
Chapter 16

Water Evaporation Optimization Algorithm

16.1 Introduction

Efficient metaheuristic optimization algorithms are developed to overcome the

drawbacks of some traditional methods in highly nonlinear engineering optimiza-

tion problems with high complexity, high dimension, and multimodal design spaces

gaining increasing popularity nowadays [1]. Performance assessment of a

metaheuristic algorithm may be used by solution quality, computational effort,

and robustness [2] directly affected by its two contradictory criteria: exploration

of the search space (diversification) and exploitation of the best solutions found

(intensification).

A novel metaheuristic algorithm, imitating the evaporation process of a tiny

amount of water molecules adhered on a solid surface with different wettability, has

been developed very recently and named water evaporation optimization (WEO)

[3]. WEO was successfully utilized in real parameter optimization [3] and contin-

uous structural optimization problems [4] presenting: (1) competitive behavior with

other algorithms in terms of accuracy and robustness, (2) advantages over other

algorithms in the aspect of parameter tuning (except population size, other param-

eters are set based on the molecular dynamics), and (3) imposing a rational number

of physical rules that lead to significantly good convergence behavior and simple

algorithmic structure. In structural optimization problems, high computational cost

of the algorithm has been found to be the only drawback of the algorithm. In view of

this, the present study will propose an accelerated version of WEO potentially able

to solve multidisciplinary and engineering optimization problems regardless of the

type of optimization problem at hand.

The basic WEO is initialized with a population of random designs named water

molecules that are updated through an iterative process to search the optimum.

Updating is governed by evaporation rules based on molecular dynamic simulation

results obtained for evaporation process of water molecules from a solid surface

with different wettability. The candidate solutions are updated globally and locally
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in two independent sequential phases: monolayer and droplet evaporation phases.

Rules driving each phase are in a good agreement with the local and global search

ability of the algorithm. In this study, it is shown that the WEO can be improved to

reduce computational cost by simultaneous utilization of both phases.

The improvement to WEO hence involves a simultaneous use of both phases.

Two scenarios are developed for considering simultaneous evaporation phases

based on (1) water molecules’ distances and (2) objective function values of

molecules. The effects of these enhancements are tested in very classical discrete

structural optimization problems. The first scenario which is developed from the

physics of water evaporation phenomena is efficient in enhancing the convergence

rate. Although the second scenario (which is developed greedily) also is efficient,

the first scenario is accepted and developed in this study in view of its physical

interpretation and higher performance.

This chapter is based on the accelerated version of the water evaporation

optimization algorithm developed by Kaveh and Bakhshpoori [5], and it is orga-

nized as follows: Section 16.2 outlines the basic WEO algorithm. Section 16.3 deals

with the development of accelerated version ofWEOwithmixed phases. Section 16.4

discusses the performance of the new formulation of WEO in discrete structural

optimization problems. Finally, conclusions are given in Sect. 16.5.

16.2 Basic Water Evaporation Optimization Algorithm

Evaporation of water restricted on the surface of solid materials is the inspiration

basis of WEO which is different from the water evaporation of bulk surface. This

type of water evaporation is essential in the macroscopic world such as the water

loss through the surface of soil [6]. Wang et al. [7] presented molecular dynamics

(MD) simulations on the evaporation of water from a solid substrate with different

surface wettability. MD simulations were carried out by adhering nanoscale water

aggregation in a neutral substrate which is chargeable. By varying the value of

charge (0 e� q� 0.7 e), a substrate with tunable surface wettability can be

obtained. It is found that as the surface changed from hydrophobicity (q< 0.4 e)

to hydrophility (q� 0.4 e), the evaporation speed did not show a monotonic

decrease from intuition, but increased first and then decreased after reaching a

maximum value. Figure 16.1 depicts the MD simulation method: (a) side view of

the initial system (the upward arrow denotes the accelerating region), (b) snapshot

of water on the substrate with low wettability (the water molecules accumulate into

the form of a sessile spherical cap with a contact angle θ to the surface), (c) snapshot
of water on the substrate with high wettability (the adhered water forms a flat

single-layer molecule sheet), and (d) theoretical topology of water molecules with

respect to substrate wettability used for MD simulations.

Considering MD simulation results from end to beginning, a fine analogy can be

found between this type of water evaporation phenomena and a population-based
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metaheuristic algorithm. This analogy led us to developing the basic WEO algo-

rithm [4, 5] depicted in Fig. 16.2.

Water molecules and substrate with decreasing wettability are considered as

algorithm individuals and search space, respectively. Decreasing the surface wet-

tability reforms the water aggregation from a monolayer to a sessile droplet.

Similarly, mutual positions of individuals in the design space change as the search

process progresses. Decreasing q from 0.7 e to 0.0 e can represent the reduction of

the objective function for a minimization problem. Evaporation flux variation is

considered as the most appropriate measure for updating the algorithm individuals

which is in a good agreement with the local and global search ability.

Fig. 16.1 (a) Side view of the initial system. (b) snapshot of water on the substrate with low

wettability (q¼ 0 e). (c) snapshot of water on the substrate with high wettability (q¼ 0.7 e). (d)

theoretical topology of water molecules with respect to substrate wettability used for MD

simulations

Water molecules ~ Algorithm individuals

Substrate with decreasing wettability ~ Search space with different objective 

function values

Water aggregation reforms from a 

monolayer to a sessile droplet with 

decreasing the surface wettability
~ Change mutual positions of individuals as 

the algorithm progresses

Decreasing q from 0.7 e to 0.0 ~ Decreasing the objective function value

q = 0.4 e ~ The algorithm reaches the middle of the 

optimization process

Evaporation in two phases (Monolayer 

and droplet) with different evaporation 

flux
~ Global and local search ability of the 

algorithm

Fig. 16.2 Analogy between water evaporation from a solid surface and a population-based

metaheuristic algorithm
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Evaporation flux reaches its maximum around q¼ 0.4 e. This situation is

considered in the basic WEO [4] until the algorithm reaches the middle of the

optimization process. In other words, basic WEO updates the individuals in two

independent sequential phases: monolayer and droplet evaporation phases. These

two phases were explained in detail in [4]. In each phase the corresponding rules

are in a good agreement with the local and global search ability of the algorithm.

The steps entailed by the basic WEO are now outlined:

Step 1: Initialization

Algorithm parameters are set in the first step. These parameters are the number of

water molecules (nVM), maximum number of algorithm iterations (tmax), minimum

(MEPmin) and maximum (MEPmax) values of monolayer evaporation probability,

and minimum (DEPmin) and maximum (DEPmax) values of droplet evaporation

probability. Evaporation probability parameters are determined efficiently for

WEO based on the MD simulation results (MEPmin¼ 0.03 and MEPmax¼ 0.6;

DEPmin¼ 0.6 and DEPmax¼ 1). The initial positions of all water molecules are

generated randomly within the n-dimensional search space (WM (0)) as follows and

are evaluated based on the objective function of the problem at hand:

WM
0ð Þ
i, j ¼ Round xj, min þ randi, j : xj, max � xj, min

� �� � ð16:1Þ

where WMi, j
(0) determines the initial value of the jth variable for the ith water

molecule; xj,min and xj,max are the minimum and maximum allowable values for the

jth variable; and randi, j is a random number in the interval [0, 1]. The rounding

function is used for discrete problems and rounds the value of design variable to the

nearest discrete available value. The best water molecule as the output of the

algorithm will be returned in this step.

Step 2: Generating Water Evaporation Matrix

Every water molecule follows the evaporation probability rules specified for each

phase of the algorithm.

For t� tmax/2 or in the monolayer evaporation phase, in each iteration the

objective function of individuals Fiti
t is scaled to the interval [�3.5, �0.5] and

represents the corresponding Esub(i)
t inserted to each individual (substrate energy

vector) via the following scaling function:

Esub ið Þt ¼ Emax � Eminð Þ � Fit ti �Min Fitð Þ� �
Max Fitð Þ �Min Fitð Þð Þ þ Emin ð16:2Þ

Min and Max are the minimum and maximum functions, respectively. After

generating the corresponding substrate energy vector, water molecules are globally

evaporated based on the monolayer evaporation probability (MEP) rule:
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MEPij
t ¼ 1 if randi, j < exp Esub ið Þt� �

0 if randi, j � exp Esub ið Þt� �
�

ð16:3Þ

where MEPt
ij is the updating probability for the jth variable of the ith individual or

water molecule in the tth optimization iteration and randi,j is a random number

generated by the uniform distribution in the interval [0, 1]. In this way, in the

monolayer evaporation phase, the best and worst candidate solutions will be

updated by the probability equal to exp(�3.5)¼ 0.03 and exp(�0.5)¼ 0.6, respec-

tively. These values can be considered as minimum (MEPmin) and maximum

(MEPmax) values of monolayer evaporation probability. Algorithm performance

evaluations show that considering MEPmin¼ 0.03 and MEPmax¼ 0.6 based on the

MD simulation results is logical.

For t> tmax/2 or in the droplet evaporation phase, the objective function of

individuals Fiti
t is scaled to the interval [�50�, �20�] via the following scaling

function which represents the corresponding contact angle θ(i)t (contact angle

vector):

θ ið Þt ¼ θmax � θminð Þ � Fit ti �Min Fitð Þ� �
Max Fitð Þ �Min Fitð Þð Þ þ θmin ð16:4Þ

After generating contact angle vector, evaporation occurs based on the droplet

evaporation probability (DEP) matrix:

DEPij
t ¼

1 if randi, j < J θ tð Þ
i

� �
0 if randi, j � J θ tð Þ

i

� �
8<
:

J θð Þ ¼ J0P0
2
3
þ cos 3θ

3
� cos θ

� ��2=3

1� cos θð Þ, J0P0 ¼ 1

24

ð16:5Þ

whereDEPt
ij is the updating probability for the jth variable of the ith water molecule

in the tth optimization iteration. In this way, minimum (DEPmin) and maximum

(DEPmax) values of droplet evaporation probability are obtained equal to 0.6 and

1, respectively. Algorithm performance evaluation results show that these values

are suitable.

Step 3: Generating Random Permutation Based Step Size Matrix

A random permutation based step size matrix is generated according to:

S ¼ rand : WM tð Þ permute1 ið Þ jð Þ½ � �WM tð Þ permute2 ið Þ jð Þ½ �
� �

ð16:6Þ

where rand is a random number in the [0, 1] range, permute1 and permute2 are

different row permutation functions, i is the number of water molecule, and j is the
number of design variables of the problem at hand. It should be noted that random

permutation based step size is used for two purposes. In the first phase, water
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molecules are more far from each other than in the second. In this way, the

generated permutation based step size will guarantee global and local search

capability in each phase. The random part will guarantee the algorithm to be

sufficiently dynamic. These two aspects are emphasized by considering two specific

evaporation probability mechanisms for each phase.

Step 4: Generating Evaporated Water Molecules and Updating the Matrix

of Water Molecules

The evaporated set of water molecules WM(t+1) is generated by adding the product

of step size matrix and evaporation probability matrix to the current set of mole-

cules WM(t) according to:

WM tþ1ð Þ ¼ Round WM tð Þ þ S � MEP tð Þ t � tmax=2
DEP tð Þ t > tmax=2

� �� 	
ð16:7Þ

The rounding function is used for discrete problems and rounds the value of

design variables to the nearest discrete available value. These water molecules are

evaluated based on the objective function. For the molecule i (i¼ 1, 2, . . ., nWM), if

the newly generated molecule i (i¼ 1, 2, . . ., nWM) is better than the old one, it will

replace it. The best water molecule (best-WM) is returned.

Step 5: Terminating Condition

If the number of iterations of the algorithm (t) becomes larger than the maximum

number of iterations (tmax), the algorithm terminates. Otherwise go to Step 2.

16.3 Water Evaporation Optimization with Mixed Phases

The basic WEO algorithm updates candidate designs in two independent sequential

phases: monolayer and droplet evaporation phases. Design updating strategies

selected in each phase are consistent with the local and global search ability of

the algorithm. The accelerated version of WEO involving the simultaneous use of

both phases is now described.

Two scenarios are developed for considering simultaneous evaporation phases

based on (1) water molecules’ distances and (2) objective function values

of molecules. First scenario is physically based and interpreted from water evapo-

ration phenomena. The second one is considered in a biased way without any

physics-based interpretation to investigate the possible improvements of the algo-

rithm. It should be noted that the accelerated WEO is presented here for minimi-

zation problems. If the first scenario is adopted, after each individual has been

evaluated, water molecules are sorted in ascending order based on their distance

(disti) from the worst current water molecule (worst-WM) by the following

equation:
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disti ¼ worstWM �WMij j, i ¼ 1, 2, . . . , nWM ð16:8Þ

If the second scenario is adopted, water molecules are sorted in ascending order

based on the objective function value. For both scenarios, water molecules are

divided in two groups with the same number of molecules (nWM/2) based on the

distance from the worst current molecule and objective function value, respectively.

In the case of the first scenario, the first half of water molecules in each optimization

iteration will be updated by the droplet evaporation probability, and the second half

are evaporated based on the monolayer evaporation probability. The second sce-

nario would be the contrary of first one: the groups of molecules will be updated by

monolayer and droplet evaporation probability, respectively.

Our simulation results show that the first scenario is effective and successful in

enhancing the convergence rate, considering three variants (basic WEO, WEO with

mixed phases using the first scenario, andWEOwith mixed phases using the second

scenario). Table 16.1 presents the statistical results obtained for 20 independent

optimization runs carried out from different initial populations randomly generated

by the three variants of WEO for the first test problem (a spatial 25-bar truss) solved

in this study. Average penalized weight optimized histories obtained by these three

variants for 20 independent optimization runs starting from a different population

randomly generated are depicted in Fig. 16.3 for this test case. It appears that the

accelerated WEO using the first scenario is efficient in enriching the WEO to work

with less number of structural analyses.

According to the previous paragraph and because of the physical interpretation

of the first scenario, this strategy is developed here. Figures 16.4(a) and (b) show

monolayer evaporation flux variation with different substrate energy and droplet

evaporation probability variation with different contact angles, respectively. The

rationale behind the first scenario is that the worst water molecule and molecules

nearby are updated globally (0.6� J(θ)� 1.0) by the droplet evaporation probabil-

ity (DEP) and the molecules far from the worst molecule are updated locally

(0.03� exp(Esub)� 0.6) with the monolayer evaporation flux (MEP). The second

scenario also is inspired by this rationale but greedily divides the molecules for

local and global search using the criteria of objective function value in a way that

better molecules are updated using MEP, and others are updated via DEP. Mole-

cules get closer together with the progress of algorithm. Consequently, random

Table 16.1 Comparison of relative efficiency of three WEO variants for the 25-bar problem

Algorithm

Weight (lb) Difference best–

average solution

(%)

Difference best–

worst solution (%) SDBest Average Worst

WEO-

basic

484.854 485.598 489.158 0.15 0.73 1.149

WEO-

scenario 1

484.854 485.252 487.989 0.08 0.56 0.715

WEO-

scenario 2

484.854 487.584 509.351 0.56 4.27 6.119
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permutation based step size (Eq. (16.6)) used for generating evaporated molecules,

along with different evaporation mechanisms, will enhance global and local search

capability. It should be noted that in the basic WEO, utilizing the random permu-

tation based step size (Eq. (16.6)), all molecules are updated globally using MEP

and locally using DEP in the first and second half of the optimization process,

respectively.

The steps involved in the first scenario of the accelerated WEO are as follows:

Step 1: Initialization

This step is the same as the one described in the basic WEO. Additionally the worst

water molecule (worst-WM) will be monitored in this step.

Step 2: Generating Water Evaporation Matrix

Calculate the distance vector between all water molecules and the worst current one

using Eq. (16.8). Sort molecules based on their distance values in an ascending

order. Generate theDEPmatrix for updating the first half of the molecules (droplet-
WM) using the droplet evaporation rule (Eq. (16.5)). Generate the MEP matrix for
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Fig. 16.3 Convergence curves recorded for the spatial 25-bar truss using three variants of WEO
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updating the next half of the molecules (monolayer-WM) based on the monolayer

evaporation probability (Eq. (16.3)). In order to generate droplet and evaporation

probability matrices, it is also necessary to define the corresponding contact angle

vector (Eq. (16.4)) and substrate energy vector (Eq. (16.2)), respectively. It should

be noted that in the accelerated version of WEO droplet and evaporation probability

matrices and corresponding substrate energy and contact angle vectors include

nWM/2 rows. The mixed evaporation matrix (MDEP) including evaporation vec-

tors of each molecule is assembled from MEP and DEP matrices. The pseudo code

shown in Fig. 16.5 can be used for generating the mixed evaporation matrix

(MDEP).

Step 3: Generating Random Permutation Based Step Size Matrix

A random permutation based step size matrix is generated using Eq. (16.6).

Step 4: Generating Evaporated Water Molecules and Updating the Matrix

of Water Molecules

The evaporated set of water molecules WM(t+1) is generated by adding the product

of step size matrix and mixed evaporation probability matrix (MDEP) to the current
set of molecules WM(t) according to:

for i=1:nWM
Dist(i)=norm(WM(i,:)-worst-WM);

end

[a,b]=sort(Dist);

for i=1:nWM/2

droplet-WM(i,:)=WM(b(i),:);
end

Generate the corresponding θ vector and DEP matrix using Eqs. (16.4) and (16.5), 

respectively.

for i=1: nWM/2

monolayer-WM(i,:)=WM(b(size(nWM/2+i),:);
end

Generate the corresponding Esub vector and MEP matrix using Eqs. (16.2) and (16.3), 

respectively.

for i=1:size(WM,1)

if i<= nWM/2

MDEP(b(i),:)=DEP(i,:);
else

MDEP (b(i),:)=MEP(i-size(WM,1)/2,:);

end

end

Fig. 16.5 Pseudo code for generating the mixed evaporation matrix (MDEP)
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WM tþ1ð Þ ¼ Round WM tð Þ þ S �MDEP tð Þ
� �

ð16:9Þ

The rounding function is used for discrete problems and rounds the value of

design variables to the nearest discrete available value. These water molecules are

evaluated based on the objective function. For the molecule i (i¼ 1, 2, . . ., nWM), if

the newly generated molecule is better than the current one, it should be replaced.

The best water molecule is returned in this step.

Step 5: Terminating Condition

If the number of iterations of the algorithm (t) becomes larger than the maximum

number of iterations (tmax), the algorithm terminates. Otherwise go to Step 2.

16.4 Test Problems and Optimization Results

Finding optimum design of the skeletal structures is an effective way to test new

optimization algorithms as these problems may include many design variables and

constraints as well as large search spaces. The developed accelerated version of

WEO algorithm is tested on four well-known discrete weight minimization prob-

lems: 25-bar spatial truss, 72-bar spatial truss, 3-bay 15-story frame, and 3-bay

24-story frame.

These test cases included 8, 16, 11, and 20 sizing variables, respectively. In truss

problems with discrete variables, search space is defined using a series of discrete

values between two lower and upper bounds. The steel members used for the design

of steel frames consist of 267 W-shaped sections from the LRFD–AISC database,

from W44� 335 to W4� 13. These sections with their properties are used to

prepare a design pool. The sequence numbers assigned to this pool that are sorted

with respect to the area of sections are considered as design variables. In other

words, the design variables represent a selection from a set of integer numbers

between 1 and the number of sections. Truss problems are designed under stress and

nodal displacement constraints. Statement of the truss weight minimization prob-

lem can be found in [8]. Strength constraints of AISC load and resistance factor

design (LRFD) specification [9] and displacement constraints are imposed on

frames. Statement of the planar frame weight minimization problem can be found

in [10]. In order to handle optimization constraints, a penalty approach was utilized

in this study by introducing the following pseudo cost function:

f cost Xf gð Þ ¼ 1þ ε1 � νð Þε2 �W Xf gð Þ ð16:10Þ

where {X} is the set of design variables;W({X}) is the weight of the structure; and υ
is the total constraint violation. Constants ε1 and ε2must be selected considering the

exploration and the exploitation rate of the search space. In this study, ε1 was set
equal to one while ε2 was selected so as to decrease the total penalty yet reducing
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cross-sectional areas. Thus, ε2 increased from the value of 1.5 set in the first steps of

the search process to the value of 3 set toward the end of the optimization process. It

should be noted that in the discrete structural optimization problems the method

selected for constraints handling affects the algorithms in the aspect of accuracy.

Here we used the penalty approach as one of the simplest methods and with fixed

constants for all test problems according to previous studies.

WEO algorithm is compared in two variants: basic WEO and WEO with mixed

phases. In order to better evaluate performance of the developed accelerated

version, the most effective available state-of-the-art metaheuristic optimization

methods based on the authors knowledge are used here as basis of comparison.

Since the search process is governed by random rules, each test problem was solved

by carrying out 20 independent optimization runs considering different initial

populations to obtain statistically significant results. During each run, the maximum

number of structural analyses (NSA) of 14� 103 is used. Other parameters are as

follows [4, 5]: the number of water molecules, nWM¼ 10; minimum and maximum

value of monolayer evaporation probabilities, MEPmin¼ 0.03 and MEPmax¼ 0.6;

and minimum and maximum value of droplet evaporation probabilities,

DEPmin¼ 0.6 and DEPmax¼ 1. The WEO is coded in the MATLAB software

environment. Structural analyses entailed by the optimization process were

performed by means of the direct stiffness method.

16.4.1 A Spatial 25-Bar Tower Truss

The 25-bar transmission tower is used widely in structural optimization to verify

various metaheuristic algorithms. Truss geometry including node and element

numbering is shown in Fig. 16.6. The material density is 0.1 lb/in3 and the modulus

of elasticity is 107 psi. Twenty-five members are categorized into eight groups as

follows: (1) A1, (2) A2–A5, (3) A6–A9, (4) A10–A11, (5) A12–A13, (6) A14–A17,

(7) A18–A21, and (8) A22–A25. The problem is described in detail in [8].

Table 16.2 tabulates the best optimized designs found by basic WEO and

accelerated WEO with mixed phases based on the first scenario. All optimized

designs are fully feasible. Selected algorithms to evaluate the accelerated WEO are

artificial bee colony (ABC) [11], mine blast algorithm (MBA) [12], cuckoo search

(CS) [8], and colliding bodies optimization (CBO) [13]. As it is clear, the acceler-

ated WEO requires only half of the NSA of the basic WEO. Accelerated WEO

needs twice the NSA needed for MBA and CS and needs less NSA compared to the

CBO. The most interesting point is that the accelerated WEO not only is modified

significantly in terms of accuracy but also shows better performance in terms of the

computational time. The mean optimized weight found by the accelerated WEO is

lower than those found by the basic WEO. However, the basic WEO can reach the

same average results by considering higher NSA (20� 103).

16.4 Test Problems and Optimization Results 499



200 in. (508 cm)

Y

X

Z

75 in. (190.5 cm)

200 in. (508 cm)

75 in. (190.5 cm)

75 in. (190.5 cm)

100 in. (254 cm)

100 in. (254 cm)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

1

3

24

5
67

8
9

10

11

12

13

14 15

16

17

18

19
24

20

22

21

23

25

Fig. 16.6 Schematic of the spatial 25-bar truss

Table 16.2 Comparison of optimization results obtained by WEO and some other metaheuristic

algorithms for the 25-bar tower problem

Element group

Optimal cross-sectional areas (in2)

ABC MBA CS CBO Basic WEO WEO-scenario 1

[11] [12] [8] [13] Present study [5]

1 0.1 0.1 0.1 0.1 0.1 0.1

2 0.3 0.3 0.30 0.3 0.3 0.3

3 3.4 3.4 3.4 3.4 3.4 3.4

4 0.1 0.1 0.1 0.1 0.1 0.1

5 2.1 2.1 2.1 2.1 2.1 2.1

6 1.0 1.0 1.0 1.0 1.0 1.0

7 0.5 0.5 0.5 0.5 0.5 0.5

8 3.4 3.4 3.4 3.4 3.4 3.4

Best weight (lb) 484.85 484.85 484.85 484.85 484.85 484.85

Mean weight (lb) 485.05 484.89 485.01 486.87 485.598 485.252

NSA NA 2150 2000 7050 9610 5060
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16.4.2 A Spatial 72-Bar Truss

For the spatial 72-bar truss structure shown in Fig. 16.7, the material density is

0.1 lb/in3 and the modulus of elasticity is 107 psi. The 72 bars are categorized into

16 groups using symmetry: (1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–A18,

(5) A19–A22, (6) A23–A30, (7) A31–A34, (8) A35–A36, (9) A37–A40, (10) A41–A48,

(11) A49–A52, (12) A53–A54, (13) A55–A58, (14) A59–A66, (15) A67–A70, and

(16) A71–A72. The structure must be designed for multiple loading conditions.

The problem is described in detail in [8].

Table 16.3 presents the statistical results obtained for 20 independent runs

carried out from different initial populations randomly generated by the three
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Fig. 16.7 Schematic of the spatial 72-bar truss
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variants of WEO. Average penalized weight histories obtained by the basic and

accelerated WEO for the 20 independent optimization runs are shown in Fig. 16.8.

It appears that accelerated WEO with the first scenario allows to reduce the

computational cost of optimization search compared to the basic WEO.

Table 16.4 lists the best optimized designs found by basic WEO and accelerated

WEO with mixed phases based on the first scenario. All optimized designs are fully

feasible. Both variants of WEO are compared with imperialist competitive algo-

rithm (ICA) [14], CS [8], and CBO [15]. Accelerated WEO found the lightest

design overall but needs 7500 NSA, nearly twice the number of analyses needed by

other algorithms. It should be noted that the NSA required by accelerated WEO to

find intermediate designs better than the optimized designs found by ICA, CS, and

CBO (391.26 lb) is equal to 6200. Basic WEO also can find the lightest design, but

it is clear that considering mixing phases formulation enables WEO to work with

less computational cost (30%). The most interesting point is that WEO with mixed

phases results in averagely lightest optimum design than the basic WEO. It should

be noted that the basic WEO can yield the same average results considering more

NSA (20� 103) as the stopping criteria.

Table 16.3 Robustness and reliability analyses of WEO in 72-bar truss problem

Algorithm

Weight (lb) Difference best–

average solution (%)

Difference best–

worst solution (%) SDBest Average Worst

WEO-

basic

389.33 391.20 395.84 0.48 1.17 1.81

WEO-

scenario 1

389.33 390.94 397.74 0.41 1.71 1.93

WEO-

scenario 2

389.46 391.75 399.34 0.58 1.90 2.18
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Fig. 16.8 Convergence curves recorded for the 72-bar truss problem
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16.4.3 A 3-Bay 15-Story Frame

The configuration, service loading conditions, and numbering of member groups

for the 3-bay 15-story frame are shown in Fig. 16.9. All 64 columns are grouped

into nine groups while all 45 beams are considered as a beam element group. All

element groups are chosen from 267 W-sections. Performance constraints, material

properties, and other conditions are available in [10].

Table 16.5 compares the accelerated WEO with basic WEO and other state-of-

the-art metaheuristic algorithms which efficiently solved this test problem: ICA

[14], charged system search (CSS) [16], and enhanced version of CBO (ECBO)

[13]. All optimized designs are fully feasible. The lightest design is obtained by

ECBO algorithm which needs nearly the same NSA as accelerated WEO. Acceler-

ated WEO is better than basic WEO considering the best run and

average of 20 independent runs starting from different populations randomly

Table 16.4 Comparison of optimization results obtained by WEO and some other metaheuristic

algorithms for the 72-bar truss problem

Element group

Optimal cross-sectional areas (in2)

ICA CS CBO Basic WEO Accelerated WEO

[14] [8] [15] Present work [5]

1 A1 ~A4 1.99 1.800 1.62 1.99 1.99

2 A5 ~A12 0.442 0.563 0.563 0.563 0.563

3 A13 ~A16 0.111 0.111 0.111 0.111 0.111

4 A17 ~A18 0.141 0.111 0.111 0.111 0.111

5 A19 ~A22 1.228 1.266 1.457 1.228 1.228

6 A23 ~A30 0.602 0.563 0.442 0.442 0.442

7 A31 ~A34 0.111 0.111 0.111 0.111 0.111

8 A35 ~A36 0.141 0.111 0.111 0.111 0.111

9 A37 ~A40 0.563 0.563 0.602 0.563 0.563

10 A41 ~A48 0.563 0.442 0.563 0.563 0.563

11 A49 ~A52 0.111 0.111 0.111 0.111 0.111

12 A53 ~A54 0.111 0.111 0.111 0.111 0.111

13 A55 ~A58 0.196 0.196 0.196 0.196 0.196

14 A59 ~A66 0.563 0.602 0.602 0.563 0.563

15 A67 ~A70 0.307 0.391 0.391 0.391 0.391

16 A71 ~A72 0.602 0.563 0.563 0.563 0.563

Best weight (lb) 392.84 389.87 391.07 389.33 389.33

Mean weight (lb) N/A N/A 403.71 391.20 390.94

NSA 4500 5450 4500 10,510 7490
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generated, and computational cost. Accelerated WEO leads to lighter design than

ICA and CSS but needs nearly twice NSA.
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Figure 16.10 compares average convergence histories for different formulations

of the WEO, CSS [16], and ICA [14] algorithms. It should be noted that the weight

optimization convergence history is monitored because of the available results in

the literature. For more clarity, the y-axis is in units of kips and its upper bound is

limited to 300. Best convergence rate is obtained by CSS algorithm. As it is clear,

the new formulation based on the scenario 1 makes the WEO competitive with

other algorithms also in terms of convergence rate.

Table 16.5 Comparison of optimization results obtained by WEO and some other metaheuristic

algorithms for the 3-bay 15-story frame problem

Element group

Optimal cross-sectional areas (W types)

ICA CSS ECBO Basic WEO Accelerated WEO

[14] [16] [13] Present study [5]

1 W24� 117 W21� 147 W14� 99 W14� 90 W14� 99

2 W21� 147 W18� 143 W27� 161 W36� 170 W27� 161

3 W27� 84 W12� 87 W27� 84 W30� 90 W27� 84

4 W27� 114 W30� 108 W24� 104 W24� 104 W24� 104

5 W14� 74 W18� 76 W14� 61 W24� 68 W14� 61

6 W18� 86 W24� 103 W30� 90 W12� 87 W30� 90

7 W12� 96 W21� 68 W14� 48 W8� 48 W16� 50

8 W24� 68 W14� 61 W14� 61 W14� 68 W21� 68

9 W10� 39 W18� 35 W14� 30 W10� 33 W14� 34

10 W12� 40 W10� 33 W12� 40 W16� 45 W8� 35

11 W21� 44 W21� 44 W21� 44 W21� 44 W21� 44

Best weight (lb) 93,846 92,723 86,986 88,710.97 87,537.96

Mean weight (lb) N/A N/A 88,410 90,649.49 88,893.09

NSA 6000 5000 9000 13,580 10,670
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Fig. 16.10 Average convergence histories of algorithms for the 3-bay 15-story frame problem
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16.4.4 A 3-Bay 24-Story Frame

The 3-bay 24-story frame optimized in the last test problem is shown in Fig. 16.11.

The structure is comprised of 168 members that are collected in 20 groups (16 col-

umn groups and four beam groups). Each of the four beam element groups is chosen

from all 267 W-shapes, while the 16 column element groups are limited to W14

sections (37 W-shapes). Additional information about the problem can be found

in [13].

Table 16.6 compares the accelerated WEO with basic WEO and other state-of-

the art metaheuristic algorithms which efficiently solved this test problem: harmony

search (HS) [17], CSS [16], and ECBO [13]. All optimized designs are fully

feasible. ECBO shows the best performance. Accelerated WEO performs better

than the basic WEO and HS, in relation to both accuracy and computational cost,

and leads to a lighter design than that of the CSS. However, the present algorithm

requires more structural analyses to complete the optimization process.

Figure 16.12 compares average convergence histories for different formulations

of the WEO, CSS [16], and HS [17] algorithms. For more clarity, the y-axis is in the

units of kips and its upper bound is limited to 700. Best convergence rate is again

obtained by CSS algorithm. The new formulation based on the scenario 1 makes

WEO enough competitive in terms of convergence rate.

16.5 Concluding Remarks

This chapter presented an accelerated version of water evaporation optimization

algorithm (WEO). WEO is a recently developed population physics-based

metaheuristic algorithm which follows the well-known rules governing the evapo-

ration process of water molecules from a solid surface with different wettability. In

the basic WEO, molecules are updated globally and locally, respectively, in two

independent sequential phases: monolayer and droplet evaporation phases. It was

shown that computational cost of the WEO optimizations can be reduced by

simultaneously using the two phases. For that purpose, we developed two scenarios

based on the (1) water molecules’ distance and (2) objective function value of

molecules.

The new algorithm was successfully tested in four well-known discrete struc-

tural optimization problems. The first scenario which is in a good agreement with

physical aspects of the water evaporation is more efficient than the second one and

hence developed in this study. It turns out that the developed framework provides a

significant enhancement in convergence rate compared to the basic WEO. How-

ever, further investigations should be carried out in order to reduce the computa-

tional cost of the accelerated WEO in frame problems with respect to other

metaheuristic algorithms such as ECBO.
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Table 16.6 Comparison of optimization results obtained by WEO and some other metaheuristic

algorithms for the 3-bay 24-story frame problem

Element group

Optimal cross-sectional areas (W types)

HS CSS ECBO Basic WEO Accelerated WEO

[17] [16] [13] Present study [5]

1 W14� 176 W14� 176 W14� 145 W14� 132 W14� 159

2 W14� 145 W14� 145 W14� 99 W14� 109 W14� 132

3 W14� 176 W14� 145 W14� 132 W14� 109 W14� 99

4 W14� 132 W14� 132 W14� 99 W14� 90 W14� 109

5 W14� 132 W14� 109 W14� 99 W14� 61 W14� 68

6 W14� 109 W14� 109 W14� 99 W14� 38 W14� 38

7 W14� 109 W14� 90 W14� 90 W14� 38 W14� 30

8 W14� 82 W14� 82 W14� 82 W14� 22 W14� 22

9 W14� 82 W14� 74 W14� 74 W14� 109 W14� 90

10 W14� 61 W14� 68 W14� 68 W14� 109 W14� 99

11 W14� 74 W14� 61 W14� 38 W14� 99 W14� 99

12 W14� 48 W14� 43 W14� 61 W14� 90 W14� 74

13 W14� 34 W14� 34 W14� 38 W14� 82 W14� 68

14 W14� 30 W14� 34 W14� 30 W14� 68 W14� 61

15 W14� 22 W14� 34 W14� 22 W14� 34 W14� 34

16 W14� 22 W14� 22 W14� 22 W14� 22 W14� 22

17 W30� 90 W30� 90 W30� 90 W30� 90 W30� 90

18 W10� 22 W21� 50 W6� 15 W6� 15 W8� 18

19 W18� 40 W21� 48 W24� 55 W24� 55 W24� 55

20 W12� 16 W12� 19 W6� 8.5 W6� 8.5 W6� 8.5

Best weight (lb) 214,860 212,364 201,618 202,626.00 202,194.02

Mean weight (lb) 222,620 215,226 209,644 204,954.03 203,412.88

NSA 13,924 5500 2800 13,510 11,300
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Fig. 16.12 Average convergence histories of algorithms for the 3-bay 24-story frame problem
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algorithm with Lévy flights. Struct Des Tall Spec Build 22:1023–1036

11. Sonmez M (2011) Discrete optimum design of truss structures using artificial bee colony

algorithm. Struct Multidiscip Optim 43:85–97

12. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2012) Mine blast algorithm for optimi-

zation of truss structures with discrete variables. Comput Struct 102–103:49–63

13. Kaveh A, Ilchi Ghazaan M (2015) A comparative study of CBO and ECBO for optimal design

of skeletal structures. Comput Struct 153:137–147

14. Kaveh A, Talatahari S (2010) Optimum design of skeletal structures using imperialist com-

petitive algorithm. Comput Struct 88:1220–1229

15. Kaveh A, Mahdavi VR (2014) Colliding Bodies Optimization method for optimum discrete

design of truss structures. Comput Struct 139:43–53

16. Kaveh A, Talatahari S (2012) Charged system search for optimal design of frame structures.

Appl Soft Comput 12:382–393

17. Degertekin SO (2008) Optimum design of steel frames using harmony search algorithm. Struct

Multidiscip Optim 36:393–401

References 509


	Chapter 16: Water Evaporation Optimization Algorithm
	16.1 Introduction
	16.2 Basic Water Evaporation Optimization Algorithm
	16.3 Water Evaporation Optimization with Mixed Phases
	16.4 Test Problems and Optimization Results
	16.4.1 A Spatial 25-Bar Tower Truss
	16.4.2 A Spatial 72-Bar Truss
	16.4.3 A 3-Bay 15-Story Frame
	16.4.4 A 3-Bay 24-Story Frame

	16.5 Concluding Remarks
	References


