
Chapter 19

Optimal Design of Large-Scale Frame

Structures

19.1 Introduction

Discrete or continuous size optimization of large-scale, high-rise, or complex

structures leads to problems with large number of design variables and large search

spaces and requires the control of a great number of design constraints. Separate

design decisions for each variable would be allowed. Thus, the optimizer invoked to

process such a sizing problem is given the possibility to really optimize the

objective function by detecting the optimum solution within a vast amount of

possible design options. The huge number of available design options typically

confuses an optimizer and radically decreases the potential of effective search for a

high-quality solution. This chapter is based on the recent development on design of

large-scale frame structures (Kaveh and Bolandgerami [1]).

Various optimization approaches have been investigated and successfully

applied to optimum design of large-scale structures in the recent years. Classical

optimization algorithms (Schulz and Book [2]; Dreyer et al. [3]; Wang and Arora

[4]) for large-scale problems need many powerful computational systems. Further-

more, many of such algorithms are known as local optimizer, and their final results

cannot be considered as the global optimum. Contrary to mathematical program-

ming algorithms, there are metaheuristic algorithms which are often stochastic

algorithms and can efficiently explore the search space of the large-scale problems.

Yang et al. [5] proposed a new cooperative coevolution framework that is

capable of optimizing large-scale non-separable problems. A random grouping

scheme and adaptive weighting are introduced in problem decomposition and

coevolution. Instead of conventional evolutionary algorithms, a novel differential

evolutionary algorithm was adopted. Hsieh et al. [6] presented a variation on the

traditional PSO algorithm, so-called the efficient population utilization strategy for

particle swarm optimization (EPUS-PSO) for solving large-scale global optimiza-

tion. This is achieved by using variable particles in swarms to enhance the searching

ability and drive particles more efficiently. Moreover, sharing principals are
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constructed to stop particles from falling into the local minimum and make the

global optimal solution easier to find by particles. Fister et al. [7] used memetic

computation (MC) which is emerged recently as a new paradigm of efficient

algorithms for solving the hardest optimization problems. Artificial bee colony

algorithm and memetic computation are used under the same roof. As a result, a

memetic artificial bee colony algorithm (MABC) algorithm has been developed to

solve large-scale global optimization problems. Self-organizing migrating algo-

rithm with quadratic interpolation (SOMAQI) has been extended by Singha and

Agrawalb [8] to solve large-scale global optimization problems for dimensions

ranging from 100 to 3000 with a constant population size of 10 only. This produces

high-quality optimal solution with very low computational cost and converges very

fast to optimal solution.

In particular, some researchers have performed optimization on large-scale

structures. Kaveh and Talatahari [9] introduced a modified version of the charged

system search for large structure optimization which was based on the combination

of charged system search algorithm and particle swarm optimization. Lagaros [10]

presented a computing platform for real-world and large-scale structures. Talatahari

and Kaveh [11] introduced an improved bat algorithm for optimizing large-scale

structures. Aydogdu et al. [12] improved the performance of artificial bee colony

algorithm by adding Lévy flight distribution in the search of scout bees and

successfully applied to large steel space frames. Except improving the algorithm,

other methods have been proposed. For example, Papadrakakis et al. [13] used

neural network in order to replace the structural analysis phase and to compute the

necessary data for the evolution strategies optimization procedure. The use of

neural network was motivated by the time-consuming repeated analyses required

by ES during the optimization process.

In order to overcome the dilemma of using large design variables, in addition

to modifying or introducing new optimization algorithms, some methods have been

proposed in literature. Sobieszczanski-Sobieski et al. [14] introduced a multilevel

optimization and generalized multilevel optimization (Sobieszczanski-Sobieski

et al. [15]) which break large optimization problems into several smaller subprob-

lems, and a coordination problem is formulated to preserve the couplings among

these subproblems. A very important benefit of such an approach, in addition to

making the entire problem more tractable, is preservation of the customary orga-

nization of the design office in which many engineers work concurrently on

different parts of the problem. Charmpis et al. [16] employed the concept of

cascading, allowing a single optimization problem to be tackled in a number of

successive autonomous optimization stages. Under this context, several coarse

versions of the same full-size database are formed, in order to utilize a different

database in each cascade stage executed with an evolutionary optimization algo-

rithm. The early optimization stages of the resulting multi-database cascade proce-

dure make use of the coarsest database versions available and serve the purpose of

the basic design space exploration. The last stages exploit finer databases (including

the original full-size database) and aim in fine-tuning to achieve optimal solution.
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Optimum design of large-scale dome trusses using cascade optimization has been

carried out by Kaveh and Ilchi Ghazaan [17].

Cascade sizing optimization utilizing a series of design variable configurations

(DVCs) is used in this study. Several design variable configurations are constructed,

in order to utilize a different configuration at each cascade optimization stage. Each

new cascade stage is coupled with the previous one by initializing the new stage

using the finally attained optimum design of the previous one. The early optimiza-

tion stages of the cascade procedure make use of the coarsest configurations with

small numbers of design variables and serve the purpose of basic design space

exploration. The last stages exploit finer configurations with larger numbers of

design variables and aim in fine-tuning the achieved optimal solution.

Utilized optimizer in all stages of the cascade process is enhanced colliding

bodies optimization (ECBO) which is introduced by Kaveh and Ilchi Ghazaan

[18]. However, any other metaheuristic algorithm could be used. Colliding bodies

optimization (CBO) which is introduced by Kaveh and Mahdavi [19] is a new

multi-agent algorithm inspired by a collision between two objects in one dimension.

Each agent is modeled as a body with a specified mass and velocity. A collision

occurs between pairs of objects, and the new positions of the colliding bodies are

updated based on the collision laws. Enhanced colliding bodies optimization

(ECBO) uses memory to save some best solutions and has a mechanism to escape from

local optima.

The present chapter is organized as follows. Code-based design optimization of

steel frames is presented in Sect. 19.2. Section 19.3 introduces cascade sizing

optimization utilizing a series of design variable configurations. CBO algorithm

and its enhanced version are introduced in Sect. 19.4. In Sect. 19.5, optimal designs

of three large-scale space frames with the proposed approach are investigated.

Finally, some conclusions are derived in Sect. 19.6.

19.2 Code-Based Design Optimization of Steel Frames

For a steel frame structure consisting of Nm members that are collected in Nd design

groups (variables), the optimum design problem according to ASD-AISC (Amer-

ican Institute of Steel Construction [20]) code yields the following discrete pro-

gramming problem, if the design groups are selected from steel sections in a given

profile list.

Find a vector of integer values I representing the sequence numbers of steel

sections assigned to Nd member groups as:

IT ¼ I1; I2; . . . ; INd
½ � ð19:1Þ

to minimize the weight (W ) of the frame:
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W ¼
XNd

i¼1

ρiAi

XNt

j¼1

Lj ð19:2Þ

where Ai and ρi are the area and unit weight of the steel section adopted for member

group i, respectively, Nt is the total number of members in group i, and Lj is the
length of the member j which belongs to the group i.

The members subjected to a combination of axial compression and flexural

stress must be sized to meet the following stress constraints:

if
f a
Fa

> 0:15;
f a
Fa

þ Cmx f bx

1� f a
F
0
ex

� �
Fbx

þ Cmy f by

1� f a
F
0
ey

� �
Fby

2
664

3
775� 1 � 0 ð19:3Þ

f a
0:60 Fy

þ f bx
Fbx

þ f by
Fby

� �
� 1 � 0 ð19:4Þ

if
f a
Fa

< 0:15;
f a
Fa

þ f bx
Fbx

þ f by
Fby

� �
� 1 � 0 ð19:5Þ

If the flexural member is under tension, then the following formula is used instead:

f a
0:60 Fy

þ f bx
Fbx

þ f by
Fby

� �
� 1 � 0 ð19:6Þ

In Eqs. (19.3) and (19.6), Fy is the material yield stress, and fa¼ (P/A) represents the
computed axial stress, where A is the cross-sectional area of the member. The

computed flexural stresses due to bending of the member about its major (x) and
minor (y) principal axes are denoted by fbx and fby, respectively. F

0
ex and F

0
ey denote

the Euler stresses about principal axes of the member that are divided by a factor of

safety of 23/12. Fa stands for the allowable axial stress under axial compression

force alone and is calculated depending on elastic or inelastic bucking failure

mode of the member using Formulas 1.5-1 and 1.5-2 of ASD-AISC. The allowable

bending compressive stresses about major and minor axes are designated by Fbx

and Fby, which are computed using Formulas 1.5-6a or 1.5-6b and 1.5-7 provided

in ASD-AISC. Cmx and Cmy are the reduction factors, introduced to counterbal-

ance overestimation of the effect of secondary moments by the amplification

factor ( 1� f a=F
0
e ). For braced frame members without transverse loading

between their ends, these are calculated from Cm¼ 0.6� 0.4 (M1/M2), where
M1/M2 is the ratio of smaller end moment to the larger end moment. For braced

frame members having transverse loading between their ends, these are deter-

mined from the formula Cm ¼ 1þ ψ f a=F
0
e

� 	
based on a rational approximate

analysis outlined in ASD-AISC Commentary-H1, where ψ is a parameter that

considers maximum deflection and maximum moment in the member.
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For computation of allowable compression and Euler stresses, the effective

length factors K are required. For beam and bracing members, K is taken equal to

unity. For column members, alignment charts furnished in ASD-AISC can be

utilized. In this study, however, the effective length factors of columns in a braced

frame are calculated from the following approximate formula developed by

Dumonteil [21], which are accurate within about �1.0% and +2.0% of the

exact results (Hellesland [22]):

K ¼ 3GAGB þ 1:4 GA þ GBð Þ þ 0:64

3GAGB þ 2:0 GA þ GBð Þ þ 1:28
ð19:7Þ

where GA and GB refer to the stiffness ratio or relative stiffness of a column at its

two ends.

It is also required that computed shear stresses ( fv) in members should be smaller

than the allowable shear stresses (Fv), as formulated in Eq. (19.8):

f v � Fv ¼ 0:40CvFy ð19:8Þ

In the above equation, Cv is referred to as web shear coefficient. It is taken equal to

Cv¼ 1.0 for the rolledW-shaped members with h/tw� 2.24E/Fy, where h is the clear
distance between flanges, E is the elasticity modulus, and tw is the thickness of web.

For all other symmetric shapes, Cv is calculated from Formulas G2-3, G2-4, and

G2-5 in ANSI/AISC 360-05 (Specification [23]).

Apart from stress constraints, slenderness limitations are also imposed on all

members such that the maximum slenderness ratio (λ¼KL/r) is limited to 300 for

members under tension and to 200 for members under compression loads. The

displacement constraints are imposed such that the maximum lateral displacements

are restricted to be less than H/400 and the upper limit of story drift is set to be h/400,
where H is the total height of the frame building and h is the height of a story.

Finally, we consider geometric constraints between beams and columns framing

into each other at a common joint for practicality of an optimum solution generated.

For the two beams B1 and B2 and the column shown in Fig. 19.1, one can write the

following geometric constraints:

bf b
bfc

� 1:0 � 0 ð19:9Þ

b0f b
dc � 2tf
� 	� 1:0 � 0 ð19:10Þ

where bfb, b
0
fb, and bfc are the flange width of the beam B1, the beam B2, and the

column, respectively; dc is the depth of the column; and tf is the flange width of the
column. Equation (19.9) simply ensures that the flange width of the beam B1
remains smaller than that of the column. On the other hand, Eq. (19.10) guarantees
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that flange width of the beam B2 remains smaller than clear distance between the

flanges of the column (dc� 2tf).

19.3 Cascade Sizing Optimization Utilizing a Series

of Design Variable Configurations

Cascade sizing optimization approach utilized in this work is presented in this

section. First, the concept of cascade optimization is introduced, and then multi-

design variable configuration (DVC) cascade optimization is presented.

19.3.1 Cascade Optimization Strategy

There is no unique optimization algorithm capable of effectively solving all opti-

mization problems. Cascade optimization strategy has been introduced as a multi-

stage procedure, which employs various optimizers in a successive manner to solve

an optimization problem (Patnaik et al. [24]). Each autonomous optimization stage

of the cascade procedure starts from an initial design, which is either a “cold start”

or a “hot start.” The early stage starts from cold start which is a user-specified or

randomly selected design. After running the early-stage optimizer, the optimal

solution reached is used as the starting solution for the second cascade stage. This

new starting solution is called a hot start, because during the execution of the initial

optimizer, the achieved optimal solution has moved toward the region of the global

Fig. 19.1 Schematic of a

beam–column geometric

constraints [1]
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optimum. Then, each optimization stage of the cascade procedure starts from the

optimum solution achieved at the previous stage.

The actual aim of cascading is to take advantage of the combined strength and

the differentiated computations of a number of optimizers executed in a successive

manner. This advantage has been used for structural sizing optimization (Charmpis

et al. [16], Lagaros [10], Kaveh and Ilchi Ghazaan [17]).

19.3.2 Multi-DVC Cascade Optimization

Multi-DVC cascade optimization method employs a series of configurations for the

design variable configurations (DVCs) of the problem at hand and at each stage of

cascade uses from different DVCs. DVCs are defined in a manner that DVCs used

in early stages have less design variables than DVCs utilized in final stages. The

early stage of the cascade procedure executed with the coarsest DVCs aims at a

basic non-detailed search of the entire design space. This search is facilitated by the

manageable DVCs handled, which avoid confusing the employed optimizer with

huge design spaces although it does not consider a lot of design options. With this

method, global search is performed in early stages and more detailed and local

search is performed in final stages. The final stage of cascade optimization in this

method uses the finest DVC. Figure 19.2 shows the flowchart of the multi-DVC

cascade optimization procedure.

DVCs can be generated based on engineering experience. Here, variables of one

kind (exterior beams, interior beams, corner columns, etc.) for some stories are

integrated in coarser DVC, while in finer DVC structural members are grouped

separately for each story.

For each stage of the cascade optimization method, one can choose different

optimization algorithm. Choosing an optimization algorithm which is capable in

global search for early stages and local search algorithms for final stages may result

in a better cascade method performance. However, in this chapter enhanced collid-

ing bodies optimization, presented in the subsequent section, is used as the optimi-

zation algorithm in all the stages of the cascade optimization.

In order to explain the utilized method (without loss of generality), consider

three stages of the cascade procedure. In this method, C0 is the number of DVCs

that is defined by the problem, so two other coarser DVCs should be defined (C1 and

C2). In the first stage of the cascade procedure, the first optimizer works with C2

which is the coarsest DVC and finally attains d1(C2) design. In the first stage,

optimizer deals with relatively small number of variables and thus in a reasonable

number of iterations achieves the d1(C2) design. d1(C2) is a vector with nd(C2)
entries, and before starting the second stage of cascade procedure, d1(C2) must be

converted to the vector d1(C1) with nd(C1) entries. For this conversion, design

information of each structural member should be extracted. Notation nd refers to
the number of design variables in each DVC. After conversion, the second opti-

mizer in the second stage of the cascade procedure starts from d1(C1) and achieves
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the d2(C1). Due to the second optimizer efforts in the second stage of the cascade

procedure, d2 will have better fitness value than d1. Finally, in the third stage of the
cascade method, the third optimizer starts from d2(C0) and achieves the d3(C0).
Here, the d2(C0) is the converted vector of the d2(C1), and d3 is the best achieved

design in all stages of the cascade procedure.

For basic and non-detailed search of all region of design space, the first stages of

cascade procedure executed with the coarsest DVCs. Due to relatively small

number of design variables in the coarsest DVCs, optimizer will not be confused

and search can be facilitated by the manageable DVCs handled. Accordingly, the

appropriate regions of design space are identified by detecting optimum solutions

among the relatively limited design options provided. With increasing numbers of

design variables in the next stages of cascade procedure, more detailed search will

be available, and the optimizer is given the opportunity to improve the quality of the

optimal solution reached. Optimal design vector over a number of cascade stages is

upgraded gradually by the transfer of optimization results between successive

Begin

A series of design variable configuration
(DVCs) are constructed based on the

engineer’s experience

Sort DVCs according to the size in an
increasing order

The coarsest DVCs is utilized in the first stage
of the cascade procedure

Some agents are initializing based on the
finally attained optimum design of the

previous stage

Next DVCs is used in the new stage

Optimization stage is execute with the
enhanced colliding bodies optimization

algorithm

Are all
constructed

DVCs
utilized?

No

Yes

Report the best solution

End

Fig. 19.2 Flowchart of the multi-DVC cascade optimization procedure [1]
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stages. Although in the last stages of cascade procedure optimizer deals with large

number of design variables, the appropriate initialization of each cascade stage

prevents the optimizer from being trapped in a process of purposeless and ineffec-

tive searching. Hence, the first optimization stages of the cascade procedure serve

the purpose of basic design space exploration, while the last stages aim in fine-

tuning the achieved optimal solution.

19.4 Colliding Bodies Optimization and Its Enhanced

Version

19.4.1 A Brief Explanation of the CBO Algorithm

The colliding bodies optimization (CBO) is a metaheuristic algorithm introduced

by Kaveh and Mahdavi [19] and contains a number of colliding bodies (CB) where

each one collides with other objects to explore the search space. In CBO, each

solution candidate Xi containing a number of variables (i.e., Xi¼ {Xi,j}) is con-

sidered as a colliding body (CB). In discrete problems, CBs are allowed to select

discrete values from a list. Actually, real numbers are rounded to the nearest

integer.

Each CB is a solution candidate so its objective function (here, weight of

structure multiplied by the penalty function) value can be calculated. In this way,

constraints are applied using a penalty function. CBs according to their objective

function values take specified mass defined as:

mk ¼
1

fit kð Þ
1Pn

i¼1
1

fit ið Þ

, k¼1, 2, ..., n ð19:11Þ

where fit (i) represents the objective function value of the ith CB and n is the

number of colliding bodies. Thus, in each iteration, all the CBs must be evaluated.

Here, finite element analysis constraints check must be performed.

After sorting colliding bodies according to their objective function values in an

increasing order, two equal groups are created: (i) stationary group and (ii) moving

group (Fig. 19.3). Moving objects collide to stationary objects to improve their

positions and push stationary objects toward better positions. The velocities of the

stationary and moving bodies before collision (vi) are calculated by:

vi ¼ 0, i ¼ 1, 2, . . . ,
n

2
ð19:12Þ
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vi ¼ xi�n
2
� xi, i ¼ n

2
þ 1,

n

2
þ 2, . . . , n ð19:13Þ

where xi is the position vector of the ith CB.

The velocities of stationary and moving CBs after the collision (v0i) are evaluated
by:

v0i ¼
miþn

2
þ εmiþn

2

� �
viþn

2

mi þ miþn
2

i ¼ 1, 2, . . . ,
n

2
ð19:14Þ

v0i ¼
mi � εmi�n

2

� �
vi

mi þ mi�n
2

i ¼ n

2
þ 1,

n

2
þ 2, . . . n ð19:15Þ

ε ¼ 1� iter

itermax
ð19:16Þ

where ε is the coefficient of restitution (COR) and iter and itermax are the current

iteration number and the total number of iterations for optimization process,

respectively.

New positions of each group are stated by the following formulas:

xnewi ¼ xi þ rand∘v
0
i, i ¼ 1, 2, . . . ,

n

2
ð19:17Þ

xnewi ¼ xi�n
2
þ rand∘v

0
i, i ¼ n

2
þ 1,

n

2
þ 2, . . . , n ð19:18Þ

where xnewi , xi, and v
0
i are the new position, the previous position, and the velocity

after the collision of the ith CB, respectively; rand is a random vector uniformly

distributed in the range of (�1, 1) and the sign “˳” denotes an element-by-element

multiplication.

The flowchart of CBO algorithm is depicted in Fig. 19.4.

Fig. 19.3 Pairs of CBs for collision
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19.4.2 The ECBO Algorithm

The enhanced version of the CBO is introduced by Kaveh and Ilchi Ghazaan

[18]. In the enhanced colliding bodies optimization (ECBO), a memory that saves

a number of historically best CBs is utilized to improve the performance of the CBO

and to reduce the computational cost. Furthermore, ECBO changes some compo-

nents of the CBs randomly to prevent premature convergence. In order to introduce

the ECBO, the following steps are developed and the corresponding flowchart is

provided in Fig. 19.5.

No

Yes

Begin

Initialize all CBs

Objective function is evaluated and masses are 
defined by Eq. (19.11)

Stationary and moving groups are created and 
velocities are calculated by Eqs. (19.12) and (19.13)

The velocities of CBs are updated by Eqs. (19.14) 
and (19.15)

New positions of each CB is determined by Eqs. 
(19.17) and (19.18)

Is termination 
criterion fulfilled?

Report the best solution found by the algorithm

End

Fig. 19.4 Flowchart of the

CBO algorithm
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Level 1: Initialization

Step 1: The initial locations of CBs are created randomly in an m-dimensional

search space.

No

Yes

Begin

Initialize all CBs

Objective function is evaluated and masses are 
defined by Eq. (19.11)

Update Colliding Memory (CM) and population

Stationary and moving groups are created and 
velocities are calculated by Eqs. (19.12) and (19.13)

The velocities of CBs are updated by Eqs. (19.14) 
and (19.15)

New positions of each CB is determined by Eqs. 
(19.17) and (19.18)

Is termination 
criterion fulfilled?

End

Report the best solution found by the algorithm

Fig. 19.5 Flowchart of the

ECBO algorithm
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x0i ¼ xmin þ random∘ xmax � xminð Þ, i ¼ 1, 2, . . . , n ð19:19Þ

where xi
0 is the initial solution vector of the ith CB, xmin and xmax are the minimum

and the maximum allowable variable vectors, and random is a random vector with

each component being in the interval [0, 1].

Level 2: Search

Step 1: The value of the mass for each CB is calculated by Eq. (19.11).

Step 2: Colliding memory (CM) is considered to save some historically best CB

vectors and their related mass and objective function values. The size of the CM is

taken as n/10 in this study. At each iteration, solution vectors that are saved in the

CM are added to the population, and the same number of the current worst CBs is

deleted.

Step 3: CBs are sorted according to their objective function values in an

increasing order. To select the pairs of CBs for collision, they are divided into

two equal groups: (i) stationary group and (ii) moving group (Fig. 19.3).

Step 4: The velocities of stationary and moving bodies before collision are

evaluated in Eqs. (19.12) and (19.13), respectively.

Step 5: The velocities of stationary and moving bodies after collision are

calculated in Eqs. (19.14) and (19.15), respectively.

Step 6: The new location of each CB is evaluated by Eq. (19.17) or Eq. (19.18).

Step 7: A parameter like pro within (0, 1) is introduced and specified whether a

component of each CB must be changed or not. For each CB pro is compared with

rni (i¼ 1, 2, . . ., n) which is a random number uniformly distributed within (0, 1). If

rni< pro, one dimension of the ith CB is selected randomly and its value is

regenerated by:

xij ¼ xj,min þ random : xj,max � xj,min
� 	 ð19:20Þ

where xij is the jth variable of the ith CB and xj,min and xj,max are the lower and upper
bounds of the jth variable.

Level 3: Termination Condition Check

Step 1:After the predefined maximum evaluation number, the optimization process

is terminated.

This algorithm is used in many papers and its efficiency has been proven in

structural size optimization. ECBO algorithm being capable of maintaining a

proper balance between the diversification and the intensification inclinations is

utilized in all stages of cascade process. Local search algorithms are proper for the

last stages of the proposed method, but these cannot have suitable global search in

the first stages. Moreover, the ECBO algorithm has recently been used for structural

optimization.

Although the idea of cascade procedure has been introduced to be used for

multiple optimizers, however, in this chapter another kind of cascade procedure is

implemented in which, instead of using multiple optimizers, multiple DVCs are
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utilized. The potential of using multiple optimizers has already been shown. For this

reason single optimizer is used in all stages of the cascade procedure in order to

examine the efficiency of proposed method independent of the utilized optimizers.

19.5 Numerical Examples

Three large-scale steel space frames are studied to investigate the efficiency of the

cascade-enhanced colliding bodies optimization in weight optimum design. These

examples consist of a 1860-member steel space frame with 72 member groups

(design variables), a 3590-member steel space frame with 124 member groups, and

finally a 3328-member steel space frame with 186 member groups.

The structural members are sized using wide-flange W-sections, such that

columns are selected from the complete set of 297 W-sections, beams are selected

from a set of 171 economical W-sections chosen based on area and inertia proper-

ties, and finally bracings are selected from a set of 147 economical W-sections

chosen based on area and radii of gyration properties. The material properties of the

steel are assumed as follows: modulus of elasticity E¼ 29,000 ksi (203893.6 MPa)

and yield stress Fy¼ 36 ksi (253.1 MPa). Design constraints and objective function

are considered as defined in Sect. 19.2.

The objective function utilized is as follows:

fit xð Þ ¼ W xð Þ � 1þ υð Þ ð19:21Þ
υ ¼

Xnc

i¼1
max 0, gi xð Þ½ � ð19:22Þ

where W is the weight of the structure obtained using Eq. (19.2) and g contains all

the constraints mentioned in Sect. 19.2. In colliding bodies optimization algorithm,

the value of the objective function for each candidate is obtained using the above

equations, and these values are incorporated in calculating the mass of the colliding

bodies (Eq. (19.11)).

For all examples, pro parameter in ECBO is set to 0.3 and a population of

40 CBs is implemented. Colliding memory (CM) size for non-cascade ECBO and

cascade ECBO is set to 2 and 3, respectively, and three best attained designs are

moved to the next stage in the cascade method. All examples started with a random

population. Due to randomness property of the algorithms, five cascade and five

non-cascade runs are performed for each example, and the best results, means, and

standard deviations are provided.

The algorithms are coded in MATLAB (The MathWorks [25]), and the struc-

tures are analyzed using OpenSees (Mazzoni et al. [26]). These two softwares are

linked together and static linear finite element analysis is performed in OpenSees

(Mazzoni et al. [26]). Then, structural response is received by MATLAB (The

MathWorks [25]) to check the constraints and evaluate the objective function

values.
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19.5.1 A 1860-Member Steel Space Frame

The first design example considered in this section is a 36-story braced space steel

frame consisting of 814 joints and 1860 members. This structure has also been

investigated by Saka and Hasançebi [27]. The side, plan, and three-dimensional

views of the frame are shown in Fig. 19.6. An economical and effective stiffening

of the frame against lateral forces is achieved through exterior diagonal bracing

members located on the perimeter of the building, which also participate in

transmitting the gravity forces.

The 1860 frame members are collected in 72 different member groups, consid-

ering the symmetry of the structure and practical fabrication requirements. That is,

the columns in each story are collected in three member groups as corner columns,

inner columns, and outer columns, whereas beams are divided into two groups as

inner beams and outer beams. The corner columns are grouped together as having

the same section over three adjacent stories, as inner columns, outer columns, inner

beams, and outer beams. Bracing members on each facade are designed as three-

Fig. 19.6 Schematic of a 1860-member braced space steel frame [1]. (a) Three-dimensional view,

(b) front view, (c) side view, and (d) plan view
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story deep members, and two bracing groups are specified in every six stories.

Table 19.1 shows the number of design variables and their allocation in structural

parts for each of the three DVCs defined for cascade method.

The 1860-member braced space steel frame is subjected to two loading

conditions of combined gravity and wind forces. These forces are computed as

per ASCE 7-05 based on the following design values: a design dead load of

2.88 kN/m2 (60.13 lb/ft2), a design live load of 2.39 kN/m2 (50 lb/ft2), a ground

snow load of 1.20 kN/m2 (25 lb/ft2), and a basic wind speed of 55.21 m/s

(123.5 mph). Lateral (wind) loads acting at each floor level on windward and

leeward faces of the frame are tabulated in Table 19.2, and the gravity loading

on the beams of roof and floors is given in Table 19.3. In the first loading condition,

gravity loads are applied together with wind loads acting along x-axis (1.0 GL

+1.0WL-x), whereas in the second one, they are applied with wind loads acting

along y-axis (1.0 GL+1.0WL-y).

The 1860-member braced space steel frame is designed separately by using both

ECBO and cascade ECBO search method. The maximum number of analyses was

30,000. The design history of both runs is shown in Fig. 19.7. The minimum weight

for the frame is determined as 4637.45 klb by the cascade ECBO method, while

non-cascade ECBO arrived at 6406.53 klb which is 38.1% heavier. The mean and

standard deviation of the independent runs for cascade optimization procedure are

4647.10 klb and 18.37 klb, respectively, whereas the values of these parameters for

non-cascade procedure are 6420.53 klb and 25.54 klb, respectively. Figure 19.8

shows the ratio of story drift over the maximum allowable drift of the story for final

Table 19.1 Number of design variables and their allocation to structural parts for each DVC of

the 1860-member braced steel space frame

DVC

Member

type

Number of

member groups Total Remarks

C0 Columns 3� 12¼ 36 72 Corner columns, inner columns, and outer col-

umns grouped every three stories

Beams 2� 12¼ 24 Outer beams and inner beams grouped every

three stories

Bracings 2� 6¼ 12 Bracings in x direction and y direction grouped

every six stories

C1 Columns 3� 6¼ 18 34 Corner columns, inner columns and outer col-

umns grouped every six stories

Beams 2� 6¼ 12 Outer beams and inner beams grouped every six

stories

Bracings 2� 2¼ 4 Bracings in x direction and y direction grouped

every 18 stories

C2 Columns 3� 2¼ 6 10 Corner columns, inner columns, and outer col-

umns grouped every 18 stories

Beams 2� 1¼ 2 Outer beams and inner beams grouped in all

stories

Bracings 2� 1¼ 2 Bracings in x direction and y direction grouped

in all stories
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Table 19.2 Wind loading on

a 1860-member braced space

steel frame

Floor Windward kN/m (lb/ft) Leeward kN/m (lb/ft)

1 2.05 (140.64) 3.57 (244.70)

2 2.50 (171.44) 3.57 (244.70)

3 2.81 (192.49) 3.57 (244.70)

4 3.05 (208.98) 3.57 (244.70)

5 3.25 (222.74) 3.57 (244.70)

6 3.42 (234.65) 3.57 (244.70)

7 3.58 (245.22) 3.57 (244.70)

8 3.72 (254.75) 3.57 (244.70)

9 3.85 (263.47) 3.57 (244.70)

10 3.96 (271.52) 3.57 (244.70)

11 4.07 (279.02) 3.57 (244.70)

12 4.18 (286.04) 3.57 (244.70)

13 4.27 (292.66) 3.57 (244.70)

14 4.36 (298.92) 3.57 (244.70)

15 4.45 (304.87) 3.57 (244.70)

16 4.53 (310.55) 3.57 (244.70)

17 4.61 (315.97) 3.57 (244.70)

18 4.69 (321.18) 3.57 (244.70)

19 4.76 (326.18) 3.57 (244.70)

20 4.83 (330.99) 3.57 (244.70)

21 4.90 (335.64) 3.57 (244.70)

22 4.97 (340.13) 3.57 (244.70)

23 5.03 (344.48) 3.57 (244.70)

24 5.09 (348.69) 3.57 (244.70)

25 5.15 (352.78) 3.57 (244.70)

26 5.21 (356.76) 3.57 (244.70)

27 5.27 (360.62) 3.57 (244.70)

28 5.32 (364.39) 3.57 (244.70)

29 5.37 (368.06) 3.57 (244.70)

30 5.43 (371.65) 3.57 (244.70)

31 5.48 (375.14) 3.57 (244.70)

32 5.53 (378.56) 3.57 (244.70)

33 5.58 (381.90) 3.57 (244.70)

34 5.62 (385.18) 3.57 (244.70)

35 5.67 (388.38) 3.57 (244.70)

36 2.86 (195.76) 1.79 (122.35)

Table 19.3 Gravity loading on the beams of 1860-member braced steel space frame

Beam type

Uniformly distributed load, kN/m (lb/ft)

Dead load Live load Snow load

Roof beams 22.44 (1536.66) N/A 5.88 (402.50)

Floor beams 22.44 (1536.66) 18.66 (1277.78) N/A

19.5 Numerical Examples 589



design of two mentioned methods. In Fig. 19.9 maximum values of stress ratio for

members of each design group for ECBO and cascade ECBO are also compared.

Multi-DVC cascade procedure provides some other options for the designer. The

designer can choose more uniform structure by spending high cost for materials

(that may cause to less final cost). In the first example, attained optimal design with

C1 DVC which contains 34 types of frame sections is only 6.66% heavier than

finally attained design which contains 72 types of frame section.

19.5.2 A 3590-Member Steel Space Frame

The second design example is a braced space steel frame consisting of 1540 joints

and 3590 members that are to be built in three adjacent blocks with 30, 18, and

12 stories. The three-dimensional and plan views of the frame at different story

levels are shown in Fig. 19.10. An economical and effective stiffening of the frame

against lateral forces is achieved through exterior diagonal bracing members

located on the perimeter of the building as well as on the adjacent sides of the

blocks. The diagonal members are also known to participate in transmitting gravity

forces. The 3590 frame members are collected in 124 different member groups

altogether. Table 19.4 shows the member groups for this example and two other

built DVCs.

The combined stress, stability, and geometric constraints are imposed according

to the defined provisions in Sect. 19.2. Similar to the previous example, the 1860-

member braced space steel frame is subjected to two loading conditions of com-

bined wind and gravity forces which are tabulated in Tables 19.5 and 19.6,
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Fig. 19.10 Schematic of a 3590-member braced space steel frame [1]. (a) Three-dimensional

view, (b) front view, (c) side view, (d) stories 1–12 (Section 1), (e) stories 13–18 (Section 2), and

(f) stories 19–30 (Section 3)

592 19 Optimal Design of Large-Scale Frame Structures



respectively. In the first loading condition, gravity loads are applied together with

wind loads acting along x-axis (1.0 GL + 1.0WL-x), whereas in the second one,

these are applied with wind loads acting along y-axis (1.0 GL +1.0WL-y).

An optimum design weight of 6496.41 klb has been reached for the frame with

cascade ECBO. Figure 19.11 shows the design history graph for 50,000 analyses

obtained for this example. Non-cascade ECBO attained optimum design weight of

9937.94 klb that is 52.98% heavier than the cascade method design. The mean and

standard deviation of the independent runs for cascade optimization procedure are

6505.90 klb and 21.80 klb, respectively, whereas the values of these parameters for

non-cascade procedure are 9955.93 klb and 35.67 klb, respectively. Figure 19.12

shows the ratio of story drift over the maximum allowable drift of the story for the

final design of two mentioned methods. Maximum values of stress ratios for

members of each design group for ECBO and cascade ECBO are also compared

in Fig. 19.13.

Table 19.4 Number of design variables and their allocation to structural parts for each DVC of

the 3590-member braced steel space frame

DVC

Member

type

Number of

member

groups Total Remarks

C0 Columns (3� 15) +

9¼ 54

124 Corner columns, inner columns, and outer columns

grouped every two stories. Inner columns in braced

frames are collected in separate groups

Beams 2� 30¼ 60 Outer beams and inner beams are grouped every

story

Bracings 1� 10¼ 10 Bracings are grouped every three stories

C1 Columns (3� 7) +

4¼ 25

60 Corner columns, inner columns, and outer columns

in all stories and inner columns in braced fames in

Sections 1 and 2 are grouped every four stories. Six

above stories are collected in same groups

Beams 2� 15¼ 30 Outer beams and inner beams grouped every two

stories

Bracings 1� 5¼ 5 Bracings grouped every six stories

C2 Columns (3� 2) +

1¼ 7

14 Corner columns, inner columns, and outer columns

grouped in 16 below stories and 14 above stories.

All inner columns in braced frames are collected in

one group

Beams 2� 3¼ 6 Outer beams and inner beams are grouped in every

ten stories

Bracings 1 All bracings are collected in one group
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19.5.3 A 3328-Member Steel Space Frame

The last design example is a 3328-member irregular moment resisting steel space

frame structure with setbacks and cross bracings of Fig. 19.14 which consist of

Table 19.5 Wind loading on

the 3590-member braced

space steel frame

Floor Windward kN/m (lb/ft) Leeward kN/m (lb/ft)

1 1.60 (109.41) 2.47 (169.56)

2 1.83 (125.14) 2.47 (169.56)

3 2.05 (140.51) 2.47 (169.56)

4 2.23 (152.55) 2.47 (169.56)

5 2.37 (162.59) 2.47 (169.56)

6 2.50 (171.28) 2.47 (169.56)

7 2.61 (179.00) 2.47 (169.56)

8 2.71 (185.96) 2.47 (169.56)

9 2.81 (192.32) 2.47 (169.56)

10 2.89 (198.20) 2.47 (169.56)

11 2.97 (203.67) 2.47 (169.56)

12 3.05 (208.80) 2.47 (169.56)

13 3.12 (213.63) 2.47 (169.56)

14 3.18 (218.20) 2.47 (169.56)

15 3.25 (222.54) 2.47 (169.56)

16 3.31 (226.68) 2.47 (169.56)

17 3.37 (230.64) 2.47 (169.56)

18 3.42 (234.44) 2.47 (169.56)

19 3.47 (238.09) 2.47 (169.56)

20 3.53 (241.61) 2.47 (169.56)

21 3.56 (245.00) 2.47 (169.56)

22 3.62 (248.28) 2.47 (169.56)

23 3.67 (251.45) 2.47 (169.56)

24 3.71 (254.53) 2.47 (169.56)

25 3.76 (257.51) 2.47 (169.56)

26 3.80 (260.41) 2.47 (169.56)

27 3.84 (263.24) 2.47 (169.56)

28 3.88 (265.99) 2.47 (169.56)

29 3.92 (268.67) 2.47 (169.56)

30 1.98 (135.64) 84.78)

Table 19.6 Gravity loading on the beams of the 3590-member braced steel space frame

Beam type

Uniformly distributed load, kN/m (lb/ft)

Dead load Live load Snow load

Roof beams 10.53 (721.56) N/A 4.38 (300.00)

Floor beams 22.42 (1536.66) 8.76 (600.00) N/A
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1384 joints. The space frame is clamped to the ground and is subjected to vertical

dead and live loads (Table 19.7) and horizontal wind loads (Table 19.8).

The frame is divided in the vertical direction into three 12-story sections, as

shown in Fig. 19.14. Similar structure has been considered by Sarma and Adeli

[28]. For this example also two-load combination is defined. In the first loading

condition, gravity loads are applied together with wind loads acting along x-axis

(1.0 GL+ 1.0WL-x), whereas in the second one, they are applied with wind loads

acting along y-axis (1.0 GL+ 1.0WL-y). Table 19.9 tabulates member groups for

the sizing optimization procedure and two other defined DVCs for cascade ECBO

method. The following member types of the space frame are distinguished:

• Four types of columns: corner columns, outer columns, inner columns in

unbraced frames, and inner columns in braced frames

• Three types of beams for the two lower Sections 1 and 2: outer beams, inner

beams in unbraced frames, and inner beams in braced frames

• Two types of beams for the upper Section 3: outer and inner beams

• Two groups of bracings in the longitudinal and transverse directions

Figure 19.15 shows the convergence histories obtained for the proposed cascade

ECBO and non-cascade ECBO optimization methods. In this example, 70,000

analyses were executed for cascade and non-cascade ECBO. Non-cascade ECBO

attained optimum design weight of 12724.97 klb that is 28.31% heavier than the

cascade method design which attained optimum design weight of 9917.51 klb. The

mean and standard deviation of the independent runs for cascade optimization

procedure are 9948.72 klb and 43.03 klb, respectively, whereas the values of

these parameters for non-cascade procedure are 12772.24 klb and 54.29 klb,

respectively. Figure 19.16 shows the ratio of story drift versus the maximum
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Fig. 19.14 Schematic of a 3328-member braced space steel frame [1]. (a) Three-dimensional

view, (b) front view, (c) side view, (d) stories 1–12 (Section 1), (e) stories 13–24 (Section 2), and

(f) stories 25–36 (Section 3)
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Table 19.7 Wind loading on

the 3228-member braced

space steel frame

Floor Windward kN/m (lb/ft) Leeward kN/m (lb/ft)

1 1.60 (109.41) 2.55 (174.91)

2 1.81 (124.18) 2.55 (174.91)

3 2.03 (139.43) 2.55 (174.91)

4 2.21 (151.37) 2.55 (174.91)

5 2.35 (161.34) 2.55 (174.91)

6 2.48 (169.96) 2.55 (174.91)

7 2.59 (177.62) 2.55 (174.91)

8 2.69 (184.52) 2.55 (174.91)

9 2.78 (190.84) 2.55 (174.91)

10 2.87 (196.67) 2.55 (174.91)

11 2.95 (202.10) 2.55 (174.91)

12 3.02 (207.19) 2.55 (174.91)

13 3.09 (211.98) 2.55 (174.91)

14 3.16 (216.52) 2.55 (174.91)

15 3.22 (220.83) 2.55 (174.91)

16 3.28 (224.94) 2.55 (174.91)

17 3.34 (228.87) 2.55 (174.91)

18 3.39 (232.64) 2.55 (174.91)

19 3.45 (236.26) 2.55 (174.91)

20 3.50 (239.75) 2.55 (174.91)

21 3.55 (243.11) 2.55 (174.91)

22 3.60 (246.36) 2.55 (174.91)

23 3.64 (249.51) 2.55 (174.91)

24 3.69 (252.57) 2.55 (174.91)

25 3.73 (255.53) 2.55 (174.91)

26 3.77 (258.41) 2.55 (174.91)

27 3.81 (261.21) 2.55 (174.91)

28 3.85 (263.94) 2.55 (174.91)

29 3.89 (266.6) 2.55 (174.91)

30 3.93 (269.19) 2.55 (174.91)

31 3.97 (271.73) 2.55 (174.91)

32 4.00 (274.2) 2.55 (174.91)

33 4.04 (276.62) 2.55 (174.91)

34 4.07 (278.99) 2.55 (174.91)

35 4.11 (281.31) 2.55 (174.91)

36 2.07 (141.80) 87.46)

Table 19.8 Gravity loading on the beams of the 3228-member braced steel space frame

Beam type

Uniformly distributed load, kN/m (lb/ft)

Dead load Live load Snow load

Roof beams 11.12 (761.74) N/A 3.65 (250.00)

Floor beams 13.26 (908.40) 8.17 (560.00) N/A
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allowable drift of the story for final design of two mentioned methods for

this example. Maximum values of stress ratios for the members of each design

group for ECBO and cascade ECBO, for this problem, are also compared in

Fig. 19.17.

Predefining of the most critical constraint in optimal design of these problems is

almost impossible. In the first example, which is a high-rise regular space frame,

drifts in the middle stories are more critical (as expected), but in the second

problem, the stress ratios are more critical than other constraints, and in the last

example, no specific trends are observed.

Table 19.9 Number of design variables and their allocation to structural parts for each DVC of

the 3228-member braced steel space frame

DVC

Member

type

Number of member groups

Total RemarksSection 1 Section 2 Section 3

All

sections

C0 Columns 4� 6¼ 24 4� 6¼ 24 3� 6¼ 18 66 186 Grouped

every two

stories

Beams 3� 12¼ 36 3� 12¼ 36 2� 12¼ 24 96 Grouped

every story

Bracings 2� 4¼ 36 2� 4¼ 8 2� 4¼ 8 24 Grouped

every three

stories

C1 Columns 4� 3¼ 12 4� 3¼ 12 3� 3¼ 9 33 81 Grouped

every four

stories

Beams 3� 3¼ 9 3� 3¼ 9 2� 3¼ 6 24 Grouped

every four

stories

Bracings 2� 4¼ 8 2� 4¼ 8 2� 4¼ 8 24 Grouped

every three

stories

C2 Columns 4� 1¼ 4 4� 1¼ 4 3� 1¼ 3 11 25 Grouped

every

12 stories

Beams 3� 1¼ 3 3� 1¼ 3 2� 1¼ 2 8 Grouped

every

12 stories

Bracings 2� 1¼ 2 2� 1¼ 2 2� 1¼ 2 6 Grouped

every

12 stories
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steel space frame. (a) X direction, (b) y direction
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19.6 Concluding Remarks

Large-scale steel space frame optimization with design code constraints is a

difficult, complex, highly nonlinear, and non-convex problem. In this chapter the

performance of multi-DVC cascade and non-cascade ECBO is compared through

three large-scale steel space frames. In all examples, in addition to multi-DVC

cascade procedure that resulted in better optimized design, the required number of

analyses for achieving the best design of non-cascade procedure by the proposed

method is decreased. This issue is important due to large computational cost of

structural analyses in large-scale steel space frames.

Although ECBO algorithm has shown its efficiency in finding near-optimum

solution, however, in problems of this chapter, it did not provide good results. Large

number of design variables and nonlinear constraints caused the optimizer to be

trapped in local optima. In this condition, optimizer could not find near-optimum

solution. Because, finding a variable that its change leads to improvement of the

solution, among large number of variables, is a big challenge, and optimizer can

hardly cope with this challenge.
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