → 0 = a;
(4) 0 → a = 1.

Definition 3 ([2]) A WBR0-algebra M is called a commutative WBR0-algebra,
briefly, CWBR0-algebra, if M satisfies the following condition:

(Com): (a → b) → b = (b → a) → a, ∀a, b ∈ M.
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Definition 4 ([6]) A (2, 0)-type algebra (L ,→, 0) is called an NFI-algebra, if
∀a, b, c ∈ L , one has:
(NLI-1) 0 → a = 1, where 1 = 0 → 0;
(NLI-2) (a → 0) → 0 = a;
(NLI-3) a → b = (b → 0) → (a → 0);
(NLI-4) (a → b) → (a → c) = (b → a) → (b → c).

3 Further Properties of (Commutative) WBR0-Algebras

New properties not expressed or not explicitly expressed in the literature of WBR0-
algebras and CWBR0-algebras are given in this section.

Proposition 1 If M is a WBR0-algebra, then ∀a, b c, d ∈ M, one has,
(W1) a → 1 = 1;
(W2) If 1 → a = 1, then a = 1;
(W3) a → (b → a) = 1;
(W4) If a → 0 = 0, then a = 1;
(W5) If a → b = 1, b → c = 1, then a → c = 1;
(W6) If a → b = 1, c → d = 1, then (a ⊕ c) → (b ⊕ d) = 1.

Proof (W1) By Definition 1 (WB4) and Lemma 1 (1, 4), we have

a → 1 = a → (0 → a) = 0 → (a → a) = 0 → 1 = 1.

(W2) It follows from (W1) and Definition 1 (WB9).
(W3) By Definition 1 (WB4), Lemma 1 (1) and (W1), we know

a → (b → a) = b → (a → a) = b → 1 = 1.

(W4) By Lemma 1 (1, 3), a = (a → 0) → 0 = 0 → 0 = 1.
(W5) By Definition 1 (WB5) and (WB8), we have

1 = (a → b) → ((b → c) → (a → c)) = 1 → (1 → (a → c)) = a → c.

(W6) By Definition 1 (WB6), we have b → (b ⊕ d) = 1. By (W5), we have
a → (b ⊕ d) = 1. Similarly, c → (b ⊕ d) = 1. By Lemma 1 (2), we have (a ⊕
c) → (b ⊕ d) = 1. �

Proposition 2 If M is a CWBR0-algebra, then ∀a, b ∈ M,
(CBR1) ((a → b) → b) → b = a → b;
(CBR2) a ⊕ b = (a → b) → b.

Proof (CBR1) On one hand, by Definition 1 (WB4), Lemma 1 (1), we have
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(a → b) → (((a → b) → b) → b)

= ((a → b) → b) → ((a → b) → b) = 1.

On the other hand, we have

(((a → b) → b) → b) → (a → b)

= (((b → a) → a) → b) → (a → b) (by Definition 3 (Com))

= 1 → ((((b → a) → a) → b) → (a → b)) (by (WB8))

= (a → ((b → a) → a)) → ((((b → a) → a) → b) → (a → b)) (by (W3))

= 1. (by (WB4), (WB8))

(CBR2) On one hand,we have

a → ((a → b) → b) = (a → b) → (a → b) = 1, (by (WB4), Lemma 1 (1))

b → ((a → b) → b) = (a → b) → (b → b) = 1. (by (WB4), Lemma 1 (1), (W1))

By Lemma 1 (2), we have (a ⊕ b) → ((a → b) → b) = 1. Further, we have

((a → b) → b) → (a ⊕ b) = ((a → b) → b) → (1 → (a ⊕ b)) (by (WB8))

= ((a → b) → b) → ((b → (a ⊕ b)) → (a ⊕ b)) (by (WB6))

= ((a → b) → b) → (((a ⊕ b) → b) → b) (by Definition 3 (Com))

= ((a ⊕ b) → b) → (((a → b) → b) → b) (by (WB4))

= ((a ⊕ b) → b) → (a → b) (by (CBR1))

= (a → (a ⊕ b)) → (((a ⊕ b) → b) → (a → b)) (by (WB6), (WB8))

= 1. (by (WB4), (WB5))

So, by Definition 1 (WB9), a ⊕ b = (a → b) → b. �

Proposition 3 Let M be a WBR0-algebra. Then M is commutative iff

∀a, b ∈ L , a ⊕ b = (a → b) → b.

Proof Sufficiency: Suppose that M is a WBR0-algebra and satisfies condition a ⊕
b = (a → b) → b. By Definition 1 (WB2), we have a ⊕ b = b ⊕ a. So, (Com) in
Definition 3 holds and M is a CWBR0-algebra.

Necessity: It follows from (CBR2) that a ⊕ b = (a → b) → b. �

Remark 2 By Propositions 2 and 3, in CWBR0-algebras, “ ⊕” can be expressed by
“ →”. So a CWBR0-algebra is actually equivalent to a (2, 0)-type algebra which is
expressed by an “→” operator.

Proposition 4 If M is a CWBR0-algebra, then ∀a, b, c ∈ M
(CBR3) (a → c) → (b → c) = b → (a ⊕ c);
(CBR4) (a → b) → (a → c) = (b → a) → (b → c);
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(CBR5) If a → b = 1, then (b → c) → (a → c) = (c → a) → (c → b) = 1;
(CBR6) a ⊕ (a ⊕ b) = a ⊕ b;
(CBR7) ((a ⊕ b) → a) ⊕ ((a ⊕ b) → b) = 1;
(CBR8) If a → b = 1, then a → (b ⊕ c) = 1;
(CBR9) (a → b) ⊕ (b → a) = 1;
(CBR10) (a ⊕ b) → a = b → a, (a ⊕ b) → b = a → b.

Proof (CBR3) By Definition 1 (WB4) and Proposition 2 (CBR2), one has

(a → c) → (b → c) = b → ((a → c) → c) (by (WB4))

= b → (a ⊕ c). (by (CBR2))

(CBR4) We have that

(a → b) → (a → c)

= ((b → 0) → (a → 0)) → ((c → 0) → (a → 0)) (by (WB3))

= (c → 0) → ((b → 0) ⊕ (a → 0)) (by (CBR3))

= (c → 0) → ((a → 0) ⊕ (b → 0)) (by (WB2))

= (c → 0) → (((a → 0) → (b → 0)) → (b → 0)) (by (CBR2))

= ((a → 0) → (b → 0)) → ((c → 0) → (b → 0)) (by (WB4))

= (b → a) → (b → c). (by (WB3))

(CBR5) Set a → b = 1. Then we have

(b → c) → (a → c) = a → ((b → c) → c) (by (WB4))

= a → ((c → b) → b) (by Definition 3 (Com))

= (c → b) → (a → b) (by (WB4))

= (c → b) → 1 = 1. (by the Assumption, (W1))

(a → b) → ((c → a) → (c → b))

= 1 → ((c → a) → (c → b) = 1. (by the Assumption, (WB5))

So by Proposition 1 (W2), we have (c → a) → (c → b) = 1.

(CBR6) On one hand, by Definition 1 (WB6), we have (a ⊕ b) → (a ⊕ (a ⊕
b)) = 1. On the other hand, we have

(a ⊕ (a ⊕ b)) → (a ⊕ b)

= ((a → (a ⊕ b)) → (a ⊕ b)) → (a ⊕ b) (by (CBR2))

= (1 → (a ⊕ b)) → (a ⊕ b) = 1. (by (WB6), (WB8), Lemma 1 (1))
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By Definition 1 (WB9), we see a ⊕ (a ⊕ b) = a ⊕ b.

(CBR7) We have

((a ⊕ b) → a) ⊕ ((a ⊕ b) → b)

= (((a ⊕ b) → a) → ((a ⊕ b) → b)) → ((a ⊕ b) → b) (by (CBR2))

= ((b → 0) → ((a → 0) ⊕ ((a ⊕ b) → 0))) → ((a ⊕ b) → b) (by (WB3))

= ((((a → 0) ⊕ ((a ⊕ b) → 0)) → 0) → b) → ((a ⊕ b) → b) (by (WB3), (CBR3))

= ((a ⊕ (a ⊕ b)) → b) → ((a ⊕ b) → b) (by Lemma 1 (3), (WB7))

= ((a ⊕ b) → b) → ((a ⊕ b) → b) = 1. (by Lemma 1 (1), (CBR6))

(CBR8) Set a → b = 1. Then we have

a → (b ⊕ c) = a → ((b → c) → c)) (by (CBR2))

= a → (((c → b) → b)) (by Definition 3 (Com))

= (c → b) → (a → b) (by (WB4))

= (c → b) → 1 = 1. (by the Assumption, (W1))

(CBR9) By Definition 1 (WB6), we have a → (a ⊕ b) = 1 and b → (a ⊕ b) =
1. By (CBR5), we have ((a ⊕ b) → b) → (a → b) = 1 and ((a ⊕ b) → a) →
(b → a) = 1. By Proposition 1 (W6) and (CBR7), we have

1 =(((a ⊕ b) → b) ⊕ ((a ⊕ b) → a) → ((a → b) ⊕ (b → a)) (by (W6))

= 1 → ((a → b) ⊕ (b → a)). (by (CBR7))

By Proposition 1 (W2), we see that (a → b) ⊕ (b → a) = 1 holds.

(CBR10) On one hand, we have

((a ⊕ b) → a) → (b → a)

= (((a → b) → b) → a) → (b → a) (by (CBR2))

= (b → ((a → b) → b)) → ((((a → b) → b) → a) → (b → a)) (by (W3), (WB8))

= 1. (by (WB4), (WB5))

On the other hand, we have

(b → a) → ((a ⊕ b) → a)

= (b → a) → (((a → b) → b) → a) (by (CBR2))

= ((a → b) → b) → ((b → a) → a) = 1. (by (WB4), Lemma 1 (1), Definition 3 (Com))

By (WB9), we see (a ⊕ b) → a = b → a. Similarly, (a ⊕ b) → b =
a → b. �
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4 Characterization of Commutative WBR0-Algebras

Firstly, a comprehensive characterization for CWBR0-algebras by various logic alge-
bras are given. For some involved algebras please refer to [11] for commutative BR0-
algebras, [8] forMV-algebras and residuated lattices, [13] for lattice implication alge-
bras, [14] for regular BL-algebras and [5] for bounded commutative BCK-algebras.
A commutative residuated lattice is a residuated lattice with (Com).

Theorem 1 The following algebraic structures are equivalent to each other:
(1) CWBR0-algebras;
(2) CFI-algebras;
(3) Commutative BR0-algebras;
(4) MV-algebras;
(5) lattice implication algebras;
(6) NLI-algebras;
(7) regular BL-algebras;
(8) bounded commutative BCK-algebras;
(9) commutative residual lattices.

Proof It follows fromTheorem 3.4.2 in [2] that (1), (2), (3) and (5) are equivalent. By
Theorem 3.7 in [7], (2), (3), (4) and (5) are equivalent. By Theorem 2.1 in [6], (5) and
(6) are equivalent. By Theorem 3.2 in [14], (5) and (7) are equivalent. By Theorem
3.3 in [5], (3) and (8) are equivalent. The equivalence of (1) and (9) appeared as
Theorem 1 in [3]. So, all the nine algebraic systems are equivalent to each other. �

The following lemma is useful in characterizing CWBR0-algebras.

Lemma 2 In a (2, 0)-type algebra (M,→, 0), let 1 = 0 → 0. Then
(1) The conditions (WB4) and (WB5) imply the following condition:

(WB5∗)(a → b) → ((b → c) → (a → c)) = 1.

(2) Conditions (WB8) and (Com) imply (I4) in Definition 2.

Proof (1) By Definition 1 (WB4, WB5), we have

(a → b) → ((b → c) → (a → c)) = (b → c) → ((a → b) → (a → c)) = 1.

So, (WB5∗) holds.
(2) If a → b = b → a = 1, then by (WB8) and (Com), we have

a = 1 → a = (b → a) → a = (a → b) → b = 1 → b = b.

So, (I4) in Definition 2 holds. �

The following theorem gives a simpler form of CWBR0-algebras.
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Theorem 2 A (2, 0)-type algebra (M,→, 0) is equivalent to a CWBR0-algebra iff
∀a, b, c ∈ M and 1 = 0 → 0, the following holds:
(WB3) a → b = (b → 0) → (a → 0);
(WB4) a → (b → c) = b → (a → c);
(WB5∗) (a → b) → ((b → c) → (a → c)) = 1;
(WB8) 1 → a = a;
(Com) (a → b) → b = (b → a) → a.

Proof Necessity can be obtained by Definition 3, Proposition 3 and Lemma 2.
To show the sufficiency, note that (WB4)= (I1) and (WB5∗)= (I2). So, by Theorem
1, it suffices to verify (I3), (I4) and (I5) in Definition 2.

Verification of (I3): By (WB5∗) and (WB8), we have

a → a = 1 → (a → a) = (1 → 1) → ((1 → a) → (1 → a)) = 1. (4-1)

Verification of (I4): It follows from Lemma 2 (2).
Verification of (I5): By condition (Com), (WB8) and (4-1), we have

(a → 1) → 1 = (1 → a) → a = a → a = 1. (4-2)

By (WB8), (4-2), (4-1) and (WB5∗), we have

a → 1 = (1 → a) → ((a → 1) → 1)

= (1 → a) → ((a → 1) → (1 → 1)) = 1. (4-3)

By (WB3), (4-1) and (4-3), we have

0 → a = (a → 0) → (0 → 0) = (a → 0) → 1 = 1.

Summing up the above, we see that sufficiency holds. �

Theorem 3 A (2, 0)-type algebra (M,→, 0) equivalent to a CWBR0-algebra iff
∀a, b, c ∈ M and 1 = 0 → 0, the following holds:
(WB3) a → b = (b → 0) → (a → 0);
(WB5) (b → c) → ((a → b) → (a → c)) = 1;
(WB8) 1 → a = a;
(Com) (a → b) → b = (b → a) → a.

Proof Necessity can be obtained by Definitions 1 and 3.
To show sufficiency, it suffices to verify (WB4) and (WB5∗) in Theorem 2.

Verification of (WB5∗): By (WB3) and (WB5), we have

(a → b) → ((b → c) → (a → c))

= ((b → 0) → (a → 0)) → (((c → 0) → (b → 0)) → ((c → 0) → (a → 0)))

= 1. (4-4)
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Then (WB5∗) holds.
Verification of (WB4): By (WB8) and (4-4), we have

a → ((a → c) → c) = (1 → a) → ((a → c) → (1 → c)) = 1. (4-5)

By (4-4), we have

(b → (a → c)) → (((a → c) → c) → (b → c)) = 1. (4-6)

If a → b = 1, then by (WB8) and (4-4), we have

(b → c) → (a → c)

= 1 → ((b → c) → (a → c))

= (a → b) → ((b → c) → (a → c)) = 1. (4-7)

By (4-5), we can use (a → c) → c to replace b which in the premise condition in
(4-7) that a → b = 1, use b → c to replace cwhich in the (b → c) → (a → c) = 1
in (4-7), we have

(((a → c) → c) → (b → c)) → (a → (b → c)) = 1. (4-8)

If a → b = 1 and b → c = 1, by (WB8) and (4-4), we have

a → c = 1 → (a → c)

= (b → c) → (a → c)

= (a → b) → ((b → c) → (a → c)) = 1. (4-9)

By (4-6), (4-8), (4-9), we have (b → (a → c)) → (a → (b → c)) = 1. Simi-
larly, (a → (b → c)) → (b → (a → c)) = 1.ByLemma2 (2),we have a → (b →
c) = b → (a → c).

Summing up the above, we see that sufficiency holds. �

Since by Theorem 1 that CWBR0-algebras are equivalent to NLI-algebras, we
give a characterization of CWBR0-algebra related to Definition 4.

Theorem 4 A (2, 0)-type algebra (M,→, 0) is equivalent to a CWBR0-algebra iff
∀a, b, c ∈ M, let 1 = 0 → 0, the following conditions are satisfied:
(CWB1) (a → b) → (a → c) = (b → a) → (b → c);
(CWB2) a → (b → 0) = b → (a → 0);
(CWB3) (a → 0) → 0 = a;
(CWB4) a → 1 = 1.

Proof Necessity: Note that (CWB1) = (NLI-4), (CWB3) = (NLI-2), (CWB4) =
(W1) and (CWB2) is a special case of (WB4). So, the necessity holds by Theorem 1.
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To show sufficiency, by Theorem 1, it suffices to verify conditions (NLI-1) and
(NLI-3) in the definition of NLI-algebras.

Verification of (NLI-3): By (CWB2) and (CWB3), we have

(b → 0) → (a → 0) = a → ((b → 0) → 0) = a → b. (4-10)

Verification of (NLI-1): By (CWB3), (4-10) and (CWB4), we have

0 → a = ((0 → 0) → 0) → ((a → 0) → 0)

= (a → 0) → (0 → 0) = (a → 0) → 1 = 1.

Summing up the above, we see that sufficiency holds. �

Theorems 3 and 4 are characterizations of CWBR0-algebras with simpler types
and fewer axioms. By Theorem 1, they can also be viewed as characterizations of
MV-algebras, lattice implication algebras and CFI-algebras.
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Ideals in Residuated Lattices

Qing-Jun Luo

Abstract In this paper, we first introduce the notion of ideals in residuated lattices as
a natural generalization of the concept of ideals in BL-algebras. Then we give several
equivalent characterizations of ideals in residuated lattices. Finally, the congruence
induced by ideals in residuated lattices is also obtained.

Keywords Residuated lattice · Ideal · Congruence

1 Introduction

Ideal theory is a very effective tool for studying various algebraic structures. As
in rings, the notion of ideals is at the center in the theory of MV-algebras, while in
BL-algebras, MTL-algebras, resiudated lattices and the corresponding non-
commutative version, the focus is turned to filter theory [1, 3, 6, 10]. In meantime,
some authors introduced the notion of ideals in BL-algebras as a natural generaliza-
tion of that of ideals in MV-algebras (see, e.g., [4, 5, 9]). The ideal in residuated
lattices has not been studied. Thus, the purpose of this paper is to introduce the
notion of ideals in residuated lattices as a framework studying ideal theory in logical
algebras. Then we give several equivalent characterizations of ideals in residuated
lattices and obtain congruences via these ideals.

2 Ideals and Congruences in Residuated Lattices

In this section, we first recall some basic notions and results relative to residuated
lattices. Then, we introduce the concept of ideals in residuated lattices and investigate
some of their properties. Based on ideals in a residuated lattice, equivalence relations
are obtained. Let us start with the following definition.
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Definition 1 ([2, 4]) A residuated lattice is an algebra A = (A,∧,∨,⊗,→, 0, 1)
of type (2, 2, 2, 2, 0, 0) satisfying the following axioms:
(RL1) (A,∧,∨, 0, 1) is a bounded lattice;
(RL2) (A,⊗, 1) is a commutative monoid;
(RL3) ⊗ and → form an adjoint pair, that is, a ⊗ b ≤ c if and only if a ≤ b → c.

In what follows, by Awe denote the universe of a residuated lattice. For a ∈ A, we
denote a′ = a → 0, a′′ = (a → 0) → 0. A residuated lattice A is called a regular
residuated lattice [10] if for all a ∈ A, a′′ = a. Next, we recall some important classes
of residuated lattices.

• A residuated lattice A is called an MTL-algebra if it satisfies the following
equation for all a, b ∈ A:

(MTL) (a → b) ∨ (b → a) = 1 (prelinearity).

• An MTL-algebra A is called a BL-algebra if it satisfies the following equation
for all a, b ∈ A:

(BL) a ∧ b = a ⊗ (a → b) (divisibility).

• A BL-algebra A is call an MV-algebra if it satisfies the following condition for
all a, b ∈ A:

(MV) (a → b) → b = (b → a) → a,

or equivalently, a′′ = a for all a ∈ A.
• A BL-algebra A is call a Gödel-algebra if a ⊗ a = a for all a ∈ A.
Some basic properties of residuated lattices and regular residuated lattices that

also will be used later, are listed in the following proposition.

Proposition 1 ([2, 10]) Let A be a residuated lattice. For all a, b, c ∈ A, we have:

(i) 1 → a = a;
(ii) a ≤ b if and only if a → b = 1;
(iii) if a ≤ b, then c → a ≤ c → b and b → c ≤ a → c;
(iv) if a ≤ c and b ≤ d, then a ⊗ b ≤ c ⊗ d;
(v) a → (b → c) = a ⊗ b → c = b → (a → c);
(vi) a ≤ a′′ and a′′′ = a′;
(vii) a → b ≤ b′ → a′;
(viii) (a → b′′)′′ = a → b′′;
(ix) (a ∨ b)′ = a′ ∧ b′;
(x) a ⊗ (b ∨ c) = (a ⊗ b) ∨ (a ⊗ c);
(xi) a ⊗ b = 0 if and only if a ≤ b′ if and only if b ≤ a′.

Furthermore, if A is regular, then we also have the following:
(xii) a′ → b′ = b → a, a′ → b = b′ → a;
(xiii) a ⊗ b = (a → b′)′;
(xiv) a → b = (a ⊗ b′)′.
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Proposition 2 Let A be a residuated lattice. Define a binary operation ⊕ on A as
follows:

a ⊕ b = a′ → b, a, b ∈ A.

Then the following properties hold for all a, b, c ∈ A:

(i) a ∨ b ≤ a ⊕ b;
(ii) if a ≤ b, then a ⊕ c ≤ b ⊕ c and c ⊕ a ≤ c ⊕ b;
(iii) 0 ⊕ a = a, a ⊕ 0 = a′′;
(iv) a ⊕ 1 = 1 ⊕ a = 1;
(v) a′ ⊕ a′′ = a′′ ⊕ a′ = 1;
(vi) a ⊕ b = 1 if and only if a′ ≤ b;
(vii) a ⊕ b′′ = a′′ ⊕ b′′ = b ⊕ a′′;
(viii) a′ ⊕ b′ = b′ ⊕ a′;
(ix) a′ ⊕ 0 = 0 ⊕ a′ = a′.

Proof The proposition follows immediately from Proposition 1. �

It should be noted that the operation ⊕ is not commutative in general, since the
equation a′ → b = b′ → a is not necessarily true in an arbitrary residuated lattice.

According to Propositions 1 and 2, we give a list of equivalent conditions for ⊕
to be commutative below.

Proposition 3 Let A be a residuated lattice. Then the following conditions are equiv-
alent to each other:

(i) A is a regular residuated lattice;
(ii) for all a, b ∈ A, a ⊕ b = b ⊕ a;
(iii) for all a ∈ A, a ⊕ 0 = a;
(iv) for all a ∈ A, a′ ⊕ a = 1.

Lele and Nganou proved that the operation⊕ defined in Proposition 2, is associa-
tive in BL-algebras [5]. However, in a general residuated lattice, ⊕ is not necessarily
associative, as shown in the following example.

Example 1 Let A = {0, a, b, c, d, 1} with 0 < a < c < d < 1, 0 < b < c < d <

1, where a and b are incomparable. The operations⊗ and→ are defined respectively
in the following tables.

⊗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 a a
b 0 0 0 0 b b
c 0 0 0 0 c c
d 0 a b c d d
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a c 1 c 1 1 1
b c c 1 1 1 1
c c c c 1 1 1
d 0 a b c 1 1
1 0 a b c d 1
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Then it is easily verified that (A,∧,∨,⊗,→, 0, 1) is a residuated lattice. Since
(a′ ⊕ a) ⊕ 0 = (a′′ → a)′ → 0 = (c → a)′ → 0 = c′ → 0 = c → 0 = c, a′ ⊕ (a
⊕ 0) = a′ ⊕ a′′ = a′′ → a′′ = 1 
= c, we have that the operation⊕ is not associative
in A.

We can show that in any regular residuated lattice A, the operation ⊕ is asso-
ciative, since (a ⊕ b) ⊕ c = (a′ → b)′ → c = c′ → (a′ → b) = a′ → (c′ → b) =
a′ → (b′ → c) = a ⊕ (b ⊕ c) for all a, b, c ∈ A. The converse, however, is not true
in general, as is shown in the following example.

Example 2 Let A = [0, 1]. Define two binary operations ⊗ and → on A as follows:

x → y =
{
1, x � y,
y, x > y,

x ⊗ y = min{x, y}.

Then it is easy to verify that (A,max,min,⊗,→, 0, 1) is a Gödel-algebra, and
the equality (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) holds for all a, b, c ∈ A. However, ( 12 )

′′ =
( 12 → 0) → 0 = 0 → 0 = 1 
= 1

2 . This shows that A is not a regular residuated
lattice.

In the sequel, by using the operation ⊕ defined in Proposition 2, we introduce the
concept of ideals in residuated lattices.

Definition 2 Let A be a residuated lattice and I a non-empty subset of A. Then I is
called an ideal of A if for all a, b ∈ A:
(I1) a ≤ b and b ∈ I imply a ∈ I ;
(I2) a, b ∈ I implies a ⊕ b ∈ I .

It is clear that {0} and A are ideals of A, and the least element 0 belongs to every
ideal of A. Moreover, the set of all ideals of A is closed under arbitrary intersections.

Let I be an ideal of A. By Definition 2, it is easy to prove that for all a ∈ A, a ∈ I
if and only if a′′ ∈ I .

For any B ⊆ A, the smallest ideal containing B is called the ideal generated by
B, and is denoted by 〈B〉. It is evident that 〈∅〉 = {0}. If B 
= ∅, then one can easily
check that 〈B〉 = {a ∈ A | a ≤ b1 ⊕ b2 ⊕ · · · ⊕ bn for some n ∈ N and b1, b2, . . . ,
bn ∈ B}.
Remark 1 Given a residuated lattice A. If A is a BL-algebra, the concept of ideals
introduced in Definition 2 coincides with that of ideals given by Lele and Nganou in
[5]. In particular, if A is an MV-algebra, then the notion of ideals here is identical to
the well-known concept of ideal MV-algebra (see, e.g., [8]).

Next, we present equivalent characterizations of ideals in residuated lattices.

Proposition 4 Let I be a subset containing 0 of a residuated lattice A. Then I is an
ideal of A if and only if for all a, b ∈ A, a ∈ I and a′ ⊗ b ∈ I imply b ∈ I .
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Proof Assume that I is an ideal of A, a ∈ I and a′ ⊗ b ∈ I . By Definition 2, we
have that a ⊕ (a′ ⊗ b) ∈ I , i.e., a′ → a′ ⊗ b ∈ I . Since b ≤ a′ → a′ ⊗ b, we obtain
b ∈ I .

Conversely, suppose that a ≤ b and b ∈ I . Then b′ ≤ a′, and thus, b′ ⊗ a ≤ a′ ⊗
a = 0 ∈ I , which yields b′ ⊗ a ∈ I . By the hypothesis, we get a ∈ I . Let a, b ∈
I . Since a′ ⊗ (a ⊕ b) = a′ ⊗ (a′ → b) ≤ b ∈ I , we have a′ ⊗ (a ⊕ b) ∈ I , it then
follows that a ⊕ b ∈ I . Therefore, I is an ideal of A. �

Proposition 5 A subset I containing 0 of a residuated lattice A is an ideal if and
only if for all a, b ∈ A, a ∈ I and (a′ → b′)′ ∈ I imply b ∈ I .

Proof Suppose that I is an ideal of A, a ∈ I and (a′ → b′)′ ∈ I . Since a′ ⊗ b ≤
(a′ ⊗ b)′′ = (a′ → b′)′, by Definition 2, we have a′ ⊗ b ∈ I . Then it follows from
Proposition 4 that b ∈ I .

Conversely, assume that a ≤ b and b ∈ I . Then b′ ≤ a′, and thus, (b′ → a′)′ =
1′ = 0 ∈ I . By the hypothesis, we obtain a ∈ I . Note that, a′′ ∈ I whenever a ∈ I .
Let us now suppose that a, b ∈ I . Since a′ ⊗ (a ⊕ b) = a′ ⊗ (a′ → b) ≤ b and b ∈
I , we have a′ ⊗ (a ⊕ b) ∈ I . Thus, (a′ → (a ⊕ b)′)′ = (a′ ⊗ (a ⊕ b))′′ ∈ I , which
yields a ⊕ b ∈ I . This shows that I is an ideal of A. �

In what follows, we will see that every ideal of a residuated lattice can induce an
equivalence relation. Furthermore, this equivalence relation is a congruence if the
residuated lattice is a regular MTL-algebra (i.e., an MTL-algebra A which satisfies
the identity (a → 0) → 0 = a for all a ∈ A).

Proposition 6 Let I be an ideal of a residuated lattice A. Define a binary operation
θI on A as follows:

aθI b if and only if a
′ ⊗ b, b′ ⊗ a ∈ I.

Then θI is an equivalence relation (θI is also called the equivalence relation induced
by I).

Proof For any a ∈ A, a′ ⊗ a = 0 ∈ I , we have aθI a, i.e., θI is reflexive. By the
definition of θI , it is clear that θI is symmetric. Suppose now that aθI b and bθI c.
Then a′ ⊗ b, b′ ⊗ c ∈ I . Since (a′ ⊗ b)′ ⊗ (a′ ⊗ c) = (a′ → b′) ⊗ (a′ ⊗ c) ≤ b′ ⊗
c ∈ I , by Definition 2 and Proposition 4, we have a′ ⊗ c ∈ I . A similar argument
gives c′ ⊗ a ∈ I , thus, aθI c. This shows that θI is transitive. As a consequence, θI
is an equivalence relation. �

In the rest of this paper, under the equivalence relation θI , by [a]θI we mean the
equivalent class of a for all a ∈ A.

Proposition 7 Let A be a residuated lattice and I an ideal of A. Then the following
properties hold for all a ∈ A:



412 Q.-J. Luo

(i) [a]θI = I if and only if a ∈ I ;
(ii) [a]θI = [a′′]θI , i.e., aθI a′′;
(iii) [a]θI = [1]θI if and only if a′ ∈ I .

In order to prove Theorem 1 below, we need the following lemma.

Lemma 1 Let I be an ideal of a residuated lattice A and a, b ∈ A. If aθI b, then for
all x ∈ A, (a ∨ x)θI (b ∨ x) and (a ⊗ x)θI (b ⊗ x).

Proof Assume aθI b. For any x ∈ A, since

(a ∨ x)′ ⊗ (b ∨ x) = (a′ ∧ x ′) ⊗ (b ∨ x)
= ((a′ ∧ x ′) ⊗ b) ∨ ((a′ ∧ x ′) ⊗ x)
= ((a′ ∧ x ′) ⊗ b) ∨ 0
≤ a′ ⊗ b,

and a′ ⊗ b ∈ I , we obtain that (a ∨ x)′ ⊗ (b ∨ x) ∈ I . Similarly, we can prove that
(b ∨ x)′ ⊗ (a ∨ x) ∈ I . Therefore, (a ∨ x)θI (b ∨ x) for all x ∈ A.

Suppose aθI b. For any x ∈ A, since

(a ⊗ x)′ ⊗ (b ⊗ x) = (x → a′) ⊗ (b ⊗ x) ≤ a′ ⊗ b ∈ I,
(b ⊗ x)′ ⊗ (a ⊗ x) = (x → b′) ⊗ (a ⊗ x) ≤ b′ ⊗ a ∈ I,

we have that (a ⊗ x)′ ⊗ (b ⊗ x) ∈ I , (b ⊗ x)′ ⊗ (a ⊗ x) ∈ I . Thus, (a ⊗ x)θI
(b ⊗ x) for all x ∈ A. �

Theorem 1 Let I be an ideal of a residuated lattice A. Then the following properties
hold for all a, b, c, d ∈ A:

(i) if aθI b and cθI d, then (a ∨ c)θI (b ∨ d), (a ⊗ c)θI (b ⊗ d);
(ii) if aθI b, then a′θI b′;
(iii) if aθI b, then (a → c′)θI (b → c′);
(iv) if A is regular, aθI b, cθI d, then (a → c)θI (b → d);
(v) if A is an MTL-algebra, aθI b, cθI d, then (a ∧ c)θI (b ∧ d).

Proof (i) Let aθI b, cθI d. It then follows from Lemma 1 that (a ∨ c)θI (b ∨ c) and
(b ∨ c)θI (b ∨ d). By the transitivity of θI , we obtain (a ∨ c)θI (b ∨ d). It can be
proved that (a ⊗ c)θI (b ⊗ d) in a similar manner.

(ii) Assume aθI b. Then b′ ⊗ a ∈ I . Since (b′ ⊗ a)′ ⊗ (a′′ ⊗ b′) = (b′ → a′) ⊗
(a′′ ⊗ b′) ≤ a′ ⊗ a′′ = 0 ∈ I , by Proposition 6, we get a′′ ⊗ b′ ∈ I . Similarly, we
can prove that b′′ ⊗ a′ ∈ I , and thus, a′θI b′.

(iii) Suppose aθI b. Since a → c′ = (a ⊗ c)′, b → c′ = (b ⊗ c)′. Then by (i) and
(ii), we obtain that (a → c′)θI (b → c′) for all c ∈ A.

(iv) Let aθI b and cθI d. Then c′θI d ′, and by (iii), (c′ → a′)θI (d ′ → a′). It
follows from Proposition 1 that (a → c)θI (a → d). Furthermore, d = d ′′ gives
(a → d)θI (b → d). According to the transitivity of θI , we conclude that (a → c)
θI (b → d).
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(v) Suppose A is an MTL-algebra. Then it follows from Proposition 1 of that [1]
that (a ∧ b)′ = a′ ∨ b′ for all a, b ∈ A. Thus, the proof of (v) is similar to that of
Lemma 1. �

By Theorem 1, we have the following result.

Corollary 1 Let A be a regular MTL-algebra and I an ideal of A. Then θI is a
congruence on A, i.e., for all a, b, c, d ∈ A, if aθI b, cθI d, then (a ∧ c)θI (b ∧ d),
(a ∨ c)θI (b ∨ d), (a ⊗ c)θI (b ⊗ d) and (a → c)θI (b → d).

Note that in Corollary 1, the condition that the residuated lattice is a regular
MTL-algebra is indispensable.

In Example 1, it is easy to check that bθI b, aθI b and aθI cwith respect to the ideal
I = {0}. However, (b → a)θI (b → b) does not hold, since b → a = c, b → b = 1,
but c and 1 are not equivalent with respect to θI . Also, (a ∧ b)θI (c ∧ b) does not
hold, since a ∧ b = 0, c ∧ b = b, 0′ ⊗ b = b /∈ I .

3 Conclusions

In the present paper, we introduced the notion of ideals in residuated lattices, and gave
several equivalent characterizations of these ideals. As applications, the congruence
induced by ideals in residuated lattices was also obtained. All results obtained in this
paper also hold in special subclasses of residuated lattices such as MTL-algebras,
BL-algebras and MV-algebras. For future work, on one hand, we could study other
types of ideals in residuated lattices such as prime ideals, maximal ideals and primary
ideals, and examine the relationships between these ideals and the corresponding
filters in residuated lattices. On the other hand, we could define rough ideals in
residuated lattices by using rough sets of Pawlak [7].
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Hyper Equality Algebras

Xiao-Yun Cheng, Xiao-Long Xin and Young-Bae Jun

Abstract In this paper, we introduce a new structure, called hyper equality algebras
which are a generalization of equality algebras, and investigate some related proper-
ties. Then we define (weak, strong) hyper filters and (weak, strong) hyper deductive
systems, and give relations between them. Moreover we discuss relations between
hyper equality algebras and other hyper structures, such as hyper EQ-algebras, hyper
BCK-algebras and weak hyper residuated lattices. Finally, we also obtain quotient
hyper equality algebras via regular hyper congruence relations.

Keywords Hyper equality algebra · Hyper filter · Hyper deductive system · Hyper
congruence relation · Quotient hyper equality algebra

1 Introduction

EQ-algebras were proposed by Novák in [1] which generalizes commutative residu-
ated lattices. One of the motivations was to introduce a special algebra as the corre-
spondence of truth values for high-order fuzzy type theory(FTT). Anothermotivation
is from the equational style of proof in logic. An EQ-algebra has three connectives:
meet ∧, product ⊗ and fuzzy equality ∼. The product in an EQ-algebra is quite
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loose which can be replaced by any other smaller binary operation, but still obtains
an EQ-algebra. Based on the above reasons, Jenei [2] introduced equality algebras,
as a candidate for a possible algebraic semantics of fuzzy type theory similar to EQ-
algebras but without a product. An equality algebra in [2] is an algebra (E;∼,∧, 1)
of type (2, 2, 0) such that for all x, y, z ∈ E :

(E1) (E; ∧, 1) is a meet-semilattice with top element 1;
(E2) x ∼ y = y ∼ x ;
(E3) x ∼ x = 1;
(E4) x ∼ 1 = x ;
(E5) x ≤ y ≤ z implies x ∼ z ≤ y ∼ z and x ∼ z ≤ x ∼ y;
(E6) x ∼ y ≤ (x ∧ z) ∼ (y ∧ z);
(E7) x ∼ y ≤ (x ∼ z) ∼ (y ∼ z).

And the author proved the term equivalence of equivalential equality algebras to
BCK-meet-semilattices.

Hyper structure theory was introduced by Marty [3], at the 8th Congress of Scan-
dinavian Mathematicians. In an algebraic hyper structure, the composition of two
elements is not an element but a set. Since then hyper structure theory has been
intensively researched in [4–9]. Recently, Borzooei has applied hyper theory to EQ-
algebras to introduce hyper EQ-algebras [10] which are a generalization of EQ-
algebras. Now hyper structure theory has been applied to many disciplines such as
geometry, graph theory, automata, cryptography, artificial intelligence and probabil-
ity theory, dismutation reactions, inheritance, etc. Hyper filters (or hyper deductive
systems) are important tools in studying hyper structures [4, 11, 12]. The above are
the motivation of introducing and studying hyper equality algebras.

This paper is organized as follows: in Sect. 2, we introduce the concept of hyper
equality algebras, give some examples and investigate related properties. In Sect. 3,
we introduce the notion of (weak, strong) hyper filters and (weak, strong) hyper
deductive systems in hyper EQ-algebras and focus on discussing relations between
them. In Sect. 4, we discuss relations between hyper equality algebras and other hyper
structures. Moreover we construct quotient hyper equality algebras via regular hyper
congruence relations.

2 Hyper Equality Algebras

Let H be a nonempty set and ◦ be a function from H × H to the nonempty power
set of H , P(H). Then ◦ is said to be a hyper operation on H .

Definition 1 A hyper equality algebra (H ;∼,∧, 1) is a nonempty set H endowed
with a binary operation ∧, a binary hyper operation ∼ and a top element 1 satisfying
the following axioms, for all x, y, z ∈ H :

(HE1) (H ; ∧, 1) is a meet-semilattice with top element 1;
(HE2) x ∼ y � y ∼ x ;
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(HE3) 1 ∈ x ∼ x ;
(HE4) x ∈ 1 ∼ x ;
(HE5) x ≤ y ≤ z implies x ∼ z � y ∼ z and x ∼ z � x ∼ y;
(HE6) x ∼ y � (x ∧ z) ∼ (y ∧ z);
(HE7) x ∼ y � (x ∼ z) ∼ (y ∼ z).
where x ≤ y iff x ∧ y = x ; A � B is defined by for all x ∈ A, there exists y ∈ B
such that x ≤ y.

In any hyper equality algebra (H ;∼,∧, 1), define operations→,↔ by x → y :=
x ∼ (x ∧ y), x ↔ y := (x → y) ∧ (y → x) for all x, y ∈ H , respectively. More-
over, for any nonempty subsets A, B ⊆ H , we write A ∧ B = {a ∧ b : a ∈ A,
b ∈ B} and A ◦ B = ⋃

a∈A,b∈B a ◦ b, where ◦ ∈ {∼,→,↔}. Here after we denote
x ◦ y instead of x ◦ {y}, {x} ◦ y or {x} ◦ {y}.
Example 1 Let (H ;∼,∧, 1) be an equality algebra and define ◦ on H by x ◦ y =
{x ∼ y} for all x, y ∈ H . Then (H ; ◦,∧, 1) is a hyper equality algebra.

Example 2 Let H = [0, 1]. Define ∧ and ∼ on H as follows: for all x, y ∈ H ,
x ∧ y = min{x, y} and x ∼ y = {1− | x − y |, 1}. Then (H ;∼,∧, 1) is a hyper
equality algebra where

x → y =
{ {1 − x + y, 1}, y < x .

{1}, x ≤ y.

Example 3 Let H = (0, 1). Define ∧ and ∼ on H as follows: for all x, y ∈ H ,
x ∧ y = min{x, y} and

x ∼ y =
{ [y, 1], x = 1.

H, otherwise.

Then (H ;∼,∧, 1) is a hyper equality algebra.

Example 4 Let H = {0, a, 1} with 0 < a < 1. Define operations ∧, ∼1 and ∼2 on
H as follows: x ∧ y = min{x, y} and

∼1 0 a 1
0 {1} {0} {0}
a {0} {1} {a, 1}
1 {0} {a, 1} {1}

∼2 0 a 1
0 {1} {a, 1} {a, 1}
a {a, 1} {0, a, 1} {a, 1}
1 {0, 1} {a, 1} {1}

Then one can check that (H ;∼1,∧, 1) and (H ;∼2,∧, 1) are hyper equality algebras.
Example 5 Let H = {0, a, 1} with 0 < a < 1. Define operations ∧, ∼1 and ∼2 on
H as follows: x ∧ y = min{x, y} and

∼1 0 a 1
0 {1} {0, a} {0, a}
a {0, a} {1} {a}
1 {0, a} {0, a} {1}

∼2 0 a 1
0 {0, 1} {0, a} {0}
a {0, a} {1} {a}
1 {0} {a} {1}
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Then it is easily calculated that (H ;∼1,∧, 1) and (H ;∼2,∧, 1) are hyper equality
algebras.

Example 6 Let H = {0, a, b, 1} in which the Hasse diagram and operations ∧,∼
on H are as follows:

�

�

�

�

�
�
�

�
�
� �

�
�

�
�
�

0

a b

1

∧ 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

∼ 0 a b 1
0 {1} {1} {b, 1} {0, a}
a {1} {1} {a, 1} {a}
b {b, 1} {a, 1} {1} {b, 1}
1 {0, a} {a} {b, 1} {1}

Then (H ; ∧,∼, 1) is a hyper equality algebra.

Proposition 1 Let (H ;∼,∧, 1)beahyper equality algebra. Then for all x, y, z ∈ H
the following are equivalent:
(HE5) x ≤ y ≤ z implies x ∼ z � y ∼ z and x ∼ z � x ∼ y;
(HE5a) x ∼ (x ∧ y ∧ z) � x ∼ (x ∧ y);
(HE5b) x → (y ∧ z) � x → y.

Proof By (HE2) and the proof of Proposition 1 in [2]. �

Proposition 2 Let (H ;∼,∧, 1) be a hyper equality algebra. Then for all x, y, z ∈
H, A, B,C ⊆ H:
(P1) A ∼ B � B ∼ A;
(P2) A � B and B � C imply A � C;
(P3) 1 � A iff 1 ∈ A;
(P4) A ⊆ B implies A � B;
(P5) x ≤ y implies y → x = y ∼ x;
(P6) x ≤ y and y ≤ x imply x = y;
(P7) 1 ∈ x → x, 1 ∈ x → 1, x � x ∼ 1, x ∈ 1 → x, 1 ∈ x ↔ x;
(P8) x ∼ y � x → y, x ∼ y � y → x;
(P9) x ∼ y � x ↔ y, x ↔ y � x → y and x ↔ y � y → x;
(P10) x ≤ y implies 1 ∈ x → y;
(P11) x ≤ y implies x ∼ 1 � y ∼ 1, x ∼ 1 � x ∼ y;
(P12) x → y � (x ∧ z) → y;
(P13) x ≤ y ≤ z implies z ∼ x � z ∼ y and z ∼ x � y ∼ x;
(P14) x � y → x, A � B → A;
(P15) x ≤ y implies z → x � z → y and y → z � x → z;
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(P16) A � B implies C → A � C → B and B → C � A → C;
(P17) x → (y ∧ z) � (x ∧ z) → y;
(P18) x → y = x → x ∧ y;
(P19) x ≤ y implies x � y ∼ x;
(P20) y � (x → y) → y;
(P21) x → y � (y → z) → (x → z).

Proof (P1)–(P6) are straightforward.
(P7) This is easy to verify by (HE2), (HE3) and (HE4).
(P8) x ∼ y � x → y holds by replacing z by x in (HE6). Replacing z by y

in (HE6) and using (HE2), we get that x ∼ y � (x ∧ y) ∼ y � y ∼ (x ∧ y) =
y → x . Again considering (P2), we show x ∼ y � y → x .

(P9) By (P8), x ∼ y � x → y, x ∼ y � y → x . That is, for any a ∈ x ∼ y,
there exist b ∈ x → y and c ∈ y → x such that a ≤ b and a ≤ c. Hence a ≤ b ∧ c.
This shows that x ∼ y � (x → y) ∧ (y → x) = x ↔ y. The rest are obvious.

(P10) Let x ≤ y. Then 1 ∈ x ∼ x = x ∼ (x ∧ y) = x → y.
(P11) By (HE5).
(P12) By (HE6), we have x ∼ (x ∧ y) � (x ∧ z) ∼ (x ∧ y ∧ z). This implies

that x → y � (x ∧ z) → y.
(P13) By (HE2), (HE5) and (P2).
(P14) It follows from (P7) and (P12) that x � 1 → x � (1 ∧ y) → x = y → x .

The other part is obvious.
(P15) Let x ≤ y. Then by (HE5a) we have z → x = z ∼ (z ∧ x) = z ∼ (z ∧

x ∧ y) � z ∼ (z ∧ y). This shows that z → x � z → y. The other part can be ver-
ified by (P12).

(P16) By (P15).
(P17) By (HE5b), (P12) and (P3).
(P18) From (P5) x → y = x ∼ x ∧ y = x → x ∧ y.
(P19) Let x ≤ y. Then by (P14) x � y → x = y ∼ x .
(P20) Since y � x → y and (P19) we have y � (x → y) ∼ y = (x → y) → y.
(P21) First, by (P12) and (HE5b) we can get that y → z � (y ∧ x) → z and x →

(z ∧ y) � x → z respectively.Hence by (P15) ((y ∧ x) → z) → (x → (z ∧ y)) �
(y → z) → (x → (z ∧ y)) � (y → z) → (x → z). This implies that ((y ∧ x) →
z) → (x → (z ∧ y)) � (y → z) → (x → z).

On the other hand, it follows from (P1) and (HE7) that x → y = x ∼ (x ∧ y) �
(x ∧ y) ∼ x � ((y ∧ x) ∼ (y ∧ z ∧ x)) ∼ (x ∼ (x ∧ z ∧ y)). That is, x → y �
((y ∧ x) → z) → (x → (z ∧ y)).

Combing the above two parts, we obtain x → y � (y → z) → (x → z). �

Proposition 3 Let (H ;∼,∧, 1) be a hyper equality algebra and let y ∈ H. If 1 ∼
y = y or x ≤ y for all x, z ∈ H, then
(1) x � (x ∼ y) ∼ y;
(2) x � (x → y) → y;
(3) x � y → z iff y � x → z;
(4) x → (y → z) � y → (x → z).
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Proof Let x, y, z ∈ H
(1) If 1 ∼ y = y, then by (P7) and (HE7), we have x � x ∼ 1 � (x ∼ y) ∼

(1 ∼ y) = (x ∼ y) ∼ y. Hence from (P2) x � (x ∼ y) ∼ y.
If x ≤ y, x � (x ∼ y) ∼ y holds by (P20).
(2) It follows from (1) that x � (x ∼ (x ∧ y)) ∼ (x ∧ y) � (x → y) ∼ (x ∧ y).

Since x ∧ y ≤ y � x → y, then by (P8) and (P15) (x → y) ∼ (x ∧ y) � (x →
y) → (x ∧ y) � (x → y) → y. Hence x ≤ (x → y) → y.

(3) Let x � y → z. Then by (2) and (P15) we get y � (y → z) → z � x → z.
Thus y � x → z. By the symmetry of x and y, the converse is true.

(4) Since from (2) y � (y → z) → z, then by (P21) and (P15) we can get that
x → (y → z) � ((y → z) → z) → (x → z) � y → (x → z). Therefore x →
(y → z) � y → (x → z). �

Definition 2 A hyper equality algebra (H ;∼,∧, 1) is called good if x = 1 ∼ x for
all x ∈ H .

Example 7 Let H = {0, a, 1}. Define operations∧ and∼ on H as follows: x ∧ y =
min{x, y} and

∼ 0 a 1
0 {1} {0, a} {0}
a {0, a} {1} {a}
1 {0} {a} {1}

Then (H ; ∧,∼, 1) is a good hyper equality algebra.

Using Proposition 3 we can get the following corollary immediately.

Corollary 1 Let (H ;∼,∧, 1) be a good hyper equality algebra. Then
(1) x � (x ∼ y) ∼ y;
(2) x � (x → y) → y;
(3) x � y → z iff y � x → z;
(4) x → (y → z) � y → (x → z).

A hyper equality algebra H is called bounded, if there is bottom element 0 in H .
In this case, denote x∗ = x ∼ 0. Then x∗ = x → 0.

Proposition 4 Let (H ;∼,∧, 1) be a bounded hyper equality algebra. Then for all
x, y, z ∈ H,
(1) 0 ∈ 1∗ and 1 ∈ 1∗∗;
(2) 1 ∈ 0∗ and 0 ∈ 0∗∗;
(3) x ∼ y � x∗ ∼ y∗;
(4) x → y � y∗ → x∗;
(5) x ≤ y implies y∗ � x∗.
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Proof (1) Since 0 ∈ 1 → 0, we have 0 ∈ 1∗ and 1 ∈ 0 → 0 ∈ (1 → 0) → 0. Hence
1 ∈ 1∗∗.

(2) From 1 ∈ 0 → 0, 1 ∈ 0∗ follows. Also 0 ∈ 1 → 0 ∈ (0 → 0) → 0. That is
0 ∈ 0∗∗.

(3) Taking z = 0 in (HE7).
(4) Taking z = 0 in (P21).
(5) By (P15) x ≤ y implies y → 0 � x → 0. �

3 Hyper Filters and Hyper Deductive Systems

From now on, unless otherwise stated we assume that H is a hyper equality algebra.

Definition 3 Anonempty subset S containing 1 of H is said to be a hyper subalgebra,
if S is a hyper equality algebra with respect to the hyper operation ∼ and the binary
operation ∧ on H .

Theorem 1 Anonempty subset S of H is a hyper subalgebra if and only if x ∼ y ⊆ S
and x ∧ y ∈ S for all x, y ∈ S.

Proof Necessity is obvious.Nowassume for any x, y ∈ S, x ∼ y ∈ S and x ∧ y ∈ S.
By (HE3), we have 1 ∈ x ∼ x ⊆ S and so 1 ∈ S. The rest proof are easy. �

Example 8 (1) In Example 3, S = {0.5, 1} is not a hyper subalgebra, since 1 ∼ 0.5 =
[0.5, 1] � S.
(2) In Example 2, S = [0.5, 1] and {1} are hyper subalgebras of H .

Definition 4 Let F be a nonempty subset of H satisfying
(F) x ∈ F and x ≤ y imply y ∈ F for all x, y ∈ H .
F is called a
• weak hyper filter, if
(WHF) x ∈ F and x ∼ y ⊆ F imply y ∈ F for all x, y ∈ H .
• hyper filter, if
(HF) x ∈ F and F � x ∼ y imply y ∈ F for all x, y ∈ H .
• strong hyper filter, if
(SHF) x ∈ F and x ∼ y ∩ F �= ∅ imply y ∈ F for all x, y ∈ H .

Remark 1 (1) If F is a (weak, strong) hyper filter of H , then 1 ∈ F .
(2) Every strong hyper filter of H is a (weak) hyper filter.

Example 9 (1) Let (H ;∼,∧, 1) be the hyper equality algebra defined in Example 6.
Then one can see that F = {b, 1} is not a hyper filter of H , since b ∈ F and F �
b ∼ 0, but 0 /∈ F . Furthermore, we can check that F = {b, 1} is not a weak hyper
filter of H , since b ∈ F and b ∼ 0 ⊆ F , but 0 /∈ F . So we know that F = {b, 1} is
not a strong hyper filter of H .
(2) Let (H ;∼1,∧, 1) be the hyper equality algebra defined in Example 4. Then one
can see that F = {a, 1} is a (weak, strong) hyper filter of H .
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The following example indicates that a (weak) hyper filter of H may not be a
strong hyper filter of H .

Example 10 Let (H ;∼1,∧, 1) be the hyper equality algebra defined in Example 5.
Then one can see that F = {a, 1} is a (weak) hyper filter of H . But F = {a, 1} is not
a strong hyper filter of H , since a ∈ F and a ∼1 0 ∩ F �= ∅, but 0 /∈ F .

The following example shows that a weak hyper filter of H may not be a hyper
filter of H .

Example 11 Let (H ;∼1,∧, 1) be the hyper equality algebra defined in Example 6.
Then one can see that F = {1} is a weak hyper filter of H . But F = {1} is not a hyper
filter of H , since 1 ∈ F and F � 1 ∼ b, but b /∈ F .

Definition 5 Let D be a nonempty subset of H . D is called a
• weak hyper deductive system, if D satisfies (F) and
(WHD) x ∈ D and x → y ⊆ D imply y ∈ D for all x, y ∈ H .
• hyper deductive system, if D satisfies (F) and
(HD) x ∈ D and D � x → y imply y ∈ D for all x, y ∈ H .
• strong hyper deductive system, if 1 ∈ D and D satisfies
(SHD) x ∈ D and x → y ∩ D �= ∅ imply y ∈ D for all x, y ∈ H .

Remark 2 (1) If D is a hyper deductive system of H , then 1 ∈ D.
(2) If D is a strong hyper deductive system of H , then D satisfies (F). In fact, let
x ∈ D and x ≤ y. Then 1 ∈ x → y by (P10). Hence x → y ∩ D �= ∅. This implies
y ∈ D.
(3) Every strong hyper deductive system of H is a (weak) hyper deductive system
of H .

Example 12 (1) Let (H ;∼,∧, 1) be the hyper equality algebra defined inExample 6.
Then one can see that D = {a, b, 1} is not a hyper deductive system of H , since
a ∈ D and D � a → 0, but 0 /∈ D. Furthermore, we can see that D = {a, b, 1} is
not a strong hyper deductive system of H .
(2) Let (H ;∼1,∧, 1) be the hyper equality algebra defined in Example 4. Then one
can see that D = {a, 1} is a (strong) hyper deductive system of H .

The following example indicate that a hyper deductive system of H may not be
a strong hyper deductive system of H .

Example 13 Let (H ;∼2,∧, 1) be the hyper equality algebra defined in Example 5.
Then one can see that D = {a, 1} is a hyper deductive system of H . But D = {a, 1}
is not a strong hyper deductive system of H , since a ∈ D and a →2 0 ∩ D �= ∅, but
0 /∈ D.

Lemma 1 Let D be a nonempty subset satisfying (F) of H. Then for any nonempty
subset A, B of H, A ∩ D �= ∅ and A � B imply B ∩ D �= ∅.
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Proof Since A ∩ D �= ∅, then there is a ∈ A such that a ∈ D. For the above a ∈ A,
it follows from A � B that there exists b ∈ B such that a ≤ b. Again since a ∈ D
and D satisfies (F), we get b ∈ D. This shows that B ∩ D �= ∅. �

Proposition 5 (1) Every hyper deductive system of H is a hyper filter of H.
(2) Every strong hyper deductive system of H is a strong hyper filter of H.

Proof (1) Assume that D is a hyper deductive system of H and x ∈ D, D � x ∼ y.
Since x ∼ y � x → y by (P8), using (P2) we have D � x → y. Hence y ∈ D,
which implies that D is a hyper filter of H .

(2) Assume that D is a strong hyper deductive system of H and x ∈ D, x ∼
y ∩ D �= ∅. Since x ∼ y � x → y by (P8), then by Lemma 1 we obtain x → y ∩
D �= ∅. Therefore y ∈ D, which shows that D is a strong hyper filter of H . �

Let S be a nonempty subset of H . Denote by [S) the least strong hyper deductive
system of H containing S, called the strong hyper deductive system generated by
S. In particular, if S = {a}, we write [{a}) = [a), called the principal strong hyper
deductive system generated by element a in H . In addition, we use [D ∪ {x}) to
denote the strong hyper deductive system generated by D and x , where x ∈ H − D.
The following are some results about the generated strong hyper deductive system.

Theorem 2 Let S be a nonempty subset of H. Then [S) ⊇ {x ∈ H : 1 ∈ an →
(· · · (a2 → (a1 → x)) · · · ) for some a1, a2, · · · , an ∈ S}.
Proof Similar to the proof of Theorem 3.9 in [11]. �

Corollary 2 Let a ∈ H. Then [a) ⊇ {x ∈ H : 1 ∈ a ◦ x}.
Theorem 3 Let D be a strong hyper deductive system of H and a ∈ H − D. Then
[D ∪ {a}) ⊇ {x ∈ H : a → x ∩ D �= ∅}.
Proof Similar to the proof of Theorem 3.9 in [11]. �

4 Hyper Equality Algebras and Other Hyper Structures

The following are the relations between hyper equality algebras and hyper EQ-
algebras, hyper BCK-algebras and weak hyper residuated lattices.

Definition 6 ([10]) A hyper EQ-algebra (H ; ∧,⊗,∼, 1) is a nonempty set H
endowed with a binary operation ∧, two binary hyper operations ⊗,∼ and a top
element 1 satisfying the following axioms, for all x, y, z, t ∈ H :
(HEQ1) (H ; ∧, 1) is a commutative idempotent monoid with a top element 1;
(HEQ2) (H ;⊗, 1) is a commutative semihypergroup with 1 as an identity and ⊗
is isotone w.r.t. ≤, i.e., if x ≤ y, then x ⊗ z � y ⊗ z(where x ≤ y if and only if
x ∧ y = x);
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(HEQ3) ((x ∧ y) ∼ z) ⊗ (t ∼ x) � z ∼ (t ∧ y);
(HEQ4) (x ∼ y) ⊗ (z ∼ t) � (x ∼ z) ∼ (y ∼ t);
(HEQ5) (x ∧ y ∧ z) ∼ x � (x ∧ y) ∼ x ;
(HEQ6) (x ∧ y) ∼ x � (x ∧ y ∧ z) ∼ (x ∧ z);
(HEQ7) x ⊗ y � x ∼ y;
where A � B means that for all x ∈ A, there exists y ∈ B such that x ≤ y.

Proposition 6 ([10]) Let (H ; ∧,⊗,∼, 1) be a hyper EQ-algebra. Then the follow-
ing properties hold for all x, y, z, t ∈ H:
(QP1) 1 ∈ x ∼ x;
(QP2) A � B and B � C imply A � C;
(QP3) x ∼ y � y ∼ x;
(QP4) x � x ∼ 1;
(QP5) x ≤ y ≤ z implies z ∼ x � z ∼ y and x ∼ z � x ∼ y;
(QP6) x ∼ y � (x ∧ z) ∼ (y ∧ z);
(QP7) x ∼ y � (x ∼ z) ∼ (y ∼ z).

Theorem 4 Let (H ; ∧,⊗,∼, 1) be a hyper EQ-algebra. If x ∈ 1 ∼ x for all x ∈ H,
then (H ;∼,∧, 1) is a hyper equality algebra.
Proof By hypothesis (HE4) is true. (HE1), (HE2), (HE3), (HE6) and (HE7) follow
from (HEQ1), (QP3), (QP1), (QP6) and (QP7) respectively. (HE5) can be obtained
by (QP2), (QP3) and (QP5). �

Definition 7 ([6]) A weak hyper residuated lattice (H ; ∨,∧,⊗,→, 0, 1) is a non-
empty set H endowed with two binary operations ∨,∧, two binary hyper opera-
tions ⊗,→ and two constant element 0, 1 satisfying the following axioms, for all
x, y, z ∈ H :
(WHR1) (H ;≤,∧,∨, 0, 1) is a bounded lattice;
(WHR2) (H,⊗, 1) is a commutative semihypergroup with 1 as the identity;
(WHR3) x ⊗ y ≤ z if and only if y ≤ x → z.
where A ≤ B means that for there exist x ∈ A, y ∈ B such that x ≤ y and A � B
means that for all x ∈ A there exist y ∈ B such that x ≤ y.

Definition 8 A hyper equality algebra (H ;∼,∧, 1) is called
(1) separated if 1 ∈ x ∼ y implies x = y;
(2) symmetric if x ∼ y = y ∼ x .
for all x, y ∈ H .

Example 14 In Example 7, one can see that (H ; ∧,∼, 1) is a separated and sym-
metric hyper equality algebra.

Theorem 5 Let (H ; ∨,∧,⊗,→, 0, 1) be a weak hyper residuated lattice, where
1 is a scalar element of H (i.e. 1 ⊗ x has only one element). Then (H ;∼,∧, 1)
is a separated and symmetric hyper equality algebra, where x ∼ y = x ↔ y =
(x → y) ∧ (y → x).
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Proof By [10] Theorem 5.11 and x ∼ y = y ∼ x , we know that (H ; ∧,⊗,∼, 1) is
a separated hyper EQ-algebra. Using [6] Proposition 2.5 (v) and Theorem 3.13, this
proof is completed. �

Definition 9 ([8]) By a hyper BCK-algebra we mean a nonempty set H endowed
with a binary hyper operation → and a constant 1 satisfying the following axioms,
for all x, y, z ∈ H :
(HK1) x → y � (z → x) → (z → y);
(HK2) x → (y → z) = y → (x → z);
(HK3) x � y → x ;
(HK4) x ≤ y and y ≤ x imply x = y.
where x ≤ y is defined by 1 ∈ x → y and for every A, B ⊆ H , A � B is defined
as for all x ∈ A, there exists y ∈ B such that x ≤ y.

Definition 10 A hyper BCK-algebra (H ;→, 1) is called a hyper BCK-meet-
semilattice if (H ;≤) is a meet (∧)-semilattice.

Theorem 6 Let (H ;∼,∧, 1) be a hyper equality algebra such that x → (y →
z) = y → (x → z) and x → y � (z → x) → (z → y) for all x, y, z ∈ H. Then
(H ;→,∧, 1) is a hyper BCK-meet-semilattice, where x → y = x ∼ x ∧ y.

Proof From (HE1) we know that (H,≤) is a meet-semilattice. (HK1) and (HK2)
are true by hypothesis. (HK3) and (HK4) follow from (P14) and (P6) respectively.�

Theorem 7 Let (H ;→,∧, 1) be a linearly ordered hyper BCK-meet-semilattice.
If x → y � (y → z) → (x → z), and x ≤ y implies that z → x � z → y, for all
x, y, z ∈ H, then (H ;∼,∧, 1) is a symmetric hyper equality algebra, where x ∼
y = (x → y) ∧ (y → x).

Proof Let (H ;→,∧, 1) be a hyper BCK-meet-semilattice and let x, y, z ∈ H .
Then it is obvious that (HE1) and (HE2) hold. (HE3) follows from 1 = 1 ∧
1 ∈ (x → x) ∧ (x → x) = x ∼ x and (HE4) follows from x = x ∧ 1 ∈ (1 → x) ∧
(x → 1) = 1 ∼ x . Let x ≤ y ≤ z and now we will prove (HE5). Since 1 ∈ x →
z, y → z and x ≤ y implies that z → x � z → y, we have (x → z) ∧ (z → x) �
z → x � z → y � (z → y) ∧ (y → z). That is x ∼ z � y ∼ z. The other part is
similar. Since H is linearly ordered, then one can easily check that (HE6) holds. In the
following we show (HE7) and we let x ≤ y ≤ z without loss of generality. Since 1 ∈
x → z, 1 ∈ y → z and thus x → y � (z → x) → (z → y) � ((x → z) ∧ (z →
x)) → ((y → z) ∧ (z → y)) = (x ∼ z) → (y ∼ z) and x → y � (y → z) →
(x → z) � (((y → z) ∧ (z → y)) → ((x → z) → (z → x)) = (y ∼ z) → (x ∼
z), we can obtain that x → y � (x ∼ z) → (y ∼ z) and y → x�(y ∼ z) → (x ∼
z). Hence x ∼ y = (x → y) ∧ (y → x)�(((x ∼ z) → (y ∼ z)) ∧ ((y ∼ z) →
(x ∼ z)) = (x ∼ z) ∼ (y ∼ z). Therefore (H ;∼,∧, 1) is a symmetric hyper equal-
ity algebra. �

In the following, we construct quotient hyper equality algebras via regular hyper
congruence relations. To do this we give some related concepts and results.
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Definition 11 Let θ be an equivalence relation on H .
(1) For any A, B ⊆ H , AθB means for any a ∈ A there exists b ∈ B such that aθb
and for any b ∈ B there exists a ∈ A such that aθb;

(2) For any A, B ⊆ H , AθB means for any a ∈ A and any b ∈ B such that aθb;
(3) θ is called a hyper congruence relation if for all x, y, u, v ∈ H , xθy and uθv
imply x ∼ uθy ∼ v and x ∧ uθy ∧ v;
(4) θ is called a strong hyper congruence relation if for all x, y, u, v ∈ H , xθy and

uθv imply x ∼ uθy ∼ v and x ∧ uθy ∧ v.

Let θ be a hyper congruence relation on H . Denote H/θ = {[x]θ : x ∈ H},
where [x]θ = {y ∈ H : yθx} and denote [A]θ = {[a]θ : a ∈ A}. ∼, → and ∧ on
H/θ are defined by [x]θ∼[y]θ = [x ∼ y] = {[a]θ : a ∈ x ∼ y}, [x]θ→[y]θ = [x →
y]θ = {[a]θ : a ∈ x → y} and [x]θ∧[y]θ = [x ∧ y]θ, respectively. [x]θ ≤θ [y]θ iff
[x]θ = [x]θ∧[y]θ iff x ∧ yθx for any [x]θ, [y]θ ∈ H/θ. For all A, B ⊆ H/θ, A �θ B
means that for any [a]θ ∈ A, there exists [b]θ ∈ B such that [a]θ ≤θ [b]θ. Clearly,
x ≤ y implies that [x]θ ≤θ [y]θ.
Definition 12 A hyper congruence relation θ on H is called regular if for all x, y ∈
H , [x]θ ≤θ [y]θ implies [x]θ � [y]θ.
Proposition 7 Let θ be a regular hyper congruence relation on H. Then for any
x, y ∈ H, [x]θ ≤θ [y]θ implies that [1]θ ∈ [x]θ→[y]θ.
Proof Let [x]θ ≤θ [y]θ for any x, y ∈ H . Then for any t ∈ [x]θ there exists s ∈
[y]θ such that t ≤ s. Hence 1 ∈ t → s and so [1]θ ∈ [t → s]θ = [t]θ→[s]θ =
[x]θ→[y]θθ. �

Lemma 2 Let θ be a regular hyper congruence relation on H. Then for any A, B ⊆
H, A � B implies [A]θ �θ [B]θ.
Proof Let A � B for any A, B ⊆ H . Then for any a ∈ A there exists b ∈ B such
that a ≤ b. Hence [a]θ ≤θ [b]θ and therefore [A] �θ [B]. �

Theorem 8 Let θ be a regular hyper congruence relation on (H ;∼,∧, 1). Then
(H/θ;∼,∧, [1]) is a hyper equality algebra,which is called a quotient hyper equality
algebra with respect to θ.

Proof Clearly, ∧ is well defined. Assume that [x1]θ = [x2]θ and [y1]θ = [y2]θ,
x1, x2, y1, y2 ∈ H . Then x1θx2 and y1θy2. Thus x1 ∼ y1θx2 ∼ y2. Let [a]θ ∈
[x1]θ∼[y1]θ where a ∈ x1 ∼ y1. Since x1 ∼ y1θx2 ∼ y2, then there exists c ∈ x2 ∼
y2 such that aθc. Hence [a]θ = [c]θ ∈ [x2]θ∼[y2]θ, which shows that [x1]θ∼[y1]θ ⊆
[x2]θ∼[y2]θ. Similarly, we have [x2]θ∼[y2]θ ⊆ [x1]θ∼[y1]θ. It follows that [x1]θ∼
[y1]θ = [x2]θ∼[y2]θ. Therefore ∼ is well defined. Similarly, ⊗ is well defined.
(HE1) (H/θ; ∧, [1]θ) is a meet-semilattice with top element [1]θ. Since for any
x ∈ H , x ≤ 1 implies that [x]θ ≤θ [1]θ.
(HE2) [x]θ∼[y]θ �θ [y]θ∼[x]θ. By Lemma 2 and x ∼ y � y ∼ x .
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(HE3) [1]θ ∈ [x]θ∼[x]θ. Since 1 ∈ x ∼ x , we have [1]θ ∈ [x ∼ x]θ = [x]θ∼[x]θθ.
(HE4) [x]θ ∈ [0]θ∼[x]θ. Since x ∈ 1 ∼ x , then [x]θ ∈ [1 ∼ x]θ = [1]θ∼[x]θ.
(HE5) [x]θ ≤θ [y]θ ≤θ [z]θ implies [x]θ∼[z]θ �θ [y]θ∼[z]θ and [x]θ∼[z]θ �θ

[x]θ∼[y]θ. Indeed, if [x]θ ≤θ [y]θ ≤θ [z]θ for any x, y, z ∈ H , then by Proposi-
tion 7 for any t ∈ [x]θ, there exists s ∈ [y]θ and u ∈ [z]θ such that t ≤ s ≤ u.
Hence t ∼ u � s ∼ u and t ∼ u � t ∼ s. According to Lemma 2 [t]θ∼[u]θ �θ

[s]θ∼[u]θ and [t]θ∼[u]θ �θ [t]θ∼[s]θ. This proves that [x]θ∼[z]θ �θ [y]θ∼[z]θ and
[x]θ∼[z]θ �θ [x]θ∼[y]θ.
(HE6) [x]θ∼[y]θ �θ ([x]θ∧[z]θ)∼([y]θ∧[z]θ). By Lemma 2 and x ∼ y � (x ∧
z) ∼ (y ∧ z).
(HE7) [x]θ∼[y]θ �θ ([x]θ∼[z]θ)[x]∼([y]θ∼[z]θ). By Lemma 2 and x ∼ y �
(x ∼ z) ∼ (y ∼ z). �

5 Conclusions

In this paper, we introduce hyper equality algebras which is a generalization of
equality algebras. We investigate some types of hyper filters and hyper deductive
systems. Also we give relations between hyper equality algebras and other hyper
structures, andmoreover construct quotient hyper equality algebras via regular hyper
congruence relations. Next we will further study quotient hyper equality algebras
and construct quotient hyper equality algebras via hyper filters or hyper deductive
systems.
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A Special Sub-algebras
of N(2, 2, 0)-Algebras

Fang-An Deng, Lu Chen, Shou-Heng Tuo and Sheng-Zhang Ren

Abstract In this paper, we introduce a subalgebra ofN(2, 2, 0)-algebras, investigate
the relations between N(2, 2, 0)-algebras and other algebras, such as G-algebra,
B-algebra,Q-algebra andCI-algebra. In particular, we find out a class of subalgebras
of N(2, 2, 0)-algebras, show some properties of those subalgebras and prove that the
subalgebras is G-algebra, B-algebra, Q-algebra and CI-algebra. Finally, we give an
important result on N(2, 2, 0)-algebras.

Keywords N(2, 2, 0)-algebra · G-algebra · CI-algebra · Q-algebra

1 Introduction

Some algebras with one nulary operations were introduced to set up an algebraic
counterpart of implication reduct of classical or non-classical propositional logics.
In 1966 [5], Imai and Iseki introduced two classes of abstract algebras:BCK-algebras
and BCI-algebras.

In 1996 [2, 3], we introduced N(2, 2, 0)-algebra, showed some basic properties
(S, ∗,�, 0) of N(2, 2, 0)-algebra and proved:

1. If the operations ∗ is idempotent, then (S, ∗,�, 0) is a rewriting systems and
2. If the operation � is nilpotent, then (S,�, 0) is a associated BCI-algebra.

Recently, H.S. Kim and Y.H. Kim defined a BE-algebra in [7], Meng defined the
notion ofCI-algebra as a generalization of theBE-algebra in [8] and Bandru and Rafi
introduced a new notion, called G-algebras in [1]. In 2001 [9], Neggers introduced
the notion ofQ-algebraswhich is a generalization ofBCI/BCK-algebras. Negger and
Kim introduced an important class of logical algebras, calledB-algebras in 2002 [10].
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In this paper,we recall the basic definitions and some elementary aspectswhich are
necessary for the sequel in Sect. 2 and investigate relations among the semigroup of
N(2, 2, 0)-algebras, G-algebras, B-algebras, Q-algebras and CI-algebras in Sect. 3.

2 Paper Preparation

Let N(2, 2, 0)-algebra be an algebra of type (2, 2, 0). The notion was formulated
firstly by Deng [3] in 1996, and some properties were obtained in [5], which was
inspired by the fuzzy implication algebra introduced by Wu in [14]. Wu proved that
in a fuzzy implication algebra (X,→, 0), the order relation ≤ satisfying x ≤ y iff
x → y = 1 is a partial order. Deng in [3] introduced a binary operation ∗ which was
defined on fuzzy implication algebra (X,→, 0) such that for all a, b, u ∈ X,

u ≤ a → b ⇔ a ∗ u ≤ b.

where (∗,→) is an adjoint pair on X.
In the corresponding fuzzy logic, the operation ∗ is recognized as logic connective

“conjunction” and → is considered as “implication”. If the above expression holds
for a product ∗, then → is the residunm of ∗. For a product ∗, the corresponding
residunm → is uniquely defined by a → b = ∨{x|a ∗ x ≤ b}.

Let us note that a → b is the greatest element of the set {u|a ∗ u ≤ b}. We proved
that if for all a, b, u ∈ X, the following formulas hold:

u → (a ∗ b) = b → (u → a) (1)

(a ∗ u) → b = u → (a → b), (2)

then (X, ∗) is a semigroup.
In fact, the multiplication defined as above is associative.
Let (X,→, 0) be a fuzzy implication algebra. It was shown in [14] that for every

a, b, c ∈ X, there are 1 → a = a,

a ∗ (b ∗ c) = 1 → (a ∗ (b ∗ c)) = (b ∗ c) → (1 → a) = (b ∗ c) → a = c → (b → a) and

(a ∗ b) ∗ c = 1 → ((a ∗ b) ∗ c) = c → (1 → (a ∗ b)) = c → (a ∗ b) = b → (c → a).

Note b → (c → a) = c → (b → a). Then we have (a ∗ b) ∗ c = a ∗ (b ∗ c). Then
(X, ∗) is a semigroup.

By generalizing the expressions (1) and (2), we obtain the basic equations of
N(2, 2, 0)-algebra. Recall the following definition in Deng [3].

Definition 1 An N(2, 2, 0)-algebra is a non-empty set S with a constant 0 and two
binary operations ∗,� such that for all a, b, c ∈ S:
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(N1) a ∗ (b � c) = c ∗ (a ∗ b);
(N2) (a � b) ∗ c = b ∗ (a ∗ c) and
(N3) 0 ∗ a = a.

By substituting ∗ and � in expressions (N1) and (N2)with → and ∗, respectively,
we arrive at the expressions (2) and (3). Recall the following theorem and corollary
in Dong [3].

Theorem 1 Let (S, ∗,�, 0) be a N(2, 2, 0) algebra. Then, for all a, b, c ∈ S:
(1) a ∗ b = b�a;
(2) (a ∗ b) ∗ c = a ∗ (b ∗ c), (a�b)�c = a�(b�c);
(3) a ∗ (b ∗ c) = b ∗ (a ∗ c), (a�b)�c = (a�c)�b.

Corollary 1 If (S, ∗,�, 0) is a N(2, 2, 0)-algebra, then both (S, ∗, 0) and (S,�, 0)
are semigroups.

So N(2, 2, 0)-algebra is an algebra system with a pair of dual semigroups. Some
interesting properties of N(2, 2, 0)-algebra have been discussed earlier in Deng [3].
Recall the following definition in Deng [2].

Definition 2 A residuated poset is a structure (A;≤,→, ., 0, 1) such that
(R1) (A;≤, 0, 1) is a bounded poset;
(R2) (A; ., 1) is a commutative monoid;
(R3) It satisfies the adjoint property, i.e., x · y ≤ z ⇐⇒ x ≤ y → z.

Then, by the definitions and Theorem2 for N(2, 2, 0)-algebra, we have the fol-
lowing results:

Remark 1 Let (S, ∗,�, 0) be a N(2, 2, 0)-algebra. In every semigroup (S, ∗, 0) of
(S, ∗,�, 0), one can define a binary relation ≤. Then x ≤ y ⇔ x → y = 1 for all
x, y ∈ S, where 1 = 0 → 0 and x ∗ 0 = x for all x ∈ S. It is easy to check that semi-
group (S, ∗, 0) is a residuated poset.

Remark 2 Let fuzzy implication algebra (X,→, 0) with a partial order “ ≤′′ satisfy
a ≤ b ⇔ a → b = 1 and u ≤ a → b ⇔ a ∗ u ≤ b for all a, b, u ∈ X. If u → (a ∗
b) = b → (u → a) and (a ∗ u) → b = u → (a → b) for all a, b, u ∈ X, then (X,→
, ∗, 0) is a N(2, 2, 0)-algebra.

Remark 3 Let (S, ∗,�, 0) be a N(2, 2, 0)-algebra. Then semigroups (S, ∗, 0) and
(S,�, 0) are a pair of dual semigroup. A pair of dual operations (∗,�) forms an
adjoint pair (→, ∗). Then u ≤ a → b ⇔ a ∗ u ≤ b for every a, b, u ∈ S.

Recall the following theorem in Deng [3].

Theorem 2 Let (S, ∗,�, 0) be a N(2, 2, 0) algebra. Then x�(y ∗ z) = y ∗ (x � z)
and x ∗ (y � z) = y � (x ∗ z) for every x, y, z in S.
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3 Main Results

Theorem 3 Let (S, ∗,�, 0) be an N(2, 2, 0)-algebra. If x ∗ x = 0 for every x ∈ S,
then, for all a, x, y ∈ S,
(1) x ∗ 0 = 0 ∗ x = x;
(2) x ∗ y = y ∗ x;
(3) x ∗ y = 0 implies x = y;
(4) a ∗ x = a ∗ y implies x = y.

Proof (1) Let (S, ∗,�, 0) be a N(2, 2, 0) algebra. For every x ∈ S, if x ∗ x = 0, then
x ∗ 0 = x ∗ (x ∗ x) = (x ∗ x) ∗ x = 0 ∗ x = x by (N3).

(2) x ∗ y = x ∗ (y ∗ 0) = y ∗ (x ∗ 0) = y ∗ x by (1).
(3) Let x ∗ y = 0. Then y = 0 ∗ y = (x ∗ y) ∗ y = x ∗ 0 = x by (N3) and (1).
(4) Leta, x, y ∈ S, thena ∗ x = a ∗ y ⇒ a ∗ (a ∗ x) = a ∗ (a ∗ y) ⇒ x = 0 ∗ x =

(a ∗ a) ∗ x = (a ∗ a) ∗ y = 0 ∗ y = y ⇒ x = y. �

Definition 3 Let (S, ∗,�, 0) and (S, ∗,�, 0) be N(2, 2, 0)-algebras. A mapping
f : S → S is called a homomorphism if f (x ∗ y) = f (x)∗f (y), f (x � y) = f (x)�
f (y) for all x, y ∈ S.

A homomorphism f is called a monomorphism (resp., epimorphism) if it is injec-
tive (resp., surjective). A bijective homomorphism is called an isomorphism. Two
N(2, 2, 0)-algebras (S, ∗,�, 0) and (S, ∗,�, 0) are said to be isomorphic, denoted
by S ∼= S, if there exists an isomorphism f : S → S. For every homomorphism
f : S → S, the set {x ∈ S|f (x) = 0} is called kernel of f , denoted by Ker(f ) and
the set {f (x)|x ∈ S} is called image of f , denoted by Im(f ). We denote by Hom(S, S)
the set of all homomorphisms of N(2, 2, 0)-algebras from S to S.

Suppose f : S → S is a homomorphism of N(2, 2, 0)-algebras. Then:

(1) f (0) = 0;
(2) f is an isomorphism, i.e., if x ∗ y = 0, x, y ∈ S, then f (x) ∗ f (y) = 0.

In N(2, 2, 0)-algebra (S, ∗,�, 0), a endomorphism on semigroup (S, ∗, 0) is a
anti-homomorphism f from semigroup (S, ∗, 0) to dual semigroup (S,�, 0).

Note that, in N(2, 2, 0)-algebra (S, ∗,�, 0), if x ∗ x = 0 for every x ∈ S, then
(S, ∗, 0) is isomorphic to (S,�, 0). Then we define x ∼ y if and only if x ∗ y = 0 for
every x, y ∈ S. Now we prove that ∼ is an equivalence relation on S. Note x ∗ x = 0
and x ∼ x. Then ∼ is reflexive. By Theorem3, if x ∗ y = 0, then y ∗ x = 0. Then
x ∼ y ⇒ y ∼ x. Then∼ is symmetric. If x ∼ y and y ∼ z, then x ∗ z = x ∗ (0 ∗ z) =
x ∗ ((x ∗ y) ∗ z) = ((x ∗ x) ∗ y) ∗ z = (0 ∗ y) ∗ z = y ∗ z = 0. Then x ∼ z. Then∼ is
transitive. Then∼ is an equivalence relation on S. Furthermorewe have the following
theorem.

Theorem 4 Let (S, ∗,�, 0) be a N(2, 2, 0) algebra. If x ∗ x = 0, x ∼ y and u ∼
v for every x, y, u, v ∈ S, then x ∗ u ∼ y ∗ v. Then ∼ is a congruence relation on
semigroup (S, ∗, 0).
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Proof Note x ∼ y and u ∼ v. Then x ∗ y = 0, u ∗ v = 0. So 0 = 0 ∗ 0 = (x ∗ y) ∗
(u ∗ v) = u ∗ ((x ∗ y) ∗ v) = u ∗ (x ∗ (y ∗ v)) = x ∗ (u ∗ (y ∗ v))=(x ∗ u) ∗ (y ∗ v).
Then x ∗ u ∼ y ∗ v. This completes the proof. �
Definition 4 A non-empty set X with a constant 0 and a binary operation ∗ is said to
beG-algebra if it satisfies the following axioms: (G1) x ∗ x = 0; (G2) x ∗ (x ∗ y) = y,
for all x, y ∈ X. A G-algebra is denoted by (X, ∗, 0).
Theorem 5 Let (S, ∗,�, 0) be a N(2, 2, 0)-algebra. If x ∗ x = 0 for every x ∈ S,
then (S, ∗, 0) is a G-algebra.

Proof Let (S, ∗,�, 0) be a N(2, 2, 0)-algebra. If x ∗ x = 0 for every x ∈ S, then x ∗
(x ∗ y) = (x ∗ x) ∗ y = 0 ∗ y = y for all x, y ∈ S. Hence (S, ∗, 0) is a
G-algebra. �

Recall the following example in Dong [1].

Example 1 Let X = {0, 1, 2, 3, 4, 5, 6, 7} be a set with the following table:

∗ 0 1 2 3 4 5 6 7
0 0 2 1 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 2 1 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

Then (X, ∗, 0) is a G algebra but is not a semigroup (S, ∗, 0) of N(2, 2, 0)-algebra
(S, ∗,�, 0) since 0 ∗ x = x.

Definition 5 A non-empty subset S of a G-algebra X is called a G-subalgebra of X
if x ∗ y ∈ S for all x, y ∈ S.

In the following, we suppose that S is an N(2, 2, 0)-algebra which satisfies:
x � x = 0 for every x ∈ S. Denote [x] = {y ∈ S|x ∼ y} = {y ∈ S|x ∗ y = 0} by the
equivalence class of x. Note 0 ∗ x = x. Then [0] = {0}.

Denote S/ ∼= {[x]|x ∈ S} and define that [x]♣[y] = [x ∗ y].
Note ∼ is a congruence relation on S. Then the operation ♣ is well-defined. In

the following, we will prove that ([x]; ♣, [0]) is a G-algebra.
Let [x], [y], [z] and [0] be in S/ ∼. Then we have the following properties:
(G1). [x]♣[x] = [0],
(G2). [x]♣([x]♣[y]) = [y] for all x, y ∈ S.
Then S/ ∼ is a G-algebra by the above facts. Then S/ ∼ is a quotient G-algebra

too.
B-algebras is an important class of logical algebraswhich is introduced byNeggers

and Kim in [10] and is extensively investigated by some researchers. Recall the
definition of B-algebras in [10].
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Definition 6 A non-empty set X with a constant 0 and a binary operation� is called
a B-algebra if it satisfies the following axioms: for all x, y, z ∈ X,
(B1) x � x = 0;
(B2) x � 0 = x;
(B3) (x � y) � z = x � (z � (0 � y)).

Theorem 6 Let (S, ∗,�, 0) be an N(2, 2, 0)-algebra. If x � x = 0 for every x ∈ S,
then (S,�, 0) is a B-algebra but is not conversely.

Proof Let (S, ∗,�, 0) be an N(2, 2, 0)-algebra. If x � x = 0 for every x ∈ S, then

(x � y) � z = (x � z) � y = x � (z � y) = x � ((z � 0) � y) = x � (z � (0 � y))

for all x, y, z ∈ S. This implies B3. Then (S,�, 0) is a B-algebra. �

Recall the following example in [10]
Let X = {0, 1, 2, 3} be a set with the following table:

� 0 1 2 3
0 0 3 2 1
1 1 0 3 2
2 2 1 0 3
3 3 2 1 0

Then (X,�, 0) is a B-algebra, but is not a semigroup (S,�, 0) of N(2, 2, 0)-
algebra (S, ∗,�, 0) since x � y = y � x.

Recall the following theorem in [13].

Theorem 7 (X, ∗, 0) is a B-algebra if and only if:
(B4) x ∗ x = 0;
(B5) 0 ∗ (0 ∗ x) = x;
(B6) (x ∗ z) ∗ (y ∗ z) = x ∗ y for any x, y, z ∈ X.

Then we have the following theorem.

Theorem 8 Let (S, ∗, 0) be a semigroup of N(2, 2, 0)-algebra (S, ∗,�, 0). Then
(S, ∗, 0) is a B-algebra if and only if (S, ∗, 0) satisfies x ∗ x = 0 for every x ∈ S.

Proof Suppose that (S, ∗, 0) is a B-algebra. By (N3), for each x ∈ S, we have 0 ∗
(0 ∗ x) = 0 ∗ x = x. Consequently, (B5) is valid in (S, ∗, 0). Then, by Theorem3,
we have x ∗ 0 = x. Then we obtain

(x ∗ y) ∗ (y ∗ z) = y ∗ ((x ∗ z) ∗ z) = y ∗ (x ∗ (z ∗ z)) = x ∗ (y ∗ 0) = x ∗ y.

This implies (B6). Then we complete the proof by Theorem10. �
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Recall the following definition in [6].

Definition 7 A BCH-algebra is an algebra (X, ∗, 0) of type (2, 0) satisfying the
following axioms:
(BCH1) x ∗ x = 0;
(BCH2) x ∗ y = y ∗ x = 0 ⇒ x = y;
(BCH3) (x ∗ y) ∗ z = (x ∗ z) ∗ y.

We have the following theorem.

Theorem 9 Let (S, ∗,�, 0) be a N(2, 2, 0)-algebra. If x � x = 0 for every x ∈ S,
then (S,�, 0) is a BCH-algebra but not conversely.

Proof Note Theorems1 and 3 Then (S,�, 0) is a BCH-algebra. �

Recall the following definition in [6].

Definition 8 A BCI-algebra is an algebra (X, ∗, 0) of type (2, 0) satisfying the
following axioms:
(BCI1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0;
(BCI2) (x ∗ (x ∗ y)) ∗ y = 0;
(BCI3) x ∗ x = 0;
(BCI4) x ∗ y = y ∗ x = 0 ⇒ x = y for all x, y, z ∈ X.

Hu and Li shew that the BCI-algebras is a proper subclass of the BCH-algebras
in [4]. Then, by Theorem9 and Definition8, we have:

Theorem 10 Let (S, ∗,�, 0) be an N(2, 2, 0)-algebra. If x � x = 0 for every x ∈ S,
then (S, ∗, 0) is a associative BCI-algebra but not conversely.

Recall the following definitions and example in [9].

Definition 9 A Q-algebra is a non-empty set X with a constant 0 and a binary
operation � satisfying the following axioms:
(Q1) x � x = 0;
(Q2) x � 0 = x;
(Q3) (x � y) � z = (x � z) � y for all x, y, z ∈ X.

Example 2 Let X = {0, 1, 2} be a set with the following table:

� 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

Then (X,�, 0) is a Q-algebra.

Definition 10 A non-empty subset S of a Q-algebra X is called a Q-subalgebra of
X if x � y ∈ S, for all x, y ∈ S.
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Recall the following definition and example in [8].

Definition 11 A CI-algebra is an algebra (X, ∗, 0) of type (2, 0) satisfying the fol-
lowing axioms for all x, y, z ∈ X,
(CI1) x ∗ x = 0;
(CI2) 0 ∗ x = x;
(CI3) x ∗ (y ∗ z) = y ∗ (x ∗ z).

Example 3 Let X = {0, a, b, c} be a set with the following the table:

∗ 0 a b c
0 0 a b c
a 0 0 b b
b 0 a 0 a
c 0 0 0 0

Then (X, ∗, 0) is a CI-algebra.
Then, by Theorem1, we have

Theorem 11 Let (S, ∗,�, 0) be an N(2, 2, 0)-algebra. If x ∗ x = 0 every x ∈ S,
then:
(1) (S, ∗, 0) is a Q-algebra;
(2) (S,�, 0) is a CI-algebra.

Theorem 12 Let (S, ∗, 0) be a semigroup of N(2, 2, 0)-algebra (S, ∗,�, 0) and
x ∗ x = 0 for every x ∈ S. Then:
(1) The order of semigroup (S, ∗, 0) is 2, Denoted by ‖ S ‖= 2.
(2) (S, ∗, 0) is G-algebras, B-algebras, Q-algebras and CI-algebras.

Proof Suppose S = {0, a, b}, a = 0 andb = 0. Then, byTheorem3,wehavea ∗ 0 =
a for every a ∈ S if a ∗ a = 0. Consider the following two cases:

Case 1. If a ∗ b = a, then a ∗ (a ∗ b) = a ∗ a. Then (a ∗ a) ∗ b = 0 ∗ b = b = 0.
This contradicts to b = 0.

Case 2. As similar as the above Case 1, let a ∗ b = b. Then a ∗ (b ∗ b) = b ∗ b.
Then a ∗ (b ∗ b) = a ∗ 0 = a = 0. This contradicts to a = 0.

Then a ∗ b = b ∗ a = 0. Note Theorem3 If a ∗ b = b ∗ a = 0, Then a = b. Then
S contains only two elements.

Let S = {0, 1}. Define a binary operation “∗” on S by the following table:

∗ 0 1
0 0 1
1 1 0

If ‖ S ‖> 3, then the proof is similar to the case of ‖ S ‖= 3. We obtain that
there is not N(2, 2, 0) algebra (S, ∗,�, 0) of order ‖ S ‖≥ 3 if x ∗ x = 0 for every
x ∈ S. It is easy to demonstrate that (S, ∗, 0) is G-algebra, B-albebra, Q-algebra and
CI-algebra. �
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Generalized Fuzzy Filters of R0-Algebras

Long-Chun Wang, Xiang-Nan Zhou and Hua-Rong Zhang

Abstract In R0-algebras, the notions of (α,β)-fuzzy (implicative, positive implica-
tive, fantastic) filters where (α,β) are any two of {∈, q,∈ ∨q,∈ ∧q}with α �=∈ ∧q
are introduced and related properties are discussed. Some characterization theorems
of these generalized fuzzy filters are derived. In particular, we prove that a fuzzy set
is an (∈,∈)-fuzzy (implicative, positive implicative, fantastic) filter if and only if it
is a fuzzy (implicative, positive implicative, fantastic) filter. Moreover, we also give
the conditions for an (∈,∈ ∨q)-fuzzy (implicative, positive implicative, fantastic)
filter to be an (∈,∈)-fuzzy (implicative, positive implicative, fantastic) filter, and the
conditions for a fuzzy set to be a (q,∈ ∨q)-fuzzy (implicative, positive implicative,
fantastic) filter.

Keywords R0-algebra · Belong to ·Quasi-coincident with · (α,β)-fuzzy (implica-
tive, positive implicative, fantastic) filter

1 Introduction

Non-classical logic has become a considerable formal tool for computer science
and artificial intelligence to deal with fuzzy information and uncertain information.
Many-valued logic, a great extension and development of classical logic [1] has
always been a crucial direction in non-classical logic. In order to research the many-
valued logical systemwhose propositional value is given in a lattice, Xu [2] proposed
the concept of lattice implication algebras and discussed some of their properties.
Later on, Xu andQin [3, 4] proposed the concept of implicative filters in lattice impli-
cation algebras and discussed some of their properties. On the other hand, the notion
of Boolean deductive system, or equivalently, the Boolean filter in BL-algebras [5]
was introduced by Turunen [6, 7]. The concept of R0-algebras was first introduced
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by Wang [8] by providing an algebraic proof of the completeness theorem of a for-
mal deductive system (see Wang [9]). R0-algebras are essentially different from BL
algebras and lattice implication algebras. They all have the implication operator →.
Therefore, it is meaningful to generalize the lattice implication algebras and BL
algebras to R0-algebras. The theory of fuzzy sets was first introduced by Zadeh [10]
and has been applied to many branches. Zadeh [11] introduced the concept of inter-
val valued fuzzy subset. The interval valued fuzzy subgroups were first defined and
studied by Biswas [12] which are the subgroups of the same nature of the fuzzy sub-
groups defined by Rosenfeld (see Biswas [12]). The (∈,∈ ∨q)-fuzzy subgroups was
introduced in an earlier paper of Bhakat and Das [13] by using the combined notions
of “belongingness” and “quasi-coincidence” of fuzzy points and fuzzy sets, which
was introduced by Pu and Liu [14]. The (∈,∈ ∨q)-fuzzy subgroup is an important
generalization of Rosenfeld’s fuzzy subgroup. Recently, Liu and Li [2] discussed the
fuzzy implicative and Boolean filters of R0-algebras, Ma and Zhan et al. [15] studies
the (∈,∈ ∨q)-fuzzy filters of R0-algebras. As a generalization of those papers, we
introduce the concepts of (α,β)-fuzzy filters in R0-algebras and investigate related
properties. In Sect. 3, we discuss the properties of (α,β)-fuzzy (implicative, positive
implicative, fantastic) filters and describe the relationships among these fuzzy filters.
In Sect. 4, we study the properties of (∈,∈)-fuzzy (implicative, positive implicative,
fantastic) filters and discuss the relationships between (∈,∈)-fuzzy filters and fuzzy
filters. In Sect. 5, we discuss the properties of (∈,∈ ∨q)-fuzzy (implicative, positive
implicative, fantastic) filter. In Sect. 6, we give the conditions for a fuzzy set to be
a (q,∈ ∨q)-fuzzy filter. In Sect. 7, we discuss the relations among (α,∈ ∧q)-fuzzy
filters where α ∈ {∈, q,∈ ∨q}.

2 Preliminaries

Definition 1 Let L be a bounded distributive lattice with order-reversing involution
′ and a binary operation →, (L, ′,∨,→) is called an R0 -algebra if it satisfies the
following axioms (see [8]):
(1) x → y = y′ → x ′;
(2) 1 → x = x ;
(3) (y → z) ∧ ((x → y) → (x → z)) = y → z;
(4) x → (y → z) = y → (x → z);
(5) x → (y ∨ z) = (x → y) ∨ (x → z);
(6) (x → y) ∧ ((x → y) → (x ′ ∨ y)) = 1.

Let L be an R0-algebra, for any x, y ∈ L , define x � y = (x → y′)′. It is proved
that � is commutative, associative and (L, ′,∨,�,→, 0, 1) is a residuated lattice.
In the following, let xn denote x � x · · · � x︸ ︷︷ ︸ for n ≥ 1.

In the follows, L will denote an R0-algebra, unless otherwise specified.
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Lemma 1 For all x, y ∈ L, the following properties hold (see [16, 17]):
(1) x ≤ y if and only if x → y = 1;
(2) x ≤ y → x;
(3) x ′ = x → 0;
(4) x ∨ y = ((x → y) → y) ∧ ((y → x) → x);
(5) if x ≤ y, then x → z ≥ y → z;
(6) if x ≤ y,then z → x ≤ z → y;
(7) x � y ≤ x ∧ y, x � (x → y) ≤ x ∧ y;
(8) x � y ≤ z if and only if x ≤ y → z.

A non-empty subset F of L is called a filter of L if it satisfies the following
conditions (see [16]):
(i) 1 ∈ F ;
(ii) ∀x ∈ F , y ∈ L , x → y ∈ F ⇒ y ∈ F .

It is easy to check that a non-empty subset F of L is a filter if and only if it satisfies
(see [16]):
(i) ∀x, y ∈ F , x � y ∈ F ;
(ii) ∀x ∈ F , x ≤ y ⇒ y ∈ F .

A subset F of L is called an implicative filter of L if it satisfies the following
conditions (see [17]):
(i) 1 ∈ F ;
(ii) for all x, y, z ∈ L , x → (y → z) ∈ F , x → y ∈ F⇒ x → z ∈ F .

A subset F of L is called a positive implicative filter of L if it satisfies the following
conditions:
(i) 1 ∈ F ;
(ii) for all x, y, z ∈ L , x ∈ F , x → ((y → z) → y) ∈ F⇒ y ∈ F .

A subset F of L is called a fantastic filter of L if it satisfies the following conditions:
(i) 1 ∈ F ;
(ii) for all x, y, z ∈ L , z ∈ F , z → (y → x) ∈ F⇒ ((x → y) → y) → x ∈ F .

A fuzzy set of L is a function f : L → [0, 1]. For a fuzzy set f of L and t ∈ [0, 1],
the crisp set ft = {x ∈ L | f (x) ≥ t} is called a level subset of f (see [10]).

A fuzzy set of f of L is called a fuzzy filter of L if it satisfies (see [17]):
(F1) f (1) ≥ f (x) for all x ∈ L .
(F2) f (y) ≥ f (x → y) ∧ f (x) for all x, y ∈ L .

Lemma 2 Let f be a fuzzy filter of L, for any x, y ∈ L, the following hold (see
[17]):
(1) If x ≤ y, then f (x) ≤ f (y);
(2) If f (x → y) = f (1), then f (x) ≤ f (y).

A fuzzy set f of L having the form

f (y) =
{
t ( �= 0), if y = x,

0, if y �= x .
(1)

is said to be fuzzy point with support x and value t and is denoted byU (x; t). A fuzzy
pointU (x; t) is said to belong to (resp. be quasi-coincidentwith) a fuzzy set f ,written
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as U (x; t) ∈ f (resp. U (x; t)q f ) if f (x) ≥ t (resp. f (x) + t > 1). If U (x; t) ∈ f
or (resp. and) U (x; t)q f , then we write U (x; t) ∈ ∨q (resp. ∈ ∧q). The symbol
∈ ∨q means that ∈ ∨q does not hold. Using the notion of “membership (∈)” and
“quasi-coincidence (q)” of fuzzy points with fuzzy subsets, we obtain the concepts
of (α,β)-fuzzy subsemigroup, where α and β are any two of (∈, q,∈ ∨q,∈ ∧q)
with α �=∈ ∧q. As a generalization of (α,β)-fuzzy subsemigroup, we introduce the
concepts positive implicative filter of (α,β)-fuzzy filters of L .

3 (α,β)-Fuzzy Filter

Definition 2 A fuzzy subset f of L is called an (α,β)-fuzzy filters of L if for all
r, t ∈ (0, 1] and x, y, z ∈ L ,
(F3) U (x; r)α f ⇒ U (1; r)β f ;
(F4)U (x; r)α f,U (x → y)α f ⇒ U (y;min{r, t})β f .Whereα,β ∈ {∈, q,∈ ∨q,∈
∧q} with α �=∈ ∧q.

Note that if f is a fuzzy set in L defined by f (x) ≤ 0.5 for all x ∈ L , the
set {U (x; t) | U (x; t) ∈ ∧q f } is empty. (i) (α,β)-fuzzy implicative filter of L if
it satisfies (F3) and (F5)U (x → (y → z); r)α f and U (x → y; t)α f ⇒ U (x →
z;min{r, t})β f .
(ii) (α,β)-fuzzypositive implicativefilter of L if it satisfies (F3) and (F6)U (x; r)α f
and U (x → ((y → z) → y); t)α f ⇒ U (y;min{r, t})β f .
(iii) (α,β)-fuzzy fantastic filter of L if it satisfies (F3) and (F7)U (z → (y →
x); r)α f and U (z; t)α f ⇒ U (((x → y) → y) → x;min{r, t})β f

Theorem 1 Any (α,β)-fuzzy implicative filter of L is an (α,β)-fuzzy filter.

Proof In (F5), Let x = 1, y = x, z = y. By U (1 → (x → y); r)α f and U (1 →
x; t)α f , we haveU (1 → y;min{r, t})β f . That is,U (x → y; r)α f andU (x; t)α f ,
we have U (y;min{r, t})β f . Hence f is an (α,β)-fuzzy filter. �

Similarly, we have the following result.

Theorem 2 Every (α,β)-fuzzy positive implicative (fantastic) filter of L is an
(α,β)-fuzzy filter.

Theorem 3 If f is an (α,β)-fuzzy filter of L, then f is an (α,∈ ∨q)-fuzzy filter
where α,β ∈ {∈, q,∈ ∨q,∈ ∧q} and α �=∈ ∧q.
Proof Assume that f is an (α,β)-fuzzy filter of L. Let x, y ∈ L and r, t ∈ (0, 1]
satisfy U (x; r)α f and U (x → y; t)α f . Then we have the following cases:

Case 1: β =∈. Then U (1; r) ∈ f and U (y;min{r, t}) ∈ f . Thus U (1; r) ∈ ∨q f
and U (y;min{r, t}) ∈ ∨q f .

Case 2: β = q. ThenU (1; r)q f andU (y;min{r, t})q f . ThusU (1; r) ∈ ∨q f and
U (y;min{r, t}) ∈ ∨q f .
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Case 3: β =∈ ∨q. This completes the proof.
Case 4: β =∈ ∧q. Then U (1; r) ∈ ∧q f and U (y;min{r, t}) ∈ ∧q f . Thus

U (1; r) ∈ ∨q f and U (y;min{r, t}) ∈ ∨q f . The proof is complete. �

Similarly, we have:

Theorem 4 Every (α,β)-fuzzy (implicative, positive implicative, fantastic) filter of
L is an (α,∈ ∨q)- fuzzy (implicative, positive implicative, fantastic) filter.
Theorem 5 Every (∈ ∨q,β)-fuzzy filter is an (α,β)-fuzzy filter.

Proof Suppose that f is an (∈ ∨q,β)-fuzzy filter andU (x; r)α f,U (x → y; t)α f .
Then U (x; r) ∈ ∨q f,U (x → y; t) ∈ ∨q f . Thus U (1; r)β f,U (y;min{r, t})β f .
This shows that f is an (α,β)-fuzzy filter. �

Theorem 6 Every (∈ ∨q,β)-fuzzy (implicative, positive implicative, fantastic) filter
is an (α,β)-fuzzy (implicative, positive implicative, fantastic) filter.

Proof The proof is similar to that of Theorem5. �

Theorem 7 Every (α,∈ ∧q)-fuzzy filter of L is an (α,β)- fuzzy filter.

Proof Suppose that f is an (α, in ∧ q)-fuzzyfilter andU (x; r)α f,U (x → y; t)α f .
Then U (x; r) ∈ ∧q f,U (y;min{r, t}) ∈ ∧q f . Thus U (1; r)β f,U (y;min{r, t})β f .
This shows f is an (α,β)-fuzzy filter. �

Similarly, we have the following result.

Theorem 8 Every (α,∈ ∧q)-fuzzy (implicative, positive implicative, fantastic) filter
is an (α,β)-fuzzy (implicative, positive implicative, fantastic) filter.

4 (∈,∈)-Fuzzy Filters

In this section, let α =∈,β =∈ in Definition2. Firstly, we introduce some concepts
of fuzzy filters.

Definition 3 A fuzzy set f of L is called a fuzzy implicative filter of L if it satisfies
(F1) and (see [17])
(F8) f (x → z) ≥ f (x → (y → z)) ∧ f (x → y) for all x, y, z ∈ L .

Definition 4 A fuzzy set f of L is called a fuzzy positive implicative filter of L if it
satisfies (F1) and (F9) f (y) ≥ f (x) ∧ f (x → ((y → z) → y)) for all x, y, z ∈ L .

Definition 5 Afuzzy set f of L is called a fuzzy fantastic filter of L if it satisfies (F1)
and (F10) f (((x → y) → y) → x) ≥ f (z → (y → x)) ∧ f (z) for all x, y, z ∈ L .
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Example 1 Let L = {0, a, b, c, 1} be a chain with the following Cayley table:

x x ′ → 0 a b c 1
0 1 0 1 1 1 1 1
a c a c 1 1 1 1
b b b b b 1 1 1
c a c a a b 1 1
1 0 1 0 a b c 1

Define the ∨ and ∧ operations on L as min and max respectively. Then (L ,∨,∧,
�,→) is an R0-algebra. Now, define a fuzzy set f in L by f (1) = f (c) =
0.4, f (0) = f (a) = f (b) = 0.2. It is easy to check that f is a fuzzy fantastic filter.

Example 2 Suppose L= {0, a, b, c, d, 1} is a chain with the following Cayley table:

x x ′ → 0 a b c d 1
0 1 0 1 1 1 1 1 1
a d a d 1 1 1 1 1
b c b c c 1 1 1 1
c b c b b b 1 1 1
d a d a a b c 1 1
1 0 1 0 a b c d 1

Define the ∨ and ∧ operations on L as min and max respectively. Then L is an
R0-algebra. Define a fuzzy subset f on L by f (1) = f (d) = f (c) = 0.8, f (0) =
f (a) = f (b) = 0.3. Then f is not only a fuzzy implicative but also a fuzzy positive
implicative filter.

Theorem 9 Every (∈,∈)-fuzzy filter is a fuzzy filter and vice versa.

Proof Let f be a fuzzy filter of L and U (x; t) ∈ f . Then f (x) ≥ r . By (F1), we
have f (1) ≥ r , thusU (1; r) ∈ f . SupposeU (x; r) ∈ f andU (x → y; t) ∈ f . Then
f (x) ≥ r and f (x → y) ≥ t . It follows from (F2) that: f (y) ≥ f (x) ∧ f (x →
y) ≥ min{r, t}. Thus U (y;min{r, t}) ∈ f .

Conversely, let f be an (∈,∈)-fuzzy filter of L and f (1) < f (x). Then ∃s ∈
(0, 1] such that f (1) < s < f (x). This shows that f (x) ≥ s but f (1) < s. This
contradicts with (F3). So we have f (1) ≥ f (x). Note thatU (x; r) ∈ f andU (x →
y; t) ∈ f for all x, y ∈ L , where r = f (x), t = f (x → y). It follows from (F4)
that U (y;min{r, t}) ∈ f ). That is, f (y) ≥ min{r, t} = f (x) ∧ f (x → y). �

Theorem 10 Every (∈,∈)-fuzzy implicative filter of L is a fuzzy implicative filter
and vice versa.

Proof (F1) ⇔ (F3) See Theorem9.
(F2) ⇔ (F4) Assume that f satisfies (F2). Let x, y, z ∈ L and r, t ∈ (0, 1] sat-

isfy U (x → (y → z); r) ∈ f and U (x → y; t) ∈ f . Then f (x → (y → z)) ≥ r
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and f (x → y) ≥ t . It follows from (F2) that f (x → z) ≥ f (x → (y → z)) ∧
f (x → y) ≥ min{r, t}. This shows that U (x → z;min{r, t}) ∈ f . Now suppose
that (F4) is valid. Note that U (x → (y → z); r) ∈ f and U (x → y; t) ∈ f for all
x, y, z ∈ L where r = f (x → (y → z)), t = f (x → y). It follows from (F4) that
U (x → z;min{r, t}) ∈ f . This shows that f (x → z) ≥ min{r, t} = f (x → (y →
z)) ∧ f (x → y). This completes the proof. �

Similarly, we have,

Theorem 11 Every (∈,∈)-fuzzy positive implicative (fantastic) filter is a fuzzy pos-
itive implicative (fantastic) filter and vice versa.

By Theorems1, 10 and 11, we have the following result.

Theorem 12 Every fuzzy (implicative, positive implicative, fantastic) filter of L is a
fuzzy filter.

Theorem 13 f is a fuzzy implicative filter of L if and only if f is a fuzzy positive
implicative filter (see [17]).

Corollary 1 f is an (∈,∈)-fuzzy implicative filter if and only if f is an (∈,∈)-fuzzy
positive implicative filter.

Theorem 14 Let f be a fuzzy filter of L, f is a fuzzy fantastic filter if and only if it
satisfies: (F11) f (((x → y) → y) → x) ≥ f (y → x) for all x, y ∈ L.

Proof Let f be a fuzzy filter. Taking z = 1 in (F10), we have f (((x → y) → y) →
x) ≥ f (1 → (y → x)) ∧ f (1) = f (y → x) ∧ f (1) = f (y → x).

Conversely, since f is a fuzzy filter, then f (z → (y → x)) ∧ f (z) ≤ f (y → x)
for all x, y, z ∈ L . By (F11), we have f (z → (y → x)) ∧ f (z) ≤ f (((x → y) →
y) → x). The proof is completed. �

Theorem 15 Let f be a fuzzy filter of L, f is a fuzzy positive implicative filter if
and only if it satisfies:
(F12) f (y) = f ((y → z) → y) for all y, z ∈ L.

Proof Assume that f is a fuzzy positive implicative filter, we have f (y) ≥ f (1) ∧
f (1 → ((y → z) → y)) = f ((y → z) → y). On the other hand, y ≤ (y → z) →
y, therefore (F12) holds.

Conversely, suppose that f is a fuzzy filter.We have f (x) ∧ f (x → ((y → z) →
y)) ≤ f ((y → z) → y) ≤ f (y). This shows that f is a fuzzy positive implicative
filter. �

Theorem 16 Every fuzzy positive implicative filter of L is a fuzzy fantastic filter
of L.
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Proof Suppose that f is a fuzzy positive implicative filter of L . Since x �
((x → y) → y) ≤ x , then x ≤ (((x → y) → y) → x). By Lemma1, we have
(((x → y) → y) → x) → y ≤ x → y, thus ((((x → y) → y) → x) → y) →
(((xy) → y) → x) ≥ (x → y) → (((x → y) → y) → x) = ((x → y) → y) →
((x → y) → x) ≥ y → x . Thus f ((((x → y) → y) → x) → y) → (((x → y) →
y) → x) ≥ f (y → x). By hypothesis and Theorem15, we have f (((x → y) →
y) → x) ≥ f (y → x). By Theorem14, f is a fuzzy fantastic filter of L . �

The converse of Theorem16 may not be true. In Example1, f ((b → 0) → b) =
f (b → b) = f (1) �= f (b), By Theorem15, we have that f is not a fuzzy positive
implicative filter.

Corollary 2 Every (∈,∈)-fuzzy positive implicative filter of L is an (∈,∈)-fuzzy
fantastic filter.

Lemma 3 f is a fuzzy filter of L if and only if for each t ∈ (0, 1], ft is either empty
or a filter of L (see [17]).

Theorem 17 Let f be a fuzzy filter in L, f is a fuzzy positive implicative filter if
and only if for each t ∈ (0, 1], ft is either empty or a positive implicative filter of L.
Proof Suppose that f is a fuzzypositive implicativefilter and for each t ∈ (0, 1], ft �=
ø. Then ft is a filter by Lemma3. Thus 1 ∈ ft . Suppose x ∈ ft , x → ((y → z) →
y) ∈ ft . That is f (x) ≥ t, f (x → ((y → z) → y)) ≥ t . Hence f (y) ≥ f (x) ∧
f (x → ((y → z) → y)) ≥ t , That is, y ∈ ft . This shows that ft is a positive implica-
tive filter. Conversely, suppose that f is a fuzzy filter and for each t ∈ (0, 1], ft is
either emptyor a positive implicativefilter ofL.Let t = f (x) ∧ f (x → ((y → z) →
y)), then x ∈ ft , x → ((y → z) → y) ∈ ft . Since ft is a positive implicative filter,
we have y ∈ ft , and so f (y) ≥ t = f (x) ∧ f (x → ((y → z) → y)). The proof is
complete. �

Theorem 18 Let f be a fuzzy filter in L, f is a fuzzy fantastic filter if and only if
for each t ∈ (0, 1], ft is either empty or a fantastic filter of L.
Proof The proof is similar to the proof of Theorem17. �

Theorem 19 Let f be a fuzzy filter of L. f is an (∈,∈)-fuzzy (positive implicative,
fantastic) filter if and only if for each t ∈ (0, 1], ft is either empty or a (positive
implicative, fantastic) filter of L.

5 (∈,∈ ∨Q)-Fuzzy Filters

In this section, let α =∈,β =∈ ∨q in Definition2.

Example 3 In Example1, define a fuzzy set f by f (1) = 0.6, f (c) = 0.7, f (0) =
f (a) = f (b) = 0.3. It is routine to verify that F is an (∈,∈ ∨q)-fuzzy fantastic filter.
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Example 4 In Example2, define a fuzzy set f by f (1) = 0.6, f (d) = f (c) =
0.8, f (0) = f (a) = f (b) = 0.4. It is easy to check that F is an (∈,∈ ∨q)-fuzzy
positive implicative filter.

By Theorems3 and 9, we have

Theorem 20 Every fuzzy filter is an (∈,∈ ∨q)-fuzzy filter.
Theorem 21 f is an (∈,∈ ∨q)-fuzzy filter of L if and only if:
(F13) f (1) ≥ min{ f (x), 0.5};
(F14) f (y) ≥ min{ f (x), f (x → y), 0.5}.
Proof (F3) ⇒ (F13)

Suppose f (1) < min{ f (x), 0.5}. There have two cases:
Case 1 f (x) < 0.5, then min{ f (x), 0.5} = f (x), thus f (1) < f (x) and f (1) +

f (x) < 1. By f (x) ≥ f (x) and (F3). We should have U (1; f (x)) ∈ ∨q f . i.e.,
f (1) ≥ f (x) and f (1) + f (x) > 1. A contradiction.
Case 2 f (x) ≥ 0.5. Then min{ f (x), 0.5} = 0.5. Thus f (1) < 0.5 and f (1) +

0.5 < 1. By (F3), we should have U (1; 0.5) ∈ ∨q f . i.e., f (1) ≥ 0.5 and f (1) +
0.5 > 1. A contradiction.

(F13) ⇒ (F3)
Assume U (x; r) ∈ f . Then f (x) ≥ r . By (F13), we have f (1) ≥ min{ f (x),

0.5} ≥ min{r, 0.5}. If r > 0.5, then f (1) + r > 1; If r ≤ 0.5, then f (1) ≥ r . This
shows U (1; r) ∈ ∨q f .

(F4) ⇒ (F14)
Let t0 = min{ f (x), f (x → y), 0.5}. We have f (x) ≥ t0, f (x → y) ≥ t0. That

is,U (x; t0) ∈ f andU (x → y; t0) ∈ f . By (F4), we haveU (y;min{t0, t0}) ∈ ∨q f .
Then f (y) ≥ t0 or f (y) + t0 > 1. If f (y) + t0 > 1, note that t0 ≤ 0.5. Then f (y) >
1 − t0 ≥ t0. Thus f (y) ≥ t0. This shows f (y) ≥ t0 = min{ f (x), f (x → y), 0.5}.

(F14) ⇒ (F4)
Suppose f (x) ≥ r, f (x → y) ≥ t . By (F14), f (y) ≥ min{ f (x), f (x → y),

0.5} ≥ min{r, t, 0.5}. If min{r, t} > 0.5, then f (y) ≥ 0.5. Thus f (y) + min{r, t} >
1; If min{r, t} ≤ 0.5, then f (y) ≥ min{r, t}. This shows U (y;min{r, t}) ∈ ∨q f . �

Similarly, we have,

Theorem 22 Let f be an (∈,∈ ∨q)-fuzzy (implicative, positive implicative, fantas-
tic) filter of L if and only if it satisfies (F13) and (F15) f (x → z) ≥ min{ f (x →
(y → z)), f (x → y), 0.5}; (F16) f (y) ≥ min{ f (x), f (x → ((y → z) → y)), k
0.5}; (F17) f (((x → y) → y) → x) ≥ min{ f (z → (y → x)), f (z), 0.5}.
Theorem 23 f is an (∈,∈ ∨q)-fuzzy implicative filter of L if and only if f is an
(∈,∈ ∨q)-fuzzy positive implicative filter (see [15]).
Theorem 24 Let f be an (∈,∈ ∨q)-fuzzy implicative filter of L, then f is an (∈,∈
∨q)-fuzzy fantastic filter.
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Proof Suppose that f is an (∈,∈ ∨q)-fuzzy implicative filter. Then f is an (∈,∈
∨q)-fuzzy filter. By (F14), we havemin{ f (z), f (z → (y → x)), 0.5} = min{ f (z),
f (z → (y → x)), 0.5, 0.5} ≤ min{ f (y → x), 0.5}. By the proof of Theorem16,
we have y → x ≤ ((x → y) → y) → x , Then min{ f (y → x), 0.5} ≤ f (((x →
y) → y) → x) (see Theorems 3.3 and 3.6 in [15]). Thus min{ f (z), f (z → (y →
x)), 0.5} ≤ f (((x → y) → y) → x). �
Theorem 25 A fuzzy set of L is an (∈,∈ ∨q)-fuzzy (positive implicative, fantastic)
filter of L if and only if ft is either empty or a (positive implicative, fantastic) filter
for all t ∈ (0, 0.5].
Proof The proof is similar to that of Theorem 3.10 in [15]. �
Theorem 26 If f is an (∈,∈ ∨q)-fuzzy positive implicative filter of L with f (1) <
0.5, then f is a fuzzy positive implicative filter.

Proof Suppose that f is an (∈,∈ ∨q)-fuzzy positive implicative filter with f (1) <
0.5. Then we have f (1) ≥ f (x). If f (1) < f (x), then f (1) < min{ f (x), 0.5}. This
contradicts with (F13). On the other hand, f (y) ≥ min{ f (x), f (x → ((y → z) →
y)), 0.5} ≥ min{ f (x), f (x → ((y → z) → y))}by f (x) ≤ f (1) < 0.5.This shows
that f is a fuzzy positive implicative filter. �
Theorem 27 If f is an (∈,∈ ∨q)-fuzzy fantastic filter of L with f (1) < 0.5, then
f is a fuzzy fantastic filter.

6 (q,∈ ∨Q)-Fuzzy Filters

In this section, let α = q, β =∈ ∨q in Definition2.

Theorem 28 Let F be a filter of L and f a fuzzy set in L, such that
(i) ∀x ∈ L \F, f (x) = 0;
(ii) ∀x ∈ F, f (x) ≥ 0.5.
Then f is a (q,∈ ∨q)-fuzzy filter.
Proof Let x ∈ L and r ∈ (0, 1] satisfy U (x; r)q f . Then f (x) + r > 1 and so x ∈
F . Since 1 ∈ F , Thus f (1) ≥ 0.5. There have two cases. If r > 0.5, then f (1) +
r > 0.5 + 0.5 = 1; If r ≤ 0.5, then f (1) ≥ 0.5 ≥ r . So that U (1; r) ∈ ∨q f . Let
x, y ∈ L and r, t ∈ (0, 1] satisfyU (x; r)q f andU (x → y; t)q f . i.e., f (x) + r > 1
and f (x → y) + t > 1. Then x ∈ F and x → y ∈ F . Since F is a filter, it follows
that y ∈ F . So that f (y) ≥ 0.5. If r ≤ 0.5 or t ≤ 0.5, then f (y) ≥ 0.5 ≥ min{r, t}.
Hence U (y;min{r, t}) ∈ f . If r > 0.5 and t > 0.5, then f (y) + min{r, t} > 0.5 +
0.5 = 1 and soU (y;min{r, t})q f . ConsequentlyU (y;min{r, t}) ∈ ∨q f . Therefore
f is a (q,∈ ∨q)-fuzzy filter of L . �
Theorem 29 In Theorem28, if F is an implicative (positive implicative, fantastic)
filter of L, then f is a (q,∈ ∨q)-fuzzy (implicative, positive implicative, fantastic)
filter of L.
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7 (α,∈ ∧Q)-Fuzzy Filters

In this section, let β =∈ ∧q in Definition2.

Theorem 30 f is an (∈,∈ ∧q)-fuzzy filter if and only if f is an (∈,∈)-fuzzy filter
and (∈, q)-fuzzy filter.
Proof Assume that f is an (∈,∈ ∧q)-fuzzy filter. By Theorem7, we have that f is an
(∈,∈)-fuzzyfilter and (∈, q)-fuzzyfilter.On theother hand, suppose that f is not only
an (∈,∈)-fuzzy filter but also an (∈, q)-fuzzy filter andU (x; r) ∈ f,U (x → y; t) ∈
f . Then U (1; r) ∈ f and U (1; r)q f . Thus U (1; r) ∈ ∧q, U (y;min{r, t}) ∈ f and
U (y;min{r, t})q f . HenceU (y;min{r, t}) ∈ ∧q. This shows that f is an (∈,∈ ∧q)-
fuzzy filter. �

Similarly, we have,

Theorem 31 f is an (∈,∈ ∧q)-fuzzy (implicative, positive implicative, fantastic)
filter if and only if f is an (∈,∈)-fuzzy (implicative, positive implicative, fantastic)
filter and (∈, q)-fuzzy (implicative, positive implicative, fantastic) filter.
Theorem 32 f is an (q,∈ ∧q)-fuzzy (implicative, positive implicative, fantastic)
filter if and only if f is an (q,∈)-fuzzy (implicative, positive implicative, fantastic)
filter and (q, q)-fuzzy (implicative, positive implicative, fantastic) filter.

Theorem 33 f is an (∈ ∨q,∈ ∧q)-fuzzy (implicative, positive implicative, fantas-
tic) filter if and only if f is an (∈ ∨q,∈)-fuzzy (implicative, positive implicative,
fantastic) filter and (∈ ∨q, q)-fuzzy (implicative, positive implicative, fantastic) fil-
ter.

8 Conclusions

We introduced the concepts of (α,β)-fuzzy (implicative, positive implicative, fan-
tastic) filter in R0- algebras, where α,β are any two of {∈, q,∈ ∨q,∈ ∧q} with
α �=∈ ∧q. We investigated relations between (∈,∈)-fuzzy (implicative, positive
implicative, fantastic) filter and fuzzy (implicative, positive implicative, fantastic)
filter. We established characterizations of (∈,∈ ∨q)-fuzzy (implicative, positive
implicative, fantastic) filter and provide conditions for an (∈,∈ ∨q)-fuzzy (implica-
tive, positive implicative, fantastic) filter to be an (∈,∈)-fuzzy (implicative, positive
implicative, fantastic) filter. We give the conditions for a fuzzy set to be a (q,∈ ∨q)-
fuzzy (implicative, positive implicative, fantastic) filter. And we discuss the relations
of (α,∈ ∧q)-fuzzy filters where α ∈ {∈, q,∈ ∨q}.
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On Generalized Annihilators in BL-Algebras

Yu-Xi Zou, Xiao-Long Xin and Young-Bae Jun

Abstract The theory of generalized annihilators on BL-algebras are developed in
this paper. Firstly, some properties of generalized annihilators on BL-algebras are
supplemented. Secondly, we introduce the notion of involutory ideals relative to an
ideal I and denote the set of all of them by SI (L). Then SI (L) can be made into a
complete Boolean lattice and a BL-algebra with respect to the suit operations, respec-
tively. Finally, the prime ideals can be characterized by the generalized annihilators,
and the generalized annihilators of the quotient algebra induced by an ideal I in a
BL-algebra L are studied.

Keywords BL-algebra · Generalized annihilator · Involutory ideal · Prime ideal

1 Introduction

In order to study the basic logic framework of fuzzy set system, based on continuous
triangle norm and under the theoretical framework of residuated lattices theory,
Hájek [1] proposed a new fuzzy logic system−BL-system and the corresponding
logic algebraic system−BL-algebra. And MV-algebras were introduced by Chang
[2] to give an algebraic proof of the completeness theorem of Lukasiewice system
of many valued logic.
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Ideals are a very effective tool for studying algebraic and logical systems. In the
theory of MV-algebras the notion of ideals is central one and deductive systems
and ideals are dual notions, while in BL-algebra, due to lack of suitable algebraic
addition, the focus is shifted to deductive systems also called filters [3–9]. So the
notion of ideals is missing in BL-algebras. To fill this gap [10] introduced the notion
of ideals in BL-algebras, which generalized in a natural sense the existing notion in
MV-algebras and subsequently all results about ideals inMV-algebras. The paper also
constructed some examples to show that ideals and filters behave quite differently in
BL-algebra. So the notion of ideal from a view of purely algebraic point has a proper
meaning in BL-algebras.

Much work has been done with respect to annihilators and co-annihilators. For
example, in [11], Davery studied the relationship between minimal prime ideals
conditions and annihilators conditions on distributive lattices. Turunen [12] defined
co-annihilator of a non-empty set X of L and proved some of its properties on BL-
algebras, they got that A⊥ is a prime filter if and only if A is linear and A �= {1}.
Also, in [13] B.A. Laurentiu Leustean introduced the notion of co-annihilator of
A relative to F on pseudo-BL-algebras, which is a generalization of co-annihilator,
and they also extended some results obtained in [11]. Moreover, in [14], Zou Y.X.
et al. introduced the notion of annihilator and generalized annihilator onBL-algebras.
Now, we further study generalized annihilator of BL-algebras based on [14].

2 Preliminaries

Definition 1 ([1]) An algebra structure (L ,∧,∨,�,→, 0, 1) of type (2, 2, 2,
2, 0, 0) is called a BL-algebra, if it satisfies the following conditions: for all
x, y, z ∈ L

(BL1) (L ,∧,∨, 0, 1) is a bounded lattice relative to the order ≤;
(BL2) (L ,�, 1) is a commutative monoid;
(BL3) x � y ≤ z if and only if x ≤ y → z;
(BL4) x ∧ y = x � (x → y);
(BL5) (x → y) ∨ (y → x) = 1.

For each x ∈ L and a natural number n, we define x = x → 0, x = (x), x0 = 1
and xn = xn−1 � x for n ≥ 1. For every x, y ∈ L , we adopt the notation: x � y =
x → y.

Proposition 1 ([10]) In every BL-algebra L, the following hold:
(1) the operation � is associative, that is, for every x, y, z ∈ L, (x � y) � z = x �
(y � z);
(2) the operation� is compatible with the order, that is, for every x, y, z, t ∈ L, such
that x ≤ y and z ≤ t , then x � z ≤ y � t .

Definition 2 ([10]) Let L be a BL-algebra and I be a nonempty subset of L . We
say that I is an ideal of L if it satisfies
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(I1) for all x, y ∈ L , if x ≤ y and y ∈ I , then x ∈ I ;
(I2) for all x, y ∈ I , x � y ∈ I .

Proposition 2 ([10]) An ideal P of a BL-algebra L is prime if and only if for all
x, y ∈ L, x ∧ y ∈ P implies that x ∈ P or y ∈ P.

Let L be a BL-algebra, ∅ �= A ⊆ L and I be an ideal of L . Denote A⊥ = {x ∈
L | a ∧ x = 0, for all a ∈ A}, which is called an annihilator of A and A⊥

I = {x ∈ L |
a ∧ x ∈ I , for all a ∈ A} in [14]. We call A⊥

I a generalized annihilator of A relative
to I in this paper. Moreover, we denote {a}⊥I by a⊥

I .

Proposition 3 Let L be a BL-algebra, I, J ∈ I (L) and ∅ �= X, X
′ ⊆ L. Then we

have
(1) I ⊆ J implies X⊥

I ⊆ X⊥
J ;

(2) X ⊆ X
′
implies (X

′
)⊥I ⊆ X⊥

I ;
(3) (∪λ∈ΛXλ)

⊥
I = ∩λ∈Λ(Xλ)

⊥
I ;

(4) X⊥
I = ∩x∈X x⊥

I ;

(5) X⊥
∩λ∈Λ Iλ

= ∩λ∈ΛX⊥
Iλ
;

(6) (X ]⊥I = X⊥
I .

Proof Similar to Proposition 3.24 in [14] �

Proposition 4 ([14]) Let L be a BL-algebra, ∅ �= X ⊆ L and I be an ideal of L.
Then
(1) I ⊆ X⊥

I ;
(2) X⊥

I = L if and only if X ⊆ I .

Proposition 5 ([14]) Let L be a BL-algebra, I, J and H ∈ I (L). Then we have
(1) J⊥

I ∩ J ⊆ I ;
(2) J ∩ H ⊆ I if and only if H ⊆ J⊥

I .

3 Generalized Annihilators

In this section, we focus on generalized annihilators of BL-algebras. Using general-
ized annihilators we define involutory ideals relative to an ideal I and research the
structure of the set of all involutory ideals relative to an ideal I .

Proposition 6 Let L be a BL-algebra, ∅ �= A ⊆ L, I be an ideal of L. Then the
following hold:
(1) A ⊆ (A⊥

I )⊥I ;
(2) A⊥

I = ((A⊥
I )⊥I )⊥I ;

(3) (A⊥
I ) ∩ A ⊆ I ;

(4) if A is also an ideal of L with I ⊆ A, then (A⊥
I ) ∩ A = I ;

(5) (A⊥
I )⊥I ∩ A⊥

I = I ;
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(6) L⊥
I = I ;

(7) I⊥
I = L;

(8) (I⊥
I )⊥I = I ;

(9) (L⊥
I )⊥I = L;

(10) A⊥
I = {x ∈ L | (x] ∩ (A] ⊆ I }.

(11) (a ∧ b)⊥I = a⊥
b⊥
I

= b⊥
a⊥
I
, for all a, b ∈ L. In particular, a⊥

I = a⊥
a⊥
I
, for all a ∈ L;

(12) a⊥
I ∩ b⊥

I = (a ∨ b)⊥I = (a � b)⊥I , for all a, b ∈ L.

Proof (1) For any x ∈ A, by the definition of A⊥
I , we have x ∧ y ∈ I for all y ∈ A⊥

I ,
which implies that x ∈ (A⊥

I )⊥I . Therefore, A ⊆ (A⊥
I )⊥I .

(2) Since A ⊆ (A⊥
I )⊥I , by Proposition3(2), we have ((A⊥

I )⊥I )⊥I ⊆ A⊥
I . Conversely,

taking A⊥
I as A, using (1), we have A⊥

I ⊆ ((A⊥
I )⊥I )⊥I . Therefore, A

⊥
I = ((A⊥

I )⊥I )⊥I .
(3) For any x ∈ (A⊥

I ) ∩ A, then x ∈ A⊥
I and x ∈ A, sowehave that x = x ∧ x ∈ I .

That is, (A⊥
I ) ∩ A ⊆ I .

(4) By (3), we have (A⊥
I ) ∩ A ⊆ I . Conversely, if I ⊆ A, then I = I ∩ A ⊆ A⊥

I ∩
A, by Proposition4(1). Therefore, (A⊥

I ) ∩ A = I .
(5) Since A⊥

I is an ideal and I ⊆ A⊥
I . By (4), we have (A⊥

I )⊥I ∩ A⊥
I = I .

(6) Taking L as A in (4),we obtain L⊥
I = L⊥

I ∩ L = I , which implies that L⊥
I = I .

(7) By Proposition4(2), we have I⊥
I = L .

(8) By (6) and (7), we have (I⊥
I )⊥I = I .

(9) By (6) and (7), we have (L⊥
I )⊥I = L .

(10) For any x ∈ L , satisfied that (x] ∩ (A] ⊆ I . Then x ∈ (x] ⊆ (A]⊥I = A⊥
I , that

is, {x ∈ L | (x] ∩ (A] ⊆ I } ⊆ A⊥
I . Conversely, for any x ∈ A⊥

I , we have x ∈ A⊥
I =

(A]⊥I , which implies that (x] ⊆ (A]⊥I , that is, (x] ∩ (A] ⊆ I . Therefore, A⊥
I = {x ∈

L | (x] ∩ (A] ⊆ I }.
(11) x ∈ (a ∧ b)⊥I ⇔ x ∧ a ∧ b ∈ I ⇔ x ∧ a ∈ b⊥

I ⇔ x ∈ a⊥
b⊥
I
, so we have (a ∧

b)⊥I = a⊥
b⊥
I
. Similarly, we get that (a ∧ b)⊥I = b⊥

a⊥
I
. If a = b, then a⊥

I = a⊥
a⊥
I
.

(12) Since a, b ≤ a ∨ b ≤ a � b, then we have (a � b)⊥I ⊆ (a ∨ b)⊥I ⊆ a⊥
I , b⊥

I ,
it follows that (a � b)⊥I ⊆ (a ∨ b)⊥I ⊆ a⊥

I ∩ b⊥
I . Conversely, if x ∈ a⊥

I ∩ b⊥
I , then

x ∧ a ∈ I and x ∧ b ∈ I , it follows that (x ∧ a) � (x ∧ b) ∈ I as I is an ideal. Since
x ∧ (a � b) ≤ (x ∧ a) � (x ∧ b), it follows that x ∈ (a � b)⊥I . This shows that a

⊥
I ∩

b⊥
I ⊆ (a ∨ b)⊥I ⊆ (a � b)⊥I . Therefore, a

⊥
I ∩ b⊥

I = (a ∨ b)⊥I = (a � b)⊥I . �

Proposition 7 Let A, B, and I be ideals of a BL-algebra L. Then ((A ∩ B)⊥I )⊥I =
(A⊥

I )⊥I ∩ (B⊥
I )⊥I .

Proof Since A ∩ B ⊆ A, B,wehave A⊥
I , B⊥

I ⊆ (A ∩ B)⊥I , and then ((A ∩ B)⊥I )⊥I ⊆
(A⊥

I )⊥I , (B⊥
I )⊥I , which implies that ((A ∩ B)⊥I )⊥I ⊆ (A⊥

I )⊥I ∩ (B⊥
I )⊥I . Conversely, let

z ∈ (A⊥
I )⊥I ∩ (B⊥

I )⊥I . For any x ∈ A, y ∈ B, we have x ∧ y ∈ A ∩ B. For all u ∈
(A ∩ B)⊥I , we have u ∧ x ∧ y ∈ I , then z ∧ u ∧ x ∧ y ∈ I , so we get z ∧ u ∧ x ∈
B⊥
I . Moreover, since z ∧ u ∧ x ≤ z and z ∈ (B⊥

I )⊥I , we have z ∧ u ∧ x ∈ (B⊥
I )⊥I , it

follows that z ∧ u ∧ x ∈ B⊥
I ∩ (B⊥

I )⊥I = I , which implies that z ∧ u ∈ A⊥
I . Since

z ∈ (A⊥
I )⊥I , then we have z ∧ u ∈ (A⊥

I )⊥I , it follows that z ∧ u ∈ A⊥
I ∩ (A⊥

I )⊥I = I ,
which implies that z ∈ ((A ∩ B)⊥I )⊥I . Therefore, ((A ∩ B)⊥I )⊥I = (A⊥

I )⊥I ∩
(B⊥

I )⊥I . �
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Proposition 8 Let A, B be ideals of a BL-algebra L with A ⊆ B and B = B⊥⊥.
Then B = (B⊥

A )⊥A.

Proof ByProposition6(1),wehave that B ⊆ (B⊥
A )⊥A . To prove the converse it suffices

to show that if x /∈ B, thenwe have x /∈ (B⊥
A )⊥A . Now let x /∈ B = B⊥⊥, then x ∧ y �=

0 for some y ∈ B⊥. But y ∈ B⊥ implies x ∧ y ∈ B⊥, since B⊥ ⊆ B⊥
A , then we have

x ∧ y ∈ B⊥
A . On the other hand, x ∧ y �= 0, x ∧ y ∈ B⊥ and B ∩ B⊥ = {0} implies

x ∧ y /∈ B. By A ⊆ B, we have x ∧ y /∈ A. Since B⊥
A ∩ (B⊥

A )⊥A = A, then we have
x ∧ y /∈ (B⊥

A )⊥A , which means that x /∈ (B⊥
A )⊥A . Therefore, B = (B⊥

A )⊥A . �

Definition 3 Let L be a BL-algebra, A and I ideals of L , I is said to be involutory
relative to A if I = (I⊥

A )⊥A . If every ideal of L is involutory relative to A, then L
is called an involutory BL-algebra relative to A. If A = {0}, we will simply call I
to be an involutory ideal, i.e., I is an involutory ideal if I = I⊥⊥. If every ideal of
L is involutory, then L is called an involutory BL-algebra. The set of all involutory
ideals relative to A of L is denoted by SA(L). The set of all involutory ideals of L is
denoted by S(L).

Example 1 Let L = {0, a, b, 1} be a set, where 0 ≤ a, b ≤ 1. The Cayley tables are
as follows.

� 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

Then (L ,∧,∨,�,→, 0, 1) is a BL-algebra. It is easy to check that I0 = {0},
Ia = {0, a}, Ib = {0, b}, L are all ideals of L .
(i) I⊥

0 = L , (I0)⊥Ia = L , (I0)⊥Ib = L , (I0)⊥L = L .
I⊥
a = Ib, (Ia)⊥Ia = L , (Ia)⊥Ib = Ib, (Ia)⊥L = L .
I⊥
b = Ia , (Ib)⊥Ia = Ia , (Ib)⊥Ib = L , (Ib)⊥L = L .
L⊥ = I0, L⊥

Ia
= Ia , L⊥

Ib
= Ib, L⊥

L = L .
(ii) I⊥⊥

0 = {0} = I0, so I0 is an involutory ideal.
I⊥⊥
a = I⊥

b = Ia , so Ia is an involutory ideal.
I⊥⊥
b = I⊥

a = Ib, so Ib is an involutory ideal.
L⊥⊥ = I⊥

0 = L , so L is an involutory ideal.
Therefore, L is an involutory BL-algebra.

(iii) ((I0)⊥Ia )
⊥
Ia

= L⊥
Ia

= Ia , so I0 is not involutory relative to Ia .
((Ia)⊥Ia )

⊥
Ia

= L⊥
Ia

= Ia , so Ia is involutory relative to Ia .
((Ib)⊥Ia )

⊥
Ia

= (Ia)⊥Ia = L , so Ia is not involutory relative to Ia .
(L⊥

Ia
)⊥Ia = (Ia)⊥Ia = L , so L is involutory relative to Ia .

Similarly, we can check that Ib and L are involutory relative to Ib, I0 and Ia are
not involutory relative to Ia .

((I0)⊥L )⊥L = ((Ia)⊥L )⊥L = ((Ib)⊥L )⊥L = (L⊥
L )⊥L = L , so L is involutory relative to L .

I0, Ia , Ib are not involutory relative to L .



456 Y.-X. Zou et al.

Proposition 9 Let L be a BL-algebra and A be an ideal of L. Then SA(L) = {B⊥
A |

B ∈ I (L), A ⊆ B}.
Proof Let I ∈ SA(L), then we have I = (I⊥

A )⊥A . Considering B = I⊥
A , then B ∈

I (L) and I = B⊥
A . Therefore, SA(L) ⊆ {B⊥

A | B ∈ I (L), A ⊆ B}. Conversely, since
B⊥
A = ((B⊥

A )⊥A)⊥A , then we have B⊥
A ∈ SA(L). Therefore, SA(L) = {B⊥

A | B ∈ I (L),

A ⊆ B}. �
Proposition 10 Let I be an ideal of a BL-algebra L, ∅ �= A ⊆ L such that (A] ∈
SI (L). Then (A] = (A⊥

I )⊥I .

Proof Since (A]⊥I = A⊥
I and ((A]⊥I )⊥I = (A], it follows that (A] = ((A]⊥I )⊥I =

(A⊥
I )⊥I . �

Proposition 11 Let I be an ideal of a BL-algebra L. If A, B ∈ SI (L), then the
following hold:
(1) I ⊆ A;
(2) A⊥

I ∩ A = I ;
(3) A ∩ B ⊆ I implies B ⊆ A⊥

I ;
(4) I, L ∈ SI (L).

Proof (1) By Proposition4(1), we have I ⊆ A⊥
I , so I ⊆ (A⊥

I )⊥I = A.
(2) By Proposition6(4), it is clear.
(3) By Proposition5(2), it is clear.
(4) By Proposition6(8) and (9), it is clear. �
The above Proposition shows that I and L are the least and the largest elements

in the SI (L) with respect to the set-theoretic inclusion, respectively.

Proposition 12 Let I be an ideal of a BL-algebra L, and {Aλ | λ ∈ Λ} ⊆ SI (L);
where Λ �= ∅. Then ∩λ∈ΛAλ ∈ SI (L). Hence ∩λ∈ΛAλ is the infimum of the set
{Aλ | λ ∈ Λ} in SI (L) with respect to the set-theoretic inclusion.

Proof By Proposition3(3), we have ∩λ∈ΛAλ = ∩λ∈Λ((Aλ)
⊥
I )⊥I = (∪λ∈Λ(Aλ)

⊥
I )⊥I ,

then it follows that ((∩λ∈ΛAλ)
⊥
I )⊥I = ((((∪λ∈Λ(Aλ)

⊥
I )⊥I )⊥I )⊥I = (∪λ∈Λ(Aλ)

⊥
I )⊥I =

∩λ∈ΛAλ. Therefore, ∩λ∈ΛAλ ∈ SI (L). �
Let I be an ideal of a BL-algebra L , for any nonempty subsets Aλ(λ ∈ Λ �= ∅) of

L , define �λ∈ΛAλ := ((∪λ∈ΛAλ)
⊥
I )⊥I . Then by Proposition3(3), we have �λ∈ΛAλ =

(∩λ∈Λ(Aλ)
⊥
I )⊥I .

Proposition 13 Let I be an ideal of a BL-algebra L, and {Aλ | λ ∈ Λ} ⊆ SI (L);
where Λ �= ∅. Then ((∪λ∈ΛAλ)

⊥
I )⊥I ∈ SI (L) and �λ∈ΛAλ := ((∪λ∈ΛAλ)

⊥
I )⊥I is the

supremum of the set {Aλ | λ ∈ Λ} in SI (L)with respect to the set-theoretic inclusion.

Proof Clearly, ((∪λ∈ΛAλ)
⊥
I )⊥I ∈ SI (L). Since Aλ ⊆ ∪λ∈ΛAλ ⊆ ((∪λ∈ΛAλ)

⊥
I )⊥I for

all λ ∈ Λ, that is, ((∪λ∈ΛAλ)
⊥
I )⊥I is an upper bound of the set {Aλ | λ ∈ Λ}. Now

we take any A ∈ SI (L) with Aλ ⊆ A for all λ ∈ Λ. Then A⊥
I ⊆ (Aλ)

⊥
I , and so

A⊥
I ⊆ ∩λ∈Λ(Aλ)

⊥
I . So it follows that ((∪λ∈ΛAλ)

⊥
I )⊥I = (∩λ∈Λ(Aλ)

⊥
I )⊥I ⊆ (A⊥

I )⊥I =
A. Therefore, �λ∈ΛAλ := ((∪λ∈ΛAλ)

⊥
I )⊥I is the supremum of the set {Aλ | λ ∈ Λ}

in SI (L) with respect to the set-theoretic inclusion. �
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Theorem 1 Let I be an ideal of a BL-algebra L, then (SI (L),∩,�, I, L) is a com-
plete Boolean lattice, in which I is the least element and L is the largest element,
respectively.

Proof By Propositions12 and 13, we have that (SI (L),∩,�, I, L) is a complete lat-
tice. And by Proposition11, we know that I and L are the least and the largest
elements in the SI (L), respectively. For any A ∈ SI (L), by Proposition11(2),
we have A⊥

I ∩ A = I , A � A⊥
I = ((A ∪ A⊥

I )⊥I )⊥I = (A⊥
I ∩ A)⊥I = I⊥

I = L , which
implies that the lattice (SI (L),∩,�, I, L) is a complemented lattice.

In what follows, we prove the distributive law. For any A, B,C ∈ SI (L), denote
D = (A ∩ B) � (A ∩ C), then A ∩ B ⊆ D and A ∩ C ⊆ D, it follows that B ∩
(A ∩ D⊥

I ) = I and C ∩ (A ∩ D⊥
I ) = I , which implies that B ⊆ (A ∩ D⊥

I )⊥I and
C ⊆ (A ∩ D⊥

I )⊥I . Hence B � C ⊆ (A ∩ D⊥
I )⊥I , so (B � C) ∩ A ∩ D⊥

I = A and X ∩
(B � C) ⊆ (D⊥

I )⊥I = D = (A ∩ B) � (A ∩ C). The converse inclusion is clear. So
the lattice (SI (L),∩,�, I, L) is distributive, moreover, (SI (L),∩,�, I, L) is a
Boolean lattice. �

Corollary 1 Let L beaBL-algebra. Then (S(L),∩,�, {1}, L) is a completeBoolean
lattice, in which {0} is the least element and L is the largest element, respectively.

Theorem 2 Let I be an ideal of a BL-algebra L, for any A, B ∈ SI (L), define

A ≤ B i f and only i f A ⊆ B;
A → B = B � A⊥

I ∈ SI (L);
A � B = A ∩ B ∈ SI (L).

Then (SI (L),∩,�,�,→, I, L) is a BL-algebra; where I is the least element and L
is the largest element, respectively.

Proof (BL1): By Theorem1, we have known that (SI (L),∩,�, I, L) is a lattice
with the least element I and the largest element L , where the order relation is the
set-theoretic inclusion.

(BL2): Clearly.
(BL3): Let A, B,C ∈ SI (L). If A ≤ B → C , then A ⊆ C � B⊥

I , and
A � B = A ∩ B ⊆ C � B⊥

I ∩ B = (C ∩ B) � (B⊥
I ∩ B) = (C ∩ B) � I = C ∩ B

⊆ C . Therefore, A ≤ B → C implies A � B ≤ C . Conversely, if A � B ≤ C ,
then A = A ∩ (B � B⊥

I ) = (A ∩ B) � (A ∩ B⊥
I ) ⊆ C � B⊥

I = B → C . Therefore,
A � B ≤ C implies A ≤ B → C .

(BL4): Let A, B ∈ SI (L). A � (A → C) = A ∩ (B � A⊥
I ) = (A ∩ B) � (A ∩

A⊥
I ) = (A ∩ B) � I = A ∩ B.
(BL5): Let A, B ∈ SI (L). Then (A → B) � (B → A) = (B � A⊥

I ) �
(A � B⊥

I ) = (A � A⊥
I ) � (B � B⊥

I ) = L � L = L .
Therefore, (SI (L),∩,�,�,→, I, L) is a BL-algebra. �
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Corollary 2 Let L be a BL-algebra. For any A, B ∈ S(L), define

A ≤ B i f and only i f A ⊆ B;
A → B = B � A⊥ ∈ S(L);
A � B = A ∩ B ∈ S(L).

Then (S(L),∩,�,�,→, I, L) is a BL-algebra where {0} is the least element and L
is the largest element, respectively.

Proposition 14 Let L be a BL-algebra, I an ideal and P be a prime ideal of L with
I ⊆ P. Then the following hold:
(1) for any nonempty subset A of L with A � P, we have A⊥

I ⊆ P;
(2) x⊥

I ⊆ P, for all x /∈ P.

Proof (1) Since A � P , there exists a ∈ A but a /∈ P . For any x ∈ A⊥
I , then we have

x ∧ a ∈ I ⊆ P . Since P is prime, it follows that x ∈ P . Therefore, A⊥
I ⊆ P .

(2) This is a special case of (1). �

Corollary 3 Let P be a prime ideal of a BL-algebra L. Then the following hold:
(1) for any nonempty subset A of L with A � P, we have A⊥

P = P;
(2) x⊥

P = P, for all x /∈ P.

Proof Since P ⊆ A⊥
P , it is clear by taking P as I in Proposition14. �

Proposition 15 Let P be an ideal of a BL-algebra L. Then P is prime if and only
if for any nonempty subset A of L with A⊥

P �= L, A⊥
P = P.

Proof Let P be a prime ideal of L , A a nonempty subset of L such that A⊥
P �= L .

Then by Proposition4(2), we have A � P , and by Corollary3, we have A⊥
P = P .

Conversely, let A be a nonempty subset of L with A⊥
P �= L , then A⊥

P = P . Suppose
that a ∧ b ∈ P and b /∈ P , since b ∧ b = b /∈ P , we have b /∈ b⊥

P , it follows that
b⊥
P �= L , which implies that b⊥

P = P . Moreover, since a ∧ b ∈ P , we have a ∈ b⊥
P =

P . Therefore, P is a prime ideal. �

Proposition 16 Let P be an ideal of a BL-algebra L. Then P is prime if and only
if x⊥

P ⊆ P, for all x /∈ P.

Proof Let P is prime, then by Corollary3, we have x⊥
P ⊆ P , for all x /∈ P . Con-

versely, suppose that a ∧ b ∈ P and b /∈ P , since b ∧ b = b /∈ P , we have b /∈ b⊥
P ,

it follows that b⊥
P �= L , which implies that b⊥

P = P . Since a ∧ b ∈ P , we have
a ∈ b⊥

P = P . Therefore, P is a prime ideal. �

For an ideal I and a prime ideal P of L , denote IP := {x ∈ L | x⊥
I � P}. If

I = {0}, then {0}P = {x ∈ L | x⊥
� P}, we simply write 0P instead of {0}P .
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Proposition 17 Let I be an ideal of a BL-algebra L, and P, Q be two prime ideals
with I ⊆ P, Q. Then the following hold:
(1) if P ⊆ Q, then IQ ⊆ IP ;
(2) I ⊆ IP ;
(3) x ∈ IP if and only if there exists a /∈ P such that x ∈ a⊥

I ;
(4) IP ⊆ P;
(5) IP is an ideal of L.

Proof (1) Let x ∈ IQ , we have x⊥
I � Q, since P ⊆ Q, it follows that x⊥

I � P , i.e.,
x ∈ IP . Therefore, IQ ⊆ IP .

(2) For any x ∈ I , we have x⊥
I = L � P , so x ∈ IP , i.e., I ⊆ IP .

(3) From x ∈ IP ,wehave x⊥
I � P , i.e., there exista ∈ x⊥

I buta /∈ P , soa ∧ x ∈ I ,
that is x ∈ a⊥

I . Conversely, if there is a /∈ P such that x ∈ a⊥
I , then a ∧ x ∈ I , it

follows that a ∈ x⊥
I and a /∈ P , so x⊥

I � P , which means that x ∈ IP .
(4) Let x ∈ IP , by (3), there is a /∈ P such that x ∧ a ∈ I . Since P is prime, we

have x ∈ P .
(5) Since 0⊥

I = L � P , we have 0 ∈ IP . If a ∈ IP and b ≤ a, then a⊥
I � P

and a⊥
I ⊆ b⊥

I , which implies that b⊥
I � P , i.e., b ∈ IP . If a ∈ IP and b ∈ IP , then

a⊥
I � P and b⊥

I � P , so there exist x, y ∈ L such that x ∈ a⊥
I , but x /∈ P , and

y ∈ b⊥
I , but y /∈ P . Since P is prime, we have x ∧ y /∈ P . (x ∧ y) ∧ (a � b) ≤

(x ∧ y ∧ a) � (x ∧ y ∧ b) ∈ I , which implies that x ∧ y ∈ (a � b)⊥I , but we have
already known that x ∧ y /∈ P , so (a � b)⊥I � P , i.e., a � b ∈ IP . Therefore, IP is an
ideal of L . �

Proposition 18 Let L be a BL-algebra, I an ideal of L and A �= ∅ ⊆ L. Then
A⊥
I = ∩{P is a prime ideal of L | F ⊆ P and A � P}.

Proof Denote T :=∩{P is a prime ideal a of L | F ⊆ P and A � P}. Let x ∈ A⊥
I ,

for any P ∈ T , we have x ∧ A ⊆ I ⊆ P , it follows that x ∈ A⊥
P = P by Corol-

lary3, i.e., x ∈ P , which implies that A⊥
I ⊆ T . On the other hand, let x ∈ T , then

for any prime ideal P with I ⊆ P and A � P}, we have x ∈ P = A⊥
P . And since

I ⊆ P , then P = A⊥
P ⊆ A⊥

I . Thus x ∈ A⊥
I , which implies that T ⊆ A⊥

I . Therefore,
A⊥
I = T . �

Let I be an ideal of a BL-algebra L . Define x ∼I y if and only if x̄ � y ∈ I and
ȳ � x ∈ I , for any x, y ∈ L . Then we have that ∼ is a congruence on L . The set
of all congruence classes is defined by L/I , i.e., L/I = {[x] | x ∈ L}, where [x] =
{y ∈ L | x ∼I y}. Define [x] � [y] = [x � y]; [x] → [y] = [x → y]; [x] ∧ [y] =
[x ∧ y]; [x] ∨ [y] = [x ∨ y]. Then in [10] it has been proved that (L/I,∧,∨,�,

→, [0], [1]) is an MV-algebra and [0] = I .

Proposition 19 Let P be an ideal of a BL-algebra L. Then P is prime if and only
if [x] ∧ [y] = [0] implies [x] = [0] or [y] = [0] in L/P.

Proof Let P be a prime ideal and [x] ∧ [y] = [0], then we have [x ∧ y] = [0] = P ,
it follows that x ∧ y ∈ P . Since P is prime, then x ∈ P or y ∈ P , which implies that
[x] = [0] or [y] = [0]. Conversely, suppose that x ∧ y ∈ P , then we have [x ∧ y] =
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P = [0], it follows that either [x] = [0] or [y] = [0]. Hence x ∈ P or y ∈ P , which
means that P is prime. �

Proposition 20 Let I be an ideal of a BL-algebra L and A be a nonempty subset of
L. Then the following hold:
(1) (A/I )⊥ = A⊥

I /I ;
(2) [x]⊥ = x⊥

I /I ;
(3) If I is a prime ideal and [x] �= I , then [x]⊥ = I ;
(4) (A/I )⊥⊥ = (A⊥

I )⊥I /I .

Proof (1) (A/I )⊥ = {[y] ∈ L/I | [x] ∧ [y] = [0], for all x ∈ A}= {[y] ∈ L/I |
[x ∧ y] = [0], for all x ∈ A}= {[y] ∈ L/I | x ∧ y ∈ I, for all x ∈ A}= {[y] ∈ L/I |
y ∈ A⊥

I }= A⊥
I /I .

(2) This is a special case of (1).
(3) If I is a prime ideal of L and [x] �= I , then x /∈ I , by Corollary3, we have

x⊥
I = I . Therefore, by (2) we have [x]⊥ = I .
(4) (A/I )⊥⊥ = (A⊥

I /I )⊥I /I = (A⊥
I )⊥I /I . �

Corollary 4 Let I , J be two ideals of a BL-algebra L. If J is an involutory ideal
relative to I , then J/I is an involutory ideal of L/I .

Proof It is clear by Proposition20(4). �
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On the Equivalence of Convergence of Fuzzy
Number Series with Respect to Different
Metrics

Hong-Mei Wang and Tai-He Fan

Abstract In this paper, we discuss the equivalence of convergence of fuzzy number
series under different metrics. It is proved that the convergence of a series of fuzzy
numbers with respect to most of the metrics can be converted into the convergence
of the corresponding remainder sequence, in the case of convergence the limit of
the latter must be 0. Also, the levelwise convergence of a series of fuzzy numbers is
equivalent to the convergence of its remainder. It is proved that the convergence of
a series of fuzzy numbers with respect to the sendograph metric D, the supremum
metric d∞ and the convergence of series of support sets with Hausdorff metric are
equivalent to each other.

Keywords Series of fuzzy numbers · Supremum metric · Sendograph metric ·
Endograph metric · Convergence

1 Introduction

Fuzzy number is the basic concept of fuzzy mathematics. One of the main aspects of
fuzzy number theory is the study of metrics for fuzzy numbers. The most commonly
used metrics for fuzzy numbers are the supremummetric d∞, the sendograph metric,
the endograph metric, and the dp metric and so on.

Convergence of series is an important topic in classical real analysis. It is an
effective way to study known functions and plays an important role in approximate
calculation.

Since fuzzy number series is a generalization of the ordinary series, so the con-
vergence of series of fuzzy numbers is a basic problem in fuzzy set theory. In recent
years, much study has been made on metrics on fuzzy numbers. In this paper, we
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study the convergence of fuzzy number series and the relations of convergence of
fuzzy number series with respect to different metrics.

2 Preliminaries

Definition 1 ([1]) Let X be a set, a mapping u : X → [0, 1] is called a fuzzy set on
X , uα = {x : u(x) ≥ α} is called the α−cut of u, where α ∈ (0, 1].
Definition 2 A fuzzy set u on the real line R is called a fuzzy number if the following
conditions are satisfied:
(1) u is normal, i.e., u(x0) = 1 for some x0 ∈ R;
(2) u is fuzzy convex, i.e., u(r x + (1 − r)y) ≥ min{u(x), u(y)} for all x, y ∈ R and
r ∈ I ;
(3) u is upper semicontinuous, i.e., uα is a closed set, uα = {x : u(x) ≥ α}, α ∈
(0, 1];
(4) The topological support of u is compact: u0 = cl{x |x ∈ R, u(x) > 0} is compact.

Let E1 denote the set of all fuzzy numbers. For u ∈ E1, each α ∈ I , let uα =
[uL(α), uR(α)].
Definition 3 Let u ∈ E1, the family of closed intervals {{|λ| : λ ∈ uα} : α ∈ [0, 1]}
determine a unique fuzzy number, denoted by |u|, which is called the absolute value
of u.

Definition 4 The sum and difference of two fuzzy sets u, v on R are defined by the
Zadeh’s extension principle as follows:

(u + v)(x) = sup{min{u(a), v(b)} : x = a + b}

(u − v)(x) = sup{min{u(a), v(b)} : x = a − b}

It should be noted that the addition and subtraction of fuzzy numbers are not
inverse to each other, this is inconvenient in practice. Therefore, in this paper, we
use the Hukuhara difference (H difference for short) as the subtraction operation for
fuzzy numbers.

Definition 5 ([9]) Let u, v ∈ E1, if there exists a fuzzy numberw, such thatw + v =
u, we say that the H difference of u, v exists and w is called the H difference of u, v,
simply denoted by u −h v.

Lemma 1 ([9]) If u, v ∈ E1,λ ∈ R, then
(1) u −h v exists if and only if uL(α) − vL(α) ≤ uR(α) − vR(α) and [uL(α) −
vL(α), uR(α) − vR(α)] ⊆ [uL(β) − vL(β), uR(β) − vR(β)], 0 ≤ β ≤ α ≤ 1;
(2) If u −h v exists, then (u −h v)(α) = u(α) − v(α),α ∈ [0, 1].
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Definition 6 ([1]) Let (X, d) be a metric space, A, B are two nonempty compact
sets in X , we call H(A, B) = max{d∗

H (A, B), d∗
H (B, A)} the Hausdorff distance

between A and B, where d∗
H (A, B) = sup

a∈A
inf
b∈B d(a, b).

In the following we give definition and some basic properties of the supremum
metric for fuzzy numbers:

Definition 7 ([2]) For u, v ∈ E1, the supremum metric of u and v is defined as
follows:

d∞(u, v) = sup
α∈(0,1]

H(uα, vα)

It is well known that (E1, d∞) is a complete but not separable metric space.

Definition 8 ([8]) For u ∈ E1, Let

send(u) = {(x, y)|x ∈ u0, 0 ≤ y ≤ u(x)}

end(u) = {(x, y)|x ∈ R, 0 ≤ y ≤ u(x)}

send(u) and end(u) are called the sendograph and the endograph of u respectively.
For u, v ∈ E1

D(u, v) = H(send(u), send(v))

D′(u, v) = H(end(u), end(v))

dp = (

∫ 1

0
H(uα, vα)pdα)1/p, (1 ≤ p < +∞)

are three types of metrics on E1, called the sendograph metric, the endograph metric
and the dp metrics respectively.

Lemma 2 ([2]) From the properties of Hausdorff metric, we have

D(u + w, v + w′) ≤ D(u, v) + D(w,w′), u, v, w,w′ ∈ E1,

D(u + w, v + w) ≤ D(u, v), u, v, w ∈ E1.

(E1, D) is not a complete metric space.

Lemma 3 ([8]) For u, v, w ∈ E1, if ρ = D(u, v) > 0 and H(w0, w1) ∈ Am, then

D(u + w, v + w) ≤ D(u, v) ≤ mD(u + w, v + w)
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Am =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{0}, m = 1
(0, 1

2 ]ρ, m = 2

( 12 ,
2+√

3
3 ]ρ, m = 3

(
∑m−2

i=0

√
(m−i−2)(m+i−2)

m−1 ,
∑m−1

i=0

√
(m−i−1)(m+i−1)

m ]ρ, m > 3

(As Ai ∩ A j = ∅,∪∞
m=1 = [0,∞), when i �= j , then for eachw, there exists a unique

m such that H(w0, w1) ∈ Am.)

Lemma 4 ([2]) For c ∈ R\{0}, u, v, w,w′ ∈ E1, 1 ≤ p ≤ ∞
(1) dp(cu, cv) = |c| dp(u, v);
(2) dp(u + w, v + w) = dp(u, v);
(3) dp(u + w, v + w′) ≤ dp(u, v) + dp(w,w′).

It’s easy to show that the supremummetric d∞ also has the above three properties.
In [2] completeness and relations between convergences with respect to different

metrics on E1 are studied; In [3, 6] detailed characterizations on relations and con-
vergences between different metrics are listed; In [2] compactness of fuzzy number
space with respect to sendograph metric and supremum metric are given.

Remark 1 ([4]) It’s obvious from the definition that a fuzzy number u is equi-right-
continuous at α = 0. u is equi-right-continuous at α ∈ (0, 1] if and only if the map-
ping α → uα is right-continuous at α. u is equi-left-continuous at α ∈ (0, 1].

Next, we give definition on the convergence of fuzzy number sequence and related
properties:

Definition 9 ([10]) Let un(n = 1, 2, . . .), u ∈ E1, d a metric on E1,
(1) We say that a fuzzy number sequence {un} converges to u with respect to d if

d(un, u) → 0(n → ∞), denoted by un
d−→ u;

(2) We say that a fuzzy number sequence {un} converges levelwise to u if

H((un)α, uα) → 0(n → ∞), for all α ∈ (0, 1], denoted by un
H−→ u.

From the definition, we have

Proposition 1 (1) If un
d∞−→ u, then un

H−→ u;

(2) un
d∞−→ u ⇔ {(un)L(α)} converge uniformly to uL(α) and {(un)R(α)} converge

uniformly to uR(α), for all α ∈ I .

Proposition 2 For an, a ∈ R, un, vn, u, v ∈ E1

(1) If un
d∞−→ u, vn

d∞−→ v, then un + vn
d∞−→ u + v;

(2) If an → a, un
d∞−→ u, then anun

d∞−→ au. where uL(α), uR(α) are the left and
right endpoints of uα respectively, i.e., uα = [uL(α), uR(α)].
Proof (1) and (2) can be easily obtained by the definition of the supremum metric
d∞ and the Hausdorff metric H. �
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Lemma 5 ([7]) Suppose that un(n = 1, 2, 3, . . .), u ∈ E1. Then un
D−→ u if and

only if
(1) H((un)0, u0) → 0(n → ∞);
(2) For all ε > 0, there exists a natural number N (ε) such that for all n > N (ε):

(i)For all x ∈ R, there exists {xn} ∈ R such that |xn − x | < ε, un(x) < u(xn) + ε;
(ii) For all x ∈ u0, there exists {xn} ∈ (un)0 such that |xn − x | < ε, u(x) <

un(xn) + ε.

Definition 10 ([5]) Suppose that un ∈ E1, (n = 1, 2, 3, . . .). The expression

∞∑

n=1

un = u1 + u2 + · · · + un + · · · (1)

is called a fuzzy number series, and un the general term of the series.

According to the Zadeh’s extension principle, the membership function of the
fuzzy number series (1) is as follows:

(

∞∑

i=1

ui )(x) = sup{inf{ui (xi )}i∈N , x ∈
∞∑

i=1

xi }.

It should be noted that the membership function of a fuzzy number series may
not be the membership function of any fuzzy number.

Let

S1 = u1, S2 = u1 + u2, S3 = u1 + u2 + u3, . . .

Sn = u1 + u2 + · · · + un =
n∑

k=1

uk, . . .

Then we get a fuzzy number sequence Sn = ∑n
k=1 uk(n = 1, 2, 3, . . .) for a fuzzy

number series
∑∞

n=1 un , Sn is called the partial sum of
∑∞

n=1 un , and {Sn} is the partial
sum sequence of the fuzzy number series.

On the contrary, for a fuzzy number sequence {Sn}, there may not exist fuzzy
number series

∑∞
n=1 un such that {Sn} is the partial sum sequence of

∑∞
n=1 un . The

reason is that the H difference between two fuzzy numbers may not exist [1] (See
Example1 below).

By the definition of convergence of sequence inmetric spaces, we give the concept
of convergence of fuzzy number series with respect to metrics as follows:

Definition 11 Let d be a metric on E1, a fuzzy number series
∑∞

n=1 un is said to
be convergent with respect to metric d if the partial sum sequence {Sn} of the fuzzy
number series converges to some S ∈ E1 with respect to metric d, i.e.

Sn
d−→ S
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denoted by

∞∑

n=1

un = S(d)

S is also called the sum of the fuzzy number series. Fuzzy numbers series
∑∞

n=1 un
is said to be divergent if the partial sum sequence {Sn} of fuzzy numbers series is
divergent, i.e., if {Sn} does not converge in E1.

The sequence

rn = S −h Sn =
∞∑

k=n+1

uk = un+1 + un+2 + un+3 + · · ·

is called the remainder of fuzzy number series.

Thus, the study on the convergence of fuzzy number series is transformed into
the study of convergence of the partial sum sequence, which enables us to apply the
knowledge about fuzzy number sequence to the study of fuzzy number series.

3 Main Results

In this section, we first study the convergence of fuzzy number series with respect to
different metrics. Then we study the fuzzy number series by using the remainder of
the series.

Proposition 3 Let {un}, {vn} ⊂ E1,λ ∈ R+:
(1) If the fuzzy number series

∑∞
n=1 un is convergent with respect to the supremm

metric d∞, then un
d∞−→ 0;

(2) If
∑∞

n=1 un and
∑∞

n=1 vn are convergent with respect to the supreme metric d∞,
then

∑∞
n=1(un + vn) = ∑∞

n=1 un + ∑∞
n=1 vn;

(3) If
∑∞

n=1 un is convergent with respect to the supremm metric d∞, then
∑∞

n=1
λun = λ

∑∞
n=1 un.

Proof (1) If
∑∞

n=1 un is convergent with respect to the supremm metric d∞, i.e., for
each ε > 0, there exists N , such that m > n > N , d∞(Sm, Sn) < ε, let m = n + 1,

then we have d∞(un+1, 0) < ε. Thus un
d∞−→ 0.

(2) and (3) are obvious. �

Example 1 Let

S(x) =
{
1, x = 0
0, x �= 0
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Sn(x) =
{

(1 − x)n, 0 ≤ x ≤ 1
0, x �= 0

then
Sα = {0}, (Sn)α = [0, 1 − n

√
α], for all α ∈ (0, 1]

and
(Sn)L(α) − (Sn−1)L(α) = 0

(Sn)R(α) − (Sn−1)R(α) = 1 − n
√

α − 1 + n−1
√

α = n
√

α − n−1
√

α ≤ 0

From Lemma1(1), we know that Sn −h Sn−1 does not exist. Thus the fuzzy number
sequence {Sn} is not the partial sum sequence of any fuzzy number series. Which
shows that fuzzy number sequence and fuzzy number series can not be converted to
each other.

Now, we discuss the problem whether the convergence of a fuzzy number series
can be transformed into the convergence of its remainder, which enables us apply
the knowledge about the limit of fuzzy number sequence to fuzzy number series.

Proposition 4 (1) The convergence of a fuzzy number series
∑∞

n=1 un is equivalent
to the fact that its remainder converges to 0 with respect to the supremum metric.

i.e., rn
d∞−→ 0(n → ∞);

(2) The convergence of a fuzzy number series
∑∞

n=1 un is equivalent to the fact that

its remainder converges to 0 with respect to dp metrics. i.e., rn
dp−→ 0(n → ∞).

Proof (1) Obviously, d∞(u + w, v + w) = d∞(u, v). Since

S = Sn + rn, Sn = Sn + 0,

we have
d∞(S, Sn) = d∞(rn, 0).

We conclude that the partial sum sequence of fuzzy number series is convergent
with respect to supremum metric d∞ if and only if its remainder converges to 0.

The proof of (2) is similiar to (1). �
Proposition 5 The convergence of a fuzzy number series

∑∞
n=1 un is equivalent to

the fact that its remainder converges to 0 with respect to the sendograph metric, i.e.,

rn
D−→ 0(n → ∞).

Proof From Lemma3, we have

D(S, Sn) → 0(n → ∞) ⇔ D(rn, 0) → 0(n → ∞)

Thus the partial sum sequence of the fuzzy number series converges with respect
to the sendograph metric D if and only if its remainder converges to 0. �
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Proposition 6 A fuzzy number series
∑∞

n=1 un converges levelwise if and only if

(rn)α
H−→ 0(n → ∞),α ∈ (0, 1].

Proof Since

H((rn)α, 0) = H((S −h Sn)α, 0) = H(Sα − (Sn)α, 0)

thus
(rn)α

H−→ 0 ⇔ (Sn)α
H−→ Sα

�

Example 2 That the partial sum sequence of a fuzzy number series
∑∞

n=1 un con-
verges with respect to the endograph metric D′ is not equal to the fact that its remain-
der converges to 0. The counterexample is as follows:

Let {an} be a monotone decreasing real number sequence which converges to 0.
The general term of the fuzzy number series is

un(x) =
⎧
⎨

⎩

1, x = 0
an, x ∈ (0, n]
0, otherwise

It follows that the remainder rn = ∑∞
k=n+1 uk

D′−→ 0(n → ∞). Obviously,
end(Sn) = end(

∑n
k=1 uk) is not convergent with respect to the Hausdorff metric,

thus
∑∞

n=1 un is not convergent with respect to the endograph metric D′.

Proposition 7 If the partial sum sequence of a fuzzy number series
∑∞

n=1 un con-
verges levelwise to a fuzzy number u, then max

a∈(rn)α
|a| → 0(n → ∞),α ∈ (0, 1].

Proof Obvious. �

Next, based on the existing results, we discuss the relations among different kind
of convergence of fuzzy number series with respect to different metrics.

Theorem 1 Let S, Sn, un(n = 1, 2, 3, . . .) ∈ E1, then the following conditions are
equivalent:

(1)
∑∞

n=1 un converges to S with respect to the supremum metric d∞, i.e., Sn
d∞−→

S(n → ∞);
(2) The 0 cut set sequence (Sn)0 of the partial sum Sn of the fuzzy number series
∑∞

n=1 un converges to S0 with respect to the Hausdorff metric, i.e., (Sn)0
H−→ S0

(n → ∞);

(3)
∑∞

n=1 un converges to S with respect to the sendograph metric D, i.e., Sn
D−→

S(n → ∞).
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Proof By virtue of Propositions4, 5 and 6, the convergence of a fuzzy number series
can be transformed into the convergence of its remainder to 0. Let rn be the remainder,
we need to show the following relations:

rn
d∞−→ 0(n → ∞) ⇔ (rn)0

H−→ 0(n → ∞) ⇔ rn
D−→ 0(n → ∞)

(1) ⇒ (2): Since sup
α>0

H((rn)α, 0) → 0(n → ∞), thus H((rn)α, 0) → 0(n →
∞),∀α ∈ (0, 1], i.e., for each ε > 0, there exists N > 0, such that whenever n > N ,
then H((rn)α, 0) < ε/2, for all α ∈ (0, 1].

As H is right continuous at α = 0, pick a sequence αk → 0,αk ∈ (0, 1], k = 1, 2,
3, . . ., thus H((rn)αk , (rn)0) < ε/2, for n > N . H((rn)0, 0) ≤ H((rn)αk , (rn)0) +
H((rn)αk , 0) < ε, for n > N .

We conclude that the 0-cut sequence (Sn)0 of the partial sum Sn of
∑∞

n=1 un
converges to S0 with respect to the Hausdorff metric.

(2) ⇒ (1): Since H((rn)0, 0) → 0(n → ∞), i.e., max
a∈(rn)0

|a| → 0(n → ∞).

As (rn)α ⊂ (rn)0, hence, max
a∈(rn)α

|a| → 0(n → ∞),α ∈ (0, 1]. Thus sup
α>0

H((rn)α,

0) → 0(n → ∞). This shows that (2) implies (1).
(2) ⇒ (3): Since H((rn)0, 0) → 0(n → ∞), max

a∈(rn)0
|a| → 0(n → ∞), send(rn)

= {(x,α)|(x,α) ∈ (rn)0 × I, 0 ≤ α ≤ u(x)}. Thus send(rn)
H−→ send(0)

(n → ∞).

(3) ⇒ (2), Since send(rn)
H−→ send(0)(n → ∞), fromLemma5, we have (rn)0

H−→ 0(n → ∞). This completes the proof of the theorem. �

Proposition 8 If the partial sum sequence of a fuzzy number series
∑∞

n=1 un is a
Cauchy sequence with respect to the supremum metric d∞, then its sum S is a fuzzy
number.

Proof This is simply because that (E1, d∞) is a complete metric space, thus S is a
fuzzy number by uniqueness of the limit. �

Proposition 9 If un + vn = wn, un, vn, wn(n = 1, 2, 3, . . .) ∈ E1 and
∑∞

n=1 un is
convergent with respect to the supremum metric, then

∑∞
n=1 wn is convergent if and

only if
∑∞

n=1 vn is convergent with respect to the supremum metric.

Proof Sufficiency: Since vn = wn −h un , i.e., vn is the H difference between un and
wn . Suppose that the fuzzy number series

∑∞
n=1 un converges with respect to supre-

mum metric d∞, denote the partial sum sequence of
∑∞

n=1 un,
∑∞

n=1 vn,
∑∞

n=1 wn

by Sun , S
v
n and Sw

n respectively, then Sv
n = Sw

n −h Sun .
Since d∞(Sw

n , Sw) → 0(n → ∞), d∞(Sun , S
u) → 0(n → ∞), where Su and Sw

are the sum of fuzzy numbers series
∑∞

n=1 un and
∑∞

n=1 wn respectively. Since Sv
n =

Sw
n −h Sun , S

w −h Su exists and Sw −h Su ∈ E1.
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Clearly

(Sw −h S
u)α = (Sw)α −h (Su)α, (Sw

n −h S
u
n )α = (Sw

n )α − (Sun )α

for all α ∈ (0, 1]. From the definition of Hausdorff distance, we have,

H((Sw
n )α, (Sw)α) = H((Sun )α, (Su)α) + H((Sw

n −h S
u)α, (Sw −h S

u)α)

for all α ∈ (0, 1].
Since d∞(Sw

n , Sw) → 0(n → ∞), d∞(Sun , S
u) → 0(n → ∞), we have

H((Sw
n −h Su)α, (Sw −h Su)α) → 0 holds uniformly for all α ∈ (0, 1]. Thus

d∞(Sv
n , S

w −h Su) → 0(n → ∞). Let Sv = Sw −h Su , then
∑∞

n=1 vn = Sv .
Necessity: This is a part of Proposition2. �

Lemma 6 If
∑∞

n=1 an is an interval numbers series, then
∑∞

n=1 an is convergent
with respect to the Hausdorff metric if and only if its left and right endpoints series∑∞

n=1(an)L and
∑∞

n=1(an)R are all convergent as ordinary series.

Proof This is a direct corollary of Proposition1. �

Proposition 10 Suppose that un = an + vn, an = χ(un)1 , then vn is a unimodal fuzzy
number whose normal point is 0.Moreover, the convergence of

∑∞
n=1 un is equivalent

to the convergence of both
∑∞

n=1 an and
∑∞

n=1 vn.

Proof Sufficiency: Suppose that
∑∞

n=1 un converges with respect to the supremum
metric d∞, then

∑∞
n=1(un)1 is also convergent. i.e.,

∑∞
n=1 an is convergent. By Propo-

sition9, we have that
∑∞

n=1 vn is convergent with respect to the supremum metric
d∞.

Necessity: By Proposition9. �

Proposition 11 If the fuzzy number series
∑∞

n=1 |un| is convergent, then ∑∞
n=1 un

is convergent. The opposite, however, is not necessarily true.

Proof Suppose that the support series of
∑∞

n=1 |un| is convergent, we have, for all
ε > 0, there exists N , whenever m > n > N , we have |un+1|0 + |un+2|0 + · · · +
|um |0 < ε. By definition of the absolute value of fuzzy number, we have |(un+1)0 +
(un+2)0 + · · · + (um)0| < ε, thus the support series of

∑∞
n=1 un is convergent. This

shows that
∑∞

n=1 un is convergent.
As an ordinary convergent series may not be absolutely convergent, and fuzzy

number series is a generalization of the ordinary series, thus the inverse proposition
is not necessarily true. �
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Multicriteria Decision Making Based
on Interval-Valued Intuitionistic
Fuzzy Sets with a New Kind of Accuracy
Function

Bei Liu and Min-Xia Luo

Abstract In this paper,we propose a newaccuracy function based on interval-valued
intuitionistic fuzzy sets, then use this new accuracy function to multicriteria deci-
sion making method. By comparing the new accuracy function with other accuracy
function, some examples are given. While aggregating fuzzy information, we use
the interval-valued intuitionistic fuzzy weighted aggregation operators, and rank the
fuzzy information by the proposed accuracy function, which overcomes some diffi-
culties arising in some existing accuracy functions for determining rank of interval-
valued intuitionistic fuzzy information. Finally, the effectiveness and practicability
of the proposed method are illustrated by examples.

Keywords Interval-valued intuitionistic fuzzy sets ·Multicriteria decisionmaking ·
Ranking of interval-valued intuitionistic fuzzy numbers · Accuracy function

1 Introduction

SinceZadeh introduced fuzzy sets in [15],many newapproaches and theories treating
vagueness and uncertainty have been proposed. As a generalization of the ordinary
fuzzy set, interval-valued fuzzy set was first introduced by Zadeh [16–18]. Intu-
itionistic fuzzy set was introduced by Atanassov in [1], which is another extension
of the classical fuzzy set. Atanassov and Gargov proposed the concept of interval-
valued intuitionistic fuzzy set in [2], which is a further generalization of intuition-
istic fuzzy set. When the membership function and non-membership function of an
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interval-valued intuitionistic fuzzy set are exact numbers rather than intervals, the
interval-valued intuitionistic fuzzy set reduces to an intuitionistic fuzzy set.

Interval-valued intuitionistic fuzzy set has received more andmore attention since
its appearance [8, 9]. It is a very useful tool to dealwith uncertainty and become a pop-
ular topic in multicriteria decision making. Some researchers have established some
aggregation operators based on interval-valued intuitionistic fuzzy set. To aggre-
gate interval-valued intuitionistic fuzzy information, Xu and Chen [12] extended
arithmetic aggregation operators (see [11]). Then Xu [13] developed interval-valued
intuitionistic fuzzy weighted averaging operators and interval-valued intuitionistic
fuzzy weighted geometric aggregation operators. Aggregated interval-valued intu-
itionistic fuzzy information can be ranked by accuracy functions. Hong and Choi [4]
indicated that score function cannot discriminate some alternatives although they are
apparently different, then they proposed accuracy functions and they are extended
to interval-valued fuzzy set in [10, 11, 13]. Some other accuracy functions based on
interval-valued intuitionistic fuzzy sets are studied in [5–7, 14]. However, in some
cases, those existing accuracy functions do not rank correctly even in some com-
parable interval-valued intuitionistic fuzzy numbers, which may be troublesome for
decision maker to make choices. To solve cases like this, we propose a new accuracy
functions.

The rest of this paper is organized as follows. In Sect. 2 we review some basic
definitions of interval-valued intuitionistic fuzzy sets. In Sect. 3 we introduce a new
kind of accuracy functions and give some examples. In Sect. 4, two illustrative exam-
ples are given to demonstrate the validity of the proposed accuracy function. And
finally, conclusions are stated in Sect. 5.

2 Preliminaries

Throughout this paper, let X be the universe of discourse, and D[0, 1] the set of all
closed subinterval of the unit interval [0, 1].
Definition 1 ([2]) An interval-valued intuitionistic fuzzy set on X can be expressed
as A = {(x, [μ−

A(x),μ
+
A(x)], [ν−

A (x), ν
+
A (x)])|x ∈ X}, where [μ−

A(x),μ
+
A(x)] ∈ D

[0, 1], [ν−
A (x), ν

+
A (x)] ∈ D[0, 1] with the condition μ+

A(x) + ν+
A (x) ≤ 1 for all

x ∈ X .

For an interval-valued intuitionistic fuzzy set A based on X , the pair ([μ−
A(x),

μ+
A(x)], [ν−

A (x), ν
+
A (x)]) is called an interval-valued intuitionistic fuzzy number [13]

and is denoted by α̃ = ([a, b], [c, d]) for convenience.
In the following, we give some operations and relations on interval-valued intu-

itionistic fuzzy sets.

Definition 2 ([2]) Let X be a universe of discourse. For two interval-valued intu-
itionistic fuzzy sets A = {(x, [μ−

A(x),μ
+
A(x)], [ν−

A (x), ν
+
A (x)])|x ∈ X}, B = {(x,

[μ−
B (x),μ

+
B (x)], [ν−

B (x), ν
+
B (x)])|x ∈ X}, the following relations and operations can

be defined:
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(1) A ⊆ B iffμ−
A(x) ≤ μ−

B (x),μ
+
A(x) ≤ μ+

B (x), ν
−
A (x) ≥ ν−

B (x), and ν+
A (x) ≥ ν+

B (x)
for each x ∈ X ,
(2) A = B iff A ⊆ B and B ⊆ A,
(3) Ac = {[ν−

A (x), ν
+
A (x)], [μ−

A(x),μ
+
A(x)]|x ∈ X}.

Now, we introduce two weighted aggregation operators related to interval-valued
intuitionistic fuzzy sets. We denoted by IVIFS(X) the set of all interval-valued intu-
itionistic fuzzy sets in X.

Definition 3 ([13]) Let A j ∈ IVIFS(X)( j = 1, 2, . . . , n).Weighted arithmetic aver-
age operators are defined as follows:

Fω(A1, A2, . . . , An)

=
n∑

j=1

ω j A j

=
⎛

⎝

⎡

⎣1 −
n∏

j=1

(1 − u−
A j
(x))ω j , 1 −

n∏

j=1

(1 − u+
A j
(x))ω j

⎤

⎦ , (1)

⎡

⎣
n∏

j=1

(v−
A j
(x))ω j ,

n∏

j=1

(v+
A j
(x))ω j )

⎤

⎦

⎞

⎠ .

where ω j ( j = 1, 2, . . . , n) are such that ω j ∈ [0, 1] and
n∑

j=1
ω j = 1. They are called

the weight of Fω . Especially, assume ω j = 1
n ( j = 1, 2, . . . , n), then Fω is called the

arithmetic average operator for interval-valued intuitionistic fuzzy sets.

Definition 4 ([13]) Let A j ∈ IVIFS(X)( j = 1, 2, . . . , n). The weighted geometric
average operators is defined by

Gω(A1, A2, . . . , An)

=
n∑

j=1

A
ω j

j

=
⎛

⎝

⎡

⎣
n∏

j=1

(u−
A j
(x))ω j ,

n∏

j=1

(u+
A j
(x))ω j )

⎤

⎦ , (2)

⎡

⎣1 −
n∏

j=1

(1 − v−
A j
(x))ω j , 1 −

n∏

j=1

(1 − v+
A j
(x))ω j )

⎤

⎦

⎞

⎠ .
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where ω j is the weight of A j ( j = 1, 2, . . . , n), ω j ∈ [0, 1] and
n∑

j=1
ω j = 1. Espe-

cially, assume ω j = 1
n ( j = 1, 2, . . . , n), then Gω is called the geometric average

operator for interval-valued intuitionistic fuzzy sets.

Next, we review the concepts of score functions and accuracy functions proposed
for ranking interval-valued intuitionistic fuzzy numbers (see [5–7, 13, 14]).

Definition 5 ([13]) Let α̃ = ([a, b], [c, d]) be an interval-valued intuitionistic fuzzy
number, then the score the value of it is defined as:

S(α̃) = a + b − c − d

2
(3)

while the accuracy value is defined as:

H(α̃) = a + b + c + d

2
(4)

Definition 6 ([14]) Let α̃ = ([a, b], [c, d]) be an interval-valued intuitionistic fuzzy
number. Novel accuracy value M(α̃) of the interval-valued intuitionistic fuzzy num-
ber is defined as follow:

M(α̃) = a − (1 − a − c) + b − (1 − b − d)

2
= a + b − 1 + c + d

2
(5)

where M(α̃) ∈ [−1, 1].
Definition 7 ([7]) Let α̃ = ([a, b], [c, d]) be an interval-valued intuitionistic fuzzy
number. An improved accuracy value K (α̃) of the interval-valued intuitionistic fuzzy
number, including hesitancy degree of IVIFSs, is defined by:

K (α̃) = a + b(1 − a − c) + b + a(1 − b − d)

2
(6)

where K (α̃) ∈ [0, 1].
Definition 8 ([5]) Let α̃ = ([a, b], [c, d]) be an interval-valued intuitionistic fuzzy
number. A new novel accuracy value L of the interval-valued intuitionistic fuzzy
number is defined as follows:

L(α̃) = a − d(1 − b) + b − c(1 − a)

2
(7)

where L(α̃) ∈ [−1, 1].
Definition 9 ([6]) Let α̃ = ([a, b], [c, d]) be an interval-valued intuitionistic fuzzy
number, then the general accuracy value of α̃ is defined as
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LG(α̃) = a + b + δ(2 − a − b − c − d)

2
(8)

where δ ∈ [0, 1] is a parameter depending on the individual’s intention.

3 Multicriteria Decision Making Method Based
on a New Accuracy Function

3.1 Ranking by a New Accuracy Function

Definition 10 Let α̃ = ([a, b], [c, d]) be an interval-valued intuitionistic fuzzy
number. The new accuracy value of the interval-valued intuitionistic fuzzy number
is defined by:

A(α̃) = a + δ1(1 − a − c) + b + δ2(1 − b − d)

2
, (9)

where δ1, δ2 ∈ [−1, 1] is a parameter depending on the individual’s intention.

Remark 1 Let δ1 = δ2 = −1, then we have A(α̃) = a−(1−a−c)+b−(1−b−d)
2 = M(α̃).

Let δ1 = b, δ2 = a, then we have A(α̃) = a+b(1−a−c)+b+a(1−b−d)
2 = K (α̃).

Let δ1 = δ2 = δ ∈ [0, 1], then we have A(α̃) = a+b+δ(2−a−b−c−d)
2 = LG(α̃)

Accuracy function M was proposed in [14], K was provided in [7] and LG was
presented in [6], accuracy functions M , K and LG are special kinds of Definition 10.

Example 1 ([7]) Let Ã1 = ([0.2, 0.4], [0.3, 0.4]), Ã2 = ([0.1, 0.5], [0.2, 0.5]) be
interval-valued intuitionistic fuzzy numbers for two alternatives. If we want to
determine the desirable alternative according to the accuracy function K , we have
M( Ã1) = M( Ã2) = −0.05. In this case, we do not know which alternative is better.

Since A( Ã1) = 0.3 + 0.25δ1 + 0.1δ2, A( Ã2) = 0.3 + 0.35δ1. When δ1 > δ2,
A( Ã1) < A( Ã2), and when δ1 < δ2, A( Ã1) > A( Ã2). So according to the values
of δ1 and δ2, we can know which one is better.

Example 2 Let α̃1 = ([0.2, 0.6], [0.2, 0.3]), α̃2 = ([0.3, 0.5], [0, 0.4]) be interval-
valued intuitionistic fuzzy numbers for two alternatives. If we want to determine
the desirable alternative according to the accuracy function K , we have K (α̃1) =
K (α̃2) = 0.59. In this case, we do not know which alternative is better.

Since A(α̃1) = 0.4 + 0.3δ1 + 0.05δ2, A(α̃2) = 0.15 + 0.35δ1 + 0.05δ2, it’s obvi-
ous that A(α̃1) > A(α̃2). Then α̃1 is better than α̃2.

Example 3 Let α̃1 = ([0.2, 0.2], [0.2, 0.7]), α̃2 = ([0.1, 0.3], [0.4, 0.5])be interval-
valued intuitionistic fuzzy numbers for two alternatives. If we want to deter-
mine the desirable alternative according to the accuracy function LG, we have
LG(α̃1) = LG(α̃2) = 0.2 + 0.35δ. In this case, we do not know which alternative
is better.
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But if δ1 �= δ2, we have A(α̃1) = 0.2 + 0.3δ1 + 0.05δ2, A(α̃2) = 0.2 + 0.25δ1 +
0.1δ2. If δ1 > δ2, A(α̃1) > A(α̃2), and when δ1 < δ2, A(α̃1) < A(α̃2). So according
to the values of δ1 and δ2, we can know which one is better.

The following example can illustrate the effectiveness of the proposed new accu-
racy function.

Example 4 Let α̃1 = ([ 12 , 1
2 ], [ 1

16 ,
1
4 ]), α̃2 = ([ 12 , 1

2 ], [ 1
32 ,

9
32 ]) be interval-valued

intuitionistic fuzzy numbers for two alternatives. We have H(α̃1) = H(α̃2) = 21
32 ,

M(α̃1) = M(α̃2) = 5
32 , K (α̃1) = K (α̃2) = 43

64 , L(α̃1) = L(α̃2) = 27
64 , LG(α̃1) =

LG(α̃2) = 1
2 + 11

32δ. If we want to determine the desirable alternative according to
the accuracy function A, we have A(α̃1) = 1

2 + 7
32δ1 + 1

8δ2, A(α̃2) = 1
2 + 15

64δ1 +
7
64δ2. If we take δ1 �= δ2, we have A(α̃1) = 0.2 + 0.3δ1 + 0.05δ2, A(α̃2) = 0.2 +
0.25δ1 + 0.1δ2. If we take δ1 > δ2, A(α̃1) < A(α̃2), and when δ1 < δ2, A(α̃1) >

A(α̃2). So according to the values of δ1 and δ2, we can know which one is better.

Theorem 1 Let α̃1 = ([a1, b1], [c1, d1]) and α̃2 = ([a2, b2], [c2, d2]) be two
interval-valued intuitionistic fuzzy numbers for two alternatives. If α̃1 ⊆ α̃2, then
A(α̃1) ≤ A(α̃2).

Proof As we know, α̃1 ⊆ α̃2 if and only if a1 ≤ a2, b1 ≤ b2, c1 ≥ c2 and d1 ≥ d2,
then

2A(α̃1) − 2A(α̃2)

= [a1 + δ1(1 − a1 − c1) + b1 + δ2(1 − b1 − d1)] −
[a2 + δ1(1 − a2 − c2) + b2 + δ2(1 − b2 − d2)]

= (1 − δ1)(a1 − a2) + (1 − δ2)(b1 − b2) + δ1(c2 − c1) +
δ2(d2 − d1)

≤ 0. �

3.2 Multicriteria Decision Process

Mathematically speaking, the multicriteria decision making problem about m alter-
natives with n criteria can be expressed as

c1 c2 · · · cn
u1
u2
...

um

⎛

⎜
⎜
⎜
⎝

r11
r21
...

rm1

r12
r22
...

rm2

· · ·
· · ·
. . .

· · ·

r1n
r2n
...

rmn

⎞

⎟
⎟
⎠

(10)

where U = {u1, u2, . . . , um} is the set of alternatives; C = {c1, c2, . . . , cn} is the
set of criteria, and the weight of the criterion c j ( j = 1, 2, . . . , n) is ω j , ω j ∈ [0, 1]
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and
n∑

j=1
ω j = 1; ri j (i = 1, 2, . . . ,m, j = 1, 2, . . . , n) is the evaluation information

of alternatives ui under c j provided by experts. Let βi = ([ai , bi ], [ci , di ]) be the
aggregating interval-valued intuitionistic fuzzy number for ui (i = 1, 2, . . . ,m), then
βi = ([ai , bi ], [ci , di ]) = Fω(ri1, ri2, . . . , rin) or βi = ([ai , bi ], [ci , di ]) = Gω(ri1,
ri2, . . . , rin).

In summary, the decision procedure for the proposed method can be summarized
as follows:

(i) Obtain the weighted arithmetic average values using Eq. (1) or the weighted
geometric average values using Eq. (2) for ui (i = 1, 2, . . . ,m).

(ii) Compute the score value of ri j by Eq. (3) for i = 1, 2, . . . ,m, j = 1, 2, . . . , n.
Let ai be the number of ri j whose order are not changed by their score values, and we
take δ1 = max

1≤i≤m
{ ain } and δ2 = min

1≤i≤m
{ ain }. Then compute the accuracy values A(βi )

(i = 1, 2, . . . ,m) using Eq. (9).
(iii) Ranking the alternatives ui (i = 1, 2, . . . ,m) and choose the best one accord-

ing to A(βi ) (i = 1, 2, . . . ,m).

4 Multicriteria Decision Making Method Based
on the New Accuracy Function

The following are two examples of multicriteria decision making problems.

Example 5 ([3])Assumea invest panel has four possible alternatives to investmoney,
they are a car company u1, a food company u2, a computer company u3 and an arms
company u4. The investment company wants to decide a decision according to three
criteria given by the risk analysis c1, the growth analysis c2 and the environmen-
tal impact analysis c3. Using the interval-valued intuitionistic fuzzy information
provided by the decision maker under the above three criteria, the four possible
alternatives are to be evaluated and listed in Table1:

Suppose that the weights of c1, c2 and c3 are ω1 = 0.35, ω2 = 0.25 and ω3 = 0.4,
respectively.

(i)We can compute theweighted arithmetic average valueβi for ui (i = 1, 2, 3, 4)
as follows:

Table 1 Information for example 5

c1 c2 c3

u1 ([0.4, 0.5], [0.3, 0.4]) ([0.4, 0.6], [0.2, 0.4]) ([0.1, 0.3], [0.5, 0.6])
u2 ([0.6, 0.7], [0.2, 0.3]) ([0.6, 0.7], [0.2, 0.3]) ([0.4, 0.6], [0.1, 0.2])
u3 ([0.3, 0.6], [0.3, 0.4]) ([0.5, 0.6], [0.3, 0.4]) ([0.3, 0.6], [0.1, 0.3])
u4 ([0.7, 0.8], [0.1, 0.2]) ([0.6, 0.7], [0.1, 0.3]) ([0.3, 0.4], [0.1, 0.2])
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β1 = ([0.2943, 0.4996], [0.3225, 0.5030]),β2 = ([0.5025, 0.7449], [0.1515, 0.2550]),

β3 = ([0.3949, 0.5626], [0.1677, 0.3565]),β4 = ([0.5227, 0.6565], [0.1189, 0.2213]).

(ii) We obtain A(βi ) (i = 1, 2, 3, 4) as follows:

A(β1) = 0.5836, A(β2) = 0.7967, A(β3) = 0.6975, A(β4) = 0.7688.

(iii) Ranking all alternatives according to the accuracy values of A(βi ) (i =
1, 2, 3, 4): A2 > A4 > A3 > A1.

Thus the alternative u2 is the most desirable alternative according to weighted
arithmetic average operator.

Next we use the weighted geometric average operator. By calculating, we can
obtain that A2 > A4 > A3 > A1.

Thus the alternative u2 is the most desirable alternative according to weighted
geometric average operator. In this example, our approach produces the same ranking
as reference ([7]).

Example 6 Given that there are four possible alternatives for an enterprise to select:
a car company (u1), a clothes company (u2), a software company (u3) and a domestic
company (u4). The factors that must be considered before gathering evaluation infor-
mation conclude risk (c1), benefit (c2), social and political response (c3). Once the
possible alternatives and corresponding factors are determined, the concrete evalua-
tion information can be estimated by experts who are commissioned by the investor.
Finally, the assessment report about this problem is listed in Table2.

Suppose that the weights of c1, c2 and c3 are equal, i.e. ω1 = ω2 = ω3 = 1
3 .

(i)We can compute theweighted arithmetic average valueβi for ui (i = 1, 2, 3, 4)
as follows:

β1 = ([0.2440, 0.6417], [0.0000, 0.2282]),β2 = ([0.3803, 0.5632], [0.0000, 0.3497]),

β3 = ([0.2000, 0.6000], [0.2000, 0.3000]),β4 = ([0.3000, 0.5000], [0.0000, 0.4000]).

(ii) Obtain K (βi ) (i = 1, 2, 3, 4) as follows:

K (β1) = 0.7012, K (β2) = 0.6628, K (β3) = 0.5900, K (β4) = 0.5900.

Table 2 Information for example 6

c1 c2 c3

u1 ([0.20, 0.5000], [0.36, 0.5000]) ([0.10, 0.8000], [0.00, 0.1000]) ([0.40, 0.5400], [0.20, 0.2378])
u2 ([0.30, 0.7500], [0.00, 0.2400]) ([0.15, 0.5000], [0.00, 0.3000]) ([0.60, 0.3333], [0.00, 0.5940])
u3 ([0.00, 0.2000], [0.40, 0.7500]) ([0.20, 0.8000], [0.10, 0.1800]) ([0.36, 0.6000], [0.20, 0.2000])
u4 ([0.30, 0.4792], [0.00, 0.4000]) ([0.51, 0.7000], [0.00, 0.2000]) ([0.00, 0.2000], [0.00, 0.8000])
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From values of K (βi ) (i = 1, 2, 3, 4), we can not sure weather u3 or u4 is better.
Next, we use the weighted geometric average operator, and also take ω1 =

ω2 = ω3 = 1
3 . By calculating, we can obtain that K (β1) = 0.5900, K (β2) = 0.5900,

K (β3) = 0.4020, K (β4) = 0.4063.
We could not well either u1 or u2 is better. And the result of two aggregation

operators are different, so use the accuracy function K could not make decision.
Next, we use the accuracy function A instead of K .

The weighted arithmetic average value βi for ui (i = 1, 2, 3, 4) are as follows:

β1 = ([0.2440, 0.6417], [0.0000, 0.2282]),β2 = ([0.3803, 0.5632], [0.0000, 0.3497]),

β3 = ([0.2000, 0.6000], [0.2000, 0.3000]),β4 = ([0.3000, 0.5000], [0.0000, 0.4000]).

Then, we obtain A(βi ) (i = 1, 2, 3, 4) as follows:

A(β1) = 0.5689, A(β2) = 0.5750, A(β3) = 0.5000, A(β4) = 0.5167.

Ranking all alternatives according to the accuracy values of A(βi ) (i = 1, 2, 3, 4):
A2 > A1 > A4 > A3.

Next, the weighted geometric average value βi for ui (i = 1, 2, 3, 4) are as fol-
lows:

β1 = ([0.2000, 0.6000], [0.2000, 0.3000]),β2 = ([0.3000, 0.5000], [0.0000, 0.4000]),

β3 = ([0.0000, 0.4579], [0.2440, 0.4526]),β4 = ([0.0000, 0.4063], [0.0000, 0.5421]).

We obtain A(βi ) (i = 1, 2, 3, 4) as follows:

A(β1) = 0.5000, A(β2) = 0.5167, A(β3) = 0.3550, A(β4) = 0.3698.

Ranking all alternatives according to the accuracy values of A(βi ) (i = 1, 2, 3, 4):
A2 > A1 > A4 > A3.

Thus the alternative u2 is the most desirable alternative according to weighted
arithmetic and the weighted geometric average operator.

5 Conclusion

In this paper, we propose a new accuracy function for interval-valued intuitionistic
fuzzy numbers, which can be used to rank interval-valued intuitionistic fuzzy num-
bers more correctly than the existing accuracy functions. In addition, we utilize the
interval-valued intuitionistic fuzzy weighted aggregation operators to aggregate the
interval-valued intuitionistic fuzzy information when dealing with multicriteria deci-
sion making problems, and rank all aggregated interval-valued intuitionistic fuzzy
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information according to the accuracy values. Finally, we give two examples, the
first is used to illustrate the validity of the proposed new accuracy function, and the
second a decision making problem, which could not be solved if not use the accuracy
function K .
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Regression Analysis Model Based
on Normal Fuzzy Numbers

Cui-Ling Gu, Wei Wang and Han-Yu Wei

Abstract Fuzzy regression analysis plays an important role in analyzing the
correlation between the dependent and explanatory variables in the fuzzy system.
This paper put forward the FLS (Fuzzy Least Squares) method for parameter esti-
mating of the fuzzy linear regression model with input, output variables and regres-
sion coefficients that are normal fuzzy numbers. Our improved method proves the
statistical properties, i.e., linearity and unbiasedness of the fuzzy least square estima-
tors. Residuals, residual sum of squares and coefficient of determination are given to
illustrate the fitting degree of the regression model. Finally, the method is validated
in both rationality and validity by solving a practical parameter estimation problem.

Keywords Normal fuzzynumbers ·Fuzzy regression analysis ·Fuzzy least squares ·
Coefficient of determination

1 Introduction

The term regression was introduced by Francis Galton. Now, regression analysis
is a fundamental analytic tool in many research fields. The method gives a crisp
relationship between the dependent and explanatory variables with an estimated
variance of measurement errors. Fuzzy regression [1] techniques provide a useful
means to model the functional relationships between the dependent variable and
independent variables in a fuzzy environment. After the introduction of fuzzy linear
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regression by Tanaka et al. [2], there has been a great deal of literatures on this
topic [3–13]. Diamond [3] defined the distance between two fuzzy numbers and
the estimated fuzzy regression parameters by minimizing the sum of the squares of
the deviation. Chang [4] summarized three kinds of fuzzy regression methods from
existing regression models: minimum fuzzy rule, the rule of least squares fitting
and interval regression analysis method. For the purpose of integration of fuzziness
and randomness, mixed regression model is put forward in [5]. Chang proposed
the triangular fuzzy regression parameters least squares estimation by using the
weighted fuzzy arithmetic and least-square fitting criterion. Sakawa and Yano [6]
studied the fuzzy linear regression relation between the dependent variable and the
fuzzy explanatory variable based on three given linear programming methods. In
order to estimate the parameters of fuzzy linear regression model with input, output
variables and regression coefficients are LR typed fuzzy numbers, Zhang [7] first
represented the observed fuzzy data by using intervals, and then used the left, right
point and the midpoint data sets of intervals to derive the corresponding regression
coefficients of conventional linear regression models. Zhang [8] discussed the least
squares estimation and the error estimate of the fuzzy regression analysis when the
coefficient is described by trapezoidal fuzzy numbers depicting the fuzzy concept
by using the gaussian membership function corresponding to human mind. To our
knowledge, few researches are conducted on fuzzy regression analysis based on
normal fuzzy numbers. Therefore, in this paper, we first calculate the least squares
estimator of the fuzzy linear regression model, and then discuss statistical properties
of the fuzzy least squares (FLS) estimator. Then, we give residuals, residual sum
of squares and coefficient of determination and illustrate the fitting degree of the
regression model. Last, we also verify the rationality and validity of the parameter
estimation method by a numerical example (Fig. 1).

Fig. 1 The schematic
diagram of fuzzy normal
numbers

exp(−(x−a)2/σ2)

x

A
(x
)
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2 Preliminaries

Definition 1 ([14]) If fuzzy number Ã has the following membership function

Ã(x) = exp

{

− (x − a)2

σ2

}

, x, a ∈ R,σ > 0

where R is a set of real numbers, then Ã is called a normal fuzzy number determined
by a and σ2, and thus denoted by Ã = (a,σ2).

Let Ã = (a,σ2
a) and B̃ = (b,σ2

b), then three operations of the normal fuzzy num-
bers are defined as follows: (1) Ã + B̃ = (a + b,σ2

a + σ2
b); (2) λÃ = (λa,λσ2

a);
(3) 1

Ã
= ( 1a ,

1
σ2
a
), where a �= 0.

Definition 2 ([15]) The expectation of fuzzy number Ã is

E(Ã) �
∫ +∞
−∞ xÃ(x)dx
∫ +∞
−∞ Ã(x)dx

(1)

where
∫ +∞
−∞ Ã(x)dx > 0. The average of Ã is denoted by the expectation E(Ã) of

fuzzy number Ã. In particular, when Ã = (a,σ2
a), E(Ã) = a.

Definition 3 ([15]) The variance of fuzzy number Ã is

D(Ã) �
∫ +∞
−∞ Ã(x)(x − E(Ã))2dx

∫ +∞
−∞ Ã(x)dx

(2)

where
∫ +∞
−∞ Ã(x)dx > 0. The spread of Ã is denoted by the variance D(Ã) of fuzzy

number Ã. In particular, when Ã = (a,σ2
a), D(Ã) = σ2

2 .

Definition 4 ([15]) Multiplication between fuzzy numbers Ã and B̃ is defined as:

Ã ⊗ B̃ �
∫ +∞

−∞
Ã(x)dx

∫ +∞

−∞
B̃(y)dy (3)

when Ã = B̃, and Ã ⊗ B̃ = Ã ⊗ Ã = [∫ ∞
∞ Ã(x)dx]2, Ã ⊗ Ã = ||Ã||2 is called the

module of Ã.
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Let Ã and B̃ denote the fuzzy numbers Ã = (a,σ2
a), and B̃ = (b,σ2

b) respectively,
then

Ã ⊗ B̃ �
∫ ∞

∞
Ã(x)dx

∫ ∞

∞
B̃(y)dy =

∫ ∞

∞
e
− (x−a)2

σ2a dx
∫ ∞

∞
e
− (y−b)2

σ2b dy = πσaσb,

Specifically, when Ã = B̃, Ã ⊗ Ã = ||Ã||2.
Definition 5 ([16]) Let Ã = (a,σ2

a), B̃ = (b,σ2
b), then the distance between Ã and

B̃ is defined as:

d2(Ã, B̃) = (a − b)2 + 1

2
(σ2

a − σ2
b)

2 (4)

3 The Least Squares Estimator of Fuzzy Linear
Regression Model

The classical linear regression model is as follows:

Y = β0 + β1X1 + β2X2 + · · · + βkXk (5)

where Y is explained as variable and X1,X2, . . . ,Xk are explanatory variables, β0,

β1, . . . ,βk are regression coefficients. Let{(Xi,Yi) : i = 1, 2, . . . , n} be a set of sam-
ple observations, ordinary least squares estimation is frequently based on the fact
that the overall error between the estimated Ŷi and the observations Yi should be as
small as possible. That is, the correspondingQ residual between the estimated Ŷi and
the observations Yi should be as small as possible. Symbolically,

Q =
n∑

i=1

(Yi − Ŷi)
2 =

n∑

i=1

(Yi − (β̂0 + β̂1X1i + · · · + β̂kXki))
2 (6)

According to the principle of differential and integral calculus,Qwill be theminimum
value when the first order partial derivative ofQ about β0, β1, . . . ,βk is equal to zero.

However, in many cases, the fuzzy relations in formula (5) must be considered.
In general, there are the following three conditions [9]:
(a) Ỹi = β0 + β1X̃1i + β2X̃2i + · · · + βkX̃ki,β0,β1, . . . ,βk ∈ R, X̃1, . . . , X̃k, Ỹi ∈ F̃
(R), i = 1, 2, . . . , n;
(b) Ỹi = β̃0 + β̃1X1i + β̃2X2i + · · · + β̃kXki, β̃0, β̃1, . . . , β̃k, Ỹi ∈ F̃(R),X1, . . . ,Xk ∈
R, i = 1, 2, . . . , n;
(c) Ỹi = β̃0 + β̃1X̃1i + β̃2X̃2i + · · · β̃kX̃ki, β̃0, β̃1, . . . , β̃k, X̃1, . . . , X̃k, Ỹi ∈ F̃(R), i =
1, 2, . . . , n.
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In fact, (b) is the most common conditions. For (b), we focus on the fuzzy linear
regression model in which dependent variables are the form of real numbers and
explanatory variables and the regression coefficients are the form of normal fuzzy
numbers.

Theorem 1 Assume the fuzzy multiple linear regression model is as follows:

Ỹi = β̃0 + β̃1X1i + β̃2X2i + · · · + β̃kXki

then

Ỹi = (ai,σ
2
i ) = (aβ̃0

,σ2
β̃0
) + (aβ̃1

,σ2
β̃1
)X1i + (aβ̃2

,σ2
β̃2
)X2i + · · · + (aβ̃k

,σ2
β̃k
)Xki

= (aβ̃0
+ aβ̃1

X1i + · · · + aβ̃k
Xki) + (σ2

β̃0
+ σ2

β̃1
X2
1i + · · · + σ2

β̃k
X2
ki)

Let a = Xψ, b = X1ζ, where

ψ = [aβ̃0
, aβ̃1

, . . . , aβ̃k
]T , ζ = [σ2

β̃0
,σ2

β̃1
, . . . ,σ2

β̃k
]T , b = [σ2

1,σ
2
2, . . . ,σ

2
n]T

a = [a1, a2, . . . , an]T ,A = [âβ̃0
, âβ̃1

, . . . , âβ̃k
]T ,σ = [σ̂2

β̃0
, σ̂2

β̃1
, . . . , σ̂2

β̃k
]T

X =

⎛

⎜
⎜
⎜
⎝

1 X11 X21 · · · Xk1

1 X12 X22 · · · Xk2
...

...
...

. . .
...

1 X1n X2n · · · Xkn

⎞

⎟
⎟
⎟
⎠

X1 =

⎛

⎜
⎜
⎜
⎝

1 X2
11 X

2
21 · · · X2

k1
1 X2

12 X
2
22 · · · X2

k2
...

...
...

. . .
...

1 X2
1n X

2
2n · · · X2

kn

⎞

⎟
⎟
⎟
⎠

where i = 1, 2, . . . , n; β̃0, β̃1, . . . , β̃k, Ỹ ∈ F̃(R);X1,X2, . . . ,Xk ∈ R. Then, the FLS
of β̃0, β̃1, . . . , β̃k are defined as:

{
A = (X′X)−1X ′a

σ = (X1
′X1)

−1X1
′b
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Proof Assuming that {(Xi, Ỹi), i = 1, 2, . . . , n} are the set of known samples, and

Ỹi = (ai,σ2
i ), the sum Q of the squares of the dispersion between the estimated ˆ̃Yi

and the observations Ỹi should be minimized. That is,

Q̃ =
n∑

i=1

(Ỹi − ˆ̃Yi)2 =
n∑

i=1

{(ai,σ2
i ) − [(âβ̃0

, σ̂2
β̃0
) + (âβ̃1

, σ̂2
β̃1
)X1i + · · ·

+ (âβ̃k
, σ̂2

β̂k
)Xki]}

=
n∑

i=1

[(ai,σ2
i ) − (âβ̃0

+ âβ̃1
X1i + · · · + âβ̃k

Xki,

σ̂2
β̃0

+ σ̂2
β̃1
X2
1i + · · · + σ̂2

β̃1
X2
ki)]

=
n∑

i=1

[(ai − âβ̃0
− âβ̃1

X1i − · · · − âβ̃k
Xki)

2

+ 1

2
(σ2

i − σ̂2
β̃0

− σ̂2
β̃1
X2
1i − · · · − σ̂2

β̃k
X2
ki)

2]

should be minimized. Q̃ will be the minimum value when the first order partial

derivatives of Q about ˆ̃β0,
ˆ̃β1, . . . ,

ˆ̃βk are equal to zero. In this case, fuzzy ordinary
least squares estimator can be calculated.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Q̃
∂âβ̃0

= −2
n∑

i=1
(ai − âβ̃0

− âβ̃1
X1i − · · · − âβ̃k

Xki) = 0

∂Q̃
∂âβ̃1

= −2
n∑

i=1
(ai − âβ̃0

− âβ̃1
X1i − · · · − âβ̃k

Xki)X1i = 0

· · · · · ·
∂Q̃

∂âβ̃k

= −2
n∑

i=1
(ai − âβ̃0

− âβ̃1
X1i − · · · − âβ̃k

Xki)Xki = 0

∂Q̃
∂σ̂2

β̃0

= −
n∑

i=1
(σ2

i − σ̂2
β̃0

− σ̂2
β̃1
X2
1i − · · · − σ̂2

β̃k
X2
ki) = 0

∂Q̃
∂σ̂2

β̃1

= −
n∑

i=1
(σ2

i − σ̂2
β̃0

− σ̂2
β̃1
X2
1i − · · · − σ̂2

β̃k
X2
ki)X

2
1i = 0

· · · · · ·
∂Q̃

∂σ̂2
β̃k

= −
n∑

i=1
(σ2

i − σ̂2
β̃0

− σ̂2
β̃1
X2
1i − · · · − σ̂2

β̃k
X2
ki)X

2
ki = 0
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Then, the above equations can be simplified as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=1
ai = nâβ̃0

+ âβ̃1

n∑

i=1
X1i + · · · + âβ̃k

n∑

i=1
Xki

n∑

i=1
aiX1i = âβ̃0

n∑

i=1
X1i + âβ̃1

n∑

i=1
X2
1i + · · · + âβ̃k

n∑

i=1
XkiX1i

· · · · · ·
n∑

i=1
aiXki = âβ̃0

n∑

i=1
Xki + âβ̃1

n∑

i=1
XkiXki + · · · + âβ̃k

n∑

i=1
X2
ki

−
n∑

i=1
σ2
i = nσ̂2

β̃0
+ σ̂2

β̃1

n∑

i=1
X2
1i + · · · + σ̂2

β̃k

n∑

i=1
X2
ki

−
n∑

i=1
σ2
i X

2
1i = σ̂2

β̃0

n∑

i=1
X2
1i + σ̂2

β̃1

n∑

i=1
X4
1i + · · · + σ̂2

β̃k

n∑

i=1
X2
kiX

2
1i

· · · · · ·
−

n∑

i=1
σ2
i X

2
ki = σ̂2

β̃0

n∑

i=1
X2
ki + σ̂2

β̃1

n∑

i=1
X2
kiX

2
1i + · · · + σ̂2

β̃k

n∑

i=1
X4
ki

The matrix expression of the normal equations is as follows

{
(X′X)A = X′a

(X1
′X1)σ = X1

′b

And least squares estimator of parameters are as follows

{
A = (X′X)−1X ′a

σ = (X1
′X1)

−1X1
′b

�

Corollary 1 Assume that the fuzzy simple linear regression model is as follows

Ỹi = β̃0 + β̃1Xi, i = 1, 2, . . . , n, β̃0, β̃1, Ỹi ∈ F̃(R),Xi ∈ R, Ỹi = (ai,σ
2
i ),

that is

Ỹi = (ai,σ
2
i ) = (aβ̃0

,σ2
β̃0
) + (aβ̃1

,σ2
β̂1
)Xi, i = 1, 2, . . . , n, β̃0, β̃1Ỹi ∈ F̃(R),Xi ∈ R

where ˆ̃β0 = (âβ̃0
, σ̂2

β̃0
) and ˆ̃β1 = (âβ̃1

, σ̂2
β̃1
) are respectively the FLS of β̃0 and β̃1.

then ⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

âβ̃0
=

n∑

i=1
ai

n∑

i=1
X2
i −

n∑

i=1
Xi

n∑

i=1
aiXi

n
n∑

i=1
X2
i −(

n∑

i=1
Xi)2

, σ̂2
β̃0

=
n∑

i=1
σ2
i

n∑

i=1
X4
i −

n∑

i=1
X2
i

n∑

i=1
X2
i σ2

i

−n
n∑

i=1
X4
i +(

n∑

i=1
X2
i )

2

âβ̃1
=

n
n∑

i=1
aiXi−

n∑

i=1
Xi

n∑

i=1
ai

n
n∑

i=1
X2
i −(

n∑

i=1
Xi)2

, σ̂2
β̃1

=
−n

n∑

i=1
X2
i σ2

i −
n∑

i=1
X2
i

n∑

i=1
σ2
i

−n
n∑

i=1
X4
i +(

n∑

i=1
X2
i )

2
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Proof Let Xi, Ỹi, i = 1, 2, . . . , n be a set of sample observations and Ỹi = (ai,σ2
i ),

according to Theorem 1, is revised as follows:

Q̃ =
n∑

i=1

(Ỹi − ˆ̃Yi)2

=
n∑

i=1

{(ai,σ2
i ) − [(âβ̃0

, σ̂2
β̃0
) + (âβ̃1

, σ̂2
β̃1
)Xi]}2

=
n∑

i=1

[(ai,σ2
i ) − (âβ̃0

+ âβ̃1
Xi, σ̂

2
β̃0

+ σ̂2
β̃1
X2
i )]2

=
n∑

i=1

[

(a − âβ̃0
− âβ̃1

Xi)
2 + 1

2
(σ2

i − σ̂2
β̃0

+ σ̂2
β̃1
X2
i )

2

]

Obviously, Q̃ will be minimized when the first order partial derivatives of Q̃ about
ˆ̃β0,

ˆ̃β1 and are equal to zero. That is, we can solve the question by making the first
order partial derivatives of Q̃ about âβ̃0

, âβ̃1
, σ̂2

β̃0
, σ̂2

β̃1
respectively equal to zero.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Q̃
∂âβ̃0

= −2
n∑

i=1
(ai − âβ̃0

− âβ̃1
Xi) = 0

∂Q̃
∂âβ̃1

= −2
n∑

i=1
(ai − âβ̃0

− âβ̃1
Xi)Xi = 0

∂Q̃
∂σ̂2

β̃0

= −
n∑

i=1
(σ2

i − σ̂2
β̃0

+ σ̂2
β̃1
X2
i ) = 0

∂Q̃
∂σ̂2

β̃1

= −
n∑

i=1
(σ2

i − σ̂2
β̃0

+ σ̂2
β̃1
X2
i )X

2
i = 0

The above equations may be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nâβ̃0
+ âβ̃1

n∑

i=1
Xi =

n∑

i=1
ai

âβ̃0

n∑

i=1
Xi + âβ̃1

n∑

i=1
X2
i =

n∑

i=1
aiXi

nσ̂2
β̃0

− σ̂2
β̃1

n∑

i=1
X2
i = −

n∑

i=1
σ2
i

σ̂2
β̃0

n∑

i=1
X2
i − σ̂2

β̃1

n∑

i=1
X4
i = −

n∑

i=1
σ2
i X

2
i

Then, in terms of Cramer’s rule, we can obtain the linear fuzzy least squares
estimator of the simple linear regression model by solving the above equations. �
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4 The Statistical Properties of Fuzzy Least Squares
Estimator

Theorem 2 Fuzzy least squares estimator

{
A = (X′X)−1X ′a

σ = (X1
′X1)

−1X1
′b

is a linear estimator.

Proof Since {
A = (X′X)−1X ′a = Ca

σ = (X1
′X1)

−1X1
′b = Db

where C = (X′X)−1X ′,D = (X′X)−1X ′ , the parameter estimator is a linear combi-
nation of explanatory variables. �

In order to know statistic properties of the parameter estimator in simple

fuzzy regression mode1, let xi = Xi − X̄, where X̄ = 1
n

n∑

i=1
Xi. When ¯Ỹ = (ā, σ̄2), yi =

(ǎ, σ̌2) = Ỹi − ¯̃Y = (ai,σ2
i ) − (ā, σ̄2) = (ai − ā,σ2

i − σ̄2), where ā = E( 1n
n∑

i=1
Ỹi)

= 1
n

n∑

i=1
E(Ỹi) = 1

n

n∑

i=1
ai, σ̄2 = Var( 1n

n∑

i=1
Ỹi) = 1

n2

n∑

i=1
Var(Ỹi) = 1

n2

n∑

i=1
σ2
i , then

n∑

i=1

x2i =
n∑

i=1

(
Xi − X̄

)2 =
n∑

i=1

X2
i − 1

n

(
n∑

i=1

Xi

)2

that is

n
n∑

i=1

x2i = n
n∑

i=1

(Xi − X̄)2 =
n∑

i=1

X2
i −

(
n∑

i=1

Xi

)2

so ⎧
⎪⎪⎨

⎪⎪⎩

âβ̃0
= ā − âβ̃1

X̄

âβ̃1
=

n∑

i=1
ǎ1xi

n∑

i=1
x2i

Corollary 2 Expectations âβ̃0
and âβ̃1

of fuzzy least squares estimator ˆ̃β0 =
(âβ̃0

, σ̂2
β̃0
) and ˆ̃β1 = (âβ̃1

, σ̂2
β̃1
) are linear estimators.
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Proof

âβ̃1
=

n∑

i=1
ǎixi

n∑

i=1
x2i

=

n∑

i=1
(ai − ā)xi

n∑

i=1
x2i

=

n∑

i=1
aixi

n∑

i=1
x2i

−

n∑

i=1
āxi

n∑

i=1
x2i

=

n∑

i=1
aixi

n∑

i=1
x2i

−
ā

n∑

i=1
xi

n∑

i=1
x2i

=
n∑

i=1

kiai

where ki = xi
n∑

i=1
x2i

,
n∑

i=1
xi = 0;

âβ̃0
= ā − âβ̃1

X̄ = 1

n

n∑

i=1

ai −
n∑

i=1

kiaiX̄ =
n∑

i=1

(
1

n
− X̄ki

)

ai =
n∑

i=1

wiai

where wi = 1
n − X̄ki. �

Theorem 3 Fuzzy least squares estimator

{
A = (X′X)−1X ′a

σ = (X1
′X1)

−1X1
′b

are unbiased estimators.

Proof

E(A) = E[(X′X)−1X ′a)] = E[(X′X)−1X′Xψ] = E(ψ) = ψ

E(σ) = E[(X1
′X1)

−1X1
′b] = E[(X1

′X1)
−1X1

′(X1ζ)] = ζ

So fuzzy least squares estimators are unbiased. �

Corollary 3 Expectations aβ̃0
andaβ̃1

of fuzzy least squares estimator ˆ̃β0 = (âβ̃0
, σ̂2

β̃0
)

and ˆ̃β1 = (âβ̃1
, σ̂2

β̃1
) are unbiased estimators of the parameters β̃0, β̃1.

Proof

âβ̃1
=

n∑

i=1

kiai =
n∑

i=1

ki(aβ̃0
+ aβ̃1

Xi) = aβ̃0

n∑

i=1

ki + aβ̃1

n∑

i=1

kiXi
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where ki = xi
n∑

i=1
x2i

,
n∑

i=1
ki =

n∑

i=1
xi

n∑

i=1
x2i

=
n∑

i=1
xi

n∑

i=1
x2i

= 0

n∑

i=1

kiXi =

n∑

i=1
xiXi

n∑

i=1
x2i

=

n∑

i=1
xi(xi + X̄)

n∑

i=1
x2i

=
X̄

n∑

i=1
xi

n∑

i=1
x2i

+

n∑

i=1
x2i

n∑

i=1
x2i

= 1

so E(âβ̃1
) = aβ̃1

;

âβ̃0
=

n∑

i=1

wiai =
n∑

i=1

[wi(aβ̃0
+ aβ̃1

Xi)] = aβ̃0

n∑

i=1

wi + aβ̃1

n∑

i=1

wiXi

where, wi = 1
n − X̄ki,E

(
n∑

i=1
wi

)

= E

(
n∑

i=1

(
1
n − X̄ki

)
)

= 1,

n∑

i=1

wiXi =
n∑

i=1

(
1

n
− X̄ki

)

Xi = 1

n

n∑

i=1

Xi − X̄
n∑

i=1

kiXi = X̄ − X̄ = 0

so E(âβ̃0
) = aβ̃0

. �

5 Assessment on Fuzzy Multiple Linear Regression Model

Regression analysis is a useful statistical method for analyzing quantitative relation-
ships between two or more variables. It is important for the regression analysis to
assess the performance of fitting regression model. That is to say, after estimating
parameter of fuzzy liner regressionmodel, how far is it from the parameter estimation
to the true value? In fuzzy regression analysis, the simplest method evaluating the
fuzzy regression model is to take the residual and the Coefficient of Determination as
metrics. According to Classical Regression Mode [17], we can calculate the residual
and the Coefficient of Determination about Fuzzy Regression Model by using fuzzy
calculation rule which listed previously.

Theorem 4 give the module formula of residual |ěi| and require that it is as small
as possible. The fuzzy total sum of squares(FTSS) and the fuzzy explained sum of
squares(FESS) are given in Theorem 5, and we obtain fuzzy coefficient of determi-
nation R̃2 in Theorem 6, R̃ is bigger, and more better.
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Theorem 4 The residual produced by the fuzzy multiple linear regression model
based on normal fuzzy numbers is defined as

|ěi| = √
π
√

σ̂2
β̃0

+ σ2
i + √

πσβ̃1
|X1i| + √

πσβ̃2
|X2i| + · · · + √

πσβ̃k
|Xki|

Proof

|ěi| = | ˆ̃Yi − Ỹi|
= |(âβ̃0

, σ̂2
β̃0
) + (âβ̃1

, σ̂2
β̃1
)X1i + (âβ̃1

, σ̂2
β̃2
)X2i + · · · + (âβ̃k

, σ̂2
β̃k
)Xki − (ai,σ

2
i )|

= |(âβ̃0
− ai, σ̂

2
β̃0

+ σ2
i ) + (âβ̃1

, σ̂2
β̃1
)X1i + (âβ̃1

, σ̂2
β̃2
)X2i + · · · + (âβ̃k

, σ̂2
β̃k
)Xki|

= |(âβ̃0
− ai, σ̂

2
β̃0

+ σ2
i | + |(âβ̃1

, σ̂2
β̃1
)||X1i| + · · · + |(âβ̃k

, σ̂2
β̃k
)||Xki|

= √
π
√

σ̂2
β̃0

+ σ2
i + √

πσβ̃1
|X1i| + √

πσβ̃2
|X2i| + · · · + √

πσβ̃k
|Xki| �

Corollary 4 The residual produced by the fuzzy simple linear regression model
based on normal fuzzy numbers is expressed as

ěi = √
π
√

σ̂2
β̃0

+ σ2
i + √

πσ̂β̃1
|Xi|

Proof

ěi = | ˆ̃Yi − Ỹi| = |(âβ̃0
, σ̂2

β̃0
) + (âβ̃1

, σ̂2
β̃1
)Xi − (ai,σ

2
i )|

= |(âβ̃0
− ai, σ̂

2
β̃0

+ σ2
i ) + (âβ̃1

, σ̂2
β̃1
)Xi|

= |(âβ̃0
− ai, σ̂

2
β̃0

+ σ2
i )| + |(âβ̃1

, σ̂2
β̃1
)||Xi|

= √
π
√

σ̂2
β̃0

+ σ2
i + √

πσ̂β̃1
|Xi| �

Theorem 5 The residual sum of squares produced by the fuzzy multiple linear
regression model based on normal fuzzy numbers is defined as

FTSS = π

n∑

i=1

(σ̂2
β̃0

+ σ2
i ) + π

n∑

i=1

k∑

j=1

σ̂2
β̃j
X2
ji

+ 2π
n∑

i=1

k∑

j=1

σ̂β̃j
Xji

√
(σ̂2

β̃0
+ σ2

i ) + π

n∑

i=1

k∑

j �=r

σ̂β̃j
σ̂β̃r

XriXji



Regression Analysis Model Based on Normal Fuzzy Numbers 499

The explained sum of squares produced by the fuzzy multiple linear regression
model based on normal fuzzy numbers is defined as

FESS = nπ(σ̂2
β̃0

+ σ̄2) + π

n∑

i=1

k∑

j=1

σ̂2
β̃j
X2
ji

+ 2π
√

σ̂2
β̃0

+ σ̄2
n∑

i=1

k∑

j=1

σ̂β̃j
Xji + π

n∑

i=1

k∑

j �=r

σ̂β̃j
σ̂β̃r

XriXji

Proof

FTSS = ∑n
i=1 (̂Ỹi − Ỹi)2

= ∑n
i=1[(âβ̃0

, σ̂2
β̃0
) + (âβ̃1

, σ̂2
β̃1
)X1i + · · · + (âβ̃k

, σ̂2
β̃k
)Xki − (ai,σ2

i )]2

= ∑n
i=1[(âβ̃0

− ai, σ̂2
β̃0

+ σ2
i ) + (âβ̃1

, σ̂2
β̃1
)X1i + · · · + (âβ̃k

, σ̂2
β̃k
)Xki]2

= ∑n
i=1

[
(âβ̃0

− ai, σ̂2
β̃0

+ σ2
i )

2 + ∑k
j=1(âβ̃j

, σ̂2
β̃1
)2X2

ji

+ 2
∑k

j=1(âβ̃0
− ai, σ̂2

β̃0
+ σ2

i )(âβ̃j
, σ̂2

β̃j
)Xji

+∑k
r �=j(âβ̃j

, σ̂2
β̃j
)(âβ̃r

, σ̂2
β̃r
)XjiXri

]

= ∑n
i=1

[
(âβ̃0

− ai, σ̂2
β̃0

+ σ2
i )

2 + ∑n
i=1

∑k
j=1(âβ̃j

, σ̂2
β̃1
)2X2

ji

+2
∑n

i=1

∑k
j=1(âβ̃j

, σ̂2
β̃j
)(âβ̃0

− ai, σ̂2
β̃0

+ σ2
i )Xji

+∑n
i=1

∑k
r �=j(âβ̃j

, σ̂2
β̃j
)(âβ̃r

, σ̂2
β̃r
)XjiXri

]

= π
∑n

i=1(σ̂
2
β̃0

+ σ2
i ) + π
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X2
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Xji, σ̂
2
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X2
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+2π
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Xji
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FESS = ∑n
i=1(

ˆ̃Yi − ¯̃Y)2
= ∑n

i=1[(âβ̃0
, σ̂2

β̃0
) + (âβ̃1

, σ̂2
β̃1
)X1i + · · · + (âβ̃k

, σ̂2
β̃k
)Xki − (ā, σ̄2)]2

= ∑n
i=1[(âβ̃0

− ā, σ̂2
β̃0

+ σ̄2) + (âβ̃1
, σ̂2

β̃1
)X1i + · · · + (âβ̃k

, σ̂2
β̃k
)Xki]2

= ∑n
i=1

[
(âβ̃0

− ā, σ̂2
β̃0

+ σ̄2)2 + ∑k
j=1(âβ̃j

, σ̂2
β̃j
)2X2

ji

+2(âβ̃0
− ā, σ̂2

β̃0
+ σ̄2)

∑k
j=1(âβ̃j

, σ̂2
β̃j
)Xji

+∑k
r �=j(âβ̃j

, σ̂2
β̃j
)(âβ̃r

, σ̂2
β̃r
)XjiXri

]
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− ā, σ̂2
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, σ̂2
β̃1
)2X2
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+ σ̄2) + π
∑k

j=1
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β̃j
X2
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√
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√
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Xji, σ̂
2
β̃j
X2
ji)(âβ̃r
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X2
ji
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√
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∑n
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∑k
j=1 σ̂β̃j

Xji + π
∑n
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j �=r σ̂β̃j

σ̂β̃r
XriXji

�

Corollary 5 The residual produced by the fuzzy simple linear regression model
based on normal fuzzy numbers is expressed as

FTSS = π

n∑

i=1

(σ̂2
β̃0

+ σ2
i ) + 2πσ̂2

β̃1

n∑

i=1

√
(σ̂2

β̃0
+ σ2

i )X
2
i + πσ̂2

β̃1

n∑

i=1

X2
i

The explained sumof squares produced by fuzzy simple linear regressionmodel based
on normal fuzzy numbers is defined as

FESS = nπ(σ̂2
β̃0

+ σ̄2) + 2
√

π
√

σ̂2
β̃0

+ σ̄2
n∑

i=1

Xi + πσ̂2
β̃1

n∑

i=1

X2
i
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Proof

FTSS =
n∑

i=1

(
ˆ̃Yi − Ỹi)

2

=
n∑

i=1
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, σ̂2

β̃0
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=
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=
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FESS =
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ˆ̃Yi − ¯̃Yi)2

=
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√
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√
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The greater the regression sumof squares, the smaller the sumof squared residuals,
and the better the fitting between regression line and the sample points.

Theorem 6 The coefficient of determination of the fuzzy multiple linear regression
model based on normal fuzzy numbers is defined as

R̃2 = FESS

FTSS

=
nπ(σ̂2

β̃0
+ σ̄2) + π

n∑

i=1

k∑

j=1
σ̂2

β̃j
X2
ji + 2π

√
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β̃0
+ σ̄2
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i=1

k∑
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σ̂β̃j

Xji + π
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σ̂β̃j

σ̂β̃r
XriXji
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Proof It is easy to prove Theorem 6 by using Theorem 5. �

Corollary 6 The coefficient of the determination of fuzzy simple linear regression
model based on normal fuzzy numbers is expressed as

R̃2 = FESS

FTSS

=
nπ(σ̂2

β̃0
+ σ̄2) + 2

√
π
√

σ̂2
β̃0

+ σ̄2
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i=1
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√
(σ̂2

β̃0
+ σ2

i )X
2
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β̃1

n∑

i=1
X2
i

6 Numerical Example

Assume that the fuzzy linear regression model is as follows:

Ỹi = β̃0 + β̃1X1i + β̃2X2i

where, Ỹ is the dependent variable, X1 and X2 the explanatory variables, and
(X1i,X2i, Ỹi), i = 1, 2, . . . , n,X1,X2 ∈ R, Ỹ ∈ F̃(R). Now, our goal is to solve the
fuzzy regression and evaluate the model with the observed data shown in Table1.

Then, the fuzzy regression mode can be obtained by our proposed method.

Ỹi = (20.5371, 0.05422) + (41.5827, 0.00872)X1i + (14.5884, 0.00352)X2i

Residual series of the regression model are shown in Table2. According to the
formulas in Theorem 5, we can calculate the evaluation indexes of the fuzzy model
i.e., FTSS = 7.2531, FESS = 6.9836, and R̃2 = 0.9628. Clearly, the uncertainty of
the practical problem is better considered by the fuzzy linear regression analysis.
Using fuzzy numbers to represent the observation data makes it more effective to
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Table 1 The observed data

Order X1 X2 Ỹ Order X1 X2 Ỹ

1 0.16 0.86 (40.0, 0.312) 7 0.28 1.15 (48.6, 0.182)

2 0.18 0.89 (41.0, 0.222) 8 0.29 1.18 (49.4, 0.192)

3 0.23 0.94 (42.0, 0.252) 9 0.32 1.25 (50.8, 0.232)

4 0.24 0.96 (43.0, 0.162) 10 0.35 1.29 (54.3, 0.242)

5 0.22 0.98 (46.5, 0.172) 11 0.39 1.33 (57.0, 0.252)

6 0.26 0.99 (47.2, 0.202) 12 0.45 1.37 (59.2, 0.212)

Table 2 Residual series of the regression model

Order Fuzzy residual Order Fuzzy residual Order Fuzzy residual

1 0.1833 5 0.0659 9 0.1160

2 0.0993 6 0.0862 10 0.1207

3 0.1253 7 0.0741 11 0.1302

4 0.0602 8 0.0810 12 0.0988

resolve the problem. In this example, the residual sequence of the regression model
and the coefficient of determination help to understand how well the regression
model can fit the sample points. The coefficient of determination 96.28% implies
that the change 96.28% of the explained variable can be explained by the change of
explanatory variables.

7 Conclusions

The paper proposes an improved FLS method for parameter estimating of the fuzzy
linear regression model when the explanatory variables are precise and the explained
variables and regression parameters are normal fuzzy numbers. Specifically, the
paper figures out the fuzzy least squares estimation of multivariate linear regression
analysis and gets some statistical properties, i.e., linearity and unbiasedness, of the
fuzzy least square estimators. Finally, it illustrates the feasibility and effectiveness
of the proposed method by the numerical example.
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Weighted Lp Metric on Fuzzy Numbers

Hao-Yue Liu and Tai-He Fan

Abstract In order to reflect the difference of membership degree on metric of fuzzy
numbers, we introduce a weighted metric Lω for fuzzy numbers in this paper. First,
the condition onweighted function underwhich the expressionLω is ametric is given.
Then the topological properties such as completeness and separability of theweighted
fuzzy number metric spaces (E1,Lω) are discussed. Finally, relations between the
weighted metric and the corresponding unweighted one is discussed briefly.

Keywords Fuzzy number ·Weighted function ·Weighted metric · Completeness ·
Separability

1 Introduction

In practical issues, metrics of fuzzy numbers reflects the depth of relation between
fuzzy numbers. Metrics of fuzzy numbers have been applied in data analysis in
various areas such as fuzzy decision, fuzzy structural analysis, fuzzy clustering and
so on. The most often used metrics are the Hausdorff metric, supremum metric, Lp
metrics, sendograph metric, endograph metric and so on.

In [1] Diamond and Kloeden introduced Lp metrics for fuzzy numbers and dis-
cussed completeness and separability of fuzzy number set with respect to Lp metrics,
where the difference between membership function values were not considered,
this may not be quite rational since at least syntactically higher membership values
might be more important than the lower values, the metrics might better reflect such
phenomena. Therefore, in [2] the author considered the influence of membership
functions on the distance between fuzzy numbers and gave the definition of δp−q

metric. In [3] by using weighted function, considering the influence of cut set on the
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distance between fuzzy numbers in terms of the new metric of mid and spread. In
[4] essentially a weighted average of distances which is the convex combinations of
the infimum and supremum of fuzzy numbers was proposed. Such idea were also
reflected by using concept like reducing function by Voxman [5], Tan [6], R.N. Xu
[7] and so on. In this paper, we study the weighted Lp metric on fuzzy number space.
We give condition on the weighted function ω(α) under which the expression Lω is
a metric on E1. Then we take one-dimensional space as an example to discuss com-
pleteness and separability of the weighted metric space (E1,Lω). Finally, relations
between the weighted metric and the original metric are discussed briefly.

2 Basic Notation and Preliminaries

Throughout the whole paper R denotes the set of all real numbers and I denotes the
closed unit interval [0, 1], Kc(R) denotes the family of non-empty compact convex
sets of R.

First, we recall the basics of fuzzy numbers.

Definition 1 LetEn={u | u : Rn → [0, 1], u has the following properties (i)−(iv)}
(i) u is normal i.e. u(x0) = 1 for some x0 ∈ Rn,
(ii) u is quasiconvex (fuzzy convex),
(iii) u is upper semicontinuous,
(iv) [u]0 = {x ∈ Rn | u(x) > 0} is compact.

Elements in En are called n-dimension fuzzy numbers.

Definition 2 For u ∈ En and α ∈ I , let [u(x)]α = {x ∈ R|u(x) ≥ α}, [u]α is called
the α − cut of u. Then all cut sets of u are nonempty closed intervals.

Definition 3 The Hausdorff metric dH on Kc(Rn) is defined as follows:

dH(A,B) = max{ρ(A,B), ρ(B,A)}

For A,B ∈ Kc(Rn), where ρ(A,B) = max
a∈A

dist(a,B), dist(x,A) = min
a∈A

‖x − a‖(x ∈
Rn).

Definition 4 For each u, v ∈ En and α ∈ I , 1 ≤ p ≤ ∞, the Lp − metric between
u, v is defined as follows:

Lp(u, v) =
(∫ 1

0
[dH([u]α, [v]α)]pdα

)1/p

.
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3 Main Result

In this section we introduce weighted function ω(α) and discuss the condition
that weighted function should satisfy. Then give the definition of weighted metric
Lω(u, v). Moreover, completeness and separability of the weighted metric (E1,Lω)

are proved, and briefly explain the influence of membership degree on the distance
between two fuzzy numbers.

First,weighted functionω(α) : I → R andweightedmetricLpω are characterized.

Definition 5 A function ω : I → R is a weighted function if ω is a nonnegative
function.

In order to define weighted metric, we need to restrict the weight function. For
example, to define weighted Lp metric, we must require that the corresponding inte-
gral exist at least.

Definition 6 If the weight function ω(α) is integrable on I , then for u, v ∈ En and
0 ≤ p < ∞, we define the weighted Lp metric between u, v as follows:

Lpω =
(∫ 1

0
ω(α)[dH([u]α), [v]α]pdα

)1/p

(1)

Taking one-dimensional setting as an example we discuss the restriction on the
weight function ω(α) such that Lω = L1ω is indeed a metric. The discussion of n-
dimensional space and other weighted metric is similar.

We need to state that the above weighted expression may not satisfy the condition
of metric of fuzzy numbers. We study the conditions such that (1) is indeed a metric
of fuzzy numbers. We describe as follows:

Theorem 1 Lω = ∫ 1
0 ω(α)[dH([u]α, [v]α)]dα is a metric on E1 if and only if for

each subinterval I1 of I,
∫
I1

ω(α)dα > 0.

Proof If Lω is a metric on E1, then for all u, v, u1 ∈ E1, the following condition
(i)–(iii) on a metric are satisfied:

(i) Positivity, i.e.,
∫ 1
0 ω(α)dH([u]α, [v]α)dα > 0;

(ii) Symmetry, i.e.,
∫ 1
0 ω(α)dH([u]α, [v]α)dα = ∫ 1

0 ω(α)dH([v]α, [u]α)dα;

(iii) Triangle inequality, i.e.,
∫ 1
0 ω(α)dH([u]α, [v]α)dα ≤ ∫ 1

0 ω(α)dH([u]α, [u1]α)dα

+ ∫ 1
0 ω(α)dH([u1]α, [v]α)dα

By the basic properties of the integral,Lω(u, v) always satisfies symmetry and triangle
inequality. Hence, we need to prove that (i) is equivalent to the condition in the
theorem.



508 H.-Y. Liu and T.-H. Fan

Sufficiency. For u, v ∈ E1 such that u �= v, by the left-continuity of the cut set
function, there exists α0 ∈ (0, 1) and ε0 > 0 such that dH([u]α, [v]α) ≥ ε0 for α ∈
[α0 − ε,α0], since

∫ α0

α0−ε ω(α)dα > 0 and

Lω(u, v) = ∫ 1
0 ω(α)dH([u]α, [v]α)dα

≥ ∫ α0

α0−ε ω(α) · ε0dα = ε0
∫ α0

α0−ε ω(α)dα > 0

Necessity. Ifω(α) does not satisfy the condition, there areα1,α2 ∈ I andα1 < α2

such that
∫ α2

α1
ω(α)dα = 0. Define fuzzy numbers u, v as follows:

u(x) =
⎧
⎨

⎩

α1, 1 ≤ x < 4,
1, x = 4,
0, else.

and

v(x) =
⎧
⎨

⎩

α2, 1 ≤ x < 4,
1, x = 4,
0, else.

Obviously,

dH([u]α, [v]α) =
{
3, α ∈ (α1,α2],
0, otherwise.

Then
∫ 1
0 ω(α)dH([u]α, [v]α)dα = ∫ α2

α1
ω(α)dH([u]α, [v]α)dα = ∫ α2

α1
ω(α) · 3dα = 0.

Thus the positivity does not hold. The proof is thus completed. �

The following example shows the condition that ω(α) �= 0 a.e. on I is not equiv-
alent to the condition in Theorem 1.

Example 1 Fix α ∈ (0, 1). First divided I into three sub-intervals, and we remove
the open interval of length 1

3 · α right on the middle. Then divided the remaining
two intervals similarly, and remove the open intervals right on the middle of length
1
32 · α. The remaining four sub-intervals are dealt with similarly. Generally, in the nth
step, we remove the middle 2n−1 open sub-intervals from the remaining 2n−1 sub-
intervals right in the middle, whose length are all 1

3n · α. This procedure is similar
to the construction of the Cantor set, the only difference is that the length of the
removed open sub-intervals are smaller. The union of the removed open sub-intervals
is denoted by G0. Let G1 be the open sub-interval first removed, its length is 1

3 · α.
Let G2 be the union of the two sub-intervals removed the second time, their length
are all 1

32 · α. Similarly, the union of the open sub-intervals removed in the nth step is
denoted by Gn, they are all of length 1

3n · α, and the total number of sub-intervals is
2n−1. The remaining elements of I constitute a Cantor positive measure set denoted

by P0, i.e., G0 =
∞⋃

n=1
Gn, P0 = I\G0.
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Obviously, mG0 = α and mP0 = 1 − α > 0. Define ω(α) as follows:

ω(α) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 α ∈ G1,

1/2 α ∈ G2,

1/22 α ∈ G3,

· · · · · ·
1/2n−1 α ∈ Gn,

0 otherwise.

Then we have
(1) ω(α) ≡ 0 on P0, but ω(α) �= 0 a.e. on I .
(2) If I1 is an arbitrary sub-interval on I , then

∫
I1

ω(α)dα > 0.

Proof (1) Obvious.
(2) Clearly,ω(α) is integrable on I . From the structure ofG0,G0 is an open set. Let

I1 ⊂ I be an open interval (if I1 is a closed interval, we just remove the endpoints of
the interval), then from the construction G0 we have I1 ∩ G0 �= ∅, then there exists
x ∈ I1 ∩ G0, since I1 ∩ G0 is open, there exists a neighborhood δ(x, ε) ⊂ I1 ∩ G0,
thus

∫
I1

ω(α)dα >
∫
δ(x,ε) ω(α)dα > 0.

This completes the proof. �
In practice, when we studied distance of fuzzy numbers, the differences on the

larger cut set are more important than that on the lower cut set. Therefore, it should
be a natural condition that the weighted function is monotone. Now we take one-
dimensional Euclidean space as an example to discuss the completeness and separa-
bility of theweightedmetric fuzzy number space. Based on application consideration
we require that the weighted function ω(α) be monotonically increasing. The case
of n-dimensional space can be discussed similarly.

Definition 7 ([7]) For u ∈ En, the support function s of u is define as follows:

s(α, x) = sup
p∈[u]α

< p, x >, (α, x) ∈ I × Sn−1

where Sn−1 is the unit sphere on Rn, �, � is the inner product on Rn.

For all u, v ∈ En, we have the following relation:

dH(u]α, [v]α) = sup
p∈Sn−1

|s([u]α, p) − s([v]α, p)|. (2)

Theorem 2 Let ω(α) be a positive monotone weighted function on I such that∫
I ω(α)dα > 0. Then (E1(K),Lω) is a complete metric space for each nonempty
compact subset K of R. Where E1(K) = {u ∈ E1 : [u]0 ⊆ K}.
Proof For u ∈ E1(K), let su be the support function of u. Let {un|n = 1, 2, . . .}
be a Cauchy sequence in (E1(K),Lω). From [1] it follows that the support func-
tion ω(α)sun is a Cauchy sequence in the Banach space of all L1 integral func-
tion L1(I,C(Sn−1)) form I to the set of all continuous function defined on Sn−1.
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Hence there exists s ∈ L1(I,C(Sn−1)) such that ω(α)sun → s(n → ∞) with respect
to the L1 metric and hence there exists a subsequence ω(α)sun(l) of ω(α)sun such that
ω(α)sun(l) (α, ·) → s(α, ·) a.e. on I . Thus there exists A ⊂ I with Lebesgue measure
0 and I \ A is dense in I such that for each α ∈ I \ A, {ω(α) · sun(i)(α,·)} is Cauchy
sequence in L1(I,C(Sn−1)). Since

ω(α)dH([un( j)]α, [un(i)]α) = ω(α)· ‖ sun( j)(α,·)−sun(i) (α,·) ‖,

then, ‖ sun( j) − sun(i) (α, ·) ‖→ 0, by formula (2). Hence for each α ∈ I \ A,

dH([un( j)]α, [un(i)]α) → 0(i, j → 0).

Thus, {[un( j)]α} is a Cauchy sequence in (KC, dH).
For α ∈ I \ A. This shows that there exists Aα ∈ KC such that

dH([un( j)]α,Aα) → 0( j → ∞).

Let d∗
H(A,B) = inf{ε|N(A, ε) ⊃ B}. Forα1,α2 ∈ I \ Awithα2 ≤ α1, since [un( j)]α1

⊆ [un( j)]α2 , we have

d∗
H(Aα1 ,Aα2) ≤ d∗

H(Aα1 , [un( j)]α1) + d∗
H([un( j)]α1, [un( j)]α2)

+ d∗
H([un( j)]α2 ,Aα2) → ∞(j → ∞).

Hence d∗
H([un]α1, [un]α2) = 0 and Aα1 ⊆ Aα2 .

For α ∈ A \ {0}, define Aα = ∩{Aβ : β ∈ (0,α) \ A}, so Aα ⊆ Aβ ⊆ Aα′ , for all
0 < α

′ ≤ β ≤ α < 1, whereα,α
′ ∈ A \ {0}, β ∈ I \ A. In order to complete the def-

inition of the family {Aα}, for α = 0 we define

A0 = ∪{uα : α ∈ (0, 1]}.

So A0 ⊆ K . For all α ∈ (0, 1], clearly, Aα ∈ KC . It remains to show that if {αn} is a
nondecreasing sequence in I and αn converges to α ∈ I , then Aα = ∩n≥0Aαn .

Let ε > 0. For l > 0, in (KC, dH), since [un( j)]αn → Aαn , choose a sequence of cut
sets {[un(jl)]αn} ⊂ {[un( j)]αn} such that dH([un(jl)]αn ,Aαn) < ε

2n . Since all these cut sets
are nonempty, convex and compact, there is a convergent subsequence {[un(jlp)]αlp } of
{[un(jl)]αp}, let λl(p) = Ak(jlp), let dH([λlp]lp ,Tα) → 0 for some Tα ∈ KC , as lp → ∞.

Then for lp ≥ N(ε,α),

dH

(
lp⋂

n=1
Aαn ,Tα

)

= dH(Aαlp
,Aα)

≤ dH(Aαlp
, [λlp ]αnlp ) + dH([λlp]αlp ,Tα)

≤ ε
2lp

+ ε
2
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thus dH(
∞⋂

n=1
Aαn ,Tα) ≤ ε

2 . Since ε is arbitrary, Tα = ⋂
n≥0 Aαn . Now we show that

Tα = Aα. First, we have Aα ⊆ Tα. Assuming Tα �= Aα, choose x ∈ Tα \ Aα. Since
Aα is compact, there exists a neighborhood V of x and a neighborhoodW of Aα such
that V

⋂
W = ∅. By the convergence of [uj]α, [uj]α ⊂ W for all sufficiently large

j, which means that for all y ∈ V , uj(y) < α. Then there exists j ≥ j0(ε,α), y ∈ V
such that

uj(y) < α − ε

2
. (3)

On the other hand, x is a limit point of xlp ∈ [ulp ]αlp and λlp(xlp) ≥ αlp , when lp
sufficiently large, jlp ≥ j1, xlp ∈ V , X /∈ W , jlp ≥ max{j0, j1}, thus

λlp(xlp) < α − ε

2
. (4)

However, sinceαn is monotonic increasing and converges toα, we haveαlp > α − ε
2

hence (3) and (4) are contradictory. Hence Tα = Aα. So there is a fuzzy set u ∈ E1

such that [u]α = Aα.
Next we show that Lω(un, u) → 0 by showing that ω(α)dH([un( j)]α, [u]α) → 0

a.e.
Define ϕn(α) = ω(α)dH([un]α, [u]α), the

| ϕn(α) |≤ 2 ‖ K ‖ ·ω(1) < ∞

and
| ϕk(α) − ϕl(α) |≤ ω(α)dH([uk]α, [ul]α).

Hence, {ϕn} is aCauchy sequence inL1(I), thus there existsϕ ∈ L1(I) such thatϕn →
ϕ, and subsequence {ϕn( j)} converges to ϕ almost everywhere. Clearly, ϕ ≡ 0 a.e.
on I , so {ϕn} converges to 0 function in L1(I), i.e., Lω(un, u) → 0, thus (E1(K),Lω)

is complete metric space. And the proof is completed. �

Theorem 3 Let ω(α) be a positive monotone weight function on I such that∫
I ω(α)dα > 0. Then (E1,Lω) is separable.

Proof Let u ∈ E1 and ε > 0 be arbitrary. Since [u]0 is compact, take a closed interval
[a0, b0] such that [u]0 ⊂ [a0, b0] and a0, b0 are rational number, take a division a0 =
x0 < x1 < x1 < . . . < xn = b0 of [a0, b0] such that xi+1 − xi = b0−a0

n < 1
∫ 1
0 ω(α)dα

· ε
2 .

For each α ∈ I , let Vα = {⋃[xi − 1, xi]|[u]α ⋂[xi − 1, xi] �= ∅}. Since [u]α is an
interval, there exists unique i1(α) and in(α) such that

[xi1(α)−1, xi1(α)] ∩ [u]α �= ∅ �= [xin(α)−1, xin(α)] ∩ [u]α,

and
Vα = [xi1(α)−1, xi1(α)] ∪ [xi1(α), xi1(α)+1] ∪ · · · [xin(α)−1, xin(α)] ⊃ uα.
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Obviously, i1(α) is increasing about α and in(α) is decreasing about α. Since there
are only finitely many number of i1(α) and in(α), and [u]α is left continuous about
α, there are finitely many αi, i = 1, 2, . . . ,m such that α1 = 0,αm = 1 and for

α ∈ (αi−1,αi] (i = 1, 2, . . . ,m), i1(α) = in(α). Clearly, ν =
m⋃

i=1
αiVαi determines a

fuzzy number ν ∈ E1, and

dH([u]α, [ν]α)dα <
1

∫ 1
0 ω(α)dα

· ε

2
,

hence ∫ 1

0
ω(α)dH([u]α, [ν]α)dα <

ε

2
.

Choose rational βi ∈ I and βm = 1 such that 0 < βi − αi < 1
m · 1

b0−a0
· 1

∫ 1
0 ω(α)dα

· ε
2 ,

αi < βi < αi+1 (i = 1, 2, . . . ,m − 1), define fuzzy number ν1 as follows:

ν1 =
m⋃

i=1

βiVαi .

Clearly, ν1 ∈ E1. Only on [αi,βi] (i = 1, 2, . . . ,m − 1) the cut sets of ν and ν1 are

difference, and the union of these interval are denoted by Ω , Ω =
m⋃

i=1
[αi,βi]. Since

∫ 1
0 ω(α)dα > 0, and

∫ 1
0 ω(α)dH([ν]α, [ν1]α)dα = ∫

Ω
ω(α)dH([ν]α, [ν1]α)dα

<
∫
Ω

ω(α) · m · (b0 − a0) · 1
m · 1

b0−a0
· 1

∫ 1
0 ω(α)dα

· ε
2dα

< ε
2 .

Hence,

∫ 1
0 ω(α)dH([u]α, [ν1]α)dα ≤ ∫ 1

0 ω(α)dH([u]α, [ν]α)dα

+ ∫ 1
0 ω(α)dH([ν]α, [ν1]α)dα < ε.

Clearly, the set of all fuzzy numbers of form ν1 is countable. Thus (E1,Lω) is sepa-
rable. �

Remark 1 Form the definition of Lω metric, when theweight function is amonotonic
increasing function, the influence of the higher cut sets on the distance between two
fuzzy numbersu, ν is greater than the lower cut sets onLω(u, ν). This is quite different
from the classical L1 metric (ω(α) ≡ 1) which treats the distance of all cut sets as
the same. Thus the Lω metric can reflect the difference between the fuzzy numbers
much better.
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Example 2 Let ω(α) = α, α ∈ I , and 0 < δ < 1, define a family of fuzzy numbers
{ut}t∈[0,1−δ] by the cut set function as follows:

[ut]α =
{ [0, 1], α ∈ [0, t],

1, otherwise.

Clearly, L1(ut, ut+δ) = δ for each t. But

Lω(ut, ut+δ) =
∫ t+δ

t
α · 1 = 1

2
[(t + δ)2 − t2] = tδ + δ2

2

Obviously, the smaller t is, the smaller the distance between ut and ut+δ .

Remark 2 In this paper, the discuss is about the weighted metric spaces (E1,Lω).
It follows that all conclusions can be easily generalized to the higher dimensional
cases and we just give the most basic properties of the metric. Further research on
the topological properties and the study of other forms of weighted metric spaces on
the fuzzy number space will be the subject of our future research.

References

1. Diamond, P., Kloeden, P.:Metric spaces of fuzzy sets: Theory andApplications.World Scientific
Publishing, Singapore (1994)

2. Grzegorzewski, P.: Metric and orders in space of fuzzy numbers. Fuzzy Sets Syst. 97(1), 83–94
(1998)

3. Trutschnig,W., Gonzalez-Rodrigue, G., Colubi, A.: A new family of metric for compact, convex
fuzzy sets based on a generalized concept of mid and spread. Inf. Sci. 179, 3964–3972 (2009)

4. Bertoluzza, C.N., Corrdal, N., Salas, A.: On a new class of distances between fuzzy numbers.
Mathw. Soft Comput. 2, 71–84 (1995)

5. Voxman, W.: Some remarks on distances between fuzzy numbers. Fuzzy Sets Syst. 100(1–3),
353–365 (1998)

6. Tran, L., Duckstein, L.: Comparison of fuzzy numbers using a fuzzy distance measure. Fuzzy
Sets Syst. 130, 331–341 (2002)

7. Chen, M.L.: A New Fuzzy Analysis Theory. Scientific Publishing, New York (2009)
8. Rao, M.M.: Measure Theory and Integration. Wiley, Hoboken New Jersy (1987)
9. Chen, S.L., Li, X.G., Wang, X.G.: Fuzzy Set and Application. Scientific Publishing, New York

(2013)



Multi-variable-term Latticized Linear
Programming with Addition-Min Fuzzy
Relation Inequalities Constraint

Hai-Tao Lin and Xiao-Peng Yang

Abstract P2P network can be reduced into a system of fuzzy relation
inequalities with addition-min composition. In this paper we introduce multi-
variable-term latticized linear programming subject to this system. Firstly, we intro-
duce some properties on the minimal solution of the system. Next we define the
minimal intervals of the system. Meanwhile, We prove that the optimal solution of
the programming is the minimal solution of the system. Finally, we get algorithm for
the programming by translating it into some linear programming problems with min-
imal intervals constraint. An example is given to show the efficiency and feasibility
of the algorithm.

Keywords Fuzzy relation inequality · Latticized linear programming · Addition-
min composition · Minimal interval

1 Introduction

Fuzzy relation equationwasfirst proposedbyE. Sanchez [1, 2] in 1976 andhas played
an important role in fuzzy logic, fuzzy implication, engineering management, image
processing and other application fields.

Optimization problem with fuzzy relation equation or inequality constraint is
an research topic. P.-Z. Wang [3] studied the resolution of max-min fuzzy relation
inequalities and introduced the corresponding latticized linear programming prob-
lem. After then, optimal solution(s) was/were selected from the minimal solution set
of the constraint by comparing their objective function values. S.-C. Fang [4] was
the first researcher who considered the linear programming problem subject to fuzzy
relation equations. Due to the special structure of max-min fuzzy relation equation,
the proposed problem was equivalently converted into a 0–1 integer programming
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and then solved by the branch-and-bound method. For more works on minimizing a
linear function under the fuzzy relation equation constraint, the readers may refer to
[5–12].

Recently, S.-J.Yanget al. [13, 14] introduced the concept of fuzzy relation inequal-
ity with addition-min composition with application in bittorrent-like peer-to-peer
(P2P) file sharing system and investigated the corresponding fuzzy relation linear
programming problem. To present some further results on the P2P file sharing sys-
tem, X.-P. Yang et al. proposed the fuzzy relationmulti-level linear programming and
min-max programming problems with effective solution algorithms. As pointed out
in [14], the file sharing system, under bittorrent-like peer-to-peer transmission mech-
anism, could be reduced into a system of addition-min fuzzy relation inequalities.
The optimization model established and studied in [13] as follows:

min z(x) = c1x1 + c2x2 + · · · + cnxn

s.t. A ◦ xT ≥ bT .
(1)

where ◦ is the composition operator of addition-min. The author aimed atminimizing
the linear sum of the quality levels, i.e. x1, x2, . . . , xn . The coefficient c j theweighted
factor x j , j = 1, 2, . . . , n, and the objective function z(x) reflected the network
congestion in the P2P file sharing system. However, the coefficients c1, c2, . . . , cn
are usually objective and are given by some specific experts. Thus, it is necessary to
consider more than one group of values of the coefficients. Suppose that there are p
experts providing p groups of values of the coefficients, i.e.

{Ct j > 0|t = 1, 2, . . . , p, j = 1, 2, . . . , n},

and the t th function z j (x) =
n∑

j=1
Ct j x j still reflects the network congestion, t =

1, 2, . . . , p. In this paper, we aim at minimizing the maximum network congestions
described by p experts. We established the following optimization model:

min z(x) =
n∑

j=1

C1 j x j ∨
n∑

j=1

C2 j x j · · · ∨
n∑

j=1

Cpj x j

s.t. A ◦ xT ≥ bT ,

(2)

where “∨” is the maximum value and A ◦ xT ≥ bT is a system of addition-min fuzzy
relation inequalities.

In this paper, we aim at obtainning an algorithm for model (2). The remaining
content is organized as follows. In Sect. 2 we introduce some concepts and results
of the system of addition-min fuzzy relation inequalities. In Sect. 3, we discuss the
optimal solution of problem (2) by converting it into other models. We get an algo-
rithm for our problem in Sect. 4. An example is cited to explain the notations and the
algorithm for problem (2) in Sect. 5 and the conclusion is in Sect. 6.
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2 Preliminaries

Fuzzy relation inequalities with addition-min composition can be written as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a11 ∧ x1 + a12 ∧ x2 + · · · a1n ∧ xn ≥ b1
a21 ∧ x1 + a22 ∧ x2 + · · · + a2n ∧ xn ≥ b2
· · ·
am1 ∧ x1 + am2 ∧ x2 + · · · + amn ∧ xn ≥ bm .

(3)

where “∧” is the minimum value.
Let A = (ai j )m×n ∈ [0, 1]m×n , x = (x1, x2, . . . , xn) ∈ [0, 1]n , b = (b1, b2, . . . ,

bm) ∈ [0, 1]m , and◦ addition-min composition. I={1, 2, . . . ,m} and J={1, 2, . . . , n}
two index sets, then the system (3) can be reduced to

A ◦ xT ≥ bT , (3′)

Denote X = [0, 1]n and X (A, b) = {x ∈ X |A ◦ xT ≥ bT }, where X (A, b) is the
solution set of system (3).

Definition 1 For x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ X , x ≥ y (x ≤ y) if
x j ≥ y j (x j ≤ y j ) for all j ∈ J .

Definition 2 System (3) is said to be consistent if X (A, b) 	= ∅. Otherwise, it is said
to be inconsistent.

Definition 3 A solution x̂ ∈ X (A, b) is said to be the maximum solution of system
(3) when x ≤ x̂ for all x ∈ X (A, b). A solution x̌ ∈ X (A, b) is said to be a minimal
solution of system (3) when x ≤ x̌ implies x = x̌ for any x ∈ X (A, b).

Lemma 1 (i) Let x ′ ∈ X (A, b), x ∈ X. For any x ≥ x ′, then x ∈ X (A, b);
(ii) Let x ′, x ∈ X and x ′ /∈ X (A, b). For any x ≤ x ′, then x /∈ X (A, b).

Proof (i) Let x ′ = (x ′
1, x

′
2, . . . , x

′
n) and x = (x1, x2, . . . , xn). Since x ≥ x ′ and x ′ ∈

X (A, b), then for any i ∈ I ,

ai1 ∧ x1 + ai2 ∧ x2 + · · · + ain ∧ xn ≥ ai1 ∧ x ′
1 + ai2 ∧ x ′

2 + · · · + ain ∧ x ′
n ≥ bi ,

which implies that x is a feasible solution of system (3).
The proof of (ii) is similar to (i). �

Theorem 1 For system (3), we have equivalent conditions:
(i) system (3) is consistent;

(ii)
n∑

j=1
ai j ≥ bi for all i ∈ I ;

(iii) x̂ = (1, 1, . . . , 1) is the maximum solution of (3).
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Proof (i)⇒(ii) If system (3) is consistent, then there exist x = (x1, x2, . . . , xn),

which satisfies ai1 ∧ x1 + ai2 ∧ x2+ · · ·+ain ∧ xn ≥ bi for any i ∈ I . Thus
n∑

j=1
ai j ≥

bi ≥ ai1 ∧ x1 + ai2 ∧ x2 + · · · + ain ∧ xn ≥ bi for any i ∈ I .

(ii)⇒(iii) Since
n∑

j=1
ai j = ai1 ∧ 1 + ai2 ∧ 1 + · · · + ain ∧ 1 ≥ bi for any i ∈ I ,

then x̂ = (1, 1, . . . , 1) is the maximum solution of (3).
(iii)⇒(i) Obviously, x̂ = (1, 1, . . . , 1) ∈ X (A, b) implies that system (3) is

consistent. �

Theorem 2 If system (3) is consistent, then the feasible solutions set is

X (A, b) =
⋃

x̌∈X̌(A,b)
{x ∈ X |x̌ ≤ x ≤ x̂},

where x̂ = (1, 1, . . . , 1) and X̌(A, b) is the set of all the minimal solutions of (3).

Proof The proof is trivial by Lemma 1 and Theorem 1. �

Theorem 3 Suppose x = (x1, x2, . . . , xn) ∈ X (A, b). Then for any i ∈ I, j ∈ J ,

x j ≥ bi −
∑

k∈J−{ j}
aik .

Proof Since x = (x1, x2, . . . , xn) ∈ X (A, b), then

∑

k∈J

aik ∧ xk = ai j ∧ x j +
∑

k∈J−{ j}
aik ∧ xk ≥ bi ,

or
x j ≥ ai j ∧ x j = bi −

∑

k∈J−{ j}
aik ∧ xk ≥ bi −

∑

k∈J−{ j}
aik,

and this completes the proof. �

Denote ǎi j = max{0, bi − ∑
k∈J−{ j} aik}, ǎ j = max{ǎi j |i ∈ I }.

Theorem 4 If x ∈ X (A, b) of system (3), then x ≥ ǎ, where ǎ = (ǎ1, ǎ2, . . . , ǎn).

Proof For x = (x1, x2, . . . , xn) ∈ X (A, b). x j ≥ bi − ∑

k∈J−{ j}
aik for any i ∈ I,

j ∈ J . Since x j ≥ 0, then x j ≥ max{0, bi − ∑

k∈J−{ j}
aik} = ǎi j for all i ∈ I, j ∈ J .

Hence x j ≥ max{ǎi j |i ∈ I } = ǎ j for all j ∈ J . Thus x ≥ ǎ. �

Denote â j = max{ai j |i ∈ I }, and â = (â1, â2, . . . , ân).

Theorem 5 If x̌ is a minimal solution of system (3), then x̌ ≤ â.
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Proof For all i ∈ I , ai1 ∧ â1 + ai2 ∧ â2 + · · · + ain ∧ ân ≥ ai1 ∧ ai1 + ai2 ∧ ai2

+ · · · + ain ∧ ain =
n∑

j=1
ai j ≥ bi , then â ∈ X (A, b) if system (3) is consistent. Thus

for all x > â, x is a solution of (3) by (i) of Lemma 1, which means each x > â is
not a minimal solution of (3). Hence, x̌ ≤ â. �

Corollary 1 Let x̌ be any minimal solution of system (3), i.e., x̌ ∈ X̌(A, b), then
ǎ ≤ x̌ ≤ â.

Proof The proof is trivial by Theorems4 and 5. �

System (3) always has minimal solution if it is consistent. And all the minimal
solutions are between ǎ and â. Next, we want to find all the minimal solutions of
system (3) and introduce some definitions.

Definition 4 For j ∈ J , denote Dj = {d0 j , d1 j , . . . , ds j j } and D = D1 × D2 · · · ×
Dn , where Dj satisfy:
(i) ǎ j = d0 j < d1 j <, · · · ,< ds j j=â j , where dkj ∈ {ai j |i ∈ I }, k=1, 2, . . . , s j − 1;
(ii) For any j ∈ J , if ai j ≥ ǎ j , there exists unique i ′ ∈ {0, 1, 2, . . . , s j }, such that
ai j = di ′ j .

Definition 5 A interval [x̄−, x̄] is a minimal interval if it satisfies:
(i) x̄ = (dk11, dk22, . . . , dknn) ∈ D and x̄− = (d(k1−1)1, d(k2−1)2, . . . , d(kn−1)n) ∈ D;
(ii) x̄ is a solution of system (3);
(iii) x̄− is not a solution of system (3).

Example 1 Consider the following systems:

⎧
⎪⎨

⎪⎩

0.6 ∧ x1 + 0.45 ∧ x2 + 0.55 ∧ x3 ≥ 1.55

0.4 ∧ x1 + 0.9 ∧ x2 + 0.55 ∧ x3 ≥ 1.65

0.75 ∧ x1 + 0.5 ∧ x2 + 0.85 ∧ x3 ≥ 1.6

(4)

Solution:
By definition, it is easy to get the results as following:

(ǎi j ) =
⎛

⎝
0.55 0.4 0.5
0.2 0.7 0.35
0.25 0 0.35

⎞

⎠ , ǎ = (0.55, 0.7, 0.5), â = (0.75, 0.9, 0.85),

D1 = {0.55, 0.6, 0.75}, D2 = {0.7, 0.9}, D3 = {0.5, 0.55, 0.85}.

Then, all the intervals which satisfied (i) of Definition 5 are:
d1=[(0.55, 0.7, 0.5)T , (0.6, 0.9, 0.55)T ], d2=[(0.55, 0.7, 0.55)T , (0.6, 0.9, 0.85)T ],
d3 = [(0.6, 0.7, 0.5)T , (0.75, 0.9, 0.55)T], d4=[(0.6, 0.7, 0.55)T , (0.75, 0.9, 0.85)T].

Now check (ii) and (iii) of Definition 5 to get the minimal intervals.
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Since (0.6, 0.9, 0.55) is a solution of (4) and (0.55, 0.7, 0.5) is not a solution of
(4), then d1 is a minimal interval.

Since (0.6, 0.9, 0.85) is a solution of (4) and (0.55, 0.7, 0.55) is a solution of (4),
then d2 is not a minimal interval.

Since (0.75, 0.9, 0.55) is a solution of (4) and (0.6, 0.7, 0.5) is not a solution of
(4), then d3 is a minimal interval.

Since (0.75, 0.9, 0.85) is a solution of (4) and (0.6, 0.7, 0.55) is a solution of (4),
then d1 is not a minimal interval.

We get all the minimal intervals of system (4) are d1 and d3.
The following theorem will show that all the minimal solutions of system (3) can

be found in minimal intervals.

Theorem 6 If x̌ is a minimal solution of system (3), then there exist some minimal
interval [x̄−, x̄] of system (3), s.t. x̌ ∈ [x̄−, x̄].
Proof If x̌ = (x̌1, x̌2, . . . , x̌n) is aminimal solution of system (3), according toCorol-
lary 1, then ǎ ≤ x̌ ≤ â.

For any j ∈ J , ǎ j = d0 j < d1 j <, · · · ,< ds j j = â j , there exist some k j ∈ {1, 2,
. . . , s j }, s.t. d(k j−1) j < x̌ j ≤ d(k j ) j . Let x̄− = (d(k1−1)1, d(k2−1)2, . . . , d(kn−1)n) and
x̄ = (dk11, dk22, . . . , dknn), then x̄− < x̌ ≤ x̄ .

Since x̄ ≥ x̌ , then x̄ is a solution of system (3). Since x̄− < x̌ and x̌ is a minimal
solution of system (3), then x̄− is not a solution of system (3). �

3 The Optimal Solution of (2)

In this subsection,we aim to solve the optimal solution of problem (2). First, we prove
that the optimal solution of (2) is a minimal solution of (3) by Theorem 7. Then, to
seek the optimal solution of (2), we set up an optimization problem (5), which will
prove to be equivalent to problem (2) by Theorem 8. Furthermore, we construct a
range of optimization problem (Pt ) to deal with problem (5) by Theorem 9. Finally,
we solve problem (2) by Theorem 10.

Then optimal problem (2) can be rewritten as:

min z(x) =
p∨

i=1

n∑

j=1

Ci j x j (2′)

s.t. A ◦ xT ≥ bT

Theorem 7 If x∗ is the optimal solution of problem (2), then x∗ is a minimal solution
of (3).

Proof Let x∗ = (x∗
1 , x

∗
2 , . . . , x

∗
n ) be an optimal solution of system (2), x = (x1, x2,

. . . , x1) be any feasible solution of (3) and x ≤ x∗. We will prove x = x∗ which
means that x∗ is a minimal solution of system (3).
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Since x∗ is an optimal solution, then z(x∗) ≤ z(x), i.e.,

n∑

j=1

C1 j x
∗
j ∨

n∑

j=1

C2 j x
∗
j · · · ∨

n∑

j=1

Cpj x
∗
j ≤

n∑

j=1

C1 j x j ∨
n∑

j=1

C2 j x j · · · ∨
n∑

j=1

Cpj x j .

There exists i0 ∈ {1, 2, . . . , p}, such that

n∑

j=1

Ci0 j x j =
n∑

j=1

C1 j x j ∨
n∑

j=1

C2 j x j · · · ∨
n∑

j=1

Cpj x j .

Then
n∑

j=1

Ci0 j x j ≥
n∑

j=1

C1 j x
∗
j ∨

n∑

j=1

C2 j x
∗
j · · · ∨

n∑

j=1

Cpj x
∗
j ,

which implies that
n∑

j=1

Ci0 j x j ≥
n∑

j=1

Ci0 j x
∗
j ,

or
n∑

j=1

Ci0 j (x j − x∗
j ) ≥ 0.

Since for j ∈ J , Ci0 j ≥ 0 and x j ≤ x∗
j , then x j = x∗

j . Thus x = x∗. �

For seeking the optimal solution of (2), we construct a optimization model as
follows:

min y

s.t.

⎧
⎨

⎩

y ≥
n∑

j=1
Ci j x j , i = 1, 2, . . . , p.

A ◦ xT ≥ bT

(5)

Theorem 8 (i) The optimal value (objective function) of problem (2) is equal to the
optimal value (objective function) of problem (5).
(ii) The complete optimal solution set of (2) is exactly the complete optimal solution
of (5);

Proof Let x1∗ = (x1∗1 , x1∗2 , . . . , x1∗n ) be any optimal solution of (2) and z∗ is the opti-
mal value (objective function) of (2). Let x2∗ = (x2∗1 , x2∗2 , . . . , x2∗n ) be any optimal
solution of (5) and y∗ is the optimal value of (5). We will prove that:

(i) y∗ = z∗, which implies that the optimal value (objective function) of problem
(2) is equal to that of (5);
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(ii) x1∗ is an optimal solution of (5) and x2∗ is an optimal solution of (2), which
implies that the complete optimal optimal solution set of problem (2) is exactly the
same as that of (5).

Onone hand, since x1∗ is an optimal solution of (2), then x1∗ satisfies A ◦ (x1∗)T ≥
bT in problem (2). Furthermore, z∗ = z(x1∗) =

n∑

j=1
C1 j x1∗j ∨

n∑

j=1
C2 j x1∗j · · · ∨

n∑

j=1

Cpj x1∗j ≥
n∑

j=1
Ci j x1∗j for any i = 1, 2, . . . , p, which indicates that x1∗ is a feasible

solution of problem (5). Hence y∗ ≤ z(x1∗) = z∗.
On the other hand, since x2∗ is an optimal solution of (5) and y∗ is the optimal

value of (5), then x2∗ satisfies the constraints of problem (5), i.e., y∗ ≥
n∑

j=1
Ci j x2∗j

for i = 1, 2, . . . , p, which means y∗ ≥
n∑

j=1
C1 j x2∗j ∨

n∑

j=1
C2 j x2∗j · · · ∨

n∑

j=1
Cpj x2∗j =

z(x2∗). Meanwhile A ◦ (x2∗)T ≥ bT . Then, x2∗ is a feasible solution of (2), which
means z(x2∗) ≥ z(x1∗) = z∗. Hence y∗ ≥ z(x2∗) ≥ z(x1∗) = z∗.

Therefore, y∗ = z∗.
From the proof above, x2∗ is an feasible solution of (5) and z(x2∗) = z∗. Then x2∗

is an optimal solution of (5). Since x1∗ is an feasible solution of (2) and its subject
value is y∗, then x1∗ is an optimal solution of (2). �

Suppose that the minimal intervals of system (3) are d1, d2, . . . , ds . We call the
following models as problem (Pt ), where t = 1, 2, . . . , s.

(Pt )min y

s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y ≥
n∑

j=1
Ci j x j , i = 1, 2, . . . , p

A ◦ xT ≥ bT

x ∈ dt .

(6)

Theorem 9 Suppose that the optimal value (objective function) of problem (Pt ) is
yt∗ for t = 1, 2, . . . , s. Then the optimal value (objective function) of problem (5) is

y∗ =
s∧

t=1
yt∗.

Proof Suppose that x∗ = (x∗
1 , x

∗
2 , . . . , x

∗
n ) is an optimal solution of problem (5)

and the optimal value (objective function) is y∗. Then x∗ is an optimal solution of
problem (2) byTheorem8.Hence, x∗ is aminimal solution of (3) byTheorem7. Then
by Theorem 6, there exist some minimal interval dt0 , s.t. x

∗ ∈ dt0 , t0 ∈ {1, 2, . . . , s}.
Therefore, x∗ is a feasible solution of problem (Pt0), which implies y∗ ≥ yt0∗.

For t ∈ {1, 2, . . . , s}, y∗ ≤ yt∗ since problem (Pt ) is problem (5) limited to the

minimal interval dt . Then y∗ ≤
s∧

t=1
yt∗ ≤ yt0∗.

Therefore, y∗ =
s∧

t=1
yt∗. �
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Theorem 10 Suppose that the optimal value (objective function) of problem (Pt ) is
yt∗ for t = 1, 2, . . . , t . Then the optimal value (objective function) of problem (2) is

y∗ =
s∧

t=1
yt∗.

Proof The proof is trivial by Theorems8 and 9. �

4 Algorithm for Solving Problem (2)

Based on the concepts and results above, we obtain an algorithm for the optimal
solution of (2):

Step 1. Check the consistency of system (3) by Theorem 1. If it is consistent, go
to Step 2.

Step 2. Compute ǎ, â of problem (2) and D1, D2, . . . , Dn by Definition 4.
Step 3. Find theminimal intervals dt of (2) byDefinition 5, where t = 1, 2, . . . , s.
Step 4. Solve the linear programming problem (Pt ), t = 1, 2, . . . , s.

Step 5. Obtain the optimal value of problem (2) by y∗ =
s∧

t=1
yt∗, where yt∗ is the

optimal value of (Pt ).
Step 6. Obtain the optimal solutions of problem (2) by finding t0 ∈ {1, 2, . . . , s},

s.t. yt0∗ = y∗.

5 Numerical Example

Example 2 Solve the fuzzy optimal problem:

min g(x) = (0.7x1 + 0.25x2 + 0.9x3) ∨ (0.8x1 + 0.2x2 + 0.65x3)

∨ (0.45x1 + 0.8x2 + 0.35x3)

s.t.

⎧
⎪⎨

⎪⎩

0.6 ∧ x1 + 0.45 ∧ x2 + 0.55 ∧ x3 ≥ 1.55,

0.4 ∧ x1 + 0.9 ∧ x2 + 0.55 ∧ x3 ≥ 1.65,

0.75 ∧ x1 + 0.5 ∧ x2 + 0.85 ∧ x3 ≥ 1.6.

(7)

Solution:
Step 1–3. we have checked and computed in Example 1.
Step 4. There are only two minimal intervals, we will compute them one by one.

Choose [(0.55, 0.7, 0.5)T , (0.6, 0.9, 0.55)T ] as an minimal interval and solve (P1):
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min y

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y ≥ 0.7x1 + 0.25x2 + 0.9x3,

y ≥ 0.8x1 + 0.2x2 + 0.65x3,

y ≥ 0.45x1 + 0.8x2 + 0.35x3,

x1 + 0.45 + x3 ≥ 1.55,

0.4 + x2 + x3 ≥ 1.65,

x1 + 0.5 + x3 ≥ 1.6,

0.55 ≤ x1 ≤ 0.6, 0.7 ≤ x2 ≤ 0.9, 0.5 ≤ x3 ≤ 0.55.

(8)

Weget the optimal solution is y1∗=1.055 and the optimal solution is (0.55, 0.7, 0.55).
Choose [(0.6, 0.7, 0.5)T , (0.75, 0.9, 0.55)T ] as an minimal interval and solve

(P2):
min y

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y ≥ 0.7x1 + 0.25x2 + 0.9x3,

y ≥ 0.8x1 + 0.2x2 + 0.65x3,

y ≥ 0.45x1 + 0.8x2 + 0.35x3,

0.6 + 0.45 + 0.55 ≥ 1.55,

0.4 + x2 + 0.55 ≥ 1.65,

x1 + 0.5 + x3 ≥ 1.6,

0.6 ≤ x1 ≤ 0.75, 0.7 ≤ x2 ≤ 0.9, 0.5 ≤ x3 ≤ 0.55.

(9)

We get the optimal solution is y2∗ = 1.045 and the optimal solution is (0.6, 0.7, 0.5).
Step 5. The optimal value of problem (7) is y∗ = 1.055 ∧ 1.045 = 1.045.
Step 6. The optimal solutions of problem (7) is (0.6, 0.7, 0.5) since y2∗ =

y∗=1.045.

6 Conclusion

In this paper, we provide an algorithm for multi-variable-term latticized linear pro-
gramming with addition-min fuzzy relation inequalities constraint. First, the optimal
solution of problem (2) is a minimal solution of system (3) (Theorem 7) and, a min-
imal solution of system (3) is in some minimal interval (Theorem 6). Second, prob-
lem (2) is equivalent to (5), which can be decomposed into some linear subproblems
(Pt ). Relation among problem (2), problem (5) and subproblems (Pt ) is discussed in
Theorem 8–10. The key technology of the algorithm is that we decompose problem
(2) into several subproblems (Pt ) by defining the minimal intervals.

According to the analysis and examples, the problem proposed can be convert into
several linear programming problems. The computational complexity of the problem
depends on the minimal intervals, which reduced much work. As we have shown in
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Example 2, it just needs to solve 2 linear programming problems and check which
one is better(smaller).
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Possibility Interval-Valued Multi-fuzzy Soft
Sets and Theirs Applications

Dong-Xue Li, Jian-Hua Jin and Wei Ran

Abstract The notions of interval-valued multi-fuzzy soft set and possibility
interval-valued multi-fuzzy soft set are proposed in this paper. Several interesting
algebraic properties of them are then investigated. In particular, both interval-valued
multi-fuzzy soft set and possibility interval-valuedmulti-fuzzy soft setwith union and
intersection operators turn out to be distributive lattices. Finally, possibility interval-
valuedmulti-fuzzy soft sets are applied to decisionmaking and an illustrated example
is given.

Keywords Multi-fuzzy set · Interval-valued fuzzy set · Interval-valued multi-fuzzy
soft set · Possibility interval-valued multi-fuzzy soft set · Lattice

1 Introduction

Since Zadel [12] introduced fuzzy set in 1965, extensions on fuzzy set have been
widely discussed. Researchers expand fuzzy sets from different viewpoints like
interval-valued fuzzy set [1], intuitionistic fuzzy set [2] and multi-fuzzy set [8] and
so on. Motodtsov proposed soft set theory [6], which is a useful tool to solve uncer-
tainty. Combining soft set theory with fuzzy set theory, many scholars investigate
generalized soft sets such as interval-valued fuzzy soft set [9], intuitionistic fuzzy
soft set [5], multi-fuzzy soft set [10], interval-valued intuitionistic fuzzy soft set [3],
bipolar multi-fuzzy soft set theory [11] and possibility multi-fuzzy soft set [13].
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In our real world, much information involving different parameters is uncertain
and vague. And it is also difficult for people to characterize it by a precise number. To
more accurately express the information,we propose interval-valuedmulti-fuzzy soft
set, combined interval-valued fuzzy set and multi-fuzzy soft set. Considering each
parameters’ possibility degree, we propose possibility interval-valued multi-fuzzy
soft set. Some important algebraic properties on these system are investigated.

The rest of the paper is arranged as follows. Section2 briefly reviews some back-
grounds on soft sets, interval-valued fuzzy sets, intuitionistic fuzzy sets and multi-
fuzzy sets. Section3 gives the notion of interval-valuedmulti-fuzzy soft sets based on
interval-valued fuzzy sets and multi-fuzzy soft sets, some operators on them are then
investigated in detail. Section4 gives the notion of possibility interval-valued multi-
fuzzy soft sets and investigated some operations. An example is given to illustrate
application of possibility interval-valued multi-fuzzy soft sets to decision making in
Sect. 5. Section6 summarizes the conclusion.

2 Preliminaries

In the section we present some definitions and preliminaries in brief which are
required in the sequel of our work.

Definition 1 ([6]) LetU be an initial universe set and E a set of parameters. A ⊆ E .
A pair (F, A) is called a soft set overU if F : A → P(U ) is a mapping, where P(U )

is the set of all subsets of U .

Definition 2 ([4]) Let U be an initial universe set and E be a set of parameters. A
pair (F, A) is called a fuzzy soft set over (U, E) if A ⊆ E and F is a mapping given
by F : A → f (U ), where f (U ) is the set of all fuzzy sets over U .

Definition 3 ([1]) Let U be an initial universe set. A set X is called an interval-
valued fuzzy set over U if X : U → I nt ([0, 1]) is a mapping, where I nt ([0, 1])
stands for the set of all closed subintervals of [0,1].

Let I V F(U ) denote the set of all interval-valued fuzzy sets on U and E a set of
parameters. A pair (F, A) is called an interval-valued fuzzy soft set [9] over (U, E)

if A ⊆ E and F : A → I V F(U ) is a mapping.

Definition 4 ([2]) Let X be an initial universe set. An intuitionistic fuzzy set A on X
is defined as an object of the following form: A = {< x,μA(x), νA(x) >: x ∈ X}.
The function μA : X → [0, 1] and νA : X → [0, 1] define the degree of membership
and the degree of nonmembership of element x ∈ X to set A. For all x ∈ X , 0 ≤
μA(x) + νA(x) ≤ 1.

Let I F(U ) denote the set of all intuitionistic fuzzy sets over U and E a set of
parameters. A pair (F, A) is called an intuitionistic fuzzy soft set [5] over (U, E) if
A ⊆ E and F is a mapping given by F : A → I F(U ).
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Definition 5 ([7]) Let X be an initial universe, an interval-valued intuitionistic
fuzzy set on X is an object of the form A = {< x,μA(x), νA(x) >: x ∈ X}, where
μA(x) = [μ−

A(x),μ+
A(x)], νA(x) = [ν−

A (x), ν+
A (x)],μA(x) : X → I nt[0, 1],νA(x) :

X → I nt[0, 1], and satisfied μ+
A(x) + ν+

A (x) ≤ 1.

Let U be an initial universe set and E be set of parameters. IVIFS denotes the
set of all interval-valued intuitionistic fuzzy sets of U . A pair (F, A) is called an
interval-valued intuitionistic fuzzy soft set [3] over (U, E) if A ⊆ E and F is a
mapping given by F : A → I V I FS.

Definition 6 ([8]) LetU be an initial universe set and k be positive integer. A multi-
fuzzy set A overU is a set of ordered sequences denoted by: A = {u/(μ1(u),μ2(u),

. . . ,μk(u)) : u ∈ U }, where μi ∈ F(U ), i = 1, 2, . . . , k.

Function μA = (μ1,μ1, . . . ,μk) is called the multi-membership function of
multi-fuzzy set A, and k is called the dimension of A. The set of all multi-fuzzy
sets of dimension k in U is denoted by MkFS.

If
∑k

i=1 μi (u) ≤ 1, ∀u ∈ U , then the multi-fuzzy set of dimension k is called
a normalized multi-fuzzy set. If

∑k
i=1 μi (u) = l > 1, for some u ∈ U , we redefine

themulti-member degree {u/(μ1(u),μ2(u), . . . ,μk(u)) : u ∈ U } as { 1l (u/(μ1(u),μ2

(u), . . . ,μk(u))) : u ∈ U }, then a non-normalized multi-fuzzy set can be changed
into a normalized multi-fuzzy set.

Let U be an initial universe set and E be set of parameters. A pair (F, A) is
called a multi-fuzzy soft set [10] of dimension k over U , where F : A → MkFS is
a mapping.

3 Interval-Valued Multi-fuzzy Soft Set

Combining interval-valued fuzzy set with multi-fuzzy soft set, we define an interval-
valued multi-fuzzy soft set as an extension of multi-fuzzy soft set.

Definition 7 Let U be an initial universe and E a set of parameters. A pair (F̃, A)

is called an interval-valued multi-fuzzy soft set (for short IVMkFSS) over (U, E)

if A ⊆ E and F̃ is a mapping given by F̃ : A → I V MkFS, where IVMkFS is a
special multi-fuzzy set denoted by IVMkFS={u/(μ1(u),μ2(u), . . . ,μk(u)) : u ∈
U },μi (u)=[μ−

i (u),μ+
i (u)], 0 ≤ μ−

i (u) ≤ μ+
i (u) ≤ 1, i = 1, 2, . . . , k. The form of

F̃ is F̃(e) = {F̃(ei ), i = 1, 2, 3}.

If
k∑

i=1
μ+
i (u) ≤ 1, ∀u ∈ U , then the interval-valued multi-fuzzy soft set of dimen-

sion k is called a normalized interval-valuedmulti-fuzzy soft set. If
k∑

i=1
μ+
i (u) = l > 1

for some u ∈ U , we redefine the interval-valued multi-member degree {u/([μ−
1 (u),

μ+
1 (u)], [μ−

2 (u),μ+
2 (u)], . . . , [μ−

k (u),μ+
k (u)])} as { 1l (u/([μ−

1 (u),μ+
1 (u)], [μ−

2 (u),
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μ+
2 (u)], . . . , [μ−

k (u),μ+
k (u)]))}, for ∀u ∈ U,∀e ∈ E . Then a non-normalized

interval-valuedmulti-fuzzy soft set can be changed into a normalized interval-valued
multi-fuzzy soft set.

If μ−
i (u) = μ+

i (u), ∀e ∈ E, u ∈ U, i = 1, 2, . . . , k, IVMkFSS degenerates to
multi-fuzzy soft set. If k = 2, IVMkFSS degenerates to interval-valued intuitionistic
fuzzy soft set. If μ−

i (u) = μ+
i (u) and k = 2, IVMkFSS degenerates to intuitionistic

fuzzy soft set.

Definition 8 Let U be a finite initial universe and E a finite set of parameters. F
and G are two IVMkFSS over U . F = {u/(μ1(u),μ2(u), . . . ,μk(u)) : u ∈ U }, G =
{u/(ν1(u), ν2(u), . . . , νk(u)) : u ∈ U }, where μi (u) = [μ−

i (u),μ+
i (u)], νi (u) =

[ν−
i (u), ν+

i (u)], i = 1, 2, . . . k. Then the following relations and operations on them
are defined:

(1) F ⊆ G if μi (u) ≤ νi (u), i.e., μ−
i (u) ≤ ν−

i (u) and μ+
i (u) ≤ ν+

i (u), ∀u ∈ U, i =
1, 2, . . . k.

(2) F = G if μi (u) = νi (u), i.e., μ−
i (u) = ν−

i (u) and μ+
i (u) = ν+

i (u), ∀u ∈ U, i =
1, 2, . . . k.

(3) F ∪ G={u/(μ1(u) ∨ ν1(u),μ2(u) ∨ ν2(u), . . . ,μk(u) ∨ νk(u)) :u ∈ U }, where
μi (u) ∨ νi (u) = [μ−

i (u) ∨ ν−
i (u),μ+

i (u) ∨ ν+
i (u)], i = 1, 2, . . . k.

(4) F ∩ G={u/(μ1(u) ∧ ν1(u),μ2(u) ∧ ν2(u), . . . ,μk(u) ∧ νk(u)) :u ∈ U }, where
μi (u) ∧ νi (u) = [μ−

i (u) ∧ ν−
i (u),μ+

i (u) ∧ ν+
i (u)], i = 1, 2, . . . k.

(5)Fc = {u/(1 − μ1(u), 1 − μ2(u), . . . , 1 − μk(u)) : u ∈ U }, where 1 − μi (u) =
[1 − μ+

i (u), 1 − μ−
i (u)], i = 1, 2, . . . k.

Definition 9 Let U = {u1, u2, . . . , un} be a finite initial universe and E a finite
set of parameters, E = {e1, e2, . . . , em}. An IVMkFSS (F̃, A) = F̃(e) = {F̃(ei )|i =
1, 2, . . . ,m}, F̃(ei ) = {u/(μ1(u),μ2(u), . . . ,μk(u))} has a complement set given by
(F̃c, A), denoted by (F̃c, A) = (G̃, A), where G̃ is a mapping denoted by G̃ : A →
I V MkFS and G̃(e) = 1 − F̃(e), where G̃(e) = {G̃(ei )|i = 1, 2, . . . ,m}, G̃(ei ) =
{u/(1 − μ1(u), 1 − μ2(u), . . . , 1 − μk(u)) : u ∈ U }, 1 − μ j (u) = [1 − μ+

j (u), 1 −
μ−

j (u)], j = 1, 2, . . . , k.

Definition 10 Let U = {u1, u2, . . . , un} an initial universe and E be a set of para-
meters, E = {e1, e2, . . . , em}. (F̃, A) and (G̃, A) are two IVMkFSSs over (U, E).
(F̃, A) is said to be an interval-valued multi-fuzzy soft subset of (G̃, A) denoted by
F̃ ⊆ G̃ if F̃(e) ⊆ G̃(e). i.e., F̃(ei ) ⊆ G̃(ei ), i = 1, 2, . . . ,m.

Definition 11 LetU = {u1, u2, . . . , un} be an initial universe and E a set of parame-
ters, E = {e1, e2, . . . , em}. (F̃, A) and (G̃, A) two IVMkFSSs over (U, E). (F̃, A) =
F̃(e) = {F̃(ei )}, F̃(ei ) = {u/(μ1(u),μ2(u), . . . ,μk(u))}. (G̃, A) = G̃(e) = {G̃(ei },
G̃(ei ) = {u/(ν1(u), ν2(u), . . . , νk(u))}, i = 1, 2, . . . ,m, u ∈ U . An union opera-
tion on F̃ and G̃ denoted by F̃ ∪ G̃ is defined by a mapping given by H̃ :
A → I V MkFS, (H̃ , A) = H̃(e) = {H̃(ei ), i = 1, 2, . . . ,m}, H̃(ei ) = {u/(ξ1(u),

ξ2(u), . . . , ξk(u)) : u ∈ U }, where H̃(e) = F̃(e) ∪ G̃(e).
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Definition 12 Let U = {u1, u2, . . . , un} be an initial universe and E be a set of
parameters, E = {e1, e2, . . . , em}. (F̃, A) and (G̃, A)be two IVMkFSSs over (U, E).
(F̃, A) = F̃(e) = {F̃(ei )}, F̃(ei ) = {u/(μ1(u),μ2(u), . . . ,μk(u))}. (G̃, A) =
G̃(e) = {G̃(ei )}, G̃(ei ) = {u/(ν1(u), ν2(u), . . . , νk(u))}. i = 1, 2, . . . ,m, u ∈ U .
An intersection operation on F̃ and G̃ denoted by F̃ ∩ G̃ is defined by a map-
ping H̃ : A → I V MkFS, (H̃ , A) = H̃(e) = {H̃(ei ), i = 1, 2, . . . ,m}, H̃(ei ) =
{u/(ξ1(u), ξ2(u), . . . , ξk(u)) : u ∈ U }, where H̃(e) = F̃(e) ∩ G̃(e).

Proposition 1 Let F̃, G̃ and H̃ be three IVMkFSSs over (U, E). Then
(1) F̃ ∪ F̃ = F̃; (2) F̃ ∩ F̃ = F̃;
(3) F̃ ∪ G̃ = G̃ ∪ F̃ , (4) F̃ ∩ G̃ = G̃ ∩ F̃;
(5) (F̃ ∪ G̃) ∪ H̃ = F̃ ∪ (G̃ ∪ H̃), (6) (F̃ ∩ G̃) ∩ H̃ = F̃ ∩ (G̃ ∩ H̃).

Proof It can be easily proved by Definitions11 and 12. �

Proposition 2 Let F̃ and G̃ be two IVMkFSSs over (U, E). Then
(1) (F̃ ∪ G̃)c = F̃c ∩ G̃c; (2) (F̃ ∩ G̃)c = F̃c ∪ G̃c.

Proof We just prove the first one, the second can be proved similarly. Let F̃ =
F̃(e) = {F̃(ei )|i = 1, 2, . . . ,m}, F̃(ei ) = {u/(μ1(u),μ2(u), . . . ,μk(u)) : u ∈ U },
μ j (u) = [μ−

j (u),μ+
j (u)], j = 1, 2, . . . , k.

G̃ = G̃(e) = {G̃(ei )|i = 1, 2, . . . ,m}, G̃(ei ) = {u/(ν1(u), ν2(u), . . . , νk(u)) :
u ∈ U }, ν j (u) = [ν−

j (u), ν+
j (u)], j = 1, 2, . . . , k.

F̃(ei ) ∪ G̃(ei )={u/(μ1(u) ∨ ν1(u),μ2(u) ∨ ν2(u), . . .,μk(u) ∨ νk(u)) : u ∈ U },
(F̃(ei ) ∪ G̃(ei ))c = {u/(1 − (μ1(u) ∨ ν1(u)), 1 − (μ2(u) ∨ ν2(u)), . . . , 1 − (μk(u)

∨ νk(u))) : u ∈ U } = {u/((1 − μ1(u)) ∧ (1 − ν1(u)), (1 − μ2(u)) ∧ (1 − ν2(u)),

. . . , (1 − μk(u)) ∧ (1 − νk(u))) : u ∈ U } = F̃c(ei ) ∩ G̃c(ei ). So (F̃ ∪ G̃)c = F̃c ∩
G̃c. �

Proposition 3 Let F̃ and G̃ be two IVMkFSSs over (U, E). Then
(1) (F̃ ∪ G̃) ∩ F̃ = F̃; (2) (F̃ ∩ G̃) ∪ F̃ = F̃ .

Proof We just prove the first one, the second can be proved similarly. Let F̃ =
{F̃(ei )}, F̃(ei ) = {u/(μ1(u),μ2(u), . . . ,μk(u))}, μ j (u) = [μ−

j (u),μ+
j (u)]. G̃ =

{G̃(ei )}, G̃(ei ) = {u/(ν1(u), ν2(u), . . . , νk(u))}, ν j (u) = [ν−
j (u), ν+

j (u)], u ∈ U,

i = 1, 2, . . . ,m, j = 1, 2, . . . , k.
(F̃(ei ) ∪ G̃(ei )) ∩ F̃(ei ) = {u/((μ1(u) ∨ ν1(u)) ∧ μ1(u), (μ2(u) ∨ ν2(u)) ∧ μ2

(u), . . . , (μk(u) ∨ νk(u)) ∧ μk(u)) : u ∈ U }. (μ j (u) ∨ ν j (u)) ∧ μ j (u) = μ j (u),

j = 1, 2, . . . , k, i.e., (F̃(ei ) ∪ G̃(ei )) ∩ F̃(ei ) = F̃(ei ). So (F̃ ∪ G̃) ∩ F̃ = F̃ . �

Proposition 4 Let F̃, G̃ and H̃ be three IVMkFSSs over (U, E). Then
(1) F̃ ∪ (G̃ ∩ H̃) = (F̃ ∪ G̃) ∩ (F̃ ∪ H̃), (2) F̃ ∩ (G̃ ∪ H̃) = (F̃ ∩ G̃) ∪
(F̃ ∩ H̃).

Proof We just prove the first one, the second can be proved similarly. Let F̃ =
{F̃(ei )}, F̃(ei ) = {u/(μ1(u),μ2(u), . . . ,μk(u))}, μ j (u) = [μ−

j (u),μ+
j (u)]. G̃ =

{G̃(ei )}, G̃(ei ) = {u/(ν1(u), ν2(u), . . . , νk(u))}, ν j (u) = [ν−
j (u), ν+

j (u)].
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H̃ = {H̃(ei )}, H̃(ei ) = {u/(ξ1(u), ξ2(u), . . . , ξk(u))}, ξ j (u) = [ξ−
j (u), ξ+

j (u)],
u ∈ U, i = 1, 2, . . . ,m, j = 1, 2, . . . , k. F̃(ei ) ∪ (G̃(ei ) ∩ H̃(ei )) = {u/(μ1(u) ∨
(ν1(u) ∧ ξ1(u)),μ2(u) ∨ (ν2(u) ∧ ξ2(u)), . . . , μk(u) ∨ (νk(u) ∧ ξk(u))) : u ∈ U },
(F̃(ei ) ∪ G̃(ei ))∩(F̃(e)i ∪ H̃(ei ))={u/((μ1(u) ∨ ν1(u)) ∧ (μ1(u) ∨ ξ1(u)), (μ2(u)

∨ ν2(u)) ∧ (μ2(u) ∨ ξ2(u)), . . . , (μk(u) ∨ νk(u)) ∧ (μk(u) ∨ ξk(u)))}. μ j (u) ∨ (ν j

(u) ∧ ξ j (u))=(μ j (u) ∨ ν j (u)) ∧ (μ j (u) ∨ ξ j (u)), j = 1, 2, . . . , k. F̃(ei ) ∪ (G̃(ei )
∩ H̃(ei )) = (F̃(ei ) ∪ G̃(ei )) ∩ (F̃(ei ) ∪ H̃(ei )). So F̃ ∪ (G̃ ∩ H̃) = (F̃ ∪ G̃) ∩ (F̃
∪ H̃). �
Theorem 1 Let Γ (U, E) be the set of all interval-valued multi-fuzzy soft sets over
(U, E), i.e., Γ (U, E) = {F̃ |F̃ is an IVMkFSS over (U, E)}. Then the algebraic
system Q = (Γ (U, E),∪,∩) is a distributive lattice.

Proof It can be easily proved by Propositions1, 3 and 4. �

4 Possibility Interval-Valued Multi-fuzzy Soft Sets

In this section, we generalized the concept of possibility fuzzy soft sets to possibility
interval-valued multi-fuzzy soft set.

Definition 13 ([13]) Let U be an initial universe and E a set of parameters. A
pair (Fα, E) is called a possibility multi-fuzzy soft set of dimension k if Fα is a
mapping given by Fα : E → MkFS × MkFS, where Fα(e) = (F(e)(u),α(e)(u)),
∀u ∈ U, e ∈ E .

Definition 14 Let U be a finite initial universe and E a finite set of parameters.
Suppose that F̃ : E → I V MkFS, and f is an interval-valued multi-fuzzy subset of
E , i.e., f : E → I V MkFS. F̃ f is called a possibility interval-valued multi-fuzzy
soft set of dimension k (for short P IV MkFSS) over (U, E) if F̃ f is a mapping given
by

F̃ f : E → I V MkFS × I V MkFS,

where F̃ f (e) = (F̃(e)(u), f (e)(u)), ∀u ∈ U, e ∈ E .

For eachparameter ei , F̃ f (ei ) = (F̃(ei )(u), f (ei )(u)) indicates not only themulti-
membership degree of elements in U belonging to F̃(ei ) but also include multi-
membership degree of possibility of elements in U belonging to F̃(ei ), which is
represented by f (ei ). So we can write F̃ f as follows.

F̃ f (ei ) = {(u/μF̃(ei )(u),μ f (ei )(u)) : u ∈ U },

where μF̃(ei )(u) = (μ1
F̃(ei )

(u),μ2
F̃(ei )

(u), . . . ,μk
F̃(ei )

(u)), and

μ f (ei )(u) = (μ1
f (ei )

(u),μ2
f (ei )

(u), . . . ,μk
f (ei )

(u)),

μk
F̃(ei )

(u) = [μk−
F̃(ei )

(u),μk+
F̃(ei )

(u)],
μk

f (ei )
(u) = [μk−

f (ei )
(u),μk+

f (ei )
(u)].
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Sometimes we write F̃ f as (F̃ f , E). If A ⊆ E , we have P IV MkFSS (F̃ f , A).
A possibility interval-valued multi-fuzzy soft set of dimension k is also a special

case of a soft set. Ifμ−(u) = μ+(u), i.e., ∀e ∈ E, ∀u ∈ U ,μ−
F̃(ei )

(u) = μ+
F̃(ei )

(u) and

μ−
f (ei )

(u) = μ+
f (ei )

(u), a P IV MkFSSwill be degenerates to a possibility multi-fuzzy
soft set. If k = 1 and μ−(u) = μ+(u), a P IV MkFSSwill degenerates to a possibility
fuzzy soft set.

Definition 15 LetU be a finite initial universe and E a finite set of parameters. F̃ f is
a P IV MkFSS over (U, E). The complement set of F̃ f is also a P IV MkFSS denoted
by F̃c

f , where F̃c
f = G̃g is a mapping given by G̃g : E → I V MkFS × I V MkFS.

G̃g(e) = (G̃(e), g(e)), G̃(e) = F̃c(e), g(e) = f c(e).

From the above definition, we have (F̃c
f )

c = F̃ f .

Definition 16 Let F̃ f and G̃g be two P IV MkFSSs over (U, E). F̃ f is said to be
a possibility interval-valued multi-fuzzy soft subset of G̃g denoted by F̃ f ⊆ G̃g if
and only if for any e ∈ E, and u ∈ U , F̃(e) is a interval-valued multi-fuzzy subset
of G̃(e) and f (e) is a interval-valued multi-fuzzy subset of g(e).

Definition 17 Let F̃ f and G̃g be two P IV MkFSSs over (U, E). F̃ f is said to be a

possibility interval-valued multi-fuzzy soft equal of G̃g denoted by F̃ f = G̃g if and

only if F̃ f is a possibility interval-valued multi-fuzzy soft subset of G̃g and G̃g is a
possibility interval-valued multi-fuzzy soft subset of F̃ f .

Definition 18 Let F̃ f and G̃g be two P IV MkFSSs over (U, E). The union and
intersection operations on F̃ f and G̃g , denoted by F̃ f ∪ G̃g and F̃ f ∩ G̃g respectively,
are defined by mappings H̃h, K̃k : E → I V MkFS × I V MkFS, where H̃h(e) =
(H̃(e), h(e)), K̃k(e) = (K̃ (e), k(e)), H̃(e) = F̃(e) ∪ G̃(e), h(e) = f (e) ∪ g(e),
K̃ (e) = F̃(e) ∩ G̃(e) and k(e) = f (e) ∩ g(e). ∀u ∈ U, e ∈ E .

Proposition 5 Let F̃ f , G̃g and H̃h be three P I V MkFSSs over (U, E). Then we
have
(1) F̃ f ∪ F̃ f = F̃ f ; (2) F̃ f ∩ F̃ f = F̃ f ;

(3) F̃ f ∪ G̃g = G̃g ∪ F̃ f ; (4) F̃ f ∩ G̃g = G̃g ∩ F̃ f ;
(5) (F̃ f ∪ G̃g) ∪ H̃h = F̃ f ∪ (G̃g ∪ H̃h); (6) (F̃ f ∩ G̃g) ∩ H̃h = F̃ f ∩ (G̃g ∩ H̃h).

Proposition 6 Let F̃ f and G̃g be two P IV MkFSSs over (U, E). Then
(1) (F̃ f ∪ G̃g)

c = F̃c
f ∩ G̃c

g; (2) (F̃ f ∩ G̃g)
c = F̃c

f ∪ G̃c
g;

(3) (F̃ f ∪ G̃g) ∩ F̃ f = F̃ f ; (4) (F̃ f ∩ G̃g) ∪ F̃ f = F̃ f ;

(5) F̃ f ∪ (G̃g ∩ H̃h) = (F̃ f ∪ G̃g) ∩ (F̃ f ∪ H̃h);

(6) F̃ f ∩ (G̃g ∪ H̃h) = (F̃ f ∩ G̃g) ∪ (F̃ f ∩ H̃h).
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Theorem 2 LetΘ(U, E) be the set of all possibility interval-valued multi-fuzzy soft
sets over (U, E), i.e., Θ(U, E) = {F̃ f |F̃ f is a P I V MkFSS over (U, E)}. Then the
algebraic system Q = (Θ(U, E),∪,∩) is a distributive lattice.

Proof It can be easily proved by Propositions5 and 6. �

Definition 19 Let (F̃ f , A) and (G̃g, B) be two P IV MkFSSs over (U, E). The
operation “(F̃ f , A) AND (G̃g, B)” denoted by F̃ f ∧ G̃g is defined as (F̃ f , A) ∧
(G̃g, B) = (H̃h, A × B),where H̃h(α,β)=(H̃(α,β)(u), h(α,β)(u)). For all (α,β)

∈ A × B, H̃(α,β) = F̃(α) ∩ G̃(β) and h(α,β) = f (α) ∩ g(β).

Definition 20 Let (F̃ f , A) and (G̃g, B) be two P IV MkFSSs over (U, E). The
operation “(F̃ f , A) OR (G̃g, B)” denoted by F̃ f ∨ G̃g is defined as (F̃ f , A) ∨
(G̃g, B) = (H̃h, A × B),where H̃h(α,β)=(H̃(α,β)(u), h(α,β)(u)). For all (α,β)

∈ A × B, H̃(α,β) = F̃(α) ∪ G̃(β) and h(α,β) = f (α) ∪ g(β).

Remark 1 Let (F̃ f , A) and (G̃g, B) be two P IV MkFSSs over (U, E). For all
(α,β) ∈ (A × B), if α �= β, then (F̃ f , A) ∧ (G̃g, B) �= (G̃g, B) ∧ (F̃ f , A)

and (F̃ f , A) ∨ (G̃g, B) �= (G̃g, B) ∨ (F̃ f , A).

Theorem 3 Let (F̃ f , A) and (G̃g, B) be two P IV MkFSSs over (U, E). Then
(1) ((F̃ f , A) ∨ (G̃g, B))c = (F̃ f , A)c ∧ (G̃g, B)c;
(2) ((F̃ f , A) ∧ (G̃g, B))c = (F̃ f , A)c ∨ (G̃g, B)c.

Proof We just prove the first one, the second can be proved similarly. Suppose
(F̃ f , A) ∨ (G̃g, B) = (H̃h, A × B).Where H̃ c

h (α,β) = (H̃ c(α,β), hc(α,β)). From
Definition18 and Proposition6, for all u ∈ U, (α,β) ∈ (A × B), we have H̃ c(α,

β) = (F̃(α) ∪ G̃(β))c = F̃c(α) ∩ G̃c(β) and hc(α,β) = ( f (α) ∪ g(β))c = f c(α)

∩ gc(β). Also suppose that (F̃ f , A)c ∧ (G̃g, B)c = (L̃l, A × B), where L̃l(α,β) =
(L̃(α,β), l(α,β)). For all u ∈ U, (α,β) ∈ (A × B), L̃(α,β) = F̃c(α) ∩ G̃c(β),
and l(α,β) = f c(α) ∩ gc(β). H̃ c

h = L̃l . So ((F̃ f , A) ∨ (G̃g, B))c = (F̃ f , A)c ∧
(G̃g, B)c. �

Proposition 7 Let (F̃ f , A), (G̃g, B) and (H̃h,C) be three P I V MkFSSs over
(U, E). Then we have
(1) ((F̃ f , A) ∨ (G̃g, B)) ∨ (H̃h,C) = (F̃ f , A) ∨ ((G̃g, B) ∨ (H̃h,C));

(2) ((F̃ f , A) ∧ (G̃g, B)) ∧ (H̃h,C) = (F̃ f , A) ∧ ((G̃g, B) ∧ (H̃h,C));

(3) (F̃ f , A) ∨ ((G̃g, B) ∧ (H̃h,C)) = ((F̃ f , A) ∨ (G̃g, B)) ∧ ((F̃ f , A) ∨ (H̃h,C));

(4) (F̃ f , A) ∧ ((G̃g, B) ∨ (H̃h,C)) = ((F̃ f , A) ∧ (G̃g, B)) ∨ ((F̃ f , A) ∧ (H̃h,C)).
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5 Decision-Making

In this section, we give an example to illustrated application of possibility interval-
valued multi-fuzzy soft sets in decision-making.

Assume that a company want to select a manager from three candidates U =
{u1, u2, u3}. The set of parameters E = {e1, e2, e3}, where e1 represent “experience”
which includes three levels: rich, average, poor, e2 stands for “computer skills” which
contains three levels: skilled, average, poor, e3 express “young age” involving three
levels: old, medium, young. Two experts gives two P IV M3FSSs F̃ f and G̃g over
(U, E). F̃ f and G̃g are given as follows.

F̃ f (e1) ={(u1/([0.05, 0.1], [0.4, 0.45], [0.35, 0.45]), ([0.3, 0.4], [0.4, 0.5], [0.05, 0.1])),
(u2/([0.05, 0.1], [0.2, 0.3], [0.5, 0.6]), ([0.1, 0.2], [0.2, 0.3], [0.3, 0.4])),
(u3/([0.35, 0.4], [0.4, 0.5], [0.05, 0.1]), ([0.2, 0.3], [0.3, 0.4], [0.25, 0.3]))};

F̃ f (e2) ={(u1/([0.05, 0.1], [0.3, 0.4], [0.4, 0.5]), ([0.2, 0.3], [0.35, 0.45], [0.2, 0.25])),
(u2/([0.15, 0.2], [0.3, 0.4], [0.3, 0.4]), ([0, 0.05], [0.05, 0.2], [0.6, 0.7])),
(u3/([0.2, 0.3], [0.3, 0.4], [0.1, 0.2]), ([0.2, 0.3], [0.3, 0.4], [0.25, 0.3]))};

F̃ f (e3) ={(u1/([0.25, 0.3], [0.4, 0.5], [0.1, 0.15]), ([0.2, 0.3], [0.3, 0.4], [0.15, 0.2])),
(u2/([0.25, 0.3], [0.4, 0.5], [0.15, 0.2]), ([0.1, 0.2], [0.4, 0.45], [0.3, 0.35])),
(u3/([0.1, 0.2], [0.25, 0.3], [0.3, 0.4]), ([0.1, 0.2], [0.3, 0.4], [0.3, 0.4]))};

G̃g(e1) ={(u1/([0.1, 0.15], [0.2, 0.3], [0.4, 0.5]), ([0.25, 0.3], [0.3, 0.4], [0.15, 0.2])),
(u2/([0.1, 0.2], [0.3, 0.4], [0.3, 0.4]), ([0, 0.05], [0.1, 0.2], [0.5, 0.6])),
(u3/([0.15, 0.2], [0.3, 0.4], [0.05, 0.1]), ([0.25, 0.3], [0.25, 0.3], [0.3, 0.35]))};

G̃g(e2) ={(u1/([0.2, 0.3], [0.4, 0.5], [0.05, 0.1]), ([0.1, 0.2], [0.2, 0.3], [0.4, 0.5])),
(u2/([0.25, 0.3], [0.3, 0.4], [0.25, 0.3]), ([0.2, 0.3], [0.3, 0.35], [0.25, 0.35])),
(u3/([0.2, 0.25], [0.3, 0.35], [0.3, 0.4]), ([0.2, 0.3], [0.35, 0.4], [0.25, 0.3]))};

G̃g(e3) ={(u1/([0.3, 0.4], [0.4, 0.5], [0.05, 0.1]), ([0.2, 0.3], [0.45, 0.5], [0.1, 0.2])),
(u2/([0.2, 0.3], [0.35, 0.4], [0.2, 0.25]), ([0.25, 0.3], [0.3, 0.35], [0.2, 0.3])),
(u3/([0.15, 0.2], [0.2, 0.3], [0.2, 0.25]), ([0.3, 0.35], [0.4, 0.45], [0.1, 0.2]))}.

Here, we use AND operation to consider the two experts’ opinions. We have
(F̃ f , A) AND (G̃g, B) = (H̃h, A × B), where, for example, H̃h(e1, e1) = {(u1/
([0.05, 0.1], [0.2, 0.3], [0.35, 0.45]), ([0.25, 0.3], [0.3, 0.4], [0.05, 0.1])),
(u2/([0.05, 0.1], [0.2, 0.3], [0.3, 0.4]), ([0, 0.05], [0.1, 0.2], [0.3, 0.4])),
(u3/([0.15, 0.2], [0.3, 0.4], [0.05, 0.1]), ([0.2, 0.3], [0.25, 0.3], [0.25, 0.3]))}.

To choose the best candidate, we have to compute the numerical grade ti j (uk) and
the corresponding grade si j (uk) for each (ei , e j ).
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Table 2 Grade table

(e1, e1) (e1, e2) (e1, e3) (e2, e1) (e2, e2) (e2, e3) (e3, e1) (e3, e2) (e3, e3)

ui u1 u3 u1 u2 u2 u2 u2 u2 u1
Highest
grade

× 0.075 0.1 0.275 × 0.425 0.35 0 ×

possibili t y
grade

0.575 0.15 −0.175 −0.75 −0.525 0.2

ti j (uk) = ∑

u∈U
((μ1

H̃(ei ,e j )
(uk) − μ1

H̃(ei ,e j )
(u)) + (μ2

H̃(ei ,e j )
uk) − μ2

H̃(ei ,e j )
(u)) +

(μ3
H̃(ei ,e j )

(uk) − μ3
H̃(ei ,e j )

(u))),

si j (uk) = ∑

u∈U
((μ1

h(ei ,e j )
(uk) − μ1

h(ei ,e j )
(u)) + (μ2

h(ei ,e j )
(uk) − μ2

h(ei ,e j )
(u)) +

(μ3
h(ei ,e j )

(uk) − μ3
h(ei ,e j )

(u))).

For example, t12(u1) = [−0.4, 0.25], and s12(u1) = [−1.15,−0.1].
All the ti j (uk) and si j (uk) are shown in Table1.
Next we transform interval-number [a, b] to a+b

2 and mark the highest numerical
grade in each column excluding the columns which are the possibility grade of such
belongingness of a candidate against each pair of parameters (see Table2). By tak-
ing the sum of these numerical grades with the corresponding possibility si j (uk), we
calculate the score of each candidate. The candidate who has the highest score is the
best one. This method is similar to Ref. [13].
Score(u1)=0.1 × 0.15=0.015, Score(u2) = 0.275 × (−0.175) + 0.425×(−0.75)
+ 0.35 × (−0.525) + 0 × 0.2 = −0.550625, Score(u3) = 0.075 × 0.575 = 0.043
125. The company will select the candidate u3 with the highest score.

6 Conclusions

Soft set theory is a hot topic and an effective mathematical tool to deal with uncer-
tainty. The paper extends the soft notion and proposes the concepts of interval-valued
multi-fuzzy soft sets and possibility interval-valued multi-fuzzy soft sets which can
more precisely describe the uncertainty in real life. We investigate some based oper-
ations and relations on them and discuss the possibility interval-valued fuzzy soft
sets with “AND” operator which is successfully applied to solve a decision-making
problem in this paper. In the future work, the new decision-making methods about
possibility interval-valued multi-fuzzy soft sets should be an important issue to be
discussed.
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Weighted Interval-Valued Belief Structures
on Atanassov’s Intuitionistic Fuzzy Sets

Xin-Hong Xu, De-Chao Li and Zhi-Song Liu

Abstract The Dempster–Shafer (D–S) theory of evidence provides a powerful tool
for combination of uncertainty information, and has been extensively applied to
deal with uncertainty and vagueness. This paper shows a new approach to com-
bine weighted interval-valued belief structures based on Atanassov’s intuitionistic
fuzzy sets (A-IF) theory. Two numerical examples are provided to illustrate the rule
of combination of weighted interval-valued belief structures. It is then found that
this combination can lead to a good result in dealing with the corresponding belief
structures in accordance with people’s cognitive thinking.

Keywords Evidence · Intuitionistic fuzzy sets · Weighted interval-valued belief
structures · Combination

1 Introduction

Since it was originally investigated by Dempster and Shafer [1, 2], D–S theory of
belief functions have been a practically usable tool to model and manipulate uncer-
tain, imprecise, incomplete and even vague information. The basic representational
structure in D–S theory is a belief structure. The fundamental numeric measures
derived from the belief structure are a dual pair of belief and plausibility functions.
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Since its inception, evidential reasoning has emerged as a powerful methodology for
pattern recognition, image analysis, diagnosis, knowledge discovery, information
fusion and decisionmaking [3–12].

In practice, there aremany problems, like incompleteness, lack of information and
linguistic ambiguity. This results in which probability masses may be uncertain or
imprecise in belief structures. Therefore, interval-valued belief degree is more suit-
able than precise one. Interval-valued belief structure assigns belief degree to each
individual hypothesis lies within a certain interval. Lee and Zhu handled interval-
valued basic probability assignments [13]. Denoeux extended main concepts of D–S
theory to the case where degrees of belief in various propositions are only known
to lie within certain intervals [5]. Wang et. al. investigated combination and normal-
ization of interval-valued belief structures within the framework of D-S theory of
evidence [14]. Yager considered the situation in which our knowledge of weights
associated with the focal elements is that they lie in some known intervals [15]. Su
et al. discussed the existence of credible andmaximal interval-valued beliefs assigned
to focal elements [16].

In addition, different experts may give different degrees of belief in group deci-
sionmaking. In order to prevent loss of some important information, an A-IF set is
more objective than a fuzzy set to describe the vagueness of data or information.
Therefore, it is arisen to consider the problem of extending D–S theory to interval-
valued belief functions on intuitionistic fuzzy setting. Such extension allows us to
use directly Dempster’s rule of combination to aggregate local criteria presented
by intuitionistic fuzzy values in decisionmaking problem. Dymova and Sevastjanov
defined value of belief function of an A-IF set [17]. Feng et. al. studied probabil-
ity problems of intuitionistic fuzzy sets and belief structures of general intuitionistic
fuzzy information systems [18]. Song et al. developed a new approach for combining
interval-valued belief structures based on intuitionistic fuzzy set [19].

It is well known that the kernel of D–S theory is Dempster’s rule. However, as
it stands Dempster’s rule cannot be applied in this case where two pieces of evi-
dence are in complete conflict. In order to overcome this drawback, many alternative
evidence combination rules have been developed. Three typical strategies can be
found in the literature: (1) allocating conflicting beliefs to the frame of discernment
as global ignorance, (2) allocating conflicting beliefs to a subset of relevant focal
propositions as local ignorance or redistributing it among focal propositions locally,
and (3) modifying initial belief functions to better represent original information
without modifying Dempster’s rule [20].

In many practical applications, the decision makers or experts can only intuitively
assign their assessments with their expertise. This results in the fact that interval-
valued probability masses are usually irrational and invalid assignments. Therefore,
it is crucial whether it is sufficient to identify rules to combine pieces of highly or
completely conflicting evidence. In other words, how to combine pieces of evidence
with various weights and reliabilities that have different meaning? The importance
of a piece of evidence depends on the decision maker’s judgment. This means that
it is independent of the fact that who may use the evidence. This paper is aimed
to combine multiple-pieces of independent evidence for intuitionistic fuzzy setting.
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This research is also motivated to investigate the rationale and foundation of the
evidence reason approach based on A-IF. Having this in mind, the rest of this paper
is organized as follows. In Sect. 2, we give some definitions of basic notions and
notations. In Sect. 3, we present a new approach to combine the weighted interval-
valued belief structures based on synthesis of A-IF sets and D–S theory. Section4
provides two examples to illustrate the performance of the new combination.

2 Preliminaries

First, we briefly summarize some basic concepts and results that are needed for
further study.

Definition 1 ([19]) LetΘ be a frame of discernment. A basic probability assignment
(bpa) is a function m : 2Θ → [0, 1], satisfying: m(∅) = 0,

∑
A⊆Θ m(A) = 1.

Associatedwith each bpa is a beliefmeasure, denoted byBel(A), and a plausibility
measure, denoted by Pl(A), which are defined by the following equations [19]:

Definition 2 ([19]) Given a belief structure m on Θ , the belief function and plausi-
bility function can be defined as: Bel(A) = ∑

B⊆A m(B), Pl(A) = ∑
B∩A�=∅ m(B) =

1 − ∑
B∩A=∅ m(B), ∀A ⊆ Θ .

Definition 3 ([19]) Let Bel1 and Bel2 be two belief functions ofΘ , of whichm1 and
m2 are the corresponding basic probability assignments. The belief structure that
results from application of Dempster’s combination rule is given by

m1 ⊕ m2(A) =

⎧
⎪⎨

⎪⎩

∑

B∩C=A
m1(B)m2(C)

1− ∑

B∩C=∅
m1(B)m2(C)

∀ A ⊆ Θ, A �= ∅

0 A = ∅
. (1)

Definition 4 ([19]) Let m(Ai) = [ai, bi](i = 1, . . . , n) be the support interval of to
Ai, where ai and bi can be respectively seen as the lower and upper bounds of the
probability to whichAi is supposed, thenm(Ai) = [ai, bi] denotes the interval-valued
belief structure.

Definition 5 ([19]) LetΘ = {A1, . . . ,An} be a frame of discernment,F1, . . . ,FN be
N subsets ofΘ , and [ai, bi] beN intervals with 0 ≤ ai ≤ bi ≤ 1(i = 1, . . . ,N). Then
an interval-valued belief structure is a belief structure on Θ meeting the following
conditions:
(1) ai ≤ m(Fi) ≤ bi, 0 ≤ ai ≤ bi ≤ 1(i = 1, . . . ,N);

(2)
∑N

i=1 ai ≤ 1,
∑N

i=1 bi ≥ 1;

(3) m(H) = 0, ∀H � {F1, . . . ,FN }.
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Definition 6 ([14]) Let m be an interval-valued belief function with ai ≤ m(Fi) ≤
bi(i = 1, . . . ,N). If ai and bi satisfy

∑N
i=1 bi − (bk − ak) ≥ 1,

∑N
i=1 ai + (bk −

ak) ≤ 1, ∀k ∈ {1, . . . ,N}, thenm is called a normalized interval-valued belief struc-
ture.

There are two kinds of non-normalized interval-valued belief functions [14]. The
first contradicts the conditions that

∑N
i=1 ai ≤ 1 and

∑N
i=1 bi ≥ 1, which can be nor-

malized by

âi = ai

ai + ∑N
j=1,j �=i bj

, b̂i = bi

bi + ∑N
j=1,j �=i aj

, i = 1, . . . ,N . (2)

The second satisfies
∑N

i=1 ai ≤ 1 and
∑N

i=1 bi ≥ 1, but does not satisfy the con-
ditions in Definition 5, i.e.,

∑N
i=1 bi − (bk − ak) ≥ 1 and

∑N
i=1 ai + (bk − ak) ≤ 1,

which can be normalized by

âi = max

⎧
⎨

⎩
ai, 1 −

N∑

j=1,j �=i

bj

⎫
⎬

⎭
, b̂i = max

⎧
⎨

⎩
bi, 1 −

N∑

j=1,j �=i

aj

⎫
⎬

⎭
, i = 1, . . . ,N .

(3)

Definition 7 ([19]) Let m be a normalized interval-valued belief structure on Θ =
{A1, . . . ,An} with interval-valued probability mass ai ≤ m(Fi) ≤ bi, i = 1, . . . ,N .
m′ denotes a Bayesian belief structure in correspondence with m. The basic proba-
bility assignment m′ is given by

m′(Aj) = BetP(Aj) = [BetP−(Aj),BetP
+(Aj)], (4)

where BetP−(Aj) = ∑
Aj∈Fi

ai
|Fi| , BetP+(Aj) = min

{
1,

∑
Aj∈Fi

bi
|Fi|

}
, i = 1, . . . ,

N , j = 1, . . . , n.

Definition 8 ([19]) Let X be a universe of discourse, then an intuitionistic fuzzy set
(A-IF) A in X is defined as A = {(x,μA(x), γA(x))|x ∈ X}, in which μA(x) : X →
[0, 1] and γA(x) : X → [0, 1] are respectively called the membership degree and
non-membership degree with the condition that 0 ≤ μA(x) + γA(x) ≤ 1, ∀x ∈ X.

Song et. al. discussed interval-valued belief structure based on A-IF set [19]. Sup-
pose that μ(Ai), γ(Ai) and π(Ai) are membership degree function, non-membership
degree function and intuition index. Let M = {〈Ai,μ(Ai), γ(Ai)〉|Ai ∈ Θ, i =
1, . . . , n}. The following relations can be effortlessly obtained:

μ(Ai) = ai, (5)

γ(Ai) = 1 − bi, (6)

π(Ai) = bi − ai. (7)
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For two belief structures mAi
1 and mAi

2 , we have

mAi
1 (Yes) = μ1(Ai), mAi

1 (No) = γ1(Ai), mAi
1 (Yes,No) = π1(Ai), (8)

mAi
2 (Yes) = μ2(Ai), mAi

2 (No) = γ2(Ai), mAi
2 (Yes,No) = π2(Ai), (9)

where {Yes}, {No}, {Yes,No} are the answers of “Does the unknown object belong to
Ai?”.

Combining them by Dempster’s rule of combination, we get

mAi
1 ⊕ mAi

2 (H1) =
∑

H2∩H3=H1

mAi
1 (H2)m

Ai
2 (H3)

1 − ∑

H2∩H3=∅
mAi

1 (H2)m
Ai
2 (H3)

, (10)

where H1,H2,H3 ∈ {{Yes}, {No}, {Yes,No}}.
Definition 9 ([16]) The overall conflict of the two sources of evidence κ12 is defined
as

κ12 =
∑

A1,A2∈2Θ

A1∩A2=∅

m1(A1)m2(A2). (11)

Definition 10 ([16]) The similarity of s belief functions with regard to an non-empty
subset A on Θ is given by

d12...s(A) = 1 − [max{mi(A)} − avg{mi(A)}][min{mi(A)} − avg{mi(A)}], (12)

where i = 1, . . . , s,max,min andavg represent themaximum,minimumand average
value, respectively.

Definition 11 ([16]) The weight matrix W of s weight belief functions s × 2Θ ,
which every line corresponds to a weight function and every column corresponds to
a non-empty subset, is defined as

Wi,j =
{

ωi mi(A) > 0
0 mi(A) = 0

. (13)

3 Weighted Interval-Valued Belief Structures on A-IF

In this section, we present a method to combine interval-valued belief structures with
weight based onA-IF set.Wefirstly consider the combination of two belief structures.
Let mA

1 and mA
2 be two belief structures, with weights of ω1 and ω2. According to

Eq. (10), we have
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mA
1 ⊕ω mA

2 (Yes) = μ1(A)+μ2(A)(1−μ1(A))

1+μ1(A)γ2(A)+μ2(A)γ1(A)
+

κ12
w12(A)d−

12(A)[m−
12(A)+c−

12(A)]
∑

A∈2Θ−{∅}
B∈2Θ−{∅}
A∩B=∅
m12(A∩B)>0

w12(A)d12(A)[m12(A)+c12(A)]

mA
1 ⊕ω mA

2 (No) = γ1(A)+γ2(A)(1−γ1(A))

1+μ1(A)γ2(A)+μ2(A)γ1(A)
−

κ12
w12(A)d−

12(A)[m−
12(A)+c−

12(A)]
∑

A∈2Θ−{∅}
B∈2Θ−{∅}
A∩B=∅
m12(A∩B)>0

w12(A)d12(A)[m12(A)+c12(A)]

mA
1 ⊕ω mA

2 (Yes,No) = π1(A)π2(A)

1+μ1(A)γ2(A)+μ2(A)γ1(A)

(14)

where w12(A) represents the sum of columns which correspond to the non-empty set
A on weight matrix W and

m−
12(A) = μ1(A) + μ2(A)(1 − μ1(A))

1 + μ1(A)γ2(A) + μ2(A)γ1(A)
, (15)

m+
12(A) = 1 − γ1(A) + γ2(A)(1 − γ1(A))

1 + μ1(A)γ2(A) + μ2(A)γ1(A)
, (16)

κ12 = 1 − 1 + μ1(A)γ2(A) + μ2(A)γ1(A)

2
, (17)

d−
12(A) = 1 − [max{m−

i (A)} − avg{m−
i (A)}][min{m−

i (A)} − avg{m−
i (A)}], (18)

d+
12(A) = 1 − [max{m+

i (A)} − avg{m+
i (A)}][min{m+

i (A)} − avg{m+
i (A)}], (19)

c−
12(A) = m−

1 (A) + m−
2 (A) (20)

and c+
12(A) = m+

1 (A) + m+
2 (A). (21)

Consequently, we come to define a new operation on A-IF set as follows.

Definition 12 Let M1 = {〈Ai,μ1(Ai), γ1(Ai)〉|Ai ∈ Θ} and M2 = {〈Ai,μ2(Ai),

γ2(Ai)〉|Ai ∈ Θ} be two A-IF sets on Θ = {A1, . . . ,An} with weights ω1 and ω2.
The combination operation of M1 and M2, denoted by M1 �ω M2, is defined by



Weighted Interval-Valued Belief Structures … 545

M1 �ω M2 =
{〈

Ai,
μ1(Ai) + μ2(Ai)(1 − μ1(Ai))

1 + μ1(Ai)γ2(Ai) + μ2(Ai)γ1(Ai)
+ Ψi,

γ1(Ai) + γ2(Ai)(1 − γ1(Ai))

1 + μ1(Ai)γ2(Ai) + μ2(Ai)γ1(Ai)
− Ψi

〉

|Ai ∈ Θ, i = 1, . . . , n

}

,

(22)

where Ψi = κ12
w12(Ai)d

−
12(Ai)[m−

12(Ai)+c−
12(Ai)]∑

Ai∈2Θ−{∅}
Aj∈2Θ−{∅}
Ai∩Aj=∅
m12(Ai∩Aj)>0

w12(Ai)d12(Ai)[m12(Ai)+c12(Ai)] .

Since the Dempster’s rule can be applied to combine more than two belief struc-
tures, the combination �ω can be then extended to N A-IF sets with their weights,
which is denoted by �ω

j=1,...,NMj.

Theorem 1 With the commutativity and associativity of Dempster’s rule, it is easy
to verify that the following properties hold:

(1)M1 �ω M2 = M2 �ω M1;

(2)M1 �ω M2 �ω M3 = (M1 �ω M2) �ω M3 = M1 �ω (M2 �ω M3).

Proof Obviously.
Let m1 and m2 be two normalized interval-valued belief functions on the dis-

cernment frame Θ = {A1,A2, . . . ,An}, their normalized interval-valued Bayesian
probability are respectively denoted by m1(Ai) = [a1i, b1i] and m2(Ai) = [a2i, b2i],
i = 1, . . . , n. By Eqs. (5)–(7), the following two A-IF sets can then be introduced

M1 = {〈Ai, a1i, 1 − b1i〉|Ai ∈ Θ, i = 1, . . . , n}, (23)

M2 = {〈Ai, a2i, 1 − b2i〉|Ai ∈ Θ, i = 1, . . . , n}. (24)

According to Eq. (22), we can further define M1 �ω M2 as

M1 �ω M2 =
{〈

Ai,
a1i + a2i(1 − a1i)

1 + a1i + a2i − a1ib2i − a2ib1i
+ Ψi,

1 − b1ib2i
1 + a1i + a2i − a1ib2i − a2ib1i

− Ψi

〉

|x ∈ E

}

. (25)

Considering the relationship between A-IF sets and belief structures by Eqs. (5)–
(7), the interval-valued probability assignment of the combination ofm1 andm2 with
weights ω1 and ω2, denoted by m1 ⊕ω m2, is defined as follows:
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m1 ⊕ω m2(Ai) =
(

a1i + a2i(1 − a1i)

1 + a1i + a2i − a1ib2i − a2ib1i
+ Ψi,

1 − 1 − b1ib2i
1 + a1i + a2i − a1ib2i − a2ib1i

+ Ψi

)

, (26)

where

Ψi = κ12i
w12(Ai)d

−
12(Ai)[m−

12(Ai) + c−
12(Ai)]

∑

Ai∈2Θ−{∅}
Aj∈2Θ−{∅}
Ai∩Aj=∅
m12(Ai∩Aj)>0

w12(Ai)d12(Ai)[m12(Ai) + c12(Ai)] (27)

m−
12(Ai) = a1i + a2i(1 − a1i)

1 + a1i + a2i − a1ib2i − a2ib1i
, (28)

m+
12(Ai) = 1 − 1 − b1ib2i

1 + a1i + a2i − a1ib2i − a2ib1i
, (29)

κ12i = 1 − 1 + a1i + a2i − a1ib2i − a2ib1i
2

, (30)

d−
12(Ai) = 1 − [max{m−(Ai)} − avg{m−(Ai)}][min{m−(Ai)} − avg{m−(Ai)}],

(31)

d+
12(Ai) = 1 − [max{m+(Ai)} − avg{m+(Ai)}][min{m+(Ai)} − avg{m+(Ai)}],

(32)

c−
12(Ai) = m−

1 (Ai) + m−
2 (Ai) (33)

and c+
12(Ai) = m+

1 (Ai) + m+
2 (Ai). (34)

Finally, after m1 ⊕ω m2 is normalized according to Eq. (2) or (3), we obtain com-
bination of weighted interval-valued belief functions.

Apparently, this combination operator ⊕ω can also be extended to combine N
interval-valued belief functionswith their weights, denoted by⊕ω

i=1,...,Nmi. Similarly,
the combination rule of weighted interval-valued belief functions is commutative and
associative owning to the commutativity and associativity of combination operation
on A-IF set. And then the following equations hold:

(1) m1 ⊕ω m2 = m2 ⊕ω m1;
(2) m1 ⊕ω m2 ⊕ω m3 = (m1 ⊕ω m2) ⊕ω m3 = m1 ⊕ω (m2 ⊕ω m3).
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Fig. 1 The flow chart to combine weighted interval-valued belief structures
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This implies that we can combine many weighted interval-valued belief functions
one by one. The result does not depend on the order of combination. Of course, it
does not change when normalization is postponed to a later point. In order to achieve
associativity, the normalization process in combination should be postponed to the
end of combination. For instance, if we need to combine N weighted interval-valued
structures in the frame of discernment Θ , the final result is supposed got by firstly
combining them and then normalizing the result. Eventually, Fig. 1 shows the flow of
combining N weighted interval-valued belief structures on Θ = {A1, . . . ,An}. �

4 Numerical Examples

This subsection presents two illustrative examples of the proposed method.

Example 1 Two interval-valued belief structures on Θ = {A1,A2,A3} are given as
follows:

m1(A1) = [0.2, 0.4], m1(A2) = [0.3, 0.5], m1(A3) = [0.1, 0.3];
m2(A1) = [0.3, 0.4], m2(A2) = [0.4, 0.5], m2(A3) = [0.2, 0.3] with their

weights ω1 = 0.6 and ω2 = 0.4.
It is no difficult to verify that these two weighted interval-valued belief structures

are both normalized weighted interval-valued Bayesian belief structures. We can
intuitively judge that the belief function is obtained after combining more belief to
{A2}, medium belief to {A1} and less to {A3}. In order to get m1 ⊕ω m2, we therefore
carry out the following procedure.

Step 1 Compute the matrix M of source interval-valued belief function basic
probability assignment. M is given in Table1.

Step 2 Compute the weight matrix W . W can be obtained by Definition11 as
shown in Table2.

Step 3 Compute d12 by Eq. (2). The value of d12 is shown in Table3.
Step 4 Compute m12, c12, κ12 by Eqs. (28)–(34), and we can get them as shown

in Table4.
Eventually, the result is obtained by Eqs. (26) and (27):
m1 ⊕ω m2(A1) = [0.388, 0.422], m1 ⊕ω m2(A2) = [0.491, 0.523], m1 ⊕ω

m2(A3) = [0.267, 0.304].
It is easy to see that the result is normalized. Namely, it is a desired result.

Table 1 The matrixM of source interval-valued belief function basic probability assignment

{A1} {A2} {A3} {A1,A2} {A1,A3} {A2,A3} {A1,A2,A3}
− + − + − + − + − + − + − +

m1 0.2 0.4 0.3 0.5 0.1 0.3 0 0 0 0 0 0 0 0

m2 0.3 0.4 0.4 0.5 0.2 0.3 0 0 0 0 0 0 0 0
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Table 2 The weight matrix W

{A1} {A2} {A3} {A1,A2} {A1,A3} {A2,A3} {A1,A2,A3}
− + − + − + − + − + − + − +

ω1 0.6 0.6 0.6 0.6 0.6 0.6 0 0 0 0 0 0 0 0

ω2 0.4 0.4 0.4 0.4 0.4 0.4 0 0 0 0 0 0 0 0

w12 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Table 3 The value of d12
{A1} {A2} {A3} {A1,A2} {A1,A3} {A2,A3} {A1,A2,A3}
− + − + − + − + − + − + − +

max 0.2 0.4 0.3 0.5 0.1 0.3 0 0 0 0 0 0 0 0

min 0.3 0.4 0.4 0.5 0.2 0.3 0 0 0 0 0 0 0 0

avg 0.25 0.4 0.35 0.5 0.15 0.3 0 0 0 0 0 0 0 0

d12 0.9975 1 0.9975 1 0.9975 1 1 1 1 1 1 1 1 1

Table 4 The results of m12, c12 and κ12

{A1} {A2} {A3}
− + − + − +

m12 0.3385 0.3538 0.4296 0.4444 0.2314 0.2479

c12 0.5 0.8 0.7 1 0.3 0.6

κ12 0.35 0.325 0.395

As we can see, this result reveals that {A2}makes the greatest distribution to belief
while {A3} makes the least distribution to belief. Obviously, the result is concordant
with our previous intuitive feeling. Therefore, the combined result is satisfactory.

Example 2 Three interval-valued belief structures on Θ = {A1,A2,A3} are given as
follows:

m1(A1) = [0.1, 0.4], m1(A2) = [0.3, 0.6], m1(A3) = [0, 0.3];
m2(A1) = [0.2, 0.5], m2(A2) = [0.4, 0.6], m2(A3) = [0.1, 0.4];
m3(A1) = [0.2, 0.4],m3(A2) = [0.3, 0.7],m3(A3) = [0.1, 0.3] with their weights

ω1 = 0.4, ω2 = 0.2 and ω3 = 0.4.
We firstly combine m1 and m2. It is necessary to normalize the weights of m1

and m2. Let ω′
1 = ω1

ω1+ω2
and ω′

2 = ω2
ω1+ω2

. The weights of m1 and m2 are respectively
replaced by ω′

1 and ω′
2. We then have the combination result of m1 ⊕ω m2 as

m1 ⊕ω m2(A1) = [0.279, 0.405], m1 ⊕ω m2(A2) = [0.526, 0.608], m1 ⊕ω

m2(A3) = [0.109, 0.249].
Next, we combine m1 ⊕ω m2 and m3 with the weights ω12 = ω1 + ω2 and ω3

similarly. Then, the final combination result of (m1 ⊕ω m2) ⊕ω m3 is obtained:
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(m1 ⊕ω m2) ⊕ω m3(A1) = [0.375, 0.414],
(m1 ⊕ω m2) ⊕ω m3(A2) = [0.601, 0.657],
(m1 ⊕ω m2) ⊕ω m3(A3) = [0.198, 0.247].
Similarly, we can obtain the combination result of m1 ⊕ω (m2 ⊕ω m3):
m1 ⊕ω (m2 ⊕ω m3)(A1) = [0.375, 0.414],
m1 ⊕ω (m2 ⊕ω m3)(A2) = [0.601, 0.657],
m1 ⊕ω (m2 ⊕ω m3)(A3) = [0.198, 0.247].
Obviously, the associativity (m1 ⊕ω m2) ⊕ω m3 = m1 ⊕ω (m2 ⊕ω m3) holds.

5 Conclusions

In this paper, we have provided a novel combination of weighted interval-valued
belief structures based on A-IF set. In our method, the evidence combination rule is
associative, and then it is convenient to combine a lot of independent interval-valued
belief structures.By twonumerical examples, the accomplishment of our newmethod
has been illustrated. Indeed, the combination ofweighted interval-valued belief struc-
tures has a good result in the treatment of the corresponding belief structures.
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1 Introduction

Soft set theory, which was firstly proposed by Molodtsov [1] in 1999, has received
much attention (see [2–5] and reference in) for its application background (it pro-
vides a new mathematical tool for dealing with some uncertainties that traditional
mathematical tools cannot handle effectively). Research work on soft set theory and
its applications in various fields are progressing rapidly, some of which principally
work out softmathematical concepts and structures that are based on soft set-theoretic
operations. For examples, Aktaş and Çaǧman [6] defined soft group, Jun [7] defined
soft BCK/BCI-algebra, Feng et al. [8] defined soft semiring, Zhan and Jun [9] defined
soft BL-algebra, Acar et. al. [10] defined soft ring, Atagün and Sezgin [11] defined
soft subrings, soft ideals, soft subfields and soft submodules, Sezgin and Atagün [12]
defined normalistic soft group and normalistic soft group homomorphism.

We notice that the notions above have something in common: A soft set (F, I )
on a group (resp., on a ring, on a semiring, on a BCK-algebra, on a BCI-algebra, on
a BL-algebra) X is said to be a soft group (resp., a soft ring, a soft semiring, a soft
BCK-algebra, a soft BCI-algebra, a soft BL-algebra) if F(i) is a subgroup (resp.,
a subring, a subsemiring, a subBCK-algebra, a subBCI-algebra, a subBL-algebra)
of X (∀i ∈ I ). This is partially true for the notion of soft topological space which
is defined by Shabir and Naz [13] and Çaǧman et. al. [14] in a slightly different
manner (the former is a special case of the latter). Thus it is necessary to consider the
harmony between these two definitions of soft topologies and other softmathematical
concepts which have already been defined.

Many real-world problems can be tentatively described by a soft set (or a soft
set with a structure), but effective descriptions to such problem (even efficient meth-
ods to solve such problem) at present almost surely rely on our understanding of
the structure of these soft sets. This and the striking similarities and connections
between soft mathematical concepts and structures and corresponding crisp mathe-
matical concepts and structures urge us to continue to study soft topological spaces
(precisely, cryptomorphic properties of soft topologies). We define appropriate order
relations ≤ on SWCL(X, I ) (the set of all soft weak closure operators on X indexed
by I ), SWIN(X, I ) (the set of all soft weak interior operators on X indexed by
I ), SWOU(X, I ) (the set of all soft weak exterior operators on X indexed by I ),
and SWB(X, I ) (the set of all soft weak boundary operators on X indexed by I ),
and then we show that (SWCL(X, I ),≤), (SWIN(X, I ),≤), (SWOU(X, I ),≤)

and (SWB(X, I ),≤) are all complete lattices that are isomorphic to (ST(X, I ),⊆)

(particularly, we give out these isomorphisms in detail). This implies that a soft topo-
logical structure on a given set can be displayed or shown in at least five equivalent
forms (i.e. we can work out or compute the others from any of them). Thus one can
choose the relatively convenient form or approach in related study and applications.
We also give examples and algorithms to indicate possible applications of our results.
Actually, the idea and technique of the present paper may also be used in simplifica-
tion of softmathematical concepts (even of soft set theory and rough set theory) if one
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aware the covered similarities and connections between soft mathematical concepts
(resp., rough mathematical concepts) and some crisp mathematical concepts.

Now we give some definitions and preliminary results which will be used in this
paper.

Definition 1 ([1]) A soft set on a set X is a pair (F, I ), where I is a nonempty index
set (called also a parameter set), and F : I −→ 2X (the set of all subset of X ) is a
mapping; The set of all soft sets on X indexed by I is denoted by S(X, I ).

Remark 1 We use 〈F(1), F(2), . . . , F(n)〉 (or F(1), F(2), . . . , F(n)) to replace
(F, I ) for convenience and intuitiveness when I = {1, 2, . . . , n} and n is a natural
number. For each A ∈ 2X , Ã ∈ S(X, I ) is defined by Ã(i) = A (∀i ∈ I ); we iden-
tify {̃x} with x̃ (∀x ∈ X). For each (F, I ) ∈ S(X, I ), (F ′, I ) ∈ S(X, I ) is defined
by F ′(i) = X − F(i) (∀i ∈ I ); sometimes we use (F, I )′ to replace (F ′, I ) for
convenience.

Definition 2 ([15]) Let {(F, I )}F∈F ⊆ S(X, I ).
(1) The member (H, I ) = ⋃̃

F∈F(F, I ) (or written (F, I )∪̃ (H, I )∪̃ · · · ∪̃(K , I ) if
F = {F, H, . . . , K } is a finite set) of S(X, I ) is called the union of the family
{(F, I )}F∈F, which is defined by H(i) = ⋃

F∈F F(i) (∀i ∈ I ).

(2) The member (G, I ) = ⋂̃
F∈F(F, I ) (or written (F, I )∩̃ (H, I )∩̃ · · · ∩̃(K , I ) if

F = {F, H, . . . , K } is a finite set) ofS(X, I ) is called the intersection of the family
{(F, I )}F∈F, which is defined by G(i) = ⋂

F∈F F(i) (∀i ∈ I ).

Theorem 1 For any members (F, I ) and (H, I ) inS(X, I ), define (F, I ) ≤ (H, I )
if and only if F(i) ⊆ H(i) (∀i ∈ I ). Then (S(X, I ),≤) is a powerset lattice, and
the least element and the greatest element of (S(X, I ),≤) are (̃∅, I ) and (X̃ , I ),
respectively.

Proof Actually, the mapping ϕ : (S(X, I ),≤) −→ (2X×I ,⊆), defined by
ϕ((F, I )) = ⋃

i∈I (F(i) × {i}) (∀(F, I ) ∈ S(X, I )), is an isomorphism, whose
inverse mapping ψ : (2X×I ,⊆) −→ (S(X, I ),≤) is given by ψ(A) = (FA, I )
(∀A ∈ 2X×I ), where FA : I −→ 2X (∀A ∈ 2X×I ) is defined by FA(i) = {x ∈ X |
(x, i) ∈ A} (∀i ∈ I ). �

Definition 3 Let T ⊆ S(X, I ). (X,T, I ) is called a
(1) Soft topological space indexed by I ifT is closed under the operations of arbitrary
unions and nonempty finite intersections (it thus contains (̃∅, I )); T is called a soft
topology on X indexed by I , members of T are called soft open sets, (F ′, I ) is called
a soft closed set for each (F, I ) ∈ T. The set of all soft topologies on X indexed by
I is denoted by ST(X, I ).
(2) 2X -topological space indexed by I if T is a soft topology on X indexed by I
which satisfies (X̃ , I ) ∈ T (in this case T is called a 2X -topology on X indexed by
I ). The set of all 2X -topologies on X indexed by I is denoted by 2X -T(X, I ).
(3) Deranged soft topological space indexed by I (in this case T is called a deranged
soft topology on X indexed by I ) if, for each n ∈ I , (Xn,T(n)) is a topological
space, where T(n) = {F(n) | (F, I ) ∈ T} and Xn = ⋃

T(n).
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Remark 2 (1) It can be easily seen that T ⊆ S(U, I ) is a soft topology (resp., a 2X -
topology) on X indexed by I if and only if it is a soft topology in the sense of [14]
(resp., [13]) on X . Thus every soft topology in the sense of [13] is a soft topology
in the sense of [14], and every soft topology is a deranged soft topology (see also
Remark 3 below).

(2) For a deranged soft topological space (X,T, I ) indexed by I , letJ ={U ∈ 2X |
U ∩ Xn ∈ T(n) (∀n ∈ I )}. Then J is the biggest topology (called ground topology
of T) on X such that ((Xn,T(n)), iXn ) is a Top-subobject of (X,J ) (i.e. the inclu-
sion mapping or embedding mapping iXn : (Xn,T(n)) −→ (X,J ) is continuous)
for each n ∈ I , where Top is the category [16] of topological spaces and continuous
mappings (compare also to the second paragraph of this section). This conclusion still
holds if (X,T, I ) is a soft topological space (particularly, a 2X -topological space)
indexed by I . It is now plausible to call (contrast to definitions of soft group [6], soft
ring [10], soft semiring [8], soft BCK/BCI-algebra [7], and soft BL-algebra [9] all
“spaces” in Definition 3(3) (not just all “spaces” in Definition 3(2)) soft topological
spaces. But we do not do this because deranged soft topological spaces (which are
actually derangements of soft topological spaces) are not well-behaved (see Remark
3 below). Moreover we do not take (2) in Definition 3 to be the definition of soft
topological space because the “spaces” in Definition 3(2) are too special (they are
actually very special L-topological spaces [17]which are so special that fuzzy topolo-
gists look them to be ordinary topological spaces). However, research works towards
applications of these two kind of “spaces” may be meaningful.

Remark 3 (1) (ST(X, I ),⊆) and (2X -T(X, I ),⊆) are complete lattices, and
(DRST(X, I ),⊆) is a poset (but not necessarily a lattice1) with a greatest ele-
ment. S(X, I ) = {(F, I ) | F ∈ (2X )I } is the greatest element of (ST(X, I ),⊆)

(resp., (2X -T(X, I ),⊆), (DRST(X, I ),⊆)), {(F, I ) | F ∈ ({∅})I } = {(̃∅, I )} is the
least element of (ST(X, I ),⊆), and {(̃∅, I ), (X̃ , I )} is the least element of (2X -T
(X, I ),⊆). For a subset {T j } j∈J ofA (where J = ∅ andA = (ST(X, I ),⊆) or (2X −
T(X, I ),⊆)),

⋂
j∈J T j is the infimum of {T j } j∈J in A, and

⋂{T ⊆ S(U, I ) | T is
a upper bound of {T j } j∈J in A} is the supremum of {T j } j∈J in A.

(2) If X = ∅, then 2X -T(X, I ) = ST(X, I ) = DRST(X, I ) = {(̃∅, I )}.
(3) If X = ∅, then 2X -T(X, I ) ⊂ ST(X, I ). Obviously, 2X -T(X, I ) ⊆ ST(X, I ).

As {(̃∅, I )} ∈ ST(X, I ) but {(̃∅, I )} /∈ 2X -T(X, I ), 2X -T(X, I ) ⊂ ST(X, I ).
(4) If X = ∅ and |I | = 1, then ST(X, I ) = DRST(X, I ).
(5) If X = ∅ and |I | > 1, then ST(X, I ) ⊂ DRST(X, I ).

For each T ∈ ST(X, I ), one can easily verified that (Xi ,T(i)) is a topologi-
cal space (∀i ∈ I ), therefore ST(X, I ) ⊆ DRST(X, I ). In addition, J ={U ⊆ X |
f −1
i (U ) ∈ Ti (∀i ∈ I )} is a topology on X , and fi : (Xi ,T(i)) −→ (X,J ) is a

continuous mapping (∀i ∈ I ), where fi : Xi −→ X is the embedding mapping
(∀i ∈ I ). Without loss of generality we assume that I = {a, b} (a = b). Take

1Let T1 = {(F1, I ), (H1, I )}, T2 = {(F2, I ), (H2, I )}, where I = {a, b} (a = b), F1(a) = ∅,
F1(b) = X , H1(a) = X , H1(b) = ∅, F2(a) = ∅, F2(b) = ∅, H2(a) = X , H2(b) = X . Then
T1,T2 ∈ DRST(X, I ), but T1 and T2 have no infimum in (DRST(X, I ),⊆) since T1 ∩ T2 = ∅.
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T = {(F, I ), (H, I )}, where F(a) = ∅, F(b) = X , H(a) = X , H(b) = ∅. Then
T ∈ DRST(X, I ) − ST(X, I ), which means ST(X, I ) ⊂ DRST(X, I ).

For other undefined lattice-theoretical notions and symbols, please refer to [18].

2 Main Results

Definition 4 A mapping c : S(X, I ) −→ S(X, I ) is called a soft weak closure
operator on X indexed by I if it satisfies the following conditions:
(SWCL1) (F, I ) ≤ c((F, I )) (∀(F, I ) ∈ S(X, I )).
(SWCL2) c((F, I )∪̃(G, I )) = c((F, I ))∪̃c((G, I )) (∀(F, I ), (G, I ) ∈ S(X, I )).
(SWCL3) c(c((F, I ))) = c((F, I )) (∀(F, I ) ∈ S(X, I )).

The set of all soft weak closure operators on X indexed by I is denoted by
SWCL(X, I ).

Theorem 2 (1)Define a relation≤ onSWCL(X, I ) by putting c1 ≤ c2 iff c1((F, I ))
≥ c2((F, I )) (∀(F, I ) ∈ S(X, I )), then (SWCL(X, I ),≤) is a complete lattice.
(2) For each T ∈ ST(X, I ), define a mapping ϕ1,2(T)= cT : S(X, I ) −→ S(X, I )
by putting cT((F, I )) = ⋂̃{(G, I ) ∈ S(X, I ) | (F, I ) ≤ (G, I ), (G, I )′ ∈ T}
(∀(F, I ) ∈ S(X, I )). Then cT is a soft weak closure operator on X indexed
by I , called the soft weak closure operator on X indexed by I corresponding
to T. Thus we obtain a mapping ϕ1,2 : (ST(X, I ),⊆) −→ (SWCL(X, I ),≤),
which is an isomorphism between complete lattices, and whose inverse mapping
ϕ2,1 : (SWCL(X, I ),≤) −→ (ST(X, I ),⊆) is given by ϕ2,1(c) = Tc = {(F, I ) ∈
S(X, I ) | c((F, I )′) = (F, I )′} (∀c ∈ SWCL(X, I )).
(3) Given a c ∈ SWCL(X, I ), ϕ2,1(c) = Tc ∈ 2X -T(X, I ) if and only if c satisfies
c((̃∅, I )) = (̃∅, I ).
Definition 5 A mapping i : S(X, I ) −→ S(X, I ) is called a soft weak interior
operator on X indexed by I if it satisfies the following conditions:
(SWIN1) (F, I ) ≥ i((F, I )) (∀(F, I ) ∈ S(X, I )).
(SWIN2) i((F, I )∩̃(G, I )) = i((F, I ))∩̃i((G, I )) (∀(F, I ), (G, I ) ∈ S(X, I )).
(SWIN3) i(i((F, I ))) = i((F, I )) (∀(F, I ) ∈ S(X, I )).

The set of all soft interior operators on X indexed by I is denoted by SWIN(X, I ).

Theorem 3 (1)Definea relation≤onSWIN(X, I )byputting i1 ≤ i2 iff i1((F, I )) ≤
i2((F, I )) (∀(F, I ) ∈ S(X, I )), then (SWIN(X, I ),≤) is a complete lattice.
(2) For each c ∈ SWCL(X, I ), define a mapping ϕ2,3(c) = ic : S(X, I ) −→
S(X, I ) by putting ic((F, I )) = (c((F, I )′))′ (∀(F, I ) ∈ S(X, I )). Then ic is a soft
weak interior operator on X indexed by I , called the soft weak interior operator on
X indexed by I corresponding to c. Thus we obtain a mapping ϕ2,3 : (SWCL(X, I ),
≤) −→ (SWIN(X, I ),≤), which is an isomorphism between complete lattices, and
whose inverse mapping ϕ3,2 : (SWIN(X, I ),≤) −→ (SWCL(X, I ),≤) is given by
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ϕ3,2(i)((F, I )) = ci ((F, I )) = (i((F, I )′))′ (∀i ∈ SWCL(X, I )).
(3) Given an i ∈ SWIN(X, I ), ϕ3,2(i) = ci satisfies ci ((̃∅, I )) = (̃∅, I ) if and only
if i satisfies i((X̃ , I )) = (X̃ , I ).

Remark 4 By Theorems 2 and 3, we obtain an isomorphism ϕ1,3 = ϕ2,3 ◦ ϕ1,2 :
(ST(X, I ),⊆) −→ (SWIN(X, I ),≤), which is defined by ϕ1,3(T) = iT : S(X, I )
−→ S(X, I ) (∀T ∈ ST(X, I )) and iT((F, I )) = ⋃̃{(G, I ) ∈ S(X, I ) | (F, I ) ≥
(G, I ), (G, I ) ∈ T} (∀(F, I ) ∈ S(X, I )). The inverse mapping of ϕ1,3 is ϕ3,1 =
ϕ2,1 ◦ ϕ3,2, which is defined by ϕ3,1(i) = Ti = {(F, I ) ∈ S(X, I ) | i((F, I )) =
(F, I )} (∀i ∈ SWIN(X, I )). Furthermore, given an i ∈ SWIN(X, I ), ϕ3,1(i) =
Ti ∈ 2X -T(X, I ) if and only if i satisfies i((X̃ , I )) = (X̃ , I ).

Definition 6 A mapping o : S(X, I ) −→ S(X, I ) is called a soft weak exterior
operator on X indexed by I if it satisfies the following conditions:
(SWOU1) o((F, I )) ≤ (F, I )′ (∀(F, I ) ∈ S(X, I )).
(SWOU2) o((F, I )∪̃(G, I )) = o((F, I ))∩̃o((G, I )) (∀(F, I ), (G, I ) ∈ S(X, I )).
(SWOU3) o((o((F, I )))′) = o((F, I )) (∀(F, I ) ∈ S(X, I )).

The set of all soft weak exterior operators on X indexed by I is denoted by
SWOU(X, I ).

Theorem 4 (1)Definea relation≤onSWOU(X, I )byputtingo1 ≤ o2 iff o1((F, I ))
≤ o2((F, I )) (∀(F, I ) ∈ S(X, I )), then (SWOU(X, I ),≤) is a complete lattice.
(2) For each c ∈ SWCL(X, I ), define a mapping ϕ2,4(c) = oc : S(X, I ) −→
S(X, I ) by putting oc((F, I )) = (c((F, I )))′ (∀(F, I ) ∈ S(X, I )). Then oc is a soft
weak exterior operator on X indexed by I , called the soft weak exterior operator on
X indexed by I corresponding to c. Thus we obtain a mapping ϕ2,4 : (SWCL(X, I ),
≤) −→ (SWOU(X, I ),≤), which is an isomorphism between complete lattices, and
whose inversemappingϕ4,2 : (SWOU(X, I ),≤) −→ (SWCL(X, I ),≤) is given by
ϕ4,2(o)((F, I )) = co((F, I )) = (o((F, I )))′ (∀o ∈ SWOU(X, I )).
(3)Given an o ∈ SWOU(X, I ),ϕ4,2(o) = co satisfies co((̃∅, I ))= (̃∅, I ) if and only
if o satisfies o((̃∅, I )) = (X̃ , I ).

Remark 5 (1) By Theorems 2 and 4, we obtain an isomorphism ϕ1,4 = ϕ2,4 ◦
ϕ1,2 : (ST(X, I ),⊆) −→ (SWOU(X, I ),≤), which is defined by ϕ1,4(T) = oT :
S(X, I ) −→ S(X, I ) (∀T ∈ ST(X, I )) and oT((F, I )) = ⋃̃{(G, I ) ∈ S(X, I ) |
(F, I )′ ≥ (G, I ), (G, I ) ∈ T} (∀(F, I ) ∈ S(X, I )). The inverse mapping ofϕ1,4 is
ϕ4,1 = ϕ2,1 ◦ ϕ4,2, which is defined by ϕ4,1(o) = To = {(F, I ) ∈ S(X, I )
| o((F, I )′) = (F, I )} (∀o ∈ SWOU(X, I )). Furthermore, given an o ∈
SWOU(X, I ), ϕ4,1(o) = To ∈ 2X -T(X, I ) if and only if o satisfies o((̃∅, I )) =
(X̃ , I ).

(2) By Theorems 3 and 4, we obtain an isomorphism ϕ3,4 = ϕ2,4 ◦ ϕ3,2 :
(SWIN(X, I ),≤) −→ (SWOU(X, I ),≤), which is defined by ϕ3,4(i) = oi :
S(X, I ) −→ S(X, I ) (∀i ∈ SWIN(X, I )) and oi ((F, I )) = i((F, I )′) (∀(F, I ) ∈
S(X, I )). The inverse mapping of ϕ3,4 is ϕ4,3 = ϕ2,3 ◦ ϕ4,2, which is defined
by ϕ4,3(o) = io : S(X, I ) −→ S(X, I ) (∀i ∈ SWOU(X, I )) and io((F, I )) =
o((F, I )′) (∀(F, I ) ∈ S(X, I )).
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Definition 7 A mapping b : S(X, I ) −→ S(X, I ) is called a soft weak boundary
operator on X indexed by I if it satisfies the following conditions:
(SWB1) b((F, I )) = b((F, I )′) (∀(F, I ) ∈ S(X, I )).
(SWB2) b((F, I )∪̃(G, I )) ≤ b((F, I ))∪̃b((G, I )) (∀(F, I ), (G, I ) ∈ S(X, I )).
(SWB3) If (F, I ), (G, I ) ∈ S(X, I ) and (F, I ) ≤ (G, I ), then (F, I )∪̃b((F, I )) ≤
(G, I )∪̃b((G, I )).
(SWB4) (F, I )∪̃b((F, I ))∪̃b((F, I )∪̃b((F, I ))) = (F, I )∪̃b((F, I )) (∀(F, I ) ∈
S(X, I )).

The set of all soft weak boundary operators on X indexed by I is denoted by
SWB(X, I ).

Theorem 5 (1)Define a relation ≤ on SWB(X, I ) by putting b1 ≤ b2 iff b1((F, I ))
≥ b2((F, I )) (∀(F, I ) ∈ S(X, I )), then (SWB(X, I ),≤) is a complete lattice.
(2) For each c ∈ SWCL(X, I ), define a mapping ϕ2,5(c) = bc : S(X, I ) −→
S(X, I ) by putting bc((F, I )) = c((F, I ))∩̃c((F, I )′) (∀(F, I ) ∈ S(X, I )). Then
bc is a soft weak boundary operator on X indexed by I , called the soft weak
boundary operator on X indexed by I corresponding to c. Thus we obtain a
mapping ϕ2,5 : (SWCL(X, I ),≤) −→ (SWB(X, I ),≤), which is an isomorphism
between complete lattices, and whose inverse mapping ϕ5,2 : (SWB(X, I ),≤) −→
(SWCL(X, I ),≤) is given by ϕ5,2(b)((F, I )) = cb((F, I )) = (F, I )∪̃b((F, I ))
(∀b ∈ SWB(X, I )).
(3) Given a b ∈ SWB(X, I ), ϕ5,2(b) = cb satisfies cb((̃∅, I )) = (̃∅, I ) if and only if
b satisfies b((̃∅, I )) = (̃∅, I ).
Remark 6 (1) By Theorems 2 and 5, we obtain an isomorphism ϕ1,5 = ϕ2,5 ◦ ϕ1,2 :
(ST(X, I ),⊆) −→ (SWB(X, I ),≤), which is defined by ϕ1,5(T) = bT : S(X, I )
−→ S(X, I ) (∀T ∈ ST(X, I )) and

bT((F, I )) =
(⋂̃

{(G, I ) ∈ S(X, I ) | (F, I ) ≤ (G, I ), (G, I )′ ∈ T}
)

∩̃
(⋂̃

{(G, I ) ∈ S(X, I ) | (F, I )′ ≤ (G, I ), (G, I )′ ∈ T}
)

(∀(F, I ) ∈ S(X, I )).

The inverse mapping of ϕ1,5 is ϕ5,1 = ϕ2,1 ◦ ϕ5,2, which is defined by ϕ5,1(b) =
Tb = {(F, I ) ∈ S(X, I ) | (F, I )′∪̃b((F, I )′) = (F, I )′} (∀b ∈ SWB(X, I )). Fur-
thermore, given a b ∈ SWB(X, I ), ϕ5,1(b) = Tb ∈ 2X -T(X, I ) if and only if b sat-
isfies b((̃∅, I )) = (̃∅, I ).

(2) By Theorems 3 and 5, we obtain an isomorphism ϕ3,5 = ϕ2,5 ◦ ϕ3,2 :
(SWIN(X, I ),≤) −→ (SWB(X, I ),≤),which is definedbyϕ3,5(i) = bi : S(X, I )
−→S(X, I ) (∀i ∈ SWIN(X, I )) andbi ((F, I )) = (i((F, I ))∪̃i((F, I )′))′ (∀(F, I )
∈ S(X, I )). The inverse mapping of ϕ3,5 is ϕ5,3 = ϕ2,3 ◦ ϕ5,2, which is defined by
ϕ5,3(b) = ib : S(X, I ) −→ S(X, I ) (∀b ∈ SWB(X, I )) and ib((F, I )) = (F, I ) −
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b((F, I )) (∀(F, I ) ∈ S(X, I )). Furthermore, given an i ∈ SWIN(X, I ), ϕ3,5(i) =
bi satisfies bi ((̃∅, I )) = (̃∅, I ) if and only if i satisfies i((X̃ , I )) = (X̃ , I ).

(3) By Theorems 4 and 5, we obtain an isomorphism ϕ4,5 = ϕ2,5 ◦ ϕ4,2 :
(SWOU(X, I ),≤) −→ (SWB(X, I ),≤), which is defined by ϕ4,5(o) = bo :
S(X, I ) −→ S(X, I ) (∀o ∈ SWOU(X, I )) and bo((F, I )) = (o((F, I ))∪̃o
((F, I )′))′ (∀(F, I ) ∈ S(X, I )). The inverse mapping of ϕ4,5 is ϕ5,4 = ϕ2,4 ◦ ϕ5,2,
which is defined by ϕ5,4(b) = ob : S(X, I ) −→ S(X, I ) (∀b ∈ SWB(X, I )) and
ob((F, I )) = (F, I )′ − b((F, I )) (∀(F, I ) ∈ S(X, I )). Furthermore, given an o ∈
SWOU(X, I ), ϕ4,5(o) = bo satisfies bo((̃∅, I )) = (̃∅, I ) if and only if o satisfies
o((̃∅, I )) = (X̃ , I ).

From above we can see that: For a given set X , if we know one of a soft topology
T on X indexed by I , a soft weak closure operator on X indexed by I , a soft weak
interior operator on X indexed by I , a soft weak exterior operator on X indexed by I ,
a soft weak boundary operator on X indexed by I , then we can work out or compute
the others. This can be realized in computers when X and I are both finite sets. We
will illustrate this by examples in the following (we may also give the corresponding
algorithms).

Example 1 Let X = {x, y} be a two-element set, and I = {1, 2}. Then T = {〈∅,∅〉,
〈∅, X〉, 〈X,∅〉, 〈X, X〉} is a soft topology on X indexed by I and S(X, I ) con-
sists exactly of sixteen members: 〈∅,∅〉, 〈∅, {x}〉, 〈∅, {y}〉, 〈∅, X〉, 〈{x},∅〉,
〈{x}, {x}〉, 〈{x}, {y}〉, 〈{x}, X〉, 〈{y},∅〉, 〈{y}, {x}〉, 〈{y}, {y}〉, 〈{y}, X〉, 〈X,∅〉,
〈X, {x}〉, 〈X, {y}〉, 〈X, X〉. Next we compute the rest four: cT, iT, oT, and bT.

By Theorem 2 we know cT = ϕ1,2(T) : S(X, I ) −→ S(X, I ) is defined by
cT(〈∅,∅〉) = 〈∅,∅〉, cT(〈∅, {x}〉) = 〈∅, X〉, cT(〈∅, {y}〉) = 〈∅, X〉, cT(〈∅, X〉) =
〈∅, X〉, cT(〈{x},∅〉) = 〈X,∅〉, cT(〈{x}, {x}〉) = 〈X, X〉, cT(〈{x}, {y}〉) = 〈X, X〉,
cT(〈{x}, X〉) = 〈X, X〉, cT(〈{y},∅〉) = 〈X,∅〉, cT(〈{y}, {x}〉) = 〈X, X〉, cT
(〈{y}, {y}〉) = 〈X, X〉, cT(〈{y}, X〉) = 〈X, X〉, cT(〈X,∅〉) = 〈X,∅〉, cT(〈X, {x}〉)
= 〈X, X〉, cT(〈X, {y}〉) = 〈X, X〉, cT(〈X, X〉) = 〈X, X〉.

By Remark 4 we know iT = ϕ1,3(T) : S(X, I ) −→ S(X, I ) is defined by
iT(〈∅,∅〉) = 〈∅,∅〉, iT(〈∅, {x}〉) = 〈∅,∅〉, iT(〈∅, {y}〉) = 〈∅,∅〉, iT(〈∅, X〉)
= 〈∅, X〉, iT(〈{x},∅〉) = 〈∅,∅〉, iT(〈{x}, {x}〉) = 〈∅,∅〉, iT(〈{x}, {y}〉) = 〈∅,∅〉,
iT(〈{x}, X〉) = 〈∅, X〉, iT(〈{y},∅〉) = 〈∅,∅〉, iT(〈{y}, {x}〉) = 〈∅,∅〉,
iT(〈{y}, {y}〉) = 〈∅,∅〉, iT(〈{y}, X〉) = 〈∅, X〉, iT(〈X,∅〉) = 〈X,∅〉, iT(〈X, {x}〉)
= 〈X,∅〉, iT(〈X, {y}〉) = 〈X,∅〉, iT(〈X, X〉) = 〈X, X〉.

By Remark 5 we know oT = ϕ1,4(T) : S(X, I ) −→ S(X, I ) is defined by
oT(〈∅,∅〉) = 〈X, X〉, oT(〈∅, {x}〉) = 〈X,∅〉, oT(〈∅, {y}〉) = 〈X,∅〉, oT(〈∅, X〉)
= 〈X,∅〉, oT(〈{x},∅〉)= 〈∅, X〉, oT(〈{x}, {x}〉) = 〈∅,∅〉, oT(〈{x}, {y}〉) = 〈∅,∅〉,
oT(〈{x}, X〉) = 〈∅,∅〉, oT(〈{y},∅〉) = 〈∅, X〉, oT(〈{y}, {x}〉) = 〈∅,∅〉,
oT(〈{y}, {y}〉) = 〈∅,∅〉, oT(〈{y}, X〉) = 〈∅,∅〉, oT(〈X,∅〉) = 〈∅, X〉, oT(〈X, {x}〉)
= 〈∅,∅〉, oT(〈X, {y}〉) = 〈∅,∅〉, oT(〈X, X〉) = 〈∅,∅〉.

By Remark 6 we know bT = ϕ1,5(T) : S(X, I ) −→ S(X, I ) is defined by
bT(〈∅,∅〉) = 〈∅,∅〉, bT(〈∅, {x}〉) = 〈∅, X〉, bT(〈∅, {y}〉) = 〈∅, X〉, bT(〈∅, X〉) =
〈∅,∅〉, bT(〈{x},∅〉) = 〈X,∅〉, bT(〈{x}, {x}〉) = 〈X, X〉, bT(〈{x}, {y}〉) = 〈X, X〉,
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bT(〈{x}, X〉) = 〈X,∅〉, bT(〈{y},∅〉) = 〈X,∅〉, bT(〈{y}, {x}〉) = 〈X, X〉, bT(〈{y},
{y}〉)= 〈X, X〉,bT(〈{y}, X〉) = 〈X,∅〉,bT(〈X,∅〉) = 〈∅,∅〉,bT(〈X, {x}〉)= 〈∅, X〉,
bT(〈X, {y}〉) = 〈∅, X〉, bT(〈X, X〉) = 〈∅,∅〉.
Example 2 Let X = {x, y} be a two-element set, and I = {1, 2}. Then S(X, I )
has sixteen members (as in Example 1) and c : S(X, I ) −→ S(X, I ), defined by
c(〈∅,∅〉) = 〈∅,∅〉 and c(〈F1, F2〉) = 〈X, X〉 (∀〈F1, F2〉 ∈ (S(X, I ) − 〈∅,∅〉)), is a
soft weak closure operator on X indexed by I . Next we compute the rest four: Tc,
ic, oc, and bc. By Theorem 2 we know Tc = ϕ2,1(c) = {〈∅,∅〉, 〈X, X〉}. By The-
orem 3 we know ic = ϕ2,3(c) : S(X, I ) −→ S(X, I ) is defined by ic(〈X, X〉) =
〈X, X〉 and ic(〈F1, F2〉) = 〈∅,∅〉 (∀〈F1, F2〉 ∈ (S(X, I ) − 〈X, X〉)). By Theorem
4 we know oc = ϕ2,4(c) : S(X, I ) −→ S(X, I ) is defined by oc(〈∅,∅〉) = 〈X, X〉
and oc(〈F1, F2〉) = 〈∅,∅〉 (∀〈F1, F2〉 ∈ (S(X, I ) − 〈∅,∅〉)). By Theorem 5 we
know bc = ϕ2,5(c) : S(X, I ) −→ S(X, I ) is defined by bc(〈∅,∅〉) = bc(〈X, X〉) =
〈∅,∅〉 and bc(〈F1, F2〉) = 〈X, X〉 (∀〈F1, F2〉 ∈ (S(X, I ) − 〈∅,∅〉 − 〈X, X〉)).
Example 3 Let X = {x, y} be a two-element set, and I = {1, 2}. Then S(X, I )
has sixteen members (as in Example 1) and i : S(X, I ) −→ S(X, I ), defined
by i(〈F1, F2〉) = 〈∅,∅〉 (∀〈F1, F2〉 ∈ S(X, I )), is a soft weak interior opera-
tor on X indexed by I . Next we compute the rest four: Ti , ci , oi , and bi .
By Remark 4 we know Ti = ϕ3,1(i) = {〈∅,∅〉}. By Theorem 3 we know ci =
ϕ3,2(i) : S(X, I ) −→ S(X, I ) is defined by ci (〈F1, F2〉) = 〈X, X〉 (∀〈F1, F2〉 ∈
S(X, I )). By Remark 5 we know oi = ϕ3,4(i) : S(X, I ) −→ S(X, I ) is defined by
oi (〈F1, F2〉) = 〈∅,∅〉 (∀〈F1, F2〉 ∈ S(X, I )). By Remark 6 we know bi = ϕ3,5(i) :
S(X, I ) −→ S(X, I ) is defined by bi (〈F1, F2〉) = 〈X, X〉 (∀〈F1, F2〉 ∈ S(X, I )).

Example 4 Let X = {x, y} be a two-element set, and I = {1, 2}. Then S(X, I )
has sixteen members (as in Example 1) and o : S(X, I ) −→ S(X, I ), defined
by o(〈∅,∅〉) = 〈∅, {x}〉, o(〈∅, {x}〉) = 〈∅,∅〉, o(〈∅, {y}〉) = 〈∅, {x}〉, o(〈∅, X〉) =
〈∅,∅〉, o(〈{x},∅〉) = 〈∅, {x}〉, o(〈{x}, {x}〉) = 〈∅,∅〉, o(〈{x}, {y}〉) = 〈∅, {x}〉,
o(〈{x}, X〉) = 〈∅,∅〉, o(〈{y},∅〉) = 〈∅, {x}〉, o(〈{y}, {x}〉) = 〈∅,∅〉, o(〈{y}, {y}〉) =
〈∅, {x}〉, o(〈{y}, X〉) = 〈∅,∅〉, o(〈X,∅〉) = 〈∅, {x}〉, o(〈X, {x}〉) = 〈∅,∅〉, o(〈X,
{y}〉) = 〈∅, {x}〉, o(〈X, X〉) = 〈∅,∅〉, is a soft weak exterior operator on X indexed
by I . Next we compute the rest four: To, co, io, and bo.

ByRemark 5we knowTo = ϕ4,1(o) = {〈∅,∅〉, 〈∅, {x}〉}. By Theorem 4we know
co = ϕ4,2(o) : S(X, I ) −→ S(X, I ) is defined by co(〈∅,∅〉) = 〈X, {y}〉,
co(〈∅, {x}〉) = 〈X, X〉, co(〈∅, {y}〉) = 〈X, {y}〉, co(〈∅, X〉) = 〈X, X〉, co(〈{x},∅〉)
= 〈X, {y}〉, co(〈{x}, {x}〉) = 〈X, X〉, co(〈{x}, {y}〉) = 〈X, {y}〉, co(〈{x}, X〉)
= 〈X, X〉, co(〈{y},∅〉) = 〈X, {y}〉, co(〈{y}, {x}〉) = 〈X, X〉, co(〈{y}, {y}〉) =
〈X, {y}〉, co(〈{y}, X〉) = 〈X, X〉, co(〈X,∅〉) = 〈X, {y}〉, co(〈X, {x}〉) = 〈X, X〉,
co(〈X, {y}〉) = 〈X, {y}〉, co(〈X, X〉) = 〈X, X〉.

By Remark 5 we know io(〈∅,∅〉) = 〈∅,∅〉, io(〈∅, {x}〉) = 〈∅, {x}〉, io(〈∅, {y}〉)
= 〈∅,∅〉, io(〈∅, X〉) = 〈∅, {x}〉, io(〈{x},∅〉) = 〈∅,∅〉, io(〈{x}, {x}〉) = 〈∅, {x}〉,
io(〈{x}, {y}〉) = 〈∅,∅〉, io(〈{x}, X〉) = 〈∅, {x}〉, io(〈{y},∅〉) = 〈∅,∅〉, io(〈{y}, {x}〉)
= 〈∅, {x}〉, io(〈{y}, {y}〉) = 〈∅,∅〉, io(〈{y}, X〉) = 〈∅, {x}〉, io(〈X,∅〉) = 〈∅,∅〉,
io(〈X, {x}〉) = 〈∅, {x}〉, io(〈X, {y}〉) = 〈∅,∅〉, io(〈X, X〉) = 〈∅, {x}〉.
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By Remark 6 we know bo = ϕ4,5(o) : S(X, I ) −→ S(X, I ) is defined by
bo(〈F1, F2〉) = 〈X, {y}〉 (∀〈F1, F2〉 ∈ S(X, I ))

Example 5 Let X = {x, y} be a two-element set, and I = {1, 2}. Then S(X, I )
has sixteen members (as in Example 1) and b : S(X, I ) −→ S(X, I ), defined by
b(〈F1, F2〉) = 〈{y}, {x}〉 (∀〈F1, F2〉 ∈ S(X, I )), is a soft weak boundary operator
on X indexed by I . Next we compute the rest four: Tb, cb, ib, and ob. By Remark 6
we know Tb = ϕ5,1(b) = {〈∅,∅〉, 〈{x},∅〉, 〈∅, {y}〉, 〈{x}, {y}〉}.

By Theorem 5 we know cb = ϕ5,2(b) : S(X, I ) −→ S(X, I ) is defined by
cb(〈∅,∅〉) = 〈{y}, {x}〉, cb(〈∅, {x}〉) = 〈{y}, {x}〉, cb(〈∅, {y}〉) = 〈{y}, X〉, cb(〈∅,
X〉) = 〈{y}, X〉, cb(〈{x},∅〉) = 〈X, {x}〉, cb(〈{x}, {x}〉) = 〈X, {x}〉, cb(〈{x}, {y}〉)=
〈X, X〉, cb(〈{x}, X〉)=〈X, X〉, cb(〈{y},∅〉)=〈{y}, {x}〉, cb(〈{y}, {x}〉) = 〈{y}, {x}〉,
cb(〈{y}, {y}〉)=〈{y}, X〉, cb(〈{y}, X〉)= 〈{y}, X〉, cb(〈X,∅〉) = 〈X, {x}〉, cb(〈X, {x}
〉) = 〈X, {x}〉, cb(〈X, {y}〉) = 〈X, X〉, cb(〈X, X〉) = 〈X, X〉.

By Remark 6 we know ib = ϕ5,3(b) : S(X, I ) −→ S(X, I ) is defined by
ib(〈∅,∅〉) = 〈∅,∅〉, ib(〈∅, {x}〉) = 〈∅,∅〉, ib(〈∅, {y}〉) = 〈∅, {y}〉, ib(〈∅, X〉)
= 〈∅, {y}〉, ib(〈{x},∅〉) = 〈{x},∅〉, ib(〈{x}, {x}〉) = 〈{x},∅〉, ib(〈{x}, {y}〉) = 〈{x},
{y}〉, ib(〈{x}, X〉) = 〈{x}, {y}〉, ib(〈{y},∅〉) = 〈∅,∅〉, ib(〈{y}, {x}〉) = 〈∅,∅〉,
ib(〈{y}, {y}〉) = 〈∅, {y}〉, ib(〈{y}, X〉)= 〈∅, {y}〉, ib(〈X,∅〉)= 〈{x},∅〉, ib(〈X, {x}〉)
= 〈{x},∅〉, ib(〈X, {y}〉) = 〈{x}, {y}〉, ib(〈X, X〉) = 〈{x}, {y}〉.

By Remark 6 we know ob = ϕ5,4(b) : S(X, I ) −→ S(X, I ) is defined by
ob(〈∅,∅〉) = 〈{x}, {y}〉, ob(〈∅, {x}〉) = 〈{x}, {y}〉, ob(〈∅, {y}〉) = 〈{x},∅〉,
ob(〈∅, X〉) = 〈{x},∅〉, ob(〈{x},∅〉) = 〈∅, {y}〉, ob(〈{x}, X〉) = 〈∅,∅〉, ob(〈{x}, {x}〉)
= 〈∅, {y}〉, ob(〈{x}, {y}〉) = 〈∅,∅〉, ob(〈{y},∅〉) = 〈{x}, {y}〉, ob(〈{y}, {x}〉) =
〈{x}, {y}〉, ob(〈{y}, {y}〉) = 〈{x},∅〉, ob(〈{y}, X〉) = 〈{x},∅〉, ob(〈X,∅〉)= 〈∅, {y}〉,
ob(〈X, {x}〉) = 〈∅, {y}〉, ob(〈X, {y}〉) = 〈∅,∅〉, ob(〈X, X〉) = 〈∅,∅〉.
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6. Aktaş, H., Çaǧman, N.: Soft sets and soft groups. Inf. Sci. 177, 2726–2735 (2007)
7. Jun, Y.B.: Soft BCK/BCI-algebras. Comput. Math. Appl. 56, 1408–1413 (2008)
8. Feng, F., Jun, Y.B., Zhao, X.Z.: Soft semirings. Comput. Math. Appl. 56, 2621–2628 (2008)

http://dx.doi.org/10.1155/2014/843456
http://dx.doi.org/10.1155/2014/327408
http://dx.doi.org/10.1155/2014/327408
http://dx.doi.org/10.1155/2014/161607
http://dx.doi.org/10.1155/2014/783056
http://dx.doi.org/10.1155/2014/783056


Determinations of Soft Topologies 563

9. Zhan, J.M., Jun, Y.B.: Soft BL-algebras based on fuzzy sets. Comput. Math. Appl. 59, 2037–
2046 (2010)

10. Acar, U., Koyuncu, F., Tanay, B.: Soft sets and soft rings. Comput. Math. Appl. 59, 3458–3463
(2010)

11. Atagün, A.O., Sezgin, A.: Soft substructures of rings, fields andmodules. Comput.Math. Appl.
61, 592–601 (2011)

12. Sezgin, A., Atagün, A.O.: Soft groups and normalistic soft groups. Comput. Math. Appl. 62,
685–698 (2011)

13. Shabir, M., Naz, M.: On soft topological spaces. Comput. Math. Appl. 61, 1786–1799 (2011)
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Abstract Some results on connected fuzzy topological spaces are extend to the
setting of C̆ech closure molecular lattices, a natural generalization of Mashhour and
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logical molecular lattices (and also an analogous of knowledge space, implicational
space, and learning space). It is proved that CCML, the category of C̆ech closure
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1 Introduction

Connectedness is a useful notion in topology, which has various generalizations in
fuzzy topological spaces. One of such generalization is the fuzzy connectedness
defined by Pu and Liu in [1] for an arbitrary fuzzy set, which has been developed and
used by many authors. In this article, we will extend some results on Pu and Liu’s
connectedness for fuzzy topological spaces to the setting of C̆ech closure molecular
lattices, a natural generalization of Mashhour and Ghanim’s fuzzy closure space [2],
Liu and Luo’s quasi-subspace [3], and Wang’s topological molecular lattice—TML
[4] for short (and also an analogous of knowledge space, implicational space, and
learning space, cf. [5–7]). In Sect. 1 we define the notions of C̆ech closure molecular
lattice, continuous generalized order-homomorphism, and homeomorphic general-
ized order-homomorphism and investigate some fundamental properties. In Sect. 2
we study the categorical preparations of C̆ech closure molecular lattices, includ-
ing existence and structures of CCML-products and CCML-coproducts, where
CCML is the category of C̆ech closure molecular lattices and generalized order-
homomorphisms. In the final section we define the notion of connected C̆ech closure
molecular lattice and establish a series of properties of these closure molecular lat-
tices. In particular, we show that the product of a family of CCML-objects is con-
nected if and only if each of these objects is connected. We refer to [4] as a general
reference on topological molecular lattice (or quasi-subspace).

2 C̆ech Closure Molecular Lattices and Continuous GOHs

Definition 1 Let L be a completely distributive complete lattice (CD lattice for short)
with the smallest element 0L and the largest element 1L . A C̆ech closure operator on
L is a mapping ∼: L −→ L satisfying:
(1) 0∼

L = 0L ;
(2) a ≤ a∼ for every a ∈ L;
(3) (a ∨ b)∼ = a∼ ∨ b∼ for every a, b ∈ L .
When ∼ is a C̆ech closure operator, we call (L ,∼) a C̆ech closure molecular lattice
(CCML for short).

Remark 1 (1) Let L be a CD lattice, CL̆ the set of all C̆ech closure operators on
L , TL the set of all co-topologies [4] on L , and CL the set of all all C̆ech closure
operators on L satisfying the idempotent law (such kinds of C̆ech closure opera-
tors are called Kuratowski closure operators). For each ∼∈ CL , let F(∼) = {a∼ |
a ∈ L}. Then we have a bijection F : CL −→TL , whose inverse F

−1 maps a co-
topology δ ∈TL to a Kuratowski closure operator∼∈CL defined by a∼ = ∧{b ∈ δ |
a ≤ b}(∀a ∈ L). For this reason, we will make no distinction between a Kuratowski
closure molecular lattice (i.e. CCML (L ,∼) with ∼ a Kuratowski closure operator)
and the corresponding TML, and use − to denote any Kuratowski closure operator
on L in this paper. We note that CL ⊂ CL̆ for some CD lattice L (see Example 1).
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Thus CCML is a natural and nontrivial generalization of fuzzy closure space [2],
quasi-subspace [3], and TML [4].

(2) For any ∼1,∼2∈ CL̆ , we say ∼1 is coarser than ∼2 (or ∼2 is finer than ∼1), in
symbols ∼1≺∼2, iff a∼2 ≤ a∼1 (∀a ∈ L). One can verify that (CL̆ ,≺) is a complete
lattice.

Example 1 (1) Suppose that L is a well-ordered set which has at least four elements.
Let 0∼

L = 0L , 1∼
L = 1L , and x∼ the successor of x for every x ∈ L − {0L , 1L}. Then

∼∈ CL̆− CL .
(2) Let R be the set of all real numbers, L = 2R the CD lattice consisting of all

subsets of R and ordered by inclusion⊆. Let∅∼ = ∅ and E∼ = {x ∈ R | |x − e| < 1
for some e ∈ E} for every E ∈ L − {∅}. Then ∼∈ CL̆− CL .

Definition 2 Suppose that (L1,∼) and (L2,∼) are both CCMLs (for simplicity, we
use the same symbol ∼ to denote the two different C̆ech closure operators on L1

and L2, respectively), and f : L1 −→ L2 is a generalized order-homomorphism [4]
(GOH for short). f is said to be
(1) Continuous iff f (a∼) ≤ [ f (a)]∼ for every a ∈ L1.
(2) Closed iff f (a∼) = [ f (a)]∼ for every a ∈ L1.
(3) Open iff for every a ∈ L1 and b ∈ L2 satisfying f ∗(b) ≤ a∼, there exists a c ∈ L2

such that b ≤ c∼ and f ∗(c∼) ≤ a∼, where f ∗ : L2 −→ L1 is the right adjoint of f .
(4) An homeomorphism (in this case, we say that (L1,∼) is homeomorphic to
(L2,∼)) iff it is a bijection, and both f : (L1,∼) −→ (L2,∼) and f ∗ : (L2,∼)

−→ (L1,∼) are continuous.

A property P on CCMLs is said to be topological iff it is preserved under home-
omorphic GOHs.

Theorem 1 Using the same symbols as in Definition 2, we have
(1) f is continuous if and only if [ f ∗(b)]∼ ≤ f ∗(b∼) (∀b ∈ L2).
(2) If f is a bijection. Then f is an homeomorphism if and only if both f and f ∗ are
open (equivalently, both f and f ∗ are closed).

Proof We only show (2).
Suppose that f is a bijection. Then f ∗ is exactly the inverse mapping of f . First,

assume that f is an homeomorphism, a ∈ L1, b ∈ L2 and f ∗(b) ≤ a∼. Then we take
c = f (a). As f and f ∗ are both continuous, it follows that b ≤ c∼ and f ∗(c∼) ≤ a∼.
Thus f is open. Similarly, f ∗ is also open. Next, suppose that both f and f ∗ are
open. Then [ f (a)]∼ ≤ f (a∼) and f (a∼) ≤ [ f (a)]∼ for every a ∈ L1, i.e. f is a
closed. Similarly, f ∗ is closed. Apparently, f is an homeomorphism if f and f ∗ are
both closed and continuous. �

Theorem 2 Let L be a CD lattice, (X,∼) a C̆ech closure space,

A∼L =
∧

{[r ] ∨ χE∼ | A ≤ [r ] ∨ χE∼ , r ∈ L , E ⊆ X} ,
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where A ∈ LX (the set of all L-subsetswith pointwise order),χE∼ is the characteristic
function of E∼, [r ] ∈ LX is the L-subset taking constant value r . Then
(1) (X,∼L) is a fully stratified (i.e. it satisfies [r ]∼L = [r ] for all r ∈ L) L-C̆ech
closure space (called induced L-C̆ech closure space).
(2) (χY )

∼L = χY∼ for every Y ⊆ X.

Proof We only show (1). It suffices to show that (A ∨ B)∼L = A∼L ∨ B∼L for all
A, B ∈ LX . Let

A = {[r ] ∨ χE∼ | A ≤ [r ] ∨ χE∼},

B = {[r ] ∨ χ∼
E | B ≤ [r ] ∨ χE∼},

C = {[r ] ∨ χE∼ | A ∨ B ≤ [r ] ∨ χE∼}.

Then A∼L = ∧
A, B∼L = ∧

B and (A ∨ B)∼L = ∧
C. Obviously, C ⊆ A, thus

A∼L≤(A ∨ B)∼L . Similarly, B∼L≤(A ∨ B)∼L . Therefore A∼L ∨ B∼L ≤ (A ∨ B)∼L .
Next, we show (A ∨ B)∼L ≤ A∼L ∨ B∼L . It suffices to show A ∨ B ≤ [r ∨ s] ∨
χ(E∪F)∼ whenever A ≤ [r ] ∨ χE∼ and B ≤ [r ] ∨ χF∼ . Suppose that e ∈Copr(LX )

satisfying e ≤ A ∨ B. Then e ≤ A or e ≤ B. Without loss of generality we assume
that e ≤ A. Since (X,∼) is a C̆ech closure space, we have E∼ ∪ F∼ = (E ∪ F)∼,
and thus

e ≤ [r ∨ s] ∨ χ(E∼∪F∼) = [r ∨ s] ∨ χ(E∪F)∼L ,

which implies (A ∨ B)∼L = A∼L ∨ B∼L . �

3 The Category of C̆ech Closure Molecular Lattices

In the following, let CD (resp., TML, CCML) be the category of CD lattices (resp.,
TMLs, CCMLs) and GOHs (resp., continuous GOHs, continuous GOHs), and for
any given CD lattice L , Copr(L) be the set of all nonzero co-prime elements of L .

Lemma 1 ([8]) Let {Lt }t∈T be a family of CD lattices, L0
t = Lt − {0Lt }, and⊗

t∈T Lt the collection of all A ⊆ ∏
t∈T L0

t satisfying the following conditions (where∏
t∈T L0

t is direct product):
(P1) A is a lower set, i.e. A =↓A, where

↓A =
{

{yt }t∈T ∈
∏

t∈T
L0
t

∣
∣
∣
∣
∣

∃{xt }t∈T ∈ A, xt ≥ yt (∀t ∈ T )

}

.

(P2) If ∅ �= Bt ⊆ L0
t and

∏
t∈T Bt ⊆ A, then {bt }t∈T ∈ A,where bt = ∨

Bt (t ∈ T ).
Then the following statements hold:
(1) (

⊗
t∈T Lt ,⊆) is a CD lattice, the intersection and union of a family {As}s∈S of

CD lattices is defined by
∧

s∈S As = ⋂
s∈S As and



C̆ech Closure Molecular Lattices 569

∨

s∈S
As =

{

{bt }t∈T
∣
∣
∣
∣
∣

∃Bt ∈ 2L
0
t − {∅}(t ∈ T ),

∏

t∈T
Bt ⊆

⋃

s∈S
As

∨
Bt = bt

}

respectively, where
⋂

and
⋃

are the ordinary set theoretic intersection and union
respectively.
(2) {↓{at }t∈T ∈ ⊗

t∈T Lt | at ∈Copr(Lt ), t ∈ T } ⊆Copr(
⊗

t∈T Lt ), and it is a
union-generating set of

⊗
t∈T Lt .

(3) {⊗t∈T Lt , pt | t ∈ T }, breifly, ⊗
t∈T Lt , is the CD-product of {Lt }t∈T , where

ps, defined by

ps(A) =
∨

{xs | {xt }t∈T ∈ A}
(

A ∈
⊗

t∈T
Lt , s ∈ T

)

,

is called the projection from
⊗

t∈T Lt to Ls.
(4) {(⊗t∈T Lt , δ), pt | t ∈ T }, breifly, (

⊗
t∈T Lt , δ), is the TML-product of

{(Lt , δt )}t∈T , where δ is the co-topology on
⊗

t∈T Lt having {p∗
t (Q) | Q ∈ δt , t ∈ T }

as a subbase.

Theorem 3 CCML has products and coproducts. Let {(Lt ,∼)}t∈T be a family of
CCMLs, {L , pt }t∈T and {T, qt }t∈T the product and coproduct of {Lt }t∈T in CD
respectively. For every a ∈ L, let a∼ be the union set of all e ∈Copr(L) satisfying
following condition (∗):
(∗) If a = ∨b

k=1 ak, then there exists a natural number k such that pt (e) ≤ [pt (ak)]∼
for every t ∈ T .

For each b ∈ J = ∏
t∈T Lt , let b� ∈ J satisfying b�(t) = [b(t)]∼ for every t ∈

T . Then
(1) {(L ,∼), pt }t∈T and {(J,�), qt }t∈T are the product and coproduct of
{(Lt ,∼)}t∈T in CCML, respectively.
(2) ∼ is the coarsest C̆ech closure operator such that every pt is continuous, and �
is the finest C̆ech closure operator such that every qt is continuous.
(3) When {(Lt ,∼)}t∈T is a family of TMLs, {(L ,∼), pt }t∈T and {(J,�), qt }t∈T are
the product and coproduct of {(Lt ,∼)}t∈T in category TML, respectively.
(4) qt is a clopen (i.e. both closed and open) GOH for every t ∈ T .

Proof We only show that (L ,∼) is a CCML. Obviously, 0∼
L = 0L . Suppose that

e ∈Copr(L) satisfying e ≤ a = ∨n
k=1 ak (ak ∈ L). Then e ≤ ak for some k ≤ n

since e ∈Copr(L), and thus pt (e) ≤ pt (ak) ≤ [pt (ak)]∼ for every t ∈ T . It follows
that e ≤ a∼ by the definition of a∼, i.e. a ≤ a∼. Next, let a, b ∈ L . Then a∼ ∨ b∼ ≤
(a ∨ b)∼ by the above definition of ∼. If e ∈Copr(L) and e � a∼ ∨ b∼, i.e. e � a∼
and e � b∼. Then there exist t1, t2, . . . , tn ∈ T and e1, e2, . . . , em, em+1, . . . , en ∈ L
such that a = ∨m

k=1 ek, b = ∨n
k=m+1 ek and ptk (e) � [ptk (etk )]∼ (k = 1, 2, . . . , n),

i.e. e � (a ∨ b)∼. Therefore (L ,∼) is a CCML. �

Theorem 4 TML is a coreflective subcategory of CCML.
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Proof Obviously, TML is a subcategory of CCML. For each CCML-object A =
(L ,∼), let δ = {a∼ | a ∈ L , a∼∼ = a∼}. Then δ ∈TL and− = σ−1(δ) : L −→ L is
a Kuratowski closure operator on L . It can be easily seen that rA = idL : A = (L ,∼
) −→ (L ,−) is a coreflection. �

Theorem 4, Lemma 2.3 in [9], and Proposition 27.9 (2) in [10] imply.

Theorem 5 CCML is not a Cartesian closed category.

4 Connectedness of C̆ech Closure Molecular Lattices

In this section, (L ,∼) is always supposed to be a C̆ech closure moleculer lattice.

Definition 3 a, b ∈ L is said to be separated iff a∼ ∧ b = a ∧ b∼ = 0L . c ∈ L are
said to be connected in (L ,∼) iff there exists no nonzero separated elements a and
b such that c = a ∨ b. (L ,∼) is said to be separated iff 1L is connected.

Theorem 6 e ∈ L is not connected in (L ,∼) if and only if there exist a, b ∈
L − {0L} such that a ∨ b = e, a ∧ b = 0L , a = a∼ ∧ e and b = b∼ ∧ e.

Proof Assume that e is not connected in (L ,∼), i.e. there exist a, b ∈ L − {0L}
such that a ∨ b = e and a ∧ b∼ = a∼ ∧ b = 0L . As a ≤ a∼, we have a ∧ b = 0L
and a∼ ∧ e = a∼ ∧ (a ∨ b) = (a∼ ∧ a) ∨ (a∼ ∧ b) = a. Similarly b∼ ∧ e = b.

Conversely, assume the condition in Theorem 6. Then

a ∧ b∼ = a∼ ∧ (e ∧ e) ∧ b∼ = [a∼ ∧ (a ∨ b)] ∧ [(a ∨ b) ∧ b∼] = [a∼ ∧ (a ∧ b) ∧ b∼] = a ∧ b = 0L .

Similarly, a∼ ∧ b = 0L . This means that e is not connected in (L ,∼). �

Corollary 1 (L ,∼) is connected if and only if there exists no a, b ∈ L − {0L} such
that a ∨ b = 1L , a ∧ b = 0L , a = a∼ and b = b∼.

Analogous to the case of fuzzy topological spaces, we may show the following
Theorems 7–10.

Theorem 7 If a ∈ L is connected in (L ,∼). Then every b ∈ L satisfying a ≤
b ≤ a∼ is also connected in (L ,∼).

Theorem 8 Let {at }t∈T be a family of connected elements in (L ,∼). If there exists
an s ∈ T such that at and as are not separated for every t ∈ T . Then

∨
t∈T at is also

connected in (L ,∼).

For each molecule e ∈ L , [e] = ∨{c ∈ L | c is connected in (L ,∼)} is a con-
nected element in (L ,∼), which is called the connected component containing e.
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Theorem 9 Let A be the set of all connected components in (L ,∼). Then
(1)

∨
A = 1L;

(2) If a, b ∈ A and a �= b, then a ∧ b = 0L;
(3) a = a∼ for every a ∈ A.

Theorem 10 The image of a connected element under a continuous GOH is con-
nected.

Next, we consider the product of connected CCMLs.

Lemma 2 Suppose that (L ,∼) and (J,∼) are connected CCMLs and that the
largest element 1L of L is a molecule. Then the product (L ⊗ J,∼) of (L ,∼) and
(J,∼) in CCML is connected.

Proof Assume that (L ⊗ J,∼) is not connected, i.e. there exist A, B ∈ L ⊗ J −
{0L⊗J } such that A ∨ B = 1L⊗J and A∼ ∧ B = 0L⊗J = A ∧ B∼, respectively. For
every y ∈ Copr (J ), as ↓(LL , y) ∈ Copr (L ⊗ J ), we have (1L , y) ∈ A or (1L , y) ∈
B. Let

A2 =
∨

{y | y ∈ Copr(J ), (1L , y) ∈ A},

B2 =
∨

{y | y ∈ Copr(J ), (1L , y) ∈ B}.

Then A2 ∨ B2 = 1J .
Suppose there exists a y ∈Copr(J ) such that y ≤ A∼

2 ∧ B2. Then ↓(1L , y) ⊆ B.
Let A = ∨n

k=1 Ck . Then

p2(↓(1L , y)) = y ≤ A∼
2 ≤ [p2(A)]∼ =

[
n∨

k=1

p2(Ck)

]∼
=

n∨

k=1

[p2(Ck)]∼.

Thus there exists a natural number k such that p2(↓(1L , y)) = y ≤ [p2(Ck)]∼.
By the definition of A∼, we have ↓(1L , y) ≤ A∼, i.e. B ∧ A∼ �= 0L⊗J . This is a
contradiction. Therefore B2 ∧ A∼

2 = 0J . similarly, A2 ∧ B∼
2 = 0J , whichmeans that

(J,∼) is not connected, this is a contradiction. �

Theorem 11 The product (L ,∼) of a family {(Lt ,∼)}t∈T of connected C̆ech closure
molecular lattices in CCML is connected if and only if (Lt ,∼) is connected for all
t ∈ T .

Proof By Theorem 10, we only need to show the sufficient. Let F(T ) be the set of
all nonempty fimite subsets of T . For each t ∈ T , take an at ∈Copr(Lt ), and for each
S ∈ F(T ), let CS = ⊗

t∈T At be the product of the family {At }t∈T in CD where At

is defined by

At =
{↓at , t ∈ S,

Lt , t ∈ T − S.
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Similar to Lemma 2, we can show that CS is connected in (L ,∼) (notice that the
largest element of CS belongs to Copr(L)). Since

{at }t∈T ∈
⋂

{Cs | S ∈ F(T )},

C = ∨{CS | S ∈ F(T )} is connected in (L ,∼) by Theorem 8. It is easy to verify
that C∼ = 1L , and thus (L ,∼) is connected by Theorem 7.

The notions of chain and layer compact lattice may be characterized in terms of
layer compactness of L-topological spaces (see [11]). Similarly, the notion of anti-
diamond lattice may be characterized in terms of connectedness of L-C̆ech closure
spaces.

Theorem 12 For a CD lattice L, the following conditions are equivalent:
(1) L is an anti-diamond lattice (i.e. there exist no a, b ∈ L − {0L} such that a ∨
b = 1L and a ∧ b = 0L);
(2) All connected components in an L-C̆ech closure space are characteristic func-
tions;
(3) A C̆ech closure space (X,∼) is connected if and only if the L-C̆ech closure space
(X,∼L), induced by (X,∼), is connected (i.e. connectedness of L-C̆ech closure
spaces is an L-extension of the connectedness of C̆ech closure spaces).

Proof (1)=⇒(2): Let (X,∼) be an L-C̆ech closure space, and A ∈ LX a connected
component in (X,∼). It suffices to show that A(x) = 1L whenever A(x) �= 0L .
Suppose that A(x) < 1L .Wefirst show thatλ ∧ A(x) �= 0L for somemoleculeλ ∈ L
satisfying λ � A(x). In fact, let b = ∨{λ ∈Copr(L) | λ ≤ A(x)}. Then b ∨ A(x) =
1L . Since L is an anti-diamond lattice, b ∧ A(x) �= 0L , and thus the above statement
holds. Next, let B be the connected component such that xλ ≤ B and xλ ∈Copr(LX ).
Asλ ∧ A(x) �= 0L , wemay show that A ∨ B �= B and A ∨ B is connected in (X,∼).
This is a contradiction since B is a connected component.

(2)=⇒(3): Obviously (X,∼) is connectedwhenever (X,∼L ) is by Theorem2 (2).
Conversely, assume that (X,∼) is connected but (X,∼L ) is not connected. Then there
exists a connected component A satisfying A /∈ {0LX , 1LX }. By (2), A = χY for some
Y /∈ {∅, X}. By Theorem 2 (2), Y is connected in (X,∼). We will show that Y is
a component, which implies (2)=⇒(3). Suppose that Z is a connected subset of X
satisfying Y ⊆ Z �= Y . Let B = χZ−Y . Then A, B �= 0LX , A ∨ B = χZ and A and
B are separated by (2) and Theorem 9 (3). It follows that Z is not connected in
(L ,∼). This is a contradiction.

(3) =⇒ (1): Assume that (1) does not holds, i.e. there exist a, b ∈ L − {0L}
such that a ∨ b = 1L and a ∧ b = 0L . Take X = {x}. Then (X,∼) is a connected
space, but the induced L-C̆ech closure space (X,∼L) is not connected because
[a] = [a]∼L �= 0LX , [b] = [b]∼L �= 0LX and [a] ∨ [b] = 1LX which means that (3)
does not hold either.

Acknowledgments This work is supported by the International Science and Technology Cooper-
ation Foundation of China (2012DFA11270), the National Natural Science Foundation of China
(11501435), and the Scientific Research Project of Gansu Province (2015A-144).



C̆ech Closure Molecular Lattices 573

References

1. Pu, P.M., Liu, Y.M.: Fuzzy topology I: Neighborhood structure of a fuzzy point and Moore-
Smith convergence. J. Math. Anal. Appl. 76, 571–599 (1980)

2. Mashhour, A.S., Ghanim, M.H.: Fuzzy closure spaces. J. Math. Anal. Appl. 106, 154–170
(1985)

3. Liu, Y.M., Luo,M.K.: Induced spases and fuzzy Stone-C̆ech compactifications. Scientia Sinica
(Series A). 30, 1034–1044 (1987)

4. Wang, G.J.: Theory of topological molecular lattices. Fuzzy Sets Syst. 47, 351–376 (1992)
5. Doignon, J.P., Falmagne, J.C.: Knowledge Spaces. Springer, Berlin (1999)
6. Caspard,N.,Monjardet, B.: The lattices of closure systems, closure operators, and implicational

systems on a finite set: a survey. Discret. Appl. Math. 127, 241–269 (2003)
7. Falmagne, J.C., Doignon, J.P.: Learning Spaces: Interdisciplinary Applied Mathematics.

Springer, Berlin (2011)
8. Fan, T.H.: Product operations in the category of topological molecular lattices. Fuzzy Syst.

Math. 2, 32–40 (1988). (in Chinese)
9. Li, Y.M.: Exponentiable objects in the category of topological molecular lattices. Fuzzy Sets

Syst. 104, 407–414 (1999)
10. Adamek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. Wiley, New York

(1990)
11. Li, S.G.: The layer compactness in L-fuzzy topological spaces. Fuzzy Sets Syst. 95, 233–238

(1998)



Multi-L-soft Set and Its Application
in Decision Making

Wen-Qing Fu and Yue Shen

Abstract In this paper, the concept of multi-L-soft set is proposed. It is a
generalization of multi-fuzzy soft set. Then relations between multi-L-soft sets and
operations on the multi-L-soft sets are defined, furthermore, properties of the oper-
ations are discussed. Finally, an illustrative example is given to show validity of the
multi-interval-valued fuzzy soft set in decision making problem.

Keywords L-soft set ·Multi-L-set ·Multi-L-soft set ·Multi-interval-valued fuzzy
soft set · Decision making

1 Introduction and Preliminaries

Many subjects in academic studies, such as economics, engineering, environmental
science, social science, medical science, et. al., are full of uncertainty, imprecision
and vagueness. A range of existing theories such as probability theory, fuzzy set
theory, rough set theory, vague set theory and interval mathematics are well known
and are often useful to model vagueness. But in 1999, Molodtsov [1] pointed out that
each of these theories has its inherent difficulties and he initiated soft set theory as a
new mathematical tool for dealing with uncertainties which is free from difficulties
affecting existing methods. And he also discussed the application of soft set theory
in many fields, such as operations analysis, game theory, the smoothness of function,
and so on [2].

In recent years, research on soft set theory has been rapidly developed, and great
progress has been achieved, including works of theoretical soft set [2–5], soft set the-
ory in abstract algebras [6–11], decision making, data analysis, information system,
and so on [12–15].
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The “standard” soft set in [1] deals with a binary-valued information system.Maji
et al. [16] first applied soft sets to solve decision making problem that is based on
the concept of knowledge reduction in the theory of rough sets [17]. Chen et. al. [18]
presented a new definition of soft set parametrization reduction to improve soft set
based decision making in [16]. All the above mentioned studies in decision making
problems were based on crisp soft sets. For a multi-valued information system,
Herawan [19] introduced a concept of multi soft set, and they used the concept of
multi-soft set and AND operation for finding reducts in a multi-valued information
system. In 2001, P.K.Maji [20] presented the concept of fuzzy soft set which is based
on a combination of fuzzy set and soft set models. Later, many researchers implied
fuzzy soft set to decision making [12–14].

Sebastian [21] proposed the concept of multi-fuzzy set which is a more general
fuzzy set using ordinary fuzzy sets as building blocks, its membership function is an
ordered sequence of ordinary fuzzy membership functions. Then Yang et. al. [22]
combinedmulti-fuzzy set and soft set, fromwhich they obtained a new soft set model
named multi-fuzzy soft set, and applied it to decision making.

There still a problem that in many fuzzy decision making applications, the related
membership functions are extremely individual (dependent on experts’ evaluation
of alternatives) and thus cannot be lightly confirmed. It is more reasonable to give
an interval-valued data to describe degree of membership; in other words, we can
make use of interval-valued fuzzy sets which assign to each element an interval
that approximates the “real” (but unknown) membership degree. In respond to this,
Yang et al. [23, 24] defined a hybrid model called interval-valued fuzzy soft sets
and investigated some of their basic properties. They also presented an algorithm to
solve decision making problems based on interval-valued fuzzy soft sets. Feng [15]
followed the line of exploration in [14] and gave deeper insights into interval-valued
fuzzy soft set based decision making discussed in [24].

Since the set of all intervals in [0,1] forms a complete lattice under the pointwise
partial order, we can generalize interval-valued fuzzy sets into L-sets, where L is a
complete lattice, then we propose the concept of multi-L-soft set, which is a com-
bination of multi-L-set and soft set. In this paper, we first review some background
of soft sets, L-sets and soft sets in Sect. 2, and the concept of multi-L-soft set and
some of its operations are also presented. In Sect. 3, as a special kind of multi-L-soft
set, multi-interval-valued fuzzy soft set is used to analyze decision making problems
and an algorithm is proposed.

2 Multi-L-soft Set

Throughout this paper,U refers to an initial universe set, E is a set of parameters, M
is a nonempty set. L is a complete DeMorgan algebra, that is, L is a complete lattice
with a maximal element 1 and a minimal element 0, and is also equipped with an
order reversing involution mapping ′ : L −→ L (i.e., b′ ≤ a′ if a ≤ b and (a′)′ = a
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for any a, b ∈ L). An L-set on U is a mapping f : U −→ L , let L(U ) be the set of
all L-set on U , that is L(U ) = { f : U −→ L}.

If L is the set of all intervals in [0,1], we denote it by L I = {[a, b] | 0 ≤ a ≤
b ≤ 1}, and the order relation on L I is given by [a1, b1] ≤ [a2, b2] ⇐⇒ a1 ≤
a2, b1 ≤ b2 (∀[a1, b1], [a2, b2] ∈ L I ), then an L I -set is an interval-valued fuzzy
set in [15]. The set of all interval-valued fuzzy set onU is denoted by LI (U ), that is
LI (U ) =
{ f : U −→ L I }.
Definition 1 ([1]) A soft set is a pair (F, A), where A ⊆ E , F : A −→ P(U ) is a
mapping, P(U ) is the power set of U .

Definition 2 An L-soft set over U is a pair (F̃, A), where A ⊆ E , and F̃ is a
mapping given by F̃ : A −→ L(U ), that is for every e ∈ A, F̃(e) is an L-set, we
denote F̃(e)(u) by F̃(e, u) for short (for every e ∈ A and u ∈ U ).

An L I -soft set is an interval-valued fuzzy soft set in [15].

Definition 3 A multi-L-set is a mapping F : M −→ L(U ). The set of all multi-
L-sets on U is denoted by ML(U ), That is F(m) is an L-set (∀m ∈ M), we denote
F(m)(u) by F(m, u) for short (for any m ∈ M and u ∈ U ).

Remark 1 (1) If M and U are countable set, then we can tabularize a multi-L-set
F as follows:

F u1 u2 u3 · · ·
m1 F(m1, u1) F(m1, u2) F(m1, u3) · · ·
m2 F(m2, u1) F(m2, u2) F(m2, u3) · · ·
.
.
.

. . .

(2) LetF ∈ ML(U ). IfF(m, u) = 0 for allm ∈ M and u ∈ U , thenF is called the
null multi-L-set, denoted by 0̃. If F(m, u) = 1 for all m ∈ M and u ∈ U , then F is
called the absolute multi-L-set, denoted by 1̃.
(3) Let F ∈ ML(U ). Define F c ∈ ML(U ) as follows: F c(m, u) = (F(m, u))′ (for
all m ∈ M and u ∈ U ), then we call F c the complement of F , where ′ : L −→ L is
the order reversing revolution on L .

Definition 4 Let F and G be two multi-L-sets on U , we define the following
relations and operations:
(1) F ≤ G iff F(m, u) ≤ G(m, u) for every m ∈ M and u ∈ U .
(2) F = G iff F(m, u) = G(m, u) for every m ∈ M and u ∈ U .
(3) F ∨ G is a mapping F ∨ G : M −→ L(U) defined by F ∨ G = F(m, u) ∨
G(m, u) for every m ∈ M and u ∈ U .
(4) F ∧ G is a mapping F ∧ G : M −→ L(U) defined by F ∧ G = F(m, u) ∧
G(m, u) for every m ∈ M and u ∈ U .
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Lemma 1 Let F and G be two multi-L-sets on U, then
(1) (F ∨ G)c = F c ∧ Gc;
(2) (F ∧ G)c = F c ∨ Gc.

Proof 1 (1) For any m ∈ M and u ∈ U , (F ∨ G)c(m, u) = (F ∨ G)(m, u)′ =
(F(m, u) ∨ G(m, u))′ = F(m, u)′ ∧ G(m, u)′ = F c(m, u) ∧ Gc(m, u), thus (F ∨
G)c = F c ∧ Gc.

(2) Similar to the proof of (1). �

Definition 5 A multi-L-soft set over U is a pair (F, A), where A ⊆ E , amd F is
a mapping given by F : A −→ ML(U ), that is for all e ∈ A, F(e) is a multi-L-set,
we denote F(e)(m)(u) by F(e,m, u) for short (for every e ∈ A, m ∈ M and u ∈ U ).

For a multi-L I -soft set, we call it a multi-interval-valued fuzzy soft set.

Example 1 Now let us consider a set of houses U = {h1, h2, h3}, A is the set of
parameters of houses, that is A = {e1, e2, e3} = {beautiful, cheap, in good location}.
M = {m1,m2} is a set of two observers. Every observer comments on the three
houses, he may give an interval for every house’s membership grade for every para-
meter, thus we get a multi-interval-valued fuzzy soft set (F, A). It can be tabled as
follows:

F(e1) h1 h2 h3
m1 [0.7, 0.9] [0.6, 0.7] [0.3, 0.4]
m2 [0.4, 0.6] [0.8, 1.0] [0.5, 0.7]

F(e2) h1 h2 h3
m1 [0.8, 0.9] [0.3, 0.5] [0.7, 0.8]
m2 [0.1, 0.3] [0.5, 0.6] [0.2, 0.5]

F(e3) h1 h2 h3
m1 [0.6, 0.8] [0.3, 0.6] [0.1, 0.4]
m2 [0.2, 0.3] [0.3, 0.4] [0.6, 0.9]

Definition 6 Let A, B ⊆ E , (F, A) and (G, B) be two multi-L-soft sets. (F, A) is
said to be a multi-L-soft subset of (G, B) if
(1) A ⊆ B;
(2) ∀e ∈ A, F(e) ≤ G(e).
In this case, we write (F, A)⊆̃(G, B).

Remark 2 Let (F, A) be a multi-L-soft set, if F(e) = 0̃ (∀e ∈ A), then it is called a
null multi-L-soft set, and it is denoted by 0̃A. If F(e) = 1̃ (∀e ∈ A), then it is called
a absolute multi-L-soft set, and it is denoted by 1̃A. It is easy to see that for any
multi-L-soft set (F, A), 0̃A⊆̃(F, A)⊆̃̃1A.
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Definition 7 Let A, B ⊆ E , (F, A) and (G, B) be two multi-L-soft sets. If both
(F, A)⊆̃(G, B) and (G, B)⊆̃(F, A), then (F, A) and (G, B) are called multi-L-soft
equal. In this case, we write (F, A)=̃(G, B).

It is easy to see that, (F, A)=̃(G, B) iff A = B, and for every e ∈ A = B, F(e) =
G(e).

Definition 8 Let (F, A) be a multi-L-soft set, the complement of (F, A), which is
denote by (F, A)c, is defined by (F, A)c = (Fc, A), whereFc(e) = (F(e))c (∀e ∈ A).

Remark 3 (1) ((F, A)c)c = (F, A);
(2) (̃0A)

c = 1̃A, (̃1A)
c = 0̃A,

Definition 9 Let (F, A) and (G, B) be two multi-L-soft sets, (F, A) AND (G, B),
which is denoted by (F, A) ∧ (G, B), is amulti-L-soft set (H,C), whereC = A × B,
and H : C −→ ML(U ) is as follows: H(a, b) = F(a) ∧ G(b) (for all a ∈ A and
b ∈ B).

Definition 10 Let (F, A) and (G, B) be two multi-L-soft sets, (F, A) OR (G, B),
which is denoted by (F, A) ∨ (G, B), is amulti-L-soft set (I,C), whereC = A × B,
and I : C −→ ML(U ) is as follows: I(a, b) = F(a) ∨ G(b) (for all a ∈ A and
b ∈ B).

Theorem 1 Let (F, A) and (G, B) be two multi-L-soft sets. Then
(1) [(F, A) ∧ (G, B)]c = (F, A)c ∨ (G, B)c;
(2) [(F, A) ∨ (G, B)]c = (F, A)c ∧ (G, B)c.

Proof 2 (1) Suppose that (F, A) ∧ (G, B) = (H, A × B), therefore [(F, A) ∧
(G, B)]c = (H, A × B)c = (Hc, A × B). For every (a, b) ∈ A × B, Hc(a, b) =
(H(a, b))c = (H(a, b))c = (F(a) ∧ G(b))c = F(a)c ∨ G(b)c. On the other hand,
suppose (F, A)c ∨ (G, B)c = (Fc, A) ∨ (Gc, B) = (I, A × B), then for each
(a, b) ∈ A × B, I(a, b) = Fc(a) ∨ Gc(b) = Hc(a, b). Thus (H, A × B) = (I, A ×
B), that is [(F, A) ∧ (G, B)]c = (F, A)c ∨ (G, B)c.

(2) Similar to the proof of (1). �

Definition 11 Let (F, A) and (G, B) be two multi-L-soft sets. The union of them
is a multi-L-soft set (O,C), where C = A ∪ B, and for any e ∈ C ,

O(e) =
⎧
⎨

⎩

F(e), if e ∈ A − B;
G(e), if e ∈ B − A;
F(e) ∨ G(e), if e ∈ A ∩ B.

It is denoted by (F, A)∪̃(G, B) = (O,C).

Definition 12 Let (F, A) and (G, B) be two multi-L-soft sets. The intersection of
them is a multi-L-soft set (K, D), where D = A ∩ B, and for any e ∈ D, K(e) =
F(e) ∧ G(e). It is denoted by (F, A)∩̃(G, B) = (K, D).
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One can easily get the following results:

Theorem 2 Let (F, A) and (G, B) be two multi-L-soft sets. Then
(1) (F, A)∪̃(F, A) = (F, A), (F, A)∩̃(F, A) = (F, A)
(2) (F, A)∪̃̃0A = (F, A), (F, A)∩̃̃0A = 0̃A

(3) (F, A)∪̃̃1A = 1̃A, (F, A)∩̃̃1A = (F, A)
(4) (F, A)∪̃(G, B) = (G, B)∪̃(F, A), (F, A)∩̃(G, B) = (G, B)∩̃(F, A)
Theorem 3 Let (F, A) and (G, B) be two multi-L-soft sets. Then
(1) (F, A)c∩̃(G, B)c⊆̃((F, A)∪̃(G, B))c⊆̃(F, A)c∪̃(G, B)c;
(2) (F, A)c∩̃(G, B)c⊆̃((F, A)∩̃(G, B))c⊆̃(F, A)c∪̃(G, B)c.

If the set of parameters of the two multi-L-soft sets (F, A) and (G, B) are equal,
then we can get the following result:

Theorem 4 Let (F, A) and (G, A) be two multi-L-soft sets. Then
(1) ((F, A)∪̃(G, A))c = (F, A)c∩̃(G, A)c;
(2) ((F, A)∩̃(G, A))c = (F, A)c∪̃(G, A)c.

Proof 3 (1) Let ((F, A)∪̃(G, A))c = (H1,C1), that is C1 = A ∪ A = A, and for
each e ∈ C1,H1(e) = (Hc

1(e))
c = (F(e) ∨ G(e))c=F(e)c ∧ G(e)c.Let (F, A)c∩̃(G,

A)c = (H2,C2), that is C2 = A ∩ A = A, and for each e ∈ C2, H2(e) = Fc(e) ∧
Gc(e). Thus, we get C1 = C2, and for any e ∈ C1, H1(e) = H2(e), so ((F, A)∪̃(G,

A))c = (F, A)c∩̃(G, A)c.
(2) Let ((F, A)∩̃(G, A))c = (H3,C3), that isC3 = A ∩ A = A, and for every e ∈

C3, H3(e) = (Hc
3(e))

c = (F(e) ∧ G(e))c = F(e)c ∨ G(e)c. Let (F, A)c∪̃(G, A)c =
(H4,C4), that is C4 = A ∩ A = A, and for each e ∈ C4, H4(e) = F(e)c ∨ G(e)c.
Thus, we get C3 = C4, and for each e ∈ C3,H3(e) = H4(e), so ((F, A)∩̃(G, A))c =
(F, A)c∪̃(G, A)c. �

3 Application of Multi-L-soft Set in Decision Making

In this section, we present an application of multi-L-soft set in solving decision
making problem, where L is the lattice consisted of all intervals of [0, 1].

3.1 A Decision Making Problem

Let us consider the example of choosing houses. LetU = {h1, h2, h3, h4, h5} be the
set of houses which one considers, A = {e1, e2, e3, e4} = {beautiful, cheap, in good
location, wooden} be the set of parameters, M = {m1,m2,m3} the set of observers,
Every observer comment on the five houses, he may give an interval for the degree
of house hi having the parameter e j (∀i = 1, 2, . . . , 5, j = 1, 2, . . . , 4), thus we get
a multi-interval-valued fuzzy soft set (F, A). We table it as follows:
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F(e1) h1 h2 h3 h4 h5
m1 [0.27, 0.33] [0.27, 0.28] [0.41, 0.45] [0.35, 0.42] [0.28, 0.29]
m2 [0.46, 0.48] [0.20, 0.37] [0.19, 0.29] [0.07, 0.22] [0.18, 0.35]
m3 [0.04, 0.13] [0.18, 0.33] [0.13, 0.21] [0.18, 0.35] [0.24, 0.33]

F(e1) h1 h2 h3 h4 h5
m1 [0.46, 0.48] [0.04, 0.10] [0.42, 0.60] [0.21, 0.40] [0.33, 0.36]
m2 [0.09, 0.17] [0.39, 0.52] [0.18, 0.24] [0.31, 0.44] [0.21 0.28]
m3 [0.25, 0.33] [0.36, 0.37] [0.09, 0.16] [0.02, 0.14] [0.25, 0.35]

F(e1) h1 h2 h3 h4 h5
m1 [0.35, 0.51] [0.19, 0.26] [0.35, 0.52] [0.16, 0.22] [0.32, 0.40]
m2 [0.18, 0.21] [0.34, 0.46] [0.28, 0.33] [0.31, 0.46] [0.09, 0.23]
m3 [0.24, 0.26] [0.11, 0.22] [0.02, 0.10] [0.18, 0.28] [0.20, 0.30]

F(e1) h1 h2 h3 h4 h5
m1 [0.27, 0.37] [0.30, 0.36] [0.03, 0.18] [0.31, 0.44] [0.31, 0.43]
m2 [0.20, 0.29] [0.28, 0.37] [0.12, 0.20] [0.05, 0.24] [0.18, 0.30]
m3 [0.27, 0.33] [0.21, 0.26] [0.33, 0.52] [0.26, 0.32] [0.05, 0.24]

One would like to choose a house referring to the data given above.

3.2 A Comparison Algorithm

In this section,weuse the comparison algorithm to solve the decisionmakingproblem
above. For the sake of universality of the algorithm, we consider more general case
as follows.

LetU = {u1, u2, . . . , un},M = {m1,m2, . . . ,mk}, (F, A) amulti-interval-valued
fuzzy soft set. For every e ∈ A, F(e) can be expressed in the following matrix:

F(e) =

⎛

⎜
⎜
⎜
⎝

[μ−
11,μ

+
11] [μ−

12,μ
+
12] · · · [μ−

1n,μ
+
1n]

[μ−
21,μ

+
21] [μ−

22,μ
+
22] · · · [μ−

2n,μ
+
2n]

...
...

. . .
...

[μ−
k1,μ

+
k1] [μ−

k2,μ
+
k2] · · · [μ−

kn,μ
+
kn]

⎞

⎟
⎟
⎟
⎠

where [μ−
i j ,μ

+
i j ] = F(e,mi , u j ) is an interval contained in [0, 1].

Suppose that ω(e) = {ω1,ω2, . . . ,ωk}T (
∑k

i=1 ωi = 1) is the relative weight cor-
respond tom1,m2, . . . ,mk of e, we define an induced interval-valued fuzzy set μF(e)

with respect to e as follows:
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μF(e) =

⎛

⎜
⎜
⎜
⎝

[
∑k

i=1 ωiμ
−
i1,

∑k
i=1 ωiμ

+
i1]

[
∑k

i=1 ωiμ
−
i2,

∑k
i=1 ωiμ

+
i2]

...

[
∑k

i=1 ωiμ
−
in,

∑k
i=1 ωiμ

+
in]

⎞

⎟
⎟
⎟
⎠

�

⎛

⎜
⎜
⎜
⎝

[μ−
1 ,μ

+
1 ]

[μ−
2 ,μ

+
2 ]

...

[μ−
n ,μ

+
n ]

⎞

⎟
⎟
⎟
⎠

Thus, by using this method, we change a multi-interval-valued fuzzy soft set to an
interval-valued fuzzy soft set. Therefore, we can make a decision by the following
algorithm.

1. Input the multi-interval-valued fuzzy soft set (F, A). Input the relative weight
ω(ei ) of every parameter ei ∈ A.

2. Change (F, A) into the normalized multi-interval-valued fuzzy soft set, we still
denoted it by (F, A), that is, if there exists some u j ∈ U such that

∑k
i=1 μ+

i j = l > 1,
then we change ([μ−

1 j ,μ
+
1 j ], [μ−

2 j ,μ
+
2 j ], . . . , [μ−

k j ,μ
+
k j ]) to 1

l ([μ−
1 j ,μ

+
1 j ], [μ−

2 j ,μ
+
2 j ],

. . . , [μ−
k j ,μ

+
k j ]).

3. Compute the induced interval-valued fuzzy soft set (F , A), where F(e) =
μF(e).

4. For every ui ∈ U , compute value of the score function Si : A −→ [0, 1], where
Si (e) = μ−

i +μ+
i

2 (∀i = 1, 2, . . . n).
5. Use ti j to denote the number of the parameters e ∈ A which satisfies Si (e) ≥

Sj (e), for every i, j = 1, 2, . . . n.
6. Compute ri = ∑n

j=1 ti j , d j = ∑n
i=1 ti j for every pair of ui and u j in U , where

i, j = 1, 2, . . . , n.
7. Compute the final score si = ri − di of ui , i = 1, 2, . . . , n.
8. The optimal decision is to select u j such that s j = maxi si .
9. If j in 8 are more than one, then any one of them can be chosen.
Use the algorithm above, we compute the decision making problem in Sect. 3.1

as follows.
We impose the following weights of the three observers for the parameters

in A: for parameter “beautiful”, ω(e1) = {0.5, 0.3, 0.2}, for parameter “cheap”,
ω(e2) = {0.4, 0.2, 0.4}, for parameter “in good location”, ω(e3) = {0.1, 0.6, 0.3},
for parameter “wooden”, ω(e4) = {0.2, 0.5, 0.3}. Thus we have an induced interval
valued fuzzy soft set (F , A) which is as Table1.

Table 1 (F, A)

F e1 ω(e1) e2 ω(e2) e3 ω(e3) e4 ω(e4)

h1 [0.281, 0.335] [0.302, 0.358] [0.215, 0.255] [0.235, 0.318]

h2 [0.231, 0.317] [0.238, 0.292] [0.256, 0.368] [0.263, 0.335]

h3 [0.288, 0.354] [0.240, 0.352] [0.209, 0.280] [0.165, 0.292]

h4 [0.232, 0.346] [0.154, 0.304] [0.256, 0.382] [0.165, 0.304]

h5 [0.242, 0.316] [0.274, 0.340] [0.146, 0.268] [0.167, 0.308]
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Thus the sore Si (e j ) of every house ui of every parameters e j ∈ A is as follows,
and then we can get the following table of all ti j s and all ri s, di s and si s:

Si (e j ) e1 e2 e3 e4
h1 0.308 0.330 0.235 0.276
h2 0.274 0.265 0.312 0.299
h3 0.321 0.296 0.245 0.229
h4 0.289 0.229 0.319 0.235
h5 0.279 0.307 0.207 0.238

ti j h1 h2 h3 h4 h5
h1 4 2 2 3 4
h2 2 4 2 2 2
h3 2 2 4 2 2
h4 1 2 2 4 2
h5 0 2 2 2 4

ri di si
h1 15 9 6
h2 12 12 0
h3 12 12 0
h4 11 13 -2
h5 10 14 -4

As can be seen in the table above, h1 is the best choice.

3.3 A Threshold Value Algorithm

Feng et al. [14] presented an approach to fuzzy soft set based decision making
problems by using level soft sets, and this newmethod can be successfully applied to
some decision making problems that can not be solved by using the method in [12].
In [23], Yang et al. used Feng’s algorithm to solve a decision making problem which
is based on multi-fuzzy soft set. In the following, we will revise Yang’s algorithm so
that it can be used to solve some decision making problems based on multi-interval-
valued fuzzy soft set.

Let U = {u1, u2, . . . , un}, M = {m1,m2, . . . ,mk}, (F, A) is the same multi-
interval-valued fuzzy soft set as in Sect. 3.2. By using the relative weight ω(e) =
{ω1,ω2, . . . ,ωk}T correspond to m1,m2, . . . ,mk of e (

∑k
i=1 ωi = 1) we defined an

induced interval-valued fuzzy setμF(e) with respect to e, then we canmake a decision
by the following algorithm.

1. Input the multi-interval-valued fuzzy soft set (F, A). Input the relative weight
ω(ei ) of every parameter ei ∈ A.

2. Change (F, A) into the normalized multi-interval-valued fuzzy soft set, we still
denoted it by (F, A), that is, if there exists some u j ∈ U such that

∑k
i=1 μ+

i j = l > 1,
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then we change ([μ−
1 j ,μ

+
1 j ], [μ−

2 j ,μ
+
2 j ], . . . , [μ−

k j ,μ
+
k j ]) to 1

l ([μ−
1 j ,μ

+
1 j ], [μ−

2 j ,μ
+
2 j ],

. . . , [μ−
k j ,μ

+
k j ]).

3. Compute the induced interval-valued fuzzy soft set (F , A), where F(e) =
μF(e).

4. Input a threshold interval-valued fuzzy set λ : A −→ L I (or give a threshold
interval t = [t−, t+] ⊆ [0, 1]; or choose the mid-level decision rule) for decision
making.

5. Compute the level triple-valued fuzzy soft set L((F, A),λ) of the (F, A) with
respect to the threshold interval-valued fuzzy setλ (or the t-level soft set L((F, A), t);
or the mid-level triple-valued soft set L((F, A),mid)).

6. Present the level triple-valued fuzzy soft set L((F, A),λ) (or L((F, A), t); or
L((F, A),mid); or L((F, A),max)) in tabular form and compute the choice value ci
of ui (∀i = 1, 2, . . . , n).

7. The optimal decision is to select u j such that c j = maxi ci .
8. If j in 7 are more than one, then any one can be chosen.
Use the algorithm above, we compute the decision making problem in Sect. 3.1

as follows.
We also impose the same weights of the three observers for the parameters in A in

Sect. 3.2: for parameter “beautiful”, ω(e1) = {0.5, 0.3, 0.2}, for parameter “cheap”,
ω(e2) = {0.4, 0.2, 0.4}, for parameter “in good location”, ω(e3) = {0.1, 0.6, 0.3},
for parameter “wooden”, ω(e4) = {0.2, 0.5, 0.3}. Thus we have an induced interval
valued fuzzy soft set (F , A) which is the same as with Table1.

Then we choose the mid-level decision rule, the mid-threshold of (F , A) is an
interval valued fuzzy set (midF , A)

mid(F,A) e1 e2 e3 e4
[0.2548, 0.3336] [0.2416, 0.3292] [0.2164, 0.3106] [0.1990, 0.3114]

For every i = 1, 2, . . . , 4, and every j = 1, 2, . . . , 5, denote F(ei , h j ) = [μ−
i j ,

μ+
i j ], and midF (ei ) = [r−

i , r
+
i ], if both μ−

i j ≥ r−
i and μ+

i j ≥ r+
i , then h j gets a “2”, if

only one of μ−
i j ≥ r−

i and μ+
i j ≥ r+

i is valid, then h j gets an “1”, otherwise, h j gets
a “0”. Then we can present the level triple-valued fuzzy soft set L((F, A),mid) of
the induced interval-valued fuzzy soft set (F , A) as follows:

U e1 e2 e3 e4 Choice value c j
h1 2 2 0 2 6
h2 0 0 2 2 4
h3 2 1 0 0 3
h4 1 0 2 0 3
h5 0 2 0 0 2

Thus one can choose h1 as the best choice.
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4 Concluding Remarks

In this paper, the concept of multi-fuzzy soft set is generated to multi-L-soft set,
which is a combination of multi-L-set and soft set. Then some relations between
multi-L-soft sets and some operations on multi-L-soft sets are defined, furthermore,
some properties of the operations are discussed. Finally, an illustrative example is
used to show the validity of multi-interval-valued fuzzy soft set in decision making
problems.
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On Some New Generalizations of Yager’s
Implications

Feng-Xia Zhang and Xing-Fang Zhang

Abstract In this paper, Yager’s implications are generalized, and two classes of
implications, called generalized f - and g-implications, respectively, are introduced.
Basic properties of these implications are discussed in detail.

Keywords Fuzzy implications · Additive generators · f -generators · g-generators

1 Introduction

In fuzzy logic, one of the main operators is fuzzy implications. The reason lies in two
aspects: firstly, the management of fuzzy conditionals of the type “If p, then q” with
p and q fuzzy statements is by these operators [17]; secondly, fuzzy implications are
often used to perform inferences. The twomain inference rules aremodus ponens and
modus tollens, used to perform forward and backward inferences, respectively. Thus
fuzzy implication operators play an important role in fuzzy control and approximate
reasoning [2, 7, 10, 11, 20, 22]. Furthermore, fuzzy implications are also very useful
in many other fields such as fuzzy relational equations, fuzzymathematical morphol-
ogy, image processing, fuzzy DI-subsethood measures, data mining, computing with
words and so on (see, for instance, [16, 17]).

To represent imprecise knowledge,manydifferentmodels are proposed to perform
fuzzy implications. By now, the most well-studied classes of fuzzy implications are
those obtained from t-norms and t-conorms, viz., (S, N )-, R-, and QL-implications
(see, for instance, [2, 4, 5, 21]). Moreover, these types have been extended because
t-norms and t-conorms are special kinds of aggregation operators. Indeed, not only
copulas, quasi-copulas, but also conjunctors in general [8], representable aggregation
functions [6], uninorms and many other aggregation functions have been used for
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this purpose [1, 3, 9, 15, 18, 19]. Recently, Yager [23] has defined two classes
of implications called f - and g-implications, respectively, by using the additive
generators of continuous Archimedean t-norms and t-conorms (shortly, f - and g-
generators) and has done an extensive analysis of the impact of these implications
in approximate reasoning, by introducing concept like strictness of implications
and sharpness of inferences, among others. By means of the additive generators
of representable uninorms, Massanet and Torrens [16] extended Yager’s f - and g-
implications, and introduced h-implications. Also by means of g-generators and h-
generators, and by introducing the concept of partial-inverse of additive generators,
Liu [13, 14] has defined two classes of implications called (g,min)-implications and
(h,min)-implications.

In this paper, by using f -generators and g-generators, we introduce two new
classes of fuzzy implications, called generalized f - and g-implications which can
be regarded as the generalizations of Yager’s f -implications and g-implications,
respectively. We study some properties of these implications such as left neutrality
principle, exchange principle, identity principle, ordering property etc.

The paper is organized as follows. In Sect. 2, we present some notions concern-
ing basic logic connectives employed in the sequel. In Sect. 3, we introduce a new
class of fuzzy implications called generalized f -implications and discuss some of
their properties. In Sect. 4, we introduce a new class of fuzzy implications called
generalized g-implications and discuss their properties. The last section concludes
the paper.

2 Preliminaries

In this section, we recall some of the concepts employed in the rest of the paper.
Above all, definition of fuzzy implication is given.

Definition 1 ([2, 10, 23]) A function I : [0, 1]2 → [0, 1] is called a fuzzy implica-
tion if it satisfies, for all x, x1, x2, y, y1, y2 ∈ [0, 1], the following conditions:
(I1) If x1 ≤ x2, then I (x1, y) ≥ I (x2, y);
(I2) If y1 ≤ y2, then I (x, y1) ≤ I (x, y2);
(I3) I (0, 0) = 1;
(I4) I (1, 1) = 1;
(I5) I (1, 0) = 0.

Definition 2 ([2, 12]) A decreasing function N : [0, 1] → [0, 1] is called a fuzzy
negation, if N (0) = 1, N (1) = 0. A fuzzy negation N is called
(i) strict, if it is strictly decreasing and continuous;
(ii) strong, if it is an involution, i.e., N (N (x)) = x for all x ∈ [0, 1].
Definition 3 (Definition 1.4.15 in [2]) Let I : [0, 1]2 → [0, 1] be a fuzzy impli-
cation. The function NI : [0, 1] → [0, 1], defined by NI (x) = I (x, 0) for any x ∈
[0, 1], is said to be the natural negation of I .
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Definition 4 ([2, 7, 10, 20, 22]) A fuzzy implication I is said to satisfy
(NP) the left neutrality property, if I (1, y) = y for all y ∈ [0, 1];
(EP) the exchange principle, if I (x, I (y, z)) = I (y, I (x, z)) for all x, y, z ∈ [0, 1];
(IP) the identity principle, if I (x, x) = 1 for all x ∈ [0, 1];
(OP) the order property, if I (x, y) = 1 ⇔ x ≤ y for all x, y ∈ [0, 1];
(CP(N)) the law of contraposition with respect to a fuzzy negation N , if I (x, y) =
I (N (y), N (x)) for all x, y ∈ [0, 1].
Definition 5 ([23]) An f -generator is a function f : [0, 1] → [0, 1]∞] that is a
strictly decreasing and continuous function with f (1) = 0.

A g-generator is a function g : [0, 1] → [0,∞] that is a strictly increasing and
continuous function with g(0) = 0.

Definition 6 ([2, 23]) Let function f be an f -generator. The function I f : [0, 1] →
[0, 1] defined by

I f (x, y) = f −1(x · f (y)), x, y ∈ [0, 1],

with the understanding that ∞ · 0 = 0 is called an f -implication.

Definition 7 ([2, 23]) Let function g be a g-generator. The function Ig : [0, 1] →
[0, 1] defined by

Ig(x, y) = g(−1)

(
1

x
· g(y)

)

, x, y ∈ [0, 1],

with the understanding that 1
0 = ∞ and ∞ · 0 = ∞ is called a g-implication where

g(−1) : [0,∞] → [0, 1] is the pseudo-inverse function of g given by

g(−1)(y) =
{
1 i f y ≥ g(1),
g−1(y) i f y < g(1).

The f -generator (g-generator) can be seen as a continuous additive generator of
continuous Archimedean t-norm (t-conorm) [10, 12].

3 Generalization of Yager’s f -Implications

In this section, we will give generalization of Yager’s f -implications called gener-
alized f -implications and discuss some properties such as left neutrality principle,
exchange principle, identity principle, ordering property, the law of contraposition
and the continuity of this class of implications.
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3.1 Definition and Examples

Definition 8 Let f1, f2 be f -generators, the function I f1, f2 : [0, 1]2 → [0, 1]defined
by

I f1, f2(x, y) = f (−1)
2 (x · f1(y)), x, y ∈ [0, 1] (1)

with the understanding that 0 · ∞ = 0, is called generalized f -operation generated
from f1, f2, where f (−1)

2 : [0,∞] → [0, 1] is the pseudo-inverse function of f2 given
by

f (−1)
2 (y) =

{
0 i f y ≥ f2(0),
f −1
2 (y) i f y < f2(0).

f1 is called the inner f -generator while f2 is called the outer f -generator.

The following theorem gives necessary and sufficient conditions under which
I f1, f2 is a fuzzy implication in the sense of Definition 1.

Theorem 1 Let f1, f2 be f -generators, then I f1, f2 defined by (1) is a fuzzy impli-
cation if and only if f2(0) ≤ f1(0). In this case we call it generalized f -implication
generated by f1, f2.

Proof It is easy to see that I f1, f2 is decreasing in its first variable and increasing in
its second one because of the monotonicity of f -generator. Moreover,

I f1, f2(0, 0) = f (−1)
2 (0 · f1(0))) = f (−1)

2 (0) = 1,
I f1, f2(1, 1) = f (−1)

2 (1 · f1(1))) = f (−1)
2 (0) = 1,

I f1, f2(1, 0) = f (−1)
2 (1 · f1(0))) = 0 ⇔ f2(0) ≤ f1(0). �

Remark 1 (i) If f1 = f2, then I f1, f2 defined by (1) is Yager’s f -implication. So
we can say that the class of generalized f -implications is a generalization of
f -implications.
(ii) Given two f -generators f1, f2, there exists at least one generalized

f -implication generated by f1 and f2. If f1(0) = f2(0), we get two generalized
f -implications, viz., I f1, f2 and I f2, f1 .
(iii) Formula (1) can also be written in the following formwithout explicitly using

the pseudo-inverse of f2:

I f1, f2(x, y) = f −1
2 (min(x · f1(y), f2(0))), x, y ∈ [0, 1].

Example 1 (i) Let us consider the Frank’s class of additive generators given by

f s1 (x) = − ln

(
sx − 1

s − 1

)

,

where s > 0, s �= 1, as the inner f -generators, and the continuous additive generator
of the product t-norm Tp given by f2(x) = − ln x as the outer f -generator, then the
corresponding generalized f -implication, for every s, is given by
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I f s1 , f2(x, y) =
(
s y − 1

s − 1

)x

, x, y ∈ [0, 1].

(ii) If we take the Yager’s class of additive generators, viz., f λ
1 (x) = (1 − x)λ,

where λ ∈ (0,∞), as the inner f -generators, and the additive generator of the
Łukasieweicz t-norm TL given by f2(x) = 1

2 (1 − x) as the outer f -generator, then
the corresponding generalized f -implication, for every λ ∈ (0,∞), is given by

I f λ
1 , f2

(x, y) =
{

0 if y ≤ 1 − (
1
2x

) 1
λ ,

1 − 2x(1 − y)λ otherwise,
x, y ∈ [0, 1].

3.2 Properties of Generalized f -Implications

It iswell known that forYager’s f -implication I f determinedby I f (x, y) = f (−1)(x ·
f (y)) for all x, y ∈ [0, 1], the f -generators are unique up to a positive multiplicative
constant (Theorem 3.1.4 in [2]). This implies that for an f -generator f with f (0) <
∞, we can define another f -generator f0 by f0(x) = f (x)

f (0) such that I f = I f0 . In
other words, it is enough to consider only decreasing generator for which f (0) = ∞
or f (0) = 1. As for generalized f -implications, we have the following result:

Theorem 2 Let f11, f12, f21, f22 be any four f -generators with

f11(0) ≥ f12(0), f21(0) ≥ f22(0),

then the following statements are equivalent:
(i) I f11, f12 = I f21, f22 ;
(ii) There exists a constant c ∈ (0,∞) such that f21 = c · f11, f22 = c · f12.

Proposition 1 Let f1, f2 be any two f -generators with f2(0) ≤ f1(0).
(i) If f1(0) = ∞, then the natural negation of I f1, f2 is the Gödel negation

ND1(x) =
{
1 if x=0,
0 if x>0,

x ∈ [0, 1]

which is non-continuous;
(ii) If f1(0) < ∞, then the natural negation of I f1, f2 is a strict negation if and only
if f1(0) = f2(0). In this case,

NI f1 , f2
(x) = f −1

2 ( f2(0) · x).

(iii) The natural negation of I f1, f2 is a strong negation if and only if the following
holds:
(a) f1(0) = f2(0) < ∞;
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(b) The function defined by

f20(x) = f2(x)

f2(0)
, x ∈ [0, 1]

is a strong negation.

Theorem 3 Let f1, f2 be any two f -generators with f1(0) ≥ f2(0), then the gen-
eralized f -implication defined by (1) has the following properties:
(i) I f1, f2 satisfies (NP) if and only if f1 = f2;
(ii) If f2(0) = ∞, then I f1, f2 satisfies (EP) if and only if there exists a constant
c ∈ (0,∞) such that f2 = c · f1;
(iii) If f1(0) = f2(0) < ∞, then I f1, f2 satisfies (EP) if and only if f1 = f2;
(iv) I f1, f2(x, x) = 1 if and only if x = 0 or x = 1, i.e., I f1, f2 does not satisfy (IP);
(v) I f1, f2(x, y) = 1 if and only if x = 0 or y = 1, i.e., I f1, f2 does not satisfy (OP);
(vi) If f1(0) = ∞, then I f1, f2 does not satisfy (CP) with respect to any fuzzy negation
N;
(vii) If f1(0) = f2(0) < ∞, then I f1, f2 satisfies (CP) with respect to N if and only if
N (x) = f1(x)

f1(0)
is a strong negation.

Remark 2 (i) Note that if f1(0) > f2(0), the generalized f -implication I f1, f2 may
not satisfy (EP). For instance, in Example 1 (ii), if we take λ = 1 and x = 0.6, y =
0.3, z = 0.1, then I f 11 , f2(0.6, I f 11 , f2(0, 3, 0.1)) = 0.352, while I f 11 , f2(0.3, I f 11 , f2
(0, 6, 0.1)) = 0.4.

(ii) In the case f2(0) < f1(0) < ∞, if N = f10 is a strong negation, then it is
obvious that I f1, f2 satisfies (CP) with respect to N . But it should be noted that such
a problem still remains: whether there exists a fuzzy negation N such that I f1, f2
satisfies (CP(N)) if f10 is not a strong negation?

From Proposition 1 and Theorem 3, the following result is immediate:

Corollary 1 Let f1, f2 be any two f -generators with f1(0) = f2(0) < ∞, then the
generalized f -implication I f1, f2 satisfies (CP) with respect to its natural negation
NI f1, f2

if and only if f1 = f2 and the function f10 given by

f10(x) = f1(x)

f1(0)
, x ∈ [0, 1]

is a strong negation.

The following proposition discusses the continuity of generalized f -implications.

Proposition 2 Let f1, f2 be f -generators that satisfy f2(0) ≤ f1(0), then
(i) I f1, f2 is continuous if and only if f1(0) < ∞;
(ii) I f1, f2 is continuous except at the point (0, 0) if and only if f1(0) = ∞.
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4 Generalization of Yager’s g-Implications

In this section, we will give a generalization of Yager’s g-implications called gener-
alized g-implications. Our discussion in this section will mirror the approach taken
in the previous section.

4.1 Definition and Examples

Definition 9 Let g1, g2 be g-generators, the function Ig1,g2 : [0, 1]2 → [0, 1] defined
by

Ig1,g2(x, y) = g(−1)
2

(
1

x
· g1(y)

)

, x, y ∈ [0, 1] (2)

with the understanding that 1
0 = ∞ and 0 · ∞ = ∞ · 0 = ∞, is called a generalized

g-operation generated by g1, g2, where g(−1)
2 : [0,∞] → [0, 1] is the pseudo-inverse

function of g2. g1 is called the inner g-generator while g2 is called the outer g-
generator.

The following theorem gives the necessary and sufficient conditions under which
Ig1,g2 is a fuzzy implication in the sense of Definition 1.

Theorem 4 Let g1, g2 be g-generators, then Ig1,g2 defined by (2) is a fuzzy implication
if andonly if g2(1) ≤ g1(1). In this casewe call it generalized g-implication generated
from g1, g2.

Proof It is easy to see that Ig1,g2 is decreasing in its first variable and increasing in
its second one because of the monotonicity of g-generator. Moreover,

Ig1,g2(0, 0) = g(−1)
2 (∞ · g1(0))) = g(−1)

2 (∞) = 1,
Ig1,g2(1, 1) = g(−1)

2 (1 · g1(1)) = 1 ⇔ g2(1) ≤ g1(1),
Ig1,g2(1, 0) = g(−1)

2 (1 · g1(0))) = 0. �

Remark 3 (i) If g1 = g2, then Ig1,g2 defined by (2) is Yager’s g-implication. Sowe can
say that the class of generalized g-implications is a generalization of g-implications.

(ii) Given two g-generators g1, g2, there exists at least one generalized
g-implication generated by g1 and g2. If g1(1) = g2(1), we get two generalized
g-implications: Ig1,g2 and Ig2,g1 .

(iii) Formula (2) can also be written in the following formwithout explicitly using
the pseudo-inverse of g2:

Ig1,g2(x, y) = g−1
2

(

min

(
1

x
· g1(y), g2(1)

))

, x, y ∈ [0, 1]

Example 2 (i) Let us consider the Frank’s class of additive generators given by
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gs1(x) = − ln

(
s1−x − 1

s − 1

)

,

where s > 0, s �= 1, as the inner g-generators, and the continuous additive generator
of the Łukasiewicz t-conorm SL given by g2(x) = x as the outer g-generator, then
the corresponding generalized g-implication, for every s, is given by

Igs1,g2(x, y) =
{
1 if y ≥ 1 − logs(1 + (s − 1)e−x ),

− 1
x · ln

(
s1−y−1
s−1

)
otherwise,

x, y ∈ [0, 1].

(ii) If we take the g-generators g1(x) = − ln(1 − x), and g2(x) = − 1
ln x , then

g1(1) = g2(1) = ∞, in this case, we get two generalized g-implications generated
by g1 and g2.

Ig1,g2(x, y) = e
x

ln(1−y) , x, y ∈ [0, 1].

Ig2,g1(x, y) = 1 − e
1

x ln y , x, y ∈ [0, 1].

4.2 Properties of Generalized g-Implications

It is well known that for Yager’s g-implication Ig determined by Ig(x, y) = g(−1)( 1x ·
g(y)) for all x, y ∈ [0, 1], the g-generators are unique up to a positive multiplicative
constant (Theorem 3.2.5 in [2]). This implies that for a g-generator g with g(1) < ∞,
we can define another g-generator g0 by g0(x) = g(x)

g(1) such that Ig = Ig0 . In other
words, it is enough to consider only decreasing generator for which g(1) = ∞ or
g(1) = 1. As for generalized g-implications, we have the following result:

Theorem 5 Let g11, g12, g21, g22 be any four g-generators with g11(1) ≥ g12(1) and
g21(1) ≥ g22(1), then the following two statements are equivalent:
(i) Ig11,g12 = Ig21,g22 ;
(ii) There exists a constant c ∈ (0,∞) such that g22 = c · g12 and g21(x) = c · g11(x)
for all x ∈ [0, g−1

11 ◦ g12(1)].
Proposition 3 Let g1, g2 be any two generators with g1(1) ≥ g2(1), then the natural
negation of Ig1,g2 is the Gödel negation ND1(x), which is non-continuous.

Theorem 6 Let g1, g2 be any two g-generators with g1(1) ≥ g2(1), then the gener-
alized g-implication defined by (2) has the following properties:

(i) Ig1,g2 satisfies (NP) if and only if g1 = g2;
(ii) If g2(1) = ∞, then Ig1,g2 satisfies (EP) if and only if there exists a constant

c ∈ (0,∞) such that g2 = c · g1;
(iii) If g2(1) < ∞, and there exists a constant c ∈ (0,∞) such that g2 = c · g1, then

Ig1,g2 satisfies (EP);
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(iv) Ig1,g2 satisfy (IP) if and only if g2(1) < ∞ and g1(x) ≥ g2(1) · x for all x ∈
[0, 1];

(v) If g2(1) = ∞, then Ig1,g2(x, y) = 1 if and only if x = 0 or y = 1, i.e., Ig1,g2
does not satisfy (OP) when g2(1) = ∞;

(vi) Ig1,g2 does not satisfy (CP) with respect to any fuzzy negation N.

It should be noted that such a problem still remains: In Theorem 6 (iii), does the
converse implication holds? In other words, is there a constant c ∈ (0,∞) such that
g2 = c · g1 when Ig1,g2 satisfies (EP)?

Theorem 7 Let g1, g2 be any two g-generators with g1(1) ≥ g2(1), then the follow-
ing statements are equivalent:
(i) Ig1,g2 satisfies (OP);
(ii) g2(1) < ∞ and g1(x) = g2(1) · x for all x ∈ [0, 1];
(iii) Ig1,g2 has the form

Ig1,g2(x, y) =
{
1 if x ≤ y,
g−1
2

(
g2(1) · y

x

)
if x > y,

x, y ∈ [0, 1]. (3)

Proposition 4 Let g1, g2 be any two generators with g1(1) ≥ g2(1), then Ig1,g2 is
continuous except at the point (0, 0).

5 Conclusions

In this paper, we have introduced two new generalizations of Yager’s implications
called generalized f -implications and g-implications, respectively. We showed that
the inner f -generators and the outer f -generators of generalized f -implications
are unique up to a positive multiplicative constant. However, for generalized g-
implication, only the outer g-generators are unique up to a positive multiplicative
constant and the inner g-generators are unique on a subinterval of [0, 1] up to a
positive multiplicative constant. We have discussed some properties such as left
neutrality principle, exchange principle, identity principle, ordering property, law of
contraposition, and given some conditions under which these properties hold. We
have also discussed the continuity of f -implications and g-implications. This work
will bring benefit for approximate reasoning, fuzzy control and other application
areas.
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4. Baczyński, M., Jayaram, B.: QL-implications: some properties and intersections. Fuzzy Sets
Syst. 161, 158–188 (2010)
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An Online Mall CRM Model Based on Data
Mining

Dao-Lei Liang and Hai-Bo Chen

Abstract For the past few years, some e-commerce enterprises such as Taobao,
Jingdong had experienced rapid development, and some electronic malls had accu-
mulated a large number of customer information and transaction data. In order to
find the value customers and to retain customers, it was very necessary to use data
mining technology for client segmentation. Combined with RFM and Analytic Hier-
archy Process, a data mining model is used for Customer Relation Management in
this paper. Under the guidance of domain experts, the disadvantage of data excessive
fitting is overcome in the model for an online mall. The result is put into practice and
the commercial effect is tangible.

Keywords Data mining · CRM · Online Mall

1 Introduction

Since the beginning of twenty-first Century, as China has vigorously promoted infor-
mationization, e-commerce applications have developed rapidly. Many companies
and individuals are scrambling to set up e-malls and e-stores, the development trend
is more and more obvious. Data mining [1] technology applied in customer relation-
ship management [2] can help decision-maker to understand the customers’ needs,
analyze customer behavior and evaluate customer value, and then targeted market
strategies can be made to carry out accurate marketing, raise enterprise’s profit and
improve the core competence.
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1.1 Related Work

Many scholars had done the relevant research in the area of data mining and customer
relationship management for market precision. Barry Keating [3] pointed out that in
market datamining can help tomake decisions, and help people to identify themarket
objects, realize cross-selling and sequence-selling, etc. Candace Gunnarsson, Mary
M. Walker, Kenneth Swann [4] used the case of data mining of customer churn in
newspaper industry to illustrate that people should share the experiences and lessons
in the process of mining, and only in this way can promote the wide application of
data-driven decisions. Coskun Samli, Terrance L. Pohlen1 and Nenad Bozovic [5]
stated thatDatamining canprovide strong support formarket segmentation decisions.
And based on the results of data mining, people can evaluate products which can
be adjusted to meet the needs of market. In 2005, by using business intelligence,
and using the existed customer behavior to predict the stock customers’ needs and
purchasing behavior, NTT DoCoMo of Japan let its customer churn rate decrease
from 1.01% to 0.77%, and can save about $84 million in revenue for the company
annually.

1.2 Main Contributions of this Paper

In this paper, we study electronic store customer relationship management based
on data mining, which can help to understand customer needs, analyze customer
behavior and assess customer value, and then make marketing strategies pertinently
to carry out accurate marketing. The CRM can greatly enhance the relevance and
effectiveness of marketing, and save marketing costs and increase profits as well.
This is one development trend of modern enterprise management.

2 Theory and Methodology

RFM [6] is used to maximize revenue of the existing customers. Customers can
be segmented by three indexes named Recently, Frequency and Monetary. RFM
is a smart and useful model widely used to customer. The Analytical Hierarchy
Process [7] was a systematic, hierarchical analysis method proposed by American
Thomas L. Saaty, and is an effective method to integrate data and information factors
of a complex decision-making system. APH, simulating the process of decision
making, can analyze multi-factors system especially social system according to a
combination of qualitative and quantitative methods. Taking an online mall as an
example, a customer segmentationmodel is proposed, and the effectiveness is proved.
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2.1 Business Background and Business Understanding

The company has several stores from Tianmao, Jingdong, Dangdang, and the goods
are shirts, T-shirts, suits, jackets, pants. All store sales was nearly one million per
day with a membership of nearly 200,000. We hoped to cluster customers and find
the most valuable customers by data mining.

Combined with characters of sale life cycle: early, development, stable and reces-
sion stage in customer relationship management and customer segmentation frame-
work, customers would be classified as low-value customers, general customers,
important development customers, important keeping customers, important retain-
ing customers.

2.2 Data Understanding and Data Preparation

We vacuumed up data from all stores in 2015, which contains product databases,
customer database, browse databases and transaction databases. The fields were
sale goods name, sale time, unit price, total price, discounts, goods customers had
explored, explored time, unit price and discounts and so on. We cleaned up the
data, discarded the missing value and rectified the wrong name, unified renamed
and integrated the data in different sale platforms. We transformed some data and
added some new properties, such as browsing time, amount of consumption, times of
consumption, consumer items, lever of items and so on, get a total of 32000 records
and 18 properties.

2.3 The Model of Customer Value Segmentation

Model steps: Firstly we create RFM table based on different values of customers
in different life-cycle stage, and use K-means algorithm to get a preliminary cluster
scheme, then conduct a customer value segmentation model by AHP and finally
adjust the former cluster scheme. The steps of customer value segmentation are
shown in Fig. 1.

Therewere twelve propertyfields in themodel.we select those variableswhich can
truly reflect customer behaviors as a core of grouping. Different from the traditional
RFM model, we took L, R, F, M and C as customer segmentation parameters. L, R,
F, M and C are respectively recent time of consumption, total consumption, times of
consumption, goods, and lever of goods. After transforming, the first five records of
data are shown in Table2.

We analyze five parameters that are L, R, F, M, C based on Pearsons correlation
analysis, and the results are shown in Table2 named index parameter correlation
matrix. There are negative correlations both between R and L, and also between F
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Fig. 1 Steps of customer value segmentation

Table 1 The LRFMC source data

Member_No L R F M C

000001 96.0 6.6 3.0 18770 0.658

000002 96.0 3.8 24.0 35087 0.616

000003 95.8 6.6 9.0 20660 0.522

000004 91.6 1.0 12.0 23071 0.511

000005 73.8 3.17 3.0 2897 0.954

Table 2 Index parameter correlation matrix

L R F M C

L 1.000 −0.120 0.190 0.173 0.080

R −0.120 1.000 −0.405 −0.370 −0.021

F 0.190 −0.405 1.000 0.850 0.139

M 0.173 −0.370 0.850 1.000 0.108

C 0.080 −0.021 0.139 0.108 1.000

and M, which is in accordance with the actual situation. In terms of values of the
correlation, only correlation coefficient of F and M is 0.85, so their correlation is the
lager. However, in the model, It is observed that the frequency and the amount of
consumption presented the customer loyalty to the store. At the same time, segmen-
tation parameters of the model are more persuasive than just a consumer gear or a
single index separately. As a result, according to practical significance, we selected
F and M.
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Table 3 Customer-type characteristics

The type of
customers

L F or M C R

DIC Lower Lower Higher Lower

RIC Higher Higher Higher Lower

IDC Higher Higher Higher

LVC and GC Uncertainty Lower Lower Uncertainty

Table 4 Customer-type under experts guidance

Category L R F M C Type

1 1 1 1 1 1 IDC

2 1 1 1 0 1 IDC

3 1 1 1 1 0 IDC

4 1 1 0 1 1 DIC

5 1 0 1 1 1 RIC

6 0 1 1 1 1 DIC, RIC

...

According to the characteristics of the market, we select five parameters that
are L, R, F, M, C, and used K_mean clustering algorithm to divide customers into
five groups, which are Low Value Customers, General Customers, Development
Important Customers, Retain Important Customers, Important Detention Customers.
We got the characters of the five groups of customers, as shown in Table3 named
customer-type characteristics.

2.4 The Domain Experts Guidance

The model on the basis of statistical graph, comparing every client basic L, R, F,
M, C with the total L, R, F, M, C average value, there are two conditions: greater
than(equal to) or less than the average, altogether 32 categories. If the average is
greater than or equal to the total average, we mark the value as 1, otherwise, we
marked it 0. So the 32 categories of customers can be clustered to 5 types. With the
guidance of experts in the field, we give particular client type of each category. Under
experts guidance, the customer are clustered and the types are shown in Table4.

Using AHP (Analytic Hierarchy Process), we get the weight of each target. Com-
bined with the average value of each group of customers, we can calculate the value
of each group, and then sort the customers by the points of customers value, thus
quantitatively compare the differences of value between each group of customers, and
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adjust the customer type. represent the customer value of the customers in group j,
the computational method is as following

C j
I = WLC

j
L +WRC

j
R +WFC

j
F +WMC

j
M +WCC

j
C (1)

In formula (1) C j
L ,C

j
R,C

j
F ,C

j
M ,C

j
C represents respectively the value of L, R, F,

M, C(after being standardized) of customers in group j, j = 1,. . .,n represents the
category number after segmentation.WL ,WR,WF ,WM ,WC respectively represents
the weight of L, R, F, M, C. About 13 persons are involved such as department
managers in shops, key members in customer department, industry experts, long-
term customers. The weight number is made with 9 scales by pair comparison with
the importance of such five variables, and the judgment matrix were made, the result
is WL = 0.04,WR = 0.07,WF = 0.27,WM = 0.23,WC = 0.39.

2.5 The Data Model Conclusion

Under the guidance of field experts, the former cluster scheme is corrected. From
the final chart, the general and low value customers occupies a great proportion,
accounting for 57%. The important customers accounts for 20 percent, which is in
accordance with the two-eight market rule. The important development customer
increased to 15 percent, which had a good result. The data indicate the importance of
customer segmentation in customer relationship management. Excessive costs can
be effectively avoided on the low value customers as making marketing plans. With
customer segmentation, people can not only save costs but also improve the response
rate of market, thus more profits would be brought for the enterprises. The proportion
was shown in Fig. 2.

Fig. 2 The proportion of customer value segmentation
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2.6 Marketing Strategies

After the customer segmentation, a membership system would be put into practice
and all customerswould be divided into five parts. Customerswhohad not yet reached
a better consumption line would be given a reminder or the promotion in customer
service, so that lower-level members became members of a higher level, and enjoy
a better discount or promotion service. As to the important customers to develop,
the store should encourage this type of customers to increase their consumption in
stores and try to strengthen their satisfaction. The important customers to keep were
the major contributor customer base, so they should be given preferential access to
resources and get the best services. As the changes of the important retain customers
are uncertain, these customers should be visited and contacted in particular, in order
to extend their life cycle.

3 Generalization and Achievement

By building the customer segmentation model, each member was classified under
the membership system and different sales strategies were implemented to different
types of customers. Half a year later, without the increase of company’s marketing
costs, the store turnover increased by 12%. Nearly 8% of important customers to
develop became important customers to keep. The proportion of important customers
to develop and to keep had an increase from 35% to 47%.What’s more, the customer
churn rate decreased by 3%. The expected results of this model had been achieved.

4 Conclusion

There are many factors affecting customer segmentation. Taking into account the
principles of practicality, ease of operation and so on, and combined with advices
from some relevant experts, this model considers customer segmentation problem
from the perspective of customer behavior and customer value. The model uses
LRFMC index, which is improved from the traditional RFM index, as a parameter of
customer segmentation, a query model of customer segmentation table is established
in the paper. AHP is used to quantify the weight of indices, to correct the customer
segmentation table and to provide reliable basis for segmentation. Byway of practice,
this model has great practical value and research significance.

Acknowledgments This work was supported by the Natural Science Foundation of China (No.
11171308).
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Color Image Segmentation Based
on Superpixel and Improved Nyström
Algorithm

Jing Zhao, Han-Qiang Liu and Feng Zhao

Abstract Image segmentationmethods based on spectral clustering overcome some
drawbacks of the so-called central-grouping.Nyström is one of them,which uses only
a partial smaller set of samples to replace the whole image pixels. In order to utilize
the region information and select the sample set of the image, an image segmentation
algorithm based on superpixel and improved Nyström algorithm is proposed in this
paper. Firstly, region information is obtained by the superpixel method. Then the
similarity measure for regions is constructed. Finally, an interval sample strategy is
designed in Nyström and the regions are clustered to create the image segmentation
result. With this method, the instability of random sampling is overcome, and the
time complexity of color image segmentation is reduced. This method is applied to
some images selected from Berkeley and VOC segmentation images. Experimental
results show that our method has more advantages than FCM and Nyström algorithm
in segmenting images.

Keywords Image segmentation · Nyström algorithm · Superpixel · Interval sam-
pling · Region information

1 Introduction

Image segmentation is an important technique in image, video and computer vision
applications. Its purpose is to divide an image into a number of non-overlapping
regions [1]. In the past years, many algorithms have been applied to image seg-
mentation, such as clustering methods [2, 3], threshold methods [4], region growing
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methods [5], and model based methods [6]. The fuzzy clustering method, especially
the fuzzy c-means (FCM) algorithm [7], is one of the most popular data clustering
algorithms for image segmentation. However, FCM and other clustering algorithms
are easily to fall into the drawback of the so-called central-grouping. In order to
solve the problem, spectral clustering is proposed, which turns the clustering prob-
lem into a graph partitioning problem. But, traditional spectral clustering method
faces both the challenges of time and resource. For this reason, Fowlkes et al. [8]
proposed a technique based on sampling which solves the problem for a considerably
smaller subset of points and later extrapolates to the full set: the method of Nyström
approximation [9].

Although Nyström has been achieved some good results in image segmentation,
there are still some problems. Firstly, the sampling points are randomly selected in
Nyström, so the final segmentation result is unstable. Secondly, compared with the
traditional spectral clustering algorithm, the complexity of time has been reduced.
However, the image processing is still based on the pixel level, it is still too long to
perform the algorithm. Finally, Nyström does not consider the region information of
the image, it makes the object in segmentation result incomplete. To overcome insta-
bility and reduce the time complexity of Nyström, an improved Nyström algorithm
using superpixel, interval sampling and regional similarity is proposed in this paper.
With our method, stability of the final result of segmentation is increased, and time
complexity is reduced. In the experiments, FCM, Nyström, FCM with superpixel
and Nyström with superpixel are chosen as the comparison methods.

2 Background of Nystrom

Generally, spectral clustering algorithms are carried out in three steps: constructing
the similarity matrix based on input, calculating the eigenvectors and eigenvalues
of the matrix and clustering the first k eigenvectors using the clustering algorithm
such as K-means and so on. The Nyström is one of the classical spectral clustering
methods. The algorithm is shown as follows:
1. Enter dataset with N samples. Set the number m of random samples. The number
of the others remaining sample points is n (n=N−M).
2. Construct matrix:

W =
(

A B
BT C

)

(1)

In Eq. 1, A represents the similarity among random samples, B represents the simi-
larity from random samples to the rest of samples and C represents the similarity of
among the rest of the samples. Because of the number of samples is very small, then
C would be huge to calculate. The Nyström method approximates C using [8]
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W =
(

A B
BT BT A−1B

)

(2)

3. Diagonalize the matrix to obtain the eigenvalues and eigenvectors.
4. Get the final image segmentation by clustering the eigenvectors.

3 Color Image Segmentation Based on Superpixel
and Improved Nyström Algorithm

In order to utilize the region information and overcome the randomness and higher
time complexity ofNyström, an improvedNyström algorithmusing superpixel, inter-
val sampling and regional similarity is proposed in this paper.

3.1 Superpixel Algorithm

Superpixel algorithm is used to group pixels into perceptually meaning atomic
regions which can be used to replace the rigid structure of the pixel grid [10].
The superpixel is usually constructed by grouping similar pixels, and the meth-
ods for superpixel extraction can be broadly classified into two groups: graph-based
[11, 12] andgradient-based solutions [10, 13]. Theyhave becomekeybuilding blocks
of many computer vision algorithms, such as top scoring multiclass object segmen-
tation entries to the PASCAL VOC challenge [14], depth estimation, segmentation
and so on. The SLIC superpixel method clusters pixels based on their color similarity
and proximity in the image plane [10]. The method is used and understood simply,
because the only parameter of the algorithm is k, which is the number of superpixel.
For color images in the CIELAB color space, two feature vectors, Ci = [Li , ai , bi ]T
and Si = [xi , yi ]T are defined to represent the color values and 2D positions of the
ith pixel. The procedure can be summarized as follows:

1. Initialize the seeds: distribute the seeds evenly in the image according to the
number of superpixel. The SLIC algorithm takes as input as a desired number of
approximately equally-sized superpixel K, then for an image with N pixels, the
approximate size of each superpixel is N/K. For roughly equally sized superpixels,
there would be a superpixel center at every grid interval S = √

N/K .
2. Re-select the seeds in the 3*3 neighborhood: calculate the gradient values of

all pixels in the neighborhood. In order to avoid the seed points to fall into the noise,
move them to the neighborhoodwhere gradient is the smallest. The gradient equation
is as follows:

G(x, y) = [v(x + 1, y) − v(x − 1, y)]2 + [v(x, y + 1) − v(x, y − 1)]2 (3)
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3. Redistribute the pixels in 2S*2S neighborhood of each seed. Therefore, instead
of using a simple Euclidean norm in the 5D space, we use a distance measure Di j

between ith and jth defined as follows:

dlab =
√
(li − l j )2 + (ai − a j )2 + (bi − b j )2 (4)

dxy =
√
(xi − x j )2 + (yi − y j )2 (5)

Di j = dlab + m

s
dxy (6)

where Di j is the sum of the lab distance and the xy plane distance normalized by
the grid interval S. A variable m is introduced in Di j allowing us to control the
compactness of a superpixel. The greater the value of m, the more spatial proximity
is emphasized and the more compact the cluster. This value can be in the range
1∼20. This roughly matches the empirical maximum perceptually meaningful
CIELAB distance and offers a good balance between color similarity and spatial
proximity.

4. Move the cluster center: iteration continues until to each of the clusters are
un-changing.

5. Enhance the connectivity, reallocate the smaller and unconnected regions.
The clustering and updating processes are repeated until a predefined number of

iteration is achieved. The SLIC algorithm can generate compact and nearly uniform
superpixel in the case of very low amount of calculation. Superpixel can capture
region information in the image, and greatly reduce the complexity of subsequent
image processing tasks.

3.2 Construct the Similarity of Image Region

In the traditional spectral clustering, similarity of structure is based on the pixel level.
In order to extract the characteristics of each super-pixel block, a similarity measure
method between regions is proposed. The main idea is selecting a window in each
region to represent the region. The window can be chosen by any shapes regularly,
such as: rectangular, circular, triangular, rhombus and so on. The similarity between
two super-pixel blocks can be considered as the similarity between the windows. The
advantage of this approach is that: the central region of pixels instead of blocks can
avoid the misclassification as much as possible.

In this paper, we select a rectangular window of 3*3 in each of the super blocks.
The similarity between the blocks is as in Fig. 1.

As the picture shown, the first step process the is superpixel image by SLIC
algorithm. Then, select a rectangular window in each of the superpixel blocks, extract
the RGB values of the nine pixels, finally, calculate the similarity. We must ensure
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Fig. 1 Construct the similarity of regions, select a rectangular window of 3*3 in each of the
superpixel blocks (A) and (B), extract the feature in the window and calculate the similarity

that the windows fall in the blocks. Only in this way, can we use the windows value
to represent the blocks. The similarity between any two superpixels can be measured
by the following equation:

Si j = e
−
(ai − a j )

2 + (bi − b j )
2 + ...(ii − i j )2

2 ∗ σ2 (7)

3.3 Interval Sampling for Nyström

In the algorithm of Nyström, the most critical step is selection of the sample points.
If the points are selected too unscientifically (for example, all in the background or
all in the target), the final result is undesirable. However, a large number of samples
is impossible [8]. On the one hand: there is not a standard for non-stop sampling, on
the other hand, with the increasing of samplings, the complexity of the algorithmwill
increase definitely. In the traditionalNyström, sampling points are selected randomly,
but the strategy make the algorithm unstable. In order to disperse sampling points in
the background and target, proportionating is preferably, and we propose a method
of selecting the sampling by interval.

In the superpixel image, all blocks are labeled, we can select points by these labels.
In order to get the best result, when the target and background are of similar size,
the interval (m) can be select larger (value about 10), otherwise, the value should be
chosen as small as possible (m ≥ 1).

From the previous description, the general procedure can be summarized as fol-
lows: taking an image as input, the SLIC algorithm is run to make the input to super-
pixel image; selecting the sampling points in the blocks by the number of interval;
choosing a window of equal size in the center of each superpixel blocks and extract-
ing the RGB value; resegmented using the Nyström method. Image segmentation is
then obtained simply by extrapolating the cluster of each mode to the ultra-pixels it
represents. A visual representation of the method is presented in Fig. 2.
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(a) (b) (c) (d)

Fig. 2 Diagram showing the key steps for the proposed algorithm: a Taking an image as input,
b The SLIC algorithm is run to make the input to superpixel image. c Selecting the sampling points
and choosing a window in each of the superpixel blocks. d Using the Nyström approximation to
get the segmentation image

4 Experimental Result and Analysis

In order to demonstrate the effectiveness of ourmethod, we perform the segmentation
experiments on two images (#2009_001466 and #2009_005130) selected fromVOC
SegmentationDataset, andone image (238011) fromBerkeleySegmentationDataset.
In the experimental section, fuzzy c-means(FCM), Nyström, FCM with super-pixel,
Nyström with ultra-pixel are used as the comparison methods. In the Nyström algo-
rithm, we all select 0.1% points as the sampling randomly in the image. For each
image, the initial segmentation is the same as that used by SLIC. In the Nyströmwith
superpixel and our method, the number of sampling points are the same and the size
of window in our method are all rectangular of 3*3.

(a) (b) (c)

(d) (e) (f) (g)

Fig. 3 Segmentation result on the image #2009_001466. In this experiment, the number of clusters
is 2 and the number of superpixels is 300. a Taking an image as input. b The SLIC algorithm is run
to make the input to superpixel image. c Selecting the sampling points and choosing a window in
each of the superpixel blocks. d Using the Nyström approximation to get the segmentation image
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 4 Segmentation result on the image #2009_005130. In this experiment, the number of cluster
is 2 and the number of superpixels is 305. a Taking an image as input. b The SLIC algorithm is run
to make the input to superpixel image. c Selecting the sampling points and choosing a window in
each of the superpixel blocks. d Using the Nyström approximation to get the segmentation image

(a) (b) (c)

(d) (e) (f) (g)

Fig. 5 Segmentation result on the image238011. In this experiment, the number of the cluster is
3 and the number of superpixels is 365. a Taking an image as input. b The SLIC algorithm is run
to make the input to superpixel image. c Selecting the sampling points and choosing a window in
each of the superpixel blocks. d Using the Nyström approximation to get the segmentation image

The experimental results show that the effect is significant, and ourmethod obtains
the best result among the comparison methods. In FCM and Nyström, there always
have some points which are misclassified. Because the Nyström is unstable, when
introducing of superpixel (f) one has to perform more times. (d) and (f) are the best
result of the experiment repeating 10 times (Figs. 3, 4 and5).

Since the introduction of SLIC, the complexity was reduced, so that, the time of
computation was decreased eventually. The computation time for experiments used
the algorithm of Nyström, Nyström with SLIC and our method, are shown in Fig. 6.

In Fig. 6, the unit of time is second. In the algorithm of Nyström and Nyström
with SLIC, if we want to obtain the desired effect experiment, we have to repeat the
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Fig. 6 Comparison of the time(s) segmented by these three methods on the above-mentioned
images

experiment many times. The results of these algorithms are the average of 10 times.
From the experiment, the result is obvious that, our method not only can get better
results than the other four algorithms but also that the time complexity are the lowest.

5 Conclusions

In the article, a color image segmentation based on superpixel and improvedNyström
algorithm is presented. In the proposed method, for color image we can obtain the
desired segmentation not only satisfactorily but we also reduce the complexity of
time. The improvedmethod overcome the drawback of theNyströmwhich is unstable
caused by sampling points randomly. The experimental results show that our method
outperforms FCM, Nyström, FCM with SLIC, and Nyström with SLIC.

In this method, the numbers of sampling points and cluster are set manually. How
to automatically set them is our future research.
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A Vague Sets Based Vertical Handoff
Algorithm in Heterogeneous Networks

Ming-Di Hu and Ming-Ming Tan

Abstract The integration ofWLANand cellular network is the development trend of
the next generation mobile communications. With the movement of mobile devices,
in order to keep the best quality of service, mobile devices are required to carry seam-
lessly handoff. The vertical handoff is a key point to solve the seamlessly handoff of
heterogeneous networks. A vague based algorithm for vertical handoff in heteroge-
neous networks is proposed. The algorithmmaps parameters to area vague sets, and a
new score function on vague set is given, which improves the intelligence of vertical
handoff. Our simulation results have proved that the algorithm reduces unnecessary
handoff frequencies, and improves the efficiency of vertical handoff.

Keywords VAGUE sets · Heterogeneous networks · Vertical handoff

1 Introduction

With the rapid development of wireless technology and wireless network, today’s
wireless network is no longer a single technology network, it is a integration based
on a variety of different access technologies, named heterogeneous network [1]. The
purpose of network convergence is to combine the advantages of different networks
and optimize the performance of network, which consequently demands a seamless
connection between networks and enable users make real-time handoff [2–5]. The
core technology is the seamless connection by handoff between networks, which
plays the vital role in the upgrading of wireless communication. The procedure of
vertical handoff can be divided into three parts: finding networks, deciding handoff
and conducting handoff [3]. The algorithm of determining a handoff is based on a
series of parameters, such as available bandwidth, latency, vibration, access cost, error

M.-D. Hu (B) · M.-M. Tan
Xi’an University of Posts and Telecommunications, Xi’an 710021, China
e-mail: Mendy2013@163.com

M.-M. Tan
e-mail: 444709718@qq.com

© Springer International Publishing Switzerland 2017
T.-H. Fan et al. (eds.), Quantitative Logic and Soft Computing 2016,
Advances in Intelligent Systems and Computing 510,
DOI 10.1007/978-3-319-46206-6_57

617



618 M.-D. Hu and M.-M. Tan

rate, transmission power, power supply and the preference of users, in other words,
the parameters of QoS(Quality of Service) and handoff measurement should be taken
into account. The deciding vertical handoff is the most important, namely, mobile
terminal determines which network can be connected. Considering the necessity
of considering multiple factors, the best option is to adopt the MCDM(—Multiple
Criteria Decision Making) [6] method.

Nowdays more and more researches concerning vertical handoff decision con-
tinue to boom, from the research on the algorithm of multi-attribute decision-making
[6], which is based on simple weighting, ordinal preference and analytic hierarchy
process, to the algorithm of artificial intelligence decision based on fuzzy algorithm
[7, 8], neural network, genetic algorithm and the composite algorithm of the above
mentioned algorithm [3, 9–12]. But in these literatures on the algorithm of artifi-
cial intelligence and fuzzy inference, the value of fuzzy subjection degree in fuzzy
inference machine is three-valued (low, medium, hight), being far from enough to
explain the complexity of the recognition of human brain. Gau et al. presented the
concepts of vague sets. Vague set is a generalization of fuzzy set [14]. They used a
truth-membership function and false-membership function to characterize the lower
bounds on element of membership function. The bounds, one reflection of the ele-
mentsmust have s information, the other is the upper bound of the change of informa-
tion turbulence. The degree of membership of elements of upper and lower bounds
is considered, which make our grasp the information more practical, thus making
vague set in information processing more flexible and expressive, more fit the fact
that variability and complexity. Therefore, vague set for fuzzy decision rule of multi-
ple objective is endless [15–18], and was used in many aspects [19–21], but vertical
handoff algorithm for heterogeneous networks based on the vague set has not yet
been seen.

According to the variety and complexity of wireless network parameter data, we
gives a new study on vertical handoff algorithm for heterogeneous network based
on vague set. First, the parameters is transformed into vague set interval. Secondly,
a new scoring function is constructed and its validity is proved, the score function
is introduced into the fuzzy inference machine, vague set based algorithm for verti-
cal handoff in heterogeneous networks is given, and in the heterogeneous network
with three parameters, namely, signal strength, bandwidth, price three aspects as
the impact of switching factors, the simulation results, the simulation of the vertical
switching frequency. For commonly used WLAN and UMTS, seamless intelligent
switching is concerned, and there have been some mobile terminal businesses using
an unidirectional intelligent switching technology. In this paper, the switching of
these two heterogeneous networks is simulated. It can be seen in simulated test that
the vertical handover algorithm based on vague sets method makes the inference
result more intelligentized and less affected by ping-pong effect.
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2 Basics

2.1 Vague Sets and Operation

Definition 1 Let X be a space of points (objects), with a generic element of X
denoted by x . A vague set V in X is characterized by a truth-membership function
tV and a false-membership function fV . tV (x) is a lower bound on the grade of
membership of x derived from the evidence for x , and fV (x) is a lower bound on the
negation of x derived from the evidence against x . Both tV (x) and fV (x) associate a
real number in the interval [0, 1]with each point in X , where 0 ≤ tV (x) + fV (x) ≤ 1.
This approach bounds the grade of membership of x to a subinterval [tV (x), 1 −
fV (x)] of [0, 1].

When X is continuous, a vague set V can be written as

V =
∫

X
[tV (x), 1 − fV (x)]�x, x ∈ X (1)

When X is discrete, a vague set V can be written as

V =
∑

[tV (x), 1 − fV (x)]�x, x ∈ X (2)

For example, assume that Z = {1, 2, . . . , 10}. small is a vague set of Z defined by

small = [1, 1]/1 + [0.9, 1]/2 + [0.6, 0.8]/3 + [0.3, 0.5]/4 + [0.1, 0.2]/5.

Definition 2 The complement of a vague set V is denoted by V ′ and is denoted by

∀x ∈ V ′

tV ′(x) = fV (x), (3)

1 − fV ′(x) = 1 − tV (x), (4)

V ′ = {(x, fV (x), 1 − tV (x)), x ∈ Z}. (5)

Definition 3 The intersection of two vague sets A = [tA, 1 − f A] and B =
[tB, 1 − fB] is a vague set C , written as C = A

⋂
B, whose truth-membership and

false-membership functions are related to those of A and B by

tC = min{tA, tB} (6)

1 − fC = min{1 − f A, 1 − fB} = 1 − max{ f A, fB} (7)

C = [min{tA, tB},min{1 − f A, 1 − fB}] (8)
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Definition 4 The union of two vague sets A = [tA, 1 − f A] and B = [tB, 1 − fB]
is a vague set C , written as C = A

⋃
B, whose truth-membership and false-

membership functions are related to those of A and B by

tC = max{tA, tB} (9)

1 − fC = max{1 − f A, 1 − fB} = 1 − min{ f A, fB} (10)

C = [max{tA, tB},max{1 − f A, 1 − fB}] (11)

2.2 The Method of Handling Multicriteria Decision-Making
Problems Based on Vague Set Theory

Multicriteria fuzzy decision-making problems: Let A = {A1, A2, . . . Am} be a set
of alternatives and let C = {C1,C2, . . .Cn} be a set of criteria, Assume that the
characteristics of the alternative Ai is represented by the vague set shown as follows:

Ai = {(C1, [ti1, 1 − fi1]), (C2, [ti2, 1 − fi2]), . . . (Cn, [tin, 1 − fin])} (12)

where ti j indicates the degree that the alternative Ai satisfies criteria C j ( j =
1, 2, 3 . . . n), fi j indicates the degree that the alternative Ai does not satisfy criteria
C j ( j = 1, 2, 3 . . . n). Assume that there is a decision-maker who wants to choose
an alternative which satisfies the criteria c j , ck . . . cp or which satisfies the criteria
cs , then we can represent the decision-maker’s requirement by the following expres-
sion: c j and ck and . . . and cporcs , the degrees that the alternative Ai satisfies and
not satisfies the decision-maker’s requirement can be measured by the evaluation
function E :

E(Ai ) = (([ti j , 1 − fi j ])⋂([tik, 1 − fik])⋂ · · · ([tip, 1 − fip]))⋃([tis, 1 − fis])
= [tAi , 1 − f Ai ]

where, tAi = max{min{ti j , tik, . . . tip}, tis}, 1 − f Ai = max{min{1 − fi j , 1 − fik,
. . . 1 − fip}, 1 − fis}. Multi-criteria decision-making based on Vague Sets question
is how to choose the best option to meet the requirements of decision-makers and to
meet from property index level candidates represented by Vague set. At present, the
scoring function is used to indicate the degree of decision-makers plan to meet the
requirements, the greater the scoring function value, the more satisfied the require-
ments of decision-makers.



A Vague Sets Based Vertical Handoff … 621

2.3 Existing Integral Function

(1) Chen and Tan [22] score function:

S(E(Ai )) = tAi − f Ai (13)

The larger the value of S(E(Ai )),the more the suitability that the alternative Ai

satisfies the decision-maker’s requirement.

Example 1 E(A1) = [0.6, 0.7], E(A2) = [0.5, 0.6], By applying (14), we can get
S(E(A1)) = 0.3, S(E(A2)) = 0.1. Therefore, we can see that the alternative A1 is
his best choice, but sometimes there will be indistinguishable cases, as shown in
Example2.

Example 2 E(A3) = [0.2, 0.9], E(A4) = [0.5, 0.6], By applying (14), we can get
S(E(A3)) = S(E(A4)) = 0.1. We can not judge the merits of the program.
(2) After Hong and Choi [23] analyzed the deficiency of formula (14), the exact
function is added:

H(E(Ai )) = tAi + f Ai (14)

By applying (15), we can get H(E(A3)) = 0.3, H(E(A4)) = 0.9. Therefore, we
can see that the alternative A4 is his best choice, but sometimes there will have
indistinguishable cases, as shown in Example3.

Example 3 E(A5) = [0.4, 0.1], E(A6) = [0.3, 0.9], By applying (15), we can get
H(E(A5)) = H(E(A6)) = 0.4. We can not judge the merits of the program.

3 Two New Score Functions

3.1 The New Score Function

By analyzing the above example, We can see that the Chen, Hong [22, 23] score
function is not able to make decisions on the target well. In this paper, we use the
idea stepwise, Considering the three dimensional nature of the vague set, which are
tv(x), fv(x),πv(x), where πv(x) = 1 − tv(x) − fv(x), πv(x) is called the neutral
degrees of element x in V . We construct a scoring function:

G1 = tv(x) − fv(x) − 0.5 ∗ πv(x) (15)

The greater the value of G1, the better the strategy is better. When we construct the
scoring function, we should also consider to reduce the switching times in heteroge-
neous network, so we make half of the neutral degree as it may not support network
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switch part and it needs remedy. Because there will be G1 equal situations, then
construct the second scoring function:

G2 = tv(x) − fv(x) (16)

The greater the value of G2, the better the strategy is. We prove that, with G1,G2 we
can only determine themerits of the two vague values. Suppose there are two different
vague sets A = [tA, 1 − f A] and B = [tB, 1 − fB]. Use the G1,G2 to calculate, we
still cannot determine size of A and B. In other words, A calculation using G2, it
would be that

G2(A) = G2(B)

Namely
tA − f A = tB − fB

tA − tB = f A − fB (17)

For calculation of G2, then G1 is sure to be calculated, we can see that the G1 values
are equal:

G1(A) = G1(B)

Namely

tA − f A − 0.5 ∗ (1 − tA − f A) = tB − fB − 0.5 ∗ (1 − tB − fB)

Simplification:
3 ∗ (tA − tB) = ( f A − fB) (18)

Combine (18) and (19) we have

tA − tB = f A − fB, 3 ∗ (tA − tB) = ( f A − fB)

tA = tB, f A = fB

That is to say the vague values of A = [tA, 1 − f A] and B = [tB, 1 − fB] are equal,
which contradicts the hypothesis, so that after formulas G1,G2, we can uniquely
determine the merits of two different vague values.

3.2 The Weighting Function

In fact, the importance of constraints is different. Assume that the degree of impor-
tance of the criteria c j , ck . . . cp entered by the decision-maker are w j , wk, . . . wp,
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respectively, where w j , wk, . . . wp ∈ [0, 1], and w j + wk + · · · + wp = 1, then the
weighting function W (Ai ) is the following:

W (Ai ) = max{G1([ti j , 1 − fi j ]) ∗ w j + G1([tik, 1 − fik]) ∗ wk) + · · ·
+ G1([tip, 1 − fip])wp,G1([tis, 1 − fis])}

If the case occurs when the value is equal to the result of G1, we can continue to
compare the G2 values and get the optimal.

4 Vertical Handoff Algorithm Based on Vague Set

In this paper, three parameters are considered: the received signal strength (RSS), the
bandwidth (B) and the price (C). First, we turn on the switch indicator parameters
vague fuzzy, and then use them in multi-attribute decision algorithm.

4.1 Parameters of Vague

For convenience, we use the vague parameter fuzzy method of Ref. [24], we take p=
2:Let X = {x1, x2, . . . xn}be a set of criteria, and let Ai (i = 1, 2, 3, . . . ,m)be a set of
alternatives. xi j is an indicator of program Ai , xi j ≥ 0. x jmin = min x1 j , x2 j , . . . xmj ,
Then

Ai (x j ) = [ti j , 1 − fi j ] =
[

x2i j − x2jmin

x2jmax − x2jmin

, 1 − x jmax − xi j
x jmax − x jmin

]

(19)

where, x jmin = min x1 j , x2 j , . . . xmj , x jmax = max x1 j , x2 j , . . . xmj .
In our construction of UMTS and WLAN networks, xi j is the primitive parameter
switching index of j , [ti j , 1 − fi j ] is the value of vagueness. Where ti j indicates the
degree that the network i satisfies criteria j , fi j indicates the degree that the network
i does not satisfy criteria j , x jmin indicates min of criteria j , x jmax indicates max of
criteria j . By applying (21), we can get

Ai (x j ) = [ti j , 1 − fi j ] =
[

x2i j − x2jmin

x2jmax − x2jmin

, 1 − x jmax − xi j
x jmax − x jmin

]

(20)

Where i = WorU , j = R, B,C .
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4.2 Rule of Handover Decision

By applying formula G, we can get G(E(Ai (x j ))) and use it for decision. Due
to the fact that different parameters have different impact on performance of net-
work and the importance of the handover decision, the weighting may be selected
dynamically based on network conditions. However, we consider the computational
complexity and use fixed weighting as R and C have different importance on the
handover decision: wR = 0.8, wC = 0.2, wR + wC = 1. By applying (20), we can
get the comprehensive evaluation value of different networks(PEV ):

PEVi = maxG[Ai (xR)] ∗ wR + G[Ai (xC)] ∗ wC ,G[Ai (xB)] (21)

Where i = WorU .
There are two steps in making a decision to switch, one is vague fuzzy control,

the other is handover decision. The basic process of vague fuzzy control is to input
the vague fuzzy parameters, get the vague language variables, and then according
to the rules of vague fuzzy to make inference, the final result is vague score. The
vague score is the realization of defuzzification, converted into classical values, and
finally the output value is used to determine whether or not to switch. The above
vague control system is shown in Fig. 1

Now, we give the vertical handoff decision process
(a)When the mobile terminal switches from UMTS to WLAN, if PEVU �

PEVW , then do not switch; if PEVU < PEVW , then do witch;
(b)When the mobile terminal to switch from WLAN to UMTS, if PEVU >

PEVW , then do switch; if PEVU ≤ PEVW , then do not witch;
Vertical handoff algorithm for heterogeneous networks based on VAGUE set is

shown in Fig. 2:

Example 4 UW = {U1,W1,U2,W2,U3,W3,U4,W4,U5,W5}represents fivediffer-
ent locations for UMTS and WLAN networks, there is only one mobile terminal in
the network. Z = {R,C, B} is the attribute set, where R represents the network sig-
nal strength, C represents the network cost, B represents the network bandwidth. The
vague set for each attribute criterion is expressed as the network at different time:

U1 = {(R, [0.0405, 0.1373]), (C, [0, 0]), (B, [1, 1])}

Fig. 1 Vague control system
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Fig. 2 Vertical handoff algorithm based on vague set

W1 = {(R, [0.0050, 0.0686]), (C, [1, 1]), (B, [0, 0])}

U2 = {(R, [0.0503, 0.1603]), (C, [0, 0]), (B, [0, 0])}

W2 = {(R, [0.1390, 0.3714]), (C, [1, 1]), (B, [1, 1])}

U3 = {(R, [0.0409, 0.1383]), (C, [0, 0]), (B, [0, 0])}

W3 = {(R, [0.5349, 0.7307]), (C, [1, 1]), (B, [1, 1])}

U4 = {(R, [0.0688, 0.1991]), (C, [0, 0]), (B, [1, 1])}

W4 = {(R, [0.0731, 0.2686]), (C, [1, 1]), (B, [0, 0])}

U5 = {(R, [0.0994, 0.2545]), (C, [0, 0]), (B, [0, 0])}
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W5 = {(R, [0.1819, 0.3251]), (C, [1, 1]), (B, [1, 1])}

By applying (23), we can get Comprehensive performance evaluation value(PEV):
PEVU1 = 1, PEVW1 = −0.5665, In position 1, UMTS is better than WLAN.
PEVU2 = −0.8755, PEVW2 = 1, In position 2, WLAN is better than UMTS.
PEVU3 = −0.8956, PEVW3 = 1, In position 3, WLAN is better than UMTS.
PEVU4 = 1, PEVW4 = −0.4049, In position 4, UMTS is better than WLAN.
PEVU5 = −0.7789, PEVW5 = 1, In position 5, WLAN is better than UMTS.

5 Simulation

5.1 System Model

Users in multiple networks may go through multiple WLAN. When entering the
WLAN, WLAN can be chosen to provide services, otherwise, one user may not
choose it, and instead he may use the original UMTS network. If one user plans to
leave the WLAN and then use UMTS, that is to say, user must switch to UMTS in
order to obtain services. At this time, we can build the systemmodel shown in Fig. 3.

5.2 Simulation Calculation and Analysis

This paper considers the 3G-WLAN system model [8] as shown in Fig. 3. There
are two UMTS base stations and two WLAN access points. The coverage radius of
UMTS is 1000m, the bandwidth of UMTS is 3Mbps. The coverage radius of WLAN
is 200m, the bandwidth of WLAN is 54Mbps. According to Ref. [8], two same
simulation scenarios are also setted down as follows: (i) there is a walk along the

Fig. 3 System model
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Fig. 4 MNs Handoff Decisions

Fig. 5 The detailed MNs Handoff Decisions

path of the mobile station MNwith solid line distance of 4000m, in such a sequence:
UMT S1 → WLAN1 → UMT S2 → WLAN2 → UMT S2. (ii) Fig. 3 covers 10
MN(Figure smaller MN). Also evenly distributed, and moves freely. The algorithms
mentioned herein and Ref. [8] compares the total number of handoff in 10 MN, a
total of 20 times simulation. The results are shown in Fig. 6.

As shown in Figs. 4 and 5, a total of four times handover occurred. The algorithms
described in this article is more accurate and feasible. The average handoff shown in
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Fig. 6 The comparative
results between three kinds
of algorithms

Fig. 6 is less than that in Ref [8], the results illustrate that the proposed algorithm is
better than that in Ref. [8] in reducing the number of handoffs is.

6 Conclusions

In this paper, the membership function of the switching parameters of heterogeneous
network is extended by considering two aspects of true membership degree and
false membership degree, and a new vague score function is constructed. Based on
three parameters (signal strength,bandwidth,cost) as the impact of switching factors,
by vague reasoning, and calculating the scoring results, the final vertical handoff
decision is made. The simulation scenario is constructed and carried out. According
to the result obtained, the vague sets based vertical handoff algorithm reduces the
number of handoffs as compared with the other counterparts.
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Image Thresholding by Maximizing
the Similarity Degree Based
on Intuitionistic Fuzzy Sets

Rong Lan, Jiu-Lun Fan, Ying Liu and Feng Zhao

Abstract In this paper a new image thresholding method is proposed by using a
similaritymeasure on intuitionistic fuzzy sets. Based on the ‘votemodel’ of intuition-
istic fuzzy sets, an image is mapped to an intuitionistic fuzzy set which is constructed
from a fuzzy set. The corresponding fuzzy set’s membership degree is calculated by
Gamma distribution. The proposed technique maximizes the similarity degree to
select the best threshold.

Keywords Intuitionistic fuzzy set · Similarity measure · Image segmentation ·
Thresholding

1 Introduction

In 1986, Atanassov [1] introduced the concept of intuitionistic fuzzy sets (IFSs),
which is an extension of the concept of fuzzy sets (FSs, proposed by Zadeh [2]).
IFSs use two characteristic functions to express the membership degree and the non-
membership degree of elements in the universe belonging to an intuitionistic fuzzy
set (IFS), respectively. Therefore, the idea of using positive and (independently)
negative information becomes the core of IFSs. Since then, the theory of IFSs has been
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widely and deeply discussed [3–7]. Recently, IFSs have been successfully applied to
many areas, such as pattern recognition [8–13], decision analysis [14], approximate
reasoning [15] and image processing [16–21].

It is well known that image segmentation plays important role in image processing
analyses. As a popular and effective tool, threshold method is often used to segment
objects from background in an image. In real cases, there are always more or less
fuzziness in images because of the limitations and characteristics of equipment,
uneven illumination and unavoidable noises. Therefore, it is a hot issue to combine
threshold method with FS or IFS theory. Reference [22] provided an idea which
maps an image to a FS. Huang and Wang [23] proposed two measures of fuzziness
and selected the threshold by minimizing the measures of fuzziness. Chaira and
Ray [24] used fuzzy divergence, proposed by means of fuzzy exponential entropy
in [25], to obtain the optimal threshold. These fuzzy techniques can be naturally
extended to intuitionistic fuzzy cases for dealing with image segmentation. Vlachos
and Sergiadis [16] proposed symmetric discrimination informationmeasure for IFSs,
which was obtained by means of the logarithmic cross-entropy measure defined by
Kullback [26, 27], and then formed an objective function for image segmentation by
discrimination information measure. In [19], the exponential fuzzy divergence [25]
was extended to IFSs and an image edge detectionmethod was proposed by using the
exponential information fuzzy divergence. The exponential divergence on IFSs was
used to medical image segmentation later [18]. In [21], an algorithm for constructing
interval type-2 fuzzy sets (a particular case of type-2 fuzzy sets and is equivalent
to IFS) model for images was provided, and then segmentation threshold was given
by calculating the entropy of interval type-2 fuzzy set. Ananthi, Balasubramaniam
and Lim [17] used the hesitation degree to construct an IFS from several FSs on
application to image segmentation by minimizing the entropy on IFSs.

According to the references mentioned above, it is important for image segmen-
tation based on IFSs to transfer an image to an IFS. Most of these existent methods
have parameter that should be taken in advance. Unlike the existent methods above,
a new method without parameter is presented to obtain intuitionistic fuzzy member-
ship degree and non-membership degree function from fuzzy membership degree
function. The idea of proposed method is based on the ‘vote model’ of intuitionistic
fuzzy value (IFV). So the actual explanation of the proposed method can be given.

In order to search for an optimal threshold to segment an image, one needs to
select a proper measure to construct objective function. In this paper, we will employ
similaritymeasure on IFSs to segment an image. The similarity measure, proposed in
[28], considers not onlymembership degree and non-membership degree but also the
relationship between them. The new proposedmethod searches for optimal threshold
bymaximizing the similarity degree. Comparingwith several fuzzy and intuitionistic
fuzzy methods, the proposed method works well and shows better performance in
image segmentation.

The remainder of this paper is organized as follows. In Sect. 2, the notion of
IFS and a similarity measure on IFSs are introduced. In Sect. 3 we describe briefly
the elements of image segmentation and develops a novel thresholding method for
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image segmentation based on IFS. In Sect. 4, we compare the proposed method with
3 methods and show the results of these methods. Finally, conclusion is drawn in
Sect. 5.

2 Intuitionistic Fuzzy Set and Its Similarity Measure

In this section we present the basic elements of IFSs theory, which will be needed in
the following analysis.

2.1 Intuitionistic Fuzzy Set

Definition 1 ([2]) Let X be a non-empty finite universe and Card(X) = n. A fuzzy
set A defined on a universe X is given by:

A = {(x,μA(x))|x ∈ X}

where the mapping μA : X → [0, 1] is called the membership function.

Definition 2 ([1]) Let X be an non-empty finite universe and Card(X) = n. An
intuitionistic fuzzy set Ã defined on the universe X is given by:

Ã = {(x,μ Ã(x), ν Ã(x))|x ∈ X} (1)

where μ Ã : X → [0, 1] and ν Ã : X → [0, 1] with the condition 0 ≤ μ Ã(x) + ν Ã(x)
≤ 1 for all x ∈ X . The numbers μ Ã(x) and ν Ã(x) denote the degree of membership
and the degree of non-membership of x belonging to Ã, respectively. We will denote
the set of all the intuitionistic fuzzy sets on X by I FSs(X).

In particular, if there is only one element in a universe X , i.e. X = {x}, an intu-
itionistic fuzzy set Ã = {(x,μ Ã(x), ν Ã(x))} defined on X is called an intuitionistic
fuzzy value, and denoted by x = (μx , νx ), where μx = μ Ã(x), νx = ν Ã(x).

It can be easily observed that Ã = {(x,μ Ã(x), ν Ã(x))|x ∈ X} = {(x,μ Ã(x), 1 −
μ Ã(x))|x ∈ X} if μ Ã(x) + ν Ã(x) = 1, i.e., fuzzy set is a particular case of intuition-
istic fuzzy set.

Definition 3 ([6]) Let Ã = {(x,μ Ã(x), ν Ã(x))|x ∈ X} ∈ I FSs(X). For all x ∈ X ,
we call

π Ã(x) = 1 − μ Ã(x) − ν Ã(x) (2)

an intuitionistic fuzzy index (or a hesitation margin) of x to Ã.
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Obviously, 0 ≤ π Ã(x) ≤ 1 for all x ∈ X , and it expresses a lack of knowledge of
whether x belongs to Ã or not.

In the following, we show some basic operations on IFSs which will be needed
in the following discussion.

Definition 4 ([6]) Let Ã, B̃ ∈ I FSs(X), then
(1) Ã ≤ B̃ if ∀x ∈ X , μ Ã(x) ≤ μB̃(x) and ν Ã(x) ≥ νB̃(x);
(2) Ã = B̃ if ∀x ∈ X , μ Ã(x) = μB̃(x) and ν Ã(x) = νB̃(x);
(3) Ãc = {(x, ν Ã(x),μ Ã(x))|x ∈ X}, and Ãc is called the complement of Ã.

2.2 Similarity Measure Between Intuitionistic Fuzzy Sets

In [28], a similarity measure with parameters was presented and applied to pattern
recognition. It is defined as follows:

Definition 5 ([28]) Let X = {x1, x2, . . . , xn} be a finite universe of discourse. And
let Ã, B̃ ∈ I FSs(X), Ã = {(xi ,μ Ã(xi ), ν Ã(xi ))|i = 1, 2, . . . , n} and B̃ = {(xi ,μB̃
(xi ), νB̃(xi ))|i = 1, 2, . . . , n}. Thedegreeof similarity between Ã and B̃ is definedby:

S( Ã, B̃) = 1

n

∑n

i=1
(1 − λ1|μ Ã(xi ) − μB̃(xi )| − λ2|ν Ã(xi ) − νB̃(xi )|

−λ3|ϕ Ã(xi ) − ϕB̃(xi )|) (3)

whereϕ Ã(xi )= μ Ã(xi )+(1−ν Ã(xi ))
2 andϕB̃(xi )= μB̃ (xi )+(1−νB̃ (xi ))

2 ,λ1 ≥ 0,λ2 ≥ 0,λ3 ≥ 0,
andλ1 + λ2 + λ3 = 1. Furthermore, there are at least twonon-zero values in the three
parameters λ1, λ2 and λ3.

The similarity measure mentioned above has the following properties.

Proposition 1 ([28]) Let Ã, B̃ ∈ I FSs(X), Ã= {(xi ,μ Ã(xi ), ν Ã(xi ))|i= 1, . . . , n}
and B̃ = {(xi ,μB̃(xi ), νB̃(xi ))|i = 1, . . . , n}. Then S( Ã, B̃) defined in Definition 5
has the following properties.
(1) 0 ≤ S( Ã, B̃) ≤ 1;
(2) S( Ã, B̃) = S(B̃, Ã);
(3) S( Ã, B̃) = 1 if and only if Ã = B̃;
(4) S( Ã, B̃) = S( Ãc, B̃c);
(5) S( Ã, B̃) = 0 if and only if Ã = {(xi ,μ Ã(xi ) = 1, ν Ã(xi ) = 0)|i = 1, . . . , n} and
B̃ = {(xi ,μB̃(xi ) = 0, νB̃(xi ) = 1)|i = 1, . . . , n} or Ã = {(xi ,μ Ã(xi ) = 0, ν Ã(xi )
= 1)|i = 1, . . . , n} and B̃ = {(xi ,μB̃(xi ) = 1, νB̃(xi ) = 0)|i = 1, . . . , n};
(6) ∀ Ã, B̃, C̃ ∈ I FSs(X), S( Ã, B̃) ≥ S( Ã, C̃) and S(B̃, C̃)≥S( Ã, C̃) if Ã≤B̃≤C̃.

Remark 1 In fact, it is reasonable to regard the importance of themembership degree
μ Ã(x) and the non-membership degree ν Ã(x) the same due to lack of enough knowl-
edge. Therefore, the parameters λ1 and λ2 should be equal in formula (3), i.e.,
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λ1 = λ2 = λ, so we have λ3 = 1 − 2λ. Then, the similarity measure (3) reduces to
a simple formula as follows

S∗( Ã, B̃) = 1

n

∑n

i=1
(1 − λ|μ Ã(xi ) − μB̃(xi )| − λ|ν Ã(xi ) − νB̃(xi )|

−(1 − 2λ)|ϕ Ã(xi ) − ϕB̃(xi )|). (4)

3 Image Thresholding Method Based on Intuitionistic
Fuzzy Set

In this section,we study image segmentation by using the above-mentioned similarity
measure on IFSs. And a novel image segmentation technique using IFS will be
proposed.

Let us consider an image I of size M × N pixels, having L gray levels g ranging
from 0 to L − 1. According to Pal and King [22], any image can be considered as an
array of fuzzy singletons. Each element of the array denotes the membership degree
of the gray level gi j , corresponding to the (i, j)th pixel, with respect to an image
property. Therefore, the image I can be expressed by the following FS.

I = {(gi j ,μI (gi j ))|gi j ∈ {0, 1, . . . , L − 1}} (5)

where i ∈ {1, . . . ,M} and j ∈ {1, . . . , N }.
Given a certain threshold T that separates the foreground (object) from the back-

ground, the average gray levels of the background and the foreground are given by

mB =
∑T

g=0 ghI (g)
∑T

g=0 hI (g)
,mF =

∑L−1
g=T+1 ghI (g)

∑L−1
g=T+1 hI (g)

(6)

where hI is the histogramof image I . Chaira andRay [24] calculated themembership
degree of each pixel of the image by using the Gamma distribution function as
follows.

μI (gi j , T ) =
{
exp(−c|gi j − mB |), i f gi j ≤ T f or background,
exp(−c|gi j − mF |), i f gi j > T f or f oreground

(7)

where T is any chosen threshold, c is the constant c = 1
gmax−gmin

and gmax and gmin

are the maximum and minimum gray levels of the image respectively.
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3.1 Images Intuitionistic Fuzzy Model Based
on ‘The Vote Model’

The intuitionistic fuzzy thresholding method starts from the transferring of an image
to an intuitionistic fuzzy model, i.e. an IFS. Since an IFS is a generalization of
a FS, common method to get an IFS is to generate it from an existent FS. Sev-
eral existing constructive methods need to fix the value of parameters, such that in
[16, 18, 19]. Apparently, the selection of parameter mainly depends on the results
of image segmentation. So it takes time to do many tests then.

In this paper, we try to explore another possibility of constructing an IFS bymeans
of a FS. In fact, an IFV can be explained by ‘voting model’. Let x = (μx , νx ) be an
IFV, μx = 0.3, νx = 0.6. The IFV x = (0.3, 0.6) can be interpreted as ‘the vote for
resolution is 3 persons in favor, 6 persons against, and 1 abstention’.

Let A = {(x,μA(x))|x ∈ X} be a FS on X . μA(x) represents x ′s approval rating.
According to the concept of FSs, 1 − μA(x) is x ′s against rating. In real world, when
one person lives in a society or a community, he cannot discount people around him.
That is to say, people always are more or less influenced by others, especially in
voting. Though the viewpoints of two sides, supporter and anti, are different, they
may affect each other. On the one hand, the anti can affect the supporter, we have
(1 − μA(x)) · μA(x); on the other hand, the supporter can also affect the anti, so we
have μA(x) · (1 − μA(x)). Therefore, a hesitation margin of IFS Ã is

π Ã(x) = (1 − μA(x)) · μA(x) + μA(x) · (1 − μA(x)) = 2μA(x) · (1 − μA(x)).

At the same time, we can get that a new membership function is

μ Ã(x) = μA(x) − (1 − μA(x)) · μA(x) = μ2
A(x).

And the corresponding non-membership function is

ν Ã(x) = (1 − μA(x)) − μA(x) · (1 − μA(x)) = (1 − μA(x))
2

In this way, we obtain a new IFS on X as follows

Ã = {(x,μ Ã(x), ν Ã(x))|x ∈ X} = {(x,μ2
A(x), (1 − μA(x))

2)|x ∈ X} (8)

Based on the membership function defined by formula (7), an IFS can be con-
structed bymeans of (8). The correspondingmembership and non-membership func-
tion are defined by

μ Ĩ (gi j , T ) = μ2
I (gi j , T ), ν Ĩ (gi j , T ) = (1 − μI (gi j , T ))

2.
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So we can map image I to the following IFS,

Ĩ = {(gi j ,μ Ĩ (gi j , T ), ν Ĩ (gi j , T ))|gi j ∈ {0, 1, . . . , L − 1}}
= {(gi j ,μ2

I (gi j , T ), (1 − μI (gi j , T ))2)|gi j ∈ {0, 1, . . . , L − 1}}. (9)

3.2 Intuitionistic Fuzzy Objective Function

The idea of the proposedmethod is themaximization of the similarity degree between
the actual and the ideally thresholded image. Owing to lack of prior knowledge, it
is a reasonable assumption that the membership degree is the same importance as
the non-membership degree. So we calculate the similarity degree between an IFS
of image and that of an ideally segmented image by using formula (4).

For an ideally threshold image, the membership degree μB̃(gi j ) = 1 and the non-
membership degree ν Ĩ (gi j ) = 0 for all gi j ∈ {0, 1, . . . , L − 1}. Therefore, we have

S∗( Ĩ , B̃, T ) = 1

L − 1

∑L−1

gi j=1
(1 − λ|μ Ĩ (gi j ) − μB̃(gi j )| − λ|ν Ĩ (gi j ) − νB̃(gi j )|

−(1 − 2λ)|ϕ Ĩ (gi j ) − ϕB̃(gi j )|)

= 1

L − 1

∑L−1

gi j=1

(

1 − λ(1 − μ Ĩ (gi j )) − λν Ĩ (gi j ) − (1 − 2λ)

(
1 + ν Ĩ (gi j ) − μ Ĩ (gi j )

2

))

= 1

L − 1

∑L−1

gi j=1

1

2
(1 + μ Ĩ (gi j ) − ν Ĩ (gi j ))

The optimization criterion is the following:

Topt = argmax
T

{S∗( Ĩ , B̃, T )}, (10)

where Topt is the optimal threshold.

4 Experimental Results

In order to show the performance of the proposed method, the exponential fuzzy
divergence method (EFDM) [24], the symmetric intuitionistic fuzzy discrimination
information method (SIFDIM) (Let λ = 0.2 in the experimentation. Simulations
have shown that setting parameter λ = 0.2 yields the overall best result [16].) and
the intuitionistic fuzzy similarity measure method with parameter (IFSMMP) are
compared with it. All 3 methods use the gamma-distribution to map an image to a
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Fig. 1 The results of the first image
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(d) SIFDIM (T=235) (e) IFSMMP (T=235) (f) The proposed method
(T=206)

Fig. 2 The results of the second image

FS. Among them, the EFDM is a fuzzy thresholding algorithm and the SIFDIM is
an intuitionistic fuzzy thresholding algorithm. The IFSMMP uses the same objective
function to opt the best threshold as the proposed method and the same image’s IFS
model as the SIFDIM (Let λ = 0.2 in the experimentation, it makes IFSMMP to
yield the overall best result.) in order to show the effectiveness of the image IFS
model without parameter based on ‘the vote model’. In Figs. 1 and 2 we show the
thresholds of the 4 methods.
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5 Conclusions

It is well known that the notion of IFS is an extension of FS, and the IFSs have been
applied to many areas. In this paper, we proposed a new thresholding method to
segment image based on a similarity measure between two IFSs. The method starts
from the representation of an image by using an IFS, which is generated by an IFS’s
own actual meaning but not using any parameter. Therefore, it does not require a
great number of tests for searching the proper value of parameter. The segmentation
method selects the best threshold associated with the maximum of the similarity
measure between an IFS of image and that of an ideally segmented image, and yields
the better result than the other 3 methods, even including the intuitionistic fuzzy
similarity measure method with parameter.
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Image Super Resolution Using Expansion
Move Algorithm

Dong-Xiao Zhang, Guo-Rong Cai, Zong-Qi Liang and Huan Huang

Abstract Inmulti-frame image super resolution (SR), graph-cut is an effective algo-
rithm to minimize the energy function for SR. As a kind of graph-cut algorithm, α-
expansion move algorithm can effectively minimize energy functions such as class
F2. However, the energy functions for SR established in Markov random field usu-
ally don’t fall into this class and need some approximations, which may lead to poor
results. In this paper, we propose a new method, with which we make the energy
function for SR a form of class F2 without approximation. Experimental results
show that our motivation is valid and the proposed method is effective for not only
synthetic low-resolution images but also real images.

Keywords Super resolution · Expanded neighborhood · α-expansion move ·
Graph-cut

1 Introduction

Image super resolution (SR) aims to reconstruct a high-resolution image from a
single low-resolution image, which is called single-frame image SR. If the recon-
struction is based on a serial of low-resolution images, the SR process is extended
and called multi-frame image SR. Single-frame image SR usually utilizes the code-
book pre-trained based on local self-similarity [1–3], image characters [4], sparse
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representation [5, 6] and so on. Multi-frame image SR takes advantage of the redun-
dant information between low-resolution images. Single-frame SR tries to maintain
the details of the low-resolution image in the process of image magnification, while
multi-frame SR attempts to reconstruct some information which may be lost in the
process of imaging low-resolution images, to identify the details unrecognized in
low-resolution images.

In this paper, we mainly consider multi-frame SR because we devote to improv-
ing the ability of identifying image details. There are many methods of Multi-frame
SR, such as regularization [7, 8], wavelet [9], maximum a posteriori (MAP) [10–
12], and sub-pixel based method [13], which are respectively discussed under dif-
ferent assumptions. Anyway, it is necessary to make the inverse problem of SR
well-conditioned [14]. To solve this problem, Mudenagudi, etc. [10] introduced a
tool called the zone of influence on low-resolution pixels. Based on this technique,
they proposed an energy function for SR using a maximum a posteriori estimate in
Markov random field and choseα-expansionmove algorithm tominimize the energy
function. The experiments show that this method is very effective on some images.

As a kind of graph-cut algorithm, α-expansion move algorithms [15] can effec-
tively minimize energy functions such as classF2 [16]. However, to make the energy
function for SR belong to the class F2, Mudenagudi, etc. [10] crudely remove the
triple prior term from the energy function, which may bring the errors of reconstruc-
tion information to some extent. Otherwise, there is no doubt that the more accurate
energy function can produce the better reconstruction results. Therefore, it is crucial
how to treat this triple prior term.

In this paper, we attempt to retain the triple prior term to present the more accurate
energy function for SR. We propose an expanded neighborhood and convert the
triple prior term the binary one such that the energy function belongs to the class F2

without approximation. Experimental results show that our motivation is valid and
the proposed method is effective for both synthetic low-resolution images and real
images.

The rest of the paper is organized as follows. The energy function for SR is
introduced in Sect. 2. In Sect. 3, we propose the expanded neighborhood and present
a new way of converting triple prior term into a binary one. Experimental results and
conclusion are given in Sects. 4 and 5, respectively.

2 Energy Function

2.1 Image Degradation Model

In accord with [10], g1, g2, . . . , gn denote low-resolution images, whichmaybe come
from imaging systems. And f is a high-resolution image to be reconstructed. The
process of degradation from high-resolution image f to low-resolution image gk
(See Fig. 1) can be modeled as
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Fig. 1 The process
of image degradation.
a High-resolution image to
be reconstructed.
b High-resolution image
after the transformation Tk is
applied to a. c First
low-resolution image treated
as a reference frame. d kth
low-resolution image

gk = DHkTk f + ηk, k = 1, 2, . . . , n, (1)

where Tk is a geometric transformation that models camera shake and scene move-
ment, Hk is a blur kernel that models the point spread function (PSF) of camera,
D is a decimation operator, and ηk is noise signal. In the process of reconstruction,
we can obtain Tk by registration algorithm such as [17] and model Hk as a para-
metric or a nonparametric PSF just like [10]. In the case of image registration, the
first low-resolution image is always treated as a reference frame. In this paper, we
consider reconstruction with 4 × 4 times magnification, thus D is carried out with
four down-sampling factors in two directions.

2.2 Energy Function for SR in MRF-MAP Framework

The energy function for SR posed in the maximum a posteriori-Markov random field
(MAP-MRF) framework by Mudenagudi, etc. [10] is as following:

E( f |g) =
∑

p∈S

n∑

k=1

αk(p, p
′)(h ∗ f (p) − gk(p

′))2 + λ
∑

p,q∈N
Vp,q( f (p), f (q)), (2)

where p is a pixel in high-resolution image space S, just like the red point shown
in Fig. 1a. p′ is a pixel in low-resolution image corresponding to p, just like the red
point shown in Fig. 1d. αk(p, p′) is a switching function defined as follows:

αk
(
p, p′) =

{
1, d(p′, p′′) < θ,

0, otherwise.
(3)

where θ is a threshold, d(·) is the Euclidean distance and p′′ = DTkp is the projection
of p onto the kth low-resolution image. It is worthwhile to note that p′′ need not be
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an integer pixel. Equation (3) is used to determine whether p is within the zone of
influence of p′ (corresponding to αk(p, p′) = 1) or not (corresponding to αk(p, p′) =
0). Otherwise, it is necessary to normalize αk such that

∑
k αk = 1. The symbol h

in (2) is a discrete form of PSF and h ∗ f is the convolution of h and f . The smooth
prior termVp,q( f (p), f (q)) is defined asVp,q( f (p), f (q)) = min(Θ, | f (p) − f (q)|)
where Θ is a threshold. λ is a parameter of regularization used to adjust weight of
prior term. f (p) is the gray value of pixel p and is written as fp in the sequel.

2.3 Expansion Move Algorithm

One of the most effective algorithms for minimizing discontinuity-preserving energy
functions like (2) is α-expansion move [15], which can only minimize the following
function:

E ( f ) =
∑

p

Dp
(
fp

) +
∑

p,q∈N
Vp,q( fp, fq), (4)

where
∑

p
Dp

(
fp

)
is the data term that measures the total cost of assigning label fp

to pixel p,
∑

p,q∈N
Vp,q( fp, fq) is the smooth prior term that measures the total cost of

assigning label fp and fq to adjacent pixels p and q.
Otherwise, Kolmogorov and Zabih [16] propose two classes of energy func-

tions, called class F2 and F3, which are respectively denoted by (5) and (6), where
x1, x2, . . . , xn ∈ {0, 1}.

E (x1, . . . , xn) =
∑

i

Ei (xi) +
∑

i<j

Ei,j(xi, xj), (5)

E (x1, . . . , xn) =
∑

i

Ei (xi) +
∑

i<j

Ei,j(xi, xj) +
∑

i<j<k

Ei,j,k(xi, xj, xk). (6)

It should be noted that the energy of class F2 is more efficient and need less time to
be minimized than the one of class F3.

As pointed out in [16], class F2 of (5) can be minimized using α-expansion if
and only if Ei,j satisfies the regularity condition

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0). (7)

Now we are obliged to give method to make general energy function like (4) a
binary function like (5). An α-expansion determines whose pixels’ grey level should
be changed to α such that the energy function is minimum in a single expansion
move. Assignation of variable xi depends on whether the gray value of ith pixel is
changed to α. If xi = 1 signs change and xi = 0 signs no change, the energy function
like (4) will become a binary one in the form of (5).
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2.4 Rewriting the Energy Function

Obviously, the first term of (2) is not of the form of the data term shown in (4),
because h ∗ f (p) shown in (2) is relative to the neighbors of the pixel p. Therefore,
we should rewrite it. Let Np be the neighborhood of the pixel p, then the convolution
of h ∗ f can be calculated as follows

h ∗ f (p) = ωpp fp +
∑

q∈Np

ωpq fq,

where ωpp and ωpq are PSF weights, which are determined by h. Then the first term
of (2) is given by

∑

p∈S

n∑

k=1

αk(h ∗ f (p) − gk(p
′))2

=
∑

p∈S

n∑

k=1

αk
(
ωpp fp − gk(p

′)
)2 +

∑

p∈S

n∑

k=1

αk

⎛

⎝
∑

q∈Np

ωpq fq

⎞

⎠

2

+
∑

p∈S

n∑

k=1

2αk
(
ωpp fp − gk(p

′)
) ∑

q∈Np

ωpq fq

Considering
n∑

k=1
αk = 1, we have

∑

p∈S

n∑

k=1

αk

⎛

⎝
∑

q∈Np

ωpq fq

⎞

⎠

2

=
∑

p∈S

⎛

⎝
∑

q∈Np

ωpq fq

⎞

⎠

2

=
∑

p∈S

∑

q∈Np

(
ωpq fq

)2 +
∑

p∈S

∑

q,r∈Np

(
ωpqωpr

) (
fq fr

)

Then, the energy function of (2) is rewritten as

E ( f |g) =
∑

p∈S

n∑

k=1

αk(ωpp fp − gk(p
′))2 +

∑

p∈S

∑

q∈Np

n∑

k=1

2αk
(
ωpp fp − gk(p

′)
)
ωpq fq

+
∑

p∈S

∑

q∈Np

(
ωpq fq

)2 + λ
∑

p,q∈N
Vp,q( fp, fq) +

∑

p∈S

∑

q,r∈Np

(
ωpqωpr

) (
fq fr

)

(8)

In Eq. (8), the first term isn’t concerned with the neighbors of pixel p and is the
data term. The second and third terms depend on the neighbors of pixel p and are
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called the binary prior terms while the fourth one is called the smooth prior term.
The last one is concerned with three mutually adjacent pixels and we call it a triple
prior term. This triple prior term is discarded in [10], which may introduce errors in
SR reconstruction to some extent. In the following section, we try to conquer this
problem and retain the triple prior term.

3 Energy Minimization

3.1 How to Deal with the Energy Function

The energy function of (8) is in the form of class F3 shown in (6), but not yet in the
form of class F2 shown in (5) due to the triple prior term. There are two immediate
ways to deal with the triple prior term: it is discarded such that the energy function
belongs to class F2 just as that in [10] yet loses accuracy; it is retained such that the
energy function belongs to classF3 yet need more time to be minimized. We choose
neither of them and try to convert the triple prior term to a binary one such that the
energy function of (8) belongs to class F2.

3.2 From Triple Prior Term to Binary One

In order to convert the triple prior term shown in (8) into a binary one, we suppose
without loss of generality that the discrete PSF is a 3 × 3 filter shown in Fig. 2a. The
case for other PSF of different size can be considered similarly.

Considering the fact that p ∈ Nq if and only if q ∈ Np, we can interchange the
order of summation in the triple prior term as shown in (9).

∑

p∈S

∑

q,r∈Np

(
ωpqωpr

) (
fq fr

) =
∑

q∈S

∑

p∈Nq,r∈Np

(
ωpqωpr

) (
fq fr

)
. (9)

For any pixel q, there are twenty-four sites whose gray value fr may be multiplied
by fq. We use consecutive numbers to identify these sites as shown in Fig. 2b and

Fig. 2 a 3 × 3 filter used to
model PSF. b Expanded
neighborhood of q, Nexp

q ,
including all possible site
multiplied with fq
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denote the set of all these sites by Nexp
q and call it the expanded neighborhood of q.

Then {r|p ∈ Nq, r ∈ Np} = {r|r ∈ Nexp
q , p ∈ Nr ∩ Np}. Thus we can write the triple

prior term of (9) as

∑

p∈S

∑

q,r∈Np

(
ωpqωpr

) (
fq fr

) =
∑

q∈S

∑

r∈Nexp
q ,p∈Nr∩Np

(
ωpqωpr

) (
fq fr

)
. (10)

Considering that fact that some pixels are in S, we will calculate all coefficients
of fq fr for every site r ∈ Nexp

q . Taking the site 1 shown in Fig. 2b into account, we
can find out only one case in which some pixel p is located in the neighborhood
of both site 1 and q as shown in Fig. 3a. Corresponding to Fig. 2a, the coefficient
of fq f1 is ω1ω5. Then we write this coefficient at the site 1, top left of the 5 × 5
mask shown in Fig. 4a. Similarly, we can find out three cases about site 3 as shown
in Fig. 3b–d. And their coefficients are ω3ω5, ω2ω6 and ω1ω7, respectively. Thus the
ultimate coefficient of fq f3 is ω3ω5 + ω2ω6 + ω1ω7 = ω1ω7 + ω2ω6 + ω3ω5, which
is written at the site 3 as shown in Fig. 4a. For the site 24, there are four cases as shown
in Fig. 3e–h. Their coefficients are ω6ω7, ω1ω2, ω2ω3 and ω5ω6, respectively. Thus
the ultimate coefficient of fq f24 is ω1ω2 + ω2ω3 + ω5ω6 + ω6ω7, which is written at
the site 24 as shown in Fig. 4a. Analogous to the preceding cases, we can calculate
all coefficients about twenty-four sites shown in Fig. 2b. Finally, we write all these
coefficients in the 5 × 5 mask shown in Fig. 4a.

Fig. 3 All possible cases that both r and q are in the neighborhood of some p for a given r ∈ Nexp
q .

a The case of r = 1. b–d The cases of r = 3. e–h The cases of r = 24

We denote these coefficients shown in Fig. 4a by ci whose subscripts correspond
to the pixel sites shown in Fig. 2b. Then we can write the triple prior term of (10) as
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Fig. 4 a Coefficients of fq fr for all r ∈ Nexp
q . The value at site r is just right the coefficient of fq fr .

b New expanded neighborhood of q. Only these sites of asterisk are involved in the calculations

∑

p∈S

∑

q,r∈Np

(
ωpqωpr

) (
fq fr

) =
∑

q∈S

∑

r∈Nexp
q

cr fq fr . (11)

Suppose that q is the pixel being considered at hand and it is located in the center
as shown in Fig. 2b, then for any r ∈ Nexp

q , we need calculate the product of fq, fr
and their coefficient cr . Otherwise, when pixel r is located in the center, we also
need calculate the product of fr , fq and their coefficient cq. Considering the central
symmetry of Nexp

q shown in Fig. 4a, we can conclude that cq = cr , which guarantees
that we need only calculate the half amount of product as shown in the following
equation ∑

p∈S

∑

q,r∈Np

(
ωpqωpr

) (
fq fr

) = 2
∑

q∈S

∑

r∈Nexp∗
q

cr fq fr, (12)

where Nexp∗
q is a new expanded neighborhood shown in Fig. 4b.

In addition, the summation of the triple prior term shown in (12) is not relative
to p. However, we should take p as a center in the triple prior term in order to make
energy function of (8) consistent. Considering the fact that p, q and r are only the
symbols to indicate some pixels, we can swap symbol q and r for p and q respectively
as shown in following equation

∑

q∈S

∑

r∈Nexp∗
q

cr fq fr =
∑

p∈S

∑

q∈Nexp∗
p

cq fp fq. (13)
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Therefore, the ultimate energy function is

E ( f |g) =
∑

p∈S
Dp( fp) +

∑

p,q∈N

(
φpq( fp, fq) + λVp,q( fp, fq)

)

+ 2
∑

p∈S

∑

q∈Nexp∗
p

cq fp fq,
(14)

where the data term is

Dp( fp) =
n∑

k=1

αk
(
ωpp fp − gk(p

′)
)2

. (15)

The binary prior term is

φpq( fp, fq) =
n∑

k=1

2αk
(
ωpp fp − gk(p

′)
)
ωpq fq + (

ωpq fq
)2

. (16)

3.3 A New Neighborhood System

Obviously, the subscript p, q ∈ N of a summation symbol
∑

p,q∈N
can be interpreted

as both p ∈ Nq and q ∈ Np. This fact is contradictory to the requirement of i < j in
the subscript of

∑

i<j
Ei,j(xi, xj) shown in (5). In order to conquer this problem, we

introduce a new neighborhood system shown in Fig. 5.

Fig. 5 a A new neighborhood systems N∗. a and b are new neighborhood of p with regard to
8-connected and 4-connected neighborhood, respectively. Only the pixels of asterisk are connected
with p
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Obviously, p ∈ N∗
q and q ∈ N∗

p are mutually exclusive. Considering the fact that

Vp,q( fp, fq) = Vq,p( fq, fp) and N∗
p ⊂ Nexp∗

p , we write the energy function of (14) as
follows,

E ( f |g) =
∑

p∈S
D∗

p( fp)

︸ ︷︷ ︸
Data Term

+
∑

p∈S

∑

q∈Nexp∗
p

{
β(q)

[
φ∗
pq( fp, fq) + λ′Vp,q( fp, fq)

] + 2cq fp fq
}

︸ ︷︷ ︸
Binary Prior Term

,
(17)

where λ′ = 2λ, φ∗
pq( fp, fq) = φpq( fp, fq) + φqp( fq, fp) and β(q) is a switching

function whose value is 1 if q ∈ N∗
p and 0 otherwise. Suppose that

Ei(0) = D∗
p( fp), Ei(1) = D∗

p(α)

Eij(0, 0) = β(q)
[
φ∗
pq( fp, fq) + λ′Vp,q( fp, fq)

] + 2cq fp fq,

Eij(0, 1) = β(q)
[
φ∗
pq( fp,α) + λ′Vp,q( fp,α)

] + 2cq fpα,

Eij(1, 0) = β(q)
[
φ∗
pq(α, fq) + λ′Vp,q(α, fq)

] + 2cqα fq,

Eij(1, 1) = β(q)
[
φ∗
pq(α,α) + λ′Vp,q(α,α)

] + 2cqαα

for all xi ∈ {0, 1}, then the energy function of (17) is in the form of class F2 shown
in (5).

3.4 Satisfying Regularity Condition

The energy function of class F2 must satisfy the regularity condition as shown in
(7). So we should guarantee that energy function of (17) satisfies this condition.
Obviously, the following inequality holds,

λ′Vp,q( fp, fq) + λ′Vp,q(α,α) ≤ λ′Vp,q( fp,α) + λ′Vp,q(α, fq).

To satisfy the regularity of the binary prior term Ei,j, it is only necessary to make
φ∗
pq( fp, fq) and 2cq fp fq meet the following inequality,

φ∗
pq( fp, fq) + φ∗

pq(α,α) ≤ φ∗
pq( fp,α) + φ∗

pq(α, fq),

2cq fp fq + 2cqαα ≤ 2cq fpα + 2cqα fq.
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We consider the regularity of φ∗
pq( fp, fq) firstly. Noting that

n∑

k=1
αk = 1, we can

conclude that

φ∗
pq( fp, fq) + φ∗

pq(α,α) − φ∗
pq( fp,α) − φ∗

pq(α, fq)

= 2
(
ωppωpq + ωqqωqp

)
(α − fq)(α − fp).

(18)

It is not possible to guarantee that (α − fq)(α − fp) ≤ 0 always holds as both fp
and fq may be assigned any gray value. Thus, we need approximate φ∗

pq.
During the derivation of (18), it is not difficult to find out that fp and fq of (18)

are inherited from ωpp fp − gk(p′) and ωqq fq − gk(q′), respectively. Therefore, an
approximation of ωpp fp − gk(p′) by ωppα − gk(p′) can guarantee the regularity of
φ∗
pq in an α-expansion move. Similarly, we can guarantee the regularity of 2cq fp fq

by approximating it by 2cqα fq.

4 Experimental Results

In this section, we demonstrate the SR reconstruction results for both synthetic and
real images. In all cases, the magnification factor is 4 in each direction. We compare
mainly our proposedmethod with the one byMudenagudi et al. [10] and always keep
their parameters the same. In addition, we also compare it with the wavelet algorithm
by Ji and Fermller [9], whose parameters are as follows: μ1 = 0.05 and μ2 = 0.01.

With regard to the synthetic images, we simulate the degradation model shown
in (1) and randomly generate thirty-two low-resolution images with a rotation range
of − π

32 to π
32 , a translation range of −16–16 pixels with no noise.

For real images, we obtain the low-resolution images with camera of Canon EOS
600d. The lens is Canon EF-S18-55mmISII, whose parameters are set as shown in
Table1.

In our implementation of SR reconstruction, we have used the graph-cut library
that can be found on Kolmogorov’s personal web page at http://pub.ist.ac.at/~vnk/.

Table 1 Camera parameters set when obtaining low-resolution images

Focal length Aperture ISO Shutter speed Flash Picture style Quality setting

18mm f/3.5 200 1/100s Off Monochrome S3 (480 × 720)

http://pub.ist.ac.at/~vnk/
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4.1 Validity of Our Motivation

Indeed, our method in Sect. 3 is proposed on the premise of the fact that the triple
prior term shown in (8) is necessary for SR reconstruction. In this experiment, we
try to verify our motivation by showing the effect of the triple prior term on SR.
Therefore, we use only the triple prior term and do not use the binary one shown in
(16) for this experiment.

In this experiment, we generate thirty-two low-resolution images (of size 64 × 64)
with ground truth images (of size 256 × 256) shown in Fig. 6. In addition, we use
the combination of all possible cases of following parameters:

λ = 0.01, 0.06, 0.1, 0.6; Θ = 8, 10, 20; θ = 0.3, 0.35, 0.4, 0.45.

To show the effect of the triple prior term quantitatively, we calculate peak signal-
to-noise ratio (PSNR) between ground truth images and reconstruction results and
then show the statistical results of PSNR about all cases of parameters in Fig. 7.

Fig. 6 Ground truth images (256 × 256)

Fig. 7 Statistics of PSNR with triple term
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According to the comparison results shown in Fig. 7, we can conclude that the
triple prior term does improve the reconstruction results, especially about the images
of boat and cameraman, whose PSNR increase about 1 dB.

4.2 Synthetic Images

To compare the proposed method with the algorithm of [10] quantitatively, we cal-
culate the PSNR between ground truth images shown in Fig. 6 and the results of both
our proposed method and [10]. Both low-resolution images and parameters are the
same as the above experiment. The ultimate statistical results of the PSNR are shown
in Fig. 8. Obviously, all PSNR of our proposed method are larger than the ones of
[10]. Therefore, it is illustrated that our proposed method outperforms the method
of [10] in terms of PSNR.

Some other comparison results are presented in Fig. 10, where the ground truth
image and input low-resolution images are shown in Fig. 9a, b, respectively. The
parameters used for this experiment are as follows: λ = 0.01, Θ = 10 and θ = 0.3.
As shown in Fig. 10a, plane logos are so blurred that we can’t distinguish them at all,
which illustrates that the input images lose a great deal of definition. As shown in
Fig. 10b, the backgrounds, especially clouds, are so real that they are almost identical
to the ground truth image shown in Fig. 9a, although the plane logos are also blurred,
which illustrates that thewavelet algorithm [9] is not so good at reconstructing details.
As shown in Fig. 10c, d, their plane logos, even serial number, are clear and almost
distinguishable, however the whole images are so bright that their backgrounds are
not good enough. Therefore, we apply histogram equalization to them and show the

Fig. 8 Statistics of PSNR of our method and Ref. [10]
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Fig. 9 a Ground truth image (512 × 512). Close-ups of the plane logos appear in the lower-left
corner. b Low-resolution images randomly chosen from all inputs (32, each of size 128 × 128).
The first one (upper-left) is a reference image

(a) (b) (c)

(d) (e) (f)

Fig. 10 Super resolution reconstruction using thirty-two input images half shown in Fig. 9b, each
of size 128 × 128, and super resolved images of size 512 × 512. Close-ups of plane logos appear in
the lower-left corner of each super resolved image. a Bicubic interpolation of the reference image.
b Wavelet algorithm [9]. c Algorithm of [10]. d The proposed algorithm. e and f are the results of
applying histogram equalization to c and d, respectively
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results in Fig. 10e, f, which illustrate that our result has more real clouds than the
result by Mudenagudi et al. [10].

4.3 Real Images

In this experiment, we demonstrate the performance of our proposed method for real
images.Wefirstly take pictures of the scene shown inFig. 11awith camera parameters

(a)

(b)

Fig. 11 a Real-world scene. b Input images obtained with camera parameters shown in Table1

Fig. 12 Super resolution reconstruction using thirty-two input images partly shown in Fig. 11b.
a Bicubic interpolation. b Wavelet algorithm [9]. c Algorithm of [10]. d The proposed algorithm
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(a)

(a) (b) (c) (d) (a) (b) (c) (d)

(b) (c) (d)

Fig. 13 Close-ups of super resolution reconstruction shown in Fig. 12

shown in Table1. We obtain thirty-two images of size 480 × 720 by rotating the
camera about optical axis with the maximal angle of about 10 degree and moving
it from top to bottom with maximal distance of about 20mm. Then we cut out a
definite regionof size 100 × 200 fromeveryobtained image and showhalf inFig. 11b.
Finally,we take these images as inputs and compare the proposedmethodwith others.
The results and close-ups are shown in Figs. 12 and 13, respectively. As shown in
Fig. 13d, our results have more Chinese character strokes and can distinguish almost
all word. In contrast, as shown in Fig. 13b, c, the results by wavelet algorithm [9] are
so blurred that many words can’t be recognized and the results by Mudenagudi et al.
[10] have few strokes.

5 Conclusions

Graph-cut is effective in minimizing a kind of special energy functions such as class
F2. In order to use this algorithm, Mudenagudi, etc. [10] removed the triple prior
term from the energy function for SR. Actually, the experimental result in Sect. 4.1
show that this triple prior term is necessary for SR.

In this paper, we propose an expanded neighborhood, with which we retain the
triple prior term and make the energy function for SR a form that can be minimized
using graph-cut. In order to verify this method, we obtain the low-resolution images
by twoways: simulating image degradation and taking photos. Reconstruction results
increased 4 times in each direction show that the proposed method is valid for not
only synthetic low-resolution images but also real images. Otherwise, the proposed
method also applies to other problems, such as image denoising and segmentation,
as long as their energy functions include such formulas as the triple prior term of (9).
This will be discussed in future studies.
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The Minimum Spectral Radius of Strongly
Connected Bipartite Digraphs with Complete
Bipartite Subdigraph

Shu-Ting Chen, Shui-Li Chen and Wei-Quan Liu

Abstract LetDn,p,q be the set of strongly connected bipartite digraphs on n vertices
with complete bipartite digraph, where p, q, n are positive integers and p + q ≤ n.
In this paper, the minimum spectral radius of Dn,p,q is studied and extremal graphs
with the minimum spectral radius are characterized.

Keywords Strongly connected bipartite digraph · Spectral radius · Eigenvalue ·
Eigenvectors · Adjacency matrix

1 Introduction

In the theory of spectra of graph, the largest eigenvalue or the spectral radius is
one of the most important and intensively studied spectra. The problem of spectral
radius actually originated in chemical theoretical study in the 1930s. In the theory
of Hückel molecular orbital of quantum chemistry, the adjacency spectral radius of
graph represents the lowest π electron energies of molecular electronics orbital. Of
course, the mathematical meaning of the spectral radius of a matrix or graph is very
important. In 1986, R.A. Brualdi and E.S. Solheid presented the following problems
in the study of spectral radius:

Question. For a class of given graphs, we give the upper bound of the maximum
eigenvalue and the lower bound of the minimum eigenvalue, and also characterize
the extremal graphs which attain the upper and lower bounds, respectively.

The study of the problem caught many scholars’s attention and interest. The
problem of upper bounds and lower bounds of adjacent spectral radius, Laplace
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spectral radius and signless Laplacian spectral radius, and the characterization of
extremal undirected graphs are well treated in the literature, see [2, 4–8] and so on,
but there is no much known results about digraphs. In 2010, R.A. Brualdi wrote a
stimulating survey on the spectra of digraph [1]. Furthermore, some sharp upper or
lower bounds on the spectral radius or the signless Laplacian spectral radius were
obtained for digraphs with given graph parameters, such as girth, clique number
and vertex connectivity, and the corresponding extremal graphs are characterized
[3, 9]. In this paper, we study the spectral radius of strongly connected bipartite
digraphs which contain a complete bipartite subdigraph

←→
Kp,q (p ≥ q > 1), and give

characterization of the extremal graph with the least spectral radius.

2 Preliminaries

Let D = (V (D), A(D)) be a digraph, where V (D) and E(D) are the vertex set and
arc set of D, respectively. For an arc a = (i, j) ∈ E(D), where a = (i, j) is the arc
from i to j , that is to say i is the initial vertex of a, j is the terminal vertex of a
and vertex i is a tail of vertex j . Let D

′ = (V (D
′
), A(D

′
)) be a subdigraph of D, if

V (D
′
) ⊆ V (D), A(D

′
) ⊆ A(D). A simple digraph is one which has neither loops

nor multiple arcs. Let
−→
Pn and

−→
Cn denote the directed path and the directed cycle on

n vertices respectively.
For a digraph D = (V (D), A(D)), if there is a non-empty sequence P = v1a1v2a2

. . . ak−1vk (k ≥ 1), where vi ∈ V (D) (i = 1, . . . , k), ai ∈ A(D) (i = 1, . . . , k − 1),
then P is called a directed path of D.

We call the vertex i arrivable to vertex j in D, if there exists a directed path (i, j)
in D. For any i, j ∈ V (D), if there exists a directed path from i to j or a directed path
from j to i , then D is called a connected digraph. We call D a strongly connected
digraph if for any i, j ∈ V (D), there exists a directed path from i to j and a directed
path from j to i .

LetG = (W, A) be a digraph, ifW = V ∪U , V ∩U = ∅ and for any arc (i, j) ∈
A, i ∈ V and j ∈ U or j ∈ V and i ∈ U , then the digraph G = (W, A) is called a
bipartite digraph. Let

←→
Kp,q be a complete bipartite digraph whose vertices can be

partitioned into two subsets Vp and Vq such that no arc has both endpoints in the
same subset, and every possible arc that could connect vertices in different subsets
is part of the digraph. In this paper, we consider finite, simple strongly connected
bipartite digraphs. For a digraph D of order n, let the adjacency matrix A(D) = (ai j )
be a n × n nonnegative matrix whose entry ai j is defined as the number of arcs
(i, j). Otherwise, and let ρ(D) denote its spectral radius, the largest modulus of an
eigenvalue of A(D). Let XT be the transpose of a vector X . Let X = (x1, x2, . . . , xn)
be the nonnegative unit eigenvector corresponding to ρ(D), that is AX = ρ(D)X ,
then we can call X = (x1, x2, . . . , xn) the Perron vector of digraph D.

In the rest of this section, let x = (x1, x2, . . . , xn)T be the unqiue positive unit
eigenvector corresponding to ρ(D), which corresponds to the vertex i.
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Lemma 1 ([9]) Let D = (V (D), E(D)) be a simple digraph on n vertices, u, v, w
distinct vertices of V (D), and (u, v) ∈ E(D). Let H = D − {(u, v)} + {(u, w)}. If
xw ≥ xv , then ρ(H) ≥ ρ(D). Furthermore, if H is strongly connected and xw > xv ,
then ρ(H) > ρ(D).

Let D = (V (D), E(D)) be a digraph with (u, v) ∈ E(D) and w /∈ V (D), Dw =
(V (Dw), E(Dw)) with V (Dw) = V (D) ∪ {w}, E(Dw) = E(D) − {(u, v)}
+ {(u, w), (w, v)}.
Lemma 2 ([9]) Let D( �= −→

Cn) be a strongly connected digraph, w /∈ V (D) and
defined as before. Then ρ(D) > ρ(Dw).

Lemma 3 ([9]) Let D( �= −→
Cn) be a strongly connected digraph with V (D) =

{u1, u2, . . . , un}, and−→
P = u1u2 . . . uk (k ≥ 3)beadirectedpathof D with d+

D (ui ) =
1 (i = 2, 3, . . . , k − 1). Then we have x2 < x3 < · · · < xk−1 < xk.

Lemma 4 ([9]) Let D be a digraph and D1, . . . , Ds be the strongly connected
components of D. Then ρ(D) = max{ρ(D1), . . . , ρ(Ds)}.
Lemma 5 ([9]) Let Dp,q be a digraph and Hk,l be a subdigraph of Dp,q . Then
ρ(Hk,l) ≤ ρ(Dp,q). If Dp,q is strongly connected, and Hk,l is a proper subdigraph of
Dp,q , then ρ(Hk,l) < ρ(Dp,q).

3 The Spectral Radius of Strongly Connected Bipartite
Digraphs Which Contain a Complete Bipartite
Subdigraph

In this section, we will show that if n �≡ p + q(mod 2) then B1
n,p,q is the unique

bipartite digraph with the minimum spectral radius among all bipartite digraphs
which have the complete bipartite subdigraph

←→
Kp,q (p ≥ q > 1), otherwise, if n ≡

p + q(mod 2) then D ∼= B5
n,p,q or D ∼= B6

n,p,q is the unique bipartite digraphwith the
least spectral radius among all bipartite digraphs which have the complete bipartite
subdigraph

←→
Kp,q (p ≥ q > 1).

Let
←→
Kp,q be a complete bipartite digraph with V (

←→
Kp,q) = Vp ∪ Vq , A(

←→
Kp,q) =

{(u, v), (v, u)}, (u ∈ U, v ∈ V ) and |Vp| = p, |Vq | = q. LetDn,p,q denote the set of
strongly connected bipartite digraphs on n vertices with complete bipartite digraph←→
Kp,q . As we know, if p + q = n, then Dn,p,q = {←→

Kp,q} and ρ(
←→
Kp,q) = √

pq . Thus
we only discuss the cases when p + q ≤ n − 1 and p ≥ q ≥ 1. In the rest of this
section, we just discuss under this assumption.

Let B1
n,p,q = (V (Bn,p,q), E(Bn,p,q)) be a digraph obtained by adding a directed

path
−−−−→
Pn−p−q = u1u p+q+1u p+q+2 . . . unu p to a complete bipartite digraph

←→
Kp,q such

that V (Kp,q) ∩ V (
−−−−→
Pn−p−q) = {u1, u p} (as shown in Fig. 2a), where V (B1

n,p,q) =
{u1, u2, . . . , un}. Clearly, B1

n,p,q ∈ Dn,p,q .
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Fig. 1 B1
n,p,q and B2

n,p,q

Fig. 2 B5
n,p,q and B6

n,p,q

Let B2
n,p,q = (V (Bn,p,q), E(Bn,p,q)) be a digraph obtained by adding a directed

path
−−−−→
Pn−p−q = u p+1u p+q+1u p+q+2 . . . unu p+q such that V (Kp,q) ∩ V (

−−−−→
Pn−p−q) =

{u p+1, u p+q} (as shown in Fig. 1b), where V (B2
n,p,q) = {u1, u2, . . . , un}. Clearly,

B2
n,p,q ∈ Dn,p,q .
Let B3

n,p,q = (V (Bn,p,q), E(Bn,p,q)) be a digraph obtained by adding a directed

cycle
−−−−→
Cn−p−q = u1u p+q+1u p+q+2 . . . unu pu1 to a complete bipartite digraph

←→
Kp,q

such that V (
←→
Kp,q) ∩ V (

−−−−→
Cn−p−q) = {u1} (as shown in Fig. 2a), where V (B3

n,p,q) =
{u1, u2, . . . , un}. Clearly, B3

n,p,q ∈ Dn,p,q .
Let B5

n,p,q = (V (Bn,p,q), E(Bn,p,q)) be a digraph obtained by adding a directed

path
−−−−→
Pn−p−q = u1u p+q+1u p+q+2 . . . unu p+1 to a complete bipartite digraph

←→
Kp,q ,

such that V (Kp,q) ∩ V (
−−−−→
Pn−p−q) = {u1, u p+1}, where V (B5

n,p,q) = {u1, u2, . . . , un}
(as shown in Fig. 2a). Clearly, B5

n,p,q ∈ Dn,p,q .

Lemma 6 Let x = (x1, x2, . . . , xn)T be the Perron eigenvector corresponding to
ρ = ρ(B1

n,p,q), where xi corresponds to the vertex ui , then we have:

(i) x1 > xp;
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(ii) xp+1 > xp.

Proof (i) Since

(A(B1
n,p,q)x)1 = ρx1 =

∑

u∈N+
(u1)

xu =
∑

u∈Vq

xu + xp+q+1, (1)

(A(B1
n,p,q)x)p = ρxp =

∑

u∈N+
(u p )

xu =
∑

u∈Vq

xu . (2)

From (1)–(2), then we have

ρ(x1 − xp) = xp+q+1 > 0. (3)

Thus x1 > xp by ρ > 0.
(ii) Since

(A(B1
n,p,q)x)i = ρxi =

∑

u∈N+
(ui )

xu =
∑

u∈Vq

xu (i = 2, 3, . . . , p),

then ρx2 = ρx3 = · · · = ρxp. Noting that B1
n,p,q is strongly connected and by using

Perron–Frobenius Theorem, we have ρ > 0. Thus

x2 = x3 = · · · = xp
�= xp. (4)

Since

(A(B1
n,p,q)x) j = ρx j =

∑

u∈N+
(u j )

xu =
∑

u∈Vp

xu ( j = p + 1, p + 2, ..., p + q),

then similarly, we have

xp+1 = xp+2 = · · · = xp+q
�= xp+1, (5)

From (3)–(5), we have

(A(B1
n,p,q)x)p = ρxp =

∑

u∈N+
(u p )

xu =
∑

u∈Vq

xu = qxp+1, (6)

(A(B1
n,p,q)x)p+1 = ρxp+1 =

∑

u∈Vp

xu + x1 = (p − 1)xp + x1 > pxp. (7)
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From (6) and (7), we can briefly have

{
ρ = qxp+1

xp
ρ >

pxp
xp+1

.

Noting that p ≥ q ≥ 1, xp > 0, xp+1 > 0, then

xp
xp+1

<

√
q

p
≤ 1.

Thus xp+1 > xp. �

Theorem 1 Let B4
n,p,q = B2

n,p,q − {(un, u p+q)} + {(un, u p+1)}, then

ρ(B2
n,p,q) < ρ(B4

n,p,q)

Proof Clearly, B4
n,p,q is strongly connected. Let x = (x1, x2, ..., xn)T be the Perron

eigenvector corresponding to ρ = ρ(B2
n,p,q), where xi corresponds to the vertex ui .

By Lemma 1, we only need to show xp+1 > xp+q .
Since

(A(B2
n,p,q)x)p+1 = ρxp+1 =

∑

u∈N+
(u p+1)

xu =
∑

u∈Vp

xu + xp+q+1 (8)

and
(A(B2

n,p,q)x)p+q = ρxp+q =
∑

u∈N+
(u p+q )

xu =
∑

u∈Vp

xu (9)

From (8)–(9) we have
ρ(xp+1 − xp+q) = xp+q+1 > 0.

Thus, xp+1 > xp+q , by ρ >
√
pq > 0. �

Theorem 2 Let B3
n,p,q = B1

n,p,q − {(un, u p)} + {(un, u1)}, then

ρ(B1
n,p,q) < ρ(B3

n,p,q)

Proof Clearly, B3
n,p,q is strongly connected. Let x = (x1, x2, ..., xn)T be the Perron

eigenvector corresponding to ρ = ρ(B1
n,p,q), where xi corresponds to the vertex ui .

Thus ρ(B1
n,p,q) < ρ(B3

n,p,q) by Lemmas 1 and 6. �

Let ρ(D) be the spectral radius of strongly connected digraph D. According to
the Perron–Frobenius Theorem, we have
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ρ(D) = max
||Y ||=1

Y T A(D)Y = XT A(D)X,

where X is the Perron vector corresponds to ρ(D).

Theorem 3 ρ(B5
n,p,q) = ρ(B6

n,p,q).

Proof Let x = (x1, x2, ..., xn)T be thePerron eigenvector corresponding toρ(B5
n,p,q ),

where xi corresponds to the vertex ui . Let Y = (y1, y2, ..., yn)T be the Perron eigen-
vector corresponding to ρ(B6

n,p,q), where yi corresponding to the vertex ui . By
Perron–Frobenius Theorem, we have

ρ(B5
n,p,q) = XT A(B5

n,p,q)X = Y T A(B6
n,p,q)Y = ρ(B6

n,p,q)

Thus ρ(B5
n,p,q) = ρ(B6

n,p,q). �

Theorem 4 Let B5
n,p,q = B1

n,p,q − {(un, u p)} + {(un, u p+1)}, then

ρ(B1
n,p,q) < ρ(B5

n,p,q),

Thus ρ(B1
n,p,q) < ρ(B5

n−1,p,q).

Proof Clearly, Bn,p,q is strongly connected. Let x = (x1, x2, ..., xn)T be the Perron
eigenvector corresponding to ρ = ρ(B1

n,p,q), where xi corresponds to the vertex ui .
By Lemmas 1 and 6, we have ρ(B5

n,p,q) > ρ(B1
n,p,q). Then ρ(B5

n−1,p,q) > ρ(B5
n,p,q)

by Lemma 2, thus ρ(B5
n−1,p,q) > ρ(B1

n,p,q). �

Theorem 5 ρ(B5
n,p,q) ≤ ρ(B1

n−1,p,q).

Proof Let B1∗
n,p,q = B5

n,p,q − {(un−1, un)} + {(un−1, u p)} and x = (x1, x2, ..., xn)T

be the Perron eigenvector corresponding to ρ = ρ(B5
n,p,q), where xi corresponds to

the vertex ui . By Lemma 1, we only need to show xp > xn .
Since (A(B5

n,p,q)x)p = ρxp = ∑
u∈N+

(u p )
xu = ∑

u∈Vq
xu = qxp+1,

(A(B5
n,p,q)x)n = ρxn =

∑

u∈N+
(un )

xu = xp+1.

Then xp ≥ xn , by q ≥ 1. Thus ρ(B1∗
n,p,q) ≥ ρ(B5

n,p,q). Since B1∗
n,p,q = B1

n−1,p,q ∪
{un}, we have ρ(B1∗

n,p,q) = max{ρ(B1
n−1,p,q), ρ(un)} by Lemma 4, thus

ρ(B1
n−1,p,q) = ρ(B1∗

n,p,q) ≥ ρ(B5
n,p,q). �

Theorem 6 ρ(B1
n,p,q) = n−p−q+1

√
pq+

√
(pq)2+4q
2
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Proof Let x = (x1, x2, ..., xn)T be thePerron eigenvector corresponding toρ(B1
n,p,q ),

where xi corresponds to the vertex ui . By Lemma 6, we have

(A(B1
n,p,q)x)1 = ρx1 =

∑

u∈N+
(u1)

xu =
∑

u∈Vq

xu + xp+q+1 = qxp+1 + xp+q+1 (10)

(A(B1
n,p,q)x)p+1 = ρxp+1 =

∑

u∈Vp

xu + x1 = x1 + (p − 1)xp (11)

(A(B1
n,p,q)x)p = ρxp =

∑

u∈N+
(u p )

xu =
∑

u∈Vq

xu = qxp+1 (12)

ρn−p−q xp+q+1 = xp (13)

From (10)–(13), we have

ρ ∗ (11) = ρ2xp+1 = ρx1 + (p − 1)ρxp

= qxp+1 + xp+q+1 + (p − 1)qxp+1

= qxp+1 + q

ρn−p−q+1
xp+1 + (p − 1)qxp+1,

multiply both sides of the equation by ρn−p−q+1, we have

ρn−p−q+3 − pqρn−p−q+1 − q = 0.

Let t = ρn−p−q+1(B1
n,p,q), then we have t

2 − pqt − q = 0, since ρ > 0, we have

ρn−p−q+1(B1
n,p,q) = t = pq + √

(pq)2 + 4q

2
,

and thus

ρ(B1
n,p,q) = n−p−q+1

√

pq + √
(pq)2 + 4q

2

�

Corollary 1 ρ(B1
n,p,q) ≤ ρ(B2

n,p,q).

Proof We have

ρ(B2
n,p,q) = n−p−q+1

√

qp + √
(qp)2 + 4p

2
,
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since B2
n,p,q

∼= B1
n,q,p,

We get

ρ(B1
n,p,q ) = n−p−q+1

√

pq +
√
(pq)2 + 4q

2
≤ n−p−q+1

√

pq +
√
(pq)2 + 4p

2
= ρ(B2

n,p,q ),

since p ≥ q, thus ρ(B1
n,p,q) ≤ ρ(B2

n,p,q). �

Theorem 7 Let p ≥ q ≥ 1, p + q ≤ n − 1, n �≡ p + q(mod 2) and D ∈ Dn,p,q be
a bipartite digraph, then ρ(D) ≥ ρ(B1

n,p,q) and the equality holds if and only if
D ∼= B1

n,p,q .

Proof Clearly,
←→
Kp,q is a proper subdigraph of D since D ∈ Dn,p,q . Since D is

strongly connected, it is possible to obtain a digraph H from D by deleting ver-
tices and arcs in such a way that one has a subdigraph

←→
Kp,q . Therefore:

(i) H ∼= B1
p+q+l,p,q (l ≡ 1 (mod2), l ≥ 2) or

(ii) H ∼= B2
p+q+l,p,q (l ≡ 1 (mod2), l ≥ 2) or

(iii) H ∼= B3
p+q+l,p,q (l ≡ 1 (mod2), l ≥ 2) or

(iv) H ∼= B4
p+q+l,p,q (l ≡ 1 (mod2), l ≥ 2) or

(v) H ∼= B5
p+q+k,p,q (k ≡ 0 (mod2), k ≥ 2) or

(vi) H ∼= B6
p+q+k,p,q (k ≡ 0 (mod2), k ≥ 2)

By Lemma 5, ρ(H) ≤ ρ(D), the equality holds if and only if H ∼= D.
Case (i). H ∼= B1

p+q+l,p,q (l ≡ 1 (mod2), l ≥ 2).

For n �≡ p + q(mod 2), insert n − p − q − l vertices into the directed path
−→
Pl

such that the resulting bipartite digraph is B1
n,p,q . Then ρ(B1

n,p,q) < ρ(H) by using
Lemma 2 repeatedly n − p − q − l times.

Case (ii). H ∼= B2
p+q+l,p,q (l ≡ 1 (mod2), l ≥ 2).

Insert n − p − q − l vertices into the directed path
−→
Pl such that the resulting

bipartite digraph is B2
n,p,q . Then ρ(B2

n,p,q) < ρ(H) by using Lemma 2 repeatedly
n − p − q − l times, and thus ρ(B1

n,p,q) ≤ ρ(B2
n,p,q) < ρ(H) by Corollary 1.

Case (iii). H ∼= B3
p+q+l,p,q (l ≡ 1 (mod2), l ≥ 2).

Insert n − p − q − l vertices into the directed cycle
−→
Cl such that the resulting

bipartite digraph is B3
n,p,q . Then ρ(B3

n,p,q) < ρ(H) by using Lemma 2 repeatedly
n − p − q − l times, and thus ρ(B1

n,p,q) < ρ(B3
n,p,q) < ρ(H) by Theorem 6.

Case (iv). H ∼= B4
p+q+l,p,q (l ≡ 1 (mod2), l ≥ 2).

Insert n − p − q − l vertices into the directed cycle
−→
Cl such that the resulting

digraph is B4
n,p,q . Then ρ(B4

n,p,q) < ρ(H) by using Lemma 2 repeatedly n − p −
q − l times, and thus ρ(B1

n,p,q) ≤ ρ(B2
n,p,q) < ρ(B4

n,p,q) < ρ(H) by Corollary 1 and
Theorem 1.

Case (v). H ∼= B5
p+q+k,p,q (k ≡ 0 (mod2), l ≥ 2).
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Insert n − p − q − k − 1 vertices into the directed path
−→
Pk such that the resulting

bipartite digraph is B5
n−1,p,q . Then ρ(B5

n−1,p,q) < ρ(H) by using Lemma 2 repeatedly
n − p − q − k − l times and thus ρ(B1

n,p,q) < ρ(B5
n−1,p,q) < ρ(H) by Theorem 4.

Case (vi). H ∼= B6
p+q+k,p,q (k ≡ 0 (mod2), l ≥ 2).

Insert n − p − q − k − 1 vertices into the directed path
−→
Pk , such that the resulting

bipartite digraph is B6
n−1,p,q . Then ρ(B6

n−1,p,q) < ρ(H) by using Lemma 2 repeatedly
n − p − q − k − 1 times, and thus ρ(B1

n,p,q) < ρ(B5
n−1,p,q) = ρ(B6

n−1,p,q) < ρ(H),
by Theorems 3 and 4.

Combining the above six cases, we have ρ(D) ≥ ρ(B1
n,p,q), the equality holds if

and only if D ∼= B1
n,p,q , where n �≡ p + q(mod 2) and p > q ≥ 2. �

Corollary 2 Let p ≥ q ≥ 1, p + q ≤ n − 1, n �≡ p + q(mod 2) and D ∈ Dn,p,q

be a bipartite digraph, then ρ(D) ≥ n−p−q+1

√
pq+

√
(pq)2+4q
2 . �

Theorem 8 Let p ≥ q ≥ 1, p + q ≤ n − 1, n ≡ p + q(mod 2) and D ∈ Dn,p,q be
a bipartite digraph, then ρ(D) ≥ ρ(B5

n,p,q) = ρ(B6
n,p,q) and the equality holds if and

only if D ∼= B5
n,p,q or D ∼= B6

n,p,q .

Proof Clearly,
←→
Kp,q is a proper subdigraph of D since D ∈ Dn,p,q . Since D is

strongly connected, it is possible to obtain a digraph H from D by deleting ver-
tices and arcs in such a way that one has subdigraph

←→
Kp,q . Therefore:

(1) H ∼= B5
p+q+k,p,q (k ≡ 1 (mod2), k ≥ 2) or

(2) H ∼= B6
p+q+k,p,q (k ≡ 1 (mod2), k ≥ 2)or

(3) H ∼= B1
p+q+l,p,q (l ≡ 1 (mod2), l ≥ 2) or

(4) H ∼= B2
p+q+l,p,q (l ≡ 1 (mod2), l ≥ 2) or

(5) H ∼= B3
p+q+l,p,q (l ≡ 0 (mod2), l ≥ 2) or

(6) H ∼= B4
p+q+l,p,q (l ≡ 0 (mod2), l ≥ 2)

By Lemma 5, ρ(H) ≤ ρ(D), the equality holds if and only if H ∼= D.
Case (i). H ∼= B5

p+q+k,p,q (k ≡ 1 (mod2), l ≥ 2)

Insert n − p − q − k vertices into the directed path
−→
Pl such that the resulting

bipartite digraph is B5
n,p,q . Then ρ(B5

n,p,q) = ρ(B6
n,p,q) < ρ(H) by using Lemma 2

repeatedly n − p − q − k times and Theorem 3.
Case (ii). H ∼= B6

p+q+k,p,q (k ≡ 1 (mod2), l ≥ 2)

Insert n − p − q − k vertices into the directed cycle
−→
Pk such that the resulting

bipartite digraph is B6
n,p,q . Then ρ(B6

n,p,q) < ρ(H) by using Lemma 2 repeatedly
n − p − q − k times, and thus ρ(B5

n,p,q) = ρ(B6
n,p,q) < ρ(H) by Theorem 3.

Case (iii). H ∼= B1
p+q+l,p,q (l ≡ 1 (mod2), l ≥ 2)

Insert n − p − q − l − 1 vertices into the directed path
−→
Pl such that the resulting

bipartite digraph is B1
n−1,p,q , then ρ(B1

n−1,p,q) < ρ(H) by using Lemma 2 repeatedly
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n − p − q − l − 1 times, and thus ρ(B6
n,p,q) = ρ(B5

n,p,q) ≤ ρ(B1
n−1,p,q) < ρ(H) by

Theorems 3 and 5.
Case (iv). H ∼= B2

p+q+l,p,q (l ≡ 1 (mod2), l ≥ 2)

Insert n − p − q − l − 1 vertices into the directed path
−→
Pl such that the resulting

digraph is B2
n−1,p,q , then ρ(B2

n−1,p,q) < ρ(H) by using Lemma 2 repeatedly n − p −
q − l − 1 times, and thus ρ(B6

n,p,q) = ρ(B5
n,p,q) ≤ ρ(B1

n−1,p,q) ≤ ρ(B2
n−1,p,q) <

ρ(H) by Theorems 3 and 5, Corollary 1.
Case (v). H ∼= B3

p+q+l,p,q (l ≡ 0 (mod2), l ≥ 2)

Insert n − p − q − l − 1 vertices into the directed cycle
−→
Cl such that the resulting

digraph is B3
n−1,p,q , then ρ(B3

n−1,p,q) < ρ(H) by using Lemma 2 repeatedly n − p −
q − l − 1 times, and thus ρ(B6

n,p,q) = ρ(B5
n,p,q) ≤ ρ(B1

n−1,p,q) < ρ(B3
n−1,p+q) <

ρ(H) by Theorems 3, 5 and 6.
Case (vi). H ∼= B4

p+q+l,p,q (l ≡ 0 (mod2), l ≥ 2)

Insert n − p − q − l − 1 vertices into the directed cycle
−→
Cl such that the resulting

digraph is B4
n−1,p,q , then ρ(B4

n−1,p,q) < ρ(H), by using Lemma 2 repeatedly n − p −
q − l − 1 times, and thus ρ(B6

n,p,q) = ρ(B5
n,p,q) ≤ ρ(B1

n−1,p,q) ≤ ρ(B2
n−1,p,q) <

ρ(B4
n−1,p,q) < ρ(H) by Theorems 1, 3 and 5, Corollary 1.
Combining the above six cases,we haveρ(D) ≥ ρ(B5

n,p,q) = ρ(B6
n,p,q), the equal-

ity holds if and only if either D ∼= B5
n,p,q or D ∼= B6

n,p,q , where n ≡ p + q(mod 2)
and p ≥ q ≥ 1. �
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A Fuzzy Support Vector Machine Algorithm
and Its Application in Telemarketing

Ming Liu, Ya-Mei Yan and Yu-De He

Abstract Telemarketing applications in various industries are increasingly popular
in modern society. Telemarketing is one of the important means to contact with
customers in insurance companies, banks and other financial systems. For example,
if we accurately predict telemarketing successfully, we can appropriately reduce the
cost and the scope of marketing in banking, which has very important significance.
In this paper, the authors present a fuzzy support vector machine (SVM) algorithm,
based on the data of customer information obtained in telemarketing campaigns
in a financial institution of Portugal, using Weka and Matlab software, predict the
success of telemarketing. Experimental results show that the fuzzy SVM algorithm
outperforms the traditional SVM with 92.89% predicting accuracy rate.

Keywords Telemarketing · Fuzzy algorithm · Support vector machine · Cluster
analysis

1 Introduction

With the progress of society and the development of science and technology,
competitions in the business community are more intense in the 21st century. Now,
in the fierce global competition, the marketing model of business community is con-
stantly developing and changing. Direct Marketing is a model of providing informa-
tion, by e-mail or telephone or other means to get a direct response from consumers
for the purpose of business activity. Now this marketing model has been applied
by an increasing number of corporations, especially in the financial service indus-
tries, banks and insurance companies, whose core is the study of how to identify
potential customers. Telemarketing is a direct marketing method which takes a more
scientific approach to select customers who are more likely to get a feedback. Tele-
marketing is one of the important methods for banks to build customer relationships.
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By predicting the success of telemarketing result, banks can reduce the cost and the
scope of marketing appropriately.

In many scientific and engineering fields, classification or prediction from the
obtained data is a key issue. In recent years, along with the advances of data mining
technology, many foreign scholars have used data mining methods to identify poten-
tial customers of direct mail marketing, that is, customer acquisition forecast. Ling
and Li [1] used Naive Bayes and decision tree C4.5 algorithm to predict the three
different data sets, which is an effective solution to the insufficiency of only using
the predicting accuracy rate as evaluation criteria when the data sample distribution
is extremely uneven (response rate is only 1%), and solves the problem of how to
select the appropriate algorithm when training set is too big. Research shows that
using data mining as an effective tool of direct mail marketing can get more profits
for banks, insurance companies and retails. Putten made a brief introduction of data
mining in direct mail marketing application in 1998, including data and algorithm
selection, evaluation results, and the use of BP neural network algorithm for the rel-
evant empirical research [2]. Bawsens and Vianene and others used Bayesian neural
network for forecasting, and got a good result [3].

Support vector machine (SVM), as an important branch of statistical learning
theory, has many applications in the classification field. In Jacaheris study, using a
SVM classification algorithm as a predictive algorithm of potential customers and
verifies empirical research inParisian bank, enhances the effect of forecast three times
compared to the original algorithm [4]. But the best hyperplane of the traditional
SVM classifier depends on part of the trained data point, it may be sensitive to
noise or outliers in the training set. To overcome this drawback, many scholars have
done lot of research work. Shigeo Abe put forward a fuzzy SVM to solve the multi-
classification problem [5]. Zhousuo Zhang and others proposed a fuzzy SVM based
on the differences of data importance to solve the mechanical malfunction diagnose
problems [6]. Juang and Hsieh proposed TSFS-SVR algorithm, and the estimation
of the weight adopted fuzzy clustering and linear SVR [7]. Hao and Chiang used
symmetricalmembership functions and typical combination of SVMkernel function,
to provide a new method for fuzzy set theory and SVM parameters combination [8].

In this paper, we propose a forecasting model based on a fuzzy SVM algorithm
to predict the acquisition of the potential customers of banks. The forecasting model
uses a symmetric triangular membership function, first fuzzes input variables, then
uses the fuzzy Multilayer Perception (FMLP) neural network as the fuzzy SVM
kernel function, and then adopts FMLP-SVM algorithm to predict fuzzify input
variables. This method uses data in direct marketing activities of Portugal financial
institution, to predict whether customers will subscribe to deposits so as to get the
predicting result of telemarketing.
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2 Methods

2.1 Fuzzy SVM Algorithm

For this paper, we propose a method for the prediction of the potential customers of
telemarketing based on an optimization model as follows:

minimize
1

2
‖w‖2 + F

N∑

i=1

(ξi + ξ∗
i ) (1)

s.t.

⎧
⎨

⎩

Yi − (wT · φ(xi ) + a) ≤ ε − ξi
(wT · φ(xi ) + a) − Yi ≤ ε − ξ∗

i
ξi , ξ

∗
i ≥ 0,∀i = 1, 2, . . . , N

(2)

Here, w is an N-dimensional vector, F is the regularization parameter, a is a
scalar, φ is the kernel function, ξi , ξ∗

i are the Slack variables and ε is the maximum
error limit.

In fuzzy SVM, the input values are expressed as fuzzy vector Ỹi = (YC
i ,Y S

i ).
Using symmetric triangular membership functions uỸi , Y

C
i and Y S

i is the center and
extension of Ỹi respectively. Membership function is in the following form:

uỸi = 1 −
∣
∣Y − YC

i

∣
∣

KiY S
i

(3)

Here, X = [x1, x2, . . . , xN ]T is the tilt factor of Ỹi . For symmetric membership
functions, Ki = 1. Each of the non-fuzzy input vectors X = [x1, x2, . . . , xN ]T is
transformed by the kernel function φ(x) = [ϕ(x1),ϕ(x1), . . . ,ϕ(x1)]T . In the fuzzy
weight w∗ = (w, v), w and v represent the central vector and the extended vector
of w∗ respectively, and N represents the dimension of the Eigen functions space. In
the formula (3), Ỹi is replaced by its approximation Y ∗

i = w∗φ(xi ) + A∗, in which
A∗ = (a, b) is the bias term, a and b, respectively, indicates the center and the
extension. Then uỸi can be expressed as the following form:

uỸi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 −
∣
∣Y − (wTφ(xi ) + a)

∣
∣

Ki (vT |φ(xi )| + b)
xi �= 0,∀Y

1 − 1
Ki

xi = 0,Y = 0
0 xi = 0,Y �= 0

(4)

The fitting degree of the fuzzy model can be expressed as H = min(hi ), i =
1, 2, . . . ,M . Here, hi is the fitting degree, H is the fuzzy model, and M is the size of
the training data set. The semantic definition of fuzzy output is a linear combination
of the expansion of the model parameters. For an acceptable regression model, the
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semantics should be minimized. Therefore, the authors use
n∑

j=1
v j + b to replace the

objective function in Formula 1.
Similar to the traditional SVMmethod, the fuzzymodel requiresminimumcontrol

capability term ‖w‖2. The constraint condition of SVM is rewritten, so the fitting
degree of the training data set is greater than that of the fuzzy model. Thus, SVM is
rewritten in the following form:

min 1
2 ‖w‖2 + F

M∑

j=1
v j + b

s.t. hi ≥ H, i = 1, 2, . . . ,M
(5)

According to Tanaka’s viewpoint, the constraint condition hi ≥ H can be
expanded into the following formula:

{
(wTφ(xi ) + a) + (1 − H)(vT |φ(xi )| + a) ≥ Yi
−(wTφ(xi ) + a) + (1 − H)(vT |φ(xi )| + a) ≥ −Yi

(6)

The main difference between the SVMmodel and the corresponding fuzzy model
is that the former is to find a function which makes the maximum ε criterion satisfied
in the observed Yi ; the latter is trying to find a fuzzy function containing the fuzzy
kernel parameters, and the expected target is considered.

2.2 FMLP Kernel Function

Choosing the appropriate kernel function can make the SVM to separate the data
in the Eigen functions space effectively, even though they are inseparable in the
original space. Comparison of different kernel functions, the radial basis function
(RBF) kernel function has less parameter than linear and polynomial kernel function.

In this paper, the FMLP neural network function is used as kernel function of
fuzzy SVM (formula 6). It will show that the fuzzy SVM model with application of
FMLP kernel function has advantage in classification and identification.

In this paper, we only introduce a FMLP with an S type of hidden layer and linear
output to approximate the nonlinear function, so FMLP can be written as

Ỹi = f (2)(a2k +
m∑

j=1

w
(2)
k j × f (1)(a2j +

l∑

i=1

w
(1)
i j + xi )) (7)

where, xi is the value of the ith node of the input layer, Ỹi is the estimate of the
corresponding xi , and a j is the deviation of the jth node of the hidden layer. ak is
the fuzzy offset of the kth output value, and wi j is the fuzzy connection weights of
the ith node of the input layer and the jth node of the hidden layer. L is the number
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of input neurons, M is the number of hidden layer neurons, f (1) and f (2) are the
activation functions of the hidden layer and the output layer respectively.

3 Experimental Analysis

3.1 Telemarketing Data of Banks

In this paper, the data comes from the UCI data sets, which is about telemarketing
belonging to direct marketing activities of a financial institution in Portugal [9].
Typically, in order to estimate if the product, such as bank deposits, is signed, it
needs to contact the same customer at least once. Based on the sample data analysis
conclusion, we can analyze customers consumption characteristics, risk preferences
to determine whether its recent consumer behavior changes significantly, thus sums
up the characteristics of the customers needs and anticipates changes in demand, then
guide the potential customers actively and push the product successfully to market.

The data used in this paper is randomly selected 10% from all samples [10]. In
order to test the effect of the model, divide the sample data into the test set and
the training set, for instance, 75% of the groups data is the training set, and the
rest is a test data set. Using the training set to develop prediction model based on
FMLP-SVM method, predict the data with the developed model. For each set of
data, it contains 17 variables. Among them, the former 16 variables as independent
variables, shows some basic information of customers, namely, age, job, marital,
education, default, balance, housing, loan, contact, day, month, duration, campaign,
pdays, previous,poutcome. In these 16 independent variables, the first eight variables
are somebasic information of bank customers, the following four variables are the last
contact between the client and the bank related to currentmarketing activities, and the
other four variables are some other attribute data. The 17th variable is the dependent
variable for each data set, it is a binary variable, “Yes” and “No” represent clients
subscribe and unsubscribe bank deposits respectively, related to the telemarketing
success. For each set of data, specific information and the related interpretation of
some variables are shown in Table1.

3.2 Forecast and Analysis

For the data in this paper, we hope to achieve the prediction of the telemarketing
success rate, and then carry on targeted telemarketing based on the results that is
predicted to improve efficiency and save cost. In this paper, we take if customers
subscribe to deposits as the goal, and as the output variable, use additional information
about the customer as an input variable, and develop a prediction model based on
FMLP-SVM method so as to carry on data mining and predictive analysis.
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Table 1 The information of variables

Data Interpretation Type Remarks

Bank client data Default Has credit in
default?

String Binary: “yes”,
“no”

Balance Average yearly
balance

Numeric In euro

Housing Has housing
loan?

String Binary: “yes”,
“no”

Loan Has personal
loan?

String Binary: “yes”,
“no”

Related with the
last contact of the
current campaign

Contact Contact
communication
type

String Categorical:
“unknown”,
“telephone”,
“cellular”

Duration Last contact
duration, In
seconds

Numeric

Other attributes Campaign Number of
contacts
performed during
this campaign
and for this client

Numeric Includes last
contact

Pdays Number of days
that passed by
after the client
was last contacted
from a previous
campaign

Numeric −1 means client
was not
previously
contacted

Previous Number of
contacts
performed before
this campaign
and for this client

Numeric

Poutcome Outcome of the
previous
marketing
campaign

String Categorical:
“unknown”,
“other”, “failure”,
“success”

Output variable
(desired target)

y Has the client
subscribed a term
deposit?

String Binary: “yes”,
“no”

To demonstrate the predictive accuracy of the model, we will compare and con-
trast the FMLP-SVM with the other three methods. We use the Bayesian networks,
decision trees, and SVM for data to predict the corresponding prediction accuracy
and make the comparison and contrast. In this paper, Weka software is implemented
for forecasting of the four methods, and Matlab software is implemented to draw
receiver operating characteristic (ROC) curve according to the predicting results of
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Fig. 1 ROC curve of the
predict results of the four
models

the four models and calculate the value of the corresponding area under the ROC
curve (AUC). ROC curve is shown in Fig. 1.

ROC curve is based on a different set of dichotomous way (cut-off value or
decision threshold), we use the true positive rate (sensitivity) as the vertical axis, the
false positive rate (1-specificity) as the abscissa of the curve. The closer ROC curve
is to the upper left corner, the higher the accuracy of the test is. From Fig.1, we can
see that, predictions of FMLP-SVM method is superior to other methods.

The size of AUC is between 1.0 and 0.5. In the case of AUC>0.5, The closer to
1 the AUC, the better the diagnosis. For instance, if it is between 0.5 and 0.7, it has
less accuracy. AUC has some accuracy from 0.7 to 0.9. If AUC is above 0.9, it has
high accuracy. What’s more, if AUC = 0.5, it indicates that the diagnosis method
is completely ineffective with no diagnostic value. If AUC<0.5, it does not comply
with the real situation, this rarely occurs in practice. In this paper, we calculate the
AUC values of the various methods, the Bayesian Network AUC value is 0.8608, the
decision tree AUC is 0.7621, the traditional SVM AUC value is 0.8245, while the
AUC FMLP-SVM value is 0.9048. Experimental data shows that the prediction of
the first three methods has some accuracy but FMLP-SVM prediction we proposed
has much higher accuracy.

Meanwhile, we select samples of different sizes to predict, and results of samples
of different sizes corresponding to various methods are shown in Table2. From
Table2, it can be seen that, for each sample size, the prediction accuracy of FMLP-
SVM method is higher than other methods.

In summary, FMLP-SVMmethod used here to predict the success rate of telemar-
keting has good accuracy, and is significantly better than other predictive methods.
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Table 2 Forecast accuracy comparison

Samplesize (%) Bayes net (%) DT (%) SVM (%) FMLP-SVM (%)

5 88.38 88.10 88.48 89.52

10 88.50 87.81 88.57 89.76

20 89.30 89.66 88.78 90.92

30 88.97 89.29 88.75 90.55

40 88.54 89.20 88.54 91.02

50 87.74 89.56 88.36 92.57

60 87.78 88.94 88.22 92.31

75 87.83 89.16 88.35 92.89

4 Conclusions

In this paper, the authors study the predicting success of commercial banks tele-
marketing, analyze the bank customers relevant information that has impact on tele-
marketing success, and finally propose the prediction model FMLP-SVM Method.
The prediction model using fuzzy algorithm first fuzzifies input variables and uses
fuzzified MLP neural network as a function of the fuzzy SVM kernel function, and
then uses fuzzy SVM algorithm to predict the fuzzified data in order to get the fore-
cast results of telemarketing success. Experimental data show that as for prediction
of telemarketing success issues, this prediction results of FMLP-SVM method is
superior to the other three forecasting methods with 92.89% prediction accuracy
rate, thus can help the bank better solve the forecasting problems of telemarketing
success.
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