Chapter 18
Cyclical Parthenogenesis Optimization
Algorithm

18.1 Introduction

Over the last few decades, metaheuristic algorithms have been successfully used for
solving complex global optimization problems in science and engineering. These
methods, which are usually inspired by natural phenomena, do not require any
gradient information of the involved functions and are generally independent of the
quality of the starting points. As a result, metaheuristic optimizers are favorable
choices when dealing with discontinuous, multimodal, non-smooth, and
non-convex functions, especially when near-global optimum solutions are sought,
and the intended computational effort is limited.

Different characteristics of these algorithms cause them to perform dissimilarly
on different classes of optimization problems, and therefore none of them can
defeat all the others on all cases. As an everlasting source of inspiration, nature
continues to provide researchers with different ideas in their search for new efficient
optimization algorithms.

In the present chapter, a new metaheuristic algorithm is presented based on the
reproduction and social behavior of some zoological species like aphids [1]. Aphids,
which are considered as a highly successful group of organisms from a zoological
standpoint [2], can switch between sexual and asexual reproduction mechanisms. In
favorable circumstances, parthenogenesis and telescoping of generations enable
aphids to achieve very high rates of reproduction [3]. This enables the aphids to
exploit advantageous environmental conditions like abundance of food. However,
probably to maintain genetic diversity and in response to adverse changes in
environmental situation, female aphids reproduce sexual females and males when
they find it necessary. Although the reasons behind reproduction behavior of aphids
are not completely agreed upon in zoology, advantages of both of these alternating
systems are evident from an optimization point of view.

The remainder of this chapter is organized as follows. In Sect. 18.2, the new
optimization algorithm is presented subsequent to a concise and simplified
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introduction to real aphids. Sensitivity of CPA to its parameters is studied in
Sect. 18.3. Some mathematical and engineering design benchmark problems are
then studied in Sect. 18.4 in order to examine the efficiency of the proposed
algorithm. The concluding remarks are finally presented in Sect. 18.5.

18.2 Cyclical Parthenogenesis Algorithm

In this section cyclical parthenogenesis algorithm (CPA) is introduced and
described as a population-based metaheuristic algorithm for global optimization.
The main rules of CPA are explained using some key aspects of the lives of aphids
as a highly successful organism. Not all the details of the complicated life cycles of
about 4000 species of aphids are known to us; however, there are some common
features of these intricate life cycles such as the ability to reproduce both sexually
and asexually (cyclical parthenogenesis), which seem to be interesting from an
optimization point of view.

18.2.1 Aphids and Cyclical Parthenogenesis

Aphids are small sap-sucking insects, and members of the superfamily Aphidoidea
[4]. As one of the most destructive insect pests on cultivated plants in temperate
regions, aphids have fascinated and frustrated man for a very long time. This is
mainly because of their intricate life cycles and close association with their host
plants and their ability to reproduce both asexually and sexually [3]. Figure 18.1
shows a female aphid surrounded by her offspring on a host plant.

Aphids are capable of reproducing offspring both sexually and asexually. In
asexual reproduction the offspring arise from the female parent and inherit the
genes of that parent only. In asexual reproduction most of the offspring are
genetically identical to their mother and genetic changes occur relatively rarely
[3]. This form of reproduction is chosen by female aphids in suitable and stable
environments and allows them to rapidly grow a population of similar aphids,
which can exploit the favorable circumstances. Sexual reproduction, on the other
hand, offers a net advantage by allowing more rapid generation of genetic diversity,
making adaptation to changing environments available [5].

Since the habitat occupied by an aphid species is not uniform but consists of a
spatial-temporal mosaic of many different patches, each with its own complement
of organisms and resources [3], aphids employ sexual reproduction in order to
maintain the genetic diversity required for increasing the chance of including the
fittest genotype for a particular patch. This is the basis of the lottery model proposed
by Williams [6] for explaining the role of sexual reproduction in evolution.

Some aphid species produce winged offspring in response to poor conditions on
the host plant or when the population on the plant becomes too large. These winged
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Fig. 18.1 A female aphid
surrounded by her offspring
on a host plant

offspring, which are called alates, can disperse to other food sources [4]. Flying
aphids have little control over the direction of their flight because of their low
speed. However, once within the layer of relatively still air around vegetation,
aphids can control their landing on plants and respond to either olfactory or visual
cues, or both.

18.2.2 Description of Cyclical Parthenogenesis Algorithm

Cyclical Parthenogenesis Algorithm (CPA) is a population-based metaheuristic
optimization algorithm inspired from social and reproduction behavior of aphids.
It starts with a population of randomly generated candidate solutions metaphorized
as aphids. The quality of the candidate solutions is then improved using some
simplified rules inspired from the life cycle of aphids.

Naturally, CPA does not attempt to represent an exact model of the life cycle of
aphids, which is neither possible nor necessary. Instead, it encompasses certain
features of their behavior to construct a global optimization algorithm.

Like many other population-based metaheuristic algorithms, CPA starts with a
population of N, candidate solutions randomly generated in the search space. These
candidate solutions, which are considered as aphids, are grouped into N, colonies,
each inhabiting a host plant. These aphids reproduce offspring through sexual and
asexual reproduction mechanisms. Like real aphids, in general, larger (fitter)
individuals within a colony have a greater reproductive potential than smaller
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ones. Some of the aphids prefer to leave their current host plant and search for better
conditions. In CPA it is assumed that these flying aphids cannot fly much further
due to their weak wings and end up on a plant occupied by another colony nearby.
Like real aphids, the agents of the algorithm can reproduce for multiple generations.
However, the life span of aphids is naturally limited, and less fit ones are more
likely to be dead in adverse circumstance. The main steps of CPA can be stated as
follows:

Step 1: Initialization
A population of N, initial solutions is generated randomly:

xg- = Xjmin + rand(xj,maX - xj,min) j=12,...,n (18.1)

where xg is the initial value of the jth variable of the ith candidate solution; x; max
and X; min are the maximum and minimum permissible values for the jth variable,
respectively; rand is a random number from a uniform distribution in the interval
[0, 1]; and 7 is the number of optimization variables. The candidate solutions are
then grouped into N, colonies, each inhabiting a host plant. The number of aphids in
all colonies N,, is equal.

Step 2: Evaluation, Reproduction, and Flying
The objective function values for the candidate solutions are evaluated. The aphids
on each plant are sorted in the ascending order of their objective function values and
saved in a female memory (FM). Each of the members of the female memory is
capable of asexually reproducing a genetically identical clone in the next iteration.
In each iteration, N,, new candidate solutions are generated in each of the
colonies in addition to identical clones. These new solutions can be reproduced
either sexually or asexually. A ratio F, of the best of these new solutions is
considered as female aphids; the rest are considered as male aphids.

Asexually Generated New Solutions

A female parent is selected randomly from the population of all female parents of
the colony (identical clones and newly produced females). Then, this female parent
reproduces a new offspring asexually by the following expression:

randn
Ry gy x 20

X (xj,max ij,min) j=12,...,n (18.2)
where xffj“ is the value of the jth variable of the ith candidate solution in the (k + 1)
th iteration; F j" is the value of the corresponding variable of the female parent in the

kth iteration; randn is a random number drawn from a normal distribution; and «a; is
a scaling parameter.

Sexually Generated New Solutions
Each of the male aphids selects a female randomly in order to produce an offspring
sexually:
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.X§-+l — Mjk + ap X rand X (ij —Mjk) J: 1,2, R /] (183)

where Mf is the value of the jth variable of the male solution in the kth iteration and
a, is a scaling factor. It can be seen that in a sexual reproduction, two different
solutions share information, while in an asexual reproduction, the new solution is
generated using merely the information of one single parent solution.

Death and Flight

When all of the new solutions of all colonies are generated, flying occurs with a
probability of P, where two of the colonies are selected randomly and a winged
aphid asexually reproduced by and identical to the best female of Colony1 flies to
Colony2. In order to keep the number of members of each colony constant, it is
assumed that the worst member of Colony2 dies.

Step 3: Updating the Colonies
The objective function values of the newly generated candidate solutions are
evaluated and the female memories are updated.

Step 4: Termination
Steps 2 and 3 are repeated until a termination criterion is satisfied. The pseudo code
of CPA is presented in Table 18.1.

18.3 Sensitivity Analysis of CPA

Performance of a metaheuristic algorithm is highly dependent on the values of its
internal parameters. In this section, the sensitivity of CPA to its parameters is
investigated considering the weight minimization of a 10-bar truss, as depicted in
Fig. 18.2. The details of this problem are further explained in the next section. A
parametric study is performed considering N,, N, F,, Ps, a;, and a,. In each case,
the problem is solved ten times in order to obtain statistically significant results.
The total number of structural analyses is set as 24,000. The results of the sensitivity
analysis of CPA for this example are provided in Table 18.2. When studying each
parameter, the other parameters are kept unchanged. The initial values of param-
eters to be used in the sensitivity analysis process are N, =60, N.=4, F,=0.4,
a; =1, and a, = 2. A linear function increasing from 0 to 1 is considered for Py .

A diversity index as introduced by Kaveh and Zolghadr [7] is also used to study
the exploration/exploitation behavior of the algorithm for different parameter
values. The index reflects the relative positions of the agents of an algorithm and
can be used to observe the diversity of the agents of an algorithm during an
optimization process:
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Table 18.1 Pseudo code of the CPA algorithm [1]

procedure Cyclical Parthenogenesis Algorithm
begin
Initialize parameters;
Initialize a population of N, random candidate solutions;
Group the candidate solutions in N, colonies with each having N, members;
Evaluate and Sort the candidate solutions of each colony and save the best Ny, ones in

Female Memory

while (termination condition not met) do

for m: 1 to N,

Reproduce an identical solution by each of the solutions of the Female
Memory

Divide the newly generated offspring into male and female considering F;
for i: 1 to F;XNy,
Generate new solution i asexually using Eq. (18.2)
end for
for i: F;XNyt+1 to Ny
Generate new solution i sexually using Eq. (18.3)
end for
if rand<Py
Select two colonies randomly
Generate an winged identical offspring from the best solution of Colonyl
Eliminate the worst solution of Colony2 and move winged aphid to Colony2
end if

Evaluate the objective function values of new aphids

Update the Female Memory

end for

end while

end
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Fig. 18.2 Schematic of the Y
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where X;(i) is the value of the ith variable of the jth particle; X; min and X; max are the
minimum and maximum values of the ith variable, respectively; nVAR is the
number of design variables; and nP is the number of particles. In order to decrease
random fluctuations, the mean values of diversity index in the ten independent runs
are plotted against iteration numbers for each parameter set.

In order to study the effect of population size (N,), the algorithm is run with
20, 40, 60, 80, and 100 aphids, while keeping the total number of structural analyses
unchanged. From Table 18.2 it can be seen that the best performance of CPA in
terms of the best weight, mean weight, and standard deviation is obtained for
N,=60. The second best results are obtained when considering N, = 80. The best
and mean performance of the algorithm for different values of N, is depicted in
Fig. 18.3.

The concept of multiple colonies allows CPA to search different portions of the
search spaces more or less independently and prevents the unwanted premature
convergence phenomenon. Table 18.2 shows the statistical information for different
values of N, i.e., the number of colonies, where the population size is kept
unchanged (N, =60). As it can be seen, the best performance in terms of best
weight, mean weight, and standard deviation is obtained for N.=4. This parameter
value provides a good balance between the diversification and intensification
tendencies of the algorithm. In fact, dividing the population of aphids into more
colonies limits the circulation of information among the aphids and allows the
aphids of a colony to explore the search space more independently without being
affected by other colonies. This generally results in a more diverse search. On the
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Table 18.2 Results of the sensitivity analysis of CPA for the 10-bar truss

Parameter/value Best weight (Ib) | Mean weight (1b) | Standard deviation (Ib)
Population size

Na=20 5062.89 5074.42 8.61
Na=40 5061.11 5063.68 5.18
Na=60 5060.94 5061.35 0.23
Na =80 5061.08 5061.50 0.51
Na =100 5061.17 5061.98 0.53
Number of colonies

Ne=1 5061.01 5064.76 6.42
Nc=2 5061.15 5062.01 2.04
Nc=3 5061.04 5062.97 4.98
Nc=4 5060.94 5061.35 0.23
Nc=6 5061.24 5062.10 0.65
Nc=12 5061.89 5067.62 7.05
Female ratio

Fr=0.2 5060.98 5061.49 0.53
Fr=04 5060.94 5061.35 0.23
Fr=0.6 5061.06 5061.76 0.59
Fr=0.8 5061.64 5067.59 7.54
Flight probability

Pf=1 5061.04 5063.34 4.98
Pf=0 5061.06 5062.89 2.90
Pf linear 5060.94 5061.35 0.23
Step size

a; =0.5 and @, =0.5 5314.20 5785.27 35.50
a;=0.5and a, =1 5169.72 5684.86 223.67
a;=0.5and a, =2 5061.03 5061.90 0.59
a;=1and a,=0.5 5100.97 5301.86 149.41
aj=1land a; =1 5084.95 5410.06 235.75
a;=1and a; =2 5060.94 5061.35 0.23
a;=2and a; =0.5 5085.01 5165.37 111.6
a;=2and oy =1 5062.51 5088.97 35.51
a;=2and a, =2 5061.04 5062.97 4.85
a;=2and a, =4 5062.06 5073.81 6.37
a;=4and ay =2 5061.61 5065.18 6.63
a;=4and a, =4 5062.23 5069.80 7.84

other hand, having more aphids in a colony (less number of colonies) permits the
algorithm to search a particular region of the search space more thoroughly (more
intensification), but, at the same time, limits the diversification of the algorithm.
The best and mean performance of the algorithm for different values of N, is
depicted in Fig. 18.4. The diversity index curves of CPA for different values of
N, are shown in Fig. 18.5. It can be seen that the curves corresponding to N. = 3 and
N.=4, which result in the best performance of the algorithm, are placed between
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Fig. 18.4 Best and mean performance of CPA for different values of N,.

those of N.=1 and N.=2 from below and N.=6 and N.= 12 from above. This
conforms to the above discussion, i.e., dividing the aphids into more colonies
generally results in slower rate of convergence (more diversity index values).
N.=4 seems to provide a good balance between the exploration and exploitation
tendencies of the algorithm.

Parameter F, defines the ratio of female aphids to all of the newly generated
aphids. Increasing the value of this parameter results in an increase in the number of
asexually generated aphids of the next generation. Since such aphids use a single
source of information (female parent), they can be interpreted as means of
searching a localized region around their parent. This localized region gets smaller
gradually as the optimization process proceeds. Sexual reproduction, on the other
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hand, incorporates two different sources of information and therefore contributes to
the convergence of the algorithm by letting the aphids share information. According
to Table 18.2 which summarizes the statistical information for different values of
F,, it can be seen that the proposed algorithm exhibits its best performance in terms
of mean weight when the value of this parameter is taken as 0.4, while the second
and third best performances are obtained for F,,=0.2 and F,=0.6. The best and
mean performance of the algorithm for different values of N, is depicted in
Fig. 18.6. The diversity index curves of CPA for different values of F, are shown
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in Fig. 18.7. It can be seen that increasing the value of F, slightly increases
the diversity of the aphids in the search space, i.e., the curves corresponding to
F,=0.8 and F,=0.2 are placed above and below the other curves, respectively.
However, the effect is not very significant and the curves are very close to each
other.

Parameter Py is responsible for defining the level of information exchange
among the colonies. With no possible flights, the colonies would be performing
their search in a completely independent manner, i.e., an optimization run with N,
aphids divided into four colonies would be similar to four independent runs each
with N,/4 aphids per colony. It is obvious that this would not be particularly
favorable, since it is in fact changing the population of aphids without actually
utilizing the abovementioned benefits of multiple colonies. On the other hand,
permitting too many flights results corresponds to merging the information sources
of different colonies. It is important to note that at the early stages of the optimi-
zation process, it is more favorable to give the colonies a higher level of indepen-
dence so that they can search the problem space without being affected by the other
colonies. However, as the optimization process proceeds, it is desirable to let the
colonies share more information so as to provide the opportunity for the more
promising regions of the search space to be searched more thoroughly. Three
different cases are considered for Py in this study: P,=0, P;=1, and Py linearly
increasing from O to 1. It can be clearly seen from Table 18.2 that the best
performance of the algorithm corresponds to the linear case, since it conforms to
the abovementioned discussion on information circulation. The diversity index
curves of CPA for different values of P, are shown in Fig. 18.8. It can be seen
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that when P,= 0, the diversity index values are relatively high even at the end of the
optimization process. This means that the different colonies have converged to
different results. The curve corresponding to the linear function is similar to that of
Pr=0 at the early stages of the optimization process, while it gets closer to the
curve corresponding to Py=1 at the final stages. This explains the favorable
behavior of the algorithm when a linear function is chosen for P.

Parameters a; and a, represent the step size of the agents in asexual and sexual
reproductions, respectively. The sensitivity of CPA to these two parameters is also
shown in Table 18.2. The diversity index curves of CPA for different values of a;
and a, are shown in Fig. 18.9. According to Table 18.2 the best performance of the
algorithm corresponds to a@; = 1 and a, = 2. There are two other cases which result
in relatively good performance of the algorithm, i.e., @; =0.5 and @, =2 and a; =2
and a, =2. As it can be seen in Fig. 18.9, the diversity index curves for these three
cases are almost the same.

18.4 Test Problems and Optimization Results

In order to evaluate the efficiency of the proposed algorithm, some benchmark test
problems are considered from the literature. A set of unimodal and multimodal
mathematical optimization problems are studied in Sect. 18.4.1. In addition, truss
weight minimizations of a planar 10-bar truss, a spatial 25-bar transmission tower, a
spatial 72-bar truss, a 120-bar dome-shaped truss, and a planar 200-bar truss are
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considered as structural optimization problems. The results of utilizing CPA on
these structural optimization problems are then compared to some of the state-of-
the-art metaheuristic algorithms.

18.4.1 Mathematical Optimization Problems

In this section, the efficiency of the CPA is evaluated by solving the mathematical
benchmark problems summarized in Table 18.3. These benchmark problems are
taken from Ref. [8], where some variants of GA were used as the optimization
algorithm. The results obtained by CPA are presented in Table 18.4 along with
those of some GA variants. Each objective function is optimized 50 times indepen-
dently starting from different initial populations, and the average number of func-
tion evaluations required by each algorithm is presented. The numbers in the
parentheses indicate the ratio of the successful runs in which the algorithm has
obtained the global minimum with predefined accuracy, which is taken as
€= Fmin —J finat = 10*. The absence of the parentheses indicates that the algo-
rithm has been successful in all independent runs.

As it can be seen from Table 18.4, CPA generally performs better than GA and
its variants in the mathematical optimization problems considered in this study.
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Table 18.4 Performance comparison of CPA and some GA variants in the mathematical optimi-
zation problems

Function name GEN GEN-S GEN-S-M | GEN-S-M-LS |CPA
AP 1360 (0.99) 1360 1277 1253 560
Bfl 3992 3356 1640 1615 1173
Bf2 20,234 3373 1676 1636 1376
BL 19,596 2412 2439 1436 424
Branin 1442 1418 1404 1257 708
Camel 1358 1358 1336 1300 482
Cb3 9771 2045 1163 1118 548
CM 2105 2105 1743 1539 1612
DeJoung 9900 3040 1462 1281 670
Exp2 938 936 817 807 435
Exp4 3237 3237 2054 1496 781
Exp8 3237 3237 2054 1496 1105
Goldstein and Price | 1478 1478 1408 1325 805
Griewank 18,838 (0.91) |3111(0.91) | 1764 1652 (0.99) 1572
Hartman 3 1350 1350 1332 1274 1128
Hartman 6 2562 (0.54) 2562 (0.54) |2530 (0.67) | 1865 (0.68) 1533

18.4.2 Truss Design Problems

In order to further investigate the efficiency of the CPA, five continuous truss
design problems are considered in this section. The results are compared to those
obtained by some of the state-of-the-art metaheuristic optimization algorithms.
60 aphids are considered for all of the benchmark truss optimization problems.
The total number of iterations is considered as 400 for all of the examples except for
the last one, where 600 iterations are permitted. These constrained optimization
problems are turned into unconstrained ones using a penalty approach. If the
constraints are satisfied, then the amount of penalty will be zero; otherwise its
value can be calculated as the ratio of violated constraint to the corresponding
allowable limit. The CPA is coded in the MATLAB software environment. The
required structural analyses are carried out using the direct stiffness method also
coded in MATLAB.

18.4.2.1 Design of a Planar 10-Bar Truss Structure

A 10-bar truss as shown in Fig. 18.2 is considered as the first structural design
problem. This is a well-known problem in the field of structural optimization and
has been solved by many researchers using different optimization algorithms. The
material density is 0.1 Ib/in®> and the modulus of elasticity is 10,000 ksi. The
members are subjected to stress limitation of 25 ksi, while the horizontal and
vertical displacements of all nodes are limited to 4- 2.0 in. Each of the members is
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Table 18.5 Optimized results obtained by CPA and some other metaheuristic algorithms for the
10-bar truss problem

Optimal cross-sectional areas (in%)
ABC-AP | SAHS TLBO MSPSO WEO Present

Element group [9] [10] [11] [12] [13] work
Case 1

1 30.5480 30.3940 |30.4286 |30.5257 30.5755 | 30.5022
2 0.1000 0.1000 0.1000 0.1001 0.1000 0.1000
3 23.1800 23.0980 |23.2436 |23.2250 23.3368 |23.2170
4 15.2180 15.4910 |15.3677 15.4114 15.1497 | 15.2204
5 0.1000 0.1000 0.1000 0.1001 0.1000 0.1001
6 0.5510 0.5290 0.5751 0.5583 0.5276 0.5587
7 7.4630 7.4880 7.4404 7.4395 7.4458 7.4548
8 21.0580 21.1890 |20.9665 |20.9172 20.9892 | 21.0371
9 21.5010 21.3420 | 21.5330 |21.5098 21.5236 |21.5295
10 0.1000 0.1000 0.1000 0.1000 0.1000 0.1002
Best weight (Ib) 5060.880 | 5061.42 |5060.96 |5061 5060.99 | 5060.92
Mean weight (1b) N/A 5061.95 |5062.08 |5064.46 5062.09 |5062.45
Standard dev. (Ib) | N/A 0.71 0.79 5.72 2.05 3.77
No. structural 500 x 10° | 7081 16,872 N/A 19,540 23700
analyses

Case 2

1 23.4692 23.5250 |23.5240 |23.4432 23.5804 | 23.5515
2 0.1005 0.1000 0.1000 0.1000 0.1003 0.1000
3 25.2393 254290 |25.4410 |25.3718 25.1582 | 25.5440
4 14.3540 14.4880 |14.4790 |14.1360 14.1801 | 14.1674
5 0.1001 0.1000 0.1000 0.1000 0.1002 0.1000
6 1.9701 1.9920 1.9950 1.9699 1.9708 1.9698
7 12.4128 12.3520 | 12.3340 |12.4335 12.4511 | 12.3533
8 12.8925 12.6980 |12.6890 |13.0173 12.9349 | 12.8167
9 20.3343 20.3410 | 20.3540 |20.2717 20.3595 | 20.3302
10 0.1000 0.1000 0.1000 0.1000 0.1001 0.1001
Best weight (Ib) 4677.077 |4678.84 |4678.31 |4677.26 4677.31 |4677.16
Mean weight (Ib) N/A 4680.08 |4680.12 |4681.45 4679.06 |4678.62
Standard dev. (Ib) | N/A 1.89 1.016 2.19 2.07 0.95
No. structural 500 x 10° | 7267 14,857 N/A 19,890 23640
analyses

considered as an independent design variable with lower and upper bounds of 0.1
and 35.0 in?, respectively. There are two independent loading cases acting on the
structure: Case 1, P; =100 kips and P,=0, and Case 2, P; =150 kips and
P>, =150 kips.

Table 18.5 compares the optimized designs found by CPA together with some of
the state-of-the-art optimization algorithms for the loading cases. It can be seen that
the results found by CPA are comparable to those of the other state-of-the-art
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Fig. 18.10 Convergence curves of the best result of the CPA together with the mean performance
of the algorithm for the 10-bar planar truss (Case 1)
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Fig. 18.11 Convergence curves of the best result of the CPA together with the mean performance
of the algorithm for the 10-bar planar truss (Case 2)

algorithms. In both cases CPA has obtained the best result after that of ABC-AP. It
should be noted that CPA requires less than 5 % of the structural analyses used by
ABC-AP (less than 24,000 compared to 500,000). Figures 18.10 and 18.11 show the
convergence curves of the best run and the mean performance of CPA on the 10-bar

planar truss.
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Fig. 18.12 Schematic of the spatial 25-bar transmission tower

Table 18.6 Independent loading conditions acting on the spatial 25-bar truss

Case 1 Case 2
Node P, kips Py kips P, kips Py kips P, kips P, kips
1 0.0 20.0 -5.0 1.0 10.0 —5.0
2 0.0 —20.0 —5.0 0.0 10.0 -5.0
3 0.0 0.0 0.0 0.5 0.0 0.0
6 0.0 0.0 0.0 0.5 0.0 0.0

18.4.2.2 Design of a 25-Bar Transmission Tower Truss

Weight minimization of a 25-bar transmission tower as schematically depicted in
Fig. 18.12 is considered as the second structural optimization problem. The material
density and modulus of elasticity are 0.1 Ib/in® and 10,000 ksi, respectively.

Table 18.6 shows the two independent loading conditions applied to the struc-
ture. The 25 bars of the truss are classified into eight groups as follows:

(1) A1, (2) Ax-As, (3) As—Ag, (4) Aro=Ar1, (5) A=Az, (6) Arg—Ayg, (7) Ars—
Ajy, and (8) Azo—Ans.

Maximum displacement limitations of 0.350 in are imposed on all nodes in all
directions. The axial stress constraints, which are different for each group, are
shown in Table 18.7. The cross-sectional areas vary continuously from 0.01 to
3.4 in® for all members.

This is a very well-known test problem in the field of structural optimization and
is investigated by many researchers using different optimization methods.
Table 18.8 shows that the different optimization methods converged almost to the
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Table 18.7 Member stress limits for the 25-bar spatial truss

Element group Compressive stress limits ksi (MPa) Tensile stress limits ksi (MPa)
1 35.092 (241.96) 40.0 (275.80)
2 11.590 (79.913) 40.0 (275.80)
3 17.305 (119.31) 40.0 (275.80)
4 35.092 (241.96) 40.0 (275.80)
5 35.092 (241.96) 40.0 (275.80)
6 6.759 (46.603) 40.0 (275.80)
7 6.959 (47.982) 40.0 (275.80)
8 11.082 (76.410) 40.0 (275.80)

same structural weight. Figure 18.13 shows the convergence curve of the best result
of CPA together with the mean performance of the algorithm for the 25-bar spatial
truss.

18.4.2.3 Design of a 72-Bar Spatial Truss

Weight optimization of a spatial 72-bar truss structure shown in Fig. 18.14 is
considered as the third truss design example. The two loading conditions acting
on the structure are summarized in Table 18.9. The elements are grouped to form
16 design variables according to Table 18.10. The material density and the modulus
of elasticity are taken as 0.1 Ib/in® and 10,000 ksi, respectively. All members are
subjected to a stress limitation of £25 ksi. The displacements of the uppermost
nodes along x- and y-axes are limited to £0.25 in. Cross-sectional areas of bars can
vary between 0.10 and 4.00 in?, respectively.

This problem has been studied by Erbatur et al. [16] using genetic algorithms,
Camp and Bichon [17] using ant colony optimization, Perez and Behdinan [18]
using particle swarm optimization, Camp [15] using Big Bang—Big Crunch algo-
rithm, Kaveh and Khayatazad [19] using ray optimization, Degertekin using vari-
ants of harmony search [10], and Degertekin and Hayalioglu using teaching—
learning-based optimization [11], among others.

Table 18.11 compares the results obtained by the present method to those
previously reported in the literature. It can be seen that the present method have
obtained the lightest design with a weight of 379.62 Ib. Figure 18.15 presents the
convergence curve for the best result and the mean performance of the CPA on
50 independent runs on this example.

18.4.2.4 Design of a 120-Bar Dome Truss
The fourth test problem is the weight minimization of a 120-bar dome truss shown

in Fig. 18.16. This structure was considered by Soh and Yang [20] as a configura-
tion optimization problem. It has been solved by Lee and Geem [21], Kaveh et al.
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Fig. 18.13 Convergence curves of the best result of the CPA together with the mean performance
of the algorithm for the 25-bar spatial truss
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Fig. 18.14 Schematic of the spatial 72-bar truss structure
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Table 18.9 Independent loading conditions acting on the spatial 72-bar truss

Case 1 Case 2
Node P, kips Py, kips P, kips P, kips P, kips P, kips
1 5 5 -5 - - -5
2 - - - - - -5
3 - - — - - -5
4 - - - - - -5

[22], Kaveh and Khayatazad [19], and Kaveh and Mahdavi [23] as a sizing
optimization problem. The members of the structure are divided into seven groups
as shown in Fig. 18.16.

The allowable tensile and compressive stresses are set according to the
ASD-AISC [24] provisions as follows:

+_ .
{o’i =0.6F, for 6;>0 (18.5)

o; for 06;<0

1

where o} is the compressive allowable stress and depends on the slenderness ratios
of the elements.

K ,1.2> ]/<5 3), ,13>
1 —-—% |F, -+ — for A4, <C
2 )4y 3 i >be
;= 2 3 8C 3 (18.6)

127°E
2377

fOI’ )“i Z Cc

where E is the modulus of elasticity, F, is the material’s yield stress, 4; is the
slenderness ratio (4; = %), K; is the effective length factor, L; is the length of the

member, and 7; is the radius of gyration. C. is the critical slenderness ratio
separating elastic and inelastic buckling regions (C. = \/2n2E/Fy).

The modulus of elasticity and the material density are taken as 30,450 ksi
(210 GPa) and 0.288 Ib/in’, respectively. The yield stress is taken as 58.0 ksi
(400 MPa). The radius of gyration is expressed in terms of cross-sectional areas
of the members as r; = aAl-” [25]. Constants a and b depend on the types of sections
adopted for the members such as pipes, angles, etc. In this example pipe sections are
used for the bars for which a=0.4993 and b =0.6777. The dome is considered to be
subjected to vertical loads at all unsupported nodes. These vertical loads are taken
as —13.49 kips (60 kN) at node 1, —6.744 kips (30 kN) at nodes 2 through 14, and
—2.248 kips (10 kN) at the other nodes. Four different problem variants are
considered for this structure: with stress constraints and no displacement constraints
(Case 1), with stress constraints and displacement limitations of +0.1969 in (5 mm)
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