
Chapter 2

Particle Swarm Optimization

2.1 Introduction

Particle swarm optimization (PSO) algorithms are nature-inspired population-based

metaheuristic algorithms originally accredited to Eberhart, Kennedy, and Shi

[1, 2]. These algorithms mimic the social behavior of birds flocking and fishes

schooling. Starting form a randomly distributed set of particles (potential solu-

tions), the algorithms try to improve the solutions according to a quality measure

(fitness function). The improvisation is performed through moving the particles

around the search space by means of a set of simple mathematical expressions

which model some interparticle communications. These mathematical expressions,

in their simplest and most basic form, suggest the movement of each particle toward

its own best experienced position and the swarm’s best position so far, along with

some random perturbations. There is an abundance of different variants using

different updating rules, however.

Though being generally known and utilized as an optimization technique, PSO

has its roots in image rendering and computer animation technology where Reeves

[3] defined and implemented a particle system as a set of autonomous individuals

working together to form the appearance of a fuzzy object like a cloud or an

explosion. The idea was to initially generate a set of points and to assign an initial

velocity vector to each of them. Using these velocity vectors, each particle changes

its position iteratively while the velocity vectors are being adjusted by some

random factors.

Reynolds [4] added the notion of inter-object communication to Reeves’ particle
system to introduce a flocking algorithm in which the individuals were able to

follow some basic flocking rules such as trying to match each other’s velocities.
Such a system allowed for modeling more complex group behaviors in an easier

and more natural way.

Kennedy and Eberhart [1] while trying to “graphically simulate the graceful but

unpredictable choreography of a bird flock” came across the potential optimization
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capabilities of a flock of birds. In the course of refinement and simplification of their

paradigm, they discussed that the behavior of the population of agents that they

were suggesting follows the five principles of swarm intelligence articulated by

Millonas [5]. First is the proximity principle: the population should be able to carry

out simple space and time computations. Second is the quality principle: the

population should be able to respond to quality factors in the environment. Third

is the principle of diverse response: the population should not commit its activities

along excessively narrow channels. Fourth is the principle of stability: the popula-

tion should not change its mode of behavior every time the environment changes.

Fifth is the principle of adaptability: the population must be able to change behavior

mode when it is worth the computational price. They also mention that they

compromisingly call their massless volume-less population members particles in
order to make the use of concepts like velocity and acceleration more sensible.

Thus, the term particle swarm optimization was coined.

2.2 PSO Algorithm

2.2.1 Development

As Kennedy and Eberhart [1] indicated appropriately particle swarm optimization

is probably best presented and understood by explaining its conceptual develop-

ment. Hence, the algorithm’s transformation process from its earliest stages to its

current canonical form is briefly reviewed in this section. Future discussion on the

main aspects and issues would be more easily done this way.

The earliest attempt to use the concept for social behavior simulation carried out

by Kennedy and Eberhart [1] resulted in a set of agents randomly spread over a

torus pixel grid which used two main strategies: nearest neighbor velocity matching

and craziness. At each iteration, a loop in the program is determined for each agent

which other agent was its nearest neighbor, then assigned that agent’s X and Y

velocities to the agent in focus. As it is predictable, it has been viewed that sole use

of such a strategy will quickly settle down the swarm on a unanimous, unchanging

direction. To avoid this, a stochastic variable called craziness was introduced. At

each iteration, some change was added to randomly chosen X and Y velocities. This

introduced enough variation into the system to give the simulation a “life-like”

appearance. The above observation points out one of the most necessary features of

PSO which indicates its seemingly unalterable nondeterministic nature: incorpora-

tion of randomness.

Kennedy and Eberhart took the next step by replacing the notion of “roost”

(a place that the birds know previously) in Heppner and Grenander [6] by “food”

(for which the birds must search) and therefore converted the social simulation

algorithm into an optimization paradigm. The idea was to let the agents (birds) find

an unknown favorable place in the search space (food source) through capitalizing
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on one another’s knowledge. Each agent was able of remembering its best position

and knowing the best position of the whole swarm. The extremum of the mathe-

matical function to be optimized can be thought of as the food source. After a series

of minor alterations and elimination of the ancillary variables, the updating rules for

calculating the next position of a particle were introduced as:

vkþ1
i, j ¼ vki, j þ c1r1 xbest ki, j � xki, j

� �
þ c2r2 xgbest kj � xki, j

� �
ð2:1Þ

xkþ1
i, j ¼ xki, j þ vkþ1

i, j ð2:2Þ

where xki;j and vki;j are the jth component of the ith particle’s position and velocity

vector, respectively, in the kth iteration; r1 and r2 are two random numbers uni-

formly distributed in the range (1,0); xbesti and xgbest indicate the best positions

experienced so far by the ith particle and the whole swarm, respectively; and c1 and

c2 are two parameters representing the particle’s confidence in itself (cognition) and
in the swarm (social behavior), respectively. These two parameters were set equal

to 2 in the initial version presented by Kennedy and Eberhart [1] so that the particles

would overfly the target about half the time. These two parameters are among the

most important parameters of the algorithm in that they control the balance between

exploration and exploration tendencies. A relatively high value of c1 will encourage

the particles to move toward their local best experiences, while higher values of c2
will result in faster convergence to the global best position.

Although the above formulation embodies the main concept of PSO that has

survived over time and forms the skeleton of quite all subsequent variants, it has

still been subject to amendment. Eberhart et al. [7] introduced a maximum velocity

parameter, Vmax, in order to prevent particles from leaving the search space. Shi and

Eberhart [8] discussed the role of the three terms of Eq. (2.1) and concluded that the

first term, previous velocity of the particle, has an important effect on global and

local search balance. By eliminating this term, the particles cannot leave their

initially encircled portion of the search space, and the search space will shrink

gradually over time. This will be equivalent to a local search procedure. Alterna-

tively, by giving the previous velocity term relatively higher effects, the particles

will be reluctant to converge to the known good positions. They will instead tend to

explore unseen regions of the search space. This could be conceived as global

search tendency. Both the local search and global search will benefit solving some

kinds of problems. Therefore, an inertia weight w is introduced into Eq. (2.1) in

order to maintain balance between these two effects:

vkþ1
i, j ¼ wvki, j þ c1r1 xlbest ki, j � xki, j

� �
þ c2r2 xgbest kj � xki, j

� �
ð2:3Þ

Shi and Eberhart [8] indicated that the inertia weight can be a positive constant

or even a positive linear or nonlinear function of time. They examined the use of

constant values in the range [0, 1.4] for the benchmark problem of Schaffer’s f6
function and concluded the range [0.9, 1.2] to be appropriate. Later, Eberhart and
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Shi [9] indicated that the use of the inertia weight w, which decreases linearly from

about 0.9 to 0.4 during a run, provides improved performance in a number of

applications. Many different research works have focused on inertia weight param-

eter, and different strategies have been proposed ever since. A brief discussion on

these methods and strategies will be presented in the next section.

Later, Clerc [10] indicated that the use of a constriction factor may be necessary

to insure convergence of the particle swarm algorithm and proposed an alternative

formulation for the velocity vector:

vkþ1
i, j ¼ χ vki, j þ c1r1 xlbest ki, j � xki, j

� �
þ c2r2 xgbest kj � xki, j

� �h i
ð2:4Þ

χ ¼ 2

2� φ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2 � 4φ

p���
���

where φ ¼ c1 þ c2, φ > 4 ð2:5Þ

Schematic movement of a particle is illustrated in Fig. 2.1.

Such a formulation was intended to impose some restriction on velocity vectors

and thus to prevent divergence. Eberhart and Shi [9] compared the use of inertia

weights and constriction factors in particle swarm optimization and concluded that

the two approaches are equivalent and could be interchangeably used by proper

parameter setting. They also indicated that the use of constriction factor does not

eliminate the need for Vmax parameter unlike what might be assumed at the first

glance. Though the two approaches are shown to be equivalent, they both survived

and have been continually used by researchers. Simultaneous utilization of inertia

weight and constriction factor can also be found in the literature (e.g., see [11]

among others).

Fig. 2.1 Schematic

movement of a particle

based on Eq. (2.4)
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2.2.2 PSO Algorithm

The general structure of a canonical PSO algorithm is as follows [12]:

procedure Particle Swarm Optimization

begin

Initialize xi, vi and xbesti for each particle i;

while (not termination condition) do

begin

for each particle i

Evaluate objective function;

Update xbesti

end

for each i

Set g equal to index of neighbor with best xbesti;

Use g to calculate vi;

Update xi¼xi+vi;

Evaluate objective function;

Update xbesti

end

end

end

2.2.3 Parameters

Like any other metaheuristic algorithm, PSO’s performance is dependent on the

values of its parameters. The optimal values for the parameters depend mainly on

the problem at hand and even the instance to deal with and on the search time that

the user wants to spend in solving the problem [13]. In fact the main issue is to

provide balance between exploration and exploitation tendencies of the algorithm.

Total number of particles, total number of iterations, inertia weight and/or

constriction factor, and cognition and social behavior coefficients (c1 and c2) are

the main parameters that should be considered in a canonical PSO. The total

number of iterations could be replaced with a desired precision or any other

termination criterion. In general, the search space of an n-dimensional optimization

problem can be conceived as an n-dimensional hypersurface. The suitable values

for a metaheuristic’s parameters depend on relative ruggedness and smoothness of

this hyperspace. For example, it is imaginable that in a smoother hyperspace, fewer

number of particles and iteration numbers will be required. Moreover, in a smoother

search space, there will be fewer local optimal positions and less exploration effort
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will be needed, while in a rugged search space, a more through exploration of the

search space will be advisable.

Generally speaking, there are two different strategies for parameter value selec-

tion, namely, off-line parameter initialization and online parameter tuning [13]. In

off-line parameter initialization, the values of different parameters are fixed before

the execution of the metaheuristic. These values are usually decided upon through

empirical study. It should be noted that deciding about a parameter of a

metaheuristic algorithm while keeping the others fixed (i.e., one-by-one parameter

selection) may result in misleading observations since the interactions of the

parameters are not taken into account. However, it is the common practice in the

literature since examining combinations of the algorithm parameters might be very

time-consuming. To perform such an examination, when desired, a meta-

optimization approach may be performed, i.e., the algorithm parameters can be

considered as design variables and be optimized in an overlying level.

The main drawback of the off-line approaches is their high computational cost

since the process should be repeated for different problems and even for different

instances of the same problem. Moreover, appropriate values for a parameter might

change during the optimization process. Hence, online approaches that change the

parameter values during the search procedure must be designed. Online approaches

may be classified in two main groups [13]: dynamic approaches and adaptive

approaches. In a dynamic parameter updating approach, the change of the param-

eter value is performed without taking into account the search progress. The

adaptive approach changes the values according to the search progress.

Attempts have been made to introduce guidelines and strategies for selection of

PSO parameters. Shi and Eberhart [14] analyzed the impact of inertia weight and

maximum allowable velocity on the performance of PSO and provided some

guidelines for selecting these two parameters. For this purpose, they utilized

different combinations of w and Vmax parameters to solve the Schaffer’s f6 test

function while keeping other parameters unchanged. They concluded that when

Vmax is small (<¼2 for the f6 function), an inertia weight of approximately 1 is a

good choice, while when Vmax is not small (>¼3), an inertia weight w¼ 0.8 is a

good choice. They declared that in absence of proper knowledge regarding the

selection of Vmax, it is also a good choice to set Vmax equal to Xmax, and an

inertia weight w¼ 0.8 is a good starting point. Furthermore, if a time-varying

inertia weight is employed, even better performance can be expected. As the

authors indicated, such an empirical approach using a small benchmark problem

cannot be easily generalized.

Carlisle and Dozier [15] proposed another set of guidelines based on evidence

from six experiments. They recommended to start with an asynchronous constricted

algorithm setting r1¼ 2.8 and r2¼ 1.3. However, no directives are provided in order

to progress from this initial setting.

Trelea [16] used dynamic system theory for a theoretical analysis of the algo-

rithm producing some graphical guidelines for parameter selection. A simplified

deterministic one-dimensional PSO was used for this study. Trelea indicates that
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the results are predictably dependent on the form of the objective function. The

discussion is supported by experiments on five benchmark functions.

Zhang et al. [17] suggested some optimal ranges for constriction factor and

Vmax to Xmax ratio parameters based on experimental study on nine mathematical

functions. The optimal range for constriction factor is claimed to be [4.05, 4.3],

while for Vmax to Xmax ratio, the range [0.01, 1] is recommended.

More recently, Pedersen [18] carried out meta-optimization to tune the PSO

parameters. A table is presented to help the practitioner choose appropriate PSO

parameters based on the dimension of the problem at hand and the total number of

function evaluations that is intended to be performed. Performance evaluation of

PSO is performed using some mathematical functions. As mentioned before, the

results of the abovementioned off-line parameter tuning studies are all problem

dependent and could not be claimed as universally optimal.

Many different online tuning strategies are also proposed for different PSO

parameters. For inertia weight, methods such as random inertia weight, adaptive

inertia weight, sigmoid increasing/decreasing inertia weight, linear decreasing

inertia weight, chaotic inertia weight and chaotic random inertia weight, oscillating

inertia weight, global–local best inertia weight, simulated annealing inertia weight,

natural exponent inertia weight strategy, logarithm decreasing inertia weight, and

exponent decreasing inertia weight are reported in the literature. All of these

methods replace the inertia weight parameter with a mathematical expression

which is either dependent on the state of the search process (e.g., global best

solution, current position of the particle, etc.) or not. Bansal et al. [19] examined

the abovementioned inertia weight strategies for a set of five mathematical prob-

lems and concluded that chaotic inertia weight is the best strategy for better

accuracy, while random inertia weight strategy is best for better efficiency. This

shows that the choice of a suitable inertia weight strategy depends not only on the

problem under consideration but also on the practitioner’s priorities.
Other adaptive particle swarm optimization algorithms could be found in the

literature [20].

2.2.4 Premature Convergence

One of the main advantages of PSO is its ability to attain reasonably good solutions

relatively fast. At the same time, this is probably the algorithm’s most recognized

drawback. In fact, Angeline [21] while studying PSO versus evolutionary optimi-

zation techniques showed that although PSO discovers good quality solutions much

faster than evolutionary algorithms, it does not improve the quality of the solutions

as the number of generations is increased. This is because of the particles getting

clustered in a small region of the search space and thus the loss of diversity

[22]. Improving the exploration ability of PSO has been an active research topic

in recent years [20].
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Attempts have been made in order to improve the algorithm’s exploration

capabilities and thus to avoid premature convergence. van den Bergh and

Engelbrecht [23] introduced a guaranteed convergence PSO (GCPSO) in which

particles perform a random search around xgbest within a radius defined by a

scaling factor. The algorithm is reported to perform better than original PSO in

unimodal problems while producing similar results in multimodal ones. The scaling

factor however is another parameter for which prior knowledge may be required to

be optimally set.

Krink et al. [24] proposed a collision-free PSO where particles attempting to

gather about a suboptimal solution bounce away. A random direction changer, a

realistic bounce, and a random velocity changer were used as three bouncing

strategies. The latter two are reported to significantly improve the exploration

capabilities of the algorithm and obtain better results especially in multimodal

problems.

Implementing diversity measures is another way to control swarm stagnation.

Riget and Vesterstrøm [25] utilized such a measure along with alternative attraction

and repulsion of the particles to and from the swarm best position. Repulsion could

be induced by inverting the velocity update rule. The approach improves the

performance in comparison to canonical PSO, especially when problems under

consideration are multimodal.

Silva et al. [26] introduced a predator–prey optimization system in which a

predator particle enforces other particles to leave the best position of the search

space and explore other regions. Improved performance is reported based on

experiments carried out on four high-dimensional test functions.

Jie et al. [27] introduced an adaptive PSO with feedback control of diversity in

order to tune the inertia weight parameter and alleviate the premature convergence.

The improvements increase the robustness and improve the performance of the

standard PSO in multimodal functions.

Wang et al. [20] proposed a self-adaptive learning-based particle swarm opti-

mization which used four PSO-based search strategies on probabilistic basis

according to the algorithm’s performance in previous iterations. The use of differ-

ent search strategies in a learning-based manner helps the algorithm to handle

problems with different characteristics at different stages of optimization process.

Twenty-six test functions with different characteristics such as unimodality,

multimodality, rotation, ill-condition, mis-scale, and noise are considered, and the

results are compared with eight other PSO variants.

Kaveh and Zolghadr [28] introduced a democratic particle swarm optimization

(DPSO) which derives the updating information of a particle from a more diverse

set of sources instead of using local and global best solutions merely. An eligibility

parameter is introduced which determines which particles to incorporate when

updating a specific particle. The improved algorithm is compared to the standard

one for some mathematical and structural problems. The performance is improved

in the problems under consideration.
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2.2.5 Topology

While xgbest of Eq. (2.1) is considered to be the whole swarm’s global best position
in canonical PSO, this is not necessarily always the case. Different topologies have

been defined and used for interparticle communications in PSO [29, 30]. In fact in

updating a particle’s position, xgbest could mean the best particle position of a

limited neighborhood to which the particle is connected instead of the whole

swarm. It has been shown that the swarm topologies in PSO can remarkably

influence the performance of the algorithm. Figure 2.2 shows some of the basic

PSO neighborhood topologies introduced by Mendes et al. [29]. Many other

topologies can be defined and used.

These different topologies affect the way that information circulates between the

swarm’s particles and thus can control exploration–exploitation behavior and

convergence rate of the algorithm. Canonical PSO uses the fully connected topol-

ogy in which all of the particles are neighbors. Such a topology exhibits a fast (and

probably immature) convergence since all of the particles are directly linked to the

global best particle and simultaneously affected by it. Thus, the swarm does not

explore other areas of the search space and would most probably get trapped in local

optima.

Ring topology which is a usual alternative to fully connected topology represents

a regular graph with the minimum node degrees. This could be considered the

Fig. 2.2 Some topologies for PSO neighborhoods [29]. Fully connected, where all vertexes are

connected to every other; ring, where every vertex is connected to two others; four clusters, with
four cliques connected among themselves by gateways; pyramid, a triangular wire-frame pyramid;

and square, which is a mesh where every vertex has four neighbors that wrap around on the edges

as a torus
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slowest way of information circulation between the particles and is supposed to

result in the slowest rate of convergence since it takes a relatively long time for

information of the best particle to reach the other end of the ring.

Other neighborhood topologies are somewhere in between. Predictably, the

effect of different neighborhood topologies on effectiveness and efficiency of the

algorithm is problem dependent and is more or less empirically studied.

2.2.6 Biases

It is shown that many metaheuristic optimization algorithms, including PSO, are

biased toward some specific regions of the search space. For example, they perform

best when the optimum is located at or near the center of the initialization region,

which is often the origin [31]. This is particularly true when the information from

different members of the population is combined using some sort of averaging

operator [32]. Since many of the benchmark optimization problems have their

global optimal solutions at or near the origin, such a biased behavior can make

the performance evaluation of the algorithms problematic. Different approaches

have been taken in order to expose and probably alleviate this bias while testing

PSO. Angeline [32] popularized a method called region scaling initially proposed

by Gehlhaar and Fogel [33]. The method tries to let the origin outside the initial

region covered by the particles by generating the initial solutions in a portion of the

search space that does not include origin. Monson and Seppi [31] showed that

origin-seeking biases depend on the way that the positions of the particles are

updated and region scaling method could not be sufficient for all motion rules. They

introduced a center offset method in which the center of the benchmark function

under consideration was moved to a different location of the search space.

Suganthan et al. [34] also recommended the use of non-biased shifted or rotated

benchmark problems.

Clerc [35] showed that this biased behavior can be attributed to the confinement

method used, i.e., the method by which the particles are prevented from leaving the

search space. A hybrid confinement method is introduced and claimed to be useful

in terms of reducing the bias.

Attempts have also been made to propose improved non-biased variants (e.g.,

Wilke et al. [36]). This is however of less generality in case of unbiased perfor-

mance comparison because it does not have any effect on the other existing

algorithms.
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2.3 Hybrid Algorithms

A popular way of producing new improved algorithms is to hybridize two or more

existing ones in an attempt to combine favorable features while omitting undesir-

able aspects. Some of the best results for the real-life and classical optimization

problems are obtained using hybrid methods [37]. Numerous different hybrid

algorithms using PSO as the main or the supplementary ingredient have been

proposed usually in the context of some specific application domain for which

that hybrid is particularly well suited [38]. A selection of these methods and

approaches is briefly mentioned here along with some examples.

Hybridizing PSO with other metaheuristic algorithms seems to be one of the

most popular strategies. This is mainly because the resulting algorithm maintains

positive characteristics of metaheuristic algorithms such as global search capability,

little dependence on starting point, no need to gradient information, and applica-

bility to non-smooth or non-convex domains. The other metaheuristic algorithm

(s) to be hybridized with PSO can be either single agent or population based.

Simulated annealing (SA) [39] is a single-agent metaheuristic algorithm that has

been successfully hybridized with PSO. It has been shown in the literature [40] that

SA algorithms, when subject to very low variations of temperature parameters and

when the solution search for each temperature can reach an equilibrium condition,

have very high chances of finding the global optimal solution. Moreover, the

metropolis process in SA provides an ability of jumping away from a local

optimum. However, SA algorithms require very slow temperature variations and

thus increase the required computational effort. On the other hand, although PSO

exhibits relatively fast convergence rate, is easy to implement, and is able to find

local optimal solutions in a reasonable amount of time, it is notorious of premature

convergence, i.e., getting trapped in local optima. Therefore, combining these two

algorithms in a judicious way will probably result in a hybridized algorithm with

improved performance [41]. Execution of PSO and SA algorithms can be either

alternative or sequential. In an alternative execution, every member of the PSO

swarm can be considered as an SA single agent at the end of each iteration. Instead,

in a sequential execution, the final local solution found by PSO could be considered

as a starting point for SA.

As another single-agent metaheuristic algorithm, tabu search (TS) algorithm

[42, 43] can have the same effect as SA in hybridization with PSO. The global

search could be left to PSO, while TS attempts to improve the suboptimal solutions

found by PSO in a local search process. In these hybridized algorithms, TS

alleviates premature convergence of PSO while PSO alleviates excessive required

computational effort of TS [44].

Hybridization of PSO with other population-based metaheuristic algorithms is

more popular. In this case hybridization might signify different meanings. In some

hybridized schemes, some techniques are simply borrowed from other algorithms.

For example, Løvebjerg et al. [45] borrowed the breeding technique from GAs, i.e.,

along with standard PSO updating rules, pairs of particles could be chosen to breed
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with each other and produce offsprings. Moreover, to keep away from suboptimal

solutions, subpopulations were introduced.

Another approach to be mentioned is to use different metaheuristics simulta-

neously. Krink and Løvebjerg [46] introduced a lifecycle model that allowed for

use of PSO, GA, or hill climber by each particle depending on the particle’s own
preference based on its memory of the best recent improvements. Kaveh and

Talatahari [47] introduced a hybridized HPSACO algorithm in which particle

swarm optimizer with passive congregation (PSOPC) was used to perform global

search task, while ant colony optimization (ACO) [48] was utilized for updating

positions of particles to attain the feasible solution space, and harmony search

(HS) [49] algorithm was employed for dealing with variable constraints.

In the abovementioned approaches, the position updating rules of the original

algorithms need not to be changed. The algorithms are merely operating in combi-

nation to each other. Another hybridization approach, however, could be based on

combining the updating rules. Higashi and Iba [50] combined GA’s Gaussian

mutation with velocity and position updating rules of PSO. Juang [51] incorporated

mutation, crossover, and elitism. As another example, Kaveh and Talatahari [52]

introduced some of the positive aspects of PSO like directing the agents toward the

global best and the local best positions into charged system search (CSS) [53]

algorithm to improve its performance.

PSO could also be hybridized with techniques and tools other than metaheuristic

algorithms. Liu and Abraham [54] hybridized a turbulent PSO with a fuzzy logic

controller to produce a fuzzy adaptive TPSO (FATPSO). The fuzzy logic controller

was used for adaptively tuning the velocity parameters during an optimization in

order to balance exploration and exploitation tendencies. Zahara et al. [55] hybrid-

ized Nelder–Mead simplex search and particle swarm optimization for constrained

engineering design problems. A hybrid PSO-simplex method was also used for

damage identification of delaminated beams by Qian et al. [56].

2.4 Discrete PSO

Though PSO has been introduced and more commonly utilized for continuous

optimization problems, it can be equally applied to discrete search spaces. A simple

and frequently used method to use PSO in discrete problems is to transform the real-

valued vectors found by a continuous PSO algorithm into discrete ones. To do this

the nearest permitted discrete values could be replaced with any value selected by

agents, i.e., a rounding function could be used [57]. However, many discrete and

binary PSO variants have been developed that work in discrete search space

directly.

The first discrete binary version of PSO is developed by Kennedy and Eberhart

[58]. They kept the particle position updating rule unchanged and replaced the

velocity in each vector by the probability of a bit in position vector taking the value

1. In other words, if, for example, vi,j¼ 0.20, then there is a twenty percent chance
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that xi,j will be a one and an eighty percent chance it will be a zero. In order to keep

vi,j in interval [0,1], a sigmoid transformation function was used.

More recently, Chen et al. [59] have proposed a set-based PSO for discrete

optimization problems. They have replaced the candidate solutions and velocity

vectors by crisp sets and sets with possibilities, respectively. The arithmetic oper-

ators in position updating rules are replaced by the operators and procedures defined

on such sets.

2.5 Democratic PSO for Structural Optimization

2.5.1 Description of the Democratic PSO

As discussed earlier, different updating strategies have been proposed for PSO

resulting in many different variants. Mendes et al. [29] have proposed a fully

informed PSO, for example, in which each particle uses the information from all

of the other particles in its neighborhood instead of just the best one. It has been

shown that the fully informed PSO outperforms the canonical version in all of the

mathematical functions under consideration. In a conceptually similar work, Kaveh

and Zolghadr [28] have proposed a democratic PSO for structural optimization

problems with frequency constraints. Here a brief description of the democratic

algorithm is presented as an improved PSO version in the field of structural

optimization. The structural optimization under consideration is then introduced

in the following section, and the results are then compared to those of the canonical

PSO on the same problems reported by Gomes [60].

As indicated before, canonical PSO is notorious for premature convergence, and

this can be interpreted as a lack of proper exploration capability. In fact in the

standard PSO, all of the particles are just being eagerly attracted toward better

solutions. And by each particle, moving toward the best position experienced by

itself and by the whole swarm so far is thought of as the only possible way of

improvement. Naturally, such an enthusiasm for choosing the shortest possible

ways to accomplishment results in some of the better regions of the search space

being disregarded.

In a sense, it can be said that the particles of the canonical PSO are only

motivated by selfishness (their own preference) and tyranny (the best particle’s
dictation). Except for their own knowledge and that of the best particle so far, they

do not take the achievements of the other members of the swarm into account, i.e.,

the information is not appropriately shared between the members of the swarm.

In order to address this problem, the velocity vector of the democratic PSO is

defined as:
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vkþ1
i, j ¼ χ ωvki, j þ c1r1 xlbest ki, j � xki, j

� �
þ c2r2 xgbest kj � xki, j

� �
þ c3r3d

k
i, j

h i
ð2:6Þ

in which dki;j is the jth variable of the vector D for the ith particle. The vector

D represents the democratic effect of the other particles of the swarm on the

movement of the ith particle. r3 is a random number uniformly distributed in the

range (1,0). Parameter c3 is introduced to control the weight of the democratic

vector. Here, the vector D is taken as:

Di ¼
Xn
k¼1

Qik Xk � Xið Þ ð2:7Þ

where Qik is the weight of the kth particle in the democratic movement vector of the

ith particle and can be defined as:

Qik ¼
Eik

objbest
obj kð Þ

Xn
j¼1

Eij
objbest
obj jð Þ

ð2:8Þ

in which obj stands for objective function value; objbest is the value of the objective
function for the best particle in the current iteration; X is the particle’s position

vector; and E is the eligibility parameter and is analogous to parameter P in CSS

[53]. In a minimization problem, E can be defined as:

Eik ¼ 1
obj kð Þ � obj ið Þ
objworst � objbest

> rand _ obj kð Þ < obj ið Þ
0 else

8<
: ð2:9Þ

where objworst and objbest are the values of the objective function for the worst and

the best particles in the current iteration, respectively. The symbol _ stands for

union. Schematic movement of a particle is illustrated in Fig. 2.3.

Since a term is added to the velocity vector of PSO, the parameter χ should be

decreased in order to avoid divergence. Here, this parameter is determined using a

trial and error process. It seems that a value in the range (0.4, 0.5) is suitable for the

problems under consideration.

As it can be seen, the democratic PSO makes use of the information produced by

all of the eligible members of the swarm in order to determine the new position of

each particle. In fact, according to Eq. (2.9), all of the better particles and some of

the worse particles affect the new position of the particle under consideration. This

modification enhances the performance of the algorithm in two ways: (1) helping

the agents to receive information about good regions of the search space other than

those experienced by themselves and the best particle of the swarm and (2) letting
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some bad particles take part in the movement of the swarm and thus improving the

exploration capabilities of the algorithm. Both of the above effects help to alleviate

the premature convergence of the algorithm.

Numerical results show that this simple modification which does not call for any

extra computational effort meaningfully enhances the performance of the PSO.

2.5.2 Truss Layout and Size Optimization with Frequency
Constraints

In a frequency constraint truss layout and size optimization problem, the aim is to

minimize the weight of the structure while satisfying some constraints on natural

frequencies. The design variables are considered to be the cross-sectional areas of

the members and/or the coordinates of some nodes. The topology of the structure is

not supposed to be changed, and thus the connectivity information is predefined and

kept unaffected during the optimization process. Each of the design variables

should be chosen within a permissible range. The optimization problem can be

stated mathematically as follows:

Find X ¼ x1, x2, x3, . . . :, xn½ �
to minimizes P Xð Þ ¼ f Xð Þ � f penalty Xð Þ
subjected to
ωj � ω*

j for some natural frequencies j

ωk � ω*
k for some natural frequenciesk

ximin � xi � ximax

ð2:10Þ

where X is the vector of the design variables, including both nodal coordinates and

cross-sectional areas; n is the number of variables which is naturally affected by the

element grouping scheme which in turn is chosen with respect to the symmetry and

practice requirements; P(X) is the penalized cost function or the objective function

to be minimized; f(X) is the cost function, which is taken as the weight of the

structure in a weight optimization problem; and fpenalty(X) is the penalty function

which is used to make the problem unconstrained. When some constraints

Fig. 2.3 Schematic

movement of a particle

based on Eq. (2.6)
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corresponding to the response of the structure are violated in a particular solution,

the penalty function magnifies the weight of the solution by taking values bigger

than one; ωj is the jth natural frequency of the structure and ωj
* is its upper bound.

ωk is the kth natural frequency of the structure and ωk
* is its lower bound. ximin and

ximax are the lower and upper bounds of the design variable xi, respectively.
The cost function is expressed as:

f Xð Þ ¼
Xnm
i¼1

ρiLiAi ð2:11Þ

where ρi is the material density of member i; Li is the length of member i; and Ai is

the cross-sectional area of member i.
The penalty function is defined as:

f penalty Xð Þ ¼ 1þ ε1:vð Þε2 , v ¼
Xq
i¼1

vi ð2:12Þ

where q is the number of frequency constraints.

vi ¼
0 if the ith constraint is satisfied

1� ωi

ω*
i

����
���� else

8<
: ð2:13Þ

The parameters ε1 and ε2 are selected considering the exploration and the exploi-

tation balance of the problem. In this study, ε1 is taken as unity, and ε2 starts from
1.5 and linearly increases to 6 in all test examples. These values penalize the

unfeasible solutions more severely as the optimization process proceeds. As a

result, in the early stages, the agents are free to explore the search space, but at

the end they tend to choose solutions without violation.

2.5.3 Numerical Examples

Four numerical examples from the field of truss layout and size optimization are

provided in this section in order to examine the viability of the proposed algorithm

and to compare it with the canonical PSO to clarify the effect of the modifications.

The results are compared with those of the canonical version and some other

methods reported in the literature.

Parameter χ is set to 0.5 in all numerical examples while parameter c3 is set to

4. A total population of 30 particles is utilized for all of the examples. Each example

has been solved 30 times independently. In all the examples, the termination

criterion is taken as the number of iterations. A total number of 200 iterations are

considered for all of the examples. The side constraints are handled using an
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HS-based constraint handling technique, as introduced by Kaveh and Talatahari

[47]. Any other appropriate side constraint handling technique might be used.

2.5.3.1 A 10-Bar Truss

For the first example, size optimization of a 10-bar planar is considered. The

configuration of the structure is depicted in Fig. 2.4.

This is a well-known benchmark problem in the field of frequency constraint

structural optimization. Each of the members’ cross-sectional areas is assumed to

be an independent variable. A nonstructural mass of 454.0 kg is attached to all free

nodes. Table 2.1 summarizes the material properties, variable bounds, and fre-

quency constraints for this example.

This problem has been investigated by different researchers: Grandhi and

Venkayya [61] using an optimality algorithm, Sedaghati et al. [62] using a sequen-

tial quadratic programming and finite element force method, Wang et al. [63] using

an evolutionary node shift method, Lingyun et al. [64] utilizing a niche hybrid

genetic algorithm, Gomes employing the standard particle swarm optimization

algorithm [60], and Kaveh and Zolghadr [65, 66] utilizing the standard and an

enhanced CSS and a hybridized CSS–BBBC with a trap recognition capability.

The design vectors and the corresponding masses of the optimal structures found

by different methods are summarized in Table 2.2.

It should be noted that a modulus of elasticity of E¼ 6.98� 1010 Pa is used in

Gomes [60] and Kaveh and Zolghadr [65]. This will generally result in relatively

lighter structures. Considering this, it appears that the proposed algorithmhas obtained

the best solution so far. Particularly, the optimal structure found by the algorithm is

more than 5.59 kg lighter than that of the standard PSO in spite of using smaller value

for modulus of elasticity. Using E¼ 6.98� 1010 Pa, DPSO finds a structure weighted

524.70 kgwhich is about 13 kg lighter than that of standard PSO.Themeanweight and

the standard deviation of the results gained by DPSO are 537.80 kg and 4.02 kg,

respectively, while PSO has obtained a mean weight of 540.89 kg and a standard

deviation of 6.84 kg. This means that DPSO performs better than the standard PSO in

terms of best weight, average weight, and standard deviation.

Fig. 2.4 Schematic of the

planar 10-bar truss structure
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Table 2.3 represents the natural frequencies of the optimized structures obtained

by different methods.

Figure 2.5 compares the convergence curves for the 10-bar planar truss obtained

by the democratic PSO and the standard PSO.

The termination criterion is not clearly stated in reference [60]. It is just declared

that a combination of three different criteria was simultaneously employed: (1) the

differences in the global best design variables between two consecutive iterations,

(2) the differences of the global best objective function, and (3) the coefficient of

variation of objective function in the swarm. In any case, it seems no improvement is

expected from PSO after the 2000th analysis, and hence the execution is terminated.

Comparison of the convergence curves above provides some useful points about

the differences of the two algorithms. The standard and the democratic PSO utilize

50 and 30 particles for this problem, respectively. Although the standard PSO uses

Table 2.1 Material properties, variable bounds, and frequency constraints for the 10-bar truss

structure

Property/unit Value

E(modulus of elasticity)/N/m2 6.89� 1010

ρ(material density)/kg/m3 2770.0

Added mass/kg 454.0

Design variable lower bound/m2 0.645� 10�4

Design variable upper bound/m2 50� 10�4

L(main bar’s dimension)/m 9.144

Constraints on the first three frequencies/Hz ω1� 7, ω2� 15, ω 3� 20

Table 2.2 Optimized designs (cm2) obtained for the planar 10-bar truss problem (the optimized

weight does not include the added masses)

Element

number

Grandhi

and

Venkayya

[61]

Sedaghati

et al. [62]

Wang

et al.

[63]

Lingyun

et al.

[64]

Gomes

[60]

Kaveh

and

Zolghadr

[65]

Proposed

algorithm

Standard

CSS

1 36.584 38.245 32.456 42.23 37.712 38.811 35.944

2 24.658 9.916 16.577 18.555 9.959 9.0307 15.530

3 36.584 38.619 32.456 38.851 40.265 37.099 35.285

4 24.658 18.232 16.577 11.222 16.788 18.479 15.385

5 4.167 4.419 2.115 4.783 11.576 4.479 0.648

6 2.070 4.419 4.467 4.451 3.955 4.205 4.583

7 27.032 20.097 22.810 21.049 25.308 20.842 23.610

8 27.032 24.097 22.810 20.949 21.613 23.023 23.599

9 10.346 13.890 17.490 10.257 11.576 13.763 13.135

10 10.346 11.452 17.490 14.342 11.186 11.414 12.357

Weight

(kg)

594.0 537.01 553.8 542.75 537.98 531.95 532.39

28 2 Particle Swarm Optimization



T
a
b
le

2
.3

N
at
u
ra
l
fr
eq
u
en
ci
es

(H
z)

ev
al
u
at
ed

at
th
e
o
p
ti
m
iz
ed

d
es
ig
n
s
fo
r
th
e
p
la
n
ar

1
0
-b
ar

tr
u
ss

F
re
q
u
en
cy

n
u
m
b
er

G
ra
n
d
h
i
an
d
V
en
k
ay
y
a

[6
1
]

S
ed
ag
h
at
i
et

al
.

[6
2
]

W
an
g
et

al
.

[6
3
]

L
in
g
y
u
n
et

al
.

[6
4
]

G
o
m
es

[6
0
]

K
av
eh

an
d
Z
o
lg
h
ad
r

[6
5
]

P
ro
p
o
se
d

al
g
o
ri
th
m

S
ta
n
d
ar
d
C
S
S

1
7
.0
5
9

6
.9
9
2

7
.0
1
1

7
.0
0
8

7
.0
0
0

7
.0
0
0

7
.0
0
0

2
1
5
.8
9
5

1
7
.5
9
9

1
7
.3
0
2

1
8
.1
4
8

1
7
.7
8
6

1
7
.4
4
2

1
6
.1
8
7

3
2
0
.4
2
5

1
9
.9
7
3

2
0
.0
0
1

2
0
.0
0
0

2
0
.0
0
0

2
0
.0
3
1

2
0
.0
0
0

4
2
1
.5
2
8

1
9
.9
7
7

2
0
.1
0
0

2
0
.5
0
8

2
0
.0
6
3

2
0
.2
0
8

2
0
.0
2
1

5
2
8
.9
7
8

2
8
.1
7
3

3
0
.8
6
9

2
7
.7
9
7

2
7
.7
7
6

2
8
.2
6
1

2
8
.4
7
0

6
3
0
.1
8
9

3
1
.0
2
9

3
2
.6
6
6

3
1
.2
8
1

3
0
.9
3
9

3
1
.1
3
9

2
9
.2
4
3

7
5
4
.2
8
6

4
7
.6
2
8

4
8
.2
8
2

4
8
.3
0
4

4
7
.2
9
7

4
7
.7
0
4

4
8
.7
6
9

8
5
6
.5
4
6

5
2
.2
9
2

5
2
.3
0
6

5
3
.3
0
6

5
2
.2
8
6

5
2
.4
2
0

5
1
.3
8
9

2.5 Democratic PSO for Structural Optimization 29



more particles which is supposed to maintain better coverage of the search space and

higher level of exploration, its convergence curve shows that the convergence is

almost attained within the first 1000 analyses and after that the convergence curve

becomes straight. On the other hand, democratic PSO reaches an initial convergence

after about 1500th analyses, and it still keeps exploring the search space until it reaches

the final result at 3000th analysis. This can be interpreted as the modifications being

effective on the alleviation of the premature convergence problem. It should be noted

that the structure found byDPSO at 2000th analysis is much lighter than that found by

PSO at the same analysis. In fact while the modifications improve the exploration

capabilities of the algorithm, they do not disturb the algorithm’s convergence task.

2.5.3.2 A Simply Supported 37-Bar Planar Truss

A simply supported 37-bar Pratt type truss, as depicted in Fig. 2.6, is examined as

the second example.

The elements of the lower chord are modeled as bar elements with constant

rectangular cross-sectional areas of 4� 10�3 m2. The other members are modeled

as bar elements. These members which form the sizing variables of the problem are

grouped with respect to symmetry. Also, the y-coordinate of all the nodes on the

upper chord can vary in a symmetrical manner to form the layout variables. On the

Fig. 2.5 Comparison of convergence curves of democratic and standard PSO algorithms recorded

in the 10-bar problem
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lower chord, a nonstructural mass of 10 kg is attached to all free nodes. The first

three natural frequencies of the structure are considered as the constraints. So this is

an optimization on layout and size with 19 design variables (14 sizing variables

+ five layout variables) and three frequency constraints. This example has been

studied by Wang et al. [63] using an evolutionary node shift method and Lingyun

et al. [64] using a niche hybrid genetic algorithm. Gomes [60] has investigated this

problem using the standard particle swarm algorithm. Kaveh and Zolghadr [65]

used the standard and an enhanced CSS to optimize the structure.

Material properties, frequency constrains, and added masses are listed in

Table 2.4.

Final cross-sectional areas and node coordinates obtained by different methods

together with the corresponding weight are presented in Table 2.5. It can be seen

that the proposed algorithm has found the best results so far. Specifically, in

comparison to the standard PSO, the resulted structure is meaningfully lighter.

The mean weight and the standard deviation of the results obtained by DPSO are

362.21 kg and 1.68 kg, respectively, while PSO has obtained a mean weight of

381.2 kg and a standard deviation of 4.26 kg. This indicates that DPSO not only

finds a better best solution but also is more stable.

Table 2.6 represents the natural frequencies of the final structures obtained by

various methods for the 37-bar simply supported planar truss.

Figure 2.7 shows the optimized layout of the simply supported 37-bar truss as

found by DPSO. The convergence curves for the democratic PSO and the standard

PSO are shown in Fig. 2.6. The information on the convergence curve values at the

few first analyses is not available in [60] (Fig. 2.8).

Fig. 2.6 Schematic of the simply supported planar 37-bar truss

Table 2.4 Material properties and frequency constraints for the simply supported planar 37-bar

truss

Property/unit Value

E(modulus of elasticity)/N/m2 2.1� 1011

ρ(material density)/kg/m3 7800

Design variable lower bound/m2 1� 10�4

Design variable upper bound/m2 10� 10�4

Added mass/kg 10

Constraints on first three frequencies/Hz ω1� 20, ω2� 40, ω3� 60
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2.5.3.3 A 52-Bar Dome-Like Truss

Simultaneous layout and size optimization of a 52-bar dome-like truss is considered

as the third example. Initial layout of the structure is depicted in Fig. 2.9.

Nonstructural masses of 50 kg are attached to all free nodes.

Table 2.7 summarized the material properties, frequency constraints, and vari-

able bounds for this example.

Table 2.5 Optimized designs obtained for the planar 37-bar truss problem

Variable

Wang et al.

[63]

Lingyun

et al. [64]

Gomes

[60]

Kaveh and

Zolghadr [65] Proposed

algorithmStandard CSS

Y3, Y19 (m) 1.2086 1.1998 0.9637 0.8726 0.9482

Y5, Y17 (m) 1.5788 1.6553 1.3978 1.2129 1.3439

Y7, Y15 (m) 1.6719 1.9652 1.5929 1.3826 1.5043

Y9, Y13 (m) 1.7703 2.0737 1.8812 1.4706 1.6350

Y11 (m) 1.8502 2.3050 2.0856 1.5683 1.7182

A1, A27 (cm2) 3.2508 2.8932 2.6797 2.9082 2.6208

A2, A26 (cm2) 1.2364 1.1201 1.1568 1.0212 1.0397

A3, A24 (cm2) 1.0000 1.0000 2.3476 1.0363 1.0464

A4, A25 (cm2) 2.5386 1.8655 1.7182 3.9147 2.7163

A5, A23 (cm2) 1.3714 1.5962 1.2751 1.0025 1.0252

A6, A21 (cm2) 1.3681 1.2642 1.4819 1.2167 1.5081

A7, A22 (cm2) 2.4290 1.8254 4.6850 2.7146 2.3750

A8, A20 (cm2) 1.6522 2.0009 1.1246 1.2663 1.4498

A9, A18 (cm2) 1.8257 1.9526 2.1214 1.8006 1.4499

A10, A19 (cm2) 2.3022 1.9705 3.8600 4.0274 2.5327

A11, A17 (cm2) 1.3103 1.8294 2.9817 1.3364 1.2358

A12, A15 (cm2) 1.4067 1.2358 1.2021 1.0548 1.3528

A13, A16 (cm2) 2.1896 1.4049 1.2563 2.8116 2.9144

A14 (cm2) 1.0000 1.0000 3.3276 1.1702 1.0085

Weight (kg) 366.50 368.84 377.20 362.84 360.40

Table 2.6 Natural frequencies (Hz) evaluated at the optimized designs for the planar 37-bar truss

Frequency

number

Wang et al.

[63]

Lingyun et al.

[64]

Gomes

[60]

Kaveh and

Zolghadr [65] Proposed

algorithmStandard CSS

1 20.0850 20.0013 20.0001 20.0000 20.0194

2 42.0743 40.0305 40.0003 40.0693 40.0113

3 62.9383 60.0000 60.0001 60.6982 60.0082

4 74.4539 73.0444 73.0440 75.7339 76.9896

5 90.0576 89.8244 89.8240 97.6137 97.2222
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All of the elements of the structure are categorized in 8 groups according to

Table 2.8. All free nodes are permitted to move�2 m from their initial position in a

symmetrical manner. This is a configuration optimization problem with 13 variables

(eight sizing variables + five layout variables) and two frequency constraints.

This example has been investigated by Lin et al. [67] using a mathematical

programming technique and Lingyun et al. [64] using a niche hybrid genetic algo-

rithm. Gomes [60] has analyzed this problem using the standard particle swarm

algorithm. The authors have studied the problem using the standard and an enhanced

CSS [65] and a hybridized CSS–BBBC with a trap recognition capability [66].

Table 2.9 compares the final cross-sectional areas and node coordinates found by

different methods together with the corresponding weight for the 52-bar space truss.

Fig. 2.7 Schematic of the optimized layout of the simply supported planar 37-bar truss

Fig. 2.8 Comparison of convergence curves of democratic and standard PSO algorithms recorded

in the 37-bar Pratt type planar truss
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Fig. 2.9 Schematic of the initial layout of the spatial 52-bar truss. (a) Top view, (b) side view
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It can be seen that the result gained by the democratic PSO is far better than the

standard PSO. The standard PSO uses 70 particles and about 160 iterations (11,200

analyses) to reach its best result, while the democratic PSO uses 30 particles and

200 iterations (6000 analyses). Table 2.8 indicates that among all the methods listed

above, the democratic PSO has obtained the best solution. The mean weight and the

Table 2.7 Material properties and frequency constraints and variable bounds for the spatial

52-bar truss

Property/unit Value

E(modulus of elasticity)/N/m2 2.1� 1011

ρ(material density)/kg/m3 7800

Added mass/kg 50

Allowable range for cross sections/m2 0.0001�A� 0.001

Constraints on the first three frequencies/Hz ω1� 15.916 ω2� 28.648

Table 2.8 Element grouping

adopted in the spatial 52-bar

truss problem

Group number Elements

1 1–4

2 5–8

3 9–16

4 17–20

5 21–28

6 29–36

7 37–44

8 45–52

Table 2.9 Optimized designs obtained for the spatial 52-bar truss problem

Variable

Lin et al.

[67]

Lingyun et al.

[64]

Gomes

[60]

Kaveh and Zolghadr

[65] Present

workStandard CSS

ZA (m) 4.3201 5.8851 5.5344 5.2716 6.1123

XB (m) 1.3153 1.7623 2.0885 1.5909 2.2343

ZB (m) 4.1740 4.4091 3.9283 3.7093 3.8321

XF (m) 2.9169 3.4406 4.0255 3.5595 4.0316

ZF (m) 3.2676 3.1874 2.4575 2.5757 2.5036

A1 (cm2) 1.00 1.0000 0.3696 1.0464 1.0001

A2 (cm2) 1.33 2.1417 4.1912 1.7295 1.1397

A3 (cm2) 1.58 1.4858 1.5123 1.6507 1.2263

A4 (cm2) 1.00 1.4018 1.5620 1.5059 1.3335

A5 (cm2) 1.71 1.911 1.9154 1.7210 1.4161

A6 (cm2) 1.54 1.0109 1.1315 1.0020 1.0001

A7 (cm2) 2.65 1.4693 1.8233 1.7415 1.5750

A8 (cm2) 2.87 2.1411 1.0904 1.2555 1.4357

Weight (kg) 298.0 236.046 228.381 205.237 195.351
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standard deviation of the results gained by DPSO are 198.71 kg and 13.85 kg,

respectively, while PSO has obtained a mean weight of 234.3 kg and a standard

deviation of 5.22 kg. DPSO performs considerably better in terms of best and mean

weight.

Table 2.10 shows the natural frequencies of the final structures found by various

methods for the 52-bar dome-like space truss.

Figure 2.10 shows the optimized layout of the spatial 52-bar truss as found by

DPSO. The convergence curve of the best run of the democratic PSO for the 52-bar

dome-like truss is shown Fig. 2.11. The convergence curve for the standard PSO is

not available in reference [60].

2.5.3.4 A 120-Bar Dome Truss

The 120-bar dome truss shown in Fig. 2.12 is considered as the last example. This

problem has been previously studied as a benchmark optimization problem with

static constraints.

Table 2.10 Natural frequencies (Hz) evaluated at the optimized designs for the spatial 52-bar

truss

Frequency

number

Lin et al.

[67]

Lingyun et al.

[64]

Gomes

[60]

Kaveh and Zolghadr

[65] Present

workStandard CSS

1 15.22 12.81 12.751 9.246 11.315

2 29.28 28.65 28.649 28.648 28.648

3 29.28 28.65 28.649 28.699 28.648

4 31.68 29.54 28.803 28.735 28.650

5 33.15 30.24 29.230 29.223 28.688

Fig. 2.10 Schematic of the optimized layout of the spatial 52-bar truss
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The authors used the problem as a size optimization problem with frequency

constraints in [65]. Nonstructural masses are attached to all free nodes as follows:

3000 kg at node one, 500 kg at nodes 2 through 13, and 100 kg at the rest of the

nodes. Material properties, frequency constraints, and variable bounds for this

example are summarized in Table 2.11. The layout of the structure is kept

unchanged during the optimization process. Hence, this is a sizing optimization

problem.

This example is solved here using both the standard and democratic PSO in order

to make the comparison possible. Thirty particles and 200 iterations are used for

both methods. Table 2.12 represents a comparison between the final results

obtained by the standard and the democratic PSO. Table 2.13 shows the natural

frequencies of the final structures found by both methods.

According to Table 2.12, the result obtained by the democratic PSO is mean-

ingfully lighter than that of the standard PSO. The mean weight and the standard

deviation of the results gained by DPSO are 8895.99 kg and 4.26 kg, respectively,

while PSO has obtained a mean weight of 9251.84 kg and a standard deviation of

89.38 kg. This shows that the democratic PSO outperforms the standard version in

all of the abovementioned aspects. Figure 2.13 shows the convergence curves for

both methods.

Fig. 2.11 Convergence curve of the democratic PSO for the spatial 52-bar truss
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Fig. 2.12 Schematic of the 120 bar
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Table 2.11 Material properties and frequency constraints and variable bounds for the 120-bar

dome truss

Property/unit Value

E(Modulus of elasticity)/N/m2 2.1� 1011

ρ(Material density)/kg/m3 7971.810

Added mass/kg m1¼ 3000, m1¼ 500, m2¼ 100

Allowable range for cross sections/m2 0.0001�A� 0.01293

Constraints on first three frequencies/Hz ω1� 9 ω2� 11

Table 2.12 Optimized

designs (cm2) obtained for the

120-bar dome truss

Element group Standard PSO Democratic PSO

1 23.494 19.607

2 32.976 41.290

3 11.492 11.136

4 24.839 21.025

5 9.964 10.060

6 12.039 12.758

7 14.249 15.414

Weight (kg) 9171.93 8890.48

Table 2.13 Natural

frequencies (Hz) evaluated at

the optimized designs for the

120-bar dome truss

Frequency number Standard PSO Democratic PSO

1 9.0000 9.0001

2 11.0000 11.0007

3 11.0052 11.0053

4 11.0134 11.0129

5 11.0428 11.0471
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