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Abstract. So-called credal classifiers offer an interesting approach when
the reliability or robustness of predictions have to be guaranteed.
Through the use of convex probability sets, they can select multiple
classes as prediction when information is insufficient and predict a unique
class only when the available information is rich enough. The goal of this
paper is to explore whether this particular feature can be used advan-
tageously in the setting of co-training, in which a classifier strengthen
another one by feeding it with new labeled data. We propose several
co-training strategies to exploit the potential indeterminacy of credal
classifiers and test them on several UCI datasets. We then compare the
best strategy to the standard co-training process to check its efficiency.
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1 Introduction

There are many application fields (gesture, human activity, finance, ...) where
extracting numerous unlabeled data is easy, but where labeling them reliably
require costly human efforts or an expertise that may be rare and expensive.
In this case, getting a large labeled dataset is not possible, making the task of
training an efficient classifier from labeled data alone difficult. The general goal of
semi-supervised learning techniques [1,7,28] is to solve this issue by exploiting
the information contained in unlabeled data. It includes different approaches
such as the adaptation of training criteria [13,14,16], active learning methods
[18] and co-training-like approaches [6,19,22].

In this paper, we focus on the co-training framework. This approach aims at
training two classifiers in parallel, and each model then attempts to strengthen
the other by labeling a selection of unlabeled data. We will call trainer the
classifier providing new labeled instances and learner the classifier using it as new
training data. In the standard co-training approach [6,22], the trainer provides to
the learner the data about which it gets the most confident labels. However, those
labels are predicted with high confidence by the trainer but it is not guaranteed
that the new labeled instances will be informative for the learner, in the sense
that it may not help him to improve its accuracy.
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To solve this issue, we propose a new co-training approach using credal classi-
fiers. Such classifiers, through the use of convex sets of probabilities, can predict
a set of labels when training data are insufficiently conclusive. It means they will
produce a single label as prediction only when the information is enough (i.e.,
when the probability set is small enough). The basic idea of our approach is to
select as potential new training data for the learner those instances for which
the (credal) trainer has predicted a single label and the learner multiple ones.

2 Co-training Framework

We assume that samples are elements of a space X x ), where X is the input
space and ) the output space of classes. In a co-training setting, it is assumed
that the input space X can be split into two different views X; x X5 and that
classifiers can be learned from each of those views. That is, an instance x € X
can be split into a couple (x1,x2) with x; € X;. In the first works introducing
co-training [6,22], it is assumed that each view is sufficient for a correct classifi-
cation and is conditionally independent to the other given the class label. How-
ever, it has been shown that co-training can also be an efficient semi-supervised
techniques when the views are insufficient or when labels are noisy [24]. In addi-
tion, many studies provide theoretical results on co-training: [4] shows that the
assumption of conditional independence can be relaxed to some extent; [11] gives
some theoretical justifications of the co-training algorithm, providing a bound on
the generalization error that is related on the empirical agreement between the
two classifiers; [23] analyzes the sufficient and necessary condition for co-training
to succeed through a graph view of co-training. Besides, in [26], the authors pro-
pose to estimate the labeling confidence using data editing techniques, allowing
especially to identify an appropriate number of predicted examples to pass on
to the other classifier.

We will denote by £; the set of labeled examples from which a model h;

is learned ie. £; = {(X(-i) y(i))yi € {1,...,m;}} where Xg‘i)

] )
the instance x(* and m; denotes the number of labeled examples in £;. Co-

training starts with a (usually small) common set of labeled examples, i.e. £1 =
{(xgl),y(i)),i € {1,..,m}} and Ly = {(xg),y(i)),i € {1,...,m}}, and a pool
of unlabeled examples U = {(xgi),xg ),i € {m +1,...,n}}. Based on previous
works of [22], the standard co-training method that we will adapt to imprecise
probability setting goes as follow: at each step of the co-training process, two
classifiers h; : X; — Y (j € {1,2}) are learned from the learning set £;. We also
assume that classifier h; uses an estimated conditional probability distribution
p;i(-|x) : Y — [0,1] to take its decision, i.e.

is the j*™ view of

hj(x;) = argmax p;(y|x;). (1)
yeY

The n, examples labeled by h; with the most confidence (the highest probability,
in our case) are then added to the set £ of training examples of hy, k # j and
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Input: hi, he learned from Li, L2, set U, number n, of added learning samples;
Output: Updated sets L1, L2
n=1;
repeat
set X" = arg max, (i) ¢, p1(h1 (X(li))|x§i)) ;
Lo — LoU (X*7 hl(x*)) ;
set X" = arg max, ) ¢y, po (ha(x§”)|x{") ;
Ly — LU (i*7 hg(f(*)) ;
U—U\{x",x"};
n—n-+1;
until n = ny;
Algorithm 1. Standard co-training procedure

removed from U. One iteration of this process is summarized by Algorithm 1.
The procedure is then iterated a number of pre-defined times.

Note that co-training can also be used with two different classifiers using the
same view X. [22] provide a theoretical analysis demonstrating that two learners
can be improved in such a procedure provided they have a large difference. This
view is taken further by [27] that studies ensemble learning (with more than two
classifiers) in a semi-supervised framework.

3 Basics of Credal Models

We introduce the basic elements we need about imprecise probabilities. Inter-
ested readers are referred to [3] for further details.

3.1 Imprecise Probabilities and Decision

Let Y be a finite space (e.g., of classes) and Xy be the set of all probability
mass functions over ). In imprecise probability theory, the uncertainty about
a variable Y is described by a convex set P C Xy of probabilities which is
usually called credal set. When this convex set depends on some input data x,
as in classification problems, we will denote it by Px. Given x, lower and upper
probabilities of elements of y € ) can then be defined as:

plylx) = inf p(ylx) and p(y|x) = sup p(ylx) (2)
p(-[x)€Px p(-|x)EPx

and when Py is reduced to a singleton, we retrieve the probabilistic case where
p(y|x) = D(y|x) for any y € Y. Probabilities of events and expected values can
be extended in the same way, by considering boundary values.

Many different ways have been proposed for extending the classical deci-
sion criterion h(x) = arg max, ¢y, p(y[x) within imprecise probability theory [20].
Some of them, such as the maximin that replaces p(y|x) by p(y|x) in Eq. (1),
also produce unique predictions. Others, that we will use here, can produce sets
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of possible predictions, the size of the set reflecting the lack of information. Such
a decision rule is then a mapping! H : X — 2% from the input set to the power
set of classes.

In this paper, we will focus on two of the most popular decision rules that
are the so-called interval dominance and the maximality criteria. The interval
dominance decision rule is defined as:

H(x)={ye Y| Ay'st. ply'lx)>pylx)} (3)

The idea of this rule is that a class is rejected as a possible prediction when its
upper bound of probability is lower than the lower bound of at least one other
class. However, this means that two classes y,y’ may be compared according to
different precise probabilities within Py (as their boundary probabilities can be
obtained at different points). This is not the case of the mazimality decision rule,
that rejects a class which is certainly less probable (according to any p € Px)
than the others:

H(x)={ye Y| Ay'st. ply'|x)>plylx)¥ p(|x) € Px}. (4)

Those decision rules are reduced to (1) in a precise framework, as it consists in
choosing the top element of the order induced by the probability weights. The
set (4) can be computed in the following way: starting from the whole set Y, if
the value

inf  p(ylx) = p(y'|x) (5)
p(:[x)EPx

is strictly positive for a given pair of classes y,y’, then 3’ can be removed from
H(x), since if (5) is positive, p(y|x) is strictly greater than p(y’|x) for all p(-|x).
The set (4) can then be obtained by iterating this procedure over all pairs of
classes, removing those that are not optimal. Note that this approach will pro-
duce set predictions both in case of ambiguity (Px may be small, but may contain
probabilities whose higher values are similar) and of lack of information (Py is
large because few training data were available), and will therefore produce pre-
cise predictions (the cardinality |H(x)| = 1) only when being very confident. It
should be noted that the set produced by Eq. (3) will always include (hence will
be more precise) the one produced by Eq. (4).

3.2 Learning Credal Models

A common way to learn credal models is to extend Bayesian models by con-
sidering sets of priors. After learning, they provide a set of posterior probabili-
ties which converges towards a single probability when the training dataset size
increases. The most well-known example is the naive credal classifier [25], that
extends the naive Bayes classifier by learning set of conditional probabilities,
using the so-called imprecise Dirichlet model [5].

1 'We use capital letter to denote the fact that the returned prediction may be a set of
classes.
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Some works combine sets of credal classifiers to extend popular techniques
such as Bayesian model averaging [8], binary decomposition [12] or boosting [21],
as well as there are some preliminary works that exploit credal approaches in
semi-supervised settings [2,17]. However, we are not aware of any work trying
to exploit credal models to mutually enrich sets of classifiers.

4 Co-training with Credal Models

We propose a new co-training approach based on credal models that extends the
standard co-training framework recalled in Sect.2. We will refer to it as credal
co-training.

4.1 Motivation and Idea

Working with a small labeled training set may cause several issues in semi-
supervised learning, one major issue being the possible bias resulting from
few samples [15,27]. Second, in the standard co-training framework recalled in
Sect. 2, there is no guarantee that the data selected by the trainer will actually be
useful to the learner, in the sense that the learner may already be quite accurate
on those data.

We think our proposal tackles, at least partially, both problems. Working
with sets of priors and with sets of probabilities whose sizes depend on the
number of training data is a way to be less affected by possible bias. Second,
the fact that predictions are set-valued can help to identify on which data the
trainer is really confident (those for whose it makes a unique prediction) and
the learner is not (those for which it makes set-valued prediction). Based on
this distinction, our approach consists in modifying Algorithm 1 in two different
aspects:

— Select data from a subset of U, denoted Sy, u, C U, corresponding to data
for which H; is confident and H; is not (Sect. 4.2).

— Adapt the notion of confidence to imprecise probabilities, to choose specific
data from Sy, g, (Sect.4.3).

The resulting co-training process, that we will detail in the next sections, is
illustrated in Fig. 1.

4.2 Dataset Selection Among the Unlabeled Instances

In this section, we define the set Sp, g, containing the pool of unlabeled data
that may be labeled by the trainer H; for the learner H;. The idea is that it
should contain data for which H; (the trainer) is confident and H; (the learner) is
not. We denote S%;. the dataset on which H; provides precise classifications and
S}flj the one on which Hj provides indeterminate predictions. The set Sy, #,
is defined as follow:

St,—m, = S5, NS = {x €U| |H(x)| = 1 A|H;(x)| > 1} (6)
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Fig. 1. Co-training with credal models.

It contains the unlabeled data for which H; predicts a unique value and Hj;
multiple ones. As this set may be empty, we reduce the imprecision of the trainer
so that it converges towards the precise framework. This guarantees that the
trainer have confident instances that may be selected for labeling, but this may
reduce the trainer confidence about its predictions. We will discuss in details
this strategy in our experimentations (see Sect.5.2). Note that when the learner
Hj is confident on U, the pool of unlabeled data is reduced to the instances for
which the trainer is confident, i.e. Sg,.n;, = S§,.

4.3 Data Selection for Labeling

Given a set of unlabeled data U/ and two models H; and Hs learned from £; and
Lo respectively, we define several strategies for selecting a data in the unlabeled
dataset Sy, ;. A first one, that we call uncertain strategy, consists in choosing
the data for which the learner is the less confident:

x* = argmax Y (7,(u}x) ~ p,(v/)) (™

xESH, i—Hj ycy

where P, and p; are the lower and upper probabilities induced from L;. We

therefore replace Line 3 of Algorithm 1 by Eq. (7) with ¢ = 1,j = 2, and Line 5
likewise with ¢ = 2,j = 1 (the same will apply to all strategies). The idea of the
uncertain strategy is that H; gains information where it is the least informed.
We refine this strategy by focublng on the classes predicted by the learner H;
and on data for which H; is the most uncertain, what we call the indeterminate
strateqy:

x* = argmax (1\H‘7(X)|:maxx/gulHj(x')\ X Z (7;(ylx) —Qj(y|x))) (8)
XESHt*»Hj yGHj(x)

Those two strategies are not extensions of the standard framework, in the
sense that we do not retrieve Algorithm 1 when p = p. The next strategies are
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such extensions, and are based on probability bounds. The first one, that we
call optimistic strategy, consists in selecting the data with the highest upper
probability among the trainer predictions:

x* = argmax max pP,(y|x) (9)
XESH,; —H, yEH; (x)

In a similar manner, the pessimistic strategy selects the data with the highest
lower probability:

x* = argmax max p (y|x) (10)

xESHi%H]. yeH;(x) —i
The last strategy, called median, consists in selecting the unlabeled data with
the highest median value in the intervals of probability:
1
x* = argmax max = (p.(y|x)+D;(y|x)). 11

Jrgmex | mex )5 2w+ Piyl) (11)
Those last strategies correspond to common decision criteria used in imprecise
probability theory (and robust methods in general), that are respectively the
maximax, maximin and Hurwicz criteria [20]. As in the standard framework,
these strategies aim at giving informative samples to the learner, but intend to
exploit the robustness of credal models.

5 Experimentations

We experiment our proposed approach on various UCI datasets described in
Table 1. We use a Naive Credal Classifier [9,10,25] to test our approach. For
each dataset, we split the feature set in two distinct parts where the first half
serve as the first view and the second half as the second view. Although we have
no guarantee that the two views are sufficient, recent results [24] suggest that co-
training can also work in such a setting. Thus, we expect that our approach will
be able to improve the supervised case and that it will overcome the standard
co-training framework.

5.1 Naive Credal Classifier (NCC)

The Naive Credal Classifier (NCC) [10,25] is an extension of Naive Bayes Clas-
sifier (NBC) to imprecise probabilities. Let x = (x1,..,2x) be an instance and
let us denote Py a credal set of prior distributions p(y) on the classes, and P,
a credal set of conditional distributions p(zx|y). The model is characterized by a
set of joint probability distributions p(y,x) which satisfies the assumption that,
for a given class y, the value of a feature z;, for k € {1,..., K} is independent
of the value of any other feature. According to this assumption, the model is
defined as follow:

K
p(y,X) = p(yazla "7IK) = p(y) Hp(xk|y) (12)
k=1
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Table 1. UCI datasets, with the number of data, of features and of classes.

Name #Samples | #Features | #Classes
Diabetes 768 8 2
Haberman 306 3 2
Tonosphere 351 34 2
Iris 150 4 3
KDD synth. 600 60 6
Kr vs. kp 3196 36 2
Mfeat morph. | 2000 6 10
Opdigits 5620 64 10
Page-blocks | 5473 10 5
Segment 2310 19 7
Spambase 4601 57 2
Wine 178 13 3

with p(y) € Py and p(zily) € PY, for k € {1,..., K} and y € Y. This results in
a set of posterior probabilities. Conditional credal sets P¥, are typically learned
using the Imprecise Dirichlet model [5,25] provides an efficient procedure to
compute the sets (3) and (4) respectively based on the interval dominance and
maximality decision rules, we refer to this work for details.

5.2 Comparison of Data Selection Strategies

We first compare the various data selection strategies defined in Sect.4.3. The
five strategies are compared to the supervised framework. The supervised case
provides the initial performances on each view obtained without using . The
co-training is performed during 50 training iterations and, at each iteration,
one instance is labeled per model. Table 2 shows some results on a 10-fold cross
validation where, for each fold, 10 % of the data are used for the test, 40 % of them
are labeled instances used for training the models® and the rest is considered to
be unlabeled and may be selected by the models using one of the strategies. As
defined by [25], we use a NCC hyper-parameter for controlling at which speed
the credal set converge towards a unique probability. In our experiments, this
hyper-parameter, called s value (see [25] for details) is equal to 5 for the trainer
and 2 for the learner. At each co-training iteration, we decrease the s value of
the trainer if the pool of unlabeled data (6) defined in Sect.4.2 is empty until
s = 0 (the precise setting). If the learner has no indeterminate predictions (i.e.
Sy, = (), a data is selected in the pool of data for which the trainer is confident.

2 We use 40% of them as labeled instances to get a compromise between having a
large part of data as unlabeled and having a sufficiently large labeled dataset to
reduce the sampling bias.
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Table 2. Performances of the uncertainty (UNC), indeterminate (IND), optimistic
(OPT), pessimistic (PES) and median (MED) strategies of the credal co-training (with
maximality) compared to the supervised setting (SUP).

FIRST MODEL SECOND MODEL
DATASET SUP. UNC. IND. OPT. PES. MED.|SUP. UNC. IND. OPT. PES. MED.
Diabetes 73.9% 74.0% T4.0% 74.2% 73.7% 73.7% |70.5% 72.5% 72.5% 71.9% 72.1% 72.4%
Tonosphere 89.8% 90.1% 90.1% 90.1% 90.1% 89.8% (79.9% 81.5% 81.5% 82.9% 81.7% 81.7%
Tris 71.3% 76.7% 75.3% 77.3% 76.0% 75.3% (92.7% 93.3% 92.7% 93.3% 93.3% 93.3%
KDD synthetic control|75.2% 77.3% 77.7% 77.3% 77.5% 77.5% |84.3% 85.3% 85.2% 85.7% 85.2% 85.2%
Page-blocks 92.9% 92.2% 91.4% 92.9% 92.3% 92.3% |86.8% 85.5% 85.5% 86.1% 86.1% 86.2%
Segment 57.7% 58.5% 58.7% 58.2% 58.5% 58.5% (81.8% 83.3% 82.5% 82.5% 81.6% 81.5%
Spambase 86.4% 86.6% 86.6% 86.6% 86.6% 86.6%|84.5% 84.6% 84.6% 84.4% 84.5% 84.5%
Wine 82.0% 88.5% 88.5% 88.5% 87.9% 88.5%93.2% 95.0% 95.4% 96.3% 96.3% 96.3%

Results of Table 2 show that our approach generally improves the supervised
framework. This confirms the interest of exploiting unlabeled data by a co-
training process as the one we propose. Both the uncertain and indeterminate
strategies provide similar results: they often get robust performances but when
the credal co-training is not relevant, i.e. when the credal co-training is weaker
than the simple supervised setting whatever the selection method, they are less
efficient than the other strategies.

In contrast, other strategies (optimistic, pessimistic and median) seems to be
more robust. They have close performances but the optimistic strategy presents
overall the best performances. As using an optimistic strategy is common in
semi-supervised setting, we will use only the optimistic strategy in the next
experiments comparing our approach to the standard one (Sect.5.3).

5.3 Comparison with Standard Co-training

Having defined our data selection strategy for credal co-training, we now com-
pare it to the standard co-training strategy recalled in Sect.2 to confirm that
it performs at least as well as this latter one (Table 3). To do so, we start from
the same initial data sets and run the two co-training settings in parallel. Once
those co-training processes are done, the final learning sets are used to learn stan-
dard Naive Bayes Classifiers (producing determinate predictions), whose their
usual accuracies are then compared. Thus, credal models are used in the credal
co-training phase, but not to obtain a final predictive model.

The experimental setting is the same as in Sect.5.2. Here, STD stands for
the standard method, while PACC stands for the precise accuracy of the Naive
Bayes Classifier learned after the credal co-training process. We experiment the
credal co-training with the interval dominance (INT) and mazimality (MAX)
decision rules.

The co-training with credal models almost always improve the supervised
case and it is generally better than the standard co-training framework. A stan-
dard Wilcoxon test comparing the credal co-training performances with those
of the standard co-training give a p-value of 0.13 for PACC.-INT. (interval
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Table 3. Comparison of Naive Bayes Classifier performances after a credal co-training
process (PREC-ACC), a standard co-training (STD) and a supervised training (SUP).

FIRST MODEL SECOND MODEL

DATASET SUP. STD PACC.-INT. PACC.-MAX.|SUP. STD PACC.-INT. PACC.-MAX.
Diabetes 73.9% +3.9 T3.7% +4.3 T4.2% +4.7 74.2% +4.7 |70.5% £3.4 72.1% +4.771.9% £3.3 71.9% + 3.3
Haberman 73.5% +£0.5 73.5% + 0.5 73.5% + 0.5 73.5% + 0.5 |74.0% £ 6.7 74.5% +3.0 74.2% + 1.4 74.2% + 1.4
Tonosphere 89.8% +5.9 90.2% +6.1 90.1% £5.3 90.1% +5.3 |79.9% + 7.8 82.3% +6.6 82.9% +6.1 82.9% + 6.1
Iris 71.3% 4+ 11.2 75.3% £ 10.8 74.7% £ 11.1 77.3% + 10.4|192.7% £ 5.5 93.3% £ 6.0 94.0% =+ 5.5 93.3% + 5.2
KDD synthetic control|75.2% + 4.9 74.8% +5.4 77.3% +5.3 77.3% +5.3 |84.3% +6.6 82.0% +6.0 85.7% +5.4 85.7% + 5.4
Kr vs kp 70.6% +2.1 70.0% +2.3 70.2% +£2.4 70.2% +£2.4 |80.9% + 1.3 81.1% +1.280.8% +1.9 80.8% +1.9
Mfeat morphological [46.3% + 1.2 46.2% + 1.5 45.8% +0.9 46.0% + 1.0 |44.2% +4.2 43.2% +4.0 44.3% +3.6 44.4% + 3.9
Optdigits 788% +1.9 788%+1.8 79.2% +1.9 79.1% £1.9 |78.0% £2.5 78.1% +2.4 78.3% +2.378.2% +2.3
Page-blocks 92.9% + 1.2 92.9% + 1.2 92.3% + 1.1 92.9% + 1.0 (86.8% + 1.5 86.7% + 1.4 86.3% + 1.4 86.1% £ 1.5
Segment 57.7% +2.8 581% +2.8 58.2% +2.7 58.2% +2.8 |81.8% £2.0 82.0% +1.8 82.6% +2.082.5% +1.9
Spambase 86.4% +1.0 86.6% + 1.0 86.5% +1.2 86.6% + 1.1 (84.5% + 1.4 84.1% + 1.3 84.4% + 1.3 84.4% £+ 1.3
Wine 82.0% +£9.0 86.0% 6.1 88.5% +6.0 88.5% +6.0 [93.2% +5.7 94.5% £4.9 95.4% +4.5 96.3% + 3.0

dominance) and of 0,07 for PACC.-MAX., indicating that credal co-training
with maximality would be statistically higher if the significance were set to 0.1
threshold. Moreover, there are few cases in which co-training is harmful to the
performances: this is probably due to too insufficient view, in which case co-
training performances may suffer of label noise or sampling bias as mentioned
by [24].

5.4 Behaviours of Credal Models During the Co-training Iterations

Having confirmed the interest of a credal co-training approach, we now exam-
ine more closely the behaviour of this approach when new data are labeled and
added to the training sets. In addition to tracking the evolution of the standard
and precise accuracy (computed as in Sect.5.3), we also train, after each itera-
tion of the co-training procedures, a Naive Credal Classifier (with s = 2) that
can produce set-valued predictions. We then compute values commonly inves-
tigated in the assessment of credal approaches [9]: the single accuracy which is
the percentage of good classification when the decision is determinate; the set
accuracy which is the percentage of indeterminate predictions that contain the
true class; the determinacy which is the percentage of confident data (i.e. for
which the model decision is determinate).

Figures2 shows the average curves of the various terms described above
according to the number of training iterations, for all the UCI datasets we exper-
iment in this paper. It should be recalled that, in our experiments, we add one
instance per iteration in the training set of each model and that this instance
is labeled by the other model. To have smoother curves, we compute the terms
every 5 iterations. We illustrate the determinacy, the single accuracy and the set
accuracy only for the maximality decision rule since we get similar curves with
the interval dominance.

A first thing we can notice is that the precise accuracy (whatever the deci-
sion rule), compared to the standard accuracy, increases in a steadier and steeper
way. This, again, indicates that credal co-training can be more robust than its
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Fig. 2. Average performances on all data sets. Full blue and red dotted lines corre-
spond to the first and second model, respectively. First line (from left to right): NBC
accuracy with standard co-training, with credal co-training using interval dominance
(middle) and maximality (on the right). Second line: determinacy, single accuracy and
set accuracy of the NCC resulting from credal co-training with maximality decision
rule. (Color figure online)

standard counterpart. The fact that the single-accuracy is high confirms that
the set Sp,—, H; will contain informative data and that the data for which the
credal models give unique predictions during the co-training process are very reli-
able. Similarly, the high set accuracy suggest that the indeterminate predictions
generally contain the true labels.

In addition, the increase of determinacy shows that each classifier becomes
more confident as labelled data accumulates, yet it remains cautious on some
instances. The fact that the determinacy tends to stabilize after a while suggests
that the proposed approach is mainly interesting when starting the process, that
is when the information is minimal. This confirms our intuition that one of the
main interest of the credal approach is to avoid possible prior bias.

6 Conclusion

In this paper, we propose an extension of the standard co-training process to
credal models. Combining the co-training process with the imprecise probability
framework enables to define new strategies for selecting informative instances in
a pool of unlabeled data. The idea of these strategies is to use the ability of credal
models to produce unique predictions only when having enough information, and
set-valued predictions when being too uncertain.

We experiment on several UCI datasets the various selection strategies we
propose and we compare the credal co-training with the standard co-training
process and the supervised framework. Experiments confirm that the co-training
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with credal models is generally more efficient and more reliable than the standard
co-training framework and the supervised case.

Acknowledgments. This work is founded by the European Union and the French
region Picardie. Europe acts in Picardie with the European Regional Development Fund
(ERDF).

References

10.

11.

12.

13.

14.

15.

16.

Amini, M., Usunier, N.: Learning with Partially Labeled and Interdependent Data.
Springer, Switzerland (2015)

Antonucci, A., Corani, G., Gabaglio, S.: Active learning by the naive credal classi-
fier. In: Sixth European Workshop on Probabilistic Graphical Models (PGM 2012),
pp. 3-10 (2012)

Augustin, T., Coolen, F.P., de Cooman, G., Troffaes, M.C.: Introduction to Impre-
cise Probabilities. Wiley, Chichester (2014)

Balcan, M.F., Blum, A., Yang, K.: Co-training and expansion: towards bridging
theory and practice (2004)

Bernard, J.M.: An introduction to the imprecise Dirichlet model for multinomial
data. Int. J. Approx. Reason. 39(2), 123-150 (2005)

Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training.
In: Proceedings of the Eleventh Annual Conference on Computational Learning
Theory, COLT 1998, pp. 92-100. ACM (1998)

Chapelle, O., Schlkopf, B., Zien, A.: Semi-supervised Learning. MIT Press,
Cambridge (2006)

Corani, G., Zaffalon, M.: Credal model averaging: an extension of Bayesian model
averaging to imprecise probabilities. In: Daelemans, W., Goethals, B., Morik, K.
(eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 257-271. Springer,
Heidelberg (2008)

Corani, G., Zaffalon, M.: Learning reliable classifiers from small or incomplete data
sets: the naive credal classifier 2. J. Mach. Learn. Res. 9, 581-621 (2008)

Corani, G., Zaffalon, M.: Naive credal classifier 2: an extension of naive bayes for
delivering robust classifications. DMIN 8, 84-90 (2008). CSREA Press

Dasgupta, S., Littman, M.L., McAllester, D.A.: PAC generalization bounds
for co-training. In: Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances
in Neural Information Processing Systems, vol. 14, pp. 375-382. MIT Press,
Cambridge (2002)

Destercke, S., Quost, B.: Combining binary classifiers with imprecise probabilities.
In: Tang, Y., Huynh, V.-N., Lawry, J. (eds.) IUKM 2011. LNCS, vol. 7027, pp.
219-230. Springer, Heidelberg (2011)

Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization.
Network 17(5), 529-536 (2005)

Kingma, D.P., Rezende, D.J., Mohamed, S., Welling, M.: Semi-supervised learning
with deep generative models. CoRR abs/1406.5298 (2014)

Liu, A., Reyzin, L., Ziebart, B.D.: Shift-pessimistic active learning using robust
bias-aware prediction, pp. 1-7 (2015)

Nigam, K., McCallum, A., Thrun, S., Mitchell, T.M.: Text classification from
labeled and unlabeled documents using EM. Mach. Learn. 39(2/3), 103-134 (2000)



104

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Y. Soullard et al.

Qi, R.H., Yang, D.L., Li, H.F.: A two-stage semi-supervised weighted naive credal
classification model. Innov. Comput. Inf. Control J. 5(2), 503-508 (2011)

Settles, B.: Active Learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan and Claypool Publishers, San Rafael (2012)

Soullard, Y., Saveski, M., Artieres, T.: Joint semi-supervised learning of hidden
conditional random fields and hidden Markov models. Pattern Recogn. Lett. (PRL)
37, 161-171 (2013)

Troffaes, M.C.: Decision making under uncertainty using imprecise probabilities.
Int. J. Approx. Reason. 45(1), 17-29 (2007)

Utkin, L.V.: The imprecise Dirichlet model as a basis for a new boosting classifi-
cation algorithm. Neurocomputing 151, 1374-1383 (2015)

Wang, W., Zhou, Z.-H.: Analyzing co-training style algorithms. In: Kok, J.N.,
Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladeni¢, D., Skowron, A.
(eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 454-465. Springer, Heidelberg
(2007)

Wang, W., Zhou, Z.H.: A new analysis of co-training. In: Proceedings of the 27th
International Conference on Machine Learning (ICML 2010), pp. 1135-1142 (2010)
Wang, W., Zhou, Z.H.: Co-training with insufficient views. In: Asian Conference
on Machine Learning, pp. 467-482 (2013)

Zaffalon, M.: The naive credal classifier. J. Stat. Plan. Inference 105(1), 5-21
(2002). Imprecise Probability Models and their Applications

Zhang, M.L., Zhou, Z.H.: Cotrade: confident co-training with data editing. IEEE
Trans. Syst. Man Cybern. Part B (Cybern.) 41(6), 1612-1626 (2011)

Zhou, Z.H.: When semi-supervised learning meets ensemble learning. Front. Electr.
Electron. Eng. China 6(1), 6-16 (2011)

Zhu, X., Goldberg, A.B., Brachman, R., Dietterich, T.: Introduction to Semi-
Supervised Learning. Morgan and Claypool Publishers, San Francisco (2009)



	Co-training with Credal Models
	1 Introduction
	2 Co-training Framework
	3 Basics of Credal Models
	3.1 Imprecise Probabilities and Decision
	3.2 Learning Credal Models

	4 Co-training with Credal Models
	4.1 Motivation and Idea
	4.2 Dataset Selection Among the Unlabeled Instances
	4.3 Data Selection for Labeling

	5 Experimentations
	5.1 Naive Credal Classifier (NCC)
	5.2 Comparison of Data Selection Strategies
	5.3 Comparison with Standard Co-training
	5.4 Behaviours of Credal Models During the Co-training Iterations

	6 Conclusion
	References


