
Chapter 14

Global Sensitivity Analysis-Based

Optimization Algorithm

14.1 Introduction

In this chapter a single-solution metaheuristic optimizer, namely, global sensitivity

analysis-based (GSAB) algorithm [1], is presented that uses a basic set of mathe-

matical techniques, namely, global sensitivity analysis. Sensitivity analysis

(SA) studies the sensitivity of the model output with respect to its input parameters

(Rahman [2]). This analysis is generally categorized as local SA and global SA

techniques. While local SA studies the sensitivity of the model output about

variations around a specific point, the global SA considers variations of the inputs

within their entire feasibility space (Pianosi and Wagener [3], Zhai et al. [4]). One

important feature of the GSA is factor prioritization (FP), which aims at ranking the

inputs in terms of their relative contribution to output variability. The GSAB

comprises of a single-solution optimization strategy and GSA-driven procedure,

where the solution is guided by ranking the decision variables using the GSA

approach, resulting in an efficient and rapid search. The proposed algorithm can

be studied within the family of search algorithms such as the random search (RS) by

Rastrigin [5], pattern search (PS) by Hooke and Jeeves [6], and vortex search

(VS) by Dog and Ölmez [7] algorithms. In this method, similar to these algorithms,

the search process is achieved in the specified boundaries. Contrary to these

algorithms that use different functions for decreasing the search space, in the

present method, the well-known GSA approach is employed to decrease the search

boundaries. The minimization of an objective function is then performed by moving

these search spaces into around the best global sample.

The present chapter is organized as follows: In Sect. 14.2, we describe the well-

known variance-based sensitivity approach. In Sect. 14.3, the new method is

presented. Two well-studied constrained optimization problems and three structural

design examples are studied in Sect. 14.4. Conclusions are derived in Sect. 14.5.
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14.2 Background Study

The single-solution search algorithm proposed in this chapter uses the SA theory. In

this section the main strategies used for taking SA into account which are based on

the works of Zhai et al. [4], Saltelli et al. [8], and Archer et al. [9] are described.

14.2.1 Variance-Based Sensitivity Indices

The variance-based sensitivity indices can be estimated by a numerical model,

Y¼ g(X), with X¼ [x1, x2, . . ., xn] being the input vector, Y being the output scalar

of the model, and g() being a deterministic mapping function. Here, the input X is a

random variable. Because of the uncertainty of X propagating through g(.), Y is also

a random variable. As the uncertainty of the output model is represented by its

variance, V(Y ), to find the effect of an input Xi on the output, it is assumed that the

true value of Xi can be determined by the variance reduction in the output, i.e.,

V Yð Þ � V Y
��Xi ¼ x0i

� �
, where x0i is the true value of Xi and V Y

��Xi ¼ x0i
� �

is the

conditional expected value of V(Y ). Since the true value is unknown, one can

employ V Yð Þ � EXi
V Y

��Xi

� �� �
to evaluate the expected variance reduction in the

output (Zhai et al. [4]; Saltelli et al. [8]; Archer et al. [9]).

The variance of output model is calculated utilizing the following equation:

V Yð Þ ¼ VXi
E Y

��Xi

� �� �þ EXi
V Y

��Xi

� �� � ð14:1Þ

And the sensitivity indicator of Xi can be expressed as (Zhai et al. [4]):

SIi ¼
V Yð Þ � EXi

�
V Y

��Xi

� �
V Yð Þ ¼ 1� EXi

�
V Y

��Xi

� �
V Yð Þ ¼ VXi

E Y
��Xi

� �� �
V Yð Þ ð14:2Þ

In sensitivity analysis, SIi varies between 0 and 1. The lower value of SIi
corresponds to the less influential Xi, the higher value of SIi corresponds to the

much influential Xi, and for SIi¼ 0, the Xi will have no influence on Y.

14.2.2 The Variance-Based Sensitivity Analysis Using
Space-Partition Method

The most well-known methods for calculating the variance-based sensitivity indi-

cators are the Monte Carlo simulations; however, they do not make full use of each

output model evaluation. In order to calculate the variance-based sensitivity indi-

cators from a given data, the scatterplot partitioning method can be utilized
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(Zhai et al. [4]). For this method a single set of samples suffices to estimate all the

sensitivity indicators. For estimating the variance-based sensitivity indices, a space-

partition method is used in the following:

Suppose we have M points/samples {X1, . . ., XM} and M model output samples

{y1, . . ., yM} obtained using the model y¼ g(X). The variance of Y can be calcu-

lated by the sample variance V̂ yð Þ. For the sample bounds of Xi as [b1, b2], let it be

decomposed into s successive, equal-probability, and nonoverlapping subintervals

Ak ¼
�
ak�1, ak

�
, with k¼1, . . .s, b1 ¼ a0 < a1 < . . . < ak < . . . < as ¼ b2 and

Pr(Ak)¼1/s. Decompose the output samples {y1, . . ., yM} into s subsets according

to the decomposition of Xi, where Bk ¼ yj x ji 2 Ak

���n o
, k ¼ 1, . . . , s . The vari-

ance V Y
��xi 2 Ak

� �
can then be estimated by:

V̂ Y
��xi 2 Ak

� � ¼ V Bkð Þ ð14:3Þ

The expected conditional variance Exi V Y
��xi� �� �

can now be approximately

estimated using the following relationship:

Ê xi V Y
��xi� �� � � 1

s

Xs
k¼1

V Bkð Þ ð14:4Þ

And ultimately, SIi is estimated by:

bSIi ¼ 1� Ê xi V Y
��xi� �� �

V̂ Yð Þ ð14:5Þ

14.3 A Global Sensitivity Analysis-Based Algorithm

This section introduces a global sensitivity analysis-based (GSAB) algorithm,

which is a single-solution metaheuristic method. The proposed algorithm is

named a global sensitivity analysis (GSA) because of determining the sensitivity

indicator (SI) of decision variables.

Metaheuristic algorithms can be divided into two categories based on their

search mechanism: population based and single solution (Kaveh and Mahdavi

[10]). In the first group, a number of populations/agents are first generated, and

then all agents updated iteratively until the termination condition is satisfied. On the

other hand, single-solution metaheuristics are also known as trajectory methods, in

which these algorithms produce single solution by exploring the search space

efficiently while reducing the effective size of the search space. The GSAB

algorithm consists of some samples for estimating the SI of decision variables. As

these samples do not update iteratively and these are used only for calculating the
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SIs, the proposed GSBA is studied within the single-solution metaheuristic cate-

gory. The feasibility space of samples in the GSAB algorithm updates for searching

the optimal solution over several iterations. In each iteration, the feasibility space is

updated using two values: the sensitivity indicators and the global best sample. It is

assumed that the problem is a minimization problem in RD. The notations used are

as follows:

St: The sample matrix in the tth iteration, St ¼ Xt
i

��i ¼ 1, 2, . . . ,N
� �

Xt
i: The position of sample vector i in the th iteration, Xt

i ¼ x tij
�� j ¼ 1, 2, ::,D

n o
Xmin: The minimum allowable value vector of variables,

Xmin ¼ xminj
�� j ¼ 1, 2, ::,D

� �
Xmax: The maximum allowable value vector of variables,

Xmax ¼ xmaxj
�� j ¼ 1, 2, ::,D

� �
f (Xi): The fitness of vector i
UBt: The upper search boundary vector of variables in the tth iteration,

UBt ¼ ubt
j

�� j ¼ 1, 2, ::,D
n o

LBt: The lower search boundary vector of variables in the tth iteration,

LBt ¼ lb t
j

�� j ¼ 1, 2, ::,D
n o

BWt: The bandwidth of search space of variables in the tth iteration,

BWt ¼ bwt
j

�� j ¼ 1, 2, ::,D
n o

SFt: The scale factor of bandwidth of search space in the tth iteration,

SFt ¼ sf tj
�� j ¼ 1, 2, ::,D

n o
Sbest: The global best sample (i.e., with lower fitness),

Sbest ¼ sbestj
�� j ¼ 1, 2, ::,D

� �
R: A random vector within [0,1].

14.3.1 Methodology

The following steps outline the main procedure in the implementation of the GSAB.

Step 1: Initialization The initial positions of samples are determined with random

initialization in the search space:

X0
i ¼ Xmin þ R Xmax � Xminð Þ , i ¼ 1, 2, . . . ,N ð14:6Þ

where X0
i determines the initial value vector of the ith sample and N is the number of

samples. In the first step, some parameter settings must also be predefined for the

proposed algorithm. There are two parameters: the number of samples, N, and the

number of subintervals for estimating the sensitivity indices, s. The number of

samples is considered according to the problem’s complexity. More complex

problems require a higher number of samples. The last parameter is used for GSA
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as mentioned in Sect. 14.2.2. These values affect the estimation of SI [Eq. (14.6)]. A
more detailed discussion of these parameters is given in the subsequent subsections.

Step 2: Detection of the Most Sensitive Variable In this step the output model,

i.e., the objective function of optimization problem, is first calculated. The sensi-

tivity analysis is performed next for the generated samples, and the sensitivity

indicators (SIs) of variables are calculated in Eqs. (14.3)–(14.6). Once the SIs are
known, the most sensitive variable (which it has the high SI) and the amount of its

SI are saved for the next step.

Step 3: Defining the Search Boundaries In the GSAB algorithm, the search

boundaries are moved to the global best sample (which is updated and memorized

in each iteration), Sbest, to push the samples into a feasible search space. The search

boundaries are also decreased based on the values of the most sensitive variable,

which is evaluated in the previous step. Hence, the upper boundary and lower

boundary of the search space of variables in the t+1th iteration can be computed by:

UBtþ1 ¼ Sbestþ BWt � SFt � Xmax

LBtþ1 ¼ Sbest� BWt � SFt � Xmin
ð14:7Þ

where BWt and SFt are the bandwidth and scale factor of boundaries in the th
iteration (Fig. 14.1), respectively. Equation (14.8) ensures that the current search

space is moved around Sbest with the bandwidth BWt in the D-dimensional space.

The vector BWt can be calculated as:

BWt ¼ max Sbest� LBt,UBt � Sbestð Þ ð14:8Þ

For the algorithm to converge to a near-optimal solution, further exploitation

(strong locality) is required to move the current solution toward to the optimal one.

In the proposed GSAB algorithm, this is achieved by using a scale factor, SF. For
this purpose, once SI values of variables are calculated, the most sensitive variable,

Xmin XmaxLBt UBt

BW t

LBt+1 UBt+1

Sbest

Fig. 14.1 An illustrative sketch of the search process
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i.e., variable with high SI value, for reducing the bandwidth is identified, and then

the SF is calculated as:

SFj ¼ 1� sij if sij ¼ max SIð Þ
1 Otherwisw

, 8j ¼ 1, . . . ,D

	
ð14:9Þ

This equation shows that the bandwidth of the most sensitive variable is

decreased, while other bandwidths are constant in the th iteration.

Step 4: Replacement of the Current Samples In this step, the samples must be

ensured to be inside the new search boundaries. For this purpose, the samples that

exceed the boundaries are randomly regenerated into the new search boundaries,

shown in Fig. 14.1, as:

Xtþ1
i ¼ Xt

i ,

LBtþ1 þ R UBtþ1 � LBtþ1
� �

,

	
LBtþ1 � X t

i � UBtþ1

Otherwise
ð14:10Þ

where i¼1, 2, . . ., n and t represents the iteration index.

Step 5: Termination The optimization process is repeated from Step 2 until a

termination criterion, such as maximum iteration number or no improvement of the

best sample, is satisfied. In the GSAB algorithm, if the maximum bandwidth of the

search space, max(W ), becomes smaller than 0.000001, the optimization process

will be stopped. This is because the GSAB cannot change the search space of the

agents. For the sake of clarity, the flowchart of optimization procedure using the

proposed GSAB is shown in Fig. 14.2.

Generate N sample with random initialization

Evaluate the model output of samples and the SI of 

variables.

The search boundaries are updated based on the SI values.

The samples that exceed the boundaries are randomly 
regenerated

The

termination

conditions

satisfied?   

stop

Yes No

Fig. 14.2 Flowchart of the GSAB
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14.4 Numerical Examples

In this section the efficiency of the proposed algorithm, GSAB, is shown through

two mathematical constrained functions and three well-studied truss structures

under static loads taken from the optimization literature. These examples have

been previously solved using a variety of other techniques and are good examples

to show the validity and effectiveness of the proposed algorithm. Examples 1 and

2 show the applicable of GSAB for optimization of the constrained problems. In

Example 4, a planar truss structure is studied for finding the optimal cross sections.

Examples 4 and 5 are selected to show the importance of selection of optimization

algorithm in reduction of the number of function evaluations.

In structural optimization problems, the main objective is to minimize the weight

of the structures under some constraints. The optimization problem for a truss

structure can be stated as follows:

FindX ¼ x1; x2; x3; . . . ; xn½ �
tominimizesW Xð Þ ¼

Xne
i¼1

ρiAili

subjected togj Xð Þ � 0, j ¼ 1, 2, . . . ,m
xlmin � xl � xlmax

ð14:11Þ

where X is the vector of all design variables with n unknowns; W is the weight of

truss structure; ρi, Ai, and li are the mass density, cross-sectional area, and length of

the ith member, respectively; ne is the number of the structural elements; gj is the
jth constraint from m inequality constraints; and, also, xlmin and xlmax are the lower
and upper bounds of design variable vector, respectively.

The employed constraint handling is the penalty function approach proposed by

Deb [11]. It should be noted that the output model of SA method is the penalized

objective function. For truss design and engineering design examples, the numbers

of N¼ 40 and N¼ 20 samples are utilized, respectively. Also, all examples are

independently optimized 20 times. The algorithm is coded in MATLAB. Structural

analysis is performed with the direct stiffness method.

14.4.1 Design of a Tension/Compression Spring

This problem was first described by Belegundu [12] and Arora [13]. It consists of

minimizing the weight of a tension/compression spring subject to constraints on

shear stress, surge frequency, and minimum deflection as shown in Fig. 14.3.

The design variables are the mean coil diameter D(¼ x1), the wire diameter

d(¼ x2), and the number of active coils N(¼ x3). The problem can be stated as

follows:
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Find x1; x2; x3f g ð14:12Þ

To minimize:

cos t xð Þ ¼ x3 þ 2ð Þx2x21 ð14:13Þ

Subject to

g1 xð Þ ¼ 1� x32x3
71785x41

� 0

g2 xð Þ ¼ 4x22 � x1x2

12566 x2x
3
1 � x41

� �þ 1

5108x21
� 1 � 0

g3 xð Þ ¼ 1� 140:45x1
x22x3

� 0

g4 xð Þ ¼ x1 þ x2
1:5

� 1 � 0

ð14:14Þ

The bounds on the design variables are:

0:05 � x1 � 2, 0:25 � x2 � 1:3, 2 � x3 � 15, ð14:15Þ

This problem has been solved by Belegundu [12] using eight different mathe-

matical optimization techniques. Arora [13] solved this problem using a numerical

optimization technique called a constraint correction at the constant cost. Coello

[14] as well as Coello and Montes [15] solved this problem using GA-based

method. Additionally, He and Wang [16] utilized a coevolutionary particle

swarm optimization (CPSO). Recently, Montes and Coello [17], Kaveh and

Talatahari [18], and Kaveh and Mahdavi [19] used the ES, CSS, and CBO to

solve this problem, respectively.

Tables 14.1 and 14.2 compare the best results obtained in this chapter and those

of the other researches. The GSAB found the best cost as 0.0126652 after 3729

fitness function evaluations. Although the best cost found is more than the standard

CSS, it is the lowest fitness function evaluations among the existing literature

results. It should be noted that the lighter design found by Kaveh and Talatahari

[18] slightly violates the first two optimization constraints.

In order to show the performance of the GSA method in the GSAB algorithm, a

study is focused on the influence of the SIs on the proposed algorithm result. As

Fig. 14.3 Schematic of the

tension/compression spring

with indication of design

variables
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described in Sect. 14.3.1, the GSA method requires two predefined parameters: the

number of samples, N, and the number of subintervals, s. A larger number of

samples lead to an increase of the accuracy of the sensitivity indicators. On the

other hand, because of generating the output model of the GSA method, the fitness

function (or output) evaluations increase with the number of samples. The number

of subintervals can also be affected to the SI values. As Zhai et al. [4] underline, the

appropriate number of subintervals can be considered as s ¼ N
5
. The scatter plots of

Xi¼ 1,2,3 and cost for N¼ 100 samples are shown in Fig. 14.4. It can be noticed that

(i) x1 seems to be the most influential input and (ii) x2 and x3 seem to be the low

Table 14.1 Comparison of GSAB optimized designs with literature for the tension/compression

spring problem

Methods

Optimal design variables

x1 (d) x2 (D) x3 (N) f(x)

Belegundu [12] 0.050000 0.315900 14.250000 0.0128334

Arora [13] 0.053396 0.399180 9.185400 0.0127303

Coello [14] 0.051480 0.351661 11.632201 0.0127048

Coello and Montes [15] 0.051989 0.363965 10.890522 0.0126810

He and Wang [16] 0.051728 0.357644 11.244543 0.0126747

Montes and Coello [17] 0.051643 0.355360 11.397926 0.012698

Kaveh and Talatahari [18] 0.051744 0.358532 11.165704 0.0126384

Kaveh and Mahdavi [19] 0.051894 0.3616740 11.007846 0.0126697

Present work [1] 0.05171604 0.3573671 11.2509979 0.0126652

Table 14.2 Statistical results from different optimization methods for tension/compression string

problem

Methods Best result

Average

optimized cost Worst result Std dev

Fitness function

evaluations

Belegundu [12] 0.0128334 N/A N/A N/A N/A

Arora [13] 0.0127303 N/A N/A N/A N/A

Coello [14] 0.0127048 0.012769 0.012822 3.9390e-5 900,000

Coello and

Montes [15]

0.0126810 0.0127420 0.012973 5.9000e-5 N/A

He and Wang

[16]

0.0126747 0.012730 0.012924 5.1985e-5 200,000

Montes and

Coello [17]

0.012698 0.013461 0.16485 9.6600e-4 25,000

Kaveh and

Talatahari [18]

0.0126384 0.012852 0.013626 8.3564e-5 4000

Kaveh and

Mahdavi [19]

0.0126697 0.01272964 0.0128808 5.00376e-5 4000

Present work [1] 0.0126652 0.012875334 0.01334400 2.31935e-4 3729
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influential inputs, because the distribution of samples against the first variable, x1, is
more dense compared to other variables. This is confirmed by the GSA method. If

we apply the space-partition variance-based sensitivity analysis approach, we

obtained the sensitivity indicators, SIs, in Fig. 14.5. As it can be seen from this

figure, the SI of the first variable is much than other variables; then, the most

influential/sensitive variable is the first variable.

Figure 14.6 shows the convergence rates of the upper and lower boundary of the

search space and the best ones in the optimization process. It should be noted that,

as mentioned before, the number of samples is considered as N¼ 40 in the optimi-

zation process. It can be seen, with respect to the second and third variables, that the
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X3 of the first example
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search space of the first variable is rapidly decreased in the early iterations because

it has more sensitivity to output (i.e., objective function). Hence, despite the fewer

samples, the proposed GSA approach could appropriately rank the variables based

on these sensitivities.

The optimum variables found with different algorithms can also be used for

comparing the SI of variables. As shown in Table 14.1, although the optimal

objective functions found by different optimization algorithms have no significant

difference, the values of the optimum second and third variables have significant

difference compared to the first variable.

14.4.2 A Constrained Function

This is a 10-variable problem which challenges the algorithm ability to deal with

the problem of optimization. This problem also has eight nonlinear inequality

constraints and it is defined as

Find

x1; x2; x3; x4; x5; x6; x7; x8; x9; x10f g ð14:16Þ

To minimize:

f xð Þ ¼ x21 þ x22 þ x1x2 � 14x1 � 16x2 þ x3 � 10ð Þ2 þ 4 x4 � 5ð Þ2 þ x5 � 3ð Þ2
þ2 x6 � 1ð Þ2 þ 5x27 þ 7 x8 � 11ð Þ2 þ 2 x9 � 10ð Þ2 þ x10 � 7ð Þ2 þ 45

ð14:17Þ

Subjected to:

g1 xð Þ ¼ 105� 4x1 � 5x2 þ 3x7 � 9x8 � 0,

g2 xð Þ ¼ �10x1 þ 8x2 þ 17x7 � 2x8 � 0,

g3 xð Þ ¼ 8x1 � 2x2 � 5x9 þ 2x10 þ 12 � 0,

g4 xð Þ ¼ �3 x1 � 2ð Þ2 � 4 x2 � 3ð Þ2 � 2x23 þ 7x4 þ 120 � 0,

g5 xð Þ ¼ �5x21 � 8x2 � x3 � 6ð Þ2 þ 2x4 þ 40 � 0,

g6 xð Þ ¼ �x21 � 2 x2 � 2ð Þ2 þ 2x1x2 � 14x5 þ 6x6 � 0,

g7 xð Þ ¼ �0:5 x1 � 8ð Þ2 � 2 x2 � 4ð Þ2 � 3x25 þ x6 þ 30 � 0,

g8 xð Þ ¼ 3x1 � 6x2 � 12 x9 � 8ð Þ2 þ 7x10 � 0:

ð14:18Þ

The bounds on the design variables are:

�10 � xi � 10 i ¼ 1� 10ð Þ ð14:19Þ

This problem has been solved by Deb [11] utilizing an efficient constraint

handling method for the GA. Lee and Geem [20] and Kaveh and Mahdavi [21]
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employed the harmony search and colliding bodies optimization algorithms,

respectively.

Tables 14.3 and 14.4 compare the optimal variables, best cost, mean cost, and

standard deviation of the results obtained using GSAB with the outcomes of other

algorithms. As anticipated, GSAB led to a much better results in terms of best cost

and also fitness function evaluations. Figure 14.7 provides the amount of SIs
founded by the GSA method, and high sensitivity value of the ninth variable is

shown. As it can be seen also in Table 14.3, the best objective function and the

optimum value of the ninth variable, with respect to other variables, obtained by the

HS algorithm, are similar to these outcomes of the CBO algorithm. However, the

best objective function and the optimum value of the ninth variable obtained using

the GSAB algorithm are much better than the other two algorithms.

14.4.3 A Planar 17-Bar Truss Problem

A 17-bar planar truss is schematized in Fig. 14.8. The single vertical downward

load of 100 kips at node 9 is considered, and there are 17 independent design

Table 14.3 Optimal design variables obtained by different researchers for the constrained

function

Optimal design

variables (x) Deb [11]

Lee and Geem

[20]

Kaveh and Mahdavi

[21]

Present

study

x1 Unavailable 2.155225 2.142755 2.193229

x2 2.407687 2.441786 2.229117

x3 8.778069 8.772559 8.747274

x4 5.102078 5.089189 5.074095

x5 0.967625 0.976804 1.011086

x6 1.357685 1.36545 1.38219

x7 1.287760 1.261765 1.347327

x8 9.800438 9.778372 9.902594

x9 8.187803 8.196755 8.308814

x10 8.256297 8.362651 8.22824

Table 14.4 Statistical results from different optimization methods for the constrained function

Methods

Best objective

function

Average objective

function Std dev

Fitness function

evaluations

Deb [11] 24.37248 24.40940 N/A 350,070

Lee and Geem

[20]

24.36679 N/A N/A 230,000

Kaveh and

Mahdavi [21]

24.38470 24.86188 0.580431 100,000

Present study 23.91122644 24.87359216 0.768176491 24,693
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variables. The elastic modulus is 30,000 ksi and the material density is 0.268 lb/in3

for all elements. The members are subjected to the stress limits of 50 ksi both in

tension and compression. Displacement limitations of �2.0 in are imposed on all

nodes in both directions (x and y). The allowable minimum cross-sectional area of

all the elements is set to 0.1 in2.

Table 14.5 presents the optimum designs obtained by Khot and Berke [22], Adeli

and Kumar [23], standard CBO, ECBO, Kaveh and Ilchi Ghazaan [24], and the

proposed GSA algorithms. Although, the best design is obtained by the ECBO and

the work of Khot and Berke [22], the average weight and standard deviation of

independent runs obtained by the GSAB are the lowest. The optimization process of

the best run of the GSAB is completed in 12,255 analyses. Standard CBO and

ECBO required 15,560 and 14,180 analyses to converge to the optimum. The SI

values of variables are shown in Fig. 14.9. It can be seen in Fig. 14.9 and Table 14.5

that the sensitivities of members 1, 3, 5, 7, 9, 11, and 13 are more than the remaining

members, and the larger optimum designs obtained using optimization algorithms

have the high value of SIs.

14.4.4 A 72-Bar Spatial Truss Structure

Schematic topology and element numbering of a 72-bar space truss are shown in

Fig. 14.10. The elements are classified into 16 design groups according to
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Fig. 14.8 Schematic of the

planar 17-bar truss problem
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Table 14.6. The material density is 0.1 lb/in3 (2767.990 kg/m3), and the modulus of

elasticity is taken as 10,000 ksi (68,950 MPa). The members are subjected to the

stress limits of �25 ksi (�172.375 MPa). The uppermost nodes are subjected to

the displacement limits of �0.25 in (�0.635 cm) in both x and y directions. The

Table 14.5 Comparison of the optimized designs for the 17-bar planar truss

Element group

Khot and

Berke [22]

Adeli and

Kumar [23]

Optimal cross-sectional areas

Present

work [1]

Kaveh and Ilchi [24]

CBO ECBO

A1 15.930 16.029 15.9674 15.9158 15.8916

A2 0.100 0.107 0.1386 0.1001 0.10088

A3 12.070 12.183 12.1735 12.0762 12.00129

A4 0.100 0.110 0.1000 0.1000 0.100015

A5 8.067 8.417 7.8524 8.0527 8.078015

A6 5.562 5.715 5.5447 5.5611 5.571161

A7 11.933 11.331 11.9648 11.9470 11.98603

A8 0.100 0.105 0.1002 0.1000 0.100602

A9 7.945 7.301 7.9385 7.9425 8.009118

A10 0.100 0.115 0.1003 0.1000 0.100585

A11 4.055 4.046 4.1146 4.0589 4.06476

A12 0.100 0.101 0.1000 0.1000 0.100046

A13 5.657 5.611 5.8134 5.6644 5.577003

A14 4.000 4.046 4.0556 4.0057 4.004148

A15 5.558 5.152 5.4973 5.5565 5.611166

A16 0.100 0.107 0.1329 0.1000 0.104159

A17 5.579 5.286 5.4043 5.5740 5.568715

Best weight (lb) 2581.89 2594.42 2582.79 2581.89 2582.032

Average weight

(lb)

N/A N/A 2631.07 2597.11 2585.62

Std dev (lb) N/A N/A 49.45 22.43 9.248879
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minimum permitted cross-sectional area of each member is taken as 0.10 in2

(0.6452 cm2), and the maximum cross-sectional area of each member is 4.00 in2

(25.81 cm2). The loading conditions are considered as:

1. Loads 5, 5, and �5 kips in the x, y, and z directions at node 17, respectively
2. A load equal to �5 kips in the z direction at nodes 17, 18, 19, and 20

Table 14.6 shows the optimum design variables using the GSAB algorithm,

which is compared to the results of the other algorithms. The best result of the

GSAB approach is 379.7689, while it is 385.76, 380.24, 381.91, 379.85, 380.458,

379.75, and 379.77 Ib for the GA Erbatur et al. [25], ACO Camp and Bichon [26],

PSO Perez and Behdinan [27], BB–BC Camp [28], RO Kaveh and Khayatazad

[29], CBO and ECBO, and Kaveh and Ilchi Ghazaan [24] algorithms, respectively.

Also, the number of analyses of the GSAB is 13,795, while it is 18,500, 19,621,

19,084, 16,000, and 18,000 for the ACO, BB–BC, RO, CBO, and ECBO algo-

rithms, respectively. It is evident in Table 14.6 that although the statistical results of

20 independent runs for the CBO are less than the GSAB algorithm, the number of

function evaluations for the GSAB algorithm is less than that of the CBO. Fig-

ure 14.11 shows the SI values of the variables for this example. Figure 14.12 shows

the maximum stress ratios in truss group members obtained using the GSAB. As it

Fig. 14.10 Schematic of the 72-bar spatial truss
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can be seen in Figs. 14.11 and 14.12 and Table 14.6, the first design variable, i.e.,

the first-story column area, is the most sensitive variable because of the high

amount of axial force in the first-story columns. The design variables corresponding

to the vertical braces area are also the sensitive variables, with respect to other truss

group members, because these can affect the displacement constraints and can have

high length in the shape of truss.

14.4.5 A 120-Bar Truss Dome

The last test case solved in this study is the weight minimization problem of the

120-bar truss dome shown in Fig. 14.13. This test case was investigated by Soh and

Yang [30] as a configuration optimization problem. It has been solved later as a

sizing optimization problem by Kaveh and Talatahari [18], Kaveh and Khayatazad

[29], and Kaveh and Mahdavi [19].

The allowable tensile and compressive stresses are set according to the

ASD-AISC [31] code, as follows:
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σþi ¼ 0:6Fy f orσi � 0

σ�i f orσi � 0

	
ð14:20Þ

where σ�i is calculated according to the slenderness ratio:

Fig. 14.13 Schematic of the spatial 120-bar dome truss with indication of design variables and

main geometric dimensions
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σ�i ¼
1� λ2i

2C2
c

 !
Fy

" #
=

5

3
þ 3λi
8Cc

� λ3i
8C3

c

 !
f or λi < Cc

12π2E

23λ2i
f or λi � Cc

8>>><>>>: ð14:21Þ

where E is the modulus of elasticity, Fy is the yield stress of steel, Cc is the

slenderness ratio (λi) dividing the elastic and inelastic buckling regions

Cc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2E=Fy

p� �
, λi is the slenderness ratio λi ¼ KLi

ri

� �
, K is the effective length

factor, Li is the member length, and ri is the radius of gyration.
The modulus of elasticity is 30,450 ksi and the material density is 0.288 lb/in3.

The yield stress of steel is taken as 58.0 ksi. On the other hand, the radius of

gyration (ri) is expressed in terms of cross-sectional areas as ri ¼ aAi
b i (Saka [32]).

Here, a and b are constants depending on the types of sections adopted for the

members such as pipes, angles, and tees. In this example, pipe sections (a¼ 0.4993

and b¼ 0.6777) are adopted for bars. All members of the dome are divided into

seven groups, as shown in Fig. 14.7. The dome is considered to be subjected to

vertical loads at all unsupported joints. These are taken as �13.49 kips (60 kN) at

node 1, �6.744 kips (30 kN) at nodes 2 through 14, and �2.248 kips (10 kN) at the

remaining of the nodes. The minimum cross-sectional area of elements is 0.775 in2

(cm2). In this example, the constraints are considered: Stress constraints and

displacement limitations of �0.1969 in are imposed on all nodes in all directions.

The maximum cross-sectional area is also considered as 20.0 in2.

Table 14.7 summarizes the results obtained by the present work and those of the

previously reported researches. As it can be seen, the best results obtained using the

GSAB is better than those of the other methods (except for the HPSACO). The

standard deviations of results are also better than the RO and CBO algorithms. In

this example, the GSAB needs 5823 analyses to find the optimum result, while this

number is 10,000, 125,000, 19,800, and 16,000 for the HPSACO, PSOPC, RO, and

CBO algorithms as reported, respectively.

14.5 Concluding Remarks

In this chapter, a new single-solution global sensitivity analysis-based optimizer

called GSAB is developed. Compared to other metaheuristic algorithms, the GSAB

has several distinct features. Firstly, the population/agents in GSAB are directly

represented by the samples, which are used to find the sensitivity values of the

decision variables as well as the optimization search in sequence at each iteration.

Hence, one can consider the proposed algorithm as a single-solution metaheuristic

category. Secondly, the search boundaries are considered, and these are decreased
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based on the sensitivity values of the variables at each iteration. The sample, which

is the best one, is also selected to push the search boundaries around this sample,

and it is selected as solution of the GSAB algorithm. Then, the samples that exceed

the search boundaries are randomly regenerated into the boundaries. Unlike the

common metaheuristic algorithms where the agents of a population move to the

new positions without considering any information about the sensitivity of vari-

ables, in this algorithm the search boundaries are decreased based on the sensitivity

indices of the variables, and this accelerates the converge of the solution.

The GSAB algorithm is tested over five benchmark optimization problems

consisting of mathematical and truss structure optimization problems with different

dimensions. The results are compared to those of some population-based

metaheuristics. This comparison reveals that besides its simplicity, the proposed

GSAB algorithm is also competitive, especially from the number of function

evaluations’ point of view, when compared to the performance of the some other

algorithms.
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25. Erbatur F, Hasançebi O, T€ut€unc€u I, Kiliç H (2014) Optimal design of planar and space

structures with genetic algorithms. Comput Struct 75:209–224

26. Camp CV, Bichon BJ (2004) Design of space trusses using ant colony optimization. J Struct

Eng 130:741–751

27. Perez RE, Behdinan K (2007) Particle swarm approach for structural design optimization.

Comput Struct 85:1579–1588

448 14 Global Sensitivity Analysis-Based Optimization Algorithm



28. Camp CV (2007) Design of space trusses using Big Bang–Big Crunch optimization. J Struct

Eng 133:999–1008

29. Kaveh A, Khayatazad M (2012) A novel meta-heuristic method: ray optimization. Comput

Struct 112–113:283–294

30. Soh CK, Yang J (1996) Fuzzy controlled genetic algorithm search for shape optimization. J

Comput Civil Eng 10:143–150

31. American Institute of Steel Construction (AISC) (1989) Manual of steel construction allow-

able stress design, 9th edn. Chicago, IL, USA

32. Saka MP (1990) Optimum design of pin-jointed steel structures with practical applications. J

Struct Eng 116:2599–2620

References 449


	Chapter 14: Global Sensitivity Analysis-Based Optimization Algorithm
	14.1 Introduction
	14.2 Background Study
	14.2.1 Variance-Based Sensitivity Indices
	14.2.2 The Variance-Based Sensitivity Analysis Using Space-Partition Method

	14.3 A Global Sensitivity Analysis-Based Algorithm
	14.3.1 Methodology

	14.4 Numerical Examples
	14.4.1 Design of a Tension/Compression Spring
	14.4.2 A Constrained Function
	14.4.3 A Planar 17-Bar Truss Problem
	14.4.4 A 72-Bar Spatial Truss Structure
	14.4.5 A 120-Bar Truss Dome

	14.5 Concluding Remarks
	References


