Chapter 7
Colliding Bodies Optimization

7.1 Introduction

This chapter presents a novel efficient metaheuristic optimization algorithm called
colliding bodies optimization (CBO) for optimization. This algorithm is based on
one-dimensional collisions between bodies, with each agent solution being consid-
ered as the massed object or body. After a collision of two moving bodies having
specified masses and velocities, these bodies are separated with new velocities. This
collision causes the agents to move toward better positions in the search space.
CBO utilizes a simple formulation to find minimum or maximum of functions; also
it is independent of parameters [1].

This chapter consists of two parts. In the first part the main algorithm is
developed, and three well-studied engineering design problems and two structural
design problems taken from the optimization literature are used to investigate the
efficiency of the proposed approach [1]. In the second part, the CBO is applied to a
number of continuous optimization benchmark problems. These examples include
three well-studied space trusses and two planar bridge structures [2].

7.2 Colliding Bodies Optimization

The main goal of this section is to introduce a simple optimization algorithm based
on the collision between objects, which is called colliding bodies optimization
(CBO).
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7.2.1 The Collision Between Two Bodies

Collisions between bodies are governed by the laws of momentum and energy.
When a collision occurs in an isolated system (Fig. 7.1), the total momentum of the
system of objects is conserved. Provided that there are no net external forces acting
upon the objects, the momentum of all objects before the collision equals the
momentum of all objects after the collision.

The conservation of the total momentum demands that the total momentum
before the collision is the same as the total momentum after the collision and can be
expressed by the following equation:

! !
mvy + mpvy = myv, + myv, (7.1)

Likewise, the conservation of the total kinetic energy is expressed as:

1 1 1 , 1 /
§m1v12+§m2vz2 :§m1v12+§m2v22+Q (7.2)
where v; is the initial velocity of the first object before impact, v, is the initial
velocity of the second object before impact, \/1 is the final velocity of the first object
after impact, v’2 is the final velocity of the second object after impact, m; is the mass
of the first object, m, is the mass of the second object, and Q is the loss of kinetic

energy due to the impact [3].
The formulas for the velocities after a one-dimensional collision are:

V/ o (m1 — 8]712)\/1 + (m2 + 8}’)12)\}2
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where ¢ is the coefficient of restitution (COR) of the two colliding bodies, defined as
the ratio of relative velocity of separation to relative velocity of approach:

/
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(7.5)
According to the coefficient of restitution, there are two special cases of any
collision as follows:

1) A perfectly elastic collision is defined as the one in which there is no loss of
kinetic energy in the collision (Q =0 and &= 1). In reality, any macro-
scopic collision between objects will convert some kinetic energy to internal
energy and other forms of energy. In this case, after collision, the velocity of
separation is high.

2) An inelastic collision is the one in which part of the kinetic energy is changed to
some other forms of energy in the collision. Momentum is conserved in inelastic
collisions (as it is for elastic collisions), but one cannot track the kinetic energy
through the collision since some of it will be converted to other forms of energy.
In this case, coefficient of restitution does not equaltoone (Q #0 & e<1).
In this case, after collision the velocity of separation is low.

For the most real objects, the value of e is between 0 and 1.

7.2.2 The CBO Algorithm
7.2.2.1 Theory

The main objective of the present study is to formulate a new simple and efficient
metaheuristic algorithm which is called colliding bodies optimization (CBO). In
CBO, each solution candidate X; containing a number of variables (i.e.,X; = {X i })
is considered as a colliding body (CB). The massed objects are composed of two
main equal groups, i.e., stationary and moving objects, where the moving objects
move to follow stationary objects and a collision occurs between pairs of objects.
This is done for two purposes: (i) to improve the positions of moving objects and
(i1) to push stationary objects toward better positions. After the collision, new
positions of colliding bodies are updated based on new velocity by using the
collision laws as discussed in the following:
The CBO procedure can briefly be outlined as

1. The initial positions of CBs are determined with random initialization of a
population of individuals in the search space:
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X? = Xmin + rand(xmax — _xmin) s 1= 1,2, Lo, ny (76)

where x? determines the initial value vector of the ith CB, x.;, and x,,,, are the
minimum and the maximum allowable value vectors of variables, rand is a
random number in the interval [0,1], and 7 is the number of CBs.

2. The magnitude of the body mass for each CB is defined as:

1
me=2"_" k=12, ..n (7.7)
1
i;ﬁt(i)

where fit(i) represents the objective function value of the agent i and n is the
population size. It seems that a CB with good values exerts a larger mass than the

bad ones. Also, for maximization, the objective function fi#(i) will be replaced by
1

3. The arrangement of the CBs objective function values is performed in ascending
order (Fig. 7.2a). The sorted CBs are equally divided into two groups:

e The lower half of CBs (stationary CBs); These CBs are good agents which are
stationary, and the velocity of these bodies before collision is zero. Thus:

(7.8)

NS

» The upper half of CBs (moving CBs): These CBs move toward the lower half.
Then, according to Fig. 7.2b, the better and worse CBs, i.e., agents with upper
fitness value, of each group will collide together. The change of the body
position represents the velocity of these bodies before collision as:

)
Vi =X — X1, 1:§+1,...,n (7.9)

where v; and x; are the velocity and position vector of the ith CB in this group,
respectively, and ;g is the ith CB pair position of x; in the previous group.

4. After the collision, the velocities of the colliding bodies in each group are
evaluated utilizing Eqs. (7.3) and (7.4) and the velocity before collision. The
velocity of each moving CBs after the collision is obtained by:

, (m,— — 8m,-,%) Vi n
V=~ Y i=Z41,....n (7.10)

! m; + mi,% 2
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Fig. 7.2 (a) CBs sorted in increasing order; (b) colliding object pairs [1]

where v; and v; are the velocity of the ith moving CB before and after the collision,
respectively; m; is the mass of the ith CB; and m;_ is the mass of the ith CB pair.
Also, the velocity of each stationary CB after the collision is:

, (mi+§ + €mi+§> Vies n
Vi — N 1= 1, o ,5
m; + mj s

(7.11)

where v;4 and v; are the velocity of the ith moving CB pair before and the ith
stationary CB after the collision, respectively; m; is the mass of the ith CB; m; s
is the mass of the ith moving CB pair; and ¢ is the value of the COR parameter
whose law of variation will be discussed in the next section.

5. New positions of CBs are evaluated using the generated velocities after the
collision in position of stationary CBs.
The new positions of each moving CB are:

X

’ n
?’””’:xi,%+randovi, l:§+1, R /] (712)
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where x’** and v; are the new position and the velocity after the collision of the ith
moving CB, respectively, and x;_s is the old position of the stationary CB pair.
Also, the new positions of stationary CBs are obtained by:

) ! .
X' =x;+randov;, i=1,...,

: 13

where x7¢", x;, and v; are the new position, the old position, and the velocity after
the collision of the ith stationary CB, respectively; rand is a random vector
uniformly distributed in the range (—1,1); and the sign “o” denotes an element-
by-element multiplication.

6. The optimization is repeated from Step 2 until a termination criterion, such as
maximum iteration number, is satisfied. It should be noted that a body’s status
(stationary or moving body) and its numbering are changed in two subsequent
iterations.

Apart from the efficiency of the CBO algorithm, which is illustrated in the next
section through numerical examples, parameter independency is an important
feature that makes CBO superior over other metaheuristic algorithms. Also, the
formulation of CBO algorithm does not use the memory which saves the best-so-far
solution (i.e., the best position of agents from the previous iterations).

The penalty function approach was used for constraint handling. The fit
(i) function corresponds to the effective cost. If optimization constraints are satis-
fied, there is no penalty; otherwise, the value of penalty is calculated as the ratio
between the violation and the allowable limit.

7.2.2.2 The Coefficient of Restitution (COR)

The metaheuristic algorithms have two phases: exploration of the search space and
exploitation of the best solutions found. In the metaheuristic algorithm, it is very
important to have a suitable balance between the exploration and exploitation. In
the optimization process, the exploration should be decreased gradually, while
simultaneously exploitation should be increased.

In this chapter, an index is introduced in terms of the coefficient of restitution
(COR) to control exploration and exploitation rate. In fact, this index is defined as
the ratio of the separation velocity of two agents after collision to approach velocity
of two agents before collision. Efficiency of this index will be shown using one
numerical example.

In this section, in order to have a general idea about the performance of COR in
controlling local and global searches, a benchmark function (Aluffi-Pentini) chosen
from Ref. [4] is optimized using the CBO algorithm. Three variants of COR values
are considered. Figure 7.3 is prepared to show the positions of the current CBs in the
1st, 50th, and 100th iteration for these cases. These three typical cases result in the
following:
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Fig. 7.3 Evolution of the positions of CBs during optimization history for different definitions of
the coefficient of restitution (Aluffi-Pentini benchmark function) [1]

1. The perfectly elastic collision: In this case, COR is set equal to unity. It can be
seen that in the final iterations, the CBs investigate the entire search space to
discover a favorite space (global search).

2. The hypothetical collision: In this case, COR is set equal to zero. It can be seen
that in the 50th iterations, the movements of the CBs are limited to very small
space in order to provide exploitation (local search). Consequently, the CBs are
gathered in a small region of the search space.

3. The inelastic collision: In this case, COR decreases linearly to zero and ¢ is
defined as:

iter

e=1-— (714)

itermax

where iter is the actual iteration number and ifer,,,, is the maximum number of
iterations. It can be seen that the CBs get closer by increasing iteration. In this
way a good balance between the global and local search is achieved. Therefore,
in the optimization process, COR is considered such as the above equation.
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7.2.3 Test Problems and Optimization Results

Three well-studied engineering design problems and two structural design prob-
lems taken from the optimization literature are used to investigate the efficiency of
the proposed approach. These examples have been previously studied using a
variety of other techniques, which are useful to show the validity and effectiveness
of the proposed algorithm. In order to assess the effect of the initial population on
the final result, these examples are independently optimized with different initial
populations.

For engineering design examples, 30 independent runs were performed for CBO,
considering 20 individuals and 200 iterations; the corresponding number of func-
tion evaluations is 4000. The number of function evaluations set for the GA-based
algorithm developed by Coello [5], the PSO-based method developed by He and
Wang [6], and the evolution strategies developed by Montes and Coello [7] are
900,000, 200,000, and 25,000, respectively. Similar to CBO, the number of func-
tion evaluations for the charged system search algorithm developed by Kaveh and
Talatahari [8] is 4000.

In the truss design problems, 20 independent runs were carried out, considering
40 individuals and 400 iterations; hence, the maximum number of structural
analyses was 16,000. The CBO algorithm was coded in MATLAB. Structural
analysis was performed with the direct stiffness method.

7.2.3.1 Example 1: Design of Welded Beam

As the first example, design optimization of the welded beam shown in Fig. 7.4 is
carried out. The welded beam design problem was often utilized to evaluate the
performance of different optimization methods. The objective is to find the best set
of design variables to minimize the total fabrication cost of the structure subject to
shear stress (z), bending stress (o), buckling load (Pc), and end deflection (J)
constraints. Assuming x; = h, x, =1/, x3 =1, and x, = b as the design variables, the
mathematical formulation of the problem can be expressed as:
Find

{x1,x2,X3, x4} (7.15)
To minimize
cost(x) = 1.10471x3xs + 0.04811x3x4(14 + x2) (7.16)

Subjected to
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Fig. 7.4 Schematic of the
welded beam structure with
indication of design
variables

T
82(x) = 6(x) = omax <0
( ) =X| — X4 S 0
gs(x) = 0.10471x1 +0.04811x3x4(14 +x2) —5<0 (7.17)
gs(x) =0.125—x, <0
86(0) = 5(x) — Bax < 0
g7() p=px) <0

The bounds on the design variables are:

01<x <2, 01<xn<10, 01 <x3<10, 01<x,<L2 (7.18)

where
N2 ; n A2 " 2
T(x):\/(f) ) ﬁju(r)
, P . MR
T = T ——M—P<L+)2)R— sl <x1—|—x3)
V2x1% J 2 4 2 )
2 2 6PL 4pL>3 .
J= 2 22 (nks 2 s =
{fxlxz LZ—’—( 2 ) ]}G(X) X4X% () Ex_%x;;
4.013,/E(x3x§/36) x [E
P 1—
() = 12 2V aG

The constants in Eqgs. (7.17) and (7.19) are chosen as follows:

P=6000 1b, L=14 in., E=30x 106 psi, G=12 x 106 psi, Tyax = 13,600 psi,
Omax = 30,000 psi, and §,.x = 0.25 in.

Radgsdell and Phillips [9] compared optimal results of different optimization
methods which were mainly based on mathematical optimization algorithms. Deb
[10], Coello [5], and Coello and Montes [11] solved this problem using GA-based
methods. Also, He and Wang [6] used effective coevolutionary particle swarm
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Table 7.2 Statistical results from different optimization methods for the welded beam design
problem

Methods Best result | Average optimized cost | Worst result | Std dev
Ragsdell and Phillips [9] |2.385937 N/A N/A N/A

Deb [10] 2433116 N/A N/A N/A
Coello [5] 1.748309 1.771973 1.785835 0.011220
Coello and Montes [11] 1.728226 1.792654 1.993408 0.074713
He and Wang [6] 1.728024 1.748831 1.782143 0.012926
Montes and Coello [7] 1.737300 1.813290 1.994651 0.070500
Kaveh and Talatahari [8] | 1.724866 1.739654 1.759479 0.008064
Present work [1] 1.724662 1.725707 1.725059 0.0002437

optimization, Montes and Coello [7] solved this problem utilizing evolution strat-
egies, and Kaveh and Talatahari [8] employed charged system search.

Table 7.1 compares the optimized design and the corresponding cost obtained by
CBO with those obtained by other metaheuristic algorithms documented in litera-
ture. It can be seen that the best solution obtained by CBO is better than those
quoted for the other algorithms. The statistical data on 30 independent runs reported
in Table 7.2 also demonstrate the better search ability of CBO with respect to the
other algorithms: in fact the best, worst, and average costs and the standard
deviation (SD) of the obtained solutions are better than literature. The lowest
standard deviation achieved by CBO proves that the present algorithm is more
robust than other metaheuristic methods.

7.2.3.2 Test Problem 2: Design of a Pressure Vessel

Design optimization of the cylindrical pressure vessel capped at both ends by
hemispherical heads (Fig. 7.5) is considered as the second example. The objective
of optimization is to minimize the total manufacturing cost of the vessel based on
the combination of welding, material, and forming costs. The vessel is designed for
a working pressure of 3000 psi and a minimum volume of 750 ft* regarding the
provisions of ASME boiler and pressure vessel code. Here, the shell and head
thicknesses should be multiples of 0.0625 in. The thickness of the shell and head
is restricted to 2 in. The shell and head thicknesses must not be <1.1 in. and 0.6 in.,
respectively. The design variables of the problem are x; as the shell thickness (T5),
X, as the spherical head thickness (7},), x3 as the radius of cylindrical shell (R), and
x4 as the shell length (L). The problem formulation is as follows:
Find
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Fig. 7.5 Schematic of the spherical head and cylindrical wall of the pressure vessel with
indication of design variables

{x1,x2, %3, %4} (7.20)
To minimize
cos t(x) = 0.6224x3x1x4 + 1.7781x3x; + 3.1611x%x4 + 19.8621x3x7  (7.21)

Subject to

g1(x) =0.0193x3 —x; <0
8,(x) = 0.00954x3 — x, <0

4
g3(x) = 750 x 1728 — mx3xy — gﬂxg <0
g4(x) =x4—240<0

(7.22)

The bounds on the design variables are:
L125<x <2, 0.625<x, <2, 10<x; <240, 10<x4 <240 (7.23)

It can be seen in Table 7.3 that the present algorithm found the best design overall
which is about 3 % lighter than the best known design quoted in literature (5889.911
versus 6059.088 of Ref. [8]). The statistical data reported in Table 7.4 indicate that
the standard deviation of CBO optimized solutions is the third lowest among those
quoted for the different algorithms compared in this test case. Statistical results
given in Table 7.4 indicate that CBO is in general more robust than the other
metaheuristic algorithms. However, the worst optimized design and standard devi-
ation found by CBO are higher than for CSS.

7.2.3.3 Test Problem 3: Design of a Tension/Compression Spring

This problem was first described by Belegundu [15] and Arora [16]. It consists of
minimizing the weight of a tension/compression spring subject to constraints on



7.2 Colliding Bodies Optimization 211

Table 7.3 Comparison of CBO optimized designs with literature for the pressure vessel problem

Methods X, (Ty) X, (Ty) X5 (R) X, (L)
Sandgren [12] 1.125000 0.625000 47.70000 117.7010
Kannan and Kramer [13] 1.125000 0.625000 58.29100 43.6900
Deb and Gene [14] 0.937500 0.500000 48.32900 112.6790
Coello [5] 0.812500 0.437500 40.32390 200.0000
Coello and Montes [11] 0.812500 0.437500 42.09739 176.6540
He and Wang [6] 0.812500 0.437500 42.09126 176.7465
Montes and Coello [7] 0.812500 0.437500 42.09808 176.6405
Kaveh and Talatahari [8] 0.812500 0.812500 0.812500 176.572656
Present work [1] 0.779946 0.385560 40.409065 198.76232

Table 7.4 Statistical results from different optimization methods for the pressure vessel problem

Methods Best result | Average optimized cost | Worst result | Std dev
Sandgren [12] 8129.103 N/A N/A N/A
Kannan and Kramer [13] | 7198.042 N/A N/A N/A

Deb and Gene [14] 6410.381 N/A N/A N/A
Coello [5] 6288.744 6293.843 6308.149 7.4133
Coello and Montes [11] 6059.946 6177.253 6469.322 130.9297
He and Wang [6] 6061.077 6147.133 6363.804 86.4545
Montes and Coello [7] 6059.745 6850.004 7332.879 426.0000
Kaveh and Talatahari [8] | 6059.088 6067.906 6085.476 10.256
Present work [1] 5889.911 5934.201 6213.006 63.5417

Fig. 7.6 Schematic of the

tension/compression spring ’x' /
with indication of design \\ / —r |ID
variables ) \\/ /

shear stress, surge frequency, and minimum deflection as shown in Fig. 7.6. The
design variables are the wire diameter d (=x;), the mean coil diameter D (=x,), and
the number of active coils N (=x3). The problem can be stated as follows:
Find
{X] ,X2,X3} (724)
To minimize

cos t(x) = (x3 + 2)xox} (7.25)

Subject to
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X3X3
=12
§1() 71785+ =
4x% — X1Xp 1
= + -1<0
82(%) 12566(vox] — 1) | 51082 (7.26)
()C) —1_ 140.45)(51 <0
g3 - X%X3 =
X1 +x2
= —-1<0
84(x) 15 >
The bounds on the design variables are:
0.05<x; <2, 025<x <13, 2<x <15, (7.27)

This problem has been solved by Belegundu [15] using eight different mathemat-
ical optimization techniques. Arora [16] also solved this problem using a numerical
optimization technique called a constraint correction at the constant cost. Coello [5]
as well as Coello and Montes [11] solved this problem using GA-based method.
Additionally, He and Wang [6] utilized a co-evolutionary particle swarm optimi-
zation (CPSO). Recently, Montes and Coello [7] and Kaveh and Talatahari [8] used
evolution strategies and the CSS to solve this problem, respectively.

Tables 7.5 and 7.6 compare the best results obtained in this chapter and those of
the other researches. Once again, CBO found the best design overall. In fact, the
lighter design found by Kaveh and Talatahari in [8] actually violates the first two
optimization constraints. The statistical data reported in Table 7.6 show that the
standard deviation on optimized cost seen for CBO is fully consistent with
literature.

7.2.3.4 Test Problem 4: Weight Minimization of the 120-Bar
Truss Dome

The fourth test case solved in this study is the weight minimization problem of the
120-bar truss dome shown in Fig. 7.7. This test case was investigated by Soh and
Yang [17] as a configuration optimization problem. It has been solved later as a
sizing optimization problem by Lee and Geem [18], Kaveh and Talatahari [8], and
Kaveh and Khayatazad [19].

The allowable tensile and compressive stresses are set according to the
ASD-AISC (1989) [20] code, as follows:

o7 fore; <0 (7.28)

l

{ o; =0.6F, forc; >0

where o; is calculated according to the slenderness ratio
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Table 7.6 Statistical results from different optimization methods for tension/compression string
problem

Methods Best result | Average optimized cost | Worst result | Std dev
Belegundu [15] 0.0128334 |N/A N/A N/A
Arora [16] 0.0127303 | N/A N/A N/A
Coello [5] 0.0127048 |0.012769 0.012822 3.9390e—5
Coello and Montes [11] | 0.0126810 |0.0127420 0.012973 5.9000e—5
He and Wang [6] 0.0126747 |0.012730 0.012924 5.1985e—5
Montes and Coello [7] 0.012698 | 0.013461 0.16485 9.6600e—4
Kaveh and Talatahari [8] |0.0126384 |0.012852 0.013626 8.3564e—5
Present work [1] 0.126697 | 0.1272964 0.128808 5.00376e—5
Yo 5 3 A
1-—5|F S ord; < C
_ K 2c§> |/ (3 8C. 8C’ fork < Ce
o, = 5 (7.29)
127°F
— ford; > C.
234

where E is the modulus of elasticity, F, is the yield stress of steel, C. is the
slenderness ratio (4;) dividing the elastic and inelastic buckling regions

(CC = \/27n%E/F y)7 ; is the slenderness ratio (Ai = KL’) , K is the effective length

factor, L; is the member length, and r; is the radius of gyration.

The modulus of elasticity is 30,450 ksi (210,000 MPa) and the material density is
0.288 Ib/in® (7971.810 kg/m?). The yield stress of steel is taken as 58.0 ksi
(400 MPa). On the other hand, the radius of gyration (r;) is expressed in terms of
cross-sectional areas as r; = aAi” " [28]. Here, a and b are constants depending on
the types of sections adopted for the members such as pipes, angles, and tees. In this
example, pipe sections (@ =0.4993 and »=0.6777) are adopted for bars. All
members of the dome are divided into seven groups, as shown in Fig. 7.7. The
dome is considered to be subjected to vertical loads at all the unsupported joints.
These are taken as —13.49 kips (60 kN) at node 1, —6.744 kips (30 kN) at nodes
2 through 14, and —2.248 kips (10 kN) at the remaining of the nodes. The minimum
cross-sectional area of elements is 0.775 in® (cmz). In this example, four cases of
constraints are considered: with stress constraints and no displacement constraints
(Case 1), with stress constraints and displacement limitations of +0.1969 in (5 mm)
imposed on all nodes in x and y directions (Case 2), no stress constraints but
displacement limitations of £0.1969 in (5 mm) imposed on all nodes in z directions
(Case 3), and all constraints explained above (Case 4). For Case 1 and Case 2, the
maximum cross-sectional area is 5.0 in” (32.26 sz) while for Case 3 and Case 4 is
20.0 in” (129.03 cm?).

Table 7.7 compares the optimization results obtained in this study with previous
research presented in literature. It can be seen that CBO always designed the
lightest structure except for Cases 3 and 4 where HPSACO converged to a slightly
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196.85 in. (500cm)

118.11in.

273.26in. |

(694.1cm) '
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(1250 cm)

625.59in.
(1589 cm)

Fig. 7.7 Schematic of the spatial 120-bar dome truss with indication of design variables and main
geometric dimensions
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lower weight. CBO always completed the optimization process within 16,000
structural analyses (40 agents x 400 optimization iterations), while HPSACO
required on average 10,000 analyses (400 optimization iterations) and PSOPC
required 125,000 analyses (2500 iterations). The average number of analyses
required by the RO algorithm was instead 19,900. Figure 7.8 shows that the
convergence rate of CBO is considerably higher than that of PSO and PSOPC.

7.2.3.5 Test Problem 5: Design of Forth Truss Bridge

The last test case was the layout optimization of the Forth Bridge shown in Fig. 7.9a
which is a 16 m long and 1 m high truss of infinite span. Because of infinite span, the
cross section of the bridge can be modeled as symmetric about the axis joining
nodes 10 and 11. Structural symmetry allowed the 37 elements of which the bridge
is comprised to be grouped into 16 groups (see Table 7.8); hence, there are
16 independent sizing variables. Nodal coordinates were included as layout vari-
ables: x-coordinates of nodes could not vary, while y-coordinates (except those of
nodes 1 and 20) were allowed to change between —140 and 140 cm with respect to
the initial configuration of Fig. 7.9a. Thus, the optimization problem included also
ten layout variables. The cross-sectional areas (sizing variables) could vary
between 0.5 and 100 cm?.

Material properties were set as follows: modulus of elasticity of 210 GPa,
allowable stress of 250 MPa, and specific weight of 7.8 t/m>. The structure is
subject to self-weight and concentrated loads shown in Fig. 7.9a.

Table 7.8 compares CBO optimization results with literature. It appears that
CBO found the best design overall saving about 1000 kg with respect to the
optimum currently reported in literature. Furthermore, the standard deviation on
optimized weight observed for CBO in 20 independent optimization runs was lower
than for the other metaheuristic optimization algorithms taken as basis of
comparison.

The optimized layout of the bridge is shown in Fig. 7.9b. Figure 7.10 compares
the convergence behavior of CBO and RO. Although RO was considerably faster in
the early optimization iterations, CBO converged to a significantly better design
without being trapped in local optima.

7.3 CBO for Optimum Design of Truss Structures
with Continuous Variables

This part considers the following: (i) The CBO algorithm is introduced for optimi-
zation of continuous problems. (ii) A comprehensive study of sizing optimization
for truss structures is presented. The examples are chosen from the literature to
verify the effectiveness of the algorithm. These examples are as follows: a
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Fig. 7.8 Convergence curves obtained for the different variants of the 120-bar dome problem [2]

25-member spatial truss with 8 design variables, a 72-member spatial truss with
16 design variables, a 582-member space truss tower with 32 design variables, a
37-member plane truss bridge with 16 design variables, and a 68-member plane
truss bridge with 4, 8, and 12 design variables. All the structures are optimized for
minimum weight with CBO algorithm, and a comparison is carried out in terms of
the best optimum solutions and their convergence rates in a predefined number of
analyses. The results indicate that the proposed algorithm is very competitive with
other state-of-the-art metaheuristic methods.

7.3.1 Flowchart and CBO Algorithm

The flowchart of the CBO algorithm is shown in Fig. 7.11. The main steps of CBO
algorithm are as follows:

Level 1: Initialization
e Step 1: Initialization. Initialize an array of CBs with random positions and their
associated values of the objective function [Eq. (7.6)].

Level 2: Search

e Step 1: CBs ranking. Compare the value of the objective function for each CB,
and sort them in an increasing order.
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Fig. 7.9 (a) Schematic of the Forth Truss Bridge, (b) optimized layout of the Forth Bridge [2]

» Step 2: Group creation. CBs are divided into two equal groups: (i) stationary
group and (ii) moving group. Then, the pairs of CB are defined for collision
(Fig. 7.2).

o Step 3: Criteria before the collision. The value of mass and velocity of each CB
for each group is evaluated before the collision [Egs. (7.7)—(7.9)].

» Step 4: Criteria after the collision. The value velocity of each CB in each groups
is evaluated after the collision [Egs. (7.10) and (7.11)].

e Step 5: CBs updating. The new position of each CB is calculated [Egs. (7.13)
and Eq. (7.14)].

Level 3: Terminating Criterion Control

e Step 1: Repeat search level steps until a terminating criterion is satisfied.

7.3.2 Numerical Examples

In order to assess the effectiveness of the proposed methodology, a number of
continuous optimization benchmark problems are examined. These examples
include three well-known space trusses and two planar bridge structures. The
numbers of design variables for the first to fifth examples are 8, 16, 32, and
26, respectively, and for the last example, 4, 8, and 12 variables are used. Similarly,
the numbers of colliding bodies or agents for these examples are considered as
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Table 7.8 Comparison of CBO optimization results with literature for the Forth Bridge problem

Kaveh and Khayatazad [19]

No Design variable BB-BC PSO RO Present work [1]
1 A, 56.41 25.20 20.54 23.314

2 A, 58.20 97.60 44.62 36.867

3 Az, As 53.89 35.00 6.37 9.847

4 Ay 60.21 64.30 50.10 49.679

5 Ag 56.27 14.51 30.39 26.563

6 A, 57.08 37.91 17.61 12.737

7 Ag 49.19 69.85 41.04 37.120

8 Ao 48.67 8.76 8.55 1.545

9 Ao, Aq 4543 47.54 33.93 28.35

10 Aip 15.14 6.36 0.63 0.891

11 Ay 45.31 27.13 26.92 24.110
12 Az 62.91 3.82 2342 9.112

13 Ajg 56.77 50.82 42.06 29.071

14 Ais, Ay 46.66 2.70 2.01 8.222

15 Ale 57.95 5.46 8.51 8.715

16 Ao 54.99 17.62 1.27 2.107

17 Ay,, Ayio 6.89 140 70.88 11.093

18 Ays, Ayg 17.74 139.65 64.88 50.352

19 Ay, Ayi7 1.81 117.59 —6.99 —50.529
20 Ays, Ayie 23.57 139.70 128.31 119.315
21 Ays, Ayis 322 —16.51 —64.24 —124.378
22 Ay;, Ayyy 5.85 139.06 139.29 34.219

23 Ayg, Ayis 4.01 —127.74 —109.62 —120.867
24 Ayy, Ay 10.52 —81.03 21.82 —41.323
25 Ayio —25.99 60.16 —55.09 —115.609
26 Ay 2.74 —139.97 2.29 —54.590
Best weight (kg) 37,132.3 20,591.9 11,215.7 10,250.9
Average weight (kg) 40,154.1 25,269.3 11,969.2 11,112.63
Std (kg) 1235.4 2323.7 545.5 522.54

Fig. 7.10 Convergence

curves obtained in the Forth

Bridge problem [2]

Weight (ton)

Iteration
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v

Yes No

The termination
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Fig. 7.11 The flowchart of the CBO [2]

30, 40, 50, 40, and 20, respectively. For all of these examples, the maximum
number of iteration is considered as 400. The algorithm and the direct stiffness
method for the analysis of truss structures are coded in MATLAB software.

For the sake of simplicity and to be fair in comparisons, the penalty approach is
used for the constraint handling. The constrained objective function can formally be
stated as follows:

£

Mer(X) = F(X) X fronan ®) =F(X) x (146> max(0.g(0) ) (7.30)
i=1

where X is the vector of design variables, g; is the ith constraint from #; inequality
constraints (g,(X) <0, i=1, 2, ..., n;), Mer(X) is the merit function, f(X) is the
weight of structure, and f,,¢nq(X) is the penalty function which results from the
violations of the constraints corresponding to the response of the structure. The
parameters &; and &, are selected considering the exploration and the exploitation
rate of the search space. In this study, ¢, is selected as unity and &, is taken as 1.5 at
the start and linearly increases to 6.
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7.3.2.1 A 25-Bar Spatial Truss

Size optimization of the 25-bar planar truss shown in Fig. 7.12 is considered. This is
a well-known problem in the field of weight optimization of the structures. In this
example, the material density is considered as 0.1 Ib/in® (2767.990 kg/m?), and the
modulus of elasticity is taken as 10,000 ksi (68,950 MPa). Table 7.9 shows the two
load cases for this example. The structure includes 25 members, which are divided
into eight groups, as follows: (1) Ay, (2) Ay—As, (3) Ag—Ag, (4) Ajg—A11, 5) Ajr—
Ajz, (6) Ars=Adg, (7) Aig—Azy, and (8) Aza—Ass.

Maximum displacement limitations of £0.35 in (8.89 mm) are imposed on every
node in every direction, and the axial stress constraints vary for each group as
shown in Table 7.10. The range of the cross-sectional areas varies from 0.01 to
3.4 in” (0.6452-21.94 cm”).

By the use of the proposed algorithm, this optimization problem is solved, and
Table 7.11 shows the obtained optimal design of CBO, which is compared with GA
[21], PSO [22], HS [6], and RO [19]. The best weight of the CBO is 544.310 Ib,
which is slightly improved compared to other algorithms. It is evident in Table 7.11
that the number of analyses and standard deviation of 20 independent runs for the
CBO are 9090 and 0.294 1b, respectively, which are much less than the other
optimization algorithms. Figure 7.13 provides the convergence diagram of the
CBO in 400 iterations.

200 in.
(508 cm)

\H/ 9) 203?6:-:;”'—
; \/’/(508 comy

Fig. 7.12 Schematic of a 25-bar spatial truss



7.3 CBO for Optimum Design of Truss Structures with Continuous Variables 223
Table 7.9 Loading conditions for the 25-bar spatial truss

Case 1 Case 2

Py kips Py kips P kips Py kips Py kips P kips
Node | (kN) (kN) (kN) (kN) (kN) (kN)
1 0.0 20.0 (89) —5.0(22.5) |[1.04.45) 10.0 (44.5) | —5.0(22.5)
2 0.0 —-20.0 89) |—-5.0(22.5) |0.0 10.0 (44.5) | —5.0(22.5)
3 0.0 0.0 0.0 0.5 (22.5) 0.0 0.0
4 0.0 0.0 0.0 0.5 (22.5) 0.0 0.0

Table 7.10 Member stress limitations for the 25-bar spatial truss

Element group

ksi (MPa)

Compressive stress limitations

Tensile stress limitation

ksi (MPa)

35.092 (241.96)

40.0 (275.80)

11.590 (79.913)

40.0 (275.80)

17.305 (119.31)

40.0 (275.80)

35.092 (241.96)

40.0 (275.80)

35.092 (241.96)

40.0 (275.80)

6.759 (46.603)

40.0 (275.80)

6.959 (47.982)

40.0 (275.80)

[c-RIEN RN N RV RN RSN SR

11.082 (76.410)

40.0 (275.80)

Table 7.11 Comparison of CBO optimized designs with literature in the 25-bar spatial truss

Optimal cross-sectional areas (in?)

Rajeev et al. | Schutte et al. |Leeetal. |Kavehetal. |Present
Element group GA [21] PSO [22] HS [18] RO [19] work [2]
1 Ay 0.10 0.010 0.047 0.0157 0.0100
2 Ar-As 1.80 2.121 2.022 2.0217 2.1297
3 Ag—Ag 2.30 2.893 2.95 2.9319 2.8865
4 Ajg-Aqy 0.20 0.010 0.010 0.0102 0.0100
5 Ar-Ags 0.10 0.010 0.014 0.0109 0.0100
6 A-A7 0.80 0.671 0.688 0.6563 0.6792
7 Ag—As 1.80 1.611 1.657 1.6793 1.6077
8 Axr—Ass 3.0 2.717 2.663 2.7163 2.6927
Best weight (Ib) 546 545.21 544.38 544.656 544.310
Average weight (Ib) N/A 546.84 N/A 546.689 545.256
Std dev N/A 1.478 N/A 1.612 0.294
No. of analyses N/A 9596 15,000 13,880 9090

7.3.2.2 A 72-Bar Spatial Truss Structure

Schematic topology and element numbering of a 72-bar space truss are shown in
Fig. 7.14. The elements are classified in 16 design groups according to Table 7.12.
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Fig. 7.13 The convergence diagram for the 25-bar spatial truss [2]
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- (A= X @

Fig. 7.14 Schematic of a 72-bar spatial truss

The material density is 0.1 1b/in® (2767.990 kg/m?) and the modulus of elasticity is
taken as 10,000 ksi (68,950 MPa). The members are subjected to the stress limits of
£25 ksi (£172.375 MPa). The uppermost nodes are subjected to the displacement
limits of £0.25 in (£0.635 cm) in both x and y directions. The minimum permitted
cross-sectional area of each member is taken as 0.10 in® (0.6452 cm?), and the
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Table 7.12 Comparison of CBO optimized designs with literature in the 72-bar spatial truss (in®)

Optimal cross-sectional areas (in%)

Erbatur et al. | Camp et al. | Perez et al. | Camp Kaveh et al. | Present
Element group | GA [23] ACO [24] |PSO[25] |BB-BC[26]|RO [19] work [2]
1-4 1.755 1.948 1.7427 1.8577 1.8365 1.9028
5-12 00.505 0.508 0.5185 0.5059 0.5021 0.5180
13-16 0.105 0.101 0.1000 0.1000 0.1000 0.1001
17-18 0.155 0.102 0.1000 0.1000 0.1004 0.1003
19-22 1.155 1.303 1.3079 1.2476 1.2522 1.2787
23-30 0.585 0.511 0.5193 0.5269 0.5033 0.5074
31-34 0.100 0.101 0.1000 0.1000 0.1002 0.1003
35-36 0.100 0.100 0.1000 0.1012 0.1001 0.1003
3740 0.460 0.561 0.5142 0.5209 0.5730 0.5240
41-48 0.530 0.492 0.5464 0.5172 0.5499 0.5150
49-52 0.120 0.1 0.1000 0.1004 0.1004 0.1002
53-54 0.165 0.107 0.1095 0.1005 0.1001 0.1015
55-58 0.155 0.156 0.1615 0.1565 0.1576 0.1564
59-66 0.535 0.550 0.5092 0.5507 0.5222 0.5494
67-70 0.480 0.390 0.4967 0.3922 0.4356 0.4029
71-72 0.520 0.592 0.5619 0.5922 0.5971 0.5504
Best weight 385.76 380.24 381.91 379.85 380.458 379.6943
(Ib)
Average N/A 383.16 N/A 382.08 382.553 379.8961
weight (Ib)
Std dev N/A 3.66 N/A 1.912 1.221 0.0791
No. of analyses | N/A 18,500 N/A 19,621 19,084 15,600
F.ig. 7.15 The convergence 2300
diagram of the CBO
algorithm for the 72-bar 1900
spatial truss [2] =
:_f 1500
®
2 1100
700
300 ‘ : : : : : : ‘
50 100 150 200 250 300 350 400
Iteration

maximum cross-sectional area of each member is 4.00 in” (25.81 cmz). The loading
conditions are considered as:

1. Loads 5, 5, and —5 Kkips in the X, y, and z directions at node 17, respectively
2. A load —5 kips in the z direction at nodes 17, 18, 19, and 20
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Fig. 7.16 Comparison of 0
the allowable and existing
stresses in the elements of
the 72-bar truss structure [2]

p— 1] —(Casel ——The allowable value

Stress (Ksi)

1 11 21 31 41 51 61 7
Element number

Table 7.12 summarizes the results obtained by the present work and those of the
previously reported researches. The best result of the CBO approach is 379.694,
while it is 385.76, 380.24, 381.91, 379.85, and 380.458 Ib for the GA [23], ACO
[24], PSO [25], BB-BC [26], and RO [19] algorithm, respectively. Also, the
number of analyses of the CBO is 15,600, while it is 18,500, 19,621, and 19,084
for the ACO, BB-BC, and RO algorithm, respectively. Also, it is evident in
Table 7.12 that the standard deviation of 20 independent runs for the CBO is less
than the other optimization algorithms. Figure 7.15 shows the convergence dia-
grams in terms of the number of iterations for this example. Figure 7.16 shows the
allowable and existing stress values in truss member using the CBO.

7.3.2.3 A 582-Bar Tower Truss

The 582-bar spatial truss structure, shown in Fig. 7.17, was studied with discrete
variables by other researchers [27, 28]. However, here we have used this structure
with continuous sizing variables. The 582 structural members categorized as
32 independent size variables. A single load case is considered consisting of lateral
loads of 5.0 kN (1.12 kips) applied in both x and y directions and a vertical load of
—30 kN (—6.74 kips) applied in the z direction at all nodes of the tower. The lower
and upper bounds on size variables are taken as 3.1 in* (20 cm?) and 155.0 in®
(1000 cm?), respectively.

The allowable tensile and compressive stresses are used as specified by the
ASD-AISC [20] code, as Eqgs. (7.28) and (7.29).

The maximum slenderness ratio is limited to 300 for tension members, and it is
recommended to be limited to 200 for compression members according to
ASD-AISC [20]. The modulus of elasticity is 29,000 ksi (203,893.6 MPa), and
the yield stress of steel is taken as 36 ksi (253.1 MPa). Other constraints are the
limitations of nodal displacements which should be no more than 8.0 cm (3.15 in.)
in all directions.

Table 7.13 lists the optimal values of the 32 size variables obtained by the
present algorithm. Figure 7.18 shows the convergence diagrams for the utilized
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Table 7.13 Optimum design cross sections for the 582-bar tower truss

7 Colliding Bodies Optimization

Present work [2] Present work [2]
Element groups Area, cm? Element groups Area, cm?
1 20.5526 17 155.6601
2 162.7709 18 21.4951
3 24.8562 19 25.1163
4 122.7462 20 94.0228
5 21.6756 21 20.8041
6 21.4751 22 21.223
7 110.8568 23 53.5946
8 20.9355 24 20.628
9 23.1792 25 21.5057
10 109.6085 26 26.2735
11 21.2932 27 20.6069
12 156.2254 28 21.5076
13 159.3948 29 24.1394
14 107.3678 30 20.2735
15 171.915 31 21.1888
16 31.5471 32 29.6669

Volume (m’) 16.1520

Fig. 7.18 The convergence 90

diagram of the CBO for
582-bar tower truss [2]
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algorithms. Figure 7.19 shows the allowable and existing stress ratio and displace-
ment values of the CBO. Here, the number of structural analyses is taken as 20,000.
The maximum values of displacements in the X, y, and z directions are 8 cm,
7.61 cm, and 2.15 cm, respectively. The maximum stress ratio is 0.47 %.

7.3.2.4 A 52-Bar Dome-Like Truss

Figure 7.20 shows the initial topology and the element numbering of a 52-bar
dome-like space truss. This example has been investigated by Lingyun et al.
[29]. Gomes [30] utilized the NHGA and PSO algorithms. This has also been
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Fig. 7.19 Comparison of the allowable and existing constraints for the 582-bar truss using the
DHPSACO, [2], (a) stress ratio, (b) displacement in the z direction. (¢) Displacement in the y
direction. (d). Displacement in the x direction

investigated by Kaveh and Zolghadr [31] using the standard CSS. This example is
optimized for shape and configuration. The space truss has 52 bars, and
nonstructural masses of m = 50 kg are added to the free nodes. The material density
is 7800 kg/m® and the modulus of elasticity is 210,000 MPa. The structural mem-
bers of this truss are categorized into eight groups, where all members in a group
share the same material and cross-sectional properties. Table 7.14 shows each
element group by member numbers. The range of the cross-sectional areas varies
from 1 to 10 cm?. The shape optimization is performed taking into account that the
symmetry is preserved in the process of design. Each movable node is allowed to
vary £2 m. There are two constraints in the first two natural frequencies so that @,
< 15916 HZ and w, > 28.648 HZ. This example is considered to be a truss
optimization problem with two natural frequency constraints and 13 design vari-
ables (five shape variables plus eight size variables).

Table 7.15 compares the cross section, best weight, mean weight, and standard
deviation of 20 independent runs of CBO with the results of other researches. It is
evident that the CBO is better than in terms of best weight of the results. Table 7.16
shows the natural frequencies of optimized structure obtained by different authors
in the literature and the results obtained by the present algorithm. Figure 7.21
provides the convergence rates of the best result founded by the CBO.
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Fig. 7.20 Schematic of the 52-bar space truss. (a) Top view, (b) side view
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Table 7.14 Element

] Group number Elements
grouping

1 14

2 5-8

3 9-16
4 17-20
5 21-28
6

7

8

29-36
3744
45-52

Table 7.15 Cross-sectional areas and nodal coordinates obtained by different researchers for the
52-bar space truss

Lingyun et al. | Gomes Kaveh et al.
Variable Initial | GA [29] PSO [30] |CSS [31] Present work [2]
Za (m) 6.000 |5.8851 5.5344 5.2716 5.6523
Xg (m) 2.000 1.7623 2.0885 1.5909 1.9665
Zg (m) 5.700 | 4.4091 3.9283 3.7039 3.7378
Xg (m) 4.000 |3.4406 4.0255 3.5595 3.7620
Zg (m) 4.500 |3.1874 2.4575 2.5757 2.5741
A, (cm®) 2.0 1.0000 0.3696 1.0464 1.0009
A (cm®) 2.0 2.1417 4.1912 1.7295 1.3326
Az (cm®) 2.0 1.4858 1.5123 1.6507 1.3751
Ag (cm?) 2.0 1.4018 1.5620 1.5059 1.6327
As (cm®) 2.0 1.9110 1.9154 1.7210 1.5521
Ag (cm®) 2.0 1.0109 1.1315 1.0020 1.0000
A, (cm®) 2.0 1.4693 1.8233 1.7415 1.6071
Ag (cm®) 2.0 2.1411 1.0904 1.2555 1.3354
Best weight (kg) 338.69 |236.046 228.381 205.237 197.962
Average weight (kg) | — - 234.3 213.101 206.858
Std dev - - 5.22 7.391 5.750
No. of analyses - - 11,270 4000 4000

Table 7.16 Natural frequencies (HZ) of the optimized 52-bar planar truss

Lingyun et al. | Gomes Kaveh et al.
Frequency number | Initial | GA [29] PSO [30] | CSS [31] Present work [2]
1 22.69 |12.81 12.751 9.246 10.2404
2 25.17 |28.65 28.649 28.648 28.6482
3 25.17 |28.65 28.649 28.699 28.6504
4 31.52 |29.54 28.803 28.735 28.7117
5 33.80 |30.24 29.230 29.223 29.2045
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Fig. 7.21 Convergence history for the 52-bar truss [2]
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Fig. 7.22 (a) Schematic of the Burro Creek Bridge. (b) Finite element nodal and element
numbering of Burro Creek Bridge

7.3.2.5 The Model of Burro Creek Bridge

The last example is the sizing optimization of the planar bridge shown in Fig. 7.22a.
This example has been first investigated by Makiabadi et al. [32] using the
teaching—learning-based optimization algorithm. This bridge is 680 ft long and
155 ft high truss of the main span. Also, both upper and lower chords shapes are
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Table 7.17 Three different design variables for the Burro Creek Bridge
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Design Member number

variables Case 1 (4 variables) Case 2 (8 variables) Case 3 (12 variables)

1 67,63,59,55,51,47,43,39,35, |67,63,59,55,51,47,43,39,35, |67,63,59,55,51,47,43
31,27,23,19,15,11,7,3 31,27

2 66,62,58,54,50,46,42,38,34, | 66,62,58,54,50,46,42,38,34, | 66,62,58,54,50,46,42
30,26,22,18,14,10,6,2 30,26

3 69,65,61,57,53,49,45,41,37, |69,65,61,57,53,49,45,41,37, |69,65,61,57,53,49,45
33,29,25,21,17,13,9,5,1 33,29

4 68,64,60,56,52,48,44,40,36, | 68,64,60,56,52,48,44,40,36, |68,64,60,56,52,48,44
32,28,24,20,16,12,8.4 32,28

5 23,19,15,11,7,3 39,35,31,27,23,19

6 22,18,14,10,6,2 38,34,30,26,22,18

7 25,21,17,13,9,5,1 41,37,33,29,25,21

8 24,20,16,12,3.4 40,36,32,28,24,20

9 15,11,7,3

10 14,10,6,2

11 17,13,9,5,1

12 16,12,8.4

Table 7.18 Comparison of CBO optimized cross-sectional areas (in”) with those of TLS for the

Burro Creek Bridge

Maktobi et al.

TLS [32] Present work [2]
Design variables | Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
1 0.20000 0.2000 0.20000 0.20000 0.20000 0.20010
2 0.39202 0.46247 0.49843 0.35830 0.46532 0.43580
3 0.41654 0.22233 0.20000 0.20000 0.20007 0.20020
4 0.85487 0.57067 0.39476 0.78100 0.48657 0.32630
5 0.20012 0.20000 0.20000 0.20000
6 0.31227 0.42170 0.20004 0.27960
7 0.42791 0.25346 0.20001 0.20010
8 0.84160 0.63739 0.81310 0.70410
9 0.20000 0.20000
10 0.27992 0.20010
11 0.43354 0.20000
12 0.83483 0.74470
Best weight (Ib) |368,598.1 |315,885.7 [298,699.9 |299,756.7 |269,839.5 |253,871.3
No. of analyses 15,000 35,000 50,000 8000 8000 8000

quadratic parabola. Because of symmetry of this truss, one can analyze half of the
structure, Fig. 7.22b. The element groups and applied equivalent centralized loads
are shown in Fig. 7.22b. The modulus of elasticity of material is 4.2 x 10° Ib/ft’, Fy
is taken as 72.0 x 10° [b/ff*, and the density of material is 495 Ib/f’. For this
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example, allowable tensile and compressive stresses are considered according to
ASD-AISC (1989) [20]. According to the Australian Bridge Code [33], the allow-
able displacement is 0.85 ft.

Three design cases are studied according to three different groups of variables
including 4, 8, and 12 variables in the design. For three cases, the size variables are
chosen from 0.2 to 5.0 in®. Table 7.17 shows the full list of three different groups of
variables used in the problem.

Table 7.18 compares the results obtained of the CBO with those of the TLS
algorithm. The optimum weights of the CBO are 299,756.7, 269,839.5, and
253,871.3 Ib, while these are 368,598.1, 315,885.7, and 298,699.9 for Cases 1, 2,
and 3, respectively. It can be seen that the number of analyses is much less than that
of TLS algorithm. Figure 7.23 provides a comparison of the convergence diagrams
of the CBO for three cases.

7.3.3 Discussion

CBO utilizes a simple formulation to find minimum of functions and does not
depend on any internal parameter. Also, the formulation of CBO algorithm does not
use the memory for saving the best-so-far solution (i.e., the best position of agents
from the previous iterations). By defining the coefficient of restitution (COR), a
good balance between the global and local search is achieved in CBO. The
proposed approach performs well in several test problems both in terms of the
number of fitness function evaluations and in terms of the quality of the solutions.
The results are compared to those generated with other techniques reported in the
literature.
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