
Chapter 18

Cyclical Parthenogenesis Optimization

Algorithm

18.1 Introduction

Over the last few decades, metaheuristic algorithms have been successfully used for

solving complex global optimization problems in science and engineering. These

methods, which are usually inspired by natural phenomena, do not require any

gradient information of the involved functions and are generally independent of the

quality of the starting points. As a result, metaheuristic optimizers are favorable

choices when dealing with discontinuous, multimodal, non-smooth, and

non-convex functions, especially when near-global optimum solutions are sought,

and the intended computational effort is limited.

Different characteristics of these algorithms cause them to perform dissimilarly

on different classes of optimization problems, and therefore none of them can

defeat all the others on all cases. As an everlasting source of inspiration, nature

continues to provide researchers with different ideas in their search for new efficient

optimization algorithms.

In the present chapter, a new metaheuristic algorithm is presented based on the

reproduction and social behavior of some zoological species like aphids [1]. Aphids,

which are considered as a highly successful group of organisms from a zoological

standpoint [2], can switch between sexual and asexual reproduction mechanisms. In

favorable circumstances, parthenogenesis and telescoping of generations enable

aphids to achieve very high rates of reproduction [3]. This enables the aphids to

exploit advantageous environmental conditions like abundance of food. However,

probably to maintain genetic diversity and in response to adverse changes in

environmental situation, female aphids reproduce sexual females and males when

they find it necessary. Although the reasons behind reproduction behavior of aphids

are not completely agreed upon in zoology, advantages of both of these alternating

systems are evident from an optimization point of view.

The remainder of this chapter is organized as follows. In Sect. 18.2, the new

optimization algorithm is presented subsequent to a concise and simplified
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introduction to real aphids. Sensitivity of CPA to its parameters is studied in

Sect. 18.3. Some mathematical and engineering design benchmark problems are

then studied in Sect. 18.4 in order to examine the efficiency of the proposed

algorithm. The concluding remarks are finally presented in Sect. 18.5.

18.2 Cyclical Parthenogenesis Algorithm

In this section cyclical parthenogenesis algorithm (CPA) is introduced and

described as a population-based metaheuristic algorithm for global optimization.

The main rules of CPA are explained using some key aspects of the lives of aphids

as a highly successful organism. Not all the details of the complicated life cycles of

about 4000 species of aphids are known to us; however, there are some common

features of these intricate life cycles such as the ability to reproduce both sexually

and asexually (cyclical parthenogenesis), which seem to be interesting from an

optimization point of view.

18.2.1 Aphids and Cyclical Parthenogenesis

Aphids are small sap-sucking insects, and members of the superfamily Aphidoidea

[4]. As one of the most destructive insect pests on cultivated plants in temperate

regions, aphids have fascinated and frustrated man for a very long time. This is

mainly because of their intricate life cycles and close association with their host

plants and their ability to reproduce both asexually and sexually [3]. Figure 18.1

shows a female aphid surrounded by her offspring on a host plant.

Aphids are capable of reproducing offspring both sexually and asexually. In

asexual reproduction the offspring arise from the female parent and inherit the

genes of that parent only. In asexual reproduction most of the offspring are

genetically identical to their mother and genetic changes occur relatively rarely

[3]. This form of reproduction is chosen by female aphids in suitable and stable

environments and allows them to rapidly grow a population of similar aphids,

which can exploit the favorable circumstances. Sexual reproduction, on the other

hand, offers a net advantage by allowing more rapid generation of genetic diversity,

making adaptation to changing environments available [5].

Since the habitat occupied by an aphid species is not uniform but consists of a

spatial–temporal mosaic of many different patches, each with its own complement

of organisms and resources [3], aphids employ sexual reproduction in order to

maintain the genetic diversity required for increasing the chance of including the

fittest genotype for a particular patch. This is the basis of the lottery model proposed

by Williams [6] for explaining the role of sexual reproduction in evolution.

Some aphid species produce winged offspring in response to poor conditions on

the host plant or when the population on the plant becomes too large. These winged
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offspring, which are called alates, can disperse to other food sources [4]. Flying

aphids have little control over the direction of their flight because of their low

speed. However, once within the layer of relatively still air around vegetation,

aphids can control their landing on plants and respond to either olfactory or visual

cues, or both.

18.2.2 Description of Cyclical Parthenogenesis Algorithm

Cyclical Parthenogenesis Algorithm (CPA) is a population-based metaheuristic

optimization algorithm inspired from social and reproduction behavior of aphids.

It starts with a population of randomly generated candidate solutions metaphorized

as aphids. The quality of the candidate solutions is then improved using some

simplified rules inspired from the life cycle of aphids.

Naturally, CPA does not attempt to represent an exact model of the life cycle of

aphids, which is neither possible nor necessary. Instead, it encompasses certain

features of their behavior to construct a global optimization algorithm.

Like many other population-based metaheuristic algorithms, CPA starts with a

population of Na candidate solutions randomly generated in the search space. These

candidate solutions, which are considered as aphids, are grouped into Nc colonies,

each inhabiting a host plant. These aphids reproduce offspring through sexual and

asexual reproduction mechanisms. Like real aphids, in general, larger (fitter)

individuals within a colony have a greater reproductive potential than smaller

Fig. 18.1 A female aphid

surrounded by her offspring

on a host plant
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ones. Some of the aphids prefer to leave their current host plant and search for better

conditions. In CPA it is assumed that these flying aphids cannot fly much further

due to their weak wings and end up on a plant occupied by another colony nearby.

Like real aphids, the agents of the algorithm can reproduce for multiple generations.

However, the life span of aphids is naturally limited, and less fit ones are more

likely to be dead in adverse circumstance. The main steps of CPA can be stated as

follows:

Step 1: Initialization

A population of Na initial solutions is generated randomly:

x0ij ¼ xj,min þ rand xj,max � xj,min

� �
j ¼ 1, 2, . . . , n ð18:1Þ

where x0ij is the initial value of the jth variable of the ith candidate solution; xj,max

and xj,min are the maximum and minimum permissible values for the jth variable,

respectively; rand is a random number from a uniform distribution in the interval

[0, 1]; and n is the number of optimization variables. The candidate solutions are

then grouped into Nc colonies, each inhabiting a host plant. The number of aphids in

all colonies Nm is equal.

Step 2: Evaluation, Reproduction, and Flying

The objective function values for the candidate solutions are evaluated. The aphids

on each plant are sorted in the ascending order of their objective function values and

saved in a female memory (FM). Each of the members of the female memory is

capable of asexually reproducing a genetically identical clone in the next iteration.

In each iteration, Nm new candidate solutions are generated in each of the

colonies in addition to identical clones. These new solutions can be reproduced

either sexually or asexually. A ratio Fr of the best of these new solutions is

considered as female aphids; the rest are considered as male aphids.

Asexually Generated New Solutions

A female parent is selected randomly from the population of all female parents of

the colony (identical clones and newly produced females). Then, this female parent

reproduces a new offspring asexually by the following expression:

xkþ1
ij ¼ Fk

j þ α1 � randn

k
� xj,max � xj,min

� �
j ¼ 1, 2, . . . , n ð18:2Þ

where xkþ1
ij is the value of the jth variable of the ith candidate solution in the (k + 1)

th iteration; Fk
j is the value of the corresponding variable of the female parent in the

kth iteration; randn is a random number drawn from a normal distribution; and α1 is
a scaling parameter.

Sexually Generated New Solutions

Each of the male aphids selects a female randomly in order to produce an offspring

sexually:
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xkþ1
ij ¼ Mk

j þ α2 � rand � Fk
j �Mk

j

� �
j ¼ 1, 2, . . . , n ð18:3Þ

whereMk
j is the value of the jth variable of the male solution in the kth iteration and

α2 is a scaling factor. It can be seen that in a sexual reproduction, two different

solutions share information, while in an asexual reproduction, the new solution is

generated using merely the information of one single parent solution.

Death and Flight

When all of the new solutions of all colonies are generated, flying occurs with a

probability of Pf where two of the colonies are selected randomly and a winged

aphid asexually reproduced by and identical to the best female of Colony1 flies to

Colony2. In order to keep the number of members of each colony constant, it is

assumed that the worst member of Colony2 dies.

Step 3: Updating the Colonies

The objective function values of the newly generated candidate solutions are

evaluated and the female memories are updated.

Step 4: Termination

Steps 2 and 3 are repeated until a termination criterion is satisfied. The pseudo code

of CPA is presented in Table 18.1.

18.3 Sensitivity Analysis of CPA

Performance of a metaheuristic algorithm is highly dependent on the values of its

internal parameters. In this section, the sensitivity of CPA to its parameters is

investigated considering the weight minimization of a 10-bar truss, as depicted in

Fig. 18.2. The details of this problem are further explained in the next section. A

parametric study is performed considering Na, Nc, Fr, Pf, α1, and α2. In each case,

the problem is solved ten times in order to obtain statistically significant results.

The total number of structural analyses is set as 24,000. The results of the sensitivity

analysis of CPA for this example are provided in Table 18.2. When studying each

parameter, the other parameters are kept unchanged. The initial values of param-

eters to be used in the sensitivity analysis process are Na¼ 60, Nc¼ 4, Fr¼ 0.4,

α1¼ 1, and α2¼ 2. A linear function increasing from 0 to 1 is considered for Pf .

A diversity index as introduced by Kaveh and Zolghadr [7] is also used to study

the exploration/exploitation behavior of the algorithm for different parameter

values. The index reflects the relative positions of the agents of an algorithm and

can be used to observe the diversity of the agents of an algorithm during an

optimization process:
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Table 18.1 Pseudo code of the CPA algorithm [1]

procedure Cyclical Parthenogenesis Algorithm

begin
Initialize parameters;
Initialize a population of Na random candidate solutions;

Group the candidate solutions in Nc colonies with each having  Nm members;

Evaluate and Sort the candidate solutions of each colony and save the best Nm ones in   

Female Memory

while (termination condition not met) do
for m: 1 to Nc

Reproduce an identical solution by each of the solutions of the Female 

Memory

Divide the newly generated offspring into male and female considering Fr

for i: 1 to Fr×Nm

Generate new solution i asexually using Eq. (18.2)

end for
for i: Fr×Nm+1 to Nm

Generate new solution i sexually using Eq. (18.3)

end for
if rand<Pf

Select two colonies randomly

Generate an winged identical offspring from the best solution of Colony1

Eliminate the worst solution of Colony2 and move winged aphid to Colony2

end if
Evaluate the objective function values of new aphids

Update the Female Memory

end for
end while

end
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Diversity Index ¼ 1

nP

XnP

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnVAR
i¼1

GB ið Þ � Xj ið Þ
Xi,max � Xi,min

� �2

vuut ð18:4Þ

where Xj(i) is the value of the ith variable of the jth particle; Xi,min and Xi,max are the

minimum and maximum values of the ith variable, respectively; nVAR is the

number of design variables; and nP is the number of particles. In order to decrease

random fluctuations, the mean values of diversity index in the ten independent runs

are plotted against iteration numbers for each parameter set.

In order to study the effect of population size (Na), the algorithm is run with

20, 40, 60, 80, and 100 aphids, while keeping the total number of structural analyses

unchanged. From Table 18.2 it can be seen that the best performance of CPA in

terms of the best weight, mean weight, and standard deviation is obtained for

Na¼ 60. The second best results are obtained when considering Na¼ 80. The best

and mean performance of the algorithm for different values of Na is depicted in

Fig. 18.3.

The concept of multiple colonies allows CPA to search different portions of the

search spaces more or less independently and prevents the unwanted premature

convergence phenomenon. Table 18.2 shows the statistical information for different

values of Nc, i.e., the number of colonies, where the population size is kept

unchanged (Na¼ 60). As it can be seen, the best performance in terms of best

weight, mean weight, and standard deviation is obtained for Nc¼ 4. This parameter

value provides a good balance between the diversification and intensification

tendencies of the algorithm. In fact, dividing the population of aphids into more

colonies limits the circulation of information among the aphids and allows the

aphids of a colony to explore the search space more independently without being

affected by other colonies. This generally results in a more diverse search. On the
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Fig. 18.2 Schematic of the

planar 10-bar truss structure
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other hand, having more aphids in a colony (less number of colonies) permits the

algorithm to search a particular region of the search space more thoroughly (more

intensification), but, at the same time, limits the diversification of the algorithm.

The best and mean performance of the algorithm for different values of Nc is

depicted in Fig. 18.4. The diversity index curves of CPA for different values of

Nc are shown in Fig. 18.5. It can be seen that the curves corresponding to Nc¼ 3 and

Nc¼ 4, which result in the best performance of the algorithm, are placed between

Table 18.2 Results of the sensitivity analysis of CPA for the 10-bar truss

Parameter/value Best weight (lb) Mean weight (lb) Standard deviation (lb)

Population size

Na¼ 20 5062.89 5074.42 8.61

Na¼ 40 5061.11 5063.68 5.18

Na¼ 60 5060.94 5061.35 0.23

Na¼ 80 5061.08 5061.50 0.51

Na¼ 100 5061.17 5061.98 0.53

Number of colonies

Nc¼ 1 5061.01 5064.76 6.42

Nc¼ 2 5061.15 5062.01 2.04

Nc¼ 3 5061.04 5062.97 4.98

Nc¼ 4 5060.94 5061.35 0.23

Nc¼ 6 5061.24 5062.10 0.65

Nc¼ 12 5061.89 5067.62 7.05

Female ratio

Fr¼ 0.2 5060.98 5061.49 0.53

Fr¼ 0.4 5060.94 5061.35 0.23

Fr¼ 0.6 5061.06 5061.76 0.59

Fr¼ 0.8 5061.64 5067.59 7.54

Flight probability

Pf¼ 1 5061.04 5063.34 4.98

Pf¼ 0 5061.06 5062.89 2.90

Pf linear 5060.94 5061.35 0.23

Step size

α1 ¼0.5 and α2 ¼0.5 5314.20 5785.27 35.50

α1¼ 0.5 and α2¼ 1 5169.72 5684.86 223.67

α1¼ 0.5 and α2¼ 2 5061.03 5061.90 0.59

α1¼ 1 and α2¼ 0.5 5100.97 5301.86 149.41

α1¼ 1 and α2¼ 1 5084.95 5410.06 235.75

α1¼ 1 and α2¼ 2 5060.94 5061.35 0.23

α1¼ 2 and α2¼ 0.5 5085.01 5165.37 111.6

α1¼ 2 and α2¼ 1 5062.51 5088.97 35.51

α1¼ 2 and α2¼ 2 5061.04 5062.97 4.85

α1¼ 2 and α2¼ 4 5062.06 5073.81 6.37

α1¼ 4 and α2¼ 2 5061.61 5065.18 6.63

α1¼ 4 and α2¼ 4 5062.23 5069.80 7.84
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those of Nc¼ 1 and Nc¼ 2 from below and Nc¼ 6 and Nc¼ 12 from above. This

conforms to the above discussion, i.e., dividing the aphids into more colonies

generally results in slower rate of convergence (more diversity index values).

Nc¼ 4 seems to provide a good balance between the exploration and exploitation

tendencies of the algorithm.

Parameter Fr defines the ratio of female aphids to all of the newly generated

aphids. Increasing the value of this parameter results in an increase in the number of

asexually generated aphids of the next generation. Since such aphids use a single

source of information (female parent), they can be interpreted as means of

searching a localized region around their parent. This localized region gets smaller

gradually as the optimization process proceeds. Sexual reproduction, on the other

Fig. 18.3 Best and mean performance of CPA for different values of Na

Fig. 18.4 Best and mean performance of CPA for different values of Nc

18.3 Sensitivity Analysis of CPA 549



hand, incorporates two different sources of information and therefore contributes to

the convergence of the algorithm by letting the aphids share information. According

to Table 18.2 which summarizes the statistical information for different values of

Fr, it can be seen that the proposed algorithm exhibits its best performance in terms

of mean weight when the value of this parameter is taken as 0.4, while the second

and third best performances are obtained for Fr¼ 0.2 and Fr¼ 0.6. The best and

mean performance of the algorithm for different values of Na is depicted in

Fig. 18.6. The diversity index curves of CPA for different values of Fr are shown

Fig. 18.5 Diversity index curves of CPA for different values of Nc

Fig. 18.6 Best and mean performance of CPA for different values of Fr
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in Fig. 18.7. It can be seen that increasing the value of Fr slightly increases

the diversity of the aphids in the search space, i.e., the curves corresponding to

Fr¼ 0.8 and Fr¼ 0.2 are placed above and below the other curves, respectively.

However, the effect is not very significant and the curves are very close to each

other.

Parameter Pf is responsible for defining the level of information exchange

among the colonies. With no possible flights, the colonies would be performing

their search in a completely independent manner, i.e., an optimization run with Na

aphids divided into four colonies would be similar to four independent runs each

with Na/4 aphids per colony. It is obvious that this would not be particularly

favorable, since it is in fact changing the population of aphids without actually

utilizing the abovementioned benefits of multiple colonies. On the other hand,

permitting too many flights results corresponds to merging the information sources

of different colonies. It is important to note that at the early stages of the optimi-

zation process, it is more favorable to give the colonies a higher level of indepen-

dence so that they can search the problem space without being affected by the other

colonies. However, as the optimization process proceeds, it is desirable to let the

colonies share more information so as to provide the opportunity for the more

promising regions of the search space to be searched more thoroughly. Three

different cases are considered for Pf in this study: Pf¼ 0, Pf¼ 1, and Pf linearly

increasing from 0 to 1. It can be clearly seen from Table 18.2 that the best

performance of the algorithm corresponds to the linear case, since it conforms to

the abovementioned discussion on information circulation. The diversity index

curves of CPA for different values of Pf are shown in Fig. 18.8. It can be seen

Fig. 18.7 Diversity index curves of CPA for different values of Fr
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that when Pf¼ 0, the diversity index values are relatively high even at the end of the

optimization process. This means that the different colonies have converged to

different results. The curve corresponding to the linear function is similar to that of

Pf¼ 0 at the early stages of the optimization process, while it gets closer to the

curve corresponding to Pf¼ 1 at the final stages. This explains the favorable

behavior of the algorithm when a linear function is chosen for Pf.

Parameters α1 and α2 represent the step size of the agents in asexual and sexual

reproductions, respectively. The sensitivity of CPA to these two parameters is also

shown in Table 18.2. The diversity index curves of CPA for different values of α1
and α2 are shown in Fig. 18.9. According to Table 18.2 the best performance of the

algorithm corresponds to α1¼ 1 and α2¼ 2. There are two other cases which result

in relatively good performance of the algorithm, i.e., α1¼ 0.5 and α2¼ 2 and α1¼ 2

and α2¼ 2. As it can be seen in Fig. 18.9, the diversity index curves for these three

cases are almost the same.

18.4 Test Problems and Optimization Results

In order to evaluate the efficiency of the proposed algorithm, some benchmark test

problems are considered from the literature. A set of unimodal and multimodal

mathematical optimization problems are studied in Sect. 18.4.1. In addition, truss

weight minimizations of a planar 10-bar truss, a spatial 25-bar transmission tower, a

spatial 72-bar truss, a 120-bar dome-shaped truss, and a planar 200-bar truss are

Fig. 18.8 Diversity index curves of CPA for different values of Pf
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considered as structural optimization problems. The results of utilizing CPA on

these structural optimization problems are then compared to some of the state-of-

the-art metaheuristic algorithms.

18.4.1 Mathematical Optimization Problems

In this section, the efficiency of the CPA is evaluated by solving the mathematical

benchmark problems summarized in Table 18.3. These benchmark problems are

taken from Ref. [8], where some variants of GA were used as the optimization

algorithm. The results obtained by CPA are presented in Table 18.4 along with

those of some GA variants. Each objective function is optimized 50 times indepen-

dently starting from different initial populations, and the average number of func-

tion evaluations required by each algorithm is presented. The numbers in the

parentheses indicate the ratio of the successful runs in which the algorithm has

obtained the global minimum with predefined accuracy, which is taken as

ε ¼ fmin � f final ¼ 10�4. The absence of the parentheses indicates that the algo-

rithm has been successful in all independent runs.

As it can be seen from Table 18.4, CPA generally performs better than GA and

its variants in the mathematical optimization problems considered in this study.

Fig. 18.9 Diversity index curves of CPA for different values of Alpha1, Alpha2
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18.4.2 Truss Design Problems

In order to further investigate the efficiency of the CPA, five continuous truss

design problems are considered in this section. The results are compared to those

obtained by some of the state-of-the-art metaheuristic optimization algorithms.

60 aphids are considered for all of the benchmark truss optimization problems.

The total number of iterations is considered as 400 for all of the examples except for

the last one, where 600 iterations are permitted. These constrained optimization

problems are turned into unconstrained ones using a penalty approach. If the

constraints are satisfied, then the amount of penalty will be zero; otherwise its

value can be calculated as the ratio of violated constraint to the corresponding

allowable limit. The CPA is coded in the MATLAB software environment. The

required structural analyses are carried out using the direct stiffness method also

coded in MATLAB.

18.4.2.1 Design of a Planar 10-Bar Truss Structure

A 10-bar truss as shown in Fig. 18.2 is considered as the first structural design

problem. This is a well-known problem in the field of structural optimization and

has been solved by many researchers using different optimization algorithms. The

material density is 0.1 lb/in3 and the modulus of elasticity is 10,000 ksi. The

members are subjected to stress limitation of 25 ksi, while the horizontal and

vertical displacements of all nodes are limited to� 2.0 in. Each of the members is

Table 18.4 Performance comparison of CPA and some GA variants in the mathematical optimi-

zation problems

Function name GEN GEN–S GEN–S–M GEN–S–M–LS CPA

AP 1360 (0.99) 1360 1277 1253 560

Bf1 3992 3356 1640 1615 1173

Bf2 20,234 3373 1676 1636 1376

BL 19,596 2412 2439 1436 424

Branin 1442 1418 1404 1257 708

Camel 1358 1358 1336 1300 482

Cb3 9771 2045 1163 1118 548

CM 2105 2105 1743 1539 1612

DeJoung 9900 3040 1462 1281 670

Exp2 938 936 817 807 435

Exp4 3237 3237 2054 1496 781

Exp8 3237 3237 2054 1496 1105

Goldstein and Price 1478 1478 1408 1325 805

Griewank 18,838 (0.91) 3111 (0.91) 1764 1652 (0.99) 1572

Hartman 3 1350 1350 1332 1274 1128

Hartman 6 2562 (0.54) 2562 (0.54) 2530 (0.67) 1865 (0.68) 1533
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considered as an independent design variable with lower and upper bounds of 0.1

and 35.0 in2, respectively. There are two independent loading cases acting on the

structure: Case 1, P1¼ 100 kips and P2¼ 0, and Case 2, P1¼ 150 kips and

P2¼ 50 kips.

Table 18.5 compares the optimized designs found by CPA together with some of

the state-of-the-art optimization algorithms for the loading cases. It can be seen that

the results found by CPA are comparable to those of the other state-of-the-art

Table 18.5 Optimized results obtained by CPA and some other metaheuristic algorithms for the

10-bar truss problem

Element group

Optimal cross-sectional areas (in2)

ABC-AP

[9]

SAHS

[10]

TLBO

[11]

MSPSO

[12]

WEO

[13]

Present

work

Case 1

1 30.5480 30.3940 30.4286 30.5257 30.5755 30.5022

2 0.1000 0.1000 0.1000 0.1001 0.1000 0.1000

3 23.1800 23.0980 23.2436 23.2250 23.3368 23.2170

4 15.2180 15.4910 15.3677 15.4114 15.1497 15.2204

5 0.1000 0.1000 0.1000 0.1001 0.1000 0.1001

6 0.5510 0.5290 0.5751 0.5583 0.5276 0.5587

7 7.4630 7.4880 7.4404 7.4395 7.4458 7.4548

8 21.0580 21.1890 20.9665 20.9172 20.9892 21.0371

9 21.5010 21.3420 21.5330 21.5098 21.5236 21.5295

10 0.1000 0.1000 0.1000 0.1000 0.1000 0.1002

Best weight (lb) 5060.880 5061.42 5060.96 5061 5060.99 5060.92

Mean weight (lb) N/A 5061.95 5062.08 5064.46 5062.09 5062.45

Standard dev. (lb) N/A 0.71 0.79 5.72 2.05 3.77

No. structural

analyses

500� 103 7081 16,872 N/A 19,540 23700

Case 2

1 23.4692 23.5250 23.5240 23.4432 23.5804 23.5515

2 0.1005 0.1000 0.1000 0.1000 0.1003 0.1000

3 25.2393 25.4290 25.4410 25.3718 25.1582 25.5440

4 14.3540 14.4880 14.4790 14.1360 14.1801 14.1674

5 0.1001 0.1000 0.1000 0.1000 0.1002 0.1000

6 1.9701 1.9920 1.9950 1.9699 1.9708 1.9698

7 12.4128 12.3520 12.3340 12.4335 12.4511 12.3533

8 12.8925 12.6980 12.6890 13.0173 12.9349 12.8167

9 20.3343 20.3410 20.3540 20.2717 20.3595 20.3302

10 0.1000 0.1000 0.1000 0.1000 0.1001 0.1001

Best weight (lb) 4677.077 4678.84 4678.31 4677.26 4677.31 4677.16

Mean weight (lb) N/A 4680.08 4680.12 4681.45 4679.06 4678.62

Standard dev. (lb) N/A 1.89 1.016 2.19 2.07 0.95

No. structural

analyses

500� 103 7267 14,857 N/A 19,890 23640
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algorithms. In both cases CPA has obtained the best result after that of ABC-AP. It

should be noted that CPA requires less than 5 % of the structural analyses used by

ABC-AP (less than 24,000 compared to 500,000). Figures 18.10 and 18.11 show the

convergence curves of the best run and the mean performance of CPA on the 10-bar

planar truss.

Fig. 18.10 Convergence curves of the best result of the CPA together with the mean performance

of the algorithm for the 10-bar planar truss (Case 1)

Fig. 18.11 Convergence curves of the best result of the CPA together with the mean performance

of the algorithm for the 10-bar planar truss (Case 2)
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18.4.2.2 Design of a 25-Bar Transmission Tower Truss

Weight minimization of a 25-bar transmission tower as schematically depicted in

Fig. 18.12 is considered as the second structural optimization problem. The material

density and modulus of elasticity are 0.1 lb/in3 and 10,000 ksi, respectively.

Table 18.6 shows the two independent loading conditions applied to the struc-

ture. The 25 bars of the truss are classified into eight groups as follows:

(1) A1, (2) A2–A5, (3) A6–A9, (4) A10–A11, (5) A12–A13, (6) A14–A17, (7) A18–

A21, and (8) A22–A25.

Maximum displacement limitations of 0.350 in are imposed on all nodes in all

directions. The axial stress constraints, which are different for each group, are

shown in Table 18.7. The cross-sectional areas vary continuously from 0.01 to

3.4 in2 for all members.

This is a very well-known test problem in the field of structural optimization and

is investigated by many researchers using different optimization methods.

Table 18.8 shows that the different optimization methods converged almost to the

Fig. 18.12 Schematic of the spatial 25-bar transmission tower

Table 18.6 Independent loading conditions acting on the spatial 25-bar truss

Node

Case 1 Case 2

Px kips Py kips Pz kips Px kips Py kips Pz kips

1 0.0 20.0 �5.0 1.0 10.0 �5.0

2 0.0 �20.0 �5.0 0.0 10.0 �5.0

3 0.0 0.0 0.0 0.5 0.0 0.0

6 0.0 0.0 0.0 0.5 0.0 0.0
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same structural weight. Figure 18.13 shows the convergence curve of the best result

of CPA together with the mean performance of the algorithm for the 25-bar spatial

truss.

18.4.2.3 Design of a 72-Bar Spatial Truss

Weight optimization of a spatial 72-bar truss structure shown in Fig. 18.14 is

considered as the third truss design example. The two loading conditions acting

on the structure are summarized in Table 18.9. The elements are grouped to form

16 design variables according to Table 18.10. The material density and the modulus

of elasticity are taken as 0.1 lb/in3 and 10,000 ksi, respectively. All members are

subjected to a stress limitation of �25 ksi. The displacements of the uppermost

nodes along x- and y-axes are limited to �0.25 in. Cross-sectional areas of bars can

vary between 0.10 and 4.00 in2, respectively.

This problem has been studied by Erbatur et al. [16] using genetic algorithms,

Camp and Bichon [17] using ant colony optimization, Perez and Behdinan [18]

using particle swarm optimization, Camp [15] using Big Bang–Big Crunch algo-

rithm, Kaveh and Khayatazad [19] using ray optimization, Degertekin using vari-

ants of harmony search [10], and Degertekin and Hayalioglu using teaching–

learning-based optimization [11], among others.

Table 18.11 compares the results obtained by the present method to those

previously reported in the literature. It can be seen that the present method have

obtained the lightest design with a weight of 379.62 lb. Figure 18.15 presents the

convergence curve for the best result and the mean performance of the CPA on

50 independent runs on this example.

18.4.2.4 Design of a 120-Bar Dome Truss

The fourth test problem is the weight minimization of a 120-bar dome truss shown

in Fig. 18.16. This structure was considered by Soh and Yang [20] as a configura-

tion optimization problem. It has been solved by Lee and Geem [21], Kaveh et al.

Table 18.7 Member stress limits for the 25-bar spatial truss

Element group Compressive stress limits ksi (MPa) Tensile stress limits ksi (MPa)

1 35.092 (241.96) 40.0 (275.80)

2 11.590 (79.913) 40.0 (275.80)

3 17.305 (119.31) 40.0 (275.80)

4 35.092 (241.96) 40.0 (275.80)

5 35.092 (241.96) 40.0 (275.80)

6 6.759 (46.603) 40.0 (275.80)

7 6.959 (47.982) 40.0 (275.80)

8 11.082 (76.410) 40.0 (275.80)
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Fig. 18.13 Convergence curves of the best result of the CPA together with the mean performance

of the algorithm for the 25-bar spatial truss

Fig. 18.14 Schematic of the spatial 72-bar truss structure
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[22], Kaveh and Khayatazad [19], and Kaveh and Mahdavi [23] as a sizing

optimization problem. The members of the structure are divided into seven groups

as shown in Fig. 18.16.

The allowable tensile and compressive stresses are set according to the

ASD-AISC [24] provisions as follows:

σþi ¼ 0:6Fy f or σi � 0

σ�i f or σi � 0

�
ð18:5Þ

where σ�i is the compressive allowable stress and depends on the slenderness ratios

of the elements.

σ�i ¼
1� λ2i

2Cc
2

� �
Fy


 �,
5

3
þ 3λi
8Cc

� λ3i
8C3

c

 !
f or λi � Cc

12π2E

23λ2i
f or λi � Cc

8>>><
>>>:

ð18:6Þ

where E is the modulus of elasticity, Fy is the material’s yield stress, λi is the

slenderness ratio (λi ¼ KiLi
ri
), Ki is the effective length factor, Li is the length of the

member, and ri is the radius of gyration. Cc is the critical slenderness ratio

separating elastic and inelastic buckling regions Cc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2E=Fy

p� �
.

The modulus of elasticity and the material density are taken as 30,450 ksi

(210 GPa) and 0.288 lb/in3, respectively. The yield stress is taken as 58.0 ksi

(400 MPa). The radius of gyration is expressed in terms of cross-sectional areas

of the members as ri ¼ aAb
i [25]. Constants a and b depend on the types of sections

adopted for the members such as pipes, angles, etc. In this example pipe sections are

used for the bars for which a¼ 0.4993 and b¼ 0.6777. The dome is considered to be

subjected to vertical loads at all unsupported nodes. These vertical loads are taken

as �13.49 kips (60 kN) at node 1, �6.744 kips (30 kN) at nodes 2 through 14, and

�2.248 kips (10 kN) at the other nodes. Four different problem variants are

considered for this structure: with stress constraints and no displacement constraints

(Case 1), with stress constraints and displacement limitations of�0.1969 in (5 mm)

Table 18.9 Independent loading conditions acting on the spatial 72-bar truss

Node

Case 1 Case 2

Px kips Py kips Pz kips Px kips Py kips Pz kips

1 5 5 �5 – – �5

2 – – – – – �5

3 – – – – – �5

4 – – – – – �5
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imposed on all nodes in x- and y-directions (Case 2), no stress constraints and

displacement limitations of �0.1969 in (5 mm) imposed on all nodes in z direction

(Case 3), and all the above mentioned constraints imposed together (Case 4). For

Cases 1 and 2, the maximum cross-sectional area is taken as 5.0 in2 (32.26 cm2)

while for Cases 3 and 4, it is taken as 20 in2 (129.03 cm2). The minimum cross-

sectional area is taken as 0.775 in2 (5 cm2) for all cases.

Table 18.12 compares the results obtained by different optimization techniques

for this example. It can be seen that CPA obtains the best results in Cases 1, 3, and

4 among the compared methods.

18.4.2.5 Design of a 200-Bar Planar Truss

A planar 200-bar truss as shown in Fig. 18.17 is optimized as the last test problem.

The elastic modulus of the material is 30,000 ksi while density is 0.283 lb/in3. The

allowable stress for all members is 10 ksi (the same in tension and compression). No

displacement constraints are included in the optimization process. The structure is

divided into 29 groups of elements. The minimum cross-sectional area of all design

variables is taken as 0.1 in2. This truss is subjected to three independent loading

conditions: (1) 1.0 kip acting in the positive x direction at nodes 1, 6, 15, 20, 29, 43,

48, 57, 62, and 71; (2) 10.0 kips acting in the negative y direction at nodes 1, 2, 3, 4,

5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24,. . . , 71, 72, 73, 74, and 75; and

(3) loading conditions 1 and 2 acting together. The members of the structure are

linked together in 29 groups according to Table 18.12.

Fig. 18.15 Convergence curves for the best result and the mean performance of 20 independent

runs for the 72-bar spatial truss
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Fig. 18.16 Schematic of the 120-bar dome truss structure
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Table 19.12 presents the optimum designs obtained by CPA, WEO [13], a

Corrected Multi-Level and Multi-Point Simulated Annealing algorithm (CMLPSA)

[26], SAHS [10], TLBO [11], and HPSSO [27]. Figure 18.18 shows the conver-

gence curves for the best result and the mean performance of 50 independent runs

for the 200-bar planar truss.

Fig. 18.17 Schematic of a 200-bar planar truss
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18.5 Concluding Remarks

In this chapter a new population-based metaheuristic optimization method, namely,

cyclical parthenogenesis algorithm (CPA), is presented. The algorithm is inspired

by reproduction and social behavior of some zoological species like aphids, which

alternate between sexual and asexual reproduction. CPA starts with a random

population, considered as aphids, and iteratively improves the quality of solutions

utilizing reproduction and displacement mechanisms.

Some mathematical and benchmark truss design problems are employed in order

to investigate the viability of the proposed algorithm. Sensitivity of the proposed

algorithm to its parameters is analyzed and the convergence behavior of the

algorithm is studied using the diversity index. The results of the numerical exam-

ples indicate that the performance of the newly proposed algorithm is comparable

to other state-of-the-art metaheuristic algorithms. CPA has found many interesting

applications in design of structures, in particular in optimal design of truss struc-

tures with constraints as natural frequencies [28].
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