Chapter 17
Vibrating Particles System Algorithm

17.1 Introduction

In the recent years, many metaheuristics with different philosophies and character-
istics are introduced and applied to a wide range of fields. The aim of these
optimization methods is to efficiently explore the search space in order to find
global or near-global solutions. Since they are not problem specific and do not
require the derivatives of the objective function, they have received increasing
attention from both academia and industry.

A novel population-based metaheuristic algorithm based on the damped free
vibration of single degree of freedom system is introduced in Kaveh and Ilchi
Ghazaan [1]. This algorithm is called a vibrating particles system (VPS) algorithm
and considers each candidate solution as a particle that approaches its equilibrium
position. By utilizing a combination of randomness and exploitation of obtained
results, the quality of the particles improves iteratively as the optimization process
proceeds. Here, viability of the proposed method is examined using the optimal
design of two truss and two frame structures. The selected examples are among the
most popular benchmarks previously studied by the researchers (Saka [2], Erbatur
et al. [3], Lee and Geem [4], Hasangebi et al. [5], and Kazemzadeh Azad and
Hasangebi [6]). The numerical results indicate the efficiency of the proposed
algorithm compared to some other methods available in the literature.

The remaining sections of this chapter are organized as follows: The mathemat-
ical formulations of the structural optimization are presented in Sect. 17.2. The
physical background of the VPS algorithm is presented in Sect. 17.3, and Sect. 17.4
introduces this new optimization method in detail. Section 17.5 investigates the
parameter settings and the search behavior of the proposed method, and four
structural design examples are studied in Sect. 17.6. Finally, concluding remarks
are provided in Sect. 17.7.
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17.2 Formulation of the Structural Optimization Problems

In this study, the objective is to minimize the weight of the structure while
satisfying some constraints on stresses and/or buckling and/or deflection and/or
natural frequencies. The design variables are cross-sectional areas of structural
elements. The mathematical formulation of these problems is expressed as follows:

Find {X} = [xl,xz,. xng]
to minimize W({X}) = Zp,A L

subjected to : {gJ({X}) < 0 J=12,

Xl min g xl S xlmdx

(17.1)

where {X} is a vector containing the design variables; ng is the number of design
variables; W({X}) is the weight of the structure; nm is the number of elements of the
structure; p;, A;, and L; denote the material density, cross-sectional area, and the
length of the ith member, respectively; x;,,;, and X;,,., are the lower and upper
bounds of the design variable x;, respectively; g,({X}) denotes design constraints;
and nc is the number of constraints.

To handle the constraints, the well-known penalty approach is employed. Thus,
the objective function is redefined as follows:

FUXY) = (1 +e0)2 x WHXY), o= imax .g(xh]  (72)

where v denotes the sum of the violations of the design constraints. The constant €,
is set equal to 1 while &, starts from 1.5 and linearly increases to 3. Such a scheme
penalizes the unfeasible solutions more severely as the optimization process pro-
ceeds. As aresult, in the early stages, the agents are free to explore the search space,
but at the end they tend to choose solutions with no violation.

17.3 The Damped Free Vibration

A vibration is the oscillating motion of a particle or a body about a position of
equilibrium. In general, there are two types of vibrations: (1) free vibration and
(2) forced vibration. When the motion is maintained by the restoring forces only,
the vibration is said to be a free vibration, and when a time-dependent force is
applied to the system, the resulting motion is described as a forced vibration. In the
study of a vibrating system, the effects of friction can be neglected resulting in an
undamped vibration. However, all vibrations are actually damped to some degree
by friction forces. These forces can be caused by dry friction, or Coulomb friction,
between rigid bodies, by fluid friction when a rigid body moves in a fluid, or by
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Fig. 17.1 Free vibration of PSS S
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internal friction between the molecules of a seemingly elastic body. In this section,
the free vibration of single degree of freedom systems with viscous damping is
studied. The viscous damping is caused by fluid friction at low and moderate
speeds. Viscous damping is characterized by the fact that the friction force is
directly proportional and opposite to the velocity of the moving body (Beer et al.
[7D.

The vibrating motion of a body or system of mass m having viscous damping can be
characterized by a block and a spring of constant k that is shown in Fig. 17.1. The effect
of damping is provided by the dashpot connected to the block, and the magnitude of the
friction force exerted on the plunger by the surrounding fluid is equal to c¢x (c is the
coefficient of viscous damping, and its value depends on the physical properties of the
fluid and the construction of the dashpot). If the block is displaced a distance x from its
equilibrium position, the equation of motion can be expressed as:

mi+cx +kx=0 (17.3)

Before presenting the solutions for this differential equation, we define the
critical damping coefficient c,. as:

c. = 2mw, (17.4)
k

where w,, is the natural circular frequency of the vibration.
Depending on the value of the coefficient of viscous damping, three different cases
of damping can be distinguished: (1) over-damped system (¢ > c,.), (2) critically
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damped system (c = c.), and (3) under-damped system (c < c.). The solutions of over-

damped and critically damped systems correspond to a nonvibratory motion. There-

fore, the system only oscillates and returns to its equilibrium position when ¢ < c,..
The solution of Eq. (17.3) for under-damped system is as follows:

x(1) = pe™ 5" sin (wpt + @) (17.6)
op = o)1 —& (17.7)

c
&= e, (17.8)

where p and ¢ are constants generally determined from the initial conditions of the
problem and wp and & are damped natural frequency and damping ratio, respec-
tively. Equation (17.6) is shown in Fig. 17.2, and the effect of damping ratio on
vibratory motion is illustrated in Fig. 17.3.

3(0) = pe ™ sin(@,! + @)

()= pe fog

Fig. 17.2 Vibrating motion of under-damped system

Fig. 17.3 Free vibration of systems with four levels of damping: (a) & = 5%, (b) & = 10%, (c)
E=15%, and (d) £ = 20%
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17.4 A New Metaheuristic Algorithm Based
on the Vibrating Particles System

The vibrating particles system is a metaheuristic method inspired by the free
vibration of single degree of freedom systems with viscous damping. The VPS
involves a number of candidate solutions which represent the particles system. The
particles are initialized randomly in an n-dimensional search space and gradually
approach to their equilibrium positions. The pseudo code of VPS is provided in
Fig. 17.4.

The steps of the VPS are as follows:

Step 1: Initialization
The VPS parameters are set and the initial positions of all particles are determined
randomly in an n-dimensional search space.

Step 2: Evaluation of Candidate Solutions
The objective function value is calculated for each particle.

Step 3: Updating the Particle Positions
For each particle, three equilibrium positions with different weights are defined that
the particle tends to approach: (1) the best position achieved so far across the entire
population (HB), (2) a good particle (GP), and (3) a bad particle (BP). In order to
select the GP and BP for each candidate solution, the current population is sorted
according to their objective function values in an increasing order, and then GP and
BP are chosen randomly from the first and second half, respectively.

Figure 17.3 shows the important effect of damping level in the vibration. In order
to model this phenomenon in the optimization algorithm, a descending function that
is a function of the number of iterations is proposed as follows:

procedure Vibrating Particles System (VPS)
Initialize algorithm parameters
Initial positions are created randomly
The values of objective function are evaluated and HB is stored
‘While maximum iterations is not fulfilled
for each particle
The GP and BP are chosen
if P<rand
w3=0 and w,=1-w;
end if
for each component
New location is obtained by Eq. (17.10)
end for
Violated components are regenerated by harmony search-based handling approach
end for
The values of objective function are evaluated and HB is updated
end while
end procedure

Fig. 17.4 Pseudo code of the vibrating particles system algorithm
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[ —a
D= ( e ) (17.9)
iter max

where iter is the current iteration number and iter,,,, is the total number of iterations
for optimization process. a is a constant, and Fig. 17.5 shows the effect of this
parameter on D.

According to the mentioned concepts, the positions are updated by:

xl’ = wy. [D.A.randl + HBj] + wy. [D.A.randZ + GP-’]

+ ws.[D.A.rand3 + BP'] (17.10)
A= (BB =) + [ws (6P = x])| + [ws.(BP =) (17.10)
wi+wy+wy =1 (17.12)

where x/ is the jth variable of particle i; w;, w,, and w; are three parameters to
measure the relative importance of HB, GP, and BP, respectively; and randl,
rand?2, and rand3 are random numbers uniformly distributed in the range of [0,
1]. The effects of the parameters A and D in Eq. (17.10) are similar to those of p and
e~ in Bq. (17.6), respectively. Also, the value of sin (wpt + @) is considered
unity in Eq. (17.10) (x(f) = pe=“' is shown in Fig. 17.2 by red lines).

A parameter like p within (0, 1) is defined, which specifies whether the effect of
BP must be considered in updating position or not. For each particle, p is compared
with rand (a random number uniformly distributed in the range of [0, 1]) and if
p <rand, then w; =0 and w, =1 —w;,.

Three essential concepts consisting of self-adaptation, cooperation, and
competition are considered in this algorithm. Particles move toward HB so the
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Fig. 17.5 The influence of @ on D function
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self-adaptation is provided. Any particle has the chance to have influence on the
new position of the other one, so the cooperation between the particles is
supplied. Because of the p parameter, the influence of GP (good particle) is
more than that of BP (bad particle), and therefore the competition is provided.

Step 4: Handling the Side Constraints

The particle moves in the search space to find a better result and it may violate the side
constraints. If any component of the system violates a boundary, it must be regenerated
by harmony search-based side constraint handling approach (Kaveh and Talatahari
[8]). In this technique, there is a possibility like HMCR (harmony memory considering
rate) that specifies whether the violating component should be regenerated considering
the corresponding component of the historically best position of a random particle or it
should be determined randomly in the search space. Moreover, if the component of a
historically best position is selected, there is a possibility like PAR (pitch adjusting rate)
that specifies whether this value should be changed with the neighboring value or not.

Step 5: Terminating Criterion Controlling

Steps 2 through 4 are repeated until a termination criterion is fulfilled. Any
terminating condition can be considered, and in this study the optimization process
is terminated after a fixed number of iterations.

17.5 Search Behavior of the Vibrating Particles System
Algorithm

In order to evaluate the effect of the algorithm parameters on the optimization results, a
spatial 120-bar dome-shaped truss (Sect. 17.6.1) is considered as a benchmark. The
effect of the population size, the maximum number of structural analyses (population
size X total number of iterations), @, p, w;, and w, are investigated in this section. In the
first step, these parameters are set to 20, 20000, 0.15, 70 %, 0.3, and 0.3, respectively,
and then their proper values are obtained one after another.

Tables 17.1 and 17.2 summarize the statistical results achieved for different values
of population size (10, 20, 30, and 40) and total number of iterations (750, 1000, 1250,
and 1500), respectively. As it can be seen from Table 17.1, when population size is

Table 17.1 Sensitivity analysis on population size

10 20 30 40
Best optimized weight (1b) 33,262.75 |33,250.27 |33,255.65 |33,471.79
Worst optimized weight (Ib) 33,413.99 |33,282.16 |33,432.60 |33,903.75
Average optimized weight (Ib) 33,322.28 | 33,258.58 |33,315.24 | 33,668.73
Standard deviation on average weight (Ib) 51.49 10.31 62.77 130.71
Number of structural analyses for the best 8920 19,780 13,060 9780
design
Average number of structural analysis 10,106 16,930 12,746 7958
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Table 17.2 Sensitivity analysis on maximum number of iterations

750 1000 1250 1500
Best optimized weight (Ib) 33,251.34 | 33,250.27 |33,250.83 |33,250.24
Worst optimized weight (Ib) 33,283.49 |33,282.16 |33,275.18 |33,265.92
Average optimized weight (Ib) 33,263.52 |33,258.59 |33,255.03 | 33,257.01
Standard deviation on average weight (Ib) 12.75 10.31 7.71 5.97

Number of structural analyses for the best 12,620 19,780 20,800 22,320
design

Average number of structural analysis 13,094 16,930 18,646 20,802
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Fig. 17.6 Sensitivity analysis on (a) population size and (b) maximum number of iterations

20, the VPS has better performance in terms of the best weight, worst weight, average
optimized weight, and standard deviation on average weight. Table 17.2 demonstrates
that considering 1500 iterations is the most efficient value for the total number of
iterations. The corresponding average convergence curves are shown in Fig. 17.6.
Since the maximum number of structural analyses is set to 20,000 in Fig. 17.6a, the
total number of iterations for 10, 20, 30, and 40 particles are 2000, 1000, 667, and
500, respectively, considered as the termination criterion.

Performance of the VPS with different values of a (0.05, 0.1, 0.15, and 0.2) and
p (60 %, 70 %, 80 %, and 90 %) are compared in Tables 17.3 and 17.4, respectively.
When a is considered as 0.1, the best weight is achieved; however, comparison of the
other variables shows that 0.05 is generally the most suitable value for a. It can be
concluded from Table 17.4 that 70 % is the most efficient value for p. Average conver-
gence histories are depicted in Fig. 17.7. As mentioned before, the influence of damping
level on vibration is similar to the effect of @ on particles convergence as can be seen in
Fig. 17.7a. To make the curves of Fig. 17.7b clearer, the magnified version of lower part is
also shown.

Results of sensitivity analysis on w; and w, are shown in Tables 17.5 and 17.6.
According to the statistical results reported in these tables, the most suitable
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Table 17.3 Sensitivity analysis on

0.05 0.1 0.15 0.2
Best optimized weight (Ib) 33,249.98 |33,249.76 |33,250.24 |33,249.98
Worst optimized weight (1b) 33,262.74 | 33,283.46 |33,265.92 |33,261.82
Average optimized weight (Ib) 33,253.56 |33,254.91 |33,257.01 |33,254.02
Standard deviation on average weight (Ib) 4.36 10.31 5.97 3.89
Number of structural analyses for the best 8280 17,500 22,320 24,180
design
Average number of structural analyses 9846 17,794 20,802 24,834
Table 17.4 Sensitivity analysis on p
60 % 70 % 80 % 90 %
Best optimized weight (Ib) 33,250.06 |33,249.98 |33,250.89 |33,250.08
Worst optimized weight (Ib) 33,260.61 |33,262.74 |33,257.86 |33,281.97
Average optimized weight (Ib) 33,254.03 | 33,253.56 |33,253.23 |33,256.93
Standard deviation on average weight (Ib) 4.27 4.36 2.54 9.75
Number of structural analyses for the best 12,900 8280 10,580 10,740
design
Average number of structural analysis 11,114 9846 11,910 10,104
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— 0.05 — 60%
=== 0.1 === 70%
015 - 80%
== 02 == 90%
36,000 36,000 B
= = i
= i = B0
= | 5 '
£ iE. E [
_; 35,000 -‘ _E 35,000 1 -:
T g s |
& &S
34,000 34,000
30 600 %W 1200 1,500
i T
33,000 - 33,000 -
0 300 600 900 1,200 1,500 0 300 600 900 1,200 1,500
Iteration Iteration

Fig. 17.7 Sensitivity analysis on (a) a and (b) p

performance of the VPS is obtained when the value of 0.3 is considered for w; and w,.
Figure 17.8 compares the average convergence curves. It can be seen from Fig. 17.8a
that by decreasing the value of w; (decreasing the effect of HB position in updating
formula), the exploration is increased and vice versa. In order to make the curves of
Fig. 17.8b more clear, the magnified version of lower part is also added.



520 17 Vibrating Particles System Algorithm

Table 17.5 Sensitivity analysis on w;

0.2 0.25 0.3 0.35
Best optimized weight (Ib) 33,386.52 |33,250.16 |33,249.98 |33,252.79
Worst optimized weight (Ib) 33,655.38 | 33,268.67 |33,262.74 | 33,676.11
Average optimized weight (Ib) 33,484.02 | 33,254.51 |33,253.56 |33,314.71
Standard deviation on average weight (1b) 83.68 5.38 4.36 130.57
Number of structural analyses for the best 28,820 28,540 8280 5160
design
Average number of structural analysis 26,456 28,342 9846 6520
Table 17.6 Sensitivity analysis on w,
0.2 0.25 0.3 0.35
Best optimized weight (1b) 33,250.63 | 33,249.67 |33,249.98 |33,250.62
Worst optimized weight (1b) 33,268.43 | 33,271.20 |33,262.74 | 33,321.25
Average optimized weight (Ib) 33,255.19 | 33,255.38 |33,253.56 |33,264.93
Standard deviation on average weight (Ib) 5.06 6.49 4.36 22.84
Number of structural analyses for the best 12,940 12,180 8280 12,880
design
Average number of structural analysis 11,982 12,196 9846 9954

In summary, the values of population size, the total number of iteration, a, p, w;,
and w, are set to 20, 1500, 0.05, 70 %, 0.3, and 0.3 for all examples, respectively.

17.6 Test Problems and Optimization Results

Four skeletal structures are optimized for minimum weight with the cross-sectional
areas of the members being the design variables to evaluate the performance of the
proposed method. The examples are classified into two groups: the first group consists
of two truss structures with the number of truss bars of 120 and 200, respectively, and
the second group includes two steel frames having 105 and 168 members, respectively.
For all the considered examples, 20 independent optimization runs are carried out as
metaheuristic algorithms have stochastic nature and their performance may be sensitive
to initial population. The algorithm is coded in MATLAB, and the structures are
analyzed using the direct stiffness method by our own codes.

17.6.1 A Spatial 120-Bar Dome-Shaped Truss

» The schematic and element grouping of the spatial 120-bar dome truss are shown in
Fig. 17.9. The structure is divided into seven groups of elements because of
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Fig. 17.8 Sensitivity analysis on (a) w; and (b) w,

symmetry (for the sake of clarity, not all the element groups are numbered in
Fig. 17.9). The modulus of elasticity is 30,450 ksi (210 GPa) and the material density
is 0.288 Ib/in® (7971.810 kg/m’). The yield stress of steel is taken as 58.0 ksi
(400 MPa). The dome is considered to be subjected to vertical loading at all
unsupported joints. These loads are taken as —13.49 kips (—60 kN) at node
1, —6.744 kips (—30 kN) at nodes 2 through 14, and —2.248 kips (—10 kN) at the
rest of the nodes. Element cross-sectional areas can vary between 0.775 in’ 6] sz)
and 20.0 in® (129.032 sz)_ Displacement limitations of +0.1969 in (&5 mm) are
imposed on all nodes in x-, y-, and z-coordinate directions. Constraints on member
stresses are imposed according to the provisions of the AISC [9] as follows:

The allowable tensile stresses for tension members are calculated as:
‘75+ = 0.6F, (17.13)

where F, is the yield strength.

The allowable stress limits for compression members are calculated depending
on two possible failure modes of the members known as elastic and inelastic
buckling. Therefore

2 5 34 A
1 - =S |Fy |/ |5+ o —<5| for 4 <C.
_ 2C; 3 8C. 8C
o, = g : (17.14)
W for ﬂi 2 CC

where E is the modulus of elasticity; /; is the slenderness ratio (4; = kl;/r;); C,
denotes the slenderness ratio dividing the elastic and inelastic buckling regions
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(41).

275.59 in

E (1250 cm)
S
® 625.59 in

"""" (1589 cm)

Fig. 17.9 Schematic of the spatial 120-bar dome-shaped truss

C. = /’7E/, ; k is the effective length factor (k is set equal to 1 for all truss

members); L; is the member length; and r; is the minimum radius of gyration.
This truss was previously optimized by CSS (charged system search algorithm)
(Kaveh and Talatahari [10]), IRO (improved ray optimization) (Kaveh et al. [11]),
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MSPSO (multi-stage particle swarm optimization) (Talatahari et al. [12]), CBO
(colliding bodies optimization) (Kaveh and Mahdavi [13]), TWO (tug of war
optimization) (Kaveh and Zolghadr [14]), and WEO (water evaporation optimiza-
tion) (Kaveh and Bakhshpoori [15]).

Comparison of the optimal designs obtained by this work with those of the
other researches is given in Table 17.7. It can be seen that the lightest design
(i.e., 33,249.98 1b) and the best average optimized weight (i.e., 33,253.56 Ib) are
found by the proposed method. The VPS converges to the optimum solution
after 8280 analyses. The CSS gives the best result as 33,251.9 1b in 7000
analyses. However, the VPS achieves this result after 6400 analyses. Fig-
ure 17.10 compares the convergence curves of the best and the average results
obtained by the proposed method.

17.6.2 A 200-Bar Planar Truss

The second structural optimization problem solved in this chapter is the optimal
design of the 200-bar planar truss schematized in Fig. 17.11. Due to the sym-
metry, the elements are divided into 29 groups. The modulus of elasticity and
the material density of members are 210 GPa and 7860 kg/m’, respectively.
Nonstructural masses of 100 kg are attached to the upper nodes. A lower bound
of 0.1 cm? is assumed for the cross-sectional areas. The first three natural
frequencies of the structure must satisfy the following limitations (f; >5 Hz,
f>>10Hz, f3 > 15 Hz).

Table 17.8 presents the results of the optimal designs utilizing CSS-BBBC
(a hybridization of the charged system search and the Big Bang—Big Crunch
algorithms with trap recognition capability) (Kaveh and Zolghadr [16]), CBO

56,000 ¢ 33,700 s n ;
. == Best optimized design
o] == Average optimized design
53,000 .
50,000 11,550 |
= 3,500
= 47,000 33450 -
EIJ
o 33,400 -
= 44,000 £
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11300 1 L . L L 1
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35,000
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Fig. 17.10 Convergence curves obtained for the 120-bar dome-shaped truss problem
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4x6.10m

10%x3.66 m

Fig. 17.11 Schematic of the 200-bar planar truss

(colliding bodies optimization) (Kaveh and Ilchi Ghazaan [17]), ECBO (enhanced
colliding bodies optimization) (Kaveh and Ilchi Ghazaan [17]), CBO-PSO
(a hybrid of CBO and PSO algorithms) (Kaveh and Mahdavi [18]), and the
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proposed method. The weight of the best result obtained by VPS is 2156.62 kg that
is the best among the compared methods. Moreover, the average optimized weight
for 20 independent optimization runs of the VPS is 2159.46 kg which is less than
those of all other methods. The first three natural frequencies of the structure for the
best design are 5.0000 Hz, 12.2086 Hz, and 15.0153 Hz. The proposed method
requires 16,420 structural analyses to find the optimum solution, while CBO,
ECBO, and CBO-PSO require 10,500, 14,700, and 9000 structural analyses,
respectively. It should be noted that the designs found by VPS at 9000th,
10,500th, and 14,700th analyses are 2158.35 kg, 2158.06 kg, and 2157.72 kg,
respectively. Comparison of the convergence rates between the best and the average
curves of VPS is illustrated in Fig. 17.12.

17.6.3 A 3-Bay 15-Story Frame Structure

Figure 17.13 represents the schematic of the 3-bay 15-story frame. The applied loads
and the numbering of member groups are also shown in this figure. The modulus of
elasticity is 29 Msi (200 GPa) and the yield stress is 36 ksi (248.2 MPa). The effective
length factors of the members are calculated as k, > 0 for a sway-permitted frame, and
the out-of-plane effective length factor is specified as k, = 1.0. Each column is consid-
ered as non-braced along its length, and the non-braced length for each beam member
is specified as one-fifth of the span length. Limitation on displacement and strength are
imposed according to the provisions of the AISC [19] as follows:

(a) Maximum lateral displacement

18,000 il ;
== Best optimized design

== Average optimized design
16,000

14,000
12,000

10,000

8,000

Penalized weight (kg)

6,000

4 T p 4 40
4,000 | 50 600 500 W0 1050 L2000 1350 1300

2,000 .
0 150 300 450 600 750 900 1,050 1,200 1,350 1,500

Iteration

Fig. 17.12 Convergence curves obtained for the 200-bar planar truss problem
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Fig. 17.13 Schematic of
the 3-bay 15-story frame
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A
ZL_R<o0 (17.15)
H

where Az is the maximum lateral displacement; H is the height of the frame
structure; and R is the maximum drift index which is equal to 1/300.
(b) The inter-story displacements

h—f—R,gO, i=1,2,...,ns (17.16)

where d; is the inter-story drift; A; is the story height of the ith floor; ns is the
total number of stories; and R; is the inter-story drift index (1/300).
(c) Strength constraints

P M, P
L ~1<0, for—2 <02
2Py @M, @Pr
. a1 ; (17.17)
" “1<0, for—2t >02
§0an 9(/’an qoan

where P, is the required axial strength (tension or compression); P, is the
nominal axial strength (tension or compression); ¢. is the resistance factor
(¢.=0.9 for tension, ¢.=0.85 for compression); M,, is the required flexural
strengths; M,, is the nominal flexural strengths; and ¢, denotes the flexural
resistance reduction factor (¢, = 0.90).

The nominal tensile strength for yielding in the gross section is calculated by:
P,=A,.F, (17.18)
The nominal compressive strength of a member is computed as:
P,=A,.F, (17.19)
where

F = (0.658 22)F,, for A <15

0.877 17.20
F. = 5— | Fy,  for . > 1.5 ( )
A
kI |F,
de =—1 /=2 (17.21)
eV E

where A, is the cross-sectional area of a member and & is the effective length factor
that is calculated by (Dumonteil [20]):
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1.6 4.0 7.5
i \/ GaGp +4.0(Gs + Gs) + (17.22)

Gs+Gp+175

where G, and G are stiffness ratios of columns and girders at the two end joints, A
and B, of the column section, respectively.

Also, in this example the sway of the top story is limited to 9.25 in (23.5 cm).

Table 17.9 presents the comparison of the results of the present algorithm with
the outcomes of other algorithms. The proposed method yields the least weight for
this example, which is 86,985 1b. The other design weights are 95,850 Ib by
HPSACO (a hybrid algorithm of harmony search, particle swarm and ant colony)
(Kaveh and Talatahari [21]), 97,689 1b by HBB-BC (a hybrid Big Bang—Big
Crunch optimization) (Kaveh and Talatahari [22]), 93,846 1b by ICA (imperialist
competitive algorithm) (Kaveh and Talatahari [23]), 92,723 1b by CSS (Kaveh and
Talatahari [24]), 93,795 1b by CBO (Kaveh and Ilchi Ghazaan [25]), 86,986 1b by
ECBO (Kaveh and Ilchi Ghazaan [25]), and 93,315 1b by ES-DE (eagle strategy
with differential evolution) (Talatahari et al. [26]). The best design of VPS has been
achieved in 19,600 analyses. It should be noted that the proposed method achieved
about 92,000 1b (the best weight among the other methods except ECBO) after
10,800 structural analyses. Figure 17.14 provides the convergence rates of the best
and average results found by the VPS. Element stress ratio and inter-story drift
evaluated at the best design optimized by VPS are shown in Fig. 17.15. The
maximum stress ratio is 99.88 % and the maximum inter-story drift is 45.41.

17.6.4 A 3-Bay 24-Story Frame Structure

The last structural optimization problem solved in this chapter is the weight
minimization of the 3-bay 24-story frame schematized in Fig. 17.16. Frame mem-
bers are collected in 20 groups (16 column groups and 4 beam groups). Each of the
four beam element groups is chosen from all 267 W-shapes, while the 16 column
element groups are limited to W14 sections. The material has a modulus of
elasticity equal to £=29.732 Msi (205 GPa) and a yield stress of f, =33.4 ksi
(230.3 MPa). The effective length factors of the members are calculated as k, >0
for a sway-permitted frame, and the out-of-plane effective length factor is specified
as k,=1.0. All columns and beams are considered as non-braced along their
lengths. Similar to the previous example, the frame is designed following the
LRFD-AISC specification and uses an inter-story drift displacement constraint
(AISC [19]).

This steel frame structure was previously optimized by ACO (ant colony opti-
mization) (Camp et al. [27]), HS (harmony search) (Degertekin [28]), ICA (Kaveh
and Talatahari [23]), CSS (Kaveh and Talatahari [24]), CBO (Kaveh and Ilchi
Ghazaan [25]), ECBO (Kaveh and Ilchi Ghazaan [25]), and ES-DE (Talatahari
et al. [26]). Table 17.10 presents a comparison between the results of the optimal
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Fig. 17.14 Convergence curves obtained for the 3-bay 15-story frame structure
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Fig. 17.15 Constraint margins for the best design obtained by VPS for the 3-bay 15-story frame
problem: (a) element stress ratio and (b) inter-story drift

designs reported in the literature and the present work [1]. The lightest design (i.e.,
201,618 1b) is found by ECBO algorithm and after that the best design belongs to
VPS (i.e., 202,998 1b). The best design has been achieved at 16,220 analyses for
VPS, and it obtained 209,532 1b after 8800 analyses, which is the best result
compared to the weight achieved by the other methods. Figure 17.17 provides the
convergence rates of the best and average results found by the proposed method.
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Fig. 17.16 Schematic of
the 3-bay 24-story frame
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Fig. 17.17 Convergence curves obtained for the 3-bay 24-story frame problem

17.7 Concluding Remarks

This chapter presents a new population-based metaheuristic algorithm called vibrating
particles system (VPS). This method is inspired by the damped free vibration of a single
degree of freedom system. In the optimization process, particles gradually approach to
their equilibrium positions. To maintain the balance between local search and global
search, these equilibrium positions are obtained from the current population and the
historically best position. Two truss and two frame benchmark structures are studied in
order to show the performance of the VPS in terms of diversification, intensification,
local optima avoidance, and convergence speed. The proposed algorithm finds superior
optimal designs for three of the four problems investigated, illustrating the capability of
the present method in solving constrained problems. Moreover, the average optimized
results and standard deviation average results obtained by VPS are competitive with the
other optimization methods. The convergence speed comparisons also reveal the fast-
converging feature of the presented algorithm. For future research, it would be inter-
esting to apply VPS to other optimization problems in different fields of science and
engineering.
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