
Chapter 17

Vibrating Particles System Algorithm

17.1 Introduction

In the recent years, many metaheuristics with different philosophies and character-

istics are introduced and applied to a wide range of fields. The aim of these

optimization methods is to efficiently explore the search space in order to find

global or near-global solutions. Since they are not problem specific and do not

require the derivatives of the objective function, they have received increasing

attention from both academia and industry.

A novel population-based metaheuristic algorithm based on the damped free

vibration of single degree of freedom system is introduced in Kaveh and Ilchi

Ghazaan [1]. This algorithm is called a vibrating particles system (VPS) algorithm

and considers each candidate solution as a particle that approaches its equilibrium

position. By utilizing a combination of randomness and exploitation of obtained

results, the quality of the particles improves iteratively as the optimization process

proceeds. Here, viability of the proposed method is examined using the optimal

design of two truss and two frame structures. The selected examples are among the

most popular benchmarks previously studied by the researchers (Saka [2], Erbatur

et al. [3], Lee and Geem [4], Hasançebi et al. [5], and Kazemzadeh Azad and

Hasançebi [6]). The numerical results indicate the efficiency of the proposed

algorithm compared to some other methods available in the literature.

The remaining sections of this chapter are organized as follows: The mathemat-

ical formulations of the structural optimization are presented in Sect. 17.2. The

physical background of the VPS algorithm is presented in Sect. 17.3, and Sect. 17.4

introduces this new optimization method in detail. Section 17.5 investigates the

parameter settings and the search behavior of the proposed method, and four

structural design examples are studied in Sect. 17.6. Finally, concluding remarks

are provided in Sect. 17.7.
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17.2 Formulation of the Structural Optimization Problems

In this study, the objective is to minimize the weight of the structure while

satisfying some constraints on stresses and/or buckling and/or deflection and/or

natural frequencies. The design variables are cross-sectional areas of structural

elements. The mathematical formulation of these problems is expressed as follows:

Find Xf g ¼ x1; x2; ::; xng
� �

to minimize W Xf gð Þ ¼
Xnm
i¼1

ρiAiLi

subjected to :
gj Xf gð Þ � 0, j ¼ 1, 2, . . . , nc
xi min � xi � ximax

� ð17:1Þ

where {X} is a vector containing the design variables; ng is the number of design

variables;W({X}) is the weight of the structure; nm is the number of elements of the

structure; ρi, Ai, and Li denote the material density, cross-sectional area, and the

length of the ith member, respectively; ximin and ximax are the lower and upper

bounds of the design variable xi, respectively; gj({X}) denotes design constraints;

and nc is the number of constraints.

To handle the constraints, the well-known penalty approach is employed. Thus,

the objective function is redefined as follows:

f Xf gð Þ ¼ 1þ ε1:υð Þε2 �W Xf gð Þ, υ ¼
Xnc
j¼1

max 0, gj Xf gð Þ
h i

ð17:2Þ

where υ denotes the sum of the violations of the design constraints. The constant ε1
is set equal to 1 while ε2 starts from 1.5 and linearly increases to 3. Such a scheme

penalizes the unfeasible solutions more severely as the optimization process pro-

ceeds. As a result, in the early stages, the agents are free to explore the search space,

but at the end they tend to choose solutions with no violation.

17.3 The Damped Free Vibration

A vibration is the oscillating motion of a particle or a body about a position of

equilibrium. In general, there are two types of vibrations: (1) free vibration and

(2) forced vibration. When the motion is maintained by the restoring forces only,

the vibration is said to be a free vibration, and when a time-dependent force is

applied to the system, the resulting motion is described as a forced vibration. In the

study of a vibrating system, the effects of friction can be neglected resulting in an

undamped vibration. However, all vibrations are actually damped to some degree

by friction forces. These forces can be caused by dry friction, or Coulomb friction,

between rigid bodies, by fluid friction when a rigid body moves in a fluid, or by
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internal friction between the molecules of a seemingly elastic body. In this section,

the free vibration of single degree of freedom systems with viscous damping is

studied. The viscous damping is caused by fluid friction at low and moderate

speeds. Viscous damping is characterized by the fact that the friction force is

directly proportional and opposite to the velocity of the moving body (Beer et al.

[7]).

The vibrating motion of a body or system of massm having viscous damping can be

characterized by a block and a spring of constant k that is shown in Fig. 17.1. The effect
of damping is provided by the dashpot connected to the block, and the magnitude of the

friction force exerted on the plunger by the surrounding fluid is equal to c _x: (c is the
coefficient of viscous damping, and its value depends on the physical properties of the

fluid and the construction of the dashpot). If the block is displaced a distance x from its

equilibrium position, the equation of motion can be expressed as:

m€xþ c _x þ kx ¼ 0 ð17:3Þ

Before presenting the solutions for this differential equation, we define the

critical damping coefficient cc as:

cc ¼ 2mωn ð17:4Þ

ωn ¼
ffiffiffiffi
k

m

r
ð17:5Þ

where ωn is the natural circular frequency of the vibration.

Depending on the value of the coefficient of viscous damping, three different cases

of damping can be distinguished: (1) over-damped system (c> cc), (2) critically

Fig. 17.1 Free vibration of

a system with damping
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damped system (c¼ cc), and (3) under-damped system (c< cc). The solutions of over-
damped and critically damped systems correspond to a nonvibratory motion. There-

fore, the system only oscillates and returns to its equilibrium position when c< cc.
The solution of Eq. (17.3) for under-damped system is as follows:

x tð Þ ¼ ρe�ξωnt sin ωDtþ φð Þ ð17:6Þ

ωD ¼ ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

q
ð17:7Þ

ξ ¼ c

2mωn
ð17:8Þ

where ρ and φ are constants generally determined from the initial conditions of the

problem and ωD and ξ are damped natural frequency and damping ratio, respec-

tively. Equation (17.6) is shown in Fig. 17.2, and the effect of damping ratio on

vibratory motion is illustrated in Fig. 17.3.

Fig. 17.2 Vibrating motion of under-damped system

Fig. 17.3 Free vibration of systems with four levels of damping: (a) ξ ¼ 5%, (b) ξ ¼ 10%, (c)

ξ ¼ 15%, and (d) ξ ¼ 20%
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17.4 A New Metaheuristic Algorithm Based

on the Vibrating Particles System

The vibrating particles system is a metaheuristic method inspired by the free

vibration of single degree of freedom systems with viscous damping. The VPS

involves a number of candidate solutions which represent the particles system. The

particles are initialized randomly in an n-dimensional search space and gradually

approach to their equilibrium positions. The pseudo code of VPS is provided in

Fig. 17.4.

The steps of the VPS are as follows:

Step 1: Initialization

The VPS parameters are set and the initial positions of all particles are determined

randomly in an n-dimensional search space.

Step 2: Evaluation of Candidate Solutions

The objective function value is calculated for each particle.

Step 3: Updating the Particle Positions

For each particle, three equilibrium positions with different weights are defined that

the particle tends to approach: (1) the best position achieved so far across the entire

population (HB), (2) a good particle (GP), and (3) a bad particle (BP). In order to

select the GP and BP for each candidate solution, the current population is sorted

according to their objective function values in an increasing order, and then GP and

BP are chosen randomly from the first and second half, respectively.

Figure 17.3 shows the important effect of damping level in the vibration. In order

to model this phenomenon in the optimization algorithm, a descending function that

is a function of the number of iterations is proposed as follows:

procedure Vibrating Particles System (VPS)

Initialize algorithm parameters

Initial positions are created randomly

The values of objective function are evaluated and HB is stored

While maximum iterations is not fulfilled

for each particle

The GP and BP are chosen

if P<rand

w3=0 and w2=1-w1

end if
for each component

New location is obtained by Eq. (17.10)

end for
Violated components are regenerated by harmony search-based handling approach

end for
The values of objective function are evaluated and HB is updated

end while
end procedure

Fig. 17.4 Pseudo code of the vibrating particles system algorithm
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D ¼ iter

itermax

� ��α

ð17:9Þ

where iter is the current iteration number and itermax is the total number of iterations

for optimization process. α is a constant, and Fig. 17.5 shows the effect of this

parameter on D.
According to the mentioned concepts, the positions are updated by:

x ji ¼ w1: D:A:rand1þ HBj
� �þ w2: D:A:rand2þ GPj

� �
þ w3: D:A:rand3þ BPj

� � ð17:10Þ
A ¼ w1: HBj � x ji

� 	h i
þ w2: GPj � x ji

� 	h i
þ w3: BPj � x ji

� 	h i
ð17:11Þ

w1 þ w2 þ w3 ¼ 1 ð17:12Þ

where xi
j is the jth variable of particle i; w1, w2, and w3 are three parameters to

measure the relative importance of HB, GP, and BP, respectively; and rand1,
rand2, and rand3 are random numbers uniformly distributed in the range of [0,

1]. The effects of the parameters A and D in Eq. (17.10) are similar to those of ρ and
e�ξωnt in Eq. (17.6), respectively. Also, the value of sin ωDtþ φð Þ is considered

unity in Eq. (17.10) (x tð Þ ¼ ρe�ξωnt is shown in Fig. 17.2 by red lines).

A parameter like p within (0, 1) is defined, which specifies whether the effect of

BP must be considered in updating position or not. For each particle, p is compared

with rand (a random number uniformly distributed in the range of [0, 1]) and if

p< rand, then w3¼ 0 and w2¼ 1�w1.

Three essential concepts consisting of self-adaptation, cooperation, and

competition are considered in this algorithm. Particles move toward HB so the

Fig. 17.5 The influence of α on D function
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self-adaptation is provided. Any particle has the chance to have influence on the

new position of the other one, so the cooperation between the particles is

supplied. Because of the p parameter, the influence of GP (good particle) is

more than that of BP (bad particle), and therefore the competition is provided.

Step 4: Handling the Side Constraints

The particle moves in the search space to find a better result and it may violate the side

constraints. If any component of the system violates a boundary, it must be regenerated

by harmony search-based side constraint handling approach (Kaveh and Talatahari

[8]). In this technique, there is a possibility like HMCR (harmony memory considering

rate) that specifies whether the violating component should be regenerated considering

the corresponding component of the historically best position of a random particle or it

should be determined randomly in the search space. Moreover, if the component of a

historically best position is selected, there is a possibility like PAR (pitch adjusting rate)

that specifies whether this value should be changed with the neighboring value or not.

Step 5: Terminating Criterion Controlling

Steps 2 through 4 are repeated until a termination criterion is fulfilled. Any

terminating condition can be considered, and in this study the optimization process

is terminated after a fixed number of iterations.

17.5 Search Behavior of the Vibrating Particles System

Algorithm

In order to evaluate the effect of the algorithm parameters on the optimization results, a

spatial 120-bar dome-shaped truss (Sect. 17.6.1) is considered as a benchmark. The

effect of the population size, the maximum number of structural analyses (population

size� total number of iterations), α, p,w1, and w2 are investigated in this section. In the

first step, these parameters are set to 20, 20000, 0.15, 70%, 0.3, and 0.3, respectively,

and then their proper values are obtained one after another.

Tables 17.1 and 17.2 summarize the statistical results achieved for different values

of population size (10, 20, 30, and 40) and total number of iterations (750, 1000, 1250,

and 1500), respectively. As it can be seen from Table 17.1, when population size is

Table 17.1 Sensitivity analysis on population size

10 20 30 40

Best optimized weight (lb) 33,262.75 33,250.27 33,255.65 33,471.79

Worst optimized weight (lb) 33,413.99 33,282.16 33,432.60 33,903.75

Average optimized weight (lb) 33,322.28 33,258.58 33,315.24 33,668.73

Standard deviation on average weight (lb) 51.49 10.31 62.77 130.71

Number of structural analyses for the best

design

8920 19,780 13,060 9780

Average number of structural analysis 10,106 16,930 12,746 7958
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20, the VPS has better performance in terms of the best weight, worst weight, average

optimized weight, and standard deviation on average weight. Table 17.2 demonstrates

that considering 1500 iterations is the most efficient value for the total number of

iterations. The corresponding average convergence curves are shown in Fig. 17.6.

Since the maximum number of structural analyses is set to 20,000 in Fig. 17.6a, the

total number of iterations for 10, 20, 30, and 40 particles are 2000, 1000, 667, and

500, respectively, considered as the termination criterion.

Performance of the VPS with different values of α (0.05, 0.1, 0.15, and 0.2) and

p (60%, 70%, 80%, and 90%) are compared in Tables 17.3 and 17.4, respectively.

When α is considered as 0.1, the best weight is achieved; however, comparison of the

other variables shows that 0.05 is generally the most suitable value for α. It can be

concluded from Table 17.4 that 70% is the most efficient value for p. Average conver-
gence histories are depicted in Fig. 17.7. As mentioned before, the influence of damping

level on vibration is similar to the effect of α on particles convergence as can be seen in

Fig. 17.7a. Tomake the curves of Fig. 17.7b clearer, themagnified version of lower part is

also shown.

Results of sensitivity analysis on w1 and w2 are shown in Tables 17.5 and 17.6.

According to the statistical results reported in these tables, the most suitable

Table 17.2 Sensitivity analysis on maximum number of iterations

750 1000 1250 1500

Best optimized weight (lb) 33,251.34 33,250.27 33,250.83 33,250.24

Worst optimized weight (lb) 33,283.49 33,282.16 33,275.18 33,265.92

Average optimized weight (lb) 33,263.52 33,258.59 33,255.03 33,257.01

Standard deviation on average weight (lb) 12.75 10.31 7.71 5.97

Number of structural analyses for the best

design

12,620 19,780 20,800 22,320

Average number of structural analysis 13,094 16,930 18,646 20,802

Fig. 17.6 Sensitivity analysis on (a) population size and (b) maximum number of iterations
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performance of the VPS is obtained when the value of 0.3 is considered for w1 and w2.

Figure 17.8 compares the average convergence curves. It can be seen from Fig. 17.8a

that by decreasing the value of w1 (decreasing the effect of HB position in updating

formula), the exploration is increased and vice versa. In order to make the curves of

Fig. 17.8b more clear, the magnified version of lower part is also added.

Table 17.3 Sensitivity analysis on α

0.05 0.1 0.15 0.2

Best optimized weight (lb) 33,249.98 33,249.76 33,250.24 33,249.98

Worst optimized weight (lb) 33,262.74 33,283.46 33,265.92 33,261.82

Average optimized weight (lb) 33,253.56 33,254.91 33,257.01 33,254.02

Standard deviation on average weight (lb) 4.36 10.31 5.97 3.89

Number of structural analyses for the best

design

8280 17,500 22,320 24,180

Average number of structural analyses 9846 17,794 20,802 24,834

Table 17.4 Sensitivity analysis on p

60% 70% 80% 90%

Best optimized weight (lb) 33,250.06 33,249.98 33,250.89 33,250.08

Worst optimized weight (lb) 33,260.61 33,262.74 33,257.86 33,281.97

Average optimized weight (lb) 33,254.03 33,253.56 33,253.23 33,256.93

Standard deviation on average weight (lb) 4.27 4.36 2.54 9.75

Number of structural analyses for the best

design

12,900 8280 10,580 10,740

Average number of structural analysis 11,114 9846 11,910 10,104

Fig. 17.7 Sensitivity analysis on (a) α and (b) p
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In summary, the values of population size, the total number of iteration, α, p, w1,

and w2 are set to 20, 1500, 0.05, 70%, 0.3, and 0.3 for all examples, respectively.

17.6 Test Problems and Optimization Results

Four skeletal structures are optimized for minimum weight with the cross-sectional

areas of the members being the design variables to evaluate the performance of the

proposed method. The examples are classified into two groups: the first group consists

of two truss structures with the number of truss bars of 120 and 200, respectively, and

the second group includes two steel frames having 105 and 168 members, respectively.

For all the considered examples, 20 independent optimization runs are carried out as

metaheuristic algorithms have stochastic nature and their performance may be sensitive

to initial population. The algorithm is coded in MATLAB, and the structures are

analyzed using the direct stiffness method by our own codes.

17.6.1 A Spatial 120-Bar Dome-Shaped Truss

• The schematic and element grouping of the spatial 120-bar dome truss are shown in

Fig. 17.9. The structure is divided into seven groups of elements because of

Table 17.5 Sensitivity analysis on w1

0.2 0.25 0.3 0.35

Best optimized weight (lb) 33,386.52 33,250.16 33,249.98 33,252.79

Worst optimized weight (lb) 33,655.38 33,268.67 33,262.74 33,676.11

Average optimized weight (lb) 33,484.02 33,254.51 33,253.56 33,314.71

Standard deviation on average weight (lb) 83.68 5.38 4.36 130.57

Number of structural analyses for the best

design

28,820 28,540 8280 5160

Average number of structural analysis 26,456 28,342 9846 6520

Table 17.6 Sensitivity analysis on w2

0.2 0.25 0.3 0.35

Best optimized weight (lb) 33,250.63 33,249.67 33,249.98 33,250.62

Worst optimized weight (lb) 33,268.43 33,271.20 33,262.74 33,321.25

Average optimized weight (lb) 33,255.19 33,255.38 33,253.56 33,264.93

Standard deviation on average weight (lb) 5.06 6.49 4.36 22.84

Number of structural analyses for the best

design

12,940 12,180 8280 12,880

Average number of structural analysis 11,982 12,196 9846 9954
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symmetry (for the sake of clarity, not all the element groups are numbered in

Fig. 17.9). The modulus of elasticity is 30,450 ksi (210 GPa) and the material density

is 0.288 lb/in3 (7971.810 kg/m3). The yield stress of steel is taken as 58.0 ksi

(400 MPa). The dome is considered to be subjected to vertical loading at all

unsupported joints. These loads are taken as �13.49 kips (�60 kN) at node

1, �6.744 kips (�30 kN) at nodes 2 through 14, and �2.248 kips (�10 kN) at the

rest of the nodes. Element cross-sectional areas can vary between 0.775 in2 (5 cm2)

and 20.0 in2 (129.032 cm2). Displacement limitations of �0.1969 in (�5 mm) are

imposed on all nodes in x-, y-, and z-coordinate directions. Constraints on member

stresses are imposed according to the provisions of the AISC [9] as follows:

The allowable tensile stresses for tension members are calculated as:

σþi ¼ 0:6Fy ð17:13Þ

where Fy is the yield strength.

The allowable stress limits for compression members are calculated depending

on two possible failure modes of the members known as elastic and inelastic

buckling. Therefore

σ�i ¼
1� λ2i

2C2
c

 !
Fy

" #
=

5

3
þ 3λi
8Cc

� λ3i
8C3

c

" #
for λi < Cc

12π2E

23λ2i
for λi � Cc

8>>><
>>>:

ð17:14Þ

where E is the modulus of elasticity; λi is the slenderness ratio λi ¼ kli=rið Þ; Cc

denotes the slenderness ratio dividing the elastic and inelastic buckling regions

Fig. 17.8 Sensitivity analysis on (a) w1 and (b) w2
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Cc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2E=

Fy

q
; k is the effective length factor (k is set equal to 1 for all truss

members); Li is the member length; and ri is the minimum radius of gyration.

This truss was previously optimized by CSS (charged system search algorithm)

(Kaveh and Talatahari [10]), IRO (improved ray optimization) (Kaveh et al. [11]),

Fig. 17.9 Schematic of the spatial 120-bar dome-shaped truss
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MSPSO (multi-stage particle swarm optimization) (Talatahari et al. [12]), CBO

(colliding bodies optimization) (Kaveh and Mahdavi [13]), TWO (tug of war

optimization) (Kaveh and Zolghadr [14]), and WEO (water evaporation optimiza-

tion) (Kaveh and Bakhshpoori [15]).

Comparison of the optimal designs obtained by this work with those of the

other researches is given in Table 17.7. It can be seen that the lightest design

(i.e., 33,249.98 lb) and the best average optimized weight (i.e., 33,253.56 lb) are

found by the proposed method. The VPS converges to the optimum solution

after 8280 analyses. The CSS gives the best result as 33,251.9 lb in 7000

analyses. However, the VPS achieves this result after 6400 analyses. Fig-

ure 17.10 compares the convergence curves of the best and the average results

obtained by the proposed method.

17.6.2 A 200-Bar Planar Truss

The second structural optimization problem solved in this chapter is the optimal

design of the 200-bar planar truss schematized in Fig. 17.11. Due to the sym-

metry, the elements are divided into 29 groups. The modulus of elasticity and

the material density of members are 210 GPa and 7860 kg/m3, respectively.

Nonstructural masses of 100 kg are attached to the upper nodes. A lower bound

of 0.1 cm2 is assumed for the cross-sectional areas. The first three natural

frequencies of the structure must satisfy the following limitations ( f1� 5 Hz,

f2� 10 Hz, f3� 15 Hz).

Table 17.8 presents the results of the optimal designs utilizing CSS–BBBC

(a hybridization of the charged system search and the Big Bang–Big Crunch

algorithms with trap recognition capability) (Kaveh and Zolghadr [16]), CBO

Fig. 17.10 Convergence curves obtained for the 120-bar dome-shaped truss problem
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(colliding bodies optimization) (Kaveh and Ilchi Ghazaan [17]), ECBO (enhanced

colliding bodies optimization) (Kaveh and Ilchi Ghazaan [17]), CBO–PSO

(a hybrid of CBO and PSO algorithms) (Kaveh and Mahdavi [18]), and the

Fig. 17.11 Schematic of the 200-bar planar truss
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proposed method. The weight of the best result obtained by VPS is 2156.62 kg that

is the best among the compared methods. Moreover, the average optimized weight

for 20 independent optimization runs of the VPS is 2159.46 kg which is less than

those of all other methods. The first three natural frequencies of the structure for the

best design are 5.0000 Hz, 12.2086 Hz, and 15.0153 Hz. The proposed method

requires 16,420 structural analyses to find the optimum solution, while CBO,

ECBO, and CBO–PSO require 10,500, 14,700, and 9000 structural analyses,

respectively. It should be noted that the designs found by VPS at 9000th,

10,500th, and 14,700th analyses are 2158.35 kg, 2158.06 kg, and 2157.72 kg,

respectively. Comparison of the convergence rates between the best and the average

curves of VPS is illustrated in Fig. 17.12.

17.6.3 A 3-Bay 15-Story Frame Structure

Figure 17.13 represents the schematic of the 3-bay 15-story frame. The applied loads

and the numbering of member groups are also shown in this figure. The modulus of

elasticity is 29 Msi (200 GPa) and the yield stress is 36 ksi (248.2 MPa). The effective

length factors of the members are calculated as kx� 0 for a sway-permitted frame, and

the out-of-plane effective length factor is specified as ky¼ 1.0. Each column is consid-

ered as non-braced along its length, and the non-braced length for each beam member

is specified as one-fifth of the span length. Limitation on displacement and strength are

imposed according to the provisions of the AISC [19] as follows:

(a) Maximum lateral displacement

Fig. 17.12 Convergence curves obtained for the 200-bar planar truss problem
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Fig. 17.13 Schematic of

the 3-bay 15-story frame
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ΔT

H
� R � 0 ð17:15Þ

where ΔT is the maximum lateral displacement; H is the height of the frame

structure; and R is the maximum drift index which is equal to 1/300.

(b) The inter-story displacements

di
hi
� RI � 0, i ¼ 1, 2, . . . , ns ð17:16Þ

where di is the inter-story drift; hi is the story height of the ith floor; ns is the
total number of stories; and RI is the inter-story drift index (1/300).

(c) Strength constraints

Pu

2φcPn
þ Mu

φbMn
� 1 � 0, f or

Pu

φcPn
< 0:2

Pu

φcPn
þ 8Mu

9φbMn
� 1 � 0, f or

Pu

φcPn
� 0:2

8>>><
>>>:

ð17:17Þ

where Pu is the required axial strength (tension or compression); Pn is the

nominal axial strength (tension or compression); φc is the resistance factor

(φc¼ 0.9 for tension, φc¼ 0.85 for compression); Mu is the required flexural

strengths; Mn is the nominal flexural strengths; and φb denotes the flexural

resistance reduction factor (φb¼ 0.90).

The nominal tensile strength for yielding in the gross section is calculated by:

Pn ¼ Ag :Fy ð17:18Þ

The nominal compressive strength of a member is computed as:

Pn ¼ Ag :Fcr ð17:19Þ

where

Fcr ¼ 0:658 λ2c

 �

Fy, f or λc � 1:5

Fcr ¼ 0:877

λ2c

 !
Fy, f or λc > 1:5

8><
>: ð17:20Þ

λc ¼ kl

rπ

ffiffiffiffiffi
Fy

E

r
ð17:21Þ

where Ag is the cross-sectional area of a member and k is the effective length factor
that is calculated by (Dumonteil [20]):
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k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6GAGB þ 4:0 GA þ GBð Þ þ 7:5

GA þ GB þ 7:5

s
ð17:22Þ

where GA and GB are stiffness ratios of columns and girders at the two end joints, A

and B, of the column section, respectively.

Also, in this example the sway of the top story is limited to 9.25 in (23.5 cm).

Table 17.9 presents the comparison of the results of the present algorithm with

the outcomes of other algorithms. The proposed method yields the least weight for

this example, which is 86,985 lb. The other design weights are 95,850 lb by

HPSACO (a hybrid algorithm of harmony search, particle swarm and ant colony)

(Kaveh and Talatahari [21]), 97,689 lb by HBB–BC (a hybrid Big Bang–Big

Crunch optimization) (Kaveh and Talatahari [22]), 93,846 lb by ICA (imperialist

competitive algorithm) (Kaveh and Talatahari [23]), 92,723 lb by CSS (Kaveh and

Talatahari [24]), 93,795 lb by CBO (Kaveh and Ilchi Ghazaan [25]), 86,986 lb by

ECBO (Kaveh and Ilchi Ghazaan [25]), and 93,315 lb by ES–DE (eagle strategy

with differential evolution) (Talatahari et al. [26]). The best design of VPS has been

achieved in 19,600 analyses. It should be noted that the proposed method achieved

about 92,000 lb (the best weight among the other methods except ECBO) after

10,800 structural analyses. Figure 17.14 provides the convergence rates of the best

and average results found by the VPS. Element stress ratio and inter-story drift

evaluated at the best design optimized by VPS are shown in Fig. 17.15. The

maximum stress ratio is 99.88% and the maximum inter-story drift is 45.41.

17.6.4 A 3-Bay 24-Story Frame Structure

The last structural optimization problem solved in this chapter is the weight

minimization of the 3-bay 24-story frame schematized in Fig. 17.16. Frame mem-

bers are collected in 20 groups (16 column groups and 4 beam groups). Each of the

four beam element groups is chosen from all 267 W-shapes, while the 16 column

element groups are limited to W14 sections. The material has a modulus of

elasticity equal to E¼ 29.732 Msi (205 GPa) and a yield stress of fy¼ 33.4 ksi

(230.3 MPa). The effective length factors of the members are calculated as kx� 0

for a sway-permitted frame, and the out-of-plane effective length factor is specified

as ky¼ 1.0. All columns and beams are considered as non-braced along their

lengths. Similar to the previous example, the frame is designed following the

LRFD–AISC specification and uses an inter-story drift displacement constraint

(AISC [19]).

This steel frame structure was previously optimized by ACO (ant colony opti-

mization) (Camp et al. [27]), HS (harmony search) (Degertekin [28]), ICA (Kaveh

and Talatahari [23]), CSS (Kaveh and Talatahari [24]), CBO (Kaveh and Ilchi

Ghazaan [25]), ECBO (Kaveh and Ilchi Ghazaan [25]), and ES–DE (Talatahari

et al. [26]). Table 17.10 presents a comparison between the results of the optimal
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designs reported in the literature and the present work [1]. The lightest design (i.e.,

201,618 lb) is found by ECBO algorithm and after that the best design belongs to

VPS (i.e., 202,998 lb). The best design has been achieved at 16,220 analyses for

VPS, and it obtained 209,532 lb after 8800 analyses, which is the best result

compared to the weight achieved by the other methods. Figure 17.17 provides the

convergence rates of the best and average results found by the proposed method.

Fig. 17.14 Convergence curves obtained for the 3-bay 15-story frame structure

Fig. 17.15 Constraint margins for the best design obtained by VPS for the 3-bay 15-story frame

problem: (a) element stress ratio and (b) inter-story drift
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Fig. 17.16 Schematic of

the 3-bay 24-story frame
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17.7 Concluding Remarks

This chapter presents a new population-based metaheuristic algorithm called vibrating

particles system (VPS). This method is inspired by the damped free vibration of a single

degree of freedom system. In the optimization process, particles gradually approach to

their equilibrium positions. To maintain the balance between local search and global

search, these equilibrium positions are obtained from the current population and the

historically best position. Two truss and two frame benchmark structures are studied in

order to show the performance of the VPS in terms of diversification, intensification,

local optima avoidance, and convergence speed. The proposed algorithm finds superior

optimal designs for three of the four problems investigated, illustrating the capability of

the present method in solving constrained problems. Moreover, the average optimized

results and standard deviation average results obtained by VPS are competitive with the

other optimization methods. The convergence speed comparisons also reveal the fast-

converging feature of the presented algorithm. For future research, it would be inter-

esting to apply VPS to other optimization problems in different fields of science and

engineering.
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5. Hasançebi O, Çarbas S, Dogan E, Erdal F, Saka MP (2009) Performance evaluation of meta-

heuristic search techniques in the optimum design of real size pin jointed structures. Comput

Struct 87(5–6):284–302

6. Kazemzadeh Azad S, Hasançebi O (2015) Computationally efficient discrete sizing of steel

frames via guided stochastic search heuristic. Comput Struct 156:12–28

7. Beer FP, Johnston ER Jr, Mazurek DF, Cornwell P, Self BP (2013) Vector mechanics for

engineers. McGraw-Hill, New York, NY

8. Kaveh A, Talatahari S (2009) Particle swarm optimizer, ant colony strategy and harmony

search scheme hybridized for optimization of truss structures. Comput Struct 87(5):267–283

9. American Institute of Steel Construction (AISC) (1989) Manual of steel construction: allow-

able stress design. American Institute of Steel Construction, Chicago, IL

10. Kaveh A, Talatahari S (2010) Optimal design of skeletal structures via the charged system

search algorithm. Struct Multidiscip Optim 41:893–911

11. Kaveh A, Ilchi Ghazaan M, Bakhshpoori T (2013) An improved ray optimization algorithm for

design of truss structures. Period Polytech-Civ Eng 57(2):97–112

12. Talatahari S, Kheirollahi M, Farahmandpour C, Gandomi AH (2013) A multi-stage particle

swarm for optimum design of truss structures. Neural Comput Appl 23:1297–1309

13. Kaveh A, Mahdavi VR (2014) Colliding bodies optimization: a novel meta-heuristic method.

Comput Struct 139:18–27

14. Kaveh A, Zolghadr A (2016) A novel meta-heuristic algorithm: tug of war optimization. Int J

Optim Civil Eng 6(4):469–492

15. Kaveh A, Bakhshpoori T (2016) Water evaporation optimization: a novel physically inspired

optimization algorithm. Comput Struct 167:69–85

16. Kaveh A, Zolghadr A (2012) Truss optimization with natural frequency constraints using a

hybridized CSS–BBBC algorithm with trap recognition capability. Comput Struct

102–103:14–27

17. Kaveh A, Ilchi Ghazaan M (2014) Enhanced colliding bodies algorithm for truss optimization

with frequency constraints. J Comput Civil Eng 29(6). 10.1061/(ASCE) CP.1943-5487.

0000445, 04014104

18. Kaveh A, Mahdavi VR (2015) A hybrid CBO–PSO algorithm for optimal design of truss

structures with dynamic constraints. Appl Soft Comput 34:260–273

19. American Institute of Steel Construction (AISC) (2001) Manual of steel construction: load and

resistance factor design. American Institute of Steel Construction, Chicago, IL

20. Dumonteil P (1992) Simple equations for effective length factors. Eng J AISC 29(3):111–115

21. Kaveh A, Talatahari S (2009) Hybrid algorithm of harmony search, particle swarm and ant

colony for structural design optimization. Stud Comput Int 239:159–198

22. Kaveh A, Talatahari S (2010) A discrete Big Bang–Big Crunch algorithm for optimal design of

skeletal structures. Asian J Civil Eng 11(1):103–122

23. Kaveh A, Talatahari S (2010) Optimum design of skeletal structure using imperialist compet-

itive algorithm. Comput Struct 88:1220–1229

24. Kaveh A, Talatahari S (2012) Charged system search for optimal design of frame structures.

Appl Soft Comput 12:382–393

25. Kaveh A, Ilchi Ghazaan M (2015) A comparative study of CBO and ECBO for optimal design

of skeletal structures. Comput Struct 153:137–147

26. Talatahari S, Gandomi AH, Yang XS, Deb S (2015) Optimum design of frame structures using

the eagle strategy with differential evolution. Eng Struct 91:16–25

27. Camp CV, Bichon BJ, Stovall S (2005) Design of steel frames using ant colony optimization. J

Struct Eng 131:369–379

28. Degertekin SO (2008) Optimum design of steel frames using harmony search algorithm. Struct

Multidiscip Optim 36:393–401

538 17 Vibrating Particles System Algorithm

http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CP.1943-5487.0000445
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CP.1943-5487.0000445


29. Kaveh A, Ilchi Ghazaan M (2014) Enhanced colliding bodies algorithm for truss optimization

with frequency constraints. J Comput Civil Eng 29(6)

30. Kaveh A, Mahdavi VR (2015) A hybrid CBO–PSO algorithm for optimal design of truss

structures with dynamic constraints. Appl Soft Comput 34:260–273. doi:10.1061/(ASCE)CP.

1943-5487.0000445,04014104

References 539

http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000445,04014104
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000445,04014104

	Chapter 17: Vibrating Particles System Algorithm
	17.1 Introduction
	17.2 Formulation of the Structural Optimization Problems
	17.3 The Damped Free Vibration
	17.4 A New Metaheuristic Algorithm Based on the Vibrating Particles System
	17.5 Search Behavior of the Vibrating Particles System Algorithm
	17.6 Test Problems and Optimization Results
	17.6.1 A Spatial 120-Bar Dome-Shaped Truss
	17.6.2 A 200-Bar Planar Truss
	17.6.3 A 3-Bay 15-Story Frame Structure
	17.6.4 A 3-Bay 24-Story Frame Structure

	17.7 Concluding Remarks
	References


