
Chapter 3

Charged System Search Algorithm

3.1 Introduction

This chapter consists of two parts. In the first part, an optimization algorithm based

on some principles from physics and mechanics is presented, which is known as the

charged system search (CSS) [1]. In this algorithm the governing Coulomb law

from electrostatics and the governing laws of motion from the Newtonian mechan-

ics are utilized. CSS is a multi-agent approach in which each agent is a charged

particle (CP). CPs can affect each other based on their fitness values and their

separation distances. The magnitude of the resultant force is determined by using

the electrostatics laws, and the quality of the movement is determined using the

governing laws of motion from the Newtonian mechanics. CSS can be utilized in all

optimization fields; especially it is suitable for non-smooth or non-convex domains.

CSS needs neither the gradient information nor the continuity of the search space.

In the second part, CSS is applied to optimal design of skeletal structures, and

high performance of CSS is illustrated [2].

3.2 Charged System Search

3.2.1 Background

3.2.1.1 Electrical Laws

In physics, an electric charge creates an electric field in its surrounding space,

which exerts a force on other electrically charged objects. The electric field

surrounding a point charge is given by Coulomb’s law. Coulomb confirmed that

the electric force between two small charged spheres is proportional to the inverse

square of their separation distance. The electric force between charged spheres
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A and B in Fig. 3.1 causes the spheres to either attract or repel each other, and the

resulting motion causes the suspended fiber to twist. Since the restoring torque of

the twisted fiber is proportional to the angle through which the fiber rotates, a

measurement of this angle provides a quantitative measure of the electric force of

attraction or repulsion [3]. Coulomb’s experiments showed that the electric force

between two stationary charged particles:

• Is inversely proportional to the square of the separation distance between the

particles and directed along the line joining them

• Is proportional to the product of the charges qi and qj on the two particles

• Is attractive if the charges are of opposite sign and repulsive if the charges have

the same sign

Fig. 3.1 Coulomb’s torsion
balance, used to establish

the inverse-square law for

the electric force between

two charges [1]

46 3 Charged System Search Algorithm



From the above observations, Coulomb’s law provides the magnitude of the

electric force (Coulomb force) between the two point charges [3] as:

Fij ¼ ke
qiqj
r2ij

ð3:1Þ

where ke is a constant called the Coulomb constant and rij is the distance between
the two charges.

Consider an insulating solid sphere of radius a, which has a uniform volume

charge density and carries a total positive charge qi. The electric field Eij at a point

outside the sphere is defined as:

Eij ¼ ke
qi
r2ij

ð3:2Þ

The magnitude of the electric field at a point inside the sphere can be obtained

using Gauss’s law. This is expressed as:

Eij ¼ ke
qi
a3

rij ð3:3Þ

Note that this result shows that Eij ! 0 as rij ! 0. Therefore, the result

eliminates the problem that would exist at rij ¼ 0 if Eij is varied as 1/r2ij inside the

sphere as it does outside the sphere. That is, ifEij / 1=r2ij, the field will be infinite at

rij ¼ 0, which is physically impossible. Hence, the electric field inside the sphere

varies linearly with rij. The field outside the sphere is the same as that of a point

charge qi located at rij ¼ 0. Also the magnitudes of the electric fields for points

inside and outside the sphere coincide when rij ¼ a. A plot of Eij versus rij is shown
in Fig. 3.2, Ref. [3].

In order to calculate the equivalent electric field at a point (rj) due to a group of

point charges, the superposition principle is applied to fields which follows directly

from the superposition of the electric forces. Thus, the electric field of a group of

charges can be expressed as:

Ej¼
XN

i¼1, i6¼j

Eij ð3:4Þ

where N is the total number of charged particles and Eij is equal to:
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Eij ¼
keqi
a3

rij if rij < a

keqi
r2ij

if rij � a

8>><
>>: ð3:5Þ

In order to obtain both the magnitude and direction of the resultant force on a

charge qj at position rj due to the electric field of a charge qi at position ri, the full

vector form is required which can be expressed as:

Fij ¼ Eijqj
ri � rj

ri � rj
�� ���� �� ð3:6Þ

For multiple charged particles, this can be summarized as follows:

Fj ¼ keqj
X
i, i 6¼j

qi
a3
rij � i1 þ qi

r2ij
� i2

 !
ri � rj

ri � rj
�� ���� �� i1 ¼ 1, i2 ¼ 0 , rij < a

i1 ¼ 0, i2 ¼ 1 , rij � a

�
ð3:7Þ

3.2.1.2 The Governing Laws of Motion from the Newtonian Mechanics

Newtonian mechanics or classical mechanics studies the motion of objects. In the

study of motion, the moving object is described as a particle regardless of its size. In

Fig. 3.2 A plot of Eij versus

rij for a uniformly charged

insulating sphere [1]
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general, a particle is a point-like mass having infinitesimal size. The motion of a

particle is completely known if the particle’s position in space is known at all times.

The displacement of a particle is defined as the change in its position. As a particle

moves from an initial position rold to a final position rnew, its displacement is given by:

Δr ¼ rnew � rold ð3:8Þ

The slope of tangent line of the particle position represents the velocity of the

particle as:

v ¼ rnew � rold

tnew � told
¼ rnew � rold

Δt
ð3:9Þ

When the velocity of a particle changes with time, the particle is said to be

accelerated. The acceleration of the particle is defined as the change in the velocity

divided by the time interval during which that change has occurred:

a ¼ vnew � vold

Δt
ð3:10Þ

Using Eqs. (3.8), (3.9), and (3.10), the displacement of any object as a function of

time is obtained approximately as:

rnew ¼ 1

2
a � Δt2 þ vold � Δtþ rold ð3:11Þ

Another law utilized in this article is Newton’s second law which explains the

question of what happens to an object that has a nonzero resultant force acting on it:

the acceleration of an object is directly proportional to the net force acting on it and

inversely proportional to its mass:

F ¼ m � a ð3:12Þ

where m is the mass of the object.

Substituting Eq. (3.12) in Eq. (3.11), we have

rnew ¼ 1

2

F

m
� Δt2 þ vold � Δtþ rold ð3:13Þ

3.2.2 Presentation of Charged Search System

In this section, a new efficient optimization algorithm is established utilizing the

aforementioned physics laws, which is called charged system search (CSS). In the
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CSS, each solution candidate Xi containing a number of decision variables (i.e.,

Xi¼ {xi,j}) is considered as a charged particle. The charged particle is affected by

the electric fields of the other agents. The magnitude of the resultant force is

determined by using the electrostatics laws as discussed in Sect. 3.2.1.1, and the

quality of the movement is determined using the governing laws of motion from the

Newtonian mechanics. It seems that an agent with good results must exert a

stronger force than the bad ones, so the amount of the charge will be defined

considering the objective function value, fit(i). In order to introduce CSS, the

following rules are developed:

Rule 1 Many of the natural evolution algorithms maintain a population of solu-

tions which evolve through random alterations and selection [4, 5]. Similarly, CSS

considers a number of charged particles (CPs). Each CP has a magnitude of charge

(qi) and as a result creates an electric field in its surrounding space. The magnitude

of the charge is defined considering the quality of its solution as follows:

qi ¼
fit ið Þ � fitworst

fitbest� fitworst
, i ¼ 1, 2, . . . ,N ð3:14Þ

where fitbest and fitworst are so far the best and the worst fitness of all particles; fit
(i) represents the objective function value or the fitness of the agent i; and N is the

total number of CPs. The separation distance rij between two charged particles is

defined as follows:

rij ¼
Xi � Xj

�� ���� ������ Xi þ Xj

� �
=2� Xbest

����þ ε
ð3:15Þ

where Xi and Xj are the positions of the ith and the jth CPs, Xbest is the position of

the best current CP, and ε is a small positive number to avoid singularities.

Rule 2 The initial positions of CPs are determined randomly in the search space:

x
oð Þ
i, j ¼ xi,min þ rand � xi,max � xi,minð Þ, i ¼ 1, 2, . . . , n ð3:16Þ

where x
ðoÞ
i;j determines the initial value of the ith variable for the jth CP; xi,min and xi,

max are the minimum and the maximum allowable values for the ith variable; rand is
a random number in the interval [0,1]; and n is the number of variables. The initial

velocities of charged particles are zero:

v
oð Þ
i, j ¼ 0, i ¼ 1, 2, . . . , n ð3:17Þ

Rule 3 Three conditions could be considered related to the kind of the attractive

forces:
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• Any CP can affect another one; i.e., a bad CP can affect a good one and vice

versa ( pij¼ 1).

• A CP can attract another if its electric charge amount (fitness with revise relation

in minimizing problems) is better than the other. In other words, a good CP

attracts a bad CP:

pij ¼
1 fit jð Þ > fit ið Þ

0 else

(
ð3:18Þ

• All good CPs can attract bad CPs and only some of bad agents attract good

agents, considering following probability function:

pij ¼
1

fit ið Þ � fitbest

fit jð Þ � fit ið Þ > rand _ fit jð Þ > fit ið Þ

0 else

8<
: ð3:19Þ

According to the above conditions, when a good agent attracts a bad one, the

exploitation ability for the algorithm is provided, and vice versa if a bad CP attracts

a good CP, the exploration is provided. When a CP moves toward a good agent, it

improves its performance, and so the self-adaptation principle is guaranteed.

Moving a good CP toward a bad one may cause losing the previous good solution

or at least increasing the computational cost to find a good solution. To resolve this

problem, a memory which saves the best so far solutions can be considered.

Therefore, it seems that the third of the above conditions is the best rule because

of providing strong exploration ability and an efficient exploitation.

Rule 4 The value of the resultant electrical force acting on a CP is determined

using Eq. (3.7) as:

Fj ¼ qj
X
i, i 6¼j

qi
a3
rij � i1 þ qi

r2ij
� i2

 !
pij Xi � Xj

� �
,

j ¼ 1, 2, . . . ,N
i1 ¼ 1, i2 ¼ 0 , rij < a
i1 ¼ 0, i2 ¼ 1 , rij � a

*

ð3:20Þ

where Fj is the resultant force acting on the jth CP, as illustrated in Fig. 3.3.

In this algorithm, each CP is considered as a charged sphere with radius a, which
has a uniform volume charge density. Here, the magnitude of a is set to unity;

however, for more complex examples, the appropriate value for a must be defined

considering the size of the search space. One can utilize the following equation as a

general formula:
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a ¼ 0:10�max xi,max � xi,min

��i ¼ 1, 2, . . . , n
� �� � ð3:21Þ

According to this rule, in the first iterations where the agents are far from each

other, the magnitude of the resultant force acting on a CP is inversely proportional

to the square of the separation distance between the particles. Thus the exploration

power in this condition is high because of performing more searches in the early

iterations. It is necessary to increase the exploitation of the algorithm and to

decrease the exploration gradually. After a number of searches where CPs are

collected in a small space and the separation distance between the CPs becomes

small say 0.1, then the resultant force becomes proportional to the separation

distance of the particles instead of being inversely proportional to the square of

the separation distance. According to Fig. 3.4, if the first equation Fij / 1=r2ij

� 	
is

used for rij ¼ 0:1, we have Fij ¼ 100� keqiqj that is a large value, compared to a

force acting on a CP at rij ¼ 2 Fij ¼ 0:25� keqiqj
� �

, and this great force causes

particles to get farther from each other instead of getting nearer, while the second

one Fij / rij
� �

guaranties that a convergence will happen. Therefore, the parameter

a separates the global search phase and the local search phase, i.e., when majority of

the agents are collected in a space with radius a, the global search is finished and the
optimizing process is continued by improving the previous results, and thus the

local search starts. Besides, using these principles controls the balance between the

exploration and the exploitation.

It should be noted that this rule considers the competition step of the algorithm.

Since the resultant force is proportional to the magnitude of the charge, a better

Fig. 3.3 Determining the

resultant electrical force

acting on a CP [1]
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fitness (great qi) can create a bigger attracting force, so the tendency to move toward

a good CP becomes more than a bad particle.

Rule 5 The new position and velocity of each CP is determined considering

Eqs. (3.9) and (3.13) as follows:

Xj,new ¼ randj1 � ka � Fj

mj
� Δt2 þ randj2 � kv � Vj,old � Δtþ Xj,old ð3:22Þ

Vj,new ¼ Xj,new � Xj,old

Δt
ð3:23Þ

where ka is the acceleration coefficient; kv is the velocity coefficient to control the

influence of the previous velocity; and randj1 and randj2 are two random numbers

uniformly distributed in the range of (0,1). Here, mj is the mass of the CPs which is

equal to qj. Δt is the time step and is set to unity.

The effect of the pervious velocity and the resultant force acting on a CP can be

decreased or increased based on the values of the kv and ka, respectively. Excessive
search in the early iterations may improve the exploration ability; however, it must

be deceased gradually, as described before. Since ka is the parameter related to the

attracting forces, selecting a large value for this parameter may cause a fast

convergence, and vice versa a small value can increase the computational time.

In fact ka is a control parameter of the exploitation. Therefore, choosing an

incremental function can improve the performance of the algorithm. Also, the

direction of the pervious velocity of a CP is not necessarily the same as the resultant

force. Thus, it can be concluded that the velocity coefficient kv controls the

exploration process, and therefore, a decreasing function can be selected. Thus, kv
and ka are defined as:

kv ¼ 0:5 1� iter=itermaxð Þ, ka ¼ 0:5 1þ iter=itermaxð Þ ð3:24Þ

where iter is the actual iteration number and itermax is the maximum number of

iterations. With this equation, kv decreases linearly to zero while ka increases to one
when the number of iterations increases. In this way, the balance between the

Fig. 3.4 A comparison between the equations [1]. (a) Fij / 1=r2ij and (b) Fij / rij when rij < a
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exploration and exploitation is saved. Considering the values of these parameters,

Eqs. (3.22) and (3.23) can be rewritten as:

Xj,new ¼ 0:5randj1 � 1þ iter=itermaxð Þ �
X
i, i 6¼j

qi
a3
rij � i1 þ qi

r2ij
� i2

 !
pij Xi �Xj

� �
þ 0:5randj2 � 1þ iter=itermaxð Þ �Vj,old þXj,old

ð3:25Þ

Vj,new ¼ Xj,new � Xj,old ð3:26Þ

Figure 3.5 illustrates the motion of a CP to its new position using this rule. The

rules 5 and 6 provide the cooperation step of the CPs, where agents collaborate with

each other by information transferring.

Rule 6 Considering a memory which saves the best CP vectors and their related

objective function values can improve the algorithm’s performance without

increasing the computational cost. To fulfill this aim, charged memory (CM) is

utilized to save a number of the best so far solutions. In this chapter, the size of the

CM (i.e., CMS) is taken as N/4. Another benefit of the CM consists of utilizing this

memory to guide the current CPs. In other words, the vectors stored in the CM can

attract current CPs according to Eq. (3.20). Instead, it is assumed that the same

number of the current worst particles cannot attract the others.

Rule 7 There are two major problems in relation to many metaheuristic algo-

rithms; the first problem is the balance between exploration and exploitation in the

Fig. 3.5 The movement of

a CP to the new position [1]
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beginning, during, and at the end of the search, and second is how to deal with an

agent violating the limits of the variables.

The first problem is solved naturally through the application of above-stated

rules; however, in order to solve the second problem, one of the simplest

approaches is utilizing the nearest limit values for the violated variable. Alterna-

tively, one can force the violating particle to return to its previous position or one

can reduce the maximum value of the velocity to allow fewer particles to violate the

variable boundaries. Although these approaches are simple, they are not sufficiently

efficient and may lead to reduced exploration of the search space. This problem has

previously been addressed and solved using the harmony search-based handling

approach [4, 6]. According to this mechanism, any component of the solution

vector violating the variable boundaries can be regenerated from the CM as:

xi, j ¼
w:p: CMCR ¼¼> select a new value for a variable from CM

¼¼> w:p: 1� PARð Þ do nothing

¼¼> w:p: PAR choose a neighboring value

w:p: 1� CMCRð Þ ¼¼> select a new value randomly

8>><
>>:

ð3:27Þ

where “w.p.” is the abbreviation for “with the probability”; xi,j is the ith component

of the CP j; the charged memory considering rate (CMCR) varying between 0 and

1 sets the rate of choosing a value in the new vector from the historic values stored

in the CM; and (1�CMCR) sets the rate of randomly choosing one value from the

possible range of values. The pitch adjusting process is performed only after a value

is chosen from CM. The value (1� PAR) sets the rate of doing nothing. For more

details, the reader may refer to Refs. [4, 6].

Rule 8 The terminating criterion is one of the following:

• Maximum number of iterations: The optimization process is terminated after a

fixed number of iterations, for example, 1000 iterations.

• Number of iterations without improvement: The optimization process is termi-

nated after some fixed number of iterations without any improvement.

• Minimum objective function error: The difference between the values of the best

objective function and the global optimum is less than a prefixed anticipated

threshold.

• Difference between the best and the worst CPs: The optimization process is

stopped if the difference between the objective values of the best and the worst

CPs becomes less than a specified accuracy.

• Maximum distance of CPs: The maximum distance between CPs is less than a

prefixed value.

Now we can establish a new optimization algorithm utilizing the above rules.

The following pseudo code summarizes the CSS algorithm:
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Level 1: Initialization

• Step 1: Initialization. Initialize CSS algorithm parameters; initialize an array of

charged particles with random positions and their associated velocities (Rules

1 and 2).

• Step 2: CP ranking. Evaluate the values of the fitness function for the CPs,

compare with each other, and sort increasingly.

• Step 3: CM creation. Store CMS number of the first CPs and their related values

of the objective function in the CM.

Level 2: Search

• Step 1: Attracting force determination. Determine the probability of moving

each CP toward others (Rule 3), and calculate the attracting force vector for each

CP (Rule 4).

• Step 2: Solution construction. Move each CP to the new position and find the

velocities (Rule 5).

• Step 3: CP position correction. If each CP exits from the allowable search space,

correct its position using Rule 7.

• Step 4: CP ranking. Evaluate and compare the values of the objective function

for the new CPs; and sort them increasingly.

• Step 5: CM updating. If some new CP vectors are better than the worst ones in

the CM, include the better vectors in the CM and exclude the worst ones from the

CM (Rule 6).

Level 3: Terminating Criterion Controlling

• Repeat search level steps until a terminating criterion is satisfied (Rule 8).

The flowchart of the CSS algorithm is illustrated in Fig. 3.6.

3.3 Validation of CSS

In order to verify the efficiency of the new algorithm, some numerical examples are

considered from literature. The examples contain 18 unimodal and multimodal

functions. These numerical examples are presented in Sect. 3.1. The performance of

the CSS to optimize these functions is investigated in Sect. 3.2. In Sect. 3.3, some

well-studied engineering design problems taken from the optimization literature are

used to illustrate the way in which the proposed method works.
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3.3.1 Description of the Examples

In this section, a number of benchmark functions chosen from Ref. [7] are opti-

mized using CSS and compared to GA and some of its variations to verify the

efficiency of CSS. The description of these test problems is provided in Table 3.1.

When the dimension is selected as 2, a perspective view and the related contour

lines for some of these functions are illustrated in Fig. 3.7.

3.3.2 Results

Similar to the other metaheuristics, for the CSS a large value for the number of CPs

increases the search strength of the algorithm as well as the computational cost, and

vice versa a small number causes a quick convergence without performing a

Fig. 3.6 The flowchart of the CSS [1]
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complete search. Here, the number of CPs is set to 20, and the maximum number of

the permitted iterations is considered as 200. These values seem to be suitable for

finding the optimum results. The value of HMCR is set to 0.95 and that of PAR is

taken as 0.10 [4]. The results obtained by CSS are listed in Table 3.2 along with

those obtained by GA and some of its variations, which are directly derived from

[7]. The numbers denote the average number of function evaluations from 50 inde-

pendent runs for every objective function described in Sect. 3.1. The numbers in
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Fig. 3.7 A perspective view and the related contour lines for some of function when n¼ 2, [1]. (a)

Aluffi-Pentini, (b) Bohachevsky 1, (c) Bohachevsky 2, (d) Becker and Lago, (e) Branin, (f) Camel,

(g) Cb3, (h) Cosine mixture, (i) Exponential, (j) Griewank, (k) Rastrigin, (l) Rosenbrock
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parentheses represent the fraction of successful runs in which the algorithm has

located the global minimum with predefined accuracy, which is taken as

ε¼ fmin� ffinal¼ 10�4. The absence of the parentheses denotes that the algorithm

has been successful in all independent runs. Although the GEN-S-M-LS finds good

results in some cases, it must be noted that GEN-S-M-LS utilizes some auxiliary

mechanisms such as an improved stopping rule, a new mutation mechanism, and a

repeated application of a local search procedure. To sum up, comparison of the

results demonstrates that CSS has a faster convergence than original GA and its

variations.
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In order to have some general idea about the way the CSS works, Fig. 3.8 is

prepared to show the positions of the current CPs and the stored CPs in the CM for

the first example. It can be seen that in the first iterations, the CPs investigate the

entire search space to discover a favorite space (global search). When this favorable

region containing a global optimum is discovered, the movements of the CPs are

limited to this space in order to provide more exploitation (local search).

For many metaheuristic algorithms, it is common property that if all the agents

get gathered in a small space, i.e., if the agents are trapped in part of the search

space, escaping from this may be very difficult. Since prevailing forces for the CSS
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algorithm are attracting forces, it looks as if the above problem has remained

unsolved for this method. However, having a good balance between the exploration

and the exploitation, and considering three steps containing self-adaptation, coop-

eration, and competition in the CSS, can solve this problem. As illustrated in

Fig. 3.9 which shows the positions of the CPs for the first example when all the

initial agents are located in a small part of the space, CSS can escape from this space

and go toward the favorite space.
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3.4 Charged System Search for Structural Optimization

3.4.1 Statement of the Optimization Design Problem

For optimum design of structures, the objective function can be expressed as:

minimize W Xð Þ ¼
Xn
i¼1

ρi � xi � Li ð3:28Þ

where W(X) is the weight of the structure; n is the number of members making up

the structure; ρi represents the material density of member i; Li is the length of

member i; xi is the cross-sectional area of member i chosen between xmin and xmax;

and min is the lower bound and max is the upper bound. This minimum design also

has to satisfy inequality constraints that limit design variable sizes and structural

responses (Lee and Geem [8]).

Table 3.2 Performance comparison for the benchmark problems

Function GEN GEN-S GEN-S-M GEN-S-M-LS CSS

AP 1360 (0.99) 1360 1277 1253 804

Bf1 3992 3356 1640 1615 1187

Bf2 20,234 3373 1676 1636 742

BL 19,596 2412 2439 1436 423

Branin 1442 1418 1404 1257 852

Camel 1358 1358 1336 1300 575

Cb3 9771 2045 1163 1118 436

CM 2105 2105 1743 1539 1563

Dejoung 9900 3040 1462 1281 630

Exp2 938 936 817 807 132

Exp4 3237 3237 2054 1496 867

Exp8 3237 3237 2054 1496 1426

Goldstein and

Price

1478 1478 1408 1325 682

Griewank 18,838 (0.91) 3111 (0.91) 1764 1652 (0.99) 1551

Hartman3 1350 1350 1332 1274 860

Hartman6 2562 (0.54) 2562 (0.54) 2530 (0.67) 1865 (0.68) 1783

Rastrigin 1533 (0.97) 1523 (0.97) 1392 1381 1402

Rosenbrock 9380 3739 1675 1462 1452

Total 112,311

(96.72)

41,640

(96.77)

29,166

(98.16)

25,193 (98.16) 17,367
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3.4.1.1 Constraint Conditions for Truss Structures

For truss structures, the constraints are as follows:

δmin � δi � δmax i ¼ 1, 2, ::::,m
σmin � σi � σmax i ¼ 1, 2, ::::, n
σ b
i � σi � 0 i ¼ 1, 2, ::::, nc

ð3:29Þ

in whichm is the number of nodes; nc denotes the number of compression elements;

σi and δi are the stress and nodal displacement, respectively; and σbi represents

allowable buckling stress in member i when it is in compression.

Fig. 3.8 The positions of the current CPs and the stored CPs in the CM for the first example

[1]. Asterisk Position of the current CPs. Square Position of the CPs stored in the CM
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3.4.1.2 Constraint Conditions for Frame Structures

For the frame structures, according to the ASD-AISC [9] code, the constraints are as

follows:

The stress limitations:

f a
Fa

þ f bx
Fbx

þ f by
Fby

� 1, For
f a
Fa

� 0:15 ð3:30Þ

f a
Fa

þ Cmxf bx

1� f a
F
0
ex

� 	
Fbx

þ Cmyf by

1� f a
F
0
ey

 �
Fby

� 1, For
f a
Fa

> 0:15 ð3:31Þ

f a
0:6Fy

þ f bx
Fbx

þ f by
Fby

� 1, For
f a
Fa

> 0:15 ð3:32Þ

The slenderness ratio limitation:

Fig. 3.9 The positions of the CPs for the first example when the all initial agents are introduced in

a small part of the space [1]. Asterisk Position of the current CPs. Square Position of the CPs stored
in the CM
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λi ¼ kiLi
ri

� 300 For tension members

λi ¼ kiLi
ri

� 200 For compression members

8><
>: ð3:33Þ

where fa (¼P/Ai) represents the computed axial stress. The computed flexural

stresses due to bending of the member about its major (x) and minor (y) principal

axes are denoted by fbx and fby, respectively. F
0
ex and F

0
ey denote the Euler stresses

about principal axes of the member that are divided by a factor of safety of 23/12.

The allowable bending compressive stresses about major and minor axes are

designated by Fbx and Fby. Cmx and Cmy are the reduction factors, introduced to

counterbalance overestimation of the effect of secondary moments by the amplifi-

cation factors 1� f a
F
0
ex

� 	
. For unbraced frame members, these factors are taken as

0.85. For braced frame members without transverse loading between their ends,

these are calculated from Cm ¼ 0:6� 0:4M1=M2, where M1/M2 is the ratio of

smaller end moment to the larger end moment. Finally, for braced frame members

having transverse loading between their ends, these factors are determined from the

formula Cm ¼ 1þ ψ f a=F
0
e

� �
based on a rational approximate analysis outlined in

ASD-AISC [9] Commentary-H1, where ψ is a parameter that considers maximum

deflection and maximum moment in the member. Fa stands for the allowable axial

stress under axial compression force alone and is calculated depending on elastic or

inelastic bucking failure mode of the member according to the slenderness ratio:

Fa ¼
1� λ2i

2C2
C

 !
Fy

" #�
5

3
þ 3λi
8CC

� λ3i
8C3

C

 !
For λi< CC

12π2E

23λ2i
For λi� CC

8>>><
>>>:

ð3:34Þ

where E¼ the modulus of elasticity; Fy¼ the yield stress of steel; CC ¼ the slender-

ness ratio dividing the elastic and inelastic buckling regions CC ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2E=Fy

p� �
;

λi¼ the slenderness ratio λi ¼ kLi=rið Þ; k¼ the effective length factor; and ri¼ the

governing radius of gyration. For an axially loaded bracing member whose slender-

ness ratio exceeds 120, Fa is increased by a factor of (1.6� Li/200ri) considering
relative unimportance of the member. Equation (3.23) represents the slenderness

limitations imposed on all members such that maximum slenderness ratio is limited

to 300 for members under tension and to 200 for members under compression loads.

Geometric constraints:

Geometric constraints are considered between beams and columns framing into

each other at a common joint for practicality of an optimum solution generated. For

the two beams B1 and B2 and the column shown in Fig. 3.10, the following

geometric constraints are written (Saka and Hasançebi [10]):
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bfb � bfc ð3:35Þ
b

0
f b � dc � 2tf

� � ð3:36Þ

where bfb, b
0
fb, and bfc are the flange width of the beam B1, the beam B2, and the

column, respectively; dc is the depth of the column; and tf is the flange width of the
column. Equation (3.35) ensures that the flange width of the beam B1 remains

smaller than that of the column. On the other hand, Eq. (3.36) guarantees that flange

width of the beam B2 remains smaller than clear distance between the flanges of the

column.

Maximum lateral displacement:

ΔT

H
� R ð3:37Þ

Inter-story displacement constraints:

Fig 3.10 Beam-column

geometric constraints [2]
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di
hi

� RI, i ¼ 1, 2, . . . , ns ð3:38Þ

where ΔT is the maximum lateral displacement, H is the height of the frame

structure, R is the maximum drift index (¼1/400), di is the inter-story drift, hi is
the story height of the ith floor, ns represents the total number of stories, and RI is

the inter-story drift index permitted by the code of the practice (¼1/400).

3.4.1.3 Design Loads for Frame Structures

The frame examples are subjected to various gravity loads in addition to lateral

wind forces. The gravity loads acting on floor slabs cover dead (D), live (L), and

snow (S) loads. All the floors excluding the roof are subjected to a design dead load

of 2.88 kN/m2 and a design live load of 2.39 kN/m2. The roof is subjected to a

design dead load of 2.88 kN/m2 plus snow load. The design snow load is computed

using Equation (7–1) in ASCE 7–05 [11], resulting in a design snow pressure of

0.75 kN/m2. The calculated gravity loads are applied as uniformly distributed loads

on the beams using distribution formulas developed for slabs. The design wind

loads (W) are also computed according to ASCE 7–05 using the following

equation:

pw ¼ 0:613KzKztKdV
2I

� �
GCp

� � ð3:39Þ

where pw is the design wind pressure in kN/m2; Kz (¼1.07) is the velocity exposure

coefficient; Kzt (¼1.0) is the topographic factor; Kd (¼0.85) is the wind direction-

ality factor; I (¼1.15) is the importance factor; V (¼46.94 m/s) is the basic wind;

G (¼0.85) is the gust factor; and Cp (¼0.8 for windward face and �0.5 for leeward

face) is the external pressure coefficient. The calculated wind loads are applied as

uniformly distributed lateral loads on the external beams of the frames located on

windward and leeward facades at every floor level.

The load combination per ASD-AISC specification is considered as:

Dþ Lþ SþWxð Þ:
Dþ Lþ SþWy

� �
:

It should be noted that for wind forces in the above load combinations, two cases

are considered. In the first case, the wind loading is acting along x-axis, whereas in
the second one it is applied along y-axis.

3.4 Charged System Search for Structural Optimization 69



3.4.2 CSS Algorithm-Based Structural Optimization
Procedure

As defined in the previous section, there are some problem-specific constraints in

structural optimization problems that must be handled. The penalty function

method has been the most popular constraint-handling technique due to its simple

principle and ease of implementation. In utilizing the penalty functions, if the

constraints are between the allowable limits, the penalty will be zero; otherwise,

the amount of penalty is obtained by dividing the violation of allowable limit to the

limit itself. Since the CSS is independent of the type of penalty function, one can

easily utilize another approach in the application of CSS.

Detailed procedure of the proposed CSS algorithm-based method to determine

optimal design of structures is shown in Fig. 3.11. Considering the rules defined for

the CSS in Sect. 3.3, and utilizing the penalty functions to handle the problem-

specific constraints, the CSS algorithm-based structural optimization procedure can

be divided into the following three phases:

Phase 1: Initialization CSS algorithm parameters such as N, CMS, kv, ka, and
design variable bounds are initialized. An array of N Charged Particles (CPs) with

random positions are generated considering the variable bounds together with their

associated velocities. The structures associated with the generated CPs are analyzed

and the fitness functions values of the CPs are evaluated considering the weight of

the structure and the penalty functions. Then, CPs are ranked in the increasing order

of their fitness function values. CMS number of the first CPs and their related values

of the fitness function are stored in the CM.

Phase 2: Search Each CP moves to the new position considering the probability of

motion [Eq. (3.24)], the magnitude of the attracting force vector [Eq. (3.25)], and the

motion laws [Eqs. (3.26) and (3.27)]. If each CP exits from the allowable search space,

its position is corrected using the harmony-based algorithm. Then, the new CPs are

analyzed to evaluate the fitness function values of their corresponding CPs and to sort

them increasingly. Then, some of the good new CPs are stored in the CM and the worst

ones are excluded from the CM.

Phase 3: Terminating Criterion Controlling Search level is continued until a

terminating criterion is satisfied.

3.5 Numerical Examples

In this section, three truss and two frame structures are optimized utilizing the new

algorithm. The final results are then compared to the solutions of other advanced

metaheuristic methods to demonstrate the efficiency of this work. For the CSS

algorithm, a population of 20 CPs is used for the first and the second truss examples,

and a population of 50 candidates is selected for the remaining examples. The effect
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Fig. 3.11 The flowchart of the CSS for the truss structures [2]
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of the pervious velocity and the resultant force affecting a CP can be decreased or

increased based on the values of the kv and ka. Here, kv and ka are defined as:

kv ¼ c 1� iter=itermaxð Þ
ka ¼ c 1þ iter=itermaxð Þ ð3:40Þ

where iter is the iteration number, itermax is the maximum number of the iterations,

and c is set to 0.5 and 0.2 when the population of 20 and 50 CPs are selected,

respectively. With this equation, kv decreases linearly while ka increases when the

number of iterations increases. In this way, the balance between the exploration and

the exploitation is saved.

In order to investigate the effect of the initial solution on the final result and

because of the stochastic nature of the algorithm, each example is independently

solved several times. The initial population in each of these runs is generated in a

random manner according to Rule 2. The first two truss examples are optimized by

the CSS algorithm for 50 times, while performance comparisons of the CSS method

in other examples is based on 20 evaluations. The algorithms are coded in

MATLAB and structures are analyzed using the direct stiffness method.

3.5.1 A Benchmark Truss

The topology and nodal numbering of a 25-bar spatial truss structure, shown in

Fig. 3.12, are known as a benchmark example in the field of structural optimization.

The material density is considered as 0.1 lb/in3 (2767.990 kg/m3), and the modulus

of elasticity is taken as 10,000 ksi (68,950 MPa). The twenty-five members are

categorized into eight groups as follows:

(1) A1, (2) A2–A5, (3) A6–A9, (4) A10–A11, (5) A12–A13, (6) A14–A17, (7) A18–A21,

and (8) A22–A25

This spatial truss is subjected to two loading conditions shown in Table 3.3.

Maximum displacement limitations of �0.35 in (�8.89 mm) are imposed on every

node in every direction, and the axial stress constraints vary for each group as

shown in Table 3.4. The range of cross-sectional areas varies from 0.01 to 3.4 in2

(0.6452–21.94 cm2).

The CSS algorithm achieves the best solution after 7000 searches. However, the

HBB–BC (Kaveh and Talatahari [12]) and HPSACO (Kaveh and Talatahari [4])

algorithms find the best solution after about 12,500 and 9875 analyses, respectively,

which are 50 and 41% more than the present work. The best weight of the CSS is

545.10 lb. Although the CSS approach has slightly worse performance than the

improved methods IACS (Kaveh et al. [13]) and HPSACO (Kaveh and Talatahari

[4]), it performs better than other algorithms GA (Rajeev and Krishnamoorthy [14]),

PSO (Schutte and Groenwold [15]), and HS (Lee and Geem [8] when the best weight,

the average weight, or the standard deviation are compared. Table 3.5 presents a com-

parison of the performance of the CSS algorithm and other metaheuristic algorithms.
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Fig. 3.12 Schematic of a 25-bar spatial truss [2]

Table 3.3 Loading conditions for the 25-bar spatial truss

Node

Case 1 Case 2

PX
kips (kN)

PY
kips (kN)

PZ
kips (kN)

PX
kips (kN)

PY
kips (kN)

PZ
kips (kN)

1 0.0 20.0 (89) �5.0 (22.25) 1.0 (4.45) 10.0 (44.5) �5.0 (22.25)

2 0.0 �20.0 (89) �5.0 (22.25) 0.0 10.0 (44.5) �5.0 (22.25)

3 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0

6 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0

Table 3.4 Member stress limitation for the 25-bar spatial truss

Element group

Compressive stress limitations

ksi (MPa)

Tensile stress limitations

ksi (MPa)

1 A1 35.092 (241.96) 40.0 (275.80)

2 A2 ~A5 11.590 (79.913) 40.0 (275.80)

3 A6 ~A9 17.305 (119.31) 40.0 (275.80)

4 A10 ~A11 35.092 (241.96) 40.0 (275.80)

5 A12 ~A13 35.092 (241.96) 40.0 (275.80)

6 A14 ~A17 6.759 (46.603) 40.0 (275.80)

7 A18 ~A21 6.959 (47.982) 40.0 (275.80)

8 A22 ~A25 11.082 (76.410) 40.0 (275.80)
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Fig. 3.13 Schematic of a 120-bar dome-shaped truss [2]
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3.5.2 A 120-Bar Dome Truss

The topology and group numbers of a 120-bar dome truss are shown in Fig. 3.13.

The modulus of elasticity is 30,450 ksi (210,000 MPa), and the material density is

0.288 lb/in3 (7971.810 kg/m3). The yield stress of steel is taken as 58.0 ksi

(400 MPa). The dome is considered to be subjected to vertical loading at all the

unsupported joints. These loads are taken as �13.49 kips (�60 kN) at node

1, �6.744 kips (�30 kN) at nodes 2 through 14, and �2.248 kips (�10 kN) at

the rest of the nodes. The minimum cross-sectional area of all members is 0.775 in2

(2 cm2), and the maximum cross-sectional area is taken as 20.0 in2 (129.03 cm2).

The constraints are considered as follows:

1) Stress constraints (according to the AISC-ASD (1989) code):

σþi ¼ 0:6Fy f or σi�0

σ�i f or σi<0

�
ð3:41Þ

where σ�i is calculated considering the slenderness ratio [Eq. (3.34)].

2) Displacement limitations of �0.1969 in (�5 mm) are imposed on all nodes in x,

y, and z directions.

Table 3.6 illustrates the best solution vectors, the corresponding weights, and the

required number of analyses for convergence in the present algorithm and some of

other metaheuristic methods. Except IACS which uses two auxiliary mechanisms for

searching, the CSS algorithm has the best convergence rates. Figure 3.14 shows the

best and average convergence history for the results of the CSS. In addition, CSS

and HPSACO find the best result among the other metaheuristics. A comparison of

Table 3.6 Performance comparison for the 120-bar dome truss

Element

group

Optimal cross-sectional areas (in2)

Kaveh

et al. Kaveh and Talatahari Present work [2]

IACS

[13]

PSOPC

[4]

PSACO

[4]

HPSACO

[4]

HBB–

BC [12] in2 cm2

1 A1 3.026 3.040 3.026 3.095 3.037 3.027 19.529

2 A2 15.06 13.149 15.222 14.405 14.431 14.606 94.232

3 A3 4.707 5.646 4.904 5.020 5.130 5.044 32.542

4 A4 3.100 3.143 3.123 3.352 3.134 3.139 20.252

5 A5 8.513 8.759 8.341 8.631 8.591 8.543 55.116

6 A6 3.694 3.758 3.418 3.432 3.377 3.367 21.723

7 A7 2.503 2.502 2.498 2.499 2.500 2.497 16.110

Best

weight (lb)

33,320.52 33,481.2 33,263.9 33,248.9 33,287.9 33,251.9 147,912 N

No. of

analyses

3250 150,000 32,600 10,000 10,000 7000
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the allowable and existing stresses and displacements of the 120-bar dome truss

structure using CSS is shown in Fig. 3.15. The maximum value for displacement is

equal to 0.19689 in (5 mm) and the maximum stress ratio is equal to 99.98%.
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Fig. 3.14 Convergence history of the 120-bar dome-shaped truss for the CSS algorithm [2]
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Fig. 3.15 Comparison of the allowable and existing constraints for the 120-bar dome-shaped truss

using the CSS [2]. (a) Displacement in the x direction. (b) Displacement in the y direction. (c)

Displacement in the z direction. (d) Stress
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Fig. 3.16 Schematic of a

26-story-truss tower [2]
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3.5.3 A 26-Story-Tower Space Truss

The 26-story-tower space truss containing 942 elements and 244 nodes is consid-

ered as a large-scale truss example. Fifty-nine design variables are used to represent

the cross-sectional areas of 59 element groups in this structure, employing the

symmetry of the structure. Figure 3.16 shows the geometry and the 59 element

groups. The material density is 0.1 lb/in3 (2767.990 kg/m3) and the modulus of

elasticity is 10,000 ksi (68,950 MPa).

The members are subjected to the stress limits of �25 ksi (172.375 MPa), and

the four nodes of the top level in the x, y, and z directions are subjected to the

displacement limits of �15.0 in (38.10 cm) (about 1/250 of the total height of the

tower). The allowable cross-sectional areas in this example are selected from 0.1 to

20.0 in2 (from 0.6452 to 129.032 cm2). The loading on the structure consists of:

1) The vertical load at each node in the first section is equal to �3 kips

(�13.344 kN).

2) The vertical load at each node in the second section is equal to �6 kips

(�26.688 kN).

3) The vertical load at each node in the third section is equal to �9 kips

(�40.032 kN).

4) The horizontal load at each node on the right side in the x direction is equal to

�1 kips (�4.448 kN).

5) The horizontal load at each node on the left side in the x direction is equal to

1.5 kips (6.672 kN).

6) The horizontal load at each node on the front side in the y direction is equal to

�1 kips (�4.448 kN).

7) The horizontal load at each node on the back side in the x direction is equal to

1 kips (4.448 kN).

The CSS method achieved a good solution after 15,000 analyses and found an

optimum weight of 47,371 lb (210,716 N). The best weights for the GA, PSO, BB–

BC, and HBB–BC are 56,343 lb (250,626 N), 60,385 lb (268,606 N), 53,201 lb

(236,650 N), and 52,401 lb (233,091 N), respectively. In addition, CSS has better

performance in terms of the optimization time, standard deviation, and the average

weight. Table 3.7 provides the statistic information for this example. The stress

constraints are dominant in this example. The maximum value of stress ratio is

equal to 96.7%. Figure 3.17 compares the allowable and existing stresses in the

elements for the CSS result. The convergence history is shown in Fig. 3.18. The

final designs obtained by the CSS technique for this example is given in Table 3.8.
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Fig. 3.18 Convergence

history of the 26-story-

tower truss for the CSS

algorithm [2]

Table 3.7 Performance comparison for the 26-story-tower spatial truss

Kaveh and Talatahari [12] Present work

[2]GA PSO BB–BC HBB–BC

Best weight

(lb)

56,343

(250,626 N)

60,385

(268,606 N)

53,201

(236,650 N)

52,401

(233,091 N)

47,371

(210,716 N)

Average

weight (lb)

63,223

(281,230 N)

75,242

(334,693 N)

55,206

(245,568 N)

53,532

(238,122 N)

48,603

(216,197 N)

Std dev (lb) 6640.6

(29,539 N)

9906.6

(44,067 N)

2621.3

(11,660 N)

1420.5

(6318 N)

950.4

(4227 N)

No. of

analyses

50,000 50,000 50,000 30,000 15,000

Optimization

time (s)

4450 3640 3162 1926 1340
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3.5.4 An Unbraced Space Frame

A 10-story space steel frame consisting of 256 joints and 568 members is shown in

Fig. 3.19. This problem has been formerly studied by Saka and Hasançebi [10] to

evaluate the performance of an HS-based technique in real-size optimum design of

steel frames considering ASD-AISC as the code of the practice.

The columns in a story are collected in three member groups as corner columns,

inner columns, and outer columns, whereas beams are divided into two groups as

inner beams and outer beams. The corner columns are grouped together as having

the same section in the first three stories and then over two adjacent stories

thereafter, as are inner columns, outer columns, inner beams, and outer beams.

This results in a total of 25 distinct design groups.

The optimum design of the space frame described above is carried out using the

CSS and compared with those of the simulated annealing (SA), evolution strategies

(ESs), particle swarm optimizer (PSO), tabu search optimization (TSO), simple

genetic algorithm (SGA), ant colony optimization (ACO), and harmony search

(HS) methods (Saka and Hasançebi [10]). In each optimization technique, the

Table 3.8 The optimum design of the CSS algorithm for the 26-story-tower spatial truss

Optimal cross-sectional areas (cm2)

Members Area Members Area Members Area

1 A1 0.962 21 A21 2.780 41 A41 0.417

2 A2 2.557 22 A22 0.430 42 A42 0.679

3 A3 1.650 23 A23 3.048 43 A43 19.584

4 A4 0.402 24 A24 5.112 44 A44 0.533

5 A5 0.657 25 A25 19.352 45 A45 1.640

6 A6 18.309 26 A26 0.476 46 A46 0.618

7 A7 0.346 27 A27 2.887 47 A47 0.531

8 A8 3.076 28 A28 19.500 48 A48 1.374

9 A9 2.235 29 A29 4.772 49 A49 19.656

10 A10 3.813 30 A30 5.063 50 A50 0.888

11 A11 0.856 31 A31 15.175 51 A51 4.456

12 A12 1.138 32 A32 1.176 52 A52 0.386

13 A13 3.374 33 A33 0.839 53 A53 10.398

14 A14 0.573 34 A34 1.394 54 A54 18.834

15 A15 19.530 35 A35 0.153 55 A55 18.147

16 A16 1.512 36 A36 0.247 56 A56 3.280

17 A17 2.667 37 A37 18.673 57 A57 2.972

18 A18 0.478 38 A38 0.696 58 A58 4.927

19 A19 17.873 39 A39 1.395 59 A59 0.288

20 A20 0.335 40 A40 0.422

Weight (N) 210,716
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Fig. 3.19 Schematic of an unbraced space frame [2]. (a) Three-dimensional view, (b) elevation,

(c) plan, (d) member grouping

82 3 Charged System Search Algorithm



Fig. 3.19 (continued)
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number of iterations was taken as 50,000, when ASD-AISC is used as the code of

the practice. Our investigation shows that 12,500 analyses are sufficient as the

maximum number of analyses for the CSS. This shows that the CSS can reach a

similar result as the other methods with smaller number of analyses. The design

history of each run by each technique is shown in Fig. 3.20.

The optimum design attained by the CSS method for this example is

225,654.0 kg, while it is 228,588.3 kg for the ESs. Among the metaheuristic

algorithms, the adaptive harmony search algorithm is the third best which is

1.6% heavier than the one obtained by evolutionary strategy algorithm. The

optimum result for the TSO, SA, ACO, SGA, and PSO is 235,167.5 kg,

238,756.5 kg, 241,470.31 kg, 245,564.80 kg, and 253,260.23 kg, respectively.

The minimum weights as well as W-section designations obtained by some of the

best algorithms are provided in Table 3.9.

3.5.5 A Braced Space Frame

The second frame example considered in this chapter is a 36-story braced space

steel frame consisting of 814 joints and 1860 members, as shown in Fig. 3.21 (Saka

and Hasançebi [10]). An economical and effective stiffening of the frame against

lateral forces is achieved through exterior diagonal bracing members located on the

perimeter of the building, which also participate in transmitting the gravity forces.

The 1860 frame members are collected in 72 different member groups, consid-

ering the symmetry of the structure and the practical fabrication requirements. That
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Fig. 3.20 Comparison of the convergence history for the unbraced space frame [2]
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is, the columns in a story are collected in three member groups as corner columns,

inner columns, and outer columns, whereas beams are divided into two groups as

inner beams and outer beams. The corner columns are grouped together as having

the same section over three adjacent stories, as are inner columns, outer columns,

inner beams, and outer beams. Bracing members on each facade are designed as

3-story deep members, and two bracing groups are specified in every six stories.

The minimum weight design of the frame is equal to 2301.69 t for the CSS

algorithm, while it is 2383.60 and 4438.17 t for the adaptive harmony search and

the simple harmony search algorithms, respectively. Figure 3.22 shows the design

history graph obtained for this example. In the optimum design process, CSS finds

the optimum design after 12,500 analyses, while ES needs 50,000 searches to

determine the optimum solution.

Table 3.9 Optimal design for the unbraced space frame

Element group

Optimal W-shaped sections

Saka and Hasançebi [10]

Present work [2]SA TSO AHS ESs

1 W14� 193 W14� 193 W14� 176 W14� 193 W14� 132

2 W8� 48 W8� 48 W14� 48 W8� 48 W21� 55

3 W8� 40 W8� 40 W10� 39 W10� 39 W12� 40

4 W10� 22 W10� 22 W10� 22 W10� 22 W10� 33

5 W21� 44 W21� 50 W24� 55 W21� 50 W21� 50

6 W12� 65 W10� 54 W12� 65 W10� 54 W12� 65

7 W14� 145 W14� 120 W14� 145 W14� 109 W14� 99

8 W14� 145 W14� 159 W14� 159 W14� 176 W14� 120

9 W24� 65 W21� 44 W14� 30 W18� 40 W21� 44

10 W24� 55 W18� 40 W18� 40 W18� 40 W21� 44

11 W10� 49 W10� 45 W10� 54 W10� 49 W14� 61

12 W14� 90 W14� 90 W14� 90 W14� 90 W10� 88

13 W14� 120 W12� 120 W14� 120 W14� 109 W14� 99

14 W16� 36 W12� 44 W14� 34 W14� 30 W18� 35

15 W16� 40 W16� 36 W18� 40 W16� 36 W12� 50

16 W12� 40 W10� 33 W8� 31 W12� 45 W21� 68

17 W12� 65 W12� 65 W12� 65 W12� 65 W16� 57

18 W12� 26 W14� 34 W18� 35 W10� 22 W24� 68

19 W12� 72 W12� 79 W12� 79 W12� 79 W16� 36

20 W16� 36 W14� 30 W14� 30 W14� 30 W16� 31

21 W8� 24 W10� 39 W10� 22 W8� 35 W10� 33

22 W10� 49 W12� 45 W10� 45 W10� 39 W16� 31

23 W8� 24 W12� 35 W8� 31 W8� 31 W8� 28

24 W12� 26 W6� 20 W10� 22 W8� 18 W8� 18

25 W12� 26 W12� 26 W12� 26 W14� 30 W10� 26

Weight (kg) 238,756.5 235,167.5 232,301.2 228,588.3 225,654.0

3.5 Numerical Examples 85



3.6 Discussion

3.6.1 Efficiency of the CSS Rules

Solution of a number of design examples shows the superiority of the CSS algo-

rithm to the other existing metaheuristics. To investigate the effect of some utilized

rules, a number of the CSS-based algorithms are defined as follows:

Case 1: Rule 3 is changed as:

The kind of the electric forces between two charged particles is selected

randomly.

Case 2: Rule 4 is changed as:

Any CP can act on another one; i.e., a bad CP can affect a good one and vice

versa ( pij¼ 1).

Fig. 3.21 Schematic of a braced space frame [2]. (a) 3D view of the frame, (b) Front view, (c) side

view, (d) plan

86 3 Charged System Search Algorithm



Case 3: Rule 4 is changed as:

Only good CPs can attract bad CPs.

Case 4: Rule 5 is changed as:

Always i1¼ 0 and i2¼ 1.

Case 5: Rule 5 is changed as:

Always i1¼ 1 and i2¼ 0.

Table 3.10 shows the results of the 50 runs of the first example for each case.

Comparing the result of Case 1 with the result of the original CSS (Table 3.5)

confirms that considering repulsive forces between CPs reduces the power of the

algorithm. Although when a good agent attracts a bad one, the exploitation ability

for the algorithm is provided, and vice versa if a bad CP attracts a good CP, the

exploration is provided, differences between the results of the Cases 2 and 3 with

the original CSS indicated that when all bad agents attract good ones, a disorder will

be created and when only good CPs attract bad ones the convergence will occur

very soon and a complete search will not be performed. As a result, at least the

computational cost to reach a good solution may increase for the condition of the

Cases 2 and 3.
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Fig. 3.22 Comparison of the convergence history for the braced space frame [2]

Table 3.10 Investigation on the performance of various CSS-based algorithms for the 25-bar

truss in 50 runs

Case 1 Case 2 Case 3 Case 4 Case 5

Best weight (lb) 551.31 551.10 545.99 546.28 550.55

Average weight (lb) 554.75 552.39 549.42 547.06 550.90

Std dev (lb) 1.210 0.885 1.467 0.707 0.686
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3.6.2 Comparison of the PSO and CSS

Both the CSS and the PSO are multi-agent algorithms in which the position of each

agent is obtained by adding the agent’s movement to its previous position; however,

the movement strategies are different. In the PSO algorithm, each particle contin-

uously focuses and refocuses on the effort of its search according to both local best

and global best, while the CSS approach uses the governing laws from electrical

physics and the governing laws of motion from the Newtonian mechanics to

determine the amount and the direction of a charged particle’s movement. The

focus of the PSO is placed upon finding the direction of an agent movement, while

the CSS method can determine not only the directions but also the amount of

movements. In the PSO, the direction of an agent is calculated using only two

best positions containing local best and global best. However, in the CSS the agent’s
direction is calculated based on the overall forces resulted by the best agents stored

in the CM and some of the best current CPs. CSS can recognize the end of the global

phase and change the movement updating equation for the local phase to have a

better balance between the exploration and exploitation. One of the greatest disad-

vantages of the PSO approach is the existence of some difficulties in controlling the

balance between the exploration and exploitation due to ignoring the effect of other

agents (Kaveh and Talatahari [4]).

3.6.3 Efficiency of the CSS

CSS utilizes the Coulomb and Gauss laws to determine the direction and the

amount of the movement of each agent and uses some laws of the Newtonian

mechanics to complete the movement process. Compared to other metaheuristics,

CSS has less computing cost and can determine the optimum result with a smaller

number of analyses. Due to having a good balance between the exploration and

exploitation, the performance of the CSS in both global search stage (initial

iterations) and the local search stage (last iterations) is good. The comparison of

the CSS results with those of the other metaheuristic shows the robustness of the

present algorithm and demonstrates the efficiency of the algorithm to find optimum

design of structures.
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